Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.; ...
2016-12-01
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
Coulomb versus spin-orbit interaction in few-electron carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2009-07-01
Few-electron states in carbon-nanotube quantum dots are studied by means of the configuration-interaction method. The peculiar noninteracting feature of the tunneling spectrum for two electrons, recently measured by F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen [Nature (London) 452, 448 (2008)], is explained by the splitting of a low-lying isospin multiplet due to spin-orbit interaction. Nevertheless, the strongly interacting ground state forms a “Wigner molecule” made of electrons localized in space. Signatures of the electron molecule may be seen in tunneling spectra by varying the tunable dot confinement potential.
Experimental validation of tunable features in laser-induced plasma resonators
NASA Astrophysics Data System (ADS)
Colón Quiñones, Roberto A.; Cappelli, Mark A.
2017-08-01
Measurements are presented which examine the use of gaseous plasma elements as highly-tunable resonators. The resonator considered here is a laser-induced plasma kernel generated by focusing the fundamental output from a Q-switched Nd:YAG laser through a lens and into a gas at constant pressure. The near-ellipsoidal plasma element interacts with incoming microwave radiation through excitation of low-order, electric-dipole resonances similar to those seen in metallic spheres. The tunability of these elements stems from the dispersive nature of plasmas arising from their variable electron density, electron momentum transfer collision frequency, and the concomitant e↵ect of these properties on the excited surface plasmon resonance. Experiments were carried out in the Ku band of the microwave spectrum to characterize the scattering properties of these resonators for di↵erent values of electron density. The experimental results are compared with results from theoretical approximations and finite element method electromagnetic simulations. The described tunable resonators have the potential to be used as the building blocks in a new class of all-plasma metamaterials with fully three-dimensional structural flexibility.
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki; ...
2017-06-14
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
High flux, narrow bandwidth compton light sources via extended laser-electron interactions
Barty, V P
2015-01-13
New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.
Tunable emergent heterostructures in a prototypical correlated metal
NASA Astrophysics Data System (ADS)
Fobes, D. M.; Zhang, S.; Lin, S.-Z.; Das, Pinaki; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Harriger, L. W.; Ehlers, G.; Podlesnyak, A.; Bewley, R. I.; Sazonov, A.; Hutanu, V.; Ronning, F.; Batista, C. D.; Janoschek, M.
2018-05-01
At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting6 and electronic nematic textures7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.
Tunable emergent heterostructures in a prototypical correlated metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fobes, D. M.; Zhang, S.; Lin, S. -Z.
We report at the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn 5, revealingmore » competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. Finally, the resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn 5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.« less
Tunable emergent heterostructures in a prototypical correlated metal
Fobes, D. M.; Zhang, S.; Lin, S. -Z.; ...
2018-03-26
We report at the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn 5, revealingmore » competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. Finally, the resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn 5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.« less
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, A M; Anderson, S G; Betts, S
2005-05-19
PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verifiedmore » the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.« less
Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin; Guo, Wanlin
2016-01-01
Low-dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low-dimensional carbon, boron nitride, metal-dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one- and two-dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324-350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article.
Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam
NASA Astrophysics Data System (ADS)
Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.
2018-04-01
We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.
Süßmann, F.; Seiffert, L.; Zherebtsov, S.; Mondes, V.; Stierle, J.; Arbeiter, M.; Plenge, J.; Rupp, P.; Peltz, C.; Kessel, A.; Trushin, S. A.; Ahn, B.; Kim, D.; Graf, C.; Rühl, E.; Kling, M. F.; Fennel, T.
2015-01-01
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena. PMID:26264422
Süßmann, F; Seiffert, L; Zherebtsov, S; Mondes, V; Stierle, J; Arbeiter, M; Plenge, J; Rupp, P; Peltz, C; Kessel, A; Trushin, S A; Ahn, B; Kim, D; Graf, C; Rühl, E; Kling, M F; Fennel, T
2015-08-12
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.
Zhang, Zhen; Yan, Lixin; Du, Yingchao; ...
2017-05-01
We propose a method based on the slice energy spread modulation to generate strong subpicosecond density bunching in high-intensity relativistic electron beams. A laser pulse with periodic intensity envelope is used to modulate the slice energy spread of the electron beam, which can then be converted into density modulation after a dispersive section. It is found that the double-horn slice energy distribution of the electron beam induced by the laser modulation is very effective to increase the density bunching. Since the modulation is performed on a relativistic electron beam, the process does not suffer from strong space charge force ormore » coupling between phase spaces, so that it is straightforward to preserve the beam quality for terahertz (THz) radiation and other applications. We show in both theory and simulations that the tunable radiation from the beam can cover the frequency range of 1 - 10 THz with high power and narrow-band spectra.« less
Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin
2016-01-01
Low‐dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low‐dimensional carbon, boron nitride, metal‐dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one‐ and two‐dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324–350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article. PMID:27818710
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
Long range coherence in free electron lasers
NASA Technical Reports Server (NTRS)
Colson, W. B.
1984-01-01
The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.
Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L
2005-10-21
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube
NASA Astrophysics Data System (ADS)
Pecker, S.; Kuemmeth, F.; Secchi, A.; Rontani, M.; Ralph, D. C.; McEuen, P. L.; Ilani, S.
2013-09-01
Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role. In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of the string. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet so far a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultraclean carbon nanotube to realize this system in a tunable potential. Using tunnelling spectroscopy we measure the addition spectra of two interacting carriers, electrons or holes, and identify seven low-energy states characterized by their exchange symmetries. The formation of a Wigner molecule is evident from a tenfold quenching of the fundamental excitation energy as compared with the non-interacting value. Our ability to tune the two-carrier state in space and to study it for both electrons and holes provides an unambiguous demonstration of this strongly interacting quantum ground state.
Isotope effect on electron-phonon interaction in the multiband superconductor MgB 2
Mou, Daixiang; Manni, Soham; Taufour, Valentin; ...
2016-04-07
We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB 2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E 2g phonon mode, is shifted to higher binding energy by ~3.5 meV in Mg 10B 2 and the shift is not affected by superconducting transition. Furthermore, these results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.
SuBmann, F.; Seiffert, L.; Zherebtsov, S.; ...
2015-08-12
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
SuBmann, F.; Seiffert, L.; Zherebtsov, S.
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less
Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene
NASA Astrophysics Data System (ADS)
Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.
2017-12-01
Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.
Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.
Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja
2013-07-14
New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.
NASA Astrophysics Data System (ADS)
Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong
2015-05-01
The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications. Electronic supplementary information (ESI) available: Magnified TEM images, high resolution TEM images and the particle size distributions of the samples, the STXM results of a thick tube at different positions, XPS results, stability test. See DOI: 10.1039/c5nr01168j
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
NASA Astrophysics Data System (ADS)
Khalili, Behzad; Rimaz, Mehdi
2017-06-01
In this study the different class of tunable and high nitrogen content ionic liquids termed TAMATILs (Tunable Aryl Methyl Amino Tetrazolium based Ionic Liquids) were designed. The physicochemical properties of the nanostructured TAMATILs composed of para substituted phenyl methyl amino tetrazolium cations [(4-X)PMAT]+ (X = H, Me, OCH3, OH, NH2, NO2, F, CN, CHO, CF3, COMe and CO2Me) and dicyanimide anion [N(CN)2]- were fully investigated using M06-2X functional in conjunction with the 6-311++G(2d,2p) basis set. For all of the studied nanostructured ILs the structural parameters, interaction energy, cation's enthalpy of formation, natural charges, charge transfer values and topological properties were calculated and discussed. The substituent effect on the interaction energy and physicochemical properties also is taking into account. The results showed that the strength of interaction has a linear correlation with electron content of the phenyl ring in a way the substituents with electron withdrawing effects lead to make more stable ion pairs with higher interaction energies. Some of the main physical properties of ILs such as surface tension, melting point, critical-point temperature, electrochemical stability and conductivity are discussed and estimated for studying ion pairs using quantum chemical computationally obtained thermochemical data. Finally the enthalpy and Gibbs free energy of formation for twelve nanostructured individual cations with the general formula of [(4-X)PMAT]+ (X = 4-H, 4-Me, 4-OMe, 4-OH, 4-NH2, 4-NO2, 4-F, 4-CN, 4-CHO, 4-CF3, 4-COMe and 4-CO2Me) are calculated.
Spin filtering by field-dependent resonant tunneling.
Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas
2010-02-19
We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.
NASA Astrophysics Data System (ADS)
Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.
2005-10-01
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
Unraveling orbital hybridization of triplet emitters at the metal-organic interface.
Ewen, Pascal R; Sanning, Jan; Doltsinis, Nikos L; Mauro, Matteo; Strassert, Cristian A; Wegner, Daniel
2013-12-27
We have investigated the structural and electronic properties of phosphorescent planar platinum(II) complexes at the interface of Au(111) with submolecular resolution using combined scanning tunneling microscopy and spectroscopy as well as density functional theory. Our analysis shows that molecule-substrate coupling and lateral intermolecular interactions are weak. While the ligand orbitals remain essentially unchanged upon contact with the substrate, we found modified electronic behavior at the Pt atom due to local hybridization and charge transfer to the substrate. Thus, this novel class of phosphorescent molecules exhibits well-defined and tunable interaction with its local environment.
NASA Astrophysics Data System (ADS)
Liu, Weiwen
The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.
Nonlinear Brightness Optimization in Compton Scattering
Hartemann, Fred V.; Wu, Sheldon S. Q.
2013-07-26
In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.
The design of a multi-harmonic step-tunable gyrotron
NASA Astrophysics Data System (ADS)
Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun
2017-03-01
The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Jinda; Ju, Y. Sungtaek, E-mail: just@seas.ucla.edu
One major challenge in incorporating flexible electronics or optoelectronics on curved surfaces is the requirement of significant stretchability. We report a tunable platform for incorporating flexible and yet non-stretching device layers on a hemisphere. In this configuration, an array of planar petals contractively maps onto the surface of an inflatable hemisphere through elastocapillary interactions mediated by an interface liquid. A mechanical model is developed to elucidate the dependence of the conformality of the petal structures on their elastic modulus and thickness and the liquid surface tension. The modeling results are validated against experimental results obtained using petal structures of differentmore » thicknesses, restoring elastic spring elements of different spring constants, and liquids with different surface tension coefficients. Our platform will enable facile integration of non-stretching electronic and optoelectronic components prepared using established planar fabrication techniques on tunable hemispherical surfaces.« less
Correlation between tunability and anisotropy in magnetoelectric voltage tunable inductor (VTI).
Yan, Yongke; Geng, Liwei D; Zhang, Lujie; Gao, Xiangyu; Gollapudi, Sreenivasulu; Song, Hyun-Cheol; Dong, Shuxiang; Sanghadasa, Mohan; Ngo, Khai; Wang, Yu U; Priya, Shashank
2017-11-22
Electric field modulation of magnetic properties via magnetoelectric coupling in composite materials is of fundamental and technological importance for realizing tunable energy efficient electronics. Here we provide foundational analysis on magnetoelectric voltage tunable inductor (VTI) that exhibits extremely large inductance tunability of up to 1150% under moderate electric fields. This field dependence of inductance arises from the change of permeability, which correlates with the stress dependence of magnetic anisotropy. Through combination of analytical models that were validated by experimental results, comprehensive understanding of various anisotropies on the tunability of VTI is provided. Results indicate that inclusion of magnetic materials with low magnetocrystalline anisotropy is one of the most effective ways to achieve high VTI tunability. This study opens pathway towards design of tunable circuit components that exhibit field-dependent electronic behavior.
Strongly Coupled Nanotube Electromechanical Resonators.
Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping
2016-09-14
Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.
Tunable dimensional crossover and magnetocrystalline anisotropy in Fe 2 P -based alloys
Zhuravlev, I. A.; Antropov, V. P.; Vishina, A.; ...
2017-10-01
Electronic structure calculations are used to examine the magnetic properties of Fe 2P-based alloys and the mechanisms through which the Curie temperature and magnetocrystalline anisotropy can be optimized for specific applications. It is found that at elevated temperatures the magnetic interaction in pure Fe 2P develops a pronounced two-dimensional character due to the suppression of the magnetization in one of the sublattices, but the interlayer coupling is very sensitive to band filling and structural distortions. This feature suggests a natural explanation of the observed sharp enhancement of the Curie temperature by alloying with multiple elements, such as Co, Ni, Si,more » and B. The magnetocrystalline anisotropy is also tunable by electron doping, reaching a maximum near the electron count of pure Fe 2P. These findings enable the optimization of the alloy content, suggesting co-alloying of Fe 2P with Co (or Ni) and Si as a strategy for maximizing the magnetocrystalline anisotropy at and above room temperature.« less
Tuning Charge and Correlation Effects for a Single Molecule on a Graphene Device
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Zon; Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; Omrani, Arash A.; Riss, Alexander; Karrasch, Christoph; Jung, Han Sae; Khajeh, Ramin; Wong, Dillon; Watanabe, Kenji; Taniguchi, Takashi; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.
Controlling electronic devices down to the single molecule level is a grand challenge of nanotechnology. Single-molecules have been integrated into devices capable of tuning electronic response, but a drawback for these systems is that their microscopic structure remains unknown due to inability to image molecules in the junction region. Here we present a combined STM and nc-AFM study demonstrating gate-tunable control of the charge state of individual F4TCNQ molecules at the surface of a graphene field effect transistor. This is different from previous studies in that the Fermi level of the substrate was continuously tuned across the molecular orbital energy level. Using STS we have determined the resulting energy level evolution of the LUMO, its associated vibronic modes, and the graphene Dirac point (ED). We show that the energy difference between ED and the LUMO increases as EF is moved away from ED due to electron-electron interactions that renormalize the molecular quasiparticle energy. This is attributed to gate-tunable image-charge screening in graphene and corroborated by ab initio calculations.
Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot.
Fernandez, G; Volz, T; Desbuquois, R; Badolato, A; Imamoglu, A
2009-08-21
We report the observation of all-optically tunable Raman fluorescence from a single quantum dot. The Raman photons are produced in an optically driven Lambda system defined by subjecting the single electron charged quantum dot to a magnetic field in Voigt geometry. Detuning the driving laser from resonance, we tune the frequency of the Raman photons by about 2.5 GHz. The number of scattered photons and the linewidth of the Raman photons are investigated as a function of detuning. The study presented here could form the basis of a new technique for investigating spin-bath interactions in the solid state.
Tunability of the fractional quantum Hall states in buckled Dirac materials
NASA Astrophysics Data System (ADS)
Apalkov, Vadym M.; Chakraborty, Tapash
2014-12-01
We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.
Observation and Spectroscopy of a Two-Electron Wigner Molecule in Ultra-Clean Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Pecker, Sharon; Kuemmeth, Ferdinand; Secchi, Andrea; Rontani, Massimo; Ralph, Dan; McEuen, Paul; Ilani, Shahal
2013-03-01
Coulomb interactions can have a decisive effect on the ground state of electronic systems. The simplest system in which interactions can play an interesting role is that of two electrons on a string. In the presence of strong interactions the two electrons are predicted to form a Wigner molecule, separating to the ends of the string due to their mutual repulsion. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet to date a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultra-clean suspended carbon nanotube to realize this strongly-correlated system in a tunable potential. Using tunneling spectroscopy we measure the excitation spectra of two interacting carriers, electrons or holes. Seven quantum states are identified, characterized by their spin and isospin quantum numbers. These states are seen to fall into two distinctive multiplets according to their exchange symmetries. Interestingly, we find that the splitting between multiplets is quenched by an order of magnitude compared to the non-interacting value. This quenching is shown to be a direct manifestation of the formation of a strongly-interacting Wigner-molecule ground state.
High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide
Singh, P. K.; Sonkusale, S.
2017-01-01
This paper presents an on-chip device that can perform gigahertz-rate amplitude modulation and switching of broadband terahertz electromagnetic waves. The operation of the device is based on the interaction of confined THz waves in a novel slot waveguide with an electronically tunable two dimensional electron gas (2DEG) that controls the loss of the THz wave propagating through this waveguide. A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (<2 V) and zero DC power consumption. The device architecture has potential for realization of the next generation of on-chip modulators and switches at THz frequencies. PMID:28102306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamura, Y.; Biegalski, M.B.; Christen, H.M.
2009-10-22
Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.
Vattikunta, Radhika; Venkatakrishnarao, Dasari; Sahoo, Chakradhar; Naraharisetty, Sri Ram Gopal; Narayana Rao, Desai; Müllen, Klaus; Chandrasekar, Rajadurai
2018-05-16
Novel photonic microresonators with enhanced nonlinear optical (NLO) intensity are fabricated from polymer particles. As an additional advantage, they offer band gap tunability from the visible to near-infrared regions. A special protocol including (i) copolymerization of 4-(1-pyrenyl)-styrene, styrene, and 1,4-divinylbenzene, (ii) extraction of a dispersible and partly dissolvable, lightly cross-linked polymer network (PN), and (iii) treatment of the blue-emitting PN with electron acceptor (A) molecules such as 1,2,4,5-tetracyanobenzene (TCNB) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) furnishes orange- and red-emitting D-A charge-transfer (CT) complexes with the pendant pyrene units. These complexes, here named PN-TCNB and PN-TCNQ, respectively, precipitate as microparticles upon the addition of water and subsequent ultrasonication. Upon electronic excitation, these spherical microparticles act as whispering-gallery-mode resonators by displaying optical resonances in the photoluminescence (PL) spectra because of light confinement. Further, the trapped incident light increases the light-matter interaction and thereby enhances the PL intensity, including the two-photon luminescence. The described protocol for polymer-based CT microresonators with tunable NLO emissions holds promise for a myriad of photonic applications.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less
Magnetic Interactions at the Nanoscale in Trilayer Titanates
NASA Astrophysics Data System (ADS)
Cao, Yanwei; Yang, Zhenzhong; Kareev, M.; Liu, Xiaoran; Meyers, D.; Middey, S.; Choudhury, D.; Shafer, P.; Guo, Jiandong; Freeland, J. W.; Arenholz, E.; Gu, Lin; Chakhalian, J.
2016-02-01
We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3 /SrTiO3/YTiO3 , in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3 /SrTiO3 and SrTiO3 /YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3 /SrTiO3 and localized SrTiO3 /YTiO3 electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d -electron Kondo lattice, and potential spin Hall applications.
NASA Astrophysics Data System (ADS)
Zhou, P.; Zheng, G. G.; Xu, L. H.; Xian, F. L.; Lai, M.
2018-07-01
A wavelength tunable perfect absorber with graphene-hexagonal gold (Au) cylinder array on a ground plate is investigated theoretically. The interactions between electromagnetic (EM) waves and monolayer graphene are analyzed through the field distributions and spectral responses in detail. The finite-difference-time-domain (FDTD) method is used to investigate the tunable properties of the absorber. It is demonstrated that in an optimized configuration, monolayer graphene can interact with light via critical coupling, and the absorptance can be greatly enhanced and reach to 100% for both transverse magnetic (TM) and transverse electronic (TE) polarizations. Furthermore, the influence of geometrical parameters of the structure on the response of the hybrid structure is studied. It is expected that the proposed graphene perfect absorbers can be applied for many applications in the visible (VIS) and the near-infrared (NIR) spectral ranges such as wavelength selective infrared photodetectors and plasmonic sensors.
Tunable inversion symmetry in heterostructures of layered oxides
NASA Astrophysics Data System (ADS)
Rondinelli, James
Traditional approaches to create and control functional electronic materials have focused on new phases in previously unknown bulk minerals. More recently, interlayer physics has spawned interest in known materials in unexplored atomic scale geometries, especially in complex transition metal oxides (TMO), where heterostructures can be created on demand. In this talk, I show that although epitaxial strain routinely induces (enhances) electric polarizations, biaxial strain can also induce an unanticipated polar-to-nonpolar (P-NP) structural transition in (001) thin films of naturally layered An + 1Bn O3n+1 (n = 1 - ∞) oxides. Density functional theory calculations and a complete phenomenological model for Ca3Ti2O7 are used to show that the origin of the P-NP transition originates from the interplay of trilinear-related lattice mode interactions active in the layered oxides, and those interactions are directly strain tunable. Moreover these layered oxides exhibit a quasi-two dimensional phonon mode-an acoustic branch with quadratic dispersion, enabling unusual membrane effects such as tunable negative thermal expansion. I conclude by emphasizing that broken inversion symmetric structures offer a plentiful playground for realizing new functionalities in thin films, including new multiferroics from polar metals.
NASA Astrophysics Data System (ADS)
Veiga, L. S. I.; Fabbris, G.; van Veenendaal, M.; Souza-Neto, N. M.; Feng, H. L.; Yamaura, K.; Haskel, D.
2015-06-01
The ability to tune exchange (magnetic) interactions between 3 d transition metals in perovskite structures has proven to be a powerful route to discovery of novel properties. Here we demonstrate that the introduction of 3 d -5 d exchange pathways in double perovskites enables additional tunability, a result of the large spatial extent of 5 d wave functions. Using x-ray probes of magnetism and structure at high pressure, we show that compression of Sr2FeOsO6 drives an unexpected continuous change in the sign of Fe-Os exchange interactions and a transition from antiferromagnetic to ferrimagnetic order. We analyze the relevant electron-electron interactions, shedding light into fundamental differences with the more thoroughly studied 3 d -3 d systems.
Veiga, L. S. I.; Fabbris, G.; van Veenendaal, M.; ...
2015-06-19
The ability to tune exchange (magnetic) interactions between 3d transition metals in perovskite structures has proven to be a powerful route to discovery of novel properties. Here we demonstrate that the introduction of 3d-5d exchange pathways in double perovskites enables additional tunability, a result of the large spatial extent of 5d wave functions. Using x-ray probes of magnetism and structure at high pressure, we show that compression of Sr₂FeOsO₆ drives an unexpected continuous change in the sign of Fe-Os exchange interactions and a transition from antiferromagnetic to ferrimagnetic order. We analyze the relevant electron-electron interactions, shedding light into fundamental differencesmore » with the more thoroughly studied 3d-3d systems.« less
Huang, Jian; Pfeiffer, L N; West, K W
2014-01-24
In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9) cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.
Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, D J; Barty, C J; Betts, S M
2005-04-21
The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less
Observation of van Hove Singularities in Twisted Silicene Multilayers.
Li, Zhi; Zhuang, Jincheng; Chen, Lan; Ni, Zhenyi; Liu, Chen; Wang, Li; Xu, Xun; Wang, Jiaou; Pi, Xiaodong; Wang, Xiaolin; Du, Yi; Wu, Kehui; Dou, Shi Xue
2016-08-24
Interlayer interactions perturb the electronic structure of two-dimensional materials and lead to new physical phenomena, such as van Hove singularities and Hofstadter's butterfly pattern. Silicene, the recently discovered two-dimensional form of silicon, is quite unique, in that silicon atoms adopt competing sp(2) and sp(3) hybridization states leading to a low-buckled structure promising relatively strong interlayer interaction. In multilayer silicene, the stacking order provides an important yet rarely explored degree of freedom for tuning its electronic structures through manipulating interlayer coupling. Here, we report the emergence of van Hove singularities in the multilayer silicene created by an interlayer rotation. We demonstrate that even a large-angle rotation (>20°) between stacked silicene layers can generate a Moiré pattern and van Hove singularities due to the strong interlayer coupling in multilayer silicene. Our study suggests an intriguing method for expanding the tunability of the electronic structure for electronic applications in this two-dimensional material.
NASA Astrophysics Data System (ADS)
Katoch, Jyoti; Ulstrup, Søren; Koch, Roland J.; Moser, Simon; McCreary, Kathleen M.; Singh, Simranjeet; Xu, Jinsong; Jonker, Berend T.; Kawakami, Roland K.; Bostwick, Aaron; Rotenberg, Eli; Jozwiak, Chris
2018-04-01
In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), new electronic phenomena such as tunable bandgaps1-3 and strongly bound excitons and trions emerge from strong many-body effects4-6, beyond the spin and valley degrees of freedom induced by spin-orbit coupling and by lattice symmetry7. Combining single-layer TMDs with other 2D materials in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these many-body effects, by means of engineered interlayer interactions8-10. Here, we use micro-focused angle-resolved photoemission spectroscopy (microARPES) and in situ surface doping to manipulate the electronic structure of single-layer WS2 on hexagonal boron nitride (WS2/h-BN). Upon electron doping, we observe an unexpected giant renormalization of the spin-orbit splitting of the single-layer WS2 valence band, from 430 meV to 660 meV, together with a bandgap reduction of at least 325 meV, attributed to the formation of trionic quasiparticles. These findings suggest that the electronic, spintronic and excitonic properties are widely tunable in 2D TMD/h-BN heterostructures, as these are intimately linked to the quasiparticle dynamics of the materials11-13.
NASA Astrophysics Data System (ADS)
Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.
2016-08-01
Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.
Spin manipulation with magnetic semiconductor barriers.
Miao, Guo-Xing; Moodera, Jagadeesh S
2015-01-14
Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.
Chiral Plasmonic Nanostructures on Achiral Nanopillars
2013-10-10
spherical nanoparticles where the particle−particle plasmonic interactions create CD and chiral plasmonic excitations.11,20,34 Since CPNs are vertically...Information Additional electron microscope images, CD spectra with silica nanoparticles , and UV−vis absorbance data. This material is available free of charge...materials based on individual nanoparticles (NPs)7,8 or their assemblies9,10 have attracted much attention because of the tunability of their absorption bands
Tunable Orbital-Selective Magnetic Interaction in Tricolor Oxide Interfaces
NASA Astrophysics Data System (ADS)
Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Choudhury, Debraj; Middey, Srimanta; Meyers, Derek; Chakhalian, Jak
2015-03-01
Recently, several theoretical scenarios of orbital-selective magnetic interactions were proposed to understand the emergence of the unexpected interfacial magnetism in the archetypical SrTiO3-based two-dimensional electron gas systems, the origin of which is still intriguing and not an entirely understood phenomenon in oxide interface physics. Experimentally, however, there thus far lacks a material system to directly demonstrate the magnetic interaction with orbital-selection (dxy vs. dxz/dyz) and eventually manipulate this magnetic interaction. To address this, here we induced 2DEG and localized magnetism into the same SrTiO3 layer by devising the heterostructure LaTiO3/SrTiO3/YTiO3. Combined electrical transport and atomic-resolved scanning transmission electron microscope with electron energy loss spectroscopy revealed that the magnetic localized electrons are formed by the spin transfer from the YTiO3 layer into 2DEG formed at the LaTiO3 /SrTiO3 interface, with the orbital occupancy and strength of the magnetic interaction controlled by the SrTiO3 layer thickness. Our work provides an ideal platform to explore the orbital physics driven by the interfacial magnetism with prospects for exciting spintronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com; Illyaskutty, Navas
2016-05-21
Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of themore » polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.« less
Rigidity of poly-L-glutamic acid scaffolds: Influence of secondary and supramolecular structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nickels, Jonathan D.; Perticaroli, Stefania; Ehlers, Georg
Poly-L-glutamic acid (PGA) is a widely used biomaterial, with applications ranging from drug delivery and biological glues to food products and as a tissue engineering scaffold. A biodegradable material with flexible conjugation functional groups, tunable secondary structure, and mechanical properties, PGA has potential as a tunable matrix material in mechanobiology. Some recent studies in proteins connecting dynamics, nanometer length scale rigidity, and secondary structure suggest a new point of view from which to analyze and develop this promising material. Our paper characterizes the structure, topology, and rigidity properties of PGA prepared with different molecular weights and secondary structures through variousmore » techniques including scanning electron microscopy, FTIR, light, and neutron scattering spectroscopy. On the length scale of a few nanometers, rigidity is determined by hydrogen bonding interactions in the presence of neutral species and by electrostatic interactions when the polypeptide is negatively charged. Finally, when probed over hundreds of nanometers, the rigidity of these materials is modified by long range intermolecular interactions that are introduced by the supramolecular structure.« less
Tunable molecular plasmons in polycyclic aromatic hydrocarbons.
Manjavacas, Alejandro; Marchesin, Federico; Thongrattanasiri, Sukosin; Koval, Peter; Nordlander, Peter; Sánchez-Portal, Daniel; García de Abajo, F Javier
2013-04-23
We show that chemically synthesized polycyclic aromatic hydrocarbons (PAHs) exhibit molecular plasmon resonances that are remarkably sensitive to the net charge state of the molecule and the atomic structure of the edges. These molecules can be regarded as nanometer-sized forms of graphene, from which they inherit their high electrical tunability. Specifically, the addition or removal of a single electron switches on/off these molecular plasmons. Our first-principles time-dependent density-functional theory (TDDFT) calculations are in good agreement with a simpler tight-binding approach that can be easily extended to much larger systems. These fundamental insights enable the development of novel plasmonic devices based upon chemically available molecules, which, unlike colloidal or lithographic nanostructures, are free from structural imperfections. We further show a strong interaction between plasmons in neighboring molecules, quantified in significant energy shifts and field enhancement, and enabling molecular-based plasmonic designs. Our findings suggest new paradigms for electro-optical modulation and switching, single-electron detection, and sensing using individual molecules.
Spectral phase measurement of a Fano resonance using tunable attosecond pulses
Kotur, M.; Guénot, D.; Jiménez-Galán, Á; Kroon, D.; Larsen, E. W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C. L.; Canton, S. E.; Gisselbrecht, M.; Carette, T.; Dahlström, J. M.; Lindroth, E.; Maquet, A.; Argenti, L.; Martín, F.; L'Huillier, A.
2016-01-01
Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time. PMID:26887682
NASA Astrophysics Data System (ADS)
Vaxenburg, Roman; Lifshitz, Efrat
2012-02-01
Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.
Coupling between graphene and intersubband collective excitations in quantum wells
NASA Astrophysics Data System (ADS)
Gonzalez de la Cruz, G.
2017-08-01
Recently, strong light-matter coupling between the electromagnetic modes in plasmonic metasurfaces with quantum-engineering electronic intersubband transitions in quantum wells has been demonstrated experimentally (Benz et al., [14], Lee et al., [15]). These novel materials combining different two-dimensional electronic systems offer new opportunities for tunable optical devices and fundamental studies of collective excitations driven by interlayer Coulomb interactions. In this work, our aim is to study the plasmon spectra of a hybrid structure consisting of conventional two-dimensional electron gas (2DEG) in a semiconductor quantum well and a graphene sheet with an interlayer separation of a. This electronic bilayer structure is immersed in a nonhomgeneous dielectric background of the system. We use a simple model in which the graphene surface plasmons and both; the intrasubband and intersubband collective electron excitations in the quantum well are coupled via screened Coulomb interaction. Here we calculate the dispersion of these relativistic/nonrelativistic new plasmon modes taking into account the thickness of the quantum well providing analytical expressions in the long-wavelength limit.
Magnetic Interactions at the Nanoscale in Trilayer Titanates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yanwei; Yang, Zhenzhong; Kareev, M.
2016-02-17
We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3/SrTiO3/YTiO3, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3/SrTiO3 and SrTiO3/YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3/SrTiO3 and localized SrTiO3/YTiO3 electrons. Our results provide a route with prospects for exploringmore » new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications.« less
Gate-Tunable Electron Transport Phenomena in Al-Ge⟨111⟩-Al Nanowire Heterostructures.
Brunbauer, Florian M; Bertagnolli, Emmerich; Lugstein, Alois
2015-11-11
Electrostatically tunable negative differential resistance (NDR) is demonstrated in monolithic metal-semiconductor-metal (Al-Ge-Al) nanowire (NW) heterostructures integrated in back-gated field-effect transistors (FETs). Unambiguous signatures of NDR even at room temperature are attributed to intervalley electron transfer. At yet higher electric fields, impact ionization leads to an exponential increase of the current in the ⟨111⟩ oriented Ge NW segments. Modulation of the transfer rates, manifested as a large tunability of the peak-to-valley ratio (PVR) and the onset of impact ionization is achieved by the combined influences of electrostatic gating, geometric confinement, and heterojunction shape on hot electron transfer and by electron-electron scattering rates that can be altered by varying the charge carrier concentration in the NW FETs.
Widely tunable opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.
2012-03-01
We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.
Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution
NASA Astrophysics Data System (ADS)
Chutjian, Ara
1999-10-01
The technique of rare-gas photoionization(J. M. Ajello and A. Chutjian, J. Chem. Phys. 65), 5524 (1976). has been extended(A. Kortyna, M. Darrach and A. Chutjian, Bull. Am. Phys. Soc. 43), 1336 (1998). by use of direct laser ionization to electron energies ɛ in the range 0-100 meV, with a resolution Δɛ of 0.4-0.5 meV (FWHM). Tunable UV light at λ276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at λ92 nm, is then used to photoionize Xe at its ^2P_1/2 threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF6 will be reported which show resonance structure at the opening of the ground-state vibrational channels.^3,(H. Hotop et al., AIP Conf. Proc. Ser. 360 (AIP, New York, 1995), and private communication.) This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.
Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S.; Desai, Dhruv K.; Rodgers, Griffin F.; Bradley, Aaron J.; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F.
2015-01-01
Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene’s charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene’s electronic properties.1-8 Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge2 and/or molecular5 states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies.2-5 These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices. PMID:26273961
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-01-01
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS2) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS2 and pentacene. The pentacene/MoS2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices. PMID:27829663
NASA Astrophysics Data System (ADS)
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-11-01
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS2) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS2 and pentacene. The pentacene/MoS2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-11-10
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.
Room-temperature processing of CdSe quantum dots with tunable sizes
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Jeong, Da-Woon; Lee, Chan-Gi; Kim, Bum-Sung; Park, Hyun-Su; Kim, Woo-Byoung
2017-06-01
In this work, CdSe quantum dots (QDs) with tunable sizes have been fabricated via photo-induced chemical etching at room temperature, and the related reaction mechanism was investigated. The surface of QDs was oxidized by the holes generated through photon irradiation of oxygen species, and the obtained oxide layer was dissolved in an aqueous solution of 3-amino-1-propanol (APOL) with an APOL:H2O volume ratio of 5:1. The generated electrons promoted QD surface interactions with amino groups, which ultimately passivated surface defects. The absorption and photoluminescence emission peaks of the produced QDs were clearly blue-shifted about 26 nm with increasing time, and the resulting quantum yield for an 8 h etched sample was increased from 20% to 26%, as compared to the initial sample.
Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces
NASA Astrophysics Data System (ADS)
Lanzillotti-Kimura, Norberto D.; O'Brien, Kevin P.; Rho, Junsuk; Suchowski, Haim; Yin, Xiaobo; Zhang, Xiang
2018-06-01
Acoustic vibrations at the nanoscale (GHz-THz frequencies) and their interactions with electrons, photons, and other excitations are the heart of an emerging field in physics: nanophononics. The design of ultrahigh frequency acoustic-phonon transducers, with tunable frequency, and easy to integrate in complex systems is still an open and challenging problem for the development of acoustic nanoscopies and phonon lasers. Here we show how an optimized plasmonic metasurface can act as a high-frequency phonon transducer. We report pump-probe experiments in metasurfaces composed of an array of gold nanostructures, revealing that such arrays can act as efficient and tunable photon-phonon transducers, with a strong spectral dependence on the excitation rate and laser polarization. We anticipate our work to be the starting point for the engineering of phononic metasurfaces based on plasmonic nanostructures.
Toward tunable doping in graphene FETs by molecular self-assembled monolayers
NASA Astrophysics Data System (ADS)
Li, Bing; Klekachev, Alexander V.; Cantoro, Mirco; Huyghebaert, Cedric; Stesmans, André; Asselberghs, Inge; de Gendt, Stefan; de Feyter, Steven
2013-09-01
In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant. Electronic supplementary information (ESI) available: AFM images of self-assembled monolayers of OA on HOPG; AFM height image of the graphene surface on a SiC substrate; high resolution STM image of a self-assembled monolayer of OA on HOPG; transfer curves of a graphene FET with and without baking steps; transfer curves of a graphene FET under high vacuum conditions; transfer curves of a graphene FET and its Raman response before and after OA treatment; transfer curves of a graphene FET before and after rinsing with n-hexane. See DOI: 10.1039/c3nr01255g
Observation of the fractional quantum Hall effect in graphene.
Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip
2009-11-12
When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.
Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong
2015-06-07
The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.
Observation of van Hove Singularities in Twisted Silicene Multilayers
2016-01-01
Interlayer interactions perturb the electronic structure of two-dimensional materials and lead to new physical phenomena, such as van Hove singularities and Hofstadter’s butterfly pattern. Silicene, the recently discovered two-dimensional form of silicon, is quite unique, in that silicon atoms adopt competing sp2 and sp3 hybridization states leading to a low-buckled structure promising relatively strong interlayer interaction. In multilayer silicene, the stacking order provides an important yet rarely explored degree of freedom for tuning its electronic structures through manipulating interlayer coupling. Here, we report the emergence of van Hove singularities in the multilayer silicene created by an interlayer rotation. We demonstrate that even a large-angle rotation (>20°) between stacked silicene layers can generate a Moiré pattern and van Hove singularities due to the strong interlayer coupling in multilayer silicene. Our study suggests an intriguing method for expanding the tunability of the electronic structure for electronic applications in this two-dimensional material. PMID:27610412
NASA Astrophysics Data System (ADS)
Shchagin, A. V.; Shul'ga, N. F.; Trofymenko, S. V.; Nazhmudinov, R. M.; Kubankin, A. S.
2016-11-01
The possibility of measurement of electrons ionization loss in Si layer of smoothly tunable thickness is shown in the proof-of-principle experiment. The Si surface-barrier detector with the depleted layer thickness controlled by the value of high voltage power supply has been used. Ionization loss spectra for electrons emitted by radioactive source 207Bi are presented and discussed. Experimental results for the most probable ionization loss in the Landau spectral peak are compared with theoretical calculations. The possibility of research of evolution of electromagnetic field of ultra-relativistic particles traversing media interface with the use of detectors with smoothly tunable thickness is proposed.
Cooper pair splitter realized in a two-quantum-dot Y-junction.
Hofstetter, L; Csonka, S; Nygård, J; Schönenberger, C
2009-10-15
Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.
NASA Astrophysics Data System (ADS)
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei
2015-04-01
Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07689c
Microchannel plate detector and methods for their fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing
A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Liujiang; Zhuo, Zhiwen; Kou, Liangzhi
Recently, two-dimensional (2D) transition-metal nitrides have triggered an enormous interest for their tunable mechanical, optoelectronic, and magnetic properties, significantly enriching the family of 2D materials. Here, by using a broad range of first-principles calculations, we report a systematic study of 2D rectangular materials of titanium mononitride (TiN), exhibiting high energetic and thermal stability due to in-plane d–p orbital hybridization and synergetic out-of-plane electronic delocalization. The rectangular TiN monolayer also possesses enhanced auxeticity and ferroelasticity with an alternating order of Possion’s Ratios, stemming from the competitive interactions of intra- and inter- Ti—N chains. Such TiN nanosystem is a n-type metallic conductormore » with specific tunable pseudogaps. Halogenation of TiN monolayer downshifts the Fermi level, achieving the optical energy gap up to 1.85 eV for TiNCl(Br) sheet. Overall, observed electronic features suggest that the two materials are potential photocatalysts for water splitting application. Furthermore, these results extend emerging phenomena in a rich family 2D transition-metal-based materials and hint for a new platform for the next-generation functional nanomaterials.« less
Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory
2015-08-11
A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.
Tunable electronic lens using a gradient polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Ren, Hongwen; Wu, Shin-Tson
2003-01-01
Tunable electronic lenses using gradient polymer network liquid crystal (PNLC) cells were demonstrated. By changing the photomask pattern, both positive and negative lenses were fabricated. The advantages of such a PNLC lens are low operation voltage, large aperture size, and simple electrode design. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC cells is considered.
Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.
Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika
2015-01-01
A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests.
First-principles studies of electric field effects on the electronic structure of trilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus
2017-05-01
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
Electronic energy loss spectra from mono-layer to few layers of phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Thakur, Rajesh; Ahluwalia, P. K.
2016-05-23
Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.
Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...
2015-04-08
We use a tunable laser angle-resolved photoemission spectroscopy to study the electronic properties of the prototypical multiband BCS superconductor MgB 2. Our data reveal a strong renormalization of the dispersion (kink) at ~65meV, which is caused by the coupling of electrons to the E 2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB 2 does not change significantly across T c. More interestingly, we observe strong coupling to a second, lower energy collective mode at a binding energy of 10 meV. As a result, this excitation vanishes above T c and is likely a signature ofmore » the elusive Leggett mode.« less
A tunable few electron triple quantum dot
NASA Astrophysics Data System (ADS)
Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.
2009-11-01
In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.
A tunable electronic beam splitter realized with crossed graphene nanoribbons
NASA Astrophysics Data System (ADS)
Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel
2017-03-01
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.
Impact of Many-Body Effects on Landau Levels in Graphene
NASA Astrophysics Data System (ADS)
Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.
2018-05-01
We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.
Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation
Glownia, James H.; Sander, Robert K.
1985-01-01
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian
2016-10-12
Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.
Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation
Glownia, J.H.; Sander, R.K.
1982-06-29
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, G G
2010-05-18
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less
Dynamical control of electron-phonon interactions with high-frequency light
NASA Astrophysics Data System (ADS)
Dutreix, C.; Katsnelson, M. I.
2017-01-01
This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green's functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can be visited within the same material when varying the driving strength. This work provides some insight into controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in shaken optical lattices of ultracold atoms.
Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt
MacLellan, D. A.; Carroll, D. C.; Gray, R. J.; ...
2014-10-31
The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.
Tunable Magnetic Exchange Interactions in Manganese-Doped Inverted Core-Shell ZnSe-CdSe Nanocrystals
2009-01-01
exchange coupling even for a singlemagnetic dopant atom12,17. Whereas magnetically doped monocomponent nanocrystals are well established16, wavefunction...Solid State Commun. 114, 547–550 (2000). 13. Radovanovic, P. V. & Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic...D. R. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): Physical property dependence on dopant locale. J. Am. Chem. Soc
Kondo blockade due to quantum interference in single-molecule junctions
Mitchell, Andrew K.; Pedersen, Kim G. L.; Hedegård, Per; Paaske, Jens
2017-01-01
Molecular electronics offers unique scientific and technological possibilities, resulting from both the nanometre scale of the devices and their reproducible chemical complexity. Two fundamental yet different effects, with no classical analogue, have been demonstrated experimentally in single-molecule junctions: quantum interference due to competing electron transport pathways, and the Kondo effect due to entanglement from strong electronic interactions. Here we unify these phenomena, showing that transport through a spin-degenerate molecule can be either enhanced or blocked by Kondo correlations, depending on molecular structure, contacting geometry and applied gate voltages. An exact framework is developed, in terms of which the quantum interference properties of interacting molecular junctions can be systematically studied and understood. We prove that an exact Kondo-mediated conductance node results from destructive interference in exchange-cotunneling. Nonstandard temperature dependences and gate-tunable conductance peaks/nodes are demonstrated for prototypical molecular junctions, illustrating the intricate interplay of quantum effects beyond the single-orbital paradigm. PMID:28492236
Limiting current of intense electron beams in a decelerating gap
NASA Astrophysics Data System (ADS)
Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.
2016-02-01
For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.
A synthetic redox biofilm made from metalloprotein-prion domain chimera nanowires
NASA Astrophysics Data System (ADS)
Altamura, Lucie; Horvath, Christophe; Rengaraj, Saravanan; Rongier, Anaëlle; Elouarzaki, Kamal; Gondran, Chantal; Maçon, Anthony L. B.; Vendrely, Charlotte; Bouchiat, Vincent; Fontecave, Marc; Mariolle, Denis; Rannou, Patrice; Le Goff, Alan; Duraffourg, Nicolas; Holzinger, Michael; Forge, Vincent
2017-02-01
Engineering bioelectronic components and set-ups that mimic natural systems is extremely challenging. Here we report the design of a protein-only redox film inspired by the architecture of bacterial electroactive biofilms. The nanowire scaffold is formed using a chimeric protein that results from the attachment of a prion domain to a rubredoxin (Rd) that acts as an electron carrier. The prion domain self-assembles into stable fibres and provides a suitable arrangement of redox metal centres in Rd to permit electron transport. This results in highly organized films, able to transport electrons over several micrometres through a network of bionanowires. We demonstrate that our bionanowires can be used as electron-transfer mediators to build a bioelectrode for the electrocatalytic oxygen reduction by laccase. This approach opens opportunities for the engineering of protein-only electron mediators (with tunable redox potentials and optimized interactions with enzymes) and applications in the field of protein-only bioelectrodes.
Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.
Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G
2017-09-01
Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.
The Key Ingredients of the Electronic Structure of FeSe
NASA Astrophysics Data System (ADS)
Coldea, Amalia I.; Watson, Matthew D.
2018-03-01
FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here, we provide an overview of the current understanding of the electronic structure of FeSe, focusing in particular on its low-energy electronic structure as determined from angle-resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements of single-crystal samples. We discuss the unique place of FeSe among iron-based superconductors, as it is a multiband system exhibiting strong orbitally dependent electronic correlations and unusually small Fermi surfaces and is prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure that accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multiband multiorbital nematic electronic structure impacts our understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure helps to disentangle the role of different competing interactions relevant for enhancing superconductivity.
Inverted battery design as ion generator for interfacing with biosystems
Wang, Chengwei; Fu, Kun; Dai, Jiaqi; ...
2017-07-24
In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less
Inverted battery design as ion generator for interfacing with biosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chengwei; Fu, Kun; Dai, Jiaqi
In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less
Inverted battery design as ion generator for interfacing with biosystems
Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing
2017-01-01
In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications. PMID:28737174
GIANT DIELECTRIC TUNABLE BEHAVIOR OF Pr-DOPED SrTiO3 AT LOW TEMPERATURE
NASA Astrophysics Data System (ADS)
Wei, T.; Song, Q. G.; Zhou, Q. J.; Li, Z. P.; Chen, Y. F.; Qi, X. L.; Guo, S. Q.; Liu, J.-M.
2012-03-01
Contrast with conventional dielectric tunable materials such as barium strontium titanate (BST), here, we report one new dielectric tunable behavior for Sr1-xPrxTiO3 system at low temperature. Giant dielectric tunability is confirmed in this system. More importantly, the efficient dielectric tunability can be realized just using small bias field. In addition, critical threshold electric field is also confirmed. This phenomenon may be related with the competition interaction of polar state with quantum fluctuations.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Zhou, Yong Jin
2018-07-01
We have demonstrated that spoof localized surface plasmons (LSPs) can be controlled by loading a shorting pin into the corrugated ring resonator in the microwave and terahertz (THz) frequencies. Electronical switchability and tunability of spoof LSPs have been achieved by mounting Schottky barrier diodes and varactor diodes across the slit around the shorting pin in the ground plane. An electronically tunable band-pass filter has been demostrated in the microwave frequencies. Such electronically controlled spoof LSPs devices can find more applications for highly integrated plasmonic circuits in microwave and THz frequencies.
Spintronic Nanodevices for Bioinspired Computing
Grollier, Julie; Querlioz, Damien; Stiles, Mark D.
2016-01-01
Bioinspired hardware holds the promise of low-energy, intelligent, and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for biomedical prosthesis. However, one of the major challenges of fabricating bioinspired hardware is building ultra-high-density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions (MTJs) are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bioinspired computing include tunable fast nonlinear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nanodevices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bioinspired architectures that include one or several types of spintronic nanodevices. In this paper, we show how spintronics can be used for bioinspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges toward fully integrated spintronics complementary metal–oxide–semiconductor (CMOS) bioinspired hardware. PMID:27881881
Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires.
Lei, Teng; Lai, Minliang; Kong, Qiao; Lu, Dylan; Lee, Woochul; Dou, Letian; Wu, Vincent; Yu, Yi; Yang, Peidong
2018-06-13
Alloying different semiconductors is a powerful approach to tuning the optical and electronic properties of semiconductor materials. In halide perovskites (ABX 3 ), alloys with different anions have been widely studied, and great band gap tunability in the visible range has been achieved. However, perovskite alloys with different cations at the "B" site are less understood due to the synthetic challenges. Herein, we first have developed the synthesis of single-crystalline CsPb x Sn 1- x I 3 nanowires (NWs). The electronic band gaps of CsPb x Sn 1- x I 3 NWs can be tuned from 1.3 to 1.78 eV by varying the Pb/Sn ratio, which leads to the tunable photoluminescence (PL) in the near-infrared range. More importantly, we found that the electrical conductivity increases as more Sn 2+ is alloyed with Pb 2+ , possibly due to the increase of charge carrier concentration when more Sn 2+ is introduced. The wide tunability of the optical and electronic properties makes CsPb x Sn 1- x I 3 alloy NWs promising candidates for future optoelectronic device applications.
Liu, X-L; Liu, H-N; Tan, P-H
2017-08-01
Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.
Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun
2016-01-28
Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2.
Spectral resolution control of acousto-optical cells operating with collimated and divergent beams
NASA Astrophysics Data System (ADS)
Voloshinov, Vitaly B.; Mishin, Dimitry D.
1994-01-01
The paper is devoted to theoretical and experimental investigations of acousto-optical interactions in crystals which may be used for spectral filtration of light in tunable acousto- optical filters. Attention is paid to spectral resolution control during operation with divergent or collimated noncoherent optical beams. In all examined cases spectral bands of anisotropic Bragg diffraction were regulated by means of novel electronical methods. Resolution control was achieved in paratellurite cells with non-collinear and quasi-collinear regimes of the diffraction. Filtration spectral bandwidths for visible light were electronically changed by a factor of 10 divided by 20 by drive electrical signals switching and drive electrical power regulations.
Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W.F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan
2015-01-01
Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots. PMID:26300307
Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W F; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B-H; Bao, Zhenan
2015-08-24
Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.
Zhou, Liujiang; Zhuo, Zhiwen; Kou, Liangzhi; ...
2017-06-06
Recently, two-dimensional (2D) transition-metal nitrides have triggered an enormous interest for their tunable mechanical, optoelectronic, and magnetic properties, significantly enriching the family of 2D materials. Here, by using a broad range of first-principles calculations, we report a systematic study of 2D rectangular materials of titanium mononitride (TiN), exhibiting high energetic and thermal stability due to in-plane d–p orbital hybridization and synergetic out-of-plane electronic delocalization. The rectangular TiN monolayer also possesses enhanced auxeticity and ferroelasticity with an alternating order of Possion’s Ratios, stemming from the competitive interactions of intra- and inter- Ti—N chains. Such TiN nanosystem is a n-type metallic conductormore » with specific tunable pseudogaps. Halogenation of TiN monolayer downshifts the Fermi level, achieving the optical energy gap up to 1.85 eV for TiNCl(Br) sheet. Overall, observed electronic features suggest that the two materials are potential photocatalysts for water splitting application. Furthermore, these results extend emerging phenomena in a rich family 2D transition-metal-based materials and hint for a new platform for the next-generation functional nanomaterials.« less
Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams
van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...
2015-10-28
The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.
Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin
2017-04-13
Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.
Current-Tunable NbTiN Coplanar Photonic Bandgap Resonators
NASA Astrophysics Data System (ADS)
Asfaw, A.; Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.
Coplanar waveguide resonators have been used in several experimental settings, from superconducting qubits to electron spin resonance. In our particular application of electron spin resonance, these resonators provide increased sensitivity to electron spins due to the small mode volume. Experiments have shown that these resonators can be used to readout as few as 300 spins per shot. Recently, photonic bandgap resonators have been shown to extend the advantages of traditional CPW resonators by allowing spin manipulation both at microwave and radio frequencies, thereby enabling both electron and nuclear spin resonance within the same resonator. We present measurements made using photonic bandgap resonators fabricated with thin NbTiN films which demonstrate microwave tunability of the resonator by modulating the kinetic inductance of the superconductor. Driving a small direct current through the center pin of the resonator allows us to tune the resonant frequency by over 30 MHz around 6.4 GHz while maintaining a quality factor over 8000 at 4.8K. This provides fast and simple tunability of coplanar waveguide resonators and opens new possibilities for multiple frequency electron spin resonance experiments.
Broadband Transmission EPR Spectroscopy
Hagen, Wilfred R.
2013-01-01
EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed. PMID:23555819
Strain-induced tunable negative differential resistance in triangle graphene spirals
NASA Astrophysics Data System (ADS)
Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen
2018-05-01
Using non-equilibrium Green’s function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.
Strain-induced tunable negative differential resistance in triangle graphene spirals.
Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen
2018-05-18
Using non-equilibrium Green's function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.
Graphene analogue in (111)-oriented BaBiO3 bilayer heterostructures for topological electronics.
Kim, Rokyeon; Yu, Jaejun; Jin, Hosub
2018-01-11
Topological electronics is a new field that uses topological charges as current-carrying degrees of freedom. For topological electronics applications, systems should host topologically distinct phases to control the topological domain boundary through which the topological charges can flow. Due to their multiple Dirac cones and the π-Berry phase of each Dirac cone, graphene-like electronic structures constitute an ideal platform for topological electronics; graphene can provide various topological phases when incorporated with large spin-orbit coupling and mass-gap tunability via symmetry-breaking. Here, we propose that a (111)-oriented BaBiO 3 bilayer (BBL) sandwiched between large-gap perovskite oxides is a promising candidate for topological electronics by realizing a gap-tunable, and consequently a topology-tunable, graphene analogue. Depending on how neighboring perovskite spacers are chosen, the inversion symmetry of the BBL heterostructure can be either conserved or broken, leading to the quantum spin Hall (QSH) and quantum valley Hall (QVH) phases, respectively. BBL sandwiched by ferroelectric compounds enables switching of the QSH and QVH phases and generates the topological domain boundary. Given the abundant order parameters of the sandwiching oxides, the BBL can serve as versatile topological building blocks in oxide heterostructures.
Tunable Nitride Josephson Junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missert, Nancy A.; Henry, Michael David; Lewis, Rupert M.
We have developed an ambient temperature, SiO 2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the Ta xN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlO x barriers for low - power, high - performance computing.
Fleyer, Michael; Sherman, Alexander; Horowitz, Moshe; Namer, Moshe
2016-05-01
We experimentally demonstrate a wideband-frequency tunable optoelectronic oscillator (OEO) based on injection locking of the OEO to a tunable electronic oscillator. The OEO cavity does not contain a narrowband filter and its frequency can be tuned over a broad bandwidth of 1 GHz. The injection locking is based on minimizing the injected power by adjusting the frequency of one of the OEO cavity modes to be approximately equal to the frequency of the injected signal. The phase noise that is obtained in the injection-locked OEO is similar to that obtained in a long-cavity self-sustained OEO. Although the cavity length of the OEO was long, the spurious modes were suppressed due to the injection locking without the need to use a narrowband filter. The spurious level was significantly below that obtained in a self-sustained OEO after inserting a narrowband electronic filter with a Q-factor of 720 into the cavity.
Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio
2016-01-01
The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813
Limpens, Rens; Neale, Nathan R; Fujii, Minoru; ...
2018-03-05
Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less
Molecular Beam Mass Spectrometry With Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation
Golan, Amir; Ahmed, Musahid
2012-01-01
Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics1-4. Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water1, 5-9. We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline10 located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds1. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations11, 12. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species 1, 3. PMID:23149375
Gate-tunable electron interaction in high-κ dielectric films
Kondovych, Svitlana; Luk’yanchuk, Igor; Baturina, Tatyana I.; ...
2017-02-20
The two-dimensional (2D) logarithmic character of Coulomb interaction between charges and the resulting logarithmic confinement is a remarkable inherent property of high dielectric constant (high-k) thin films with far reaching implications. Most and foremost, this is the charge Berezinskii-Kosterlitz-Thouless transition with the notable manifestation, low-temperature superinsulating topological phase. Here we show that the range of the confinement can be tuned by the external gate electrode and unravel a variety of electrostatic interactions in high-k films. Lastly, our findings open a unique laboratory for the in-depth study of topological phase transitions and a plethora of related phenomena, ranging from criticality ofmore » quantum metal- and superconductor-insulator transitions to the effects of charge-trapping and Coulomb scalability in memory nanodevices.« less
Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Qingying; Ghoshal, Shraboni; Li, Jingkun
2017-06-01
Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nbmore » in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbOx in both Pt–Nb and Pt–O cases. The resultant electron efficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.« less
Tunable Optical Polymer Systems
2004-10-29
effected , the amount of energy required to achieve optical tunability, satisfactory color contrasts, durability, the processability of the chromogenic...moieties. However, this interaction is not strong enough to cause a pronounced effect in its photophysics. As a result of this slight interaction...oxidation accompanied by a color change. The reduction behavior is unstable and causes loss of the electrochromic effect . The PPTZPQ
Compositionally Graded Multilayer Ceramic Capacitors.
Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank
2017-09-27
Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam
Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less
Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.
Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S
2015-05-15
We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.
2004 Army Research Office in Review
2004-01-01
23 Uncool Tunable LWIR Microbolometer...but also for speech in multimedia applications. ELECTRONICS Uncooled Tunable LWIR Microbolometer – Multi- or hyper- spectral images contain...Analysis of NURBS Curves and Surfaces Jian-Ao Lian, Prairie View A&M University The multiresolution structure of NURBS ( nonuniform rational B
A compact tunable polarized X-ray source based on laser-plasma helical undulators
Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.
2016-01-01
Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126
NASA Astrophysics Data System (ADS)
Aivazian, Grant; Sun, Dong; Jones, Aaron; Ross, Jason; Yao, Wang; Cobden, David; Xu, Xiaodong
2012-02-01
The remarkable electrical and optical properties of graphene make it a promising material for new optoelectronic applications. However, one important, but so far unexplored, property is the role of hot carriers in charge and energy transport at graphene interfaces. Here we investigate the photocurrent (PC) dynamics at a tunable graphene pn junction using ultrafast scanning PC microscopy. Pump-probe measurements show a temperature dependent relaxation time of photogenerated carriers that increases from 1.5ps at 290K to 4ps at 20K; while the amplitude of the PC is independent of the lattice temperature. These observations imply that it is hot carriers, not phonons, which dominate ultrafast energy transport. Gate dependent measurements show many interesting features such as pump induced saturation, enhancement, and sign reversal of probe generated PC. These observations reveal that the underlying PC mechanism is a combination of the thermoelectric and built-in electric field effects. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (˜500 GHz) for graphene-based photodetectors.
Thin-Film Ferroelectric Tunable Microwave Devices Being Developed
NASA Technical Reports Server (NTRS)
VanKeuls, Frederick W.
1999-01-01
Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.
Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions
2016-08-05
rection of the arrows. Dashed (dotted) lines mark the NNN hopping terms (coefficients ±t2). NNNN long -range hopping along curved lines are included to...Quantum spin dynamics with pairwise-tunable, long -range interactions C.-L. Hunga,b,1,2, Alejandro González-Tudelac,1,2, J. Ignacio Ciracc, and H. J...atoms) that interact by way of a variety of processes, such as atomic collisions. Such pro- cesses typically lead to short -range, nearest-neighbor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro
2014-12-04
In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.
NASA Astrophysics Data System (ADS)
Xu, Zhuo; Li, Yangping; Liu, Zhengtang; Liu, Shengzhong (Frank)
2018-04-01
The structural, electronic, and magnetic behaviors of two-dimensional GeC (2D-GeC) with single vacancy, substitutional B, N, and 3d transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are investigated based on the density functional theory. These impurities are tightly bonded to the surrounding atoms and found energetically more favorable at Ge sub-lattice site. In addition, the electronic band structures and magnetic properties of the doped systems indicate that (i) tunable electronic structures and magnetic moments of 2D-GeC can be obtained depending on different dopant species and sub-lattice sites, (ii) systems such as VC@Sc, VC@Fe, VC@Co, VGe@Fe, and VGe@Co are found to be half-metals, while the other systems all show semiconductor behavior. Simple models of the impurity-vacancy interaction is put forwards to illustrate the origin of the electronic structures and magnetic moments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limpens, Rens; Fujii, Minoru; Neale, Nathan R.
Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less
Limpens, Rens; Fujii, Minoru; Neale, Nathan R.; ...
2018-02-28
Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less
TULIPs: tunable, light-controlled interacting protein tags for cell biology.
Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael
2012-03-04
Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
NASA Astrophysics Data System (ADS)
Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.
2018-05-01
This report is on a new class of magnetostatically tunable magneto-impedance and magneto-capacitance devices based on a composite of ferromagnetic Metglas and ferroelectric lead zirconate titanate (PZT). Layered magneto-electric (ME) composites with annealed Metglas and PZT were studied in a longitudinal in-plane magnetic field-transverse electric field (L-T) mode. It was found that the degree of tunability was dependent on the annealing temperature of Metglas. An impedance tunability (ΔZ/Z0) of ≥400% was obtained at the electromechanical resonance (EMR) frequency (fr) for a sample with Metglas layers annealed at Ta = 500oC. This tunability is a factor of two higher than for composites with Metglas annealed at 350oC. The tunability of the capacitance, (ΔC/C0), was found to be 290% and -135k% at resonance and antiresonance, respectively, for Ta = 500oC. These results provide clear evidence for improvement in static magnetic field tunability of impedance and capacitance of ME composites with the use of annealed Metglas and are of importance for their potential use in tunable electronic applications.
Compositionally Graded Multilayer Ceramic Capacitors
Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam; ...
2017-09-27
Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less
NASA Astrophysics Data System (ADS)
Chen, Y. Z.; Trier, F.; Wijnands, T.; Green, R. J.; Gauquelin, N.; Egoavil, R.; Christensen, D. V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N. H.; Sulpizio, J. A.; Honig, M.; Prawiroatmodjo, G. E. D. K.; Jespersen, T. S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; van Tendeloo, G.; Rijnders, G.; Sawatzky, G. A.; Pryds, N.
2015-08-01
Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1-xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.
Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; ...
2017-07-17
In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (~7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. Wemore » take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2016-05-01
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.
Graphene quantum blisters: A tunable system to confine charge carriers
NASA Astrophysics Data System (ADS)
Abdullah, H. M.; Van der Donck, M.; Bahlouli, H.; Peeters, F. M.; Van Duppen, B.
2018-05-01
Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhen; Yan, Lixin; Du, Yingchao
2016-05-05
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstreammore » magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.« less
NASA Astrophysics Data System (ADS)
Juricic, Vladimir; van Miert, Guido; Morais Smith, Cristiane
2015-03-01
Graphynes represent an emerging family of carbon allotropes that differ from graphene by the presence of the triple bonds (-C ≡C-) in their band structure. They have recently attracted much interest due to the tunability of the Dirac cones in the band structure. I will show that the spin-orbit coupling in β-graphyne could produce various effects related to the topological properties of its electronic bands. Intrinsic spin-orbit coupling yields high- and tunable Chern-number bands, which may host both topological and Chern insulators, in the presence and absence of time-reversal symmetry, respectively. Furthermore, Rashba spin-orbit coupling can be used to control the position and the number of Dirac cones in the Brillouin zone. Finally, I will also discuss the electronic properties of α - and γ - graphyne in the presence of the spin-orbit coupling within recently developed general theory of spin-orbit couplings in graphynes. Work supported by the Netherlands Organization for Scientific Research (NWO).
NASA Astrophysics Data System (ADS)
Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.
2017-07-01
In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (˜7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. We take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Narae; Department of Physics, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826; Khondaker, Saiful I., E-mail: saiful@ucf.edu
2014-12-01
One of the major bottlenecks in fabricating high performance organic field effect transistors (OFETs) is a large interfacial contact barrier between metal electrodes and organic semiconductors (OSCs) which makes the charge injection inefficient. Recently, reduced graphene oxide (RGO) has been suggested as an alternative electrode material for OFETs. RGO has tunable electronic properties and its conductivity can be varied by several orders of magnitude by varying the carbon sp{sup 2} fraction. However, whether the sp{sup 2} fraction of RGO in the electrode affects the performance of the fabricated OFETs is yet to be investigated. In this study, we demonstrate thatmore » the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon sp{sup 2} fraction of RGO. When compared to control palladium electrodes, the mobility of the OFETs shows an improvement of ∼200% for 61% sp{sup 2} fraction RGO, which further improves to ∼500% for 80% RGO electrode. Similar improvements were also observed in current on-off ratio, on-current, and transconductance. Our study suggests that, in addition to π-π interaction at RGO/pentacene interface, the tunable electronic properties of RGO electrode have a significant role in OFETs performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.
2014-06-30
Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.
The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances
2013-01-01
Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules. PMID:23805801
Oxidation catalysis by polyoxometalates fundamental electron-transfer phenomena
Yurii V. Geletii; Rajai H. Atalla; Alan J. Bailey; Laurent Delannoy; Craig L. Hill; Ira A. Weinstock
2002-01-01
Early transition-metal oxygen-anion clusters (polyoxometalates, POMs) are a large and rapidly growing class of versatile and tunable oxidation catalysts. All key molecular properties of these clusters (composition, size, shape, charge density, reduction potential, solubility, etc.) can be systematically altered, and the clusters themselves can serve as tunable ligands...
Tunability enhanced electromagnetic wiggler
Schlueter, Ross D.; Deis, Gary A.
1992-01-01
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.
Advanced Compton scattering light source R&D at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F; Anderson, S G; Anderson, G
2010-02-16
We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, S G
Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabledmore » by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).« less
Kiraly, Brian T.; Jacobberger, Robert M.; Mannix, Andrew J.; ...
2015-10-27
Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110)more » leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this study, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene–Ge interface.« less
Exchange and correlation energies in silicene illuminated by circularly polarized light
NASA Astrophysics Data System (ADS)
Iurov, Andrii; Gumbs, Godfrey; Huang, Danhong
2017-05-01
Both the exchange and correlation energies due to Coulomb and spin-orbit interactions in a monolayer silicene with a buckled honeycomb lattice are calculated. We use Lindhard formalism for the polarizability. Many-body effects in such Dirac-like materials are studied with an emphasis on the influence of on-site potential difference ? between two sublattices. Our calculations have shown that the presence of an energy bandgap ? leads to a reduced exchange energy, which has some potential applications, such as, tunability of entanglement of electrons for quantum information devices. Since silicene acquires two energy gaps associated with up- and down-pseudospin, we can adjust its electronic properties in a wider range by varying these two bandgaps as compared to graphene. Another way to tune silicene electronic properties is through impurity doping. Our numerical results demonstrate the dependence of exchange and correlation energies on the energy bandgaps, doping and temperature under circularly polarized light.
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan
2017-04-01
Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.
Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.
Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal
2013-06-11
Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.
Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface
Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal
2013-01-01
Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable. PMID:23708121
Quantum many-body dynamics of strongly interacting atom arrays
NASA Astrophysics Data System (ADS)
Bernien, Hannes; Keesling, Alexander; Levine, Harry; Schwartz, Sylvain; Omran, Ahmed; Anschuetz, Eric; Endres, Manuel; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail
2017-04-01
The coherent interaction between large numbers of particles gives rise to fascinating quantum many-body effects and lies at the center of quantum simulations and quantum information processing. The development of systems consisting of many, well-controlled particles with tunable interactions is an outstanding challenge. Here we present a new platform based on large, reconfigurable arrays of individually trapped atoms. Strong interactions between these atoms are enabled by exciting them to Rydberg states. This flexible approach allows access to vastly different regimes with interactions tunable over several orders of magnitude. We study the coherent many-body dynamics in varying array geometries and observe the formation of Rydberg crystals.
NASA Astrophysics Data System (ADS)
Harkema, Nathan; Liao, Chen-Ting; Sandhu, Arvinder
2017-04-01
Attosecond transient absorption spectroscopy (ATAS) enables the study of excited electron dynamics with unprecedented temporal and energy resolution. Many ATAS experiments use an extreme ultraviolet (XUV) pump pulse and a near-infrared (NIR) probe fixed at the fundamental laser frequency ( 800 nm) to study the light induced effects on electronic structure of atoms and molecules. We extend the technique by using an optical parametric amplifier in one arm of our setup, which allows us to independently tune the frequency of the probe pulse from 1200 to 1800 nm. These long-wavelength pulses allow us to explore a new regime, where we can control the couplings between nearby electronic states to alter the transient absorption lineshapes in atoms. We use this technique to investigate the 4p-3s detuning dependent Autler-Townes splitting of the 4p state in Helium. Light induced Floquet structures extending into the continuum are observed in our study. We demonstrate new tunable XUV emission channels from four-wave mixing processes, and the efficiency of these emissions can be strongly enhanced through resonant couplings. The tunable IR induced electronic couplings are also used to influence the autoionization dynamics in Argon. This work is supported by NSF Grant No. PHY-1505556 and ARO Grant No. W911NF-14-1-0383.
Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping
NASA Astrophysics Data System (ADS)
Zhang, Kenan; Deng, Ke; Li, Jiaheng; Zhang, Haoxiong; Yao, Wei; Denlinger, Jonathan; Wu, Yang; Duan, Wenhui; Zhou, Shuyun
2018-05-01
SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interest due to its excellent thermoelectric properties and potential device applications. Experimental electronic structure of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Sun, Y. -E; Maxwell, T. J.
2011-06-27
We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography
NASA Astrophysics Data System (ADS)
Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.
2008-06-01
We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.
ERIC Educational Resources Information Center
Zemke, Jennifer M.; Franz, Justin
2016-01-01
Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…
Tunability enhanced electromagnetic wiggler
Schlueter, R.D.; Deis, G.A.
1992-03-24
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.
NASA Astrophysics Data System (ADS)
He, Min; Peng, Licong; Zhu, Zhaozhao; Li, Gang; Cai, Jianwang; Li, Jianqi; Wei, Hongxiang; Gu, Lin; Wang, Shouguo; Zhao, Tongyun; Shen, Baogen; Zhang, Ying
2017-11-01
Taking advantage of the electron-current ability to generate, stabilize, and manipulate skyrmions prompts the application of skyrmion multilayers in room-temperature spintronic devices. In this study, the robust high-density skyrmions are electromagnetically generated from Pt/Co/Ta multilayers using Lorentz transmission electron microscopy. The skyrmion density is tunable and can be significantly enhanced. Remarkably, these generated skyrmions after optimized manipulation sustain at zero field with both the in-plane current and perpendicular magnetic field being switched off. The skyrmion generation and manipulation method demonstrated in this study opens up an alternative way to engineer skyrmion-based devices. The results also provide key data for further theoretical study to discover the nature of the interaction between the electric current and different spin configurations.
Koo, Ja Hoon; Jeong, Seongjin; Shim, Hyung Joon; Son, Donghee; Kim, Jaemin; Kim, Dong Chan; Choi, Suji; Hong, Jong-In; Kim, Dae-Hyeong
2017-10-24
With the rapid advances in wearable electronics, the research on carbon-based and/or organic materials and devices has become increasingly important, owing to their advantages in terms of cost, weight, and mechanical deformability. Here, we report an effective material and device design for an integrative wearable cardiac monitor based on carbon nanotube (CNT) electronics and voltage-dependent color-tunable organic light-emitting diodes (CTOLEDs). A p-MOS inverter based on four CNT transistors allows high amplification and thereby successful acquisition of the electrocardiogram (ECG) signals. In the CTOLEDs, an ultrathin exciton block layer of bis[2-(diphenylphosphino)phenyl]ether oxide is used to manipulate the balance of charges between two adjacent emission layers, bis[2-(4,6-difluorophenyl)pyridinato-C 2 ,N](picolinato)iridium(III) and bis(2-phenylquinolyl-N,C(2'))iridium(acetylacetonate), which thereby produces different colors with respect to applied voltages. The ultrathin nature of the fabricated devices supports extreme wearability and conformal integration of the sensor on human skin. The wearable CTOLEDs integrated with CNT electronics are used to display human ECG changes in real-time using tunable colors. These materials and device strategies provide opportunities for next generation wearable health indicators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, K. K.; Tsai, H. -E.; Barber, S. K.
Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less
Tribotronic Tuning Diode for Active Analog Signal Modulation.
Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin
2017-01-24
Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.
Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...
2017-05-30
Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less
On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams
NASA Astrophysics Data System (ADS)
McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.
2018-04-01
The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.
Wide Field Spectroscopy of Diffusing and Interacting DNA Using Tunable Nanoscale Geometries
NASA Astrophysics Data System (ADS)
Scott, Shane; Leith, Jason; Brandao, Hugo; Sehayek, Simon; Hofkirchner, Alexander; Laurin, Jill; Berard, Daniel; Verge, Alexander; Wiseman, Paul; Leslie, Sabrina
2015-03-01
It remains an outstanding challenge to directly image interacting and diffusing biomolecules under physiological conditions. Many biochemical questions can be posed in the form: Does A interact with B? What are the energetics, kinetics, stoichiometry, and cooperativity of this interaction? To tackle this challenge, we use tunable nanoscale confinement to perform wide-field imaging of interacting DNA molecules in free solution, under an extended range of reagent concentrations and interaction rates. We present the integration of ``Convex Lens-induced Confinement (CLiC)'' microscopy with image correlation analysis, simultaneously suppressing background fluorescence and extending imaging times. The measured DNA-DNA interactions would be inaccessible to standard techniques but are important for developing a mechanistic understanding of life-preserving processes such as DNA transcription. NSERC.
Wang, Zhuo; Samaraweera, R. L.; Reichl, C.; ...
2016-12-07
Electron-heating induced by a tunable, supplementary dc-current (I dc) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing Idc, yielding negative giant-magnetoresistance at the lowest temperature and highest I dc. A two-term Drude model successfully fits the data at all Idc and T. The results indicate that carrier heating modifies a conductivity correction σ 1, which undergoes sign reversal from positive to negative with increasing I dc, and this is responsible for the observed crossover from positive-more » to negative- magnetoresistance, respectively, at the highest B.« less
A versatile tunable microcavity for investigation of light-matter interaction
NASA Astrophysics Data System (ADS)
Mochalov, Konstantin E.; Vaskan, Ivan S.; Dovzhenko, Dmitriy S.; Rakovich, Yury P.; Nabiev, Igor
2018-05-01
Light-matter interaction between a molecular ensemble and a confined electromagnetic field is a promising area of research, as it allows light-control of the properties of coupled matter. The common way to achieve coupling is to place an ensemble of molecules or quantum emitters into a cavity. In this approach, light-matter coupling is evidenced by modification of the spectral response of the emitter, which depends on the strength of interaction between emitter and cavity modes. However, there is not yet a user-friendly approach that allows the study of a large number of different and replaceable samples in a wide optical range using the same resonator. Here, we present the design of such a device that can speed up and facilitate investigation of light-matter interaction ranging from weak to strong coupling regimes in ultraviolet-visible and infrared (IR) spectral regions. The device is based on a tunable unstable λ/2 Fabry-Pérot microcavity consisting of plane and convex mirrors that satisfy the plane-parallelism condition at least at one point of the curved mirror and minimize the mode volume. Fine tuning of the microcavity length is provided by a Z-piezopositioner in a range up to 10 μm with a step of several nm. This design makes a device a versatile instrument that ensures easy finding of optimal conditions for light-matter interaction for almost any sample in both visible and IR areas, enabling observation of both electronic and vibrational couplings with microcavity modes thus paving the way to investigation of various coupling effects including Raman scattering enhancement, modification of chemical reactivity rate, lasing, and long-distance nonradiative energy transfer.
Probing 1D superlattices at the LaAlO3 / SrTiO3 interface
NASA Astrophysics Data System (ADS)
Briggeman, M.; Huang, M.; Tylan-Tyler, A.; Irvin, P.; Levy, J.; Lee, J.-W.; Lee, H.; Eom, C.-B.
Complex oxides and other quantum systems exhibit behavior that is currently too complex to be understood using analytic or computational methods. One approach is to use a configurable quantum system whose Hamiltonian can be mapped onto the system of interest. This approach, known as quantum simulation, requires a rich physical system whose quanta and interactions can be controlled precisely, at the level of single electrons and other degrees of freedom. Here we describe steps toward developing a quantum simulation platform, using the complex oxide heterostructure LaAlO3 / SrTiO3 , by creating quantum systems with features comparable to the mean spacing between electrons. This interface has strong, sign changing, gate-tunable electron-electron interactions that can strongly influence the quantum ground state. We explore the magnetotransport properties of 1D superlattices, where periodic modulation produces reproducible dispersive features not seen in control structures. The results of these experiments can be compared with effective 1D model Hamiltonians to bridge experiment and theory and enable quantum simulation of more complex systems. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).
Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2018-01-01
Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.
NASA Astrophysics Data System (ADS)
Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos
2018-07-01
All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.
Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos
2018-07-06
All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.
Size-tunable Lateral Confinement in Monolayer Semiconductors
Wei, Guohua; Czaplewski, David A.; Lenferink, Erik J.; ...
2017-06-12
Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here in this paper, we show that laterally-confined excitons in monolayer MoS 2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, themore » lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS 2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems« less
Delocalization of charge and current in a chiral quasiparticle wave packet
NASA Astrophysics Data System (ADS)
Sarkar, Subhajit
2018-03-01
A chiral quasiparticle wave packet (c-QPWP) is defined as a conventional superposition of chiral quasiparticle states corresponding to an interacting electron system in two dimensions (2D) in the presence of Rashba spin-orbit coupling (RSOC). I investigate its internal structure via studying the charge and the current densities within the first-order perturbation in the electron-electron interaction. It is found that the c-QPWP contains a localized charge which is less than the magnitude of the bare charge and the remaining charge resides at the system boundary. The amount of charge delocalized turns out to be inversely proportional to the degenerate Fermi velocity v0(=√{α2+2 μ /m }) when RSOC (with strength α ) is weak, and therefore externally tunable. For strong RSOC, the magnitudes of both the delocalized charge and the current further strongly depend on the direction of propagation of the wave packet. Both the charge and the current densities consist of an anisotropic r-2 tail away from the center of the wave packet. Possible implications of such delocalizations in real systems corresponding to 2D semiconductor heterostructure are also discussed within the context of particle injection experiments.
X-Ray generation by the laser-plasma interaction in the regime of relativistic electronic spring
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady; Blackburn, Thomas; Blanco, Manuel; Flores-Arias, M. T.; Wettervik, Benjamin; Marklund, Mattias
2017-10-01
Inducing and controlling relativistic motion of surface electrons in overdense plasmas with high-intensity lasers is a promising way to produce X-rays with unique properties, including high brightness, ultra-short duration and tunable polarization. Although the well-studied relativistic oscillating mirror (ROM) regime provides robust generation of high harmonics, the amplitude of the outgoing light in this regime is always equal to that of the incident radiation because the conversion takes place continuously without energy accumulation. This restriction can be overcome by increasing the laser intensity and/or decreasing the plasma density such that n / a < 10 . In this case the plasma acts as a spring, first accumulating up to 60% of the energy of one laser cycle, then re-emitting it in the form of a burst of high harmonics. Under optimal conditions this burst can be both 100 times shorter in duration and 100 times higher in intensity. The theory of relativistic electronic spring (RES) describes a wide variety of interaction scenarios in this regime and provides insight into the underlying physics. The talk will concern the prospects of creating and controlling XUV bursts of exceptional brightness in the RES regime.
Liu, Hanzhe; Li, Yilei; You, Yong Sing; ...
2016-11-14
High-harmonic generation (HHG) in bulk solids permits the exploration of materials in a new regime of strong fields and attosecond timescales. The generation process has been discussed in the context of strongly driven electron dynamics in single-particle bands. Two-dimensional materials exhibit distinctive electronic properties compared to the bulk that could significantly modify the HHG process, including different symmetries, access to individual valleys and enhanced many-body interactions. Here we demonstrate non-perturbative HHG from a monolayer MoS 2 crystal, with even and odd harmonics extending to the 13th order. The even orders are predominantly polarized perpendicular to the pump and are compatiblemore » with the anomalous transverse intraband current arising from the material’s Berry curvature, while the weak parallel component suggests the importance of interband transitions. The odd harmonics exhibit a significant enhancement in efficiency per layer compared to the bulk, which is attributed to correlation effects. In conclusion, the combination of strong many-body Coulomb interactions and widely tunable electronic properties in two-dimensional materials offers a new platform for attosecond physics.« less
Near-field spectroscopic investigation of dual-band heavy fermion metamaterials.
Gilbert Corder, Stephanie N; Chen, Xinzhong; Zhang, Shaoqing; Hu, Fengrui; Zhang, Jiawei; Luan, Yilong; Logan, Jack A; Ciavatti, Thomas; Bechtel, Hans A; Martin, Michael C; Aronson, Meigan; Suzuki, Hiroyuki S; Kimura, Shin-Ichi; Iizuka, Takuya; Fei, Zhe; Imura, Keiichiro; Sato, Noriaki K; Tao, Tiger H; Liu, Mengkun
2017-12-22
Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with <50 nm spatial resolution. The optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert Corder, Stephanie N.; Chen, Xinzhong; Zhang, Shaoqing
Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with < 50 nm spatial resolution. Themore » optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.« less
Near-field spectroscopic investigation of dual-band heavy fermion metamaterials
Gilbert Corder, Stephanie N.; Chen, Xinzhong; Zhang, Shaoqing; ...
2017-12-22
Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with < 50 nm spatial resolution. Themore » optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.« less
NASA Astrophysics Data System (ADS)
Zhao, Hui; Wei, Jingxuan
2014-09-01
The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Strain-induced phase transition and electron spin-polarization in graphene spirals
Zhang, Xiaoming; Zhao, Mingwen
2014-01-01
Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices. PMID:25027550
Strain-induced phase transition and electron spin-polarization in graphene spirals.
Zhang, Xiaoming; Zhao, Mingwen
2014-07-16
Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.
Electronic properties and mechanical strength of β-phosphorene nano-ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaroop, Ram; Bhatia, Pradeep; Kumar, Ashok, E-mail: ashok@cup.ac.in
We have performed first principles calculations to find out the effect of mechanical strain on the electronic properties of zig-zag edged nano ribbons of β-phosphorene. It is found that electronic band-gap get opened-up to 2.61 eV by passivation of the edges of ribbons. Similarly, the mechanical strength is found to be increase from 1.75 GPa to 2.65 GPa on going from unpassivated nano ribbons to passivated ones along with the 2% increase in ultimate tensile strain. The band-gap value of passivated ribbon gets decreased to 0.43 eV on applying strain up to which the ribbon does not break. These tunable properties ofmore » β-phospherene with passivation with H-atom and applying mechanical strain offer its use in tunable nano electronics.« less
Passivated p-type silicon: Hole injection tunable anode material for organic light emission
NASA Astrophysics Data System (ADS)
Zhao, W. Q.; Ran, G. Z.; Xu, W. J.; Qin, G. G.
2008-02-01
We find that hole injection can be enhanced simply by selecting a lower-resistivity p-Si anode to match an electron injection enhancement for organic light emitting diodes with ultrathin-SiO2-layer-passivated p-Si anode (Si-OLED). For a Si-OLED with ordinary AlQ electron transport layer, the optimized resistivity of the p-Si anode is 40Ωcm; for that with n-doped Bphen electron transport layer, it decreases to 5Ωcm. Correspondingly, the maximum power efficiency increases from 0.3to1.9lm /W, even higher than that of an indium tin oxide control device (1.4lm/W). This passivated p-type silicon is a hole injection tunable anode material for OLED.
Probing physical properties at the nanoscale using atomic force microscopy
NASA Astrophysics Data System (ADS)
Ditzler, Lindsay Rachel
Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating interactions at the nanoscale, such as ligand-receptor interactions. This work examines the interactions between the enzyme dihydrofolate reductase (DHFR), a widely investigated enzyme targeted for cancer and antimicrobial pharmaceutical, and methotrexate (MTX), a strong competitive inhibitor of DHFR. The DHFR was immobilized on a gold substrate, bound through a single surface cysteine, and maintained catalytic activity. AFM probe was functionalized with MTX and the interaction strength was measured using AFM. This work highlights the versatility of AFM, specifically force spectroscopy for the quantification of electrical, mechanical, and ligand-receptor interactions at the nanoscale.
Design of far-infrared acousto-optic tunable filter based on backward collinear interaction.
Voloshinov, Vitaly B; Porokhovnichenko, Dmitriy L; Dyakonov, Evgeniy A
2018-04-10
The paper proposes a design of acousto-optic cell applying backward collinear interaction and acoustic mode transformation in a KRS-5 crystal. This cell may serve as an acousto-optic tunable filter for far-infrared spectral range and is able to operate both with collimated optical beams and with divergent beams forming images. The problem of acoustic mode transformation by wave reflection from the crystal facet away from symmetry planes has been solved. Polarization properties of the backward collinear interaction in optically isotropic media are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Dynamically tunable extraordinary light absorption in monolayer graphene
NASA Astrophysics Data System (ADS)
Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis
2017-10-01
The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.
Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.
Pawlowski, Michal E; Shrestha, Sebina; Park, Jesung; Applegate, Brian E; Oghalai, John S; Tkaczyk, Tomasz S
2015-06-01
We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.
All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range
NASA Astrophysics Data System (ADS)
Zhou, Yi; Hu, Xiaoyong; Li, Chong; Yang, Hong; Gong, Qihuang
2018-01-01
Low-power, ultra-fast all-optical tunable dual Fano resonance was realized in a metamaterial coated with a non-linear nanocomposite layer composed of gold nanoparticle-doped polycrystalline barium strontium titanate and multilayer tungsten disulphide microsheets. A high non-linear refractive index of -2.148 × 10-11 m2/W was achieved in the nanocomposite material that originated in the non-linearity enhancement associated with the quantum confinement effect, the local-field enhancement effect, and reinforced interactions between photons and the multilayer tungsten disulphide microsheets. An ultra-low threshold pump intensity of 600 kW/cm2 was obtained. An ultra-fast response time of 25.4 ps was maintained because of the fast relaxation dynamics of the bound electrons in the nanoscale polycrystalline barium strontium titanate grains. The large third-order non-linear responses of the metamaterial were confirmed with a high third harmonic generation conversion efficiency of 5.4 × 10-5. This work may help to pave the way towards realization of ultra-high-speed information processing chips and multifunctional integrated photonic devices based on metamaterials.
APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.
Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh
2015-08-14
Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics. Copyright © 2015, American Association for the Advancement of Science.
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.
2015-01-12
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO 3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less
Molecular self-assembly approaches for supramolecular electronic and organic electronic devices
NASA Astrophysics Data System (ADS)
Yip, Hin-Lap
Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.
1995-06-30
Novel concepts of near-collinear/collinear acousto - optic interactions have been investigated during this SBIR Phase I program. As a result, several...new acousto - optic tunable filters have been built and tested. The program is highlighted by: (1) Design, fabrication and experimental demonstration of...a novel TeO2 near-collinear acousto - optic tunable filter has been designed, fabricated and tested. The device exhibits a 1.29 nm spectral resolution
Ishii, Katsunori; Saiki, Masayuki; Hazama, Hisanao; Awazu, Kunio
2010-01-01
Mid-infrared (MIR) laser with a specific wavelength can excite the corresponding biomolecular site to regulate chemical, thermal and mechanical interactions to biological molecules and tissues. In laser surgery and medicine, tunable MIR laser irradiation can realize the selective and less-invasive treatments and the special diagnosis by vibrational spectroscopic information. This paper showed a novel selective therapeutic technique for a laser angioplasty of atherosclerotic plaques and a laser dental surgery of a carious dentin using a MIR tunable nanosecond pulsed laser.
First Principles Study of Electronic and Magnetic Structures in Double Perovskites
NASA Astrophysics Data System (ADS)
Ball, Molly
At present, electronic devices are reaching their storage and processing limit causing a major push to find materials that can be used in the next generation of devices. Double perovskites with A2BB'O 6 stoichiometry form one of the leading classes of materials currently being studied as a potential candidate because of their extremely wide range and tunability of functional properties, along with economic and highly scalable synthesis routes. Having a thorough understanding of their electronic and magnetic structure and their dependence on composition and local structure is the basis for targeted development of novel and optimized double perovskites. While the body of knowledge and rules within the field of materials chemistry has enabled many previous discoveries, recent developments within density functional theory (DFT) allow by now a rather realistic description of the electronic and magnetic properties of materials and especially identification of their origin from geometry and orbital structure. This thesis details computational work based on DFT within several collaborative studies to better understand the electronic and magnetic properties of double perovskites and related materials that show promise for future use in multifunctional devices. First, we will begin with a general introduction to the double perovskite structure, their properties, and the computational methods used to study them. In the next section, we will look at the case of the antiferromagnetic, insulating double perovskite Sr2CoOsO6, where measurements showed that the transition metal ions in the two sublattices undergo magnetic ordering independently of each other, indicating weak magnetic short-range coupling and a dominance of longer-range interactions, which has previously not been observed. Here, we performed DFT calculations to extract the exchange strengths between the ions and explain this unique dominance of the long-range interactions. Then, we will look at studies done on thin films of Sr2CrReO 6, where our experimental collaborators found extraordinarily large anisotropy fields and record-breaking strain-tunable magnetocrystalline anisotropy (MCA). We employed first principles calculations that examine the dependence of MCA on strain and could identify orbital magnetism on the Re atoms as the origin of this unique phenomenon. In the last section, we introduce double perovskites as novel lead-free halide solar cell materials, with current focus on Cs2AgBiBr 6 and Cs2AgBiCl6. While organic Pb based halides that can be synthesized without expensive clean rooms have achieved within record time efficiencies that rival that of traditional semiconductor based materials, creating quite a buzz within the field of photovoltaics, their Pb content and lacking air stability represented severe roadblocks towards market introduction. Here, we show with band structure calculations that spin-orbit coupling is a much more dominant interaction than in traditional semiconductors and thus needs to be considered when designing novel materials for maximum efficiency. The results of this study have given momentum to investigate additional halides double perovskites. Finally, we will summarize and discuss the importance of computational modeling in order to explore the wide and to date little explored composition space of double perovskites, one of the currently most promising materials classes for novel devices with unique and extremely tunable properties.
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
NASA Astrophysics Data System (ADS)
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
Cellulose nanocrystal and poly[di(ethylene glycol) adipate] blend for tunable lens
NASA Astrophysics Data System (ADS)
Ko, Hyun-U.; Kim, Hyun Chan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan
2016-04-01
In these days, consumer electronics and medical device for optical diagnosis are minimalized and mobilized. The focusing part is one of crucial parts of optical diagnosis systems to reduce the size and weight. Thus, demand for tunable lens that change the focus itself is increased. To meet the demand, many tunable lens has been studied by utilizing smart materials that responded under mechanical, magnetic, optical, thermal, chemical, electrical or electrochemical stimuli. This paper reports a cellulose nanocrystal (CNC) and poly[di(ethylene glycol) adipate] (PDEGA) blend that is able to respond under electromechanical stimulus. The preparation of CNC/PDEGA and its characterization are illustrated and its actuation behavior is tested . Because the material has high dielectric constant and high reflection index, it is good candidate material for tunable lens.
Tunable resonant and non-resonant interactions between a phase qubit and LC resonator
NASA Astrophysics Data System (ADS)
Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.
Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces
NASA Astrophysics Data System (ADS)
Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.
2017-07-01
During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.
3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure.
Chakraborty, Chitraleema; Qiu, Liangyu; Konthasinghe, Kumarasiri; Mukherjee, Arunabh; Dhara, Sajal; Vamivakas, Nick
2018-05-09
Monolayer transition metal dichalcogenides (TMDCs) have recently emerged as a host material for localized optically active quantum emitters that generate single photons. (1-5) Here, we investigate fully localized excitons and trions from such TMDC quantum emitters embedded in a van der Waals heterostructure. We use direct electrostatic doping through the vertical heterostructure device assembly to generate quantum confined trions. Distinct spectral jumps as a function of applied voltage bias, and excitation power-dependent charging, demonstrate the observation of the two different excitonic complexes. We also observe a reduction of the intervalley electron-hole exchange interaction in the confined trion due to the addition of an extra electron, which is manifested by a decrease in its fine structure splitting. We further confirm this decrease of exchange interaction for the case of the charged states by a comparative study of the circular polarization resolved photoluminescence from individual excitonic states. The valley polarization selection rules inherited by the localized trions will provide a pathway toward realizing a localized spin-valley-photon interface.
Song, Hayoung; Kim, Hyunho; Lee, Eunsung
2018-05-16
Herein, a coumaraz-2-on-4-ylidene (1) as a new example of ambiphilic N-heterocyclic carbenes with fine tunable electronic properties is reported. The N-carbamic and aryl groups on carbene carbon provide exceptionally high electrophilicity and nucleophilicity simultaneously to the carbene center, as evidenced by the 77Se NMR chemical shifts of their selenoketone derivatives and the CO stretching strengths of their rhodium carbonyl complexes. Since the precursors of 1 could be synthesized from various functionalized Schiff bases in a practical and scalable manner, the electronic properties of 1 can be fine-tuned in quantitative and predictable way using the Hammett σ constant of the functional groups on aryl ring. The facile electronic tuning capability of 1 may be further applicable to eliciting novel properties in main-group and transition metal chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-colour hard X-ray free-electron laser with wide tunability.
Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo; Sato, Takahiro; Tanaka, Hitoshi; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya
2013-01-01
Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
2005-02-02
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots A. S . Bracker,1 E. A. Stinaff,1 D. Gammon,1 M. E. Ware,1 J...G. Tischler,1 A. Shabaev,1 Al. L. Efros,1 D. Park,1 D. Gershoni,2 V. L. Korenev ,3 and I. A. Merkulov3 1Naval Research Laboratory, Washington, D.C...intensity (open circles), the PRL 94, 047402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending 4 FEBRUARY 2005 0031-9007=05=94(4)=047402(4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
2011-06-27
We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
Electronically tunable phase locked loop oscillator
NASA Astrophysics Data System (ADS)
Balasis, M.; Davis, M. R.; Jackson, C. R.
1982-02-01
This report describes the design and development of a low noise, high power, variable oscillator incorporating a high 'Q' electronically tunable resonator as the frequency determining element. The VCO provides improved EMC performance in phase locked synthesizers which are a part of communications equipments. The oscillator combines a low noise VMOS transistor with the selectivity and out-of-band attenuation of a coaxial resonator to provide superior EMC performance. Several oscillator designs were examined and the basis for the final configuration is presented. Oscillator noise is discussed and models for analysis are explained. A brass board model was constructed and tested and the technical results are presented.
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
NASA Astrophysics Data System (ADS)
Wang, Feng; Yin, Lei; Wang, Zhenxing; Xu, Kai; Wang, Fengmei; Shifa, Tofik Ahmed; Huang, Yun; Wen, Yao; Jiang, Chao; He, Jun
2016-11-01
MoTe2 is an emerging two-dimensional layered material showing ambipolar/p-type conductivity, which makes it an important supplement to n-type two-dimensional layered material like MoS2. However, the properties based on its van der Waals heterostructures have been rarely studied. Here, taking advantage of the strong Fermi level tunability of monolayer graphene (G) and the feature of van der Waals interfaces that is free from Fermi level pinning effect, we fabricate G/MoTe2/G van der Waals heterostructures and systematically study the electronic and optoelectronic properties. We demonstrate the G/MoTe2/G FETs with low Schottky barriers for both holes (55.09 meV) and electrons (122.37 meV). Moreover, the G/MoTe2/G phototransistors show high photoresponse performances with on/off ratio, responsivity, and detectivity of ˜105, 87 A/W, and 1012 Jones, respectively. Finally, we find the response time of the phototransistors is effectively tunable and a mechanism therein is proposed to explain our observation. This work provides an alternative choice of contact for high-performance devices based on p-type and ambipolar two-dimensional layered materials.
PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics.
Oyedele, Akinola D; Yang, Shize; Liang, Liangbo; Puretzky, Alexander A; Wang, Kai; Zhang, Jingjie; Yu, Peng; Pudasaini, Pushpa R; Ghosh, Avik W; Liu, Zheng; Rouleau, Christopher M; Sumpter, Bobby G; Chisholm, Matthew F; Zhou, Wu; Rack, Philip D; Geohegan, David B; Xiao, Kai
2017-10-11
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe 2 exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from 0 (bulk) to 1.3 eV (monolayer). The Raman-active vibrational modes of PdSe 2 were identified using polarized Raman spectroscopy, and a strong interlayer interaction was revealed from large, thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe 2 display tunable ambipolar charge carrier conduction with a high electron field-effect mobility of ∼158 cm 2 V -1 s -1 , indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ci, Penghong; Liu, Guoxi; Dong, Shuxiang, E-mail: sxdong@pku.edu.cn
We report a strain-mediated electric field manipulation of permittivity in BaTiO{sub 3} (barium titanate, BT) ceramic by a Pb(Zr,Ti)O{sub 3} (PZT) bimorph. This BT/PZT heterostructure exhibited a relatively large permittivity tunability of BT up to ±10% in a wide frequency range under an electric field of ±4 kV/cm applied to the PZT bimorph. The permittivity tunability is attributed to the strain in BT produced by the PZT bimorph. Calculations of the relationship between permittivity and applied electric field were developed, and corresponded well with measurements. The BT/PZT heterostructure has potential for applications in broadband field tunable smart electronic devices.
NASA Astrophysics Data System (ADS)
Gelmini, E.; Minoni, U.; Docchio, F.
1995-08-01
A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.
NASA Astrophysics Data System (ADS)
Honma, H.; Mitsudome, M.; Ishida, M.; Sawada, K.; Takahashi, K.
2017-03-01
We report a tunable plasmonic color filter consisting of a metamaterial periodic grating and microelectromechanical systems (MEMS) actuator. An aluminum subwavelength grating is integrated with electrostatic comb-drive actuators to expand the metal subwavelength period, which allows continuous control of the excitation wavelength of surface plasmons (SPs). We develop a batch fabrication process by employing a liftoff technique using an electron beam resist altered by the electron dose depending on different aspect ratios (length/width) for various components such as the subwavelength grating, nanohinge flexural suspensions, and comb fingers. We successfully demonstrate a continuous shift in the excitation wavelength over the 514-635 nm range by nanopitch expansion. The design margin of the grating period for SP excitation is evaluated by comparing the experimental pitch variation and theoretically calculated values. The resonance frequency of the tunable filter is optically measured to be approximately 10 kHz. The optically and mechanically obtained values agree well with the theory of electrostatic actuation and finite-difference time-domain simulation.
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
NASA Astrophysics Data System (ADS)
Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus
2018-05-01
Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L.
2016-05-28
We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of themore » plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.« less
NASA Astrophysics Data System (ADS)
Ohde, H.; Lin, S.; Minoh, A.; Shimizu, F. O.; Aono, M.; Suzuki, T.
1996-01-01
A down-conversion to the mid-infrared region by using Stimulated Electronic Raman Scattering (SERS) in potassium vapor is described. The pump radiation is a frequency-doubled regeneratively amplified Ti:Sapphire laser with a pulse duration of 2 ps, pulse energy of 0.2 mJ, and repetition rate of 10 Hz. With the pumping frequency tuned around the potassium 4 s-5 p transition, nearly transform-limited infrared radiation tunable between 2.2 and 3.4 μm has been generated with a peak infrared energy of 12 µJ, corresponding to a quantum efficiency of 17%, and with a pulse duration of 2 ps. The present tuning range could be extended by extending the tuning range of the pump laser. In comparison, intense infrared radiation of 90 µJ energy but with a very narrow tunability around 2.9 μm has also been generated by SERS in barium vapor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chiu-Chun; Ling, D. C.; Chi, C. C.
2014-11-03
We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1−x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27–102 cm{sup −1} with a bias voltage less than −1 V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse.more » Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C P; Hartemann, F V
2004-09-21
The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, MeV, flash radiography of dense, energetic systems (NIF, JASPER), precision, photo-nuclear absorption spectroscopy (DNT, PAT), non-destructive, resonant nuclear fluorescent imaging of special nuclear materials (NAI, DHS), dynamic, micro-crack failure analysis (aerospace industry, SSP) etc. Concepts are presented for new Thomson-Radiated Extreme X-ray (T-REX) sources at LLNL. These leverage LLNL's world-leading expertise in high-intensity lasers, high average power lasers, diffractive optics, Thomson-based x-ray source development, and advanced photoguns to produce tunable, quasi-monochromatic radiation from 50-keV to several MeV. Above {approx}100 keV, T-REX would be unique in the world with respect to BOTH peak x-ray brilliance AND average x-ray brilliance. This capability would naturally compliment the x-ray capability of large-scale, synchrotron facilities currently within the DoE complex by significantly extending the x-ray energy range over which, tunable, high-brightness applications could be pursued. It would do so at a small fraction of the cost of the purely, accelerator-based facilities. It is anticipated that T-REX could provide new opportunities for interaction of LLNL with the DoE Office of Science, DARPA, DHS etc. and would place LLNL clearly at the forefront of laser-based, x-ray generation world-wide.« less
Quantum Monte Carlo Studies of Interaction-Induced Localization in Quantum Dots and Wires
NASA Astrophysics Data System (ADS)
Devrim Güçlü, A.
2009-03-01
We investigate interaction-induced localization of electrons in both quantum dots and inhomogeneous quantum wires using variational and diffusion quantum Monte Carlo methods. Quantum dots and wires are highly tunable systems that enable the study of the physics of strongly correlated electrons. With decreasing electronic density, interactions become stronger and electrons are expected to localize at their classical positions, as in Wigner crystallization in an infinite 2D system. (1) Dots: We show that the addition energy shows a clear progression from features associated with shell structure to those caused by commensurability of a Wigner crystal. This cross-over is, then, a signature of localization; it occurs near rs˜20. For higher values of rs, the configuration symmetry of the quantum dot becomes fully consistent with the classical ground state. (2) Wires: We study an inhomogeneous quasi-one-dimensional system -- a wire with two regions, one at low density and the other high. We find that strong localization occurs in the low density quantum point contact region as the gate potential is increased. The nature of the transition from high to low density depends on the density gradient -- if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. We find no evidence for ferromagnetic spin polarization for the range of parameters studied. The picture emerging here is in good agreement with the experimental measurements of tunneling between two wires. Collaborators: C. J. Umrigar (Cornell), Hong Jiang (Fritz Haber Institut), Amit Ghosal (IISER Calcutta), and H. U. Baranger (Duke).
NASA Astrophysics Data System (ADS)
Baniecki, J. D.; Ishii, M.; Aso, H.; Kurihara, K.; Ricinschi, Dan
2013-01-01
The electronic structure and transport properties of donor doped SrTiO3 are studied using density functional theory with spin-orbit coupling and conductivity, Hall, and Seebeck effect measurements over a wide temperature range (100 K to 600 K). Split-off energies ΔSO are tunable through the dopant SO interaction strength and concentration varying from 28.1 meV for pure STO to 70.93 meV for SrTi0.5Nb0.5O3. At lower carrier concentrations and temperatures, SO coupling has a marked effect on both the filling dependence of the density-of-states mass as well as the temperature dependence of the Seebeck coefficient, with quantitative theoretical predictions based on DFT calculations that include the SO interaction in closer agreement to the experimental data. Moreover, the results suggest that the predictive power of the current theory is not unlimited, with less accuracy for the calculated S predicting the magnitude of the experimental S data at lower dopant concentrations than for degenerately doped systems. A concentration dependent mass enhancement of ˜2-5, relative to the density-of-states mass in the local density approximation, possibly due to the influence of electronic screening of the electron-phonon interaction, would bring the theoretical S in accord with the experimental S data. This additional carrier-dependent enhancement mechanism for S may give an additional degree of freedom in terms of designing new higher efficiency thermoelectric energy materials.
Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
Li, Zhi; Kübel, Christian; Pârvulescu, Vasile I; Richards, Ryan
2008-06-01
Uniformly distributed gold nanorods in mesoporous silica were synthesized in situ by performing a seed-mediated growth process in the channels of SBA-15 which functions as a hard-template to confine the diameter of gold nanorods. By changing the amount of gold precursor, gold nanorods were prepared with a fixed diameter (6-7 nm) and tunable aspect ratios from 3 to 30. Transmission electron microscope and electron tomography were utilized to visualize the gold nanorods supported on one piece of SBA-15 segment and showed a fairly uniform 3-dimensional distribution of gold nanorods within the SBA-15 channels. The longitudinal plasmon resonances of the gold nanorods/SBA-15 composites analyzed by diffuse reflectance UV-vis spectra were found to be tunable depending on the length of gold nanorods. No significant decrease in surface area and/or pore size of the composite was found after growth, indicating the growth process did not disrupt the open mesoporous structure of SBA-15. The combination of the tunable size of the nanorods and their 3-dimensional distribution within the open supporting matrix makes the gold nanorods/SBA-15 composites interesting candidates to systematically study the influence of the aspect ratio of gold nanorods on their properties and potential applications, i.e., catalyst, optical polarizer, and ultrasensitive medical imaging technique.
Allotropes of Phosphorus with Remarkable Stability and Intrinsic Piezoelectricity
NASA Astrophysics Data System (ADS)
Li, Zhenqing; He, Chaoyu; Ouyang, Tao; Zhang, Chunxiao; Tang, Chao; Römer, Rudolf A.; Zhong, Jianxin
2018-04-01
We construct a class of two-dimensional (2D) phosphorus allotropes by assembling a previously proposed ultrathin metastable phosphorus nanotube into planar structures in different stacking orientations. Based on first-principles methods, the structures, stabilities, and fundamental electronic properties of these allotropes are systematically investigated. Our results show that these 2D van der Waals phosphorene allotropes possess remarkable stabilities due to the strong intertube van der Waals interactions, which cause an energy release of about 30 - 70 meV /atom , depending on their stacking details. Most of them are confirmed to be energetically more favorable than the experimentally viable α -P and β -P . Three of them, showing a relatively higher probability of being synthesized in the future, are further confirmed to be dynamically stable semiconductors with strain-tunable band gaps and intrinsic piezoelectricity, which may have potential applications in nanosized sensors, piezotronics, and energy harvesting in portable electronic nanodevices.
Small temperature coefficient of resistivity of graphene/graphene oxide hybrid membranes.
Sun, Pengzhan; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei
2013-10-09
Materials with low temperature coefficient of resistivity (TCR) are of great importance in some areas, for example, highly accurate electronic measurement instruments and microelectronic integrated circuits. In this work, we demonstrated the ultrathin graphene-graphene oxide (GO) hybrid films prepared by layer-by-layer assembly with very small TCR (30-100 °C) in the air. Electrical response of the hybrid films to temperature variation was investigated along with the progressive reduction of GO sheets. The mechanism of electrical response to temperature variation of the hybrid film was discussed, which revealed that the interaction between graphene and GO and the chemical doping effect were responsible for the tunable control of its electrical response to temperature variation. The unique properties of graphene-GO hybrid film made it a promising candidate in many areas, such as high-end film electronic device and sensor applications.
Unconventional superconductivity in magic-angle graphene superlattices.
Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo
2018-04-05
The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.
Entangling atomic spins with a Rydberg-dressed spin-flip blockade
Jau, Y. -Y.; Hankin, A. M.; Keating, T.; ...
2015-10-05
Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. In this paper, we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shiftsmore » of order 1 MHz in units of Planck’s constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. Finally, we employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity ≥81(2)%.« less
Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming
2018-05-01
To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical tuning of electronic valleys (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sie, Edbert J.; Gedik, Nuh
2017-02-01
Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.
Tuning exchange interactions in organometallic semiconductors
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.
2015-09-01
Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.
Zeng, Qingying; Mukherjee, Arijit; Müller, Peter; Rogers, Robin D.
2017-01-01
While molecular solvents are commonly used in the screening of polymorphs, the choices are often restricted. Ionic liquids (ILs) – also referred as designer solvents – have immense possibility in this regard because of their wide flexibility of tunability. More importantly, the interactions among the IL components are completely unique compared to those present in the molecular solvents. In this context, we have chosen tetrolic acid (TA) and isonicotinamide (INA), which showed solution-structure link in molecular solvents in the past, as probes to investigate the role of imidazolium based ionic liquids in the polymorphism of these two systems and whether the different solute–solvent interactions in ILs affect the polymorphic outcome. It is observed that the selected imidazolium-based ILs, with varying anion basicity have influenced the crystallization outcome by the interaction between ILs and model compounds. Later, we have utilized the concept of double salt ionic liquids (DSIL) for INA, a penta-morphic system, to investigate the variation in the polymorphic outcome. This approach helped to obtain the forms that were otherwise inaccessible in ILs. PMID:29675194
Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers
Gilbert, Dustin A.; Liao, Jung-Wei; Kirby, Brian J.; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai
2016-01-01
Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428
Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions
NASA Astrophysics Data System (ADS)
Riegger, L.; Darkwah Oppong, N.; Höfer, M.; Fernandes, D. R.; Bloch, I.; Fölling, S.
2018-04-01
We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.
Design of materials configurations for enhanced phononic and electronic properties
NASA Astrophysics Data System (ADS)
Daraio, Chiara
The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new theories and models. Potential applications include (1) designing of a sound scrambler/decoder for secure voice communications, (2) improving invisibility of submarine to acoustic detection signal, (3) noise and shock wave mitigation for protection of vibration sensitive devices such as head mounted vision devices, (4) drastic compression of acoustic signals into centimeter regime impulses for artificial ear implants, hearing aid and devices for ease of conversion to electronic signals and processing, and acoustic delay lines for communication applications.
Widely tunable 1.94-μm Tm:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Galzerano, Gianluca; Cornacchia, Francesco; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro; Laporta, Paolo
2005-04-01
A novel BaY2F8 crystal doped with thulium ions is grown and extensively investigated. Owing to the large number of vibronic levels and to a favorable electron-phonon coupling, extremely wide absorption and emission bands around 1.9 μm are observed. A room-temperature Tm:BaY2F8 laser tunable over a 210-nm interval, from 1849 to 2059 nm, is demonstrated.
Graphene Plasmonics for Tunable Terahertz Metamaterials
2011-10-01
anomalous quantumHall effect15,16 andKlein tunnelling17,18 in electrical transport to a universal absorption constant19,20 and tunable interband ...electron scattering spectroscopy25,26 and inelastic scanning tunnelling microscopy27. However, the fundamental behaviour of light–plasmon coupling in...ribbon arrays. Here TCNP is the transmission coefficient at CNP and DT¼ T2 TCNP. The 2DT/TCNP spectra of a gated 4 mm sample (Vg¼22.0 V) for terahertz
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
NASA Astrophysics Data System (ADS)
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-07-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.
Tunable Fano resonator using multilayer graphene in the near-infrared region
NASA Astrophysics Data System (ADS)
Zhou, Chaobiao; Liu, Guoqin; Ban, Guoxun; Li, Shiyu; Huang, Qingzhong; Xia, Jinsong; Wang, Yi; Zhan, Mingsheng
2018-03-01
Fano resonance (FR) holds promising applications for high performance optoelectronic devices due to its strong enhancement of light-matter interactions. In this work, we experimentally demonstrate a tunable FR in a photonic crystal nanoresonator (PCR), including the effects of structural parameters and graphene nanosheets with different layer numbers. The results show that the intensity and position of Fano peaks can be tuned via altering the lattice constant and the hole radius of PCR due to the variation of the effective refractive index. More importantly, we experimentally study the interaction between sharp FR with multilayer graphene. The results indicate that the FR transmission spectrum can be efficiently adjusted with the layer number of graphene, and the largest change in transmission (˜44%) is achieved with three-layer graphene because of high conductivity. These consequences may lead to efficient and tunable electro-optical modulators, biosensors, and optical switches in the near-infrared region.
Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie
2017-10-02
Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.
Interplay of screening and superconductivity in low-dimensional materials
NASA Astrophysics Data System (ADS)
Schönhoff, G.; Rösner, M.; Groenewald, R. E.; Haas, S.; Wehling, T. O.
2016-10-01
A quantitative description of Coulomb interactions is developed for two-dimensional superconducting materials, enabling us to compare intrinsic with external screening effects, such as those due to substrates. Using the example of a doped monolayer of MoS2 embedded in a tunable dielectric environment, we demonstrate that the influence of external screening is limited to a length scale, bounded from below by the effective thickness of the quasi-two-dimensional material and from above by its intrinsic screening length. As a consequence, it is found that unconventional Coulomb-driven superconductivity cannot be induced in MoS2 by tuning the substrate properties alone. Our calculations of the retarded Morel-Anderson Coulomb potential μ* reveal that the Coulomb interactions, renormalized by the reduced layer thickness and the substrate properties, can shift the onset of the electron-phonon driven superconducting phase in monolayer MoS2 but do not significantly affect the critical temperature at optimal doping.
Covalently Bound Nitroxyl Radicals in an Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Barbara K.; Braunecker, Wade A.; Bobela, David C.
2016-09-15
A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied.more » The ability to tune the mode of radical interactions and the subsequent effect on redox, electrical, and optical characteristics in a porous framework may lead to a class of structures with properties ideal for photoelectrochemistry or energy storage.« less
Electronic and thermally tunable infrared metamaterial absorbers
NASA Astrophysics Data System (ADS)
Shrekenhamer, David; Miragliotta, Joseph A.; Brinkley, Matthew; Fan, Kebin; Peng, Fenglin; Montoya, John A.; Gauza, Sebastian; Wu, Shin-Tson; Padilla, Willie J.
2016-09-01
In this paper, we report a computational and experimental study using tunable infrared (IR) metamaterial absorbers (MMAs) to demonstrate frequency tunable (7%) and amplitude modulation (61%) designs. The dynamic tuning of each structure was achieved through the addition of an active material—liquid crystals (LC) or vanadium dioxide (VO2)-within the unit cell of the MMA architecture. In both systems, an applied stimulus (electric field or temperature) induced a dielectric change in the active material and subsequent variation in the absorption and reflection properties of the MMA in the mid- to long-wavelength region of the IR (MWIR and LWIR, respectively). These changes were observed to be reversible for both systems and dynamic in the LC-based structure.
Modification of electronic properties of graphene by using low-energy K{sup +} ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jingul; Lee, Paengro; Ryu, Mintae
2016-05-02
Despite its superb electronic properties, the semi-metallic nature of graphene with no band gap (E{sub g}) at the Dirac point has been a stumbling block for its industrial application. We report an improved means of producing a tunable band gap over other schemes by doping low energy (10 eV) potassium ions (K{sup +}) on single layer graphene formed on 6H-SiC(0001) surface, where the noble Dirac nature of the π-band remains almost unaltered. The changes in the π-band induced by K{sup +} ions reveal that the band gap increases gradually with increasing dose (θ) of the ions up to E{sub g} = 0.65 eV atmore » θ = 1.10 monolayers, demonstrating the tunable character of the band gap. Our core level data for C 1s, Si 2p, and K 2p suggest that the K{sup +}-induced asymmetry in charge distribution among carbon atoms drives the opening of band gap, which is in sharp contrast with no band gap when neutral K atoms are adsorbed on graphene. This tunable K{sup +}-induced band gap in graphene illustrates its potential application in graphene-based nano-electronics.« less
Oliva, Nicoló; Casu, Emanuele Andrea; Yan, Chen; Krammer, Anna; Rosca, Teodor; Magrez, Arnaud; Stolichnov, Igor; Schueler, Andreas; Martin, Olivier J F; Ionescu, Adrian Mihai
2017-10-27
Junctions between n-type semiconductors of different electron affinity show rectification if the junction is abrupt enough. With the advent of 2D materials, we are able to realize thin van der Waals (vdW) heterostructures based on a large diversity of materials. In parallel, strongly correlated functional oxides have emerged, having the ability to show reversible insulator-to-metal (IMT) phase transition by collapsing their electronic bandgap under a certain external stimulus. Here, we report for the first time the electronic and optoelectronic characterization of ultra-thin n-n heterojunctions fabricated using deterministic assembly of multilayer molybdenum disulphide (MoS 2 ) on a phase transition material, vanadium dioxide (VO 2 ). The vdW MoS 2 /VO 2 heterojunction combines the excellent blocking capability of an n-n junction with a high conductivity in on-state, and it can be turned into a Schottky rectifier at high applied voltage or at temperatures higher than 68 °C, exploiting the metal state of VO 2 . We report tunable diode-like current rectification with a good diode ideality factor of 1.75 and excellent conductance swing of 120 mV/dec. Finally, we demonstrate unique tunable photosensitivity and excellent junction photoresponse in the 500/650 nm wavelength range.
A high-speed tunable beam splitter for feed-forward photonic quantum information processing.
Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton
2011-11-07
We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.
Using Light to Prepare and Probe an Electron Spin in a Quantum Dot
2005-01-01
A. Shabaev, A.L. Efros, D. Park, D. Gershoni, V.L. Korenev , and I.A. Merkulov, “Optical Pumping of the Electronic and Nuclear Spin in Single Charge-tunable Quantum Dots,” Phys. Rev. Lett. 94, 047402 (2005). ´
Calibration of a tunable excimer laser using the optogalvanic effect
NASA Technical Reports Server (NTRS)
Abbitt, John D.
1991-01-01
A device for the calibration of a tunable excimer laser is currently under development. The laser provides UV radiation at three principal wavelengths, 193, 248, and 308 nm and is tunable over a range of 1 nm at each of these wavelengths. The laser is used as a non-intrusive optical probe to excite electronic transitions, and thereby induce fluorescence, of the principle molecules or atoms of interest in supersonic flowfields, both reacting and nonreacting. The fluorescence resulting from the excitation is observed with an intensified camera. Over the range of tunability at the three wavelengths are a number of transitions that can be observed. The intensity of the fluorescence depends in part on the local temperature and density. The nature of this thermodynamic dependence is variable among transitions; thus, identification of the transition under observation is required. The specific transition excited corresponds directly to the wavelength of the radiation. The present technique used for transition identification consists of scanning the laser across the range of tunability and observing the fluorescence resulting from various molecular transitions.
Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction
Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu
2016-01-01
Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport. PMID:27515115
Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2
Wu, Yun; Mou, Daixiang; Jo, Na Hyun; ...
2016-09-14
We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less
Superhard sp{sup 2}–sp{sup 3} hybrid carbon allotropes with tunable electronic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Meng; Ma, Mengdong; Zhao, Zhisheng
Four sp{sup 2}–sp{sup 3} hybrid carbon allotropes are proposed on the basis of first principles calculations. These four carbon allotropes are energetically more favorable than graphite under suitable pressure conditions. They can be assembled from graphite through intralayer wrinkling and interlayer buckling, which is similar to the formation of diamond from graphite. For one of the sp{sup 2}–sp{sup 3} hybrid carbon allotropes, mC24, the electron diffraction patterns match these of i-carbon, which is synthesized from shock-compressed graphite (H. Hirai and K. Kondo, Science, 1991, 253, 772). The allotropes exhibit tunable electronic characteristics from metallic to semiconductive with band gaps comparablemore » to those of silicon allotropes. They are all superhard materials with Vickers hardness values comparable to that of cubic BN. The sp{sup 2}–sp{sup 3} hybrid carbon allotroes are promising materials for photovoltaic electronic devices, and abrasive and grinding tools.« less
Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics.
Gutruf, Philipp; Zeller, Eike; Walia, Sumeet; Nili, Hussein; Sriram, Sharath; Bhaskaran, Madhu
2015-09-16
The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Mou, Daixiang; Jo, Na Hyun
We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less
Xu, Bing; Dai, Yaomin M.; Zhao, Lingxiao X.; ...
2017-03-30
Strong coupling between discrete phonon and continuous electron–hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. We reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. Furthermore, this behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation ofmore » electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. These findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals.« less
An XUV/VUV free-electron laser oscillator
NASA Astrophysics Data System (ADS)
Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.
Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei
2015-04-28
Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8 TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5 TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.
Wang, Kai; Huang, Bing; Tian, Mengkun; ...
2016-06-16
Twisting adjacent layers in van der Waals solids can significantly alter their interlayer interactions for tunable optical and electronic properties. Here, we report theoretical calculations, fabrication, and detailed characterizations of WSe 2/WS 2 bilayer heterojunctions with various twist angles that were synthesized by artificially stacking monolayers of CVD-grown WS 2 and WSe 2. Density functional calculations predicted the formation of type-II heterojunctions for the stamped bilayers, with band structures that strongly depend on the interlayer twist angle. Raman spectroscopy reveals strong interlayer coupling with the appearance of a layer-number sensitive mode of WS 2 at 311 cm -1 in WSemore » 2/WS 2 bilayers. This strong interlayer coupling resulted in a 1~2 order of magnitude quenching of the photoluminescence. The broadening and shifts were observed in micro-absorption spectroscopy of WSe 2/WS 2 bilayers, which resulted in a net ~10% enhancement in integrated absorption strength across the visible spectrum with respect to the sum of the individual monolayer spectra. The observed 24 4 meV broadening of the WSe 2 A-exciton absorption band in the bilayers provided an estimate on the rate of charge transfer between the layers that ranged from 23 to 33 fs, and was supported by direct femtosecond pump-probe measurements. These results indicate that interlayer exciton formation and non-radiative decay channels dominate optical properties in these bilayers, which may be important for tunable future photovoltaics and detector applications.« less
NASA Astrophysics Data System (ADS)
Wang, Deng-Shan; Liu, Jiang; Wang, Lizhen
2018-03-01
In this paper, we investigate matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross-Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic-molecular matter-wave solitons.
NASA Astrophysics Data System (ADS)
Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten
2018-02-01
We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.
Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.
2014-01-01
The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511
An electronically tunable, first-order Fabry-Perot infrared filter
NASA Astrophysics Data System (ADS)
Knudtson, J. T.; Levy, D. S.; Herr, K. C.
1995-04-01
A tunable infrared filter capable of scanning from 8.2 to 12.8 micrometers has been designed, constructed and tested. It is a first order Fabry Perot interferometer with piezoelectrically driven cavity spacing. Multilayer dielectric coatings for the partially transmitting mirrors were designed to minimize the wavelength dependent phase change produced by reflection. The transmission bandwidth ranged from 2.8 to 4.0% across the tuning range. Continuous scanning at 20 Hz rates was demonstrated.
A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector
2002-01-01
Proc. Vol. 692 © 2002 Materials Research Society H4.2 A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector ...on photon-assisted tunneling (PAT) between the two electron layers in a double quantum well (DQW) heterostructure, will be explained. The detector is...the frequency and strength of that radiation. The THz detector discussed in this paper makes use of photon- assisted tunnelling (PAT) between multiple
Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.
2015-02-01
We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.
A compact, low-loss, tunable phase shifter on defect mitigated dielectrics up to 40 GHz
NASA Astrophysics Data System (ADS)
Orloff, Nathan; Long, Christian; Lu, Xifeng; Nair, Hari; Dawley, Natalie; Schlom, Darrell; Booth, James
With the emergence of the internet-of-things and increased connectivity of modern commerce, consumers have driven demand for wireless spectrum beyond current capacity and infrastructure capabilities. One way the telecommunications industry is addressing this problem is by pushing front-end electronics to higher frequencies, introducing carrier aggregation schemes, and developing spectrum-sharing techniques. Some of these solutions require frequency agile components that are vastly different from what is in today's marketplace. Perhaps the most basic and ubiquitous component in front-end electronics is the phase shifter. Phase shifters are particularly important for compact beam-forming antennas that may soon appear in commercial technology. Here, we demonstrate a compact, tunable phase shifter with very low insertion loss up to 40 GHz on a defect mitigated tunable dielectric. We demonstrate performance compared to barium-doped strontium titanate phase shifters. Such phase shifters could potentially meet the stringent size and performance characteristics demanded by telecommunications industry, readily facilitating massive multiple-input multiple-output antennas in the next-generation of mobile handsets.
Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures
NASA Astrophysics Data System (ADS)
Ruan, Qifeng
Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized Au nanospheres with molecular linkers. The plasmon resonances of the core/satellite nanostructures undergo red shifts in comparison to those of the sole Au cores, which is consistent with Mie theory analysis. As predicted by finite-difference time-domain simulations, the assembled core/satellite nanostructures exhibit large enhancements for Raman scattering. The facile growth of Au nanospheres and assembly of core/satellite nanostructures blaze a new way to the design of nanoarchitectures with desired plasmonic properties and functions. Coating semiconductors onto Au nanocrystals to form core shell configurations can increase the interactions between the two materials, benefiting from their large active interfacial area. The shell can also protect the Au nanocrystal core from aggregation, reshaping, and chemical corrosion. In this thesis, (Au nanocrystal core) (titania shell) nanostructures with tunable shell thicknesses were prepared by a facile wetchemistry method. Au nanocrystals with strong and tunable plasmon resonances in the visible and near-infrared regions can enhance and broaden the light utilization of TiO2 through the scattering/absorption enhancement, sensitization, and hot-electron injection. The integration of Au nanocrystals therefore hold the prospect of breaking the light-harvesting limit of TiO2 arising from its wide band gap. The resultant (Au core) (TiO2 shell) nanostructures were examined to be capable of efficiently generating reactive oxygen species under near-infrared resonant excitation. On the other hand, the transverse plasmon modes of Au nanorods, which are often too weak to be observed on scattering spectra, are enhanced by the TiO2 shell through energy transfer. With the increment of the shell thickness, the intensity of the transverse plasmon mode increases significantly and even becomes comparable with the longitudinal plasmon mode. Interestingly, both the transverse and longitudinal modes of the (Au core) (TiO2 shell) nanostructures exhibit asymmetric Fano line shapes. The Fano resonances result from the coupling between the core and shell, as understood by the mechanical oscillator model. Besides varying the shell thickness, the plasmonic bands of the core shell nanostructures can also be tailored by employing Au nanorods with different aspect ratios. The synthetically tunable plasmonic properties and synergistic interactions between the gold core and the titania shell make the hybrid nanostructure a multifunctional nanomaterial and ideal system for studying the plasmonic hybrid nanostructures.
Fundamental limits to graphene plasmonics.
Ni, G X; McLeod, A S; Sun, Z; Wang, L; Xiong, L; Post, K W; Sunku, S S; Jiang, B-Y; Hone, J; Dean, C R; Fogler, M M; Basov, D N
2018-05-01
Plasmon polaritons are hybrid excitations of light and mobile electrons that can confine the energy of long-wavelength radiation at the nanoscale. Plasmon polaritons may enable many enigmatic quantum effects, including lasing 1 , topological protection 2,3 and dipole-forbidden absorption 4 . A necessary condition for realizing such phenomena is a long plasmonic lifetime, which is notoriously difficult to achieve for highly confined modes 5 . Plasmon polaritons in graphene-hybrids of Dirac quasiparticles and infrared photons-provide a platform for exploring light-matter interaction at the nanoscale 6,7 . However, plasmonic dissipation in graphene is substantial 8 and its fundamental limits remain undetermined. Here we use nanometre-scale infrared imaging to investigate propagating plasmon polaritons in high-mobility encapsulated graphene at cryogenic temperatures. In this regime, the propagation of plasmon polaritons is primarily restricted by the dielectric losses of the encapsulated layers, with a minor contribution from electron-phonon interactions. At liquid-nitrogen temperatures, the intrinsic plasmonic propagation length can exceed 10 micrometres, or 50 plasmonic wavelengths, thus setting a record for highly confined and tunable polariton modes. Our nanoscale imaging results reveal the physics of plasmonic dissipation and will be instrumental in mitigating such losses in heterostructure engineering applications.
PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuba, J; Anderson, S G; Barty, C J
2003-12-15
The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV),more » high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.« less
Panthani, Matthew G; Korgel, Brian A
2012-01-01
Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.
Lin, Jian; Fu, Zhixing; Zhang, Jiaxu; Zhu, Yujia; Hu, Dandan; Li, Dongsheng; Wu, Tao
2017-03-20
A series of electronically active viologen dications (RV) with tunable substituent groups were utilized to hybridize with [Ge 4 S 10 ] 4- (T2 cluster) to form the hybrids of T2@RV. These hybrids exhibited variable supermolecular assembly formation, tunable optical absorption properties, and different photoelectric response under the influence of different RV dications. Raman testing and time-dependent photocurrent response indicated that the photosensitivity and photostability of T2@RV could be integrated while choosing suitable RV dications. Current research provides a general method to build a tunable hybrid system based on crystalline metal chalcogenide compounds through the replacement of photoinactive cationic organic templates with photoactive ones with different substituent groups.
PdSe 2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyedele, Akinola D.; Yang, Shize; Liang, Liangbo
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe 2, exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from ~0 (bulk) to ~1.3 eV (monolayer). The Raman active vibrational modes of PdSe 2 were identified using polarizedmore » Raman spectroscopy, and the strong interlayer interaction was revealed from the large thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe 2 display tunable ambipolar charge carrier conduction with a high electron apparent field-effect mobility of ~158 cm 2V -1s -1, indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.« less
PdSe 2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics
Oyedele, Akinola D.; Yang, Shize; Liang, Liangbo; ...
2017-09-05
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe 2, exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from ~0 (bulk) to ~1.3 eV (monolayer). The Raman active vibrational modes of PdSe 2 were identified using polarizedmore » Raman spectroscopy, and the strong interlayer interaction was revealed from the large thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe 2 display tunable ambipolar charge carrier conduction with a high electron apparent field-effect mobility of ~158 cm 2V -1s -1, indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.« less
NASA Astrophysics Data System (ADS)
Ranga Prabhath, Malaviarachchige Rabel
Owing to superior energy efficiency, Light Emitting Diode (OLED) technology has become considerably commercialised over the last decade. Innovations in this field have been spurred along by the discovery of new molecules with good stability and high emission intensity, followed through by intense engineering efforts. Emissive transition metal complexes are potent molecular emitters as a result of their high quantum efficiencies related to facile intersystem crossing (ISC) between excited-state manifolds (efficient spin orbit coupling (SOC)) and resultant efficient emission from the triplet state (phosphorescence). These also allow rational tuning of the emission wavelengths. Tuning of the ground and excited state energies, and thus emission wavelength of these complexes can be achieved by subtle structural changes in the organic ligands. Pyridyl-triazole ligands have started receiving increasing attention in recent years as strong field ligands that are relatively straightforward to synthesise. In this study we explore the emission tunability of a newly synthesised series of 5-subsituted-Pyridyl-1,2,3-triazole-based ligands and their Pt(II) complexes. Studies have shown, substitution at the triazole moiety is less effective in achieving emission tunability. Alternatively we carried out the substitution at the 5th position of the pyridine ring with a wide range of electronically diverse, donor-acceptor groups (-N(CH3)2, -H, -CHO, -CHC(CN)2). The target ligands were approached through the serial application of the Sonogashira carbon-carbon coupling and the Sharpless copper-catalyzed Huisgen’s 1,3-dipolarcycloaddition procedures. As a result, coarse tunability of excimer emission was observed in thin-films, generating blue-(486 nm), green-(541 nm), orange-(601 nm) and red-(625 nm) luminescence respectively. This “turned-on” substituent effect was accounted for metallophilic Pt—Pt interaction-induced aggregates in the solid state. Excited state calculations reveal that the solid state emission is associated with 1MMLCT transitions. Lifetime measurements revealed the existence of two decay processes: one being fluorescence and the other process, either phosphorescence or delayed fluorescence. Further a linear-relationship between the Hammett parameters of the substituents and emission wavelengths was established. This allows a reliable emission predictability for any given substituent of 5-substituted pyridyl-1,2,3-triazole platinum complexes. In conclusion, we show a new approach in achieving coarse emission tunability in pyridyl-1,2,3-triazole based platinum complexes via subtle changes in the molecular structure and the importance of metallophilic interactions in the process. During the second phase of the study, the scope was broadened to examine the effects of heterocyclic nitrogens in the ligand skeleton. Fifteen different combinations of azole-azine linked ligand systems were synthesized, by systematically increasing the number of nitrogens and changing the ring position of the nitrogens in the skeleton. Later, the homoleptic platinum complexes of the respective ligands were synthesised, and the photo-physical characteristics were studied. The above mentioned changes in the ligand structure resulted in a 264 nm emission tunability, in the thin films of the complexes. Theoretical studies on the complexes revealed that based on the structure of the ligand, different metallophilic stacking behaviours and different origins of emission (fluorescence and phosphorescence) can result, which in turn give rise to tunable emission wavelengths.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, N.T.
1996-10-15
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system. 32 figs.
Engineered liquid crystal anchoring energies with nanopatterned surfaces.
Gear, Christopher; Diest, Kenneth; Liberman, Vladimir; Rothschild, Mordechai
2015-01-26
The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, Neil T.
1996-01-01
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system.
Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.
Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A
2011-09-25
Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.
Tunable Stable Levitation Based on Casimir Interaction between Nanostructures
NASA Astrophysics Data System (ADS)
Liu, Xianglei; Zhang, Zhuomin M.
2016-03-01
Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.
Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode.
Jariwala, Deep; Sangwan, Vinod K; Wu, Chung-Chiang; Prabhumirashi, Pradyumna L; Geier, Michael L; Marks, Tobin J; Lauhon, Lincoln J; Hersam, Mark C
2013-11-05
The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from monolayered materials and their heterostructures, a p-n heterojunction diode derived from ultrathin materials is notably absent and constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (SWCNTs) and single-layer molybdenum disulfide as p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias to achieve a wide range of charge transport behavior ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 10(4). This heterojunction diode also responds strongly to optical irradiation with an external quantum efficiency of 25% and fast photoresponse <15 μs. Because SWCNTs have a diverse range of electrical properties as a function of chirality and an increasing number of atomically thin 2D nanomaterials are being isolated, the gate-tunable p-n heterojunction concept presented here should be widely generalizable to realize diverse ultrathin, high-performance electronics and optoelectronics.
Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode
Jariwala, Deep; Sangwan, Vinod K.; Wu, Chung-Chiang; Prabhumirashi, Pradyumna L.; Geier, Michael L.; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.
2013-01-01
The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from monolayered materials and their heterostructures, a p-n heterojunction diode derived from ultrathin materials is notably absent and constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (SWCNTs) and single-layer molybdenum disulfide as p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias to achieve a wide range of charge transport behavior ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 104. This heterojunction diode also responds strongly to optical irradiation with an external quantum efficiency of 25% and fast photoresponse <15 μs. Because SWCNTs have a diverse range of electrical properties as a function of chirality and an increasing number of atomically thin 2D nanomaterials are being isolated, the gate-tunable p-n heterojunction concept presented here should be widely generalizable to realize diverse ultrathin, high-performance electronics and optoelectronics. PMID:24145425
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-01-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (∼450 nm) to red (∼750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole–Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays. PMID:26178323
Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate
Zhang, Yongping; Chen, Gang; Zhang, Chuanwei
2013-01-01
Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for various important phenomena, ranging from atomic fine structure to topological condensed matter physics. The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast and coherent modulation of the laser intensities. We show that the many-body interaction between atoms, together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC, which show pronounced peaks and damping around the quantum critical point. PMID:23727689
NASA Astrophysics Data System (ADS)
Trickey, Samuel; Karasiev, Valentin
We introduce the concept of tunable orbital-free non-interacting free-energy density functionals and present a generalized gradient approximation (GGA) with a subset of parameters defined from constraints and a few free parameters. Those free parameters are tuned to reproduce reference Kohn-Sham (KS) static-lattice pressures for Al at T=8 kK for bulk densities between 0.6 and 2 g/cm3. The tuned functional then is used in OF molecular dynamics (MD) simulations for Al with densities between 0.1 and 2 g/cm3 and T between 6 and 50 kK to calculate the equation of state and generate configurations for electrical conductivity calculations. The tunable functional produces accurate results. Computationally it is very effective especially at elevated temperature. Kohn-Shiam calculations for such low densities are affordable only up to T=10 kK, while other OF approximations, including two-point functionals, fail badly in that regime. Work supported by US DoE Grant DE-SC0002139.
Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.
Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J
2013-06-17
We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.
Photoelectron imaging of doped helium nanodroplets
NASA Astrophysics Data System (ADS)
Neumark, Daniel
2008-03-01
Photoelectron images of helium nanodroplets doped with Kr and Ne atoms are reported. The images and resulting photoelectron spectra were obtained using tunable synchrotron radiation to ionize the droplets. Droplets were excited at 21.6 eV, corresponding to a strong droplet electronic excitation. The rare gas dopant is then ionized via a Penning excitation transfer process. The electron kinetic energy distributions reflect complex ionization and electron escape dynamics.
Coupling optical and electrical gating for electronic readout of quantum dot dynamics
NASA Astrophysics Data System (ADS)
Vasudevan, Smitha; Walczak, Kamil; Ghosh, Avik W.
2010-08-01
We explore the coherent transfer of electronic signatures from a strongly correlated, optically gated nanoscale quantum dot to a weakly interacting, electrically backgated microscale channel. In this unique side-coupled “ T ” geometry for transport, we predict a mechanism for detecting Rabi oscillations induced in the dot through quantum, rather than electrostatic means. This detection shows up directly in the dc conductance-voltage spectrum as a field-tunable split in the Fano lineshape arising due to interference between the dipole coupled dot states and the channel continuum. The split is further modified by the Coulomb interactions within the dot that influence the detuning of the Rabi oscillations. Furthermore, time resolving the signal we see clear beats when the Rabi frequencies approach the intrinsic Bohr frequencies in the dot. Capturing these coupled dynamics requires attention to memory effects and quantum interference in the channel as well as many-body effects in the dot. We accomplish this coupling by combining a Fock-space master equation for the dot dynamics with the phase-coherent, non-Markovian time-dependent nonequilibrium Green’s function transport formalism in the channel through a properly evaluated self-energy and a Coulomb integral. The strength of the interactions can further be modulated using a backgate that controls the degree of hybridization and charge polarization at the transistor surface.
Electronic zero-point fluctuation forces inside circuit components
Leonhardt, Ulf
2018-01-01
One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863
Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.
2015-02-15
We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jetmore » exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.« less
Tunable electromagnetically induced transparency in integrated silicon photonics circuit.
Li, Ang; Bogaerts, Wim
2017-12-11
We comprehensively simulate and experimentally demonstrate a novel approach to generate tunable electromagnetically induced transparency (EIT) in a fully integrated silicon photonics circuit. It can also generate tunable fast and slow light. The circuit is a single ring resonator with two integrated tunable reflectors inside, which form an embedded Fabry-Perot (FP) cavity inside the ring cavity. The mode of the FP cavity can be controlled by tuning the reflections using integrated thermo-optic tuners. Under correct tuning conditions, the interaction of the FP mode and the ring resonance mode will generate a Fano resonance and an EIT response. The extinction ratio and bandwidth of the EIT can be tuned by controlling the reflectors. Measured group delay proves that both fast light and slow light can be generated under different tuning conditions. A maximum group delay of 1100 ps is observed because of EIT. Pulse advance around 1200 ps is also demonstrated.
Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review
Alvankarian, Jafar; Majlis, Burhanuddin Yeop
2015-01-01
The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519
Perovskite Superlattices as Tunable Microwave Devices
NASA Technical Reports Server (NTRS)
Christen, H. M.; Harshavardhan, K. S.
2003-01-01
Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.
Manipulation of Dirac cones in metal-intercalated epitaxial graphene
NASA Astrophysics Data System (ADS)
Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming
Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.
Surface plasmon polaritons in a topological insulator embedded in an optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. L., E-mail: lllihfcas@foxmail.com; Xu, W., E-mail: wenxu-issp@aliyun.com; Department of Physics, Yunnan University, Kunming 650091
Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidthmore » and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.« less
Surface plasmon polaritons in a topological insulator embedded in an optical cavity
NASA Astrophysics Data System (ADS)
Li, L. L.; Xu, W.
2014-03-01
Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidth and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.
Li, Yejun; Tam, Nguyen Minh; Claes, Pieterjan; Woodham, Alex P; Lyon, Jonathan T; Ngan, Vu Thi; Nguyen, Minh Tho; Lievens, Peter; Fielicke, André; Janssens, Ewald
2014-09-18
The structures of neutral cobalt-doped silicon clusters have been assigned by a combined experimental and theoretical study. Size-selective infrared spectra of neutral Si(n)Co (n = 10-12) clusters are measured using a tunable IR-UV two-color ionization scheme. The experimental infrared spectra are compared with calculated spectra of low-energy structures predicted at the B3P86 level of theory. It is shown that the Si(n)Co (n = 10-12) clusters have endohedral caged structures, where the silicon frameworks prefer double-layered structures encapsulating the Co atom. Electronic structure analysis indicates that the clusters are stabilized by an ionic interaction between the Co dopant atom and the silicon cage due to the charge transfer from the silicon valence sp orbitals to the cobalt 3d orbitals. Strong hybridization between the Co dopant atom and the silicon host quenches the local magnetic moment on the encapsulated Co atom.
NASA Astrophysics Data System (ADS)
Zhang, Yuanbo
2009-03-01
We have successfully performed atomically-resolved scanning tunneling microscopy and spectroscopy (STS) on mechanically exfoliated graphene samples having tunable back-gates. We have discovered that the tunneling spectra of graphene flakes display an unexpected gap-like feature that is pinned to the Fermi level for different gate voltages, and which coexists with another depression in density-of-states that moves with gate voltage. Extensive tests and careful analysis show that the gap-feature is due to phonon-assisted inelastic tunneling, and the depression directly marks the location of the graphene Dirac point. Using tunneling spectroscopy as a new tool, we further probe the local energetic variations of the graphene charge neutral point (Dirac point) to map out spatial electron density inhomogeneities in graphene. Such measurements are two orders of magnitude higher in resolution than previous experiments, and they can be directly correlated with nanometer scale topographic features. Based on our observation of energy-dependent periodic electronic interference patterns, our measurements also reveal the nature of impurity scattering of Dirac fermions in graphene. These results are significant for understanding the sources of electron density inhomogeneity and electron scattering in graphene, and the microscopic causes of graphene electron mobility.
The use of photonic techniques in tunable microwave oscillators
NASA Astrophysics Data System (ADS)
Madziar, K.; Szymańska, A.; Galwas, B.
2013-07-01
In this paper, we present opportunities to use photonic techniques in tuning process of opto-electronic oscillators. These opportunities involve wavelength controlled delay lines and fiber Bragg gratings.
NASA Astrophysics Data System (ADS)
Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan
2015-01-01
Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05544f
Silver nanoparticles with tunable work functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp; Tanaka, Daisuke; Ryuzaki, Sou
To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probemore » force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.« less
Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties.
Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei
2018-05-04
In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.
Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties
NASA Astrophysics Data System (ADS)
Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei
2018-05-01
In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Tian, He; Xie, Yujun; Kostelec, Andrew; Zhao, Huan; Cha, Judy J.; Tice, Jesse; Wang, Han
Modulatory input-dependent plasticity is a well-known type of hetero-synaptic response where the release of neuromodulators can alter the efficacy of neurotransmission in a nearby chemical synapse. Solid-state devices that can mimic such phenomenon are desirable for enhancing the functionality and reconfigurability of neuromorphic electronics. In this work, we demonstrated a tunable artificial synaptic device concept based on the properties of graphene and tin oxide that can mimic the modulatory input-dependent plasticity. By using graphene as the contact electrode, a third electrode terminal can be used to modulate the conductive filament formation in the vertical tin oxide based resistive memory device. The resulting synaptic characteristics of this device, in terms of the profile of synaptic weight change and the spike-timing-dependent-plasticity, is tunable with the bias at the modulating terminal. Furthermore, the synaptic response can be reconfigured between excitatory and inhibitory modes by this modulating bias. The operation mechanism of the device is studied with combined experimental and theoretical analysis. The device is attractive for application in neuromorphic electronics. This work is supported by ARO and NG-ION2 at USC.
Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.
Doris, Sean E; Pierre, Adrien; Street, Robert A
2018-04-01
In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single-transistor oscillators based on OECTs with dynamic time-varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system-level design of low-power OECT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shan; Cui, Liyong; Liu, Fen
We have theoretically investigated the electronic resonant tunneling effect in graphene superlattice heterostructures, where a tunable graphene layer is inserted between two different superlattices. It is found that a complete tunneling state appears inside the enlarged forbidden gap of the heterostructure by changing the thickness of the inserted graphene layer and the transmittance of the tunneling state depends on the thickness of the inserted layer. Furthermore, the frequency of the tunneling state changes with the thickness of the inserted graphene layer but it always located in the little overlapped forbidden gap of two graphene superlattices. Therefore, both a perfect tunnelingmore » state and an ultrawide forbidden gap are realized in such heterostrutures. Since maximum probability densities of the perfect tunneling state are highly localized near the interface between the inserted graphene layer and one graphene superlattice, it can be named as an interface-like state. Such structures are important to fabricate high-Q narrowband electron wave filters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guohua; Czaplewski, David A.; Lenferink, Erik J.
Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here in this paper, we show that laterally-confined excitons in monolayer MoS 2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, themore » lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS 2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems« less
Vogelsang, Jan; Robin, Jörg; Piglosiewicz, Björn; Manzoni, Cristian; Farinello, Paolo; Melzer, Stefan; Feru, Philippe; Cerullo, Giulio; Lienau, Christoph; Groß, Petra
2014-10-20
The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 μm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.
NASA Astrophysics Data System (ADS)
Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker
We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.
A gamma beam profile imager for ELI-NP Gamma Beam System
NASA Astrophysics Data System (ADS)
Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.
2018-06-01
The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.
Tunable Kondo physics in a carbon nanotube double quantum dot.
Chorley, S J; Galpin, M R; Jayatilaka, F W; Smith, C G; Logan, D E; Buitelaar, M R
2012-10-12
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.
Electrically pumped graphene-based Landau-level laser
NASA Astrophysics Data System (ADS)
Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin
2018-03-01
Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.
Hot Electron Emission in Semiconductors.
1988-03-25
applied electric field and calculated for each detector according to U = fIRMA I(, (1)U R(w)A(w)IBB(wTe) "dw I0 BB e where R() = R0 r(w) and A(w) = A a...the spectrum of the stimulated emis- magnetic field tunable GaAs detector was used for the de - ,’i. sion from p-Ge by means of an extremely narrowband...crossed electric and magnetic fields is studied by means of a tunable narrow- band GaAs- detector . A multimode spectrum is observed from polished high
Fu, Qi; Yang, Lei; Wang, Wenhui; Han, Ali; Huang, Jian; Du, Pingwu; Fan, Zhiyong; Zhang, Jingyu; Xiang, Bin
2015-08-26
The first realization of a tunable band-gap in monolayer WS2(1-x) Se2x is demonstrated. The tuning of the bandgap exhibits a strong dependence of S and Se content, as proven by PL spectroscopy. Because of its remarkable electronic structure, monolayer WS2(1-x) Se2x exhibits novel electrochemical catalytic activity and offers long-term electrocatalytic stability for the hydrogen evolution reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic Glasses with Tunable Liquid-Crystalline Order
NASA Astrophysics Data System (ADS)
Teerakapibal, Rattavut; Huang, Chengbin; Gujral, Ankit; Ediger, Mark D.; Yu, Lian
2018-02-01
Liquid crystals (LCs) are known to undergo rapid ordering transitions with virtually no hysteresis. We report a remarkable counterexample, itraconazole, where the nematic to smectic transition is avoided at a cooling rate exceeding 20 K /s . The smectic order trapped in a glass is the order reached by the equilibrium liquid before the kinetic arrest of the end-over-end molecular rotation. This is attributed to the fact that smectic ordering requires orientational ordering and suggests a general condition for preparing organic glasses with tunable LC order for electronic applications.
Bottari, Giovanni; de la Torre, Gema; Torres, Tomas
2015-04-21
Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and photoinduced energy/electron transfer abilities that can be modulated as a function of the electronic character of their counterparts in donor-acceptor (D-A) ensembles. In this context, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), and, more recently, graphene are among the most suitable Pc "companions". Pc-C60 ensembles have been for a long time the main actors in this field, due to the commercial availability of C60 and the well-established synthetic methods for its functionalization. As a result, many Pc-C60 architectures have been prepared, featuring different connectivities (covalent or supramolecular), intermolecular interactions (self-organized or molecularly dispersed species), and Pc HOMO/LUMO levels. All these elements provide a versatile toolbox for tuning the photophysical properties in terms of the type of process (photoinduced energy/electron transfer), the nature of the interactions between the electroactive units (through bond or space), and the kinetics of the formation/decay of the photogenerated species. Some recent trends in this field include the preparation of stimuli-responsive multicomponent systems with tunable photophysical properties and highly ordered nanoarchitectures and surface-supported systems showing high charge mobilities. A breakthrough in the Pc-nanocarbon field was the appearance of CNTs and graphene, which opened a new avenue for the preparation of intriguing photoresponsive hybrid ensembles showing light-stimulated charge separation. The scarce solubility of these 1-D and 2-D nanocarbons, together with their lower reactivity with respect to C60 stemming from their less strained sp(2) carbon networks, has not meant an unsurmountable limitation for the preparation of variety of Pc-based hybrids. These systems, which show improved solubility and dispersibility features, bring together the unique electronic transport properties of CNTs and graphene with the excellent light-harvesting and tunable redox properties of Pcs. A singular and distinctive feature of these Pc-CNT/graphene (single- or few-layers) hybrid materials is the control of the direction of the photoinduced charge transfer as a result of the band-like electronic structure of these carbon nanoforms and the adjustable electronic levels of Pcs. Moreover, these conjugates present intensified light-harvesting capabilities resulting from the grafting of several chromophores on the same nanocarbon platform. In this Account, recent progress in the construction of covalent and supramolecular Pc-nanocarbon ensembles is summarized, with a particular emphasis on their photoinduced behavior. We believe that the high degree of control achieved in the preparation of Pc-carbon nanostructures, together with the increasing knowledge of the factors governing their photophysics, will allow for the design of next-generation light-fueled electroactive systems. Possible implementation of these Pc-nanocarbons in high performance devices is envisioned, finally turning into reality much of the expectations generated by these materials.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Yu.; Koenraad, P. M.
2010-07-01
Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Electronic and optical properties of phosphorene-like arsenic phosphorus: a many-body study
NASA Astrophysics Data System (ADS)
Shu, Huabing; Guo, Jiyuan
2018-03-01
By employing density functional and many-body perturbation theories, we explore the geometrics, quasiparticle band structure, and optical response of two-dimensional arsenic phosphorus (α-AsxP1-x). Calculations indicate that the α-AsxP1-x exhibits excellent stability at high temperature. The quasi-particle bandgap of α-AsxP1-x is highly tunable in a broad range of 1.54-2.14 eV depending on the composition. The optical absorption of α-AsxP1-x can cover the visible and ultraviolet regions, and is highly anisotropic. More interestingly, it is tunable to optical absorption of α-AsxP1-x when the composition continuously increased. Also, they have sizable exciton binding energies. These findings suggest that α-AsxP1-x holds great potentials for applications in high-performance electronics and optoelectronics.
A miniature electronically tunable Fabry-Perot filter
NASA Astrophysics Data System (ADS)
O'Sullivan, B.; Pietraszewski, K. A. R.
A miniature electronically tunable, servo controlled Fabry-Perot filter for use in fiber optic sensors, spectroscopy, data and telecommunications, and laser tuning has been developed. The servo control system utilizes capacitance micrometry and piezo technology to maintain stable cavity mirror separations with a noise of less than 0.9nm rms while enabling random access tuning to any wavelength in the design range in less than 0.5ms. Free spectral ranges from 75,000GHz to 300GHz (560nm to 1.5nm at 1500nm wavelength) are typical with finesses between 3 and 300. At present the device has been made commercially available in two formats: fiber optically coupled, with single-mode or multimode fiber, or with a 3mm clear aperture. The design and performance of the instrument are presented along with some typical application examples.
Neupane, Madhab; Xu, Su-Yang; Sankar, R.; ...
2015-08-20
Here we report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI), Pb 1more » $${-}$$xSnxSe, as a function of various material parameters including composition x, temperature T , and crystal structure. Our spectroscopic data demonstrate the electronic ground-state condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states’ response to circularly polarized light. Our results show that each material parameter can tune the system between the trivial and topological phase in a distinct way, unlike that seen in Bi 2Se 3 and related compounds, leading to a rich topological phase diagram. Our systematic studies of the TCI Pb 1$${-}$$xSnxSe are a valuable materials guide to realize new topological phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhigang, E-mail: xh168688@126.com; State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083; Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000
SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic discharge–charge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup −1} up to 40th cycle at 0.1 C. - Highlights: ► The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ► SnO{sub 2} nanorod bundles with tunable size by controlling concentrationmore » of SnCl{sub 4}. ► A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.« less
Ryder, Christopher R; Wood, Joshua D; Wells, Spencer A; Yang, Yang; Jariwala, Deep; Marks, Tobin J; Schatz, George C; Hersam, Mark C
2016-06-01
Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)-a layered two-dimensional semiconductor-exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.
NASA Astrophysics Data System (ADS)
Ryder, Christopher R.; Wood, Joshua D.; Wells, Spencer A.; Yang, Yang; Jariwala, Deep; Marks, Tobin J.; Schatz, George C.; Hersam, Mark C.
2016-06-01
Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)—a layered two-dimensional semiconductor—exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.
Adequacy of Si:P chains as Fermi-Hubbard simulators
NASA Astrophysics Data System (ADS)
Dusko, Amintor; Delgado, Alain; Saraiva, André; Koiller, Belita
2018-01-01
The challenge of simulating many-body models with analogue physical systems requires both experimental precision and very low operational temperatures. Atomically precise placement of dopants in Si permits the construction of nanowires by design. We investigate the suitability of these interacting electron systems as simulators of a fermionic extended Hubbard model on demand. We describe the single-particle wavefunctions as a linear combination of dopant orbitals (LCDO). The electronic states are calculated within configuration interaction (CI). Due to the peculiar oscillatory behavior of each basis orbital, properties of these chains are strongly affected by the interdonor distance R0, in a non-monotonic way. Ground state (T = 0 K) properties such as charge and spin correlations are shown to remain robust under temperatures up to 4 K for specific values of R0. The robustness of the model against disorder is also tested, allowing some fluctuation of the placement site around the target position. We suggest that finite donor chains in Si may serve as an analog simulator for strongly correlated model Hamiltonians. This simulator is, in many ways, complementary to those based on cold atoms in optical lattices—the trade-off between the tunability achievable in the latter and the survival of correlation at higher operation temperatures for the former suggests that both technologies are applicable for different regimes.
Negative differential resistance in GaN tunneling hot electron transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao; Nath, Digbijoy; Rajan, Siddharth
Room temperature negative differential resistance is demonstrated in a unipolar GaN-based tunneling hot electron transistor. Such a device employs tunnel-injected electrons to vary the electron energy and change the fraction of reflected electrons, and shows repeatable negative differential resistance with a peak to valley current ratio of 7.2. The device was stable when biased in the negative resistance regime and tunable by changing collector bias. Good repeatability and double-sweep characteristics at room temperature show the potential of such device for high frequency oscillators based on quasi-ballistic transport.
Integrated ultraviolet and tunable mid-infrared laser source for analyses of proteins
NASA Astrophysics Data System (ADS)
Hazama, Hisanao; Takatani, Yoshiaki; Awazu, Kunio
2007-02-01
Mass spectrometry using matrix-assisted laser desorption/ionization (MALDI) technique is one of the most widely used method to analyze proteins in biological research fields. However, it is difficult to analyze insoluble proteins which have important roles in researches on disease mechanisms or in developments of drugs by using ultraviolet (UV) lasers which have commonly been used for MALDI. Recently, a significant improvement in MALDI process of insoluble proteins using a combination of a UV nitrogen laser and a tunable mid-infrared (MIR) free electron laser (FEL) was reported. Since the FEL is a very large and expensive equipment, we have developed a tabletop laser source which can generate both UV and tunable MIR lasers. A tunable MIR laser (5.5-10 μm) was obtained by difference frequency generation (DFG) between a Nd:YAG and a tunable Cr:forsterite lasers using two AgGaS II crystals. The MIR laser can generate pulses with an energy of up to 1.4 mJ at a repetition rate of 10 Hz. A UV laser was obtained by third harmonic generation of a Nd:YAG laser splitted from that used for DFG. A time interval between the UV and the MIR laser pulses can be adjusted with a variable optical delay.
Zadrozny, Joseph M.; Niklas, Jens; Poluektov, Oleg G.; ...
2015-12-02
Here, quantum information processing (QIP) could revolutionize areas ranging from chemical modeling to cryptography. One key figure of merit for the smallest unit for QIP, the qubit, is the coherence time ( T 2), which establishes the lifetime for the qubit. Transition metal complexes offer tremendous potential as tunable qubits, yet their development is hampered by the absence of synthetic design principles to achieve a long T 2. We harnessed molecular design to create a series of qubits, (Ph 4P) 2[V(C 8S 8) 3] (1), (Ph 4P) 2[V(β-C 3S 5) 3] (2), (Ph 4P) 2[V(α-C 3S 5) 3] (3), andmore » (Ph 4P) 2[V(C 3S 4O) 3] (4), with T 2s of 1–4 μs at 80 K in protiated and deuterated environments. Crucially, through chemical tuning of nuclear spin content in the vanadium(IV) environment we realized a T 2 of ~1 ms for the species ( d 20-Ph 4P) 2[V(C 8S 8) 3] in CS 2, a value that surpasses the coordination complex record by an order of magnitude. This value even eclipses some prominent solid-state qubits. Electrochemical and continuous wave electron paramagnetic resonance (EPR) data reveal variation in the electronic influence of the ligands on the metal ion across 1–4. However, pulsed measurements indicate that the most important influence on decoherence is nuclear spins in the protiated and deuterated solvents utilized herein. Our results illuminate a path forward in synthetic design principles, which should unite CS 2 solubility with nuclear spin free ligand fields to develop a new generation of molecular qubits.« less
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.
2017-12-01
In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.
Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU
NASA Astrophysics Data System (ADS)
Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.
2018-01-01
There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
NASA Astrophysics Data System (ADS)
Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo
2018-04-01
A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.
Optical and Acoustic Device Applications of Ferroelastic Crystals
NASA Astrophysics Data System (ADS)
Meeks, Steven Wayne
This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.
NASA Astrophysics Data System (ADS)
Goswami, Partha
2018-03-01
We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and K^' } points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin-orbit interaction (SOI), the extrinsic Rashba spin-orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field ( M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle-hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on WY2, exhibit (direct) band-gap narrowing / widening (Moss-Burstein (MB) gap shift) including the increase in spin polarisation ( P) at low temperature due to the increase in the exchange field ( M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like BiFeO3 (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.
Controlling Surface Chemistry of Gallium Liquid Metal Alloys to Enhance their Fluidic Properties
NASA Astrophysics Data System (ADS)
Ilyas, Nahid; Cumby, Brad; Cook, Alexander; Durstock, Michael; Tabor, Christopher; Materials; Manufacturing Directorate Team
Gallium liquid metal alloys (GaLMAs) are one of the key components of emerging technologies in reconfigurable electronics, such as tunable radio frequency antennas and electronic switches. Reversible flow of GaLMA in microchannels of these types of devices is hindered by the instantaneous formation of its oxide skin in ambient environment. The oxide film sticks to most surfaces leaving unwanted metallic residues that can cause undesired electronic properties. In this report, residue-free reversible flow of a binary alloy of gallium (eutectic gallium indium) is demonstrated via two types of surface modifications where the oxide film is either protected by an organic thin film or chemically removed. An interface modification layer (alkyl phosphonic acids) was introduced into the microfluidic system to modify the liquid metal surface and protect its oxide layer. Alternatively, an ion exchange membrane was utilized as a 'sponge-like' channel material to store and slowly release small amounts of HCl to react with the surface oxide of the liquid metal. Characterization of these interfaces at molecular level by surface spectroscopy and microscopy provided with mechanistic details for the interfacial interactions between the liquid metal surface and the channel materials.
Excitonic gap formation in pumped Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.
2017-05-01
Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.
A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.
2018-04-01
The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.
Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.
Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A
2018-05-09
Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.
Tunable particles alter macrophage uptake based on combinatorial effects of physical properties
Garapaty, Anusha
2017-01-01
Abstract The ability to tune phagocytosis of particle‐based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non‐phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer‐by‐layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod‐shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc‐functionalized particles with macrophages during phagocytosis. PMID:29313025
Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H
2017-01-01
Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.
Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics
NASA Astrophysics Data System (ADS)
Secor, Ethan Benjamin
Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.
Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang
2015-01-01
Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516
Applications of the Infrared Free Electron Laser in Nonlinear and Time-Resolved Spectroscopy
NASA Astrophysics Data System (ADS)
Fann, Wunshain
1990-01-01
Free Electron Lasers (FEL) have been envisioned as novel radiation sources tunable over a wide spectral range. In this dissertation I report two types of experiments that used the infrared FEL, Mark III, to study nonlinear optical properties of conjugated polymers and the possibility of long lived vibrational excitations in acetanilide, a hydrogen-bonded molecular crystal.
Zhao, Dongbing; Zhu, Zonglong; Kuo, Ming -Yu; ...
2016-06-08
Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6% with negligible hysteresis. Furthermore, this study provides one of the first nonfullerene small-moleculebased ETMs for high-performance p–i–n PVSCs.
Tunable and low-loss correlated plasmons in Mott-like insulating oxides
NASA Astrophysics Data System (ADS)
Asmara, Teguh Citra; Wan, Dongyang; Zhao, Yongliang; Majidi, Muhammad Aziz; Nelson, Christopher T.; Scott, Mary C.; Cai, Yao; Yan, Bixing; Schmidt, Daniel; Yang, Ming; Zhu, Tao; Trevisanutto, Paolo E.; Motapothula, Mallikarjuna R.; Feng, Yuan Ping; Breese, Mark B. H.; Sherburne, Matthew; Asta, Mark; Minor, Andrew; Venkatesan, T.; Rusydi, Andrivo
2017-05-01
Plasmonics has attracted tremendous interests for its ability to confine light into subwavelength dimensions, creating novel devices with unprecedented functionalities. New plasmonic materials are actively being searched, especially those with tunable plasmons and low loss in the visible-ultraviolet range. Such plasmons commonly occur in metals, but many metals have high plasmonic loss in the optical range, a main issue in current plasmonic research. Here, we discover an anomalous form of tunable correlated plasmons in a Mott-like insulating oxide from the Sr1-xNb1-yO3+δ family. These correlated plasmons have multiple plasmon frequencies and low loss in the visible-ultraviolet range. Supported by theoretical calculations, these plasmons arise from the nanometre-spaced confinement of extra oxygen planes that enhances the unscreened Coulomb interactions among charges. The correlated plasmons are tunable: they diminish as extra oxygen plane density or film thickness decreases. Our results open a path for plasmonics research in previously untapped insulating and strongly-correlated materials.
Tunable and low-loss correlated plasmons in Mott-like insulating oxides.
Asmara, Teguh Citra; Wan, Dongyang; Zhao, Yongliang; Majidi, Muhammad Aziz; Nelson, Christopher T; Scott, Mary C; Cai, Yao; Yan, Bixing; Schmidt, Daniel; Yang, Ming; Zhu, Tao; Trevisanutto, Paolo E; Motapothula, Mallikarjuna R; Feng, Yuan Ping; Breese, Mark B H; Sherburne, Matthew; Asta, Mark; Minor, Andrew; Venkatesan, T; Rusydi, Andrivo
2017-05-12
Plasmonics has attracted tremendous interests for its ability to confine light into subwavelength dimensions, creating novel devices with unprecedented functionalities. New plasmonic materials are actively being searched, especially those with tunable plasmons and low loss in the visible-ultraviolet range. Such plasmons commonly occur in metals, but many metals have high plasmonic loss in the optical range, a main issue in current plasmonic research. Here, we discover an anomalous form of tunable correlated plasmons in a Mott-like insulating oxide from the Sr 1-x Nb 1-y O 3+δ family. These correlated plasmons have multiple plasmon frequencies and low loss in the visible-ultraviolet range. Supported by theoretical calculations, these plasmons arise from the nanometre-spaced confinement of extra oxygen planes that enhances the unscreened Coulomb interactions among charges. The correlated plasmons are tunable: they diminish as extra oxygen plane density or film thickness decreases. Our results open a path for plasmonics research in previously untapped insulating and strongly-correlated materials.
Tunable and low-loss correlated plasmons in Mott-like insulating oxides
Asmara, Teguh Citra; Wan, Dongyang; Zhao, Yongliang; Majidi, Muhammad Aziz; Nelson, Christopher T.; Scott, Mary C.; Cai, Yao; Yan, Bixing; Schmidt, Daniel; Yang, Ming; Zhu, Tao; Trevisanutto, Paolo E.; Motapothula, Mallikarjuna R.; Feng, Yuan Ping; Breese, Mark B. H.; Sherburne, Matthew; Asta, Mark; Minor, Andrew; Venkatesan, T.; Rusydi, Andrivo
2017-01-01
Plasmonics has attracted tremendous interests for its ability to confine light into subwavelength dimensions, creating novel devices with unprecedented functionalities. New plasmonic materials are actively being searched, especially those with tunable plasmons and low loss in the visible–ultraviolet range. Such plasmons commonly occur in metals, but many metals have high plasmonic loss in the optical range, a main issue in current plasmonic research. Here, we discover an anomalous form of tunable correlated plasmons in a Mott-like insulating oxide from the Sr1−xNb1−yO3+δ family. These correlated plasmons have multiple plasmon frequencies and low loss in the visible–ultraviolet range. Supported by theoretical calculations, these plasmons arise from the nanometre-spaced confinement of extra oxygen planes that enhances the unscreened Coulomb interactions among charges. The correlated plasmons are tunable: they diminish as extra oxygen plane density or film thickness decreases. Our results open a path for plasmonics research in previously untapped insulating and strongly-correlated materials. PMID:28497786
Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons.
Yang, Liu; Wang, Yue; Xu, Haiyang; Liu, Weizhen; Zhang, Cen; Wang, Chunliang; Wang, Zhongqiang; Ma, Jiangang; Liu, Yichun
2018-05-09
Color-tunable light-emitting devices (LEDs) have a great impact on our daily life. Herein, LEDs with tunable electroluminescence (EL) color were achieved via introducing Ag nanowires surface plasmons into p-GaN/n-ZnO film heterostructures. By optimizing the surface coverage density of coated Ag nanowires, the EL color was changed continuously from yellow-green to blue-violet. Transient-state and temperature-variable fluorescence emission characterizations uncovered that the spontaneous emission rate and the internal quantum efficiency of the near-UV emission were increased as a consequence of the resonance coupling interaction between Ag nanowires surface plasmons and ZnO excitons. This effect induces the selective enhancement of the blue-violet EL component but suppresses the defect-related yellow-green emission, leading to the observed tunable EL color. The proposed strategy of introducing surface plasmons can be further applied to many other kinds of LEDs for their selective enhancement of EL intensity and effective adjustment of the emission color.
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya
2016-01-01
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825
NASA Astrophysics Data System (ADS)
Cho, Hyunjin; Kim, Whi Dong; Lee, Kangha; Lee, Seokwon; Kang, Gil-Seong; Joh, Han-Ik; Lee, Doh C.
2018-01-01
We investigate the product selectivity of CO2 reduction using NiO photocathodes decorated with CdSe quantum dots (QDs) of varying size in a photoelectrochemical (PEC) cell. Size-tunable and quantized energy states of conduction band in CdSe QDs enable systematic control of electron transfer kinetics from CdSe QDs to NiO. It turns out that different size of CdSe QDs results in variation in product selectivity for CO2 reduction. The energy gap between conduction band edge and redox potential of each reduction product (e.g., CO and CH4) correlates with their production rate. The size dependence of the electron transfer rate estimated from the energy gap is in agreement with the selectivity of CO2 reduction products for all reduction products but CO. The deviation in the case of CO is attributed to sequential conversion of CO into CH4 with CO adsorbed on electrode surface. Based on a premise that the CdSe QDs would exhibit similar surface configuration regardless of QD size, it is concluded that the electron transfer kinetics proves to alter the selectivity of CO2 reduction.
NASA Astrophysics Data System (ADS)
Webber, Matthew J.; Appel, Eric A.; Meijer, E. W.; Langer, Robert
2016-01-01
Polymers, ceramics and metals have historically dominated the application of materials in medicine. Yet rationally designed materials that exploit specific, directional, tunable and reversible non-covalent interactions offer unprecedented advantages: they enable modular and generalizable platforms with tunable mechanical, chemical and biological properties. Indeed, the reversible nature of supramolecular interactions gives rise to biomaterials that can sense and respond to physiological cues, or that mimic the structural and functional aspects of biological signalling. In this Review, we discuss the properties of several supramolecular biomaterials, as well as their applications in drug delivery, tissue engineering, regenerative medicine and immunology. We envision that supramolecular biomaterials will contribute to the development of new therapies that combine highly functional materials with unmatched patient- and application-specific tailoring of both material and biological properties.
2017-04-02
field terahertz, felix free electron laser, nonlinear crystal coefficients, EOARD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...the Felix free electron laser. Measurements of these properties, which are crucial for designing of efficient nonlinear optical frequency...Currently, only free electron lasers are the source that can readily meet those requirements in the THz range, see Fig 2. Fig. 2 Power and tunability of the
Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall
2014-11-26
Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.
Tunable Quantum Spin Liquidity in Mo3O13 Cluster Mott Insulators
NASA Astrophysics Data System (ADS)
Akbari-Sharbaf, Arash; Ziat, Djamel; Verrier, Aime; Quilliam, Jeffrey A.; Sinclair, Ryan; Zhou, Haidong D.; Sun, Xuefeng F.
A study of a tunable quantum spin liquid (QSL) phase in the compound Li2In1- x ScxMo3O8 (x = 0.2, 0.4, 0.6, 0.8, 1) will be presented. Crystal structure of these compounds can be viewed as Mo ions arranged on an asymmetric Kagome lattice (KL), with two different Mo-Mo bond lengths, separated by nonmagnetic layers composed of Li, In, and Sc ions. Using X-ray diffraction spectroscopy, muon spin relaxation spectroscopy, bulk magnetic susceptibility and specific heat measurements we show that by changing the composition of the nonmagnetic layers we can drive the system from an ordered antiferromagnetic state to a quantum spin liquid state. The mechanism responsible for the tunability of the magnetic phase in this class of materials may be associated with the degree of asymmetry of the KL controlled by the composition of the nonmagnetic layers. For high degree of asymmetry the constraint on the electronic distribution leads to a configuration of Mo3O8 clusters with net spin-1/2 per cluster arrange on a triangular lattice and long range antiferromagnetic order. For low degree of asymmetry the electronic distribution leads to a magnetic phase with QSL character. We acknowledge support from NSERC and CFREF.
Chen, Yok
1990-01-01
Refractory oxide crystals suitable for use in tunable lasers and a method for preparing the same are provided. The crystals are characterized by high quantum efficiency, high thermal stability, good crystal transparency, and a high percentage of useful luminescence. The method for preparation of the crystals involves removing substantially all the hydrogen, thermochemically reducing the crystal's oxygen content to produce oxygen (anion) vacancy defects, and subsequently irradiating the crystal with electrons to inactivate trace H.sup.- ions so that an increased amount of short lived F.sup.+ luminescence is produced when the crystal is optically excited.
Buonsanti, Raffaella; Llordes, Anna; Aloni, Shaul; Helms, Brett A; Milliron, Delia J
2011-11-09
Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals. The presence of substitutional aluminum in the zinc oxide lattice accompanied by the generation of free electrons is proved for the first time by tunable surface plasmon absorption in the infrared region both in solution and in thin films.
Tunable delay time and Hartman effect in graphene magnetic barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Yue; Wang, Lin-Jun; Chen, Xi, E-mail: xchen@shu.edu.cn
2015-04-28
Tunable group delay and Hartman effect have been investigated for massless Dirac electrons in graphene magnetic barriers. In the presence of magnetic field, dwell time is found to be equal to net group delay plus the group delay contributing from the lateral shifts. The group delay times are discussed in both cases of normal and oblique incidence, to clarify the nature of Hartman effect. In addition, the group delay in transmission can be modulated from subluminality to superluminality by adjusting the magnetic field, which may also lead to potential applications in graphene-based microelectronics.
The tunable wettability in multistimuli-responsive smart graphene surfaces
NASA Astrophysics Data System (ADS)
Wan, Shanhong; Pu, Jibin; Zhang, Xiaoqian; Wang, Liping; Xue, Qunji
2013-01-01
The tunable wettability of smart graphene films onto stainless steel substrates with a multi-response to different environmental stimuli has been investigated including light irradiation, pH, electric field, and annealing temperature. Conductive graphene film exhibited the controllable transition from water-repellent to water-loving characteristic in response to different environment fields, which primarily resulted from the morpho-chemically synergistic effect as well as the restoration of electronic stucture. Based on the fundamental theories of wettability, mechanisms in switching from hydrophobicity to hydrophilicity for smart graphene surface including thermal chemistry, electrostatic, photo-induced surface chemistry, solvent, and pH methods were presented.
NASA Technical Reports Server (NTRS)
Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George
2013-01-01
A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J
2012-09-28
This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor
NASA Astrophysics Data System (ADS)
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.
2012-09-01
This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method
NASA Astrophysics Data System (ADS)
Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng
2015-03-01
Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.
An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers
Höppner, H.; Hage, A.; Tanikawa, T.; ...
2015-05-15
High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less
NASA Astrophysics Data System (ADS)
Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao
2017-11-01
We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.
A first-principles study of the electrically tunable band gap in few-layer penta-graphene.
Wang, Jinjin; Wang, Zhanyu; Zhang, R J; Zheng, Y X; Chen, L Y; Wang, S Y; Tsoo, Chia-Chin; Huang, Hung-Ji; Su, Wan-Sheng
2018-06-25
The structural and electronic properties of bilayer (AA- and AB-stacked) and tri-layer (AAA-, ABA- and AAB-stacked) penta-graphene (PG) have been investigated in the framework of density functional theory. The present results demonstrate that the ground state energy in AB stacking is lower than that in AA stacking, whereas ABA stacking is found to be the most energetically favorable, followed by AAB and AAA stackings. All considered model configurations are found to be semiconducting, independent of the stacking sequence. In the presence of a perpendicular electric field, their band gaps can be significantly reduced and completely closed at a specific critical electric field strength, demonstrating a Stark effect. These findings show that few-layer PG will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices owing to its tunable band gap.
Robust nano-fabrication of an integrated platform for spin control in a tunable microcavity
NASA Astrophysics Data System (ADS)
Bogdanović, Stefan; Liddy, Madelaine S. Z.; van Dam, Suzanne B.; Coenen, Lisanne C.; Fink, Thomas; Lončar, Marko; Hanson, Ronald
2017-12-01
Coupling nitrogen-vacancy (NV) centers in diamonds to optical cavities is a promising way to enhance the efficiency of diamond-based quantum networks. An essential aspect of the full toolbox required for the operation of these networks is the ability to achieve the microwave control of the electron spin associated with this defect within the cavity framework. Here, we report on the fabrication of an integrated platform for the microwave control of an NV center electron spin in an open, tunable Fabry-Pérot microcavity. A critical aspect of the measurements of the cavity's finesse reveals that the presented fabrication process does not compromise its optical properties. We provide a method to incorporate a thin diamond slab into the cavity architecture and demonstrate the control of the NV center spin. These results show the promise of this design for future cavity-enhanced NV center spin-photon entanglement experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Anyuan; Liu, Erfu; Long, Mingsheng
2016-05-30
We studied electrical transport properties including gate-tunable rectification inversion and polarity inversion, in atomically thin graphene/WSe{sub 2} heterojunctions. Such engrossing characteristics are attributed to the gate tunable mismatch of Fermi levels of graphene and WSe{sub 2}. Also, such atomically thin heterostructure shows excellent performances on photodetection. The responsivity of 66.2 mA W{sup −1} (without bias voltage) and 350 A W{sup −1} (with 1 V bias voltage) can be reached. What is more, the devices show great external quantum efficiency of 800%, high detectivity of 10{sup 13} cm Hz{sup 1/2}/W, and fast response time of 30 μs. Our study reveals that vertical stacking of 2D materials has great potentialmore » for multifunctional electronic and optoelectronic device applications in the future.« less
Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruverman, Alexei; Tsymbal, Evgeny Y.; Eom, Chang-Beom
2017-05-03
This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less
A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell
NASA Astrophysics Data System (ADS)
Zhang, Zhitao; Guo, Kunping; Li, Yiming; Li, Xueyi; Guan, Guozhen; Li, Houpu; Luo, Yongfeng; Zhao, Fangyuan; Zhang, Qi; Wei, Bin; Pei, Qibing; Peng, Huisheng
2015-04-01
The emergence of wearable electronics and optoelectronics requires the development of devices that are not only highly flexible but can also be woven into textiles to offer a truly integrated solution. Here, we report a colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell (PLEC). The fibre-shaped PLEC is fabricated using all-solution-based processes that can be scaled up for practical applications. The design has a coaxial structure comprising a modified metal wire cathode and a conducting aligned carbon nanotube sheet anode, with an electroluminescent polymer layer sandwiched between them. The fibre shape offers unique and promising advantages. For example, the luminance is independent of viewing angle, the fibre-shaped PLEC can provide a variety of different and tunable colours, it is lightweight, flexible and wearable, and it can potentially be woven into light-emitting clothes for the creation of smart fabrics.
A single-stage optical load-balanced switch for data centers.
Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying
2012-10-22
Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.
Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng
2015-12-21
The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.
Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer
NASA Astrophysics Data System (ADS)
Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong
2018-03-01
Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.
Feasibility Studies of Parametric X-rays Use in a Medical Environment
NASA Astrophysics Data System (ADS)
Sones, Bryndol; Danon, Yaron; Blain, Ezekiel
2009-03-01
Parametric X-rays (PXR) are produced from the interaction of relativistic electrons with the periodic structure of crystal materials. Smooth X-ray energy tunability is achieved by rotating the crystal with respects to the electron beam direction. Experiments at the Rensselaer Polytechnic Institute 60-MeV LINAC produce quasi-monochromatic X-rays (6-35 keV) from various target crystals to include highly oriented pyrolytic graphite (HOPG), LiF, Si, Ge, Cu, and W using electron beam currents up to 6 uA. These experiments demonstrate the first PXR images and some of the merits of thin metallic crystals. Recent experiments with a 100-μm thick Cu crystal improve the Cu PXR (with energy ˜12 keV) to Cu fluorescence ratio by a factor of 20 compared to a 1 mm-thick Cu crystal. This study uses Monte Carlo techniques to investigate (1) PXR dose compared to emissions from simulated Mo, Rh, and W anodes for mammography applications and (2) electron scattering effects when considering LiF111, Si111, and Cu111 PXR production using electron beams with energies of 20-30 MeV. Advantages in using monochromatic PXR compared to X-rays from Mo and Rh anodes in mammography applications result in a dose per incident photon reduction by a factor of 2. Using 20 MeV electrons, the thinner Cu111 crystal for 15 keV PXR production results in an electron scattering angle of 30.7+/-0.2 mrad offering the best potential for PXR from lower energy electrons.
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics
NASA Astrophysics Data System (ADS)
Lee, Che-Hui; Orloff, Nathan D.; Birol, Turan; Zhu, Ye; Goian, Veronica; Rocas, Eduard; Haislmaier, Ryan; Vlahos, Eftihia; Mundy, Julia A.; Kourkoutis, Lena F.; Nie, Yuefeng; Biegalski, Michael D.; Zhang, Jingshu; Bernhagen, Margitta; Benedek, Nicole A.; Kim, Yongsam; Brock, Joel D.; Uecker, Reinhard; Xi, X. X.; Gopalan, Venkatraman; Nuzhnyy, Dmitry; Kamba, Stanislav; Muller, David A.; Takeuchi, Ichiro; Booth, James C.; Fennie, Craig J.; Schlom, Darrell G.
2013-10-01
The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 125GHz. In contrast to traditional methods of modifying ferroelectrics--doping or strain--in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.
NASA Astrophysics Data System (ADS)
Hemsing, Erik Willard
The object of this work is to examine how coherent light that carries orbital angular momentum (OAM) can be generated and amplified in a single pass, high-gain free-electron laser (FEL) at the fundamental operating frequency. This concept unites two rapidly expanding, but at present largely non-overlapping fields of study: high-order OAM light modes, which interact in new ways with matter, and FELs, in which a relativistically energetic electron beam emits coherent, ultra high-brightness, highly frequency-tunable light. The ability to generate OAM light in an FEL enables new regimes of laser interaction physics to be explored at wavelengths down to hard x-rays. The theoretical portion of this dissertation attempts to provide a new predictive mathematical framework. It builds on existing work, and describes the three-dimensional electromagnetic field of the high-gain FEL as a sum of OAM modes such that the amplification properties of individual modes can be characterized. The effects of uncorrelated energy spread, longitudinal space charge, energy detuning, and transverse emittance in the electron beam are included, as is the diffraction of the laser light. Theoretical predictions are corroborated by detailed numerical Genesis 1.3 simulations. When the theory is extended to frequency harmonics, a novel interaction is uncovered that generates a helical electron beam density distribution. These predictions are also supported by numerical Tredi simulations. This type of highly correlated structure is shown to naturally emit OAM light, and forms the basis of a new high-gain, high-mode generation (HGHMG) scheme proposed in its entirety here. The experimental section examines the helical microbunching concept in a proof-of-principle experiment dubbed HELIX, performed at the UCLA Neptune laboratory. We present detailed measurement of the coherent transition radiation emitted by the 12.5 MeV electron beam that is microbunched in a second harmonic interaction with an input laser and helical undulator. The predicted dependence of the CTR signal on the input laser polarization is observed, and is consistent with microbunching that has a periodicity near the 10.6 mum wavelength of the 30 MW CO2 laser pulse. Scans of the interaction energy bandwidth are consistent with predictions that indicate a dominant azimuthal density mode with a bunching factor of 10%, and thus provide indication of the first experimental evidence of helical microbunching. This result offers support for future successful realization of the proposed HGHMG scheme to generate OAM modes in high-gain FELs.
Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity
NASA Astrophysics Data System (ADS)
Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.
2018-05-01
Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.
Pan, Xiaoyong; Chen, Hui; Wang, Wei Zhi; Ng, Siu Choon; Chan-Park, Mary B
2011-07-21
This paper explores evidence of an optically mediated interaction that is active in the separation mechanism of certain selective agents through consideration of the contrasting selective behaviors of two conjugated polymers with distinct optical properties. The involvement of a RET-induced intermolecular pairing force is implied by the different illumination response behaviors. The magnitude of this interaction scales with the external stimulus parameter, the illumination irradiance (I), and thus is tunable. This suggests a facile technique to modify the selectivity of polymers toward specific SWNT species by altering the polymer structure to adjust the corresponding intermolecular interaction. This is the first experimental verification and application of a RET-induced intermolecular pairing force to SWNT separation. With this kind of interaction taken into account, reasonable interpretation of some conflicting data, especially PLE maps, can be easily made. The above conclusion can be applied to other substances as long as they are electrically neutral and there is photon-induced RET between them. The significant magnitude of this interaction makes direct manipulation of molecules/particles possible and is expected to have applications in molecular engineering. © 2011 American Chemical Society
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang; ...
2015-11-13
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz
NASA Technical Reports Server (NTRS)
Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.
2011-01-01
A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.
Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium
NASA Astrophysics Data System (ADS)
Sigillito, Anthony James
Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a single-phonon T1 process. At lower frequencies or lower temperatures the qubit coherence times should substantially increase. Finally, we measure the electric field tunability of donors in germanium and find a four order-of-magnitude enhancement in the spin-orbit Stark shift and confirm that the donors should be tunable by at least 4 times the electron spin ensemble linewidth (in isotopically enriched material). Germanium should therefore also be more sensitive to electrically driven nuclear magnetic resonance. Based on these results germanium is a promising alternative to silicon for spin qubits.
Voltage tunable two-color superlattice infrared photodetectors
NASA Astrophysics Data System (ADS)
Majumdar, Amlan; Choi, Kwong-Kit; Reno, John L.; Tsui, Daniel C.
2004-11-01
We present the design and fabrication of voltage tunable two-color superlattice infrared photodetectors (SLIPs), where the detection wavelength switches from the long-wavelength infrared (LWIR) range to the mid-wavelength infrared (MWIR) range upon reversing the polarity of applied bias. The photoactive region of these detectors contains multiple periods of two distinct short-period SLs that are designed for MWIR and LWIR detection. The voltage tunable operation is achieved by using two types of thick blocking barriers between adjacent SLs - undoped barriers on one side for low energy electrons and heavily-doped layers on the other side for high energy electrons. We grew two SLIP structures by molecular beam epitaxy. The first one consists of two AlGaAs/GaAs SLs with the detection range switching from the 7-11 μm band to the 4-7 μm range on reversing the bias polarity. The background-limited temperature is 55 and 80 K for LWIR and MWIR detection, respectively. The second structure comprises of strained InGaAs/GaAs/AlGaAs SLs and AlGaAs/GaAs SLs. The detection range of this SLIP changes from the 8-12 μm band to the 3-5 μm band on switching the bias polarity. The background-limited temperature is 70 and 110 K for LWIR and MWIR detection, respectively. This SLIP is the first ever voltage tunable MWIR/LWIR detector with performance comparable to those of one-color quantum-well infrared detectors designed for the respective wavelength ranges. We also demonstrate that the corrugated light coupling scheme, which enables normal-incidence absorption, is suitable for the two-color SLIPs. Since these SLIPs are two-terminal devices, they can be used with the corrugated geometry for the production of low-cost large-area two-color focal plane arrays.
METHODOLOGICAL NOTES: Integrating magnetism into semiconductor electronics
NASA Astrophysics Data System (ADS)
Zakharchenya, Boris P.; Korenev, Vladimir L.
2005-06-01
The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor—making the hybrid an electronic-write-in and electronic-read-out elementary storage unit.
1993-09-01
AD-A271 756 ARMY RESEARCH LABORATORY Investigation of the Effect of Various Oxide and Flouride Additives on the Microstructure, Electronic Properties ...NUMBERS Investigation of the Effect of Various Oxide and Fluoride Additives on the Microstructure, Electronic Properties , and Phase Shifting Ability of...dielectric properties . tunability. hysteresis. and grain size have been investigated. The homogeneity of the doped materials has been verified using
Han, Chuang; Quan, Quan; Chen, Hao Ming; Sun, Yugang; Xu, Yi-Jun
2017-04-01
Surface plasmon resonance (SPR)-mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar-to-chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible-to-near infrared light (vis-NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis-NIR-driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal-semiconductor-based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad-spectrum solar energy conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaria, P. C., E-mail: parth.kalaria@partner.kit.edu; Avramidis, K. A.; Franck, J.
High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power withmore » an interaction efficiency of 36% including the considerations of realistic beam parameters.« less
Localized surface plasmons in vibrating graphene nanodisks
NASA Astrophysics Data System (ADS)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik; Mortensen, N. Asger; Christensen, Johan
2016-02-01
Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.
NASA Astrophysics Data System (ADS)
Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira
2016-07-01
We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.
Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors.
Jeon, Jun-Young; Ha, Tae-Jun
2016-02-03
We demonstrate high-performance wearable electronic-bandage (E-bandage) based on carbon nanotube (CNT)/silver nanoparticle (AgNP) composites covered with flexible media of fluoropolymer-coated polydimethylsiloxane (PDMS) films. The E-bandage can be used for motion-related sensors by directly attaching them to human skin, which achieves a fast and accurate electric response with high sensitivity according to the bending and stretching movements that induce changes in the conductivity. This advance in the E-bandage is realized as a result of the sensitivity that can be achieved by controlling the concentration of AgNPs in CNT pastes and by modifying the device architecture. The fluoropolymer encapsulation with hydrophobic surface characteristics allows for the E-bandage to operate in water and protects it from physical and chemical contact with the daily life conditions of the human skin. The reliability and scalability of the E-bandage as well as the compatibility with conventional microfabrication allow new possibilities to integrate flexible human-interactive nanoelectronics into mobile health-care monitoring systems combined with Internet of things (IoTs).
Self-assembled nanocages based on the coiled coil bundle motif
NASA Astrophysics Data System (ADS)
Sinha, Nairiti; Villegas, Jose; Saven, Jeffery; Kiick, Kristi; Pochan, Darrin
Computational design of coiled coil peptide bundles that undergo solution phase self-assembly presents a diverse toolbox for engineering new materials with tunable and pre-determined nanostructures that can have various end applications such as in drug delivery, biomineralization and electronics. Self-assembled cages are especially advantageous as the cage geometry provides three distinct functional sites: the interior, the exterior and the solvent-cage interface. In this poster, syntheses and characterization of a peptide cage based on computationally designed homotetrameric coiled coil bundles as building blocks is discussed. Techniques such as Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS) and Analytical Ultracentrifugation (AUC) are employed to characterize the size, shape and molecular weight of the self-assembled peptide cages under different pH and temperature conditions. Various self-assembly pathways such as dialysis and thermal quenching are shown to have a significant impact on the final structure of these peptides in solution. Comparison of results with the target cage design can be used to iteratively improve the peptide design and provide greater understanding of its interactions and folding.
Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.
2015-01-01
In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005
Schacht, Julia; Gaston, Nicola
2016-10-18
The electronic properties of doped thiolate-protected gold clusters are often referred to as tunable, but their study to date, conducted at different levels of theory, does not allow a systematic evaluation of this claim. Here, using density functional theory, the applicability of the superatomic model to these clusters is critically evaluated, and related to the degree of structural distortion and electronic inhomogeneity in the differently doped clusters, with dopant atoms Pd, Pt, Cu, and Ag. The effect of electron number is systematically evaluated by varying the charge on the overall cluster, and the nominal number of delocalized electrons, employed in the superatomic model, is compared to the numbers obtained from Bader analysis of individual atomic charges. We find that the superatomic model is highly applicable to all of these clusters, and is able to predict and explain the changing electronic structure as a function of charge. However, significant perturbations of the model arise due to doping, due to distortions of the core structure of the Au 13 [RS(AuSR) 2 ] 6 - cluster. In addition, analysis of the electronic structure indicates that the superatomic character is distributed further across the ligand shell in the case of the doped clusters, which may have implications for the self-assembly of these clusters into materials. The prediction of appropriate clusters for such superatomic solids relies critically on such quantitative analysis of the tunability of the electronic structure. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sivakumar, V.; Ponnamma, Deepalekshmi; Hussein, Yasser H. A.
2017-02-01
Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQT) but not the triplets AQT or AQST. However in aqueous medium, AN quenches AQST and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQT or AQST while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications.
Tunable strength saddle-point contacts impact on quantum rings transmission
NASA Astrophysics Data System (ADS)
González, J. J.; Diago-Cisneros, L.
2016-09-01
A particular subject of investigation is the role of several sadle-point contact (QPC) parameters on the scattering properties of an Aharonov-Bohm-Aharonov-Casher quantum ring (QR) under Rashba-type spin orbit interaction. We discuss the interplay of the conductance with the confinement strengths and height of the QPC, which yields new and tunable harmonic and non-harmonics patterns, while one manipulates these constriction parameters. This phenomenology may be of utility to implement a novel way to modulate spin interference effects in semiconducting QRs, providing an appealing test-platform for spintronics applications.
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor)
2013-01-01
The present invention provides frequency tunable solid-state radiation-generating devices, such as lasers and amplifiers, whose active medium has a size in at least one transverse dimension (e.g., its width) that is much smaller than the wavelength of radiation generated and/or amplified within the active medium. In such devices, a fraction of radiation travels as an evanescent propagating mode outside the active medium. It has been discovered that in such devices the radiation frequency can be tuned by the interaction of a tuning mechanism with the propagating evanescent mode.
Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.
pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.
Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties
NASA Astrophysics Data System (ADS)
Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Mankad, Ravin; Haight, Richard; Mitzi, David B.; Gunawan, Oki; Gordon, Roy G.
2014-11-01
Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 1019 to 1020 cm-3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 1019 to 1014 cm-3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.
Tunable resonances due to vacancies in graphene nanoribbons
NASA Astrophysics Data System (ADS)
Bahamon, D. A.; Pereira, A. L. C.; Schulz, P. A.
2010-10-01
The coherent electron transport along zigzag and metallic armchair graphene nanoribbons in the presence of one or two vacancies is investigated. Having in mind atomic scale tunability of the conductance fingerprints, the primary focus is on the effect of the distance to the edges and intervacancies spacing. An involved interplay of vacancies sublattice location and nanoribbon edge termination, together with the spacing parameters lead to a wide conductance resonance line-shape modification. Turning on a magnetic field introduces a new length scale that unveils counterintuitive aspects of the interplay between purely geometric aspects of the system and the underlying atomic scale nature of graphene.
Out-of-Plane Designed Soft Metasurface for Tunable Surface Plasmon Polariton.
Liu, Xin; Huang, Zhao; Zhu, Chengkai; Wang, Li; Zang, Jianfeng
2018-02-14
Reliable and repeatable tunability gives functional diversity for reconfigurable plasmonics devices, while reversible and large mechanical deformation enabled by soft materials provides a new way for the global or partial regulation of metadevices. Here, we demonstrate a soft metasurface with an out-of-plane design for tuning the energy of surface plasmon polaritons (SPPs) bloch wave using theory, simulation, and experiments. Our metasurface is composed of two-layered gold nanoribbon arrays (2GNRs) on a soft substrate. The out-of-plane coupling mechanism is systematically analyzed in terms of separation height effect. Moreover, by harnessing mechanical deformation, continuously tunable plasmonic resonance has been achieved in the visible and near-infrared ranges. We further studied the angle-dependent reflection spectra of our metastructure. Compared with its planar counterpart, our soft and two-layered metastructure exhibits diverse tunability and significant field enhancement by out-of-plane interactions. Our approach in designing soft metasurface with out-of-plane structures can be extended to more-complex photonic devices and finds prominent applications such as biosensing, high-density plasmonic circuits, surface-enhanced luminescence, and surface-enhanced Raman scattering.
Interaction and Correlation Effects in Quasi Two-dimensional Materials
NASA Astrophysics Data System (ADS)
Louie, Steven G.
2015-03-01
Experimental and theoretical studies of atomically thin quasi two-dimensional materials (typically related to some parent van der Waals layered crystals) and their nanostructures have revealed that these systems can exhibit highly unusual behaviors. In this talk, we discuss some theoretical studies of the electronic, transport and optical properties of such systems. We present results on graphene and graphene nanostructures as well as other quasi-2D systems such as monolayer and few-layer transition metal dichalcogenides (e.g., MoS2, MoSe2, WS2, and WSe2) and metal monochalcogenides (such as GaSe and FeSe). Owing to their reduced dimensionality, these systems present opportunities for unusual manifestation of concepts and phenomena that may not be so prominent or have not been seen in bulk materials. Symmetry and many-body interaction effects often play a critical role in shaping qualitatively and quantitatively their properties. Several quantum phenomena are discussed, including novel and dominant exciton effects, tunable magnetism, electron supercollimation by disorder, unusual plasmon behaviors, and possible enhanced superconductivity in some of these systems. We investigate their physical origins and compare theoretical predictions with experimental data. This work was supported by DOE under Contract No. DE-AC02-05CH11231 and by NSF under Grant No. DMR10-1006184. I would like to acknowledge collaborations with members of the Louie group and the experimental groups of Crommie, Heinz, Wang, and Zhang.
NASA Astrophysics Data System (ADS)
Zheng, Z. D.; Wang, X. C.; Mi, W. B.
2017-10-01
The electronic structure of the strained g-C2N/XSe2 (X=Mo, W) van der Waals heterostructures are investigated by first-principles calculations. The g-C2N/MoSe2 heterostructure is an indirect band gap semiconductor at a strain from 0% to 8%, where its band gap is 0.66, 0.61, 0.73, 0.60 and 0.33 eV. At K point, the spin splitting is 186, 181, 39, 13 and 9 meV, respectively. For g-C2N/WSe2 heterostructures, the band gap is 0.32, 0.37, 0.42, 0.45 and 0.36 eV, and the conduction band minimum is shifted from Г-M region to K-Г region as the strain increases from 0% to 8%. Its spin splitting monotonically decreases as a strain raises to 8%, which is 445, 424, 261, 111 and 96 meV, respectively. Moreover, at a strain less than 4%, the conduction band mainly comes from g-C2N, but it comes from XSe2 (X=Mo, W) above 6%. Our results show that the g-C2N/XSe2 heterostructures have tunable electronic structures, which makes it a potential candidate for novel electronic devices.
Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED
NASA Astrophysics Data System (ADS)
Vaidya, Varun D.; Guo, Yudan; Kroeze, Ronen M.; Ballantine, Kyle E.; Kollár, Alicia J.; Keeling, Jonathan; Lev, Benjamin L.
2018-01-01
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
NASA Astrophysics Data System (ADS)
Forn-Díaz, P.; García-Ripoll, J. J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M. A.; Belyansky, R.; Wilson, C. M.; Lupascu, A.
2017-01-01
The study of light-matter interaction has led to important advances in quantum optics and enabled numerous technologies. Over recent decades, progress has been made in increasing the strength of this interaction at the single-photon level. More recently, a major achievement has been the demonstration of the so-called strong coupling regime, a key advancement enabling progress in quantum information science. Here, we demonstrate light-matter interaction over an order of magnitude stronger than previously reported, reaching the nonperturbative regime of ultrastrong coupling (USC). We achieve this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of a one-dimensional waveguide. For the largest coupling, the spontaneous emission rate of the atom exceeds its transition frequency. In this USC regime, the description of atom and light as distinct entities breaks down, and a new description in terms of hybrid states is required. Beyond light-matter interaction itself, the tunability of our system makes it a promising tool to study a number of important physical systems, such as the well-known spin-boson and Kondo models.
A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia
A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less
A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy
Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia; ...
2017-09-01
A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less
Control of terahertz nonlinear transmission with electrically gated graphene metadevices.
Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U K; Hess, Ortwin; Rotermund, Fabian; Min, Bumki
2017-02-20
Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.
Coherent optical excitations in superconducting qubit chain
NASA Astrophysics Data System (ADS)
Ian, Hou; Liu, Yu-Xi
2012-06-01
In the recent years, the theories of quantum optics have been borrowed to study the flows of electron pairs and their interactions with the circuit photon in the superconducting qubit circuits. These studies bring about new theories of quantum optics, such as the tunable electromagnetically induced transparency effect, peculiar to the Cooper pairs in circuits. In this talk, we focus on a special type of superconducting qubit circuits: superconducting qubit chain (SQC), which comprises dozens of qubits linearly placed along a stripline resonator. Since the dimensions of the qubits and the stripline have made their interactions inhomogeneous, the SQC cannot be diagonalized using the usual Dicke model. We present a new theoretical method, the deformation-projection method, for the exact diagonalization of the collective excitations of the qubits. This method allows us to predict that these excitations emulate the behaviors of Wannier and Frenckel excitons in the solid-state systems. The spontaneous emissions from the individual qubits in SQC are relayed to their neighbors, eventually arriving at a coherent emission, known as superradiance. We present a quantum relay model, which is crucial to quantum information processing, based on this finding.
An integrated tunable isolator based on NiZn film fabricated by spin-spray plating
NASA Astrophysics Data System (ADS)
Guo, Rongdi; Lin, Hwaider; Shi, Wei; Gao, Yuan; Wang, Zhiguang; Sun, Nian Xiang; Yu, Zhong; Lan, Zhongwen
2018-05-01
An innovative type of tunable isolator with a planar comb-like microstrip transmission line, which generate circular polarization magnetic field, has been realized with polycrystalline NiZn ferrite thick films fabricated by spin-spray plating (SSP) process with thickness of 10μm. The phase compositions, microstructure, magnetic hysteresis loop, and ferromagnetic resonance (FMR) linewidth of NiZn ferrite thick films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and electron spin resonance (ESR) spectrometer, respectively. The NiZn ferrite thick films possess 4800Gauss saturation magnetization and 190Oe FMR linewidth measured at X-band. With an in-plane dc magnetic bias perpendicular to the comb-like microstrip transmission line, the transmission direction of left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) were proved to be opposite. The non-reciprocal ferromagnetic resonance absorption leads to 11.6dB isolation and 5.78dB insertion loss at 17.57GHz with magnetic bias field of 3.5kOe. Furthermore, with external in-plane magnetic fields range from 0.5kOe to 3.5kOe, the central frequency was tuned from 5.63GHz to 17.57GHz. The state-of-the-art tunable isolator with a planar comb-like microstrip transmission line exhibit a great potential to be applied in different microwave components and radar system.
Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei
2014-01-01
Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs. PMID:24969065
Combination free electron and gaseous laser
Brau, Charles A.; Rockwood, Stephen D.; Stein, William E.
1980-01-01
A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.
Generation of double pulses at the Shanghai soft X-ray free electron laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Feng, Chao; Gu, Qiang
2017-01-28
In this paper, we present the promise of a new method generating double electron pulses with the picosecond-scale pulse length and the tunable interpulse spacing at several picoseconds, which has been witnessed an impressive potential of application in pump-probe techniques, two-color X-ray free electron laser (FEL), high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in the linear accelerator. Some comparisons have been made between the new method and the existing ways as well.
NASA Astrophysics Data System (ADS)
Hilou, Elaa; Du, Di; Kuei, Steve; Biswal, Sibani Lisa
2018-02-01
Interfacial characteristics are critical to various properties of two-dimensional (2D) materials such as band alignment at a heterojunction and nucleation kinetics in a 2D crystal. Despite the desire to harness these enhanced interfacial properties for engineering new materials, unexpected phase transitions and defects, unique to the 2D morphology, have left a number of open questions. In particular, the effects of configurational anisotropy, which are difficult to isolate experimentally, and their influence on interfacial properties are not well understood. In this work, we begin to probe this structure-thermodynamic relationship, using a rotating magnetic field to generate an anharmonic interaction potential in a 2D system of paramagnetic particles. At low magnetic field strengths, weakly interacting colloidal particles form non-close-packed, fluidlike droplets, whereas, at higher field strengths, crystallites with hexagonal ordering are observed. We examine spatial and interfacial properties of these 2D colloidal clusters by measuring the local bond orientation order parameter and interfacial stiffness as a function of the interaction strength. To our knowledge, this is the first study to measure the tunable interfacial stiffness of a 2D colloidal cluster by controlling particle interactions using external fields.
Chemically Tunable 2D Materials
new opto-electronic silicon based 2D materials, (ii) new material coatings that can change color from transparent to blue chemically or with heat, and...conduction and transparency . Activities are integrated with in-situ fundamental investigation to synergistically develop a complete understanding in materials research.
Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films
NASA Astrophysics Data System (ADS)
Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao
2018-02-01
The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert
2008-02-19
Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.
A guide to the design of electronic properties of graphene nanoribbons.
Yazyev, Oleg V
2013-10-15
Graphene nanoribbons (GNRs) are one-dimensional nanostructures predicted to display a rich variety of electronic behaviors. Depending on their structure, GNRs realize metallic and semiconducting electronic structures with band gaps that can be tuned across broad ranges. Certain GNRs also exhibit a peculiar gapped magnetic phase for which the half-metallic state can be induced as well as the topologically nontrivial quantum spin Hall electronic phase. Because their electronic properties are highly tunable, GNRs have quickly become a popular subject of research toward the design of graphene-based nanostructures for technological applications. This Account presents a pedagogical overview of the various degrees of freedom in the atomic structure and interactions that researchers can use to tailor the electronic structure of these materials. The Account provides a broad picture of relevant physical concepts that would facilitate the rational design of GNRs with desired electronic properties through synthetic techniques. We start by discussing a generic model of zigzag GNR within the tight-binding model framework. We then explain how different modifications and extensions of the basic model affect the electronic band structures of GNRs. We classify the modifications based on the following categories: (1) electron-electron and spin-orbit interactions, (2) GNR configuration, which includes width and the crystallographic orientation of the nanoribbon (chirality), and (3) the local structure of the edge. We subdivide this last category into two groups: the effects of the termination of the π-electron system and the variations of electrostatic potential at the edge. This overview of the structure-property relationships provides a view of the many different electronic properties that GNRs can realize. The second part of this Account reviews three recent experimental methods for the synthesis of structurally well-defined GNRs. We describe a family of techniques that use patterning and etching of graphene and graphite to produce GNRs. Chemical unzipping of carbon nanotubes also provides a route toward producing chiral GNRs with atomically smooth edges. Scanning tunneling microscopy/spectroscopy investigations of these unzipped GNRs have revealed edge states and strongly suggest that these GNRs are magnetic. The third approach exploits the surface-assisted self-assembly of GNRs from molecular precursors. This powerful method can provide full control over the atomic structure of narrow nanoribbons and could eventually produce more complex graphene nanostructures.
Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain
NASA Astrophysics Data System (ADS)
Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.
2018-05-01
First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.
Coherent properties of a tunable low-energy electron-matter-wave source
NASA Astrophysics Data System (ADS)
Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.
2018-01-01
A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.
Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te
NASA Technical Reports Server (NTRS)
Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.
1997-01-01
Transition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-01-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10−15/1 s and 2.2 × 10−18/10000 s. PMID:24336459
Graphene-Based Flexible and Transparent Tunable Capacitors.
Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen
2015-12-01
We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By transferring another graphene layer, we fabricated flexible and transparent capacitors with the structure of graphene-BMN-graphene. The capacitors show a large dielectric constant of 113 with high dielectric tunability of ~40.7 % at a bias field of 1.0 MV/cm. Also, the capacitor can work stably in the high bending condition with curvature radii as low as 10 mm. This flexible film capacitor has a high optical transparency of ~90 % in the visible light region, demonstrating their potential application for a wide range of flexible electronic devices.
Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G
2016-01-27
Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.
NASA Astrophysics Data System (ADS)
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-12-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.
Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.
2015-01-01
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175
Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.
Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng
2011-11-09
The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.
Tunable Physical Properties of Ethylcellulose/Gelatin Composite Nanofibers by Electrospinning.
Liu, Yuyu; Deng, Lingli; Zhang, Cen; Feng, Fengqin; Zhang, Hui
2018-02-28
In this work, the ethylcellulose/gelatin blends at various weight ratios in water/ethanol/acetic acid solution were electrospun to fabricate nanofibers with tunable physical properties. The solution compatibility was predicted based on Hansen solubility parameters and evaluated by rheological measurements. The physical properties were characterized by scanning electron microscopy, porosity, differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, and water contact angle. Results showed that the entangled structures among ethylcellulose and gelatin chains through hydrogen bonds gave rise to a fine morphology of the composite fibers with improved thermal stability. The fibers with higher gelatin ratio (75%), possessed hydrophilic surface (water contact angle of 53.5°), and adequate water uptake ability (1234.14%), while the fibers with higher ethylcellulose proportion (75%) tended to be highly water stable with a hydrophobic surface (water contact angle of 129.7°). This work suggested that the composite ethylcellulose/gelatin nanofibers with tunable physical properties have potentials as materials for bioactive encapsulation, food packaging, and filtration applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing
We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less
The nonlinear wave equation for higher harmonics in free-electron lasers
NASA Technical Reports Server (NTRS)
Colson, W. B.
1981-01-01
The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.
Rydberg wave packets in static electric fields initiated with far infrared pulses
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Lankhuijzen, G. M.; Rella, C.; Noordam, L. D.
1998-05-01
We perform experimental and theoretical studies of transitions from bound atomic Rydberg Stark states in a static electric field to autoionizing states. The transitions are induced by a broadband, tunable free electron laser pulse (1-5 ps width). The systematics of the wave packet properties are investigated when the initial state is the lowest energy state or highest energy state of the n-manifold. We show that the recently proposed electron gun is realized for Rb giving an AC electron current with a 20 ps period.
Electronically controllable spoof localized surface plasmons
NASA Astrophysics Data System (ADS)
Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian
2017-10-01
Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.
Plasmons driven by single electrons in graphene nanoislands
NASA Astrophysics Data System (ADS)
Manjavacas, Alejandro; Thongrattanasiri, Sukosin; de Abajo, F. Javier García
2013-04-01
Plasmons produce large confinement and enhancement of light that enable applications as varied as cancer therapy and catalysis. Adding to these appealing properties, graphene has emerged as a robust, electrically tunable material exhibiting plasmons that strongly depend on the density of doping charges. Here we show that adding a single electron to a graphene nanoisland consisting of hundreds or thousands of atoms switches on infrared plasmons that were previously absent from the uncharged structure. Remarkably, the addition of each further electron produces a dramatic frequency shift. Plasmons in these islands are shown to be tunable down to near infrared wavelengths. These phenomena are highly sensitive to carbon edges. Specifically, armchair nanotriangles display sharp plasmons that are associated with intense near-field enhancement, as well as absorption cross-sections exceeding the geometrical area occupied by the graphene. In contrast, zigzag triangles do not support these plasmons. Our conclusions rely on realistic quantum-mechanical calculations, which are in ostensible disagreement with classical electromagnetic simulations, thus revealing the quantum nature of the plasmons. This study shows a high sensitivity of graphene nanoislands to elementary charges, therefore emphasizing their great potential for novel nano-optoelectronics applications.
Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation
NASA Astrophysics Data System (ADS)
Jayalakshmi, G.; Saravanan, K.; Panigrahi, B. K.; Sundaravel, B.; Gupta, Mukul
2018-05-01
The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar+-ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2-hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar+-ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.
Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation.
Jayalakshmi, G; Saravanan, K; Panigrahi, B K; Sundaravel, B; Gupta, Mukul
2018-05-04
The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar + -ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2 -hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar + -ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko
2011-09-01
We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.
FEL-FTIR spectroscopy of matrix-isolated formic acid
NASA Astrophysics Data System (ADS)
Henderson, Don O.; Mu, Richard; Silberman, Enrique; Berryman, Kenneth W.; Rella, Chris W.
1994-07-01
Infrared spectral hole burning studies have provided a wealth of information concerning site reorientation of defects in solids and vibrational relaxation dynamics. The most investigated systems appear to be impurities trapped in alkali halides. Limited studies on molecules trapped in noble gas matrices have demonstrated that these systems are good candidates for investigating persistent spectral holes. However, most infrared spectral hole burning studies have been limited by the tunability of commercially available infrared lasers which in turn restricts the spectral feature which can be burned. On the other hand, the tunability of Infrared Free Electron Lasers (IR-FELs) allows for targeting radiation into vibrational of the molecular system under study. We have used the Free Electron Laser-Fourier Transform Infrared Spectroscopy to investigate infrared hole burning of formic acid (HCOOD) isolated in an Ar matrix at a matrix/sample ratio of 4000/1. The results of the FEL radiation tuned to v2 mode of HCOOD are discussed together with matrix induced frequency shifts and matrix induced band splittings.
Optically Tunable Resistive-Switching Memory in Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zheng, Ming; Ni, Hao; Xu, Xiaoke; Qi, Yaping; Li, Xiaomin; Gao, Ju
2018-04-01
Electronic phase separation has been used to realize exotic functionalities in complex oxides with external stimuli, such as magnetic field, electric field, current, light, strain, etc. Using the Nd0.7Sr0.3MnO3/0.7 Pb (Mg1 /3Nb2 /3)O3-0 .3 PbTiO3 multiferroic heterostructure as a model system, we investigate the electric field and light cocontrol of phase separation in resistive switching. The electric-field-induced nonvolatile electroresistance response is achieved at room temperature using reversible ferroelastic domain switching, which can be robustly modified on illumination of light. Moreover, the electrically controlled ferroelastic strain can effectively enhance the visible-light-induced photoresistance effect. These findings demonstrate that the electric-field- and light-induced effects strongly correlate with each other and are essentially driven by electronic phase separation. Our work opens a gate to design electrically tunable multifunctional storage devices based on multiferroic heterostructures by adding light as an extra control parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, SL; Zhang, YB; Pun, AB
2014-09-16
Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagneticmore » resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.« less
σ–π-Band Inversion in a Novel Two-Dimensional Material
Lopez-Bezanilla, Alejandro; Littlewood, Peter B.
2015-07-24
In this paper, we present a theoretical study of a new type of two-dimensional material exhibiting a pentagonal arrangement of C and Si atoms. Pentagonal SiC 2 is investigated with density functional theory-based calculations to show that the buckled nanostructure is dynamically stable, and exhibits an indirect energy band gap and an enhanced electronic dispersion with respect to the all-carbon counterpart. Computed Born effective charges exhibit a significant anisotropy for C and Si atoms that deviates substantially from their static effective charges. We establish an accurate tunability of the vertical location of the p-p-σ and p-p-π bands and show thatmore » under compressive biaxial strain the density of states decreases, and conversely for tensile biaxial strain. Finally, this coupling between the tunability of strain-mediated density of states and semiconducting properties in a monolayered structure may allow for the development of applications in semiconducting stretchable electronics.« less
Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...
2015-08-06
Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less
Free-electron laser simulations on the MPP
NASA Technical Reports Server (NTRS)
Vonlaven, Scott A.; Liebrock, Lorie M.
1987-01-01
Free electron lasers (FELs) are of interest because they provide high power, high efficiency, and broad tunability. FEL simulations can make efficient use of computers of the Massively Parallel Processor (MPP) class because most of the processing consists of applying a simple equation to a set of identical particles. A test version of the KMS Fusion FEL simulation, which resides mainly in the MPPs host computer and only partially in the MPP, has run successfully.
Nanocellulose as Material Building Block for Energy and Flexible Electronics
NASA Astrophysics Data System (ADS)
Hu, Liangbing
2014-03-01
In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.
Versatile spin-polarized electron source
Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra
2015-09-22
One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.
Accuracy optimization with wavelength tunability in overlay imaging technology
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Kang, Yoonshik; Han, Sangjoon; Shim, Kyuchan; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, Dongyoung; Oh, Eungryong; Choi, Ahlin; Kim, Youngsik; Marciano, Tal; Klein, Dana; Hajaj, Eitan M.; Aharon, Sharon; Ben-Dov, Guy; Lilach, Saltoun; Serero, Dan; Golotsvan, Anna
2018-03-01
As semiconductor manufacturing technology progresses and the dimensions of integrated circuit elements shrink, overlay budget is accordingly being reduced. Overlay budget closely approaches the scale of measurement inaccuracies due to both optical imperfections of the measurement system and the interaction of light with geometrical asymmetries of the measured targets. Measurement inaccuracies can no longer be ignored due to their significant effect on the resulting device yield. In this paper we investigate a new approach for imaging based overlay (IBO) measurements by optimizing accuracy rather than contrast precision, including its effect over the total target performance, using wavelength tunable overlay imaging metrology. We present new accuracy metrics based on theoretical development and present their quality in identifying the measurement accuracy when compared to CD-SEM overlay measurements. The paper presents the theoretical considerations and simulation work, as well as measurement data, for which tunability combined with the new accuracy metrics is shown to improve accuracy performance.
NASA Astrophysics Data System (ADS)
Yakovlev, Egor V.; Troshina, Anna V.; Korsakova, Sofia A.; Andronik, Mikhail; Rodionov, Ilya A.; Aliev, Ismail N.; Zaytsev, Kirill I.; Cherkasova, Olga P.; Tuchin, Valery V.; Yurchenko, Stanislav O.
2018-04-01
Colloidal suspensions and tunable self-assembly of colloidal particles attract a great interest in recent years. In this paper, we propose a new setup and technology for studies of self-assembly of colloidal particles, interection of which between themselves is tuned by external rotating electric fields. We reveal wide prospectives of electric field employment for tunable self-assembly, from suspensions of inorganic particles to ensembles of biological cells. These results make enable particle-resolved studies of various collective phenomena and fundamental processes in many-particle systems in equilibrium state and far from it, while the dynamics can be resolved at the level of individual particles using video microscopy. For the first time, we demonstrate that, apart from ability to prepare photonic crystalline films of inorganic silica particles, the tunable self-assembly provides a novel technological way for manipulation with ensembles of biological cells by control of interactions between them.
Reconfigurable nanoscale spin-wave directional coupler
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117
Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai
2016-01-01
Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360
Studies on metal-dielectric plasmonic structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chettiar, Uday K.; Liu, Zhengtong; Thoreson, Mark D.
2010-01-01
The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3Dmore » composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.« less
Superparamagnetic properties of carbon nanotubes filled with NiFe{sub 2}O{sub 4} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stojak Repa, K.; Israel, D.; Phan, M. H., E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu
2015-05-07
Multi walled carbon nanotubes (MWCNTs) were successfully synthesized using custom-made 80 nm pore-size alumina templates, and were uniformly filled with nickel ferrite (NFO) nanoparticles of 7.4 ± 1.7 nm diameter using a novel magnetically assisted capillary action method. X-ray diffraction confirmed the inverse spinel phase for the synthesized NFO. Transmission electron microscopy confirms spherical NFO nanoparticles with an average diameter of 7.4 nm inside MWCNTs. Magnetometry indicates that both NFO and NFO-filled MWCNTs present a blocking temperature around 52 K, with similar superparamagnetic-like behavior, and weak dipolar interactions, giving rise to a super-spin-glass-like behavior at low temperatures. These properties along with the uniformity of sub-100 nm structuresmore » and the possibility of tunable magnetic response in variable diameter carbon nanotubes make them ideal for advanced biomedical and microwave applications.« less
Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai
2016-04-22
Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less
Pannwitz, Andrea; Poirier, Stéphanie; Bélanger-Desmarais, Nicolas; Prescimone, Alessandro; Wenger, Oliver S; Reber, Christian
2018-06-04
Two luminescent heteroleptic Ru II complexes with a 2,2'-biimidazole (biimH 2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH 2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH 2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reconfigurable nanoscale spin-wave directional coupler.
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.
Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wu, Wei; Shi, Bin; Jiang, Xiaojie; Zhang, Ni; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun
2017-08-01
Graphene plasmons provide great opportunities in light-matter interactions benefiting from the extreme confinement and electrical tunability. Structured graphene cavities possess enhanced confinements in 3D and steerable plasmon resonances, potential in applications for sensing and emission control at the nanoscale. Besides graphene boundaries obtained by mask lithography, graphene defects engineered by ion beams have shown efficient plasmon reflections. In this paper, near-field responses of structured graphene achieved by ion beam direct-writing are investigated. Graphene nanoresonators are fabricated easily and precisely with a spatial resolution better than 30 nm. Breathing modes are observed in graphene disks. The amorphous carbons around weaken the response of edge modes in the resonators, but meanwhile render the isolated resonators in-plane electrical connections, where near-fields are proved gate-tunable. The realization of gate-tunable near-fields of graphene 2D resonators opens up tunable near-field couplings with matters. Moreover, graphene nonconcentric rings with engineered near-field confinement distributions are demonstrated, where the quadrupole plasmon modes are excited. Near-field mappings reveal concentrations at the scale of 3.8×10-4λ02 within certain zones which can be engineered. The realization of electrically tunable graphene nanoresonators by ion beam direct-writing is promising for active manipulation of emission and sensing at the nanoscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Xiaoying; Liu, Zhi-bo; Wang, D N
2012-06-15
We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.
Ultrasonic control of terahertz radiation via lattice anharmonicity in LiNbO3
NASA Astrophysics Data System (ADS)
Poolman, R. H.; Ivanov, A. L.; Muljarov, E. A.
2011-06-01
We propose a tunable terahertz (THz) filter using the resonant acousto-optic (RAO) effect. We present a design based on a transverse optical (TO) phonon mediated interaction between a coherent acoustic wave and the THz field in LiNbO3. We predict a tunable range for the filter of up to 4 THz via the variation of the acoustic frequency between 0.1 and 1 GHz. The RAO effect in this case is due to cubic and quartic anharmonicities between TO phonons and the acoustic field. The effect of the interference between the anharmonicities is also discussed.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.
Observation of pendular butterfly Rydberg molecules
Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig
2016-01-01
Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron–perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance. PMID:27703143
Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon
NASA Astrophysics Data System (ADS)
Li, Wan-Ju; Yao, Dao-Xin; Carlson, E. W.
2014-08-01
Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green's Function (NEGF) method and experimental inputs, we predict that the cooling power of such a device can approach the order of kW/cm2, on par with the best known techniques using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.
Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex
NASA Astrophysics Data System (ADS)
Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.
2004-07-01
In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.
Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm.
Steinle, Tobias; Mörz, Florian; Steinmann, Andy; Giessen, Harald
2016-11-01
A highly stable 350 fs laser system with a gap-free tunability from 1.33 to 2.0 μm and 2.13 to 20 μm is demonstrated. Nanojoule-level pulse energy is achieved in the mid-infrared at a 43 MHz repetition rate. The system utilizes a post-amplified fiber-feedback optical parametric oscillator followed by difference frequency generation between the signal and idler. No locking or synchronization electronics are required to achieve outstanding free-running output power and spectral stability of the whole system. Ultra-low intensity noise, close to the pump laser's noise figure, enables shot-noise limited measurements.
Tunable Solid State Lasers and Synthetic Nonlinear Materials
1987-09-23
marketed devices. Several auxilliary pieces of equipment were purchased for use with the FTIR spectrometer. i) The MMR refrigerator was bought in order... Kotler , and H. J. Shaw, Electron. Lett. observed with the offset-locked oscillators. Careful 16,280 (1980). thermal design will permit offset locking of
Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_
NASA Astrophysics Data System (ADS)
Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.
This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.
Pressure-Directed Assembly: Nanostructures Made Easy
NASA Astrophysics Data System (ADS)
Fan, Hongyou
Precise control of structural parameters through nanoscale engineering to improve optical and electronic properties of functional nanomaterials continuously remains an outstanding challenge. Previous work has been conducted largely at ambient pressure and relies on specific chemical or physical interactions such as van der Waals interactions, dipole-dipole interactions, chemical reactions, ligand-receptor interactions, etc. In this presentation, I will introduce a new pressure-directed assembly method that uses mechanical compressive force applied to nanoparticle arrays to induce structural phase transition and to consolidate new nanomaterials with precisely controlled structures and tunable properties. By manipulating nanoparticle coupling through external pressure, instead of through chemistry, a reversible change in their assemblies and properties can be achieved and demonstrated. In addition, over a certain threshold, the external pressure will force these nanoparticles into contact, thereby allowing the formation and consolidation of one- to three-dimensional nanostructures. Through pressure induced nanoparticle assembly, materials engineering and synthesis become remarkably flexible without relying on traditional crystallization process where atoms/ions are locked in a specific crystal structure. Therefore, morphology or architecture can be readily tuned to produce desirable properties for practical applications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Sivakumar, V; Ponnamma, Deepalekshmi; Hussein, Yasser H A
2017-02-15
Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQ T ) but not the triplets AQ T or AQS T . However in aqueous medium, AN quenches AQS T and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQ T or AQS T while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications. Copyright © 2016 Elsevier B.V. All rights reserved.
New course in bioengineering and bioinspired design.
Erickson, Jonathan C
2012-01-01
The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and cross-pollination of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineeringbioengineering.
Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films
NASA Astrophysics Data System (ADS)
Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian
2018-02-01
The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.
Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna
NASA Astrophysics Data System (ADS)
Qin, Yuwei; Xiong, Xiaoyan Y. Z.; Sha, Wei E. I.; Jiang, Li Jun
2018-04-01
The unique gate-voltage dependent optical properties of graphene make it a promising electrically-tunable plasmonic material. In this work, we proposed in situ control of the polarization of nanoantennas by combining plasmonic structures with an electrostatically tunable graphene monolayer. The tunable polarizer is designed based on an asymmetric cross nanoantenna comprising two orthogonal metallic dipoles sharing the same feed gap. Graphene monolayer is deposited on a Si/SiO2 substrate, and inserted beneath the nanoantenna. Our modelling demonstrates that as the chemical potential is incremented up to 1 eV by electrostatic doping, resonant wavelength for the longer graphene-loaded dipole is blue shifted for 500 nm (~10% of the resonance) in the mid-infrared range, whereas the shorter dipole experiences much smaller influences due to the unique wavelength-dependent optical properties of graphene. In this way, the relative field amplitude and phase between the two dipole nanoantennas are electrically adjusted, and the polarization state of the reflected wave can be electrically tuned from the circular into near-linear states with the axial ratio changing over 8 dB. Our study thus confirms the strong light-graphene interaction with metallic nanostructures, and illuminates promises for high-speed electrically controllable optoelectronic devices.
Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-02-01
We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.
Optical, Electronic and Optoelectronic Material and Device Research
1993-10-31
11, pp. 1275-1277 (September 1991). G. Griffel , W. K. Marshall, I. Grav6, and A. Yariv, "Frequency Control Using a Complex Effective Reflectivity in...Temperatures (5K)," Applied Physics Letters, vol. 58, no. 24, pp. 2752-2754 (June 1991). G. Griffel and A. Yariv, "Frequency Response and Tunability...of Grating- Assisted Directional Couplers," IEEE Journal of Quantum Electronics, vol. 27, no. 5, pp. 1115-1118 (May 1991). G. Griffel , H. Z. Chen, Ilan
Response of a 2DEG to Microwave Irradiation
NASA Astrophysics Data System (ADS)
Moreau, S.; Fedorych, O. M.; Sadowski, M. L.; Potemski, M.; Studenikin, S.; Austing, G.; Sachrajda, A. S.; Saku, T.; Hirayama, Y.
In this paper, we study the behavior of a high mobility two dimensional electron gas under microwave irradiation by means of magneto-photoluminescence (PL) and absorption measurements. The high mobility sample investigated is a 15nm wide GaAs/AlGaAs quantum well with an electron concentration between 1-2×1011cm-2, tunable by visible-light illumination. Structures in the microwave absorption at 40-60GHz are identified as geometrically confined magneto-plasmons.
Functional conjugated pyridines via main-group element tuning.
Stolar, Monika; Baumgartner, Thomas
2018-03-29
Pyridine-based materials have seen widespread attention for the development of n-type organic materials. In recent years, the incorporation of main-group elements has also explored significant advantages for the development and tunability of organic conjugated materials. The unique chemical and electronic structure of main-group elements has led to several enhancements in conventional organic materials. This Feature article highlights recent main-group based pyridine materials by discussing property enhancements and application in organic electronics.
Atomically thin p-n junctions with van der Waals heterointerfaces.
Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M; Chen, Wenchao; Li, Yilei; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Nuckolls, Colin; Heinz, Tony F; Guo, Jing; Hone, James; Kim, Philip
2014-09-01
Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.
Enhanced tunable narrow-band THz emission from laser-modulated electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, D.; Stupakov, G.; /SLAC
2009-06-19
We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers andmore » dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.« less
NASA Astrophysics Data System (ADS)
Amani, Matin; Burke, Robert A.; Proie, Robert M.; Dubey, Madan
2015-03-01
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >107 and field effect mobilities as high as 16.4 cm2 V-1 s-1. Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W-1. Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Amani, Matin; Burke, Robert A; Proie, Robert M; Dubey, Madan
2015-03-20
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >10(7) and field effect mobilities as high as 16.4 cm(2) V(-1) s(-1). Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W(-1). Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Depth-tunable three-dimensional display with interactive light field control
NASA Astrophysics Data System (ADS)
Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan
2016-07-01
A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.
Thin-film topological insulators for continuously tunable terahertz absorption
NASA Astrophysics Data System (ADS)
West, D.; Zhang, S. B.
2018-02-01
One of the defining characteristics of a three-dimensional topological insulator (TI) is the appearance of a Dirac cone on its surface when it creates an interface with vacuum. For thin film TIs, however, the Dirac cones on opposite surfaces interact forming a small gap. For the case of three quintuple layers of Bi2Se3, we show that this gap can be continuously tuned between 128 meV and 0 meV with the application of modest perpendicular electric fields of less than 30 meV Å-1. Through both the Hamiltonian model and first-principles density functional theory calculations, we show that the inherent nonlinearity in realistic Dirac cone interaction leads to a gap which can be continuously tuned through the application of an external electric field. This tunability, coupled with the high optical absorption of thin film TIs, make this a very promising platform for terahertz and infrared detection.
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Reconfigurable wave band structure of an artificial square ice
lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; ...
2016-04-18
Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less
{sup 85}Rb tunable-interaction Bose-Einstein condensate machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altin, P. A.; Robins, N. P.; Doering, D.
We describe our experimental setup for creating stable Bose-Einstein condensates (BECs) of {sup 85}Rb with tunable interparticle interactions. We use sympathetic cooling with {sup 87}Rb in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume, crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the {sup 85}Rb atoms. Typical {sup 85}Rb condensates contain 4x10{sup 4} atoms with a scattering length of a=+200a{sub 0}. Many aspects of the design presented here could be adapted to other dual-species BEC machines, including those involving degenerate Fermi-Bose mixtures.more » Our minimalist apparatus is well suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the {sup 85}Rb BEC machine at JILA, which we discuss at the end of this article.« less
Reconfigurable wave band structure of an artificial square ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.
Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less
Precise colloids with tunable interactions for confocal microscopy
Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris
2015-01-01
Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems. PMID:26420044
Fine tuning of graphene properties by modification with aryl halogens
NASA Astrophysics Data System (ADS)
Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.
2016-01-01
Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k