NASA Technical Reports Server (NTRS)
Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)
2010-01-01
A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
Fast tunable blazed MEMS grating for external cavity lasers
NASA Astrophysics Data System (ADS)
Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross
2017-11-01
Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.
Continuous wavelength tunable laser source with optimum positioning of pivot axis for grating
Pushkarsky, Michael; Amone, David F.
2010-06-08
A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The beam attacher (56) retains the grating beam (54) and allows the grating beam (54) and the grating (30) to effectively pivot about a pivot axis (33) that is located approximately at an intersection of a pivot plane (50) and the grating plane (42B). As provided herein, the diffraction grating (30) can be pivoted about the unique pivot axis (33) to move the diffraction grating (30) relative to the gain media (16) to continuously tune the lasing frequency of the external cavity (32) and the wavelength of the output light (12) so that the output light (12) is mode hop free.
NASA Astrophysics Data System (ADS)
Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim
2014-03-01
In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic analysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.
High-sensitivity detection of TNT
Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.
2006-01-01
We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325
Green high-power tunable external-cavity GaN diode laser at 515 nm.
Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael
2016-09-15
A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.
Tunable high-power blue external cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun
2017-09-01
A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.
NASA Astrophysics Data System (ADS)
Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin
2017-06-01
An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.
NASA Astrophysics Data System (ADS)
Ostendorf, Ralf; Butschek, Lorenz; Merten, André; Grahmann, Jan; Jarvis, Jan; Hugger, Stefan; Fuchs, Frank; Wagner, Joachim
2016-02-01
We present spectroscopic measurements performed with an EC-QCL combining a broadly tunable quantum cascade laser chip with a tuning range of more than 300 cm-1 and a resonantly driven MOEMS scanner with an integrated diffraction grating for wavelength selection in Littrow configuration. The grating geometry was optimized to provide high diffraction efficiency over the wide tuning range of the QCL, thus assuring high power density and high spectral resolution in the MIR range. The MOEMS scanner has a resonance frequency of 1 kHz, hence allowing for two full wavelength scans, one up and the other downwards, within 1 ms. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets as well as on gaseous samples of carbon monoxide. For the latter one, a large portion of the characteristic CO absorption band containing several absorption lines in the range of 2070 cm-1 to 2280 cm-1 can be monitored in real-time.
Near-infrared light-controlled tunable grating based on graphene/elastomer composites
NASA Astrophysics Data System (ADS)
Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua
2018-02-01
A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.
140 W peak power laser system tunable in the LWIR.
Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric
2017-08-07
We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.
Optical and Acoustic Device Applications of Ferroelastic Crystals
NASA Astrophysics Data System (ADS)
Meeks, Steven Wayne
This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.
Tunable resonance-domain diffraction gratings based on electrostrictive polymers.
Axelrod, Ramon; Shacham-Diamand, Yosi; Golub, Michael A
2017-03-01
Critical combination of high diffraction efficiency and large diffraction angles can be delivered by resonance-domain diffractive optics with high aspect ratio and wavelength-scale grating periods. To advance from static to electrically tunable resonance-domain diffraction grating, we resorted to its replication onto 2-5 μm thick P(VDF-TrFE-CFE) electrostrictive ter-polymer membranes. Electromechanical and optical computer simulations provided higher than 90% diffraction efficiency, a large continuous deflection range exceeding 20°, and capabilities for adiabatic spatial modulation of the grating period and slant. A prototype of the tunable resonance-domain diffraction grating was fabricated in a soft-stamp thermal nanoimprinting process, characterized, optically tested, and provided experimental feasibility proof for the tunable sub-micron-period gratings on electrostrictive polymers.
Single-frequency tunable laser for pumping cesium frequency standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravleva, O V; Ivanov, Andrei V; Leonovich, A I
2006-08-31
A single-frequency tunable laser for pumping the cesium frequency standard is studied. It is shown experimentally that the laser emits at a single frequency despite the fact that a few longitudinal modes of the external cavity fall within the reflection band of a fibre Bragg grating (FBG) written in the optical fibre. The laser wavelength can be tuned by varying the pump current of the laser, its temperature, and the FBG temperature. The laser linewidth does not exceed 2 MHz for 10 mW of output power. (lasers)
Photovoltaic dependence of photorefractive grating on the externally applied dc electric field
NASA Astrophysics Data System (ADS)
Maurya, M. K.; Yadav, R. A.
2013-04-01
Photovoltaic dependence of photorefractive grating (i.e., space-charge field and phase-shift of the index grating) on the externally applied dc electric field in photovoltaic-photorefractive materials has been investigated. The influence of photovoltaic field (EPhN), diffusion field and carrier concentration ratio r (donor/acceptor impurity concentration ratio) on the space-charge field (SCF) and phase-shift of the index grating in the presence and absence of the externally applied dc electric field have also been studied in details. Our results show that, for a given value of EPhN and r, the magnitude of the SCF and phase-shift of the index grating can be enhanced significantly by employing the lower dc electric field (EON<10) across the photovoltaic-photorefractive crystal and higher value of diffusion field (EDN>40). Such an enhancement in the magnitude of the SCF and phase-shift of the index grating are responsible for the strongest beam coupling in photovoltaic-photorefractive materials. This sufficiently strong beam coupling increases the two-beam coupling gain that may be exceed the absorption and reflection losses of the photovoltaic-photorefractive sample, and optical amplification can occur. The higher value of optical amplification in photovoltaic-photorefractive sample is required for the every applications of photorefractive effect so that technology based on the photorefractive effect such as holographic storage devices, optical information processing, acousto-optic tunable filters, gyro-sensors, optical modulators, optical switches, photorefractive-photovoltaic solitons, biomedical applications, and frequency converters could be improved.
NASA Astrophysics Data System (ADS)
Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae
2006-12-01
We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.
Ultra-widely tunable long-period holey-fiber grating by the use of mechanical pressure.
Ceballos-Herrera, D E; Torres-Gómez, I; Martínez-Ríos, A; Anzueto-Sánchez, G; Alvarez-Chávez, J A; Selvas-Aguilar, R; Sánchez-Mondragón, J J
2007-01-20
We report an ultra-widely tunable long-period holey-fiber grating, which combines the wide-range single-mode behavior and transverse strain sensitivity of the holey fibers with the advantages of mechanically induced long-period fiber gratings. We obtain a versatile widely tunable long-period holey-fiber grating with attractive transmission spectral characteristics for optical communications, fiber-based amplifiers, and lasers. The mechanically induced long-period holey-fiber grating shows a continuous tuning range over 500 nm, more than 12 dB depth notches with less than 0.75 dB out-of-band losses, and bandwidth control from 10 to 40 nm.
Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers.
Wang, Ruijun; Malik, Aditya; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Roelkens, Gunther
2016-12-12
2.0x µm widely tunable external cavity lasers realized by combining a GaSb gain chip with a silicon photonics waveguide circuit for wavelength selection are demonstrated. Wavelength tuning over 58 nm from 2.01 to 2.07 µm is demonstrated. In the silicon photonic integrated circuit, laser feedback is realized by using a silicon Bragg grating and continuous tuning is realized by using two thermally tuned silicon microring resonators (MRRs) and a phase section. The uncooled laser has maximum output power of 7.5 mW and threshold current density of 0.8 kA/cm2. The effect of the coupling gap of the MRRs on tunable laser performance is experimentally assessed. A side mode suppression ratio better than 52 dB over the full tuning range and in the optimum operation point of more than 60 dB is achieved for the laser with weakly coupled MRRs.
Tunable dual-band nearly perfect absorption based on a compound metallic grating
NASA Astrophysics Data System (ADS)
Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan
2017-02-01
Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.
Zheng, Jie; Ge, Chun; Wagner, Clark J; Lu, Meng; Cunningham, Brian T; Hewitt, J Darby; Eden, J Gary
2012-06-18
Continuous tuning over a 1.6 THz region in the near-infrared (842.5-848.6 nm) has been achieved with a hybrid ring/external cavity laser having a single, optically-driven grating reflector and gain provided by an injection-seeded semiconductor amplifier. Driven at 532 nm and incorporating a photonic crystal with an azobenzene overlayer, the reflector has a peak reflectivity of ~80% and tunes at the rate of 0.024 nm per mW of incident green power. In a departure from conventional ring or external cavity lasers, the frequency selectivity for this system is provided by the passband of the tunable photonic crystal reflector and line narrowing in a high gain amplifier. Sub - 0.1 nm linewidths and amplifier extraction efficiencies above 97% are observed with the reflector tuned to 842.5 nm.
Design of multi-wavelength tunable filter based on Lithium Niobate
NASA Astrophysics Data System (ADS)
Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun
2018-05-01
A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.
Compact single mode tunable laser using a digital micromirror device.
Havermeyer, Frank; Ho, Lawrence; Moser, Christophe
2011-07-18
The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm(3) laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.
Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J
2005-01-01
We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.
Lu, Lu; Li, Guoqiang
2016-06-15
Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs.
MEMS-based tunable gratings and their applications
NASA Astrophysics Data System (ADS)
Yu, Yiting; Yuan, Weizheng; Qiao, Dayong
2015-03-01
The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.
Kroesen, Sebastian; Horn, Wolfgang; Imbrock, Jörg; Denz, Cornelia
2014-09-22
optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro-optic coefficients of r(13) = 7.59 pm V(-1) and r(33) = 23.21 pm V(-1) are demonstrated.
Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4 μm.
Xie, Feng; Caneau, C; Leblanc, H; Ho, M-T; Zah, C
2015-09-01
We present a quantum cascade laser structure with an ultra-broad gain profile that covers the wavelength range from 6.5 to 10.4 μm. In a grating-tuned external cavity, we demonstrated continuous tuning from 1027 cm(-1) to 1492 cm(-1) with this broad gain laser chip. We also fabricated distributed feedback quantum cascade laser arrays with this active region design and varied grating periods. We demonstrated single wavelength lasing from 962 (10.4) to 1542 cm(-1) (6.5 μm). The frequency coverage (580 cm(-1)) is about 46% of center frequency.
Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating.
Lin, Chia-Jen; Li, Yu-Tai; Hsieh, Cho-Fan; Pan, Ru-Pin; Pan, Ci-Ling
2008-03-03
This investigation demonstrates the feasibility of a magnetically tunable liquid crystal phase grating for the terahertz wave. The phase grating can be used as a beam splitter. The ratio of the zeroth and first-order diffracted THz-beams (0.3 THz) polarized in a direction perpendicular to that of the grooves of the grating can be tuned from 4:1 to 1:2. When the THz wave is polarized in any other direction, this device can be operated as a polarizing beam splitter.
NASA Astrophysics Data System (ADS)
Butschek, Lorenz; Hugger, Stefan; Jarvis, Jan; Haertelt, Marko; Merten, André; Schwarzenberg, Markus; Grahmann, Jan; Stothard, David; Warden, Matthew; Carson, Christopher; Macarthur, John; Fuchs, Frank; Ostendorf, Ralf; Wagner, Joachim
2018-01-01
We report on mid-IR spectroscopic measurements performed with rapidly tunable external cavity quantum cascade lasers (EC-QCLs). Fast wavelength tuning in the external cavity is realized by a microoptoelectromechanical systems (MOEMS) grating oscillating at a resonance frequency of about 1 kHz with a deflection amplitude of up to 10 deg. The entire spectral range of the broadband QCL can therefore be covered in just 500 μs, paving the way for real-time spectroscopy in the mid-IR region. In addition to its use in spectroscopic measurements conducted in backscattering and transmission geometry, the MOEMS-based laser source is characterized regarding pulse intensity noise, wavelength reproducibility, and spectral resolution.
Slow-light, band-edge waveguides for tunable time delays.
Povinelli, M; Johnson, Steven; Joannopoulos, J
2005-09-05
We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers
NASA Astrophysics Data System (ADS)
Balaswamy, V.; Arun, S.; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V. R.
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here, a simple architecture for high power, fixed and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the Ytterbium band to the eye-safe 1.5micron region. We demonstrate pump-limited output powers of over 30W in fixed and continuously wavelength tunable configurations.
Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings
NASA Astrophysics Data System (ADS)
Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui
2016-03-01
We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.
NASA Astrophysics Data System (ADS)
Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Rao, Han; Zhang, Sasa; Liu, Yang; Zverev, Petr G.; Konyushkin, Vasily A.; Zhang, Xingyu
2016-02-01
High-repetition-rate tunable LiF:\\text{F}2- color center lasers pumped by quasi-continuous-wave diode-side-pumped acousto-optically Q-switched Nd:YAG laser are demonstrated. Littrow-grating and Littman-grating tuning schemes are studied respectively. In the Littrow-grating scheme, the tuning range was 1085 nm to 1275 nm, and the maximal average output power was 275 mW. In the Littman-grating scheme, the tuning range was 1105.5 nm to 1215.5 nm, and the maximal average output power was 135 mW.
Beam-splitter switches based on zenithal bistable liquid-crystal gratings.
Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E
2014-10-01
The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers.
Balaswamy, V; Arun, S; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V R
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth-doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here a simple architecture for high-power, fixed, and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the ytterbium band to the eye-safe 1.5 μm region. We demonstrate pump-limited output powers of over 30 W in fixed and continuously wavelength tunable configurations.
Liu, X-L; Liu, H-N; Tan, P-H
2017-08-01
Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.
Widely tunable long-period waveguide grating couplers
NASA Astrophysics Data System (ADS)
Bai, Y.; Liu, Q.; Lor, K. P.; Chiang, K. S.
2006-12-01
We demonstrate experimentally two widely tunable optical couplers formed with parallel long-period polymer waveguide gratings. One of the couplers consists of two parallel gratings and shows a peak coupling efficiency of ~34%. The resonance wavelength of the coupler can be tuned thermally with a sensitivity of 4.7 nm/°C. The experimental results agree well with the coupled-mode analysis. The other coupler consists of an array of ten widely separated gratings. A peak coupling efficiency of ~11% is obtained between the two best matched gratings in the array and the resonance wavelength can be tuned thermally with a sensitivity of -3.8 nm/°C. These couplers have the potential to be further developed into practical broadband add/drop multiplexers and signal dividers.
Thermally tunable grating using thermo-responsive magnetic fluid
NASA Astrophysics Data System (ADS)
Zaibudeen, A. W.; Philip, John
2017-04-01
We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.
Two-dimensional grating guided-mode resonance tunable filter.
Kuo, Wen-Kai; Hsu, Che-Jung
2017-11-27
A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-06-08
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm(-1)) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing.
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-01-01
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634
NASA Astrophysics Data System (ADS)
Honma, H.; Mitsudome, M.; Ishida, M.; Sawada, K.; Takahashi, K.
2017-03-01
We report a tunable plasmonic color filter consisting of a metamaterial periodic grating and microelectromechanical systems (MEMS) actuator. An aluminum subwavelength grating is integrated with electrostatic comb-drive actuators to expand the metal subwavelength period, which allows continuous control of the excitation wavelength of surface plasmons (SPs). We develop a batch fabrication process by employing a liftoff technique using an electron beam resist altered by the electron dose depending on different aspect ratios (length/width) for various components such as the subwavelength grating, nanohinge flexural suspensions, and comb fingers. We successfully demonstrate a continuous shift in the excitation wavelength over the 514-635 nm range by nanopitch expansion. The design margin of the grating period for SP excitation is evaluated by comparing the experimental pitch variation and theoretically calculated values. The resonance frequency of the tunable filter is optically measured to be approximately 10 kHz. The optically and mechanically obtained values agree well with the theory of electrostatic actuation and finite-difference time-domain simulation.
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm-1 for the spectral range between 6890 and 6170 cm-1 is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm-1 is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm-1, a minimum detectable absorption coefficient of approximately 1×10-8 cm-1 is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10-10 cm-1 Hz-1/2. Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm⁻¹ for the spectral range between 6890 and 6170 cm⁻¹ is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm⁻¹ is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm⁻¹, a minimum detectable absorption coefficient of approximately 1×10⁻⁸ cm⁻¹ is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10⁻¹⁰ cm⁻¹ Hz(-1/2). Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
Thermal tuning On narrow linewidth fiber laser
NASA Astrophysics Data System (ADS)
Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei
2010-10-01
At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.
He, Xiaoying; Liu, Zhi-bo; Wang, D N
2012-06-15
We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.
Integrated narrowband optical filter based on embedded subwavelength resonant grating structures
Grann, Eric B.; Sitter, Jr., David N.
2000-01-01
A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.
NASA Astrophysics Data System (ADS)
Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.
2013-05-01
In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).
Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.
Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana
2016-12-01
Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Construction of an Extended Cavity Tunable Diode Laser
NASA Astrophysics Data System (ADS)
Deveney, Edward; Metcalf, Harold; Noe, John
2001-03-01
A diverse and vast amount of experiments at the forefront of experimental physics typically use diode lasers as an integral part of their arrangement. However, researchers who use unmodified commercially available diode lasers run into several complications. The laser diode that is purchased is often not of the same wavelength as is advertised; thus the researcher’s desired wavelength is not met. Because the semiconductor has such a short external cavity, it is very sensitive to the injection current, changes in room temperature, and has a large linewidth making it harder to tune. To obtain a finely tuned diode laser, temperature and current controlling of the diode laser are used in conjunction with an extended semiconductor cavity. This is achieved by mounting the hermetically sealed assembly atop a thermoelectric cooler, which uses the Peltier effect. Furthermore, the variation of the injection current may be used as an additional control for the wavelength output of the diode. The power range of 70 mW as controlled by the injection current adjusts the wavelength by a span of only 4 nanometers. The extended cavity consists of a diffraction grating adhered to a mirror mount and is used for grating feedback. That in turn is used to reduce the linewidth sufficiently enough in order to provide much better tunability. In the next three weeks, the tunable diode laser will be specifically applied to research in the areas of Second Harmonic Generation in a PPLN Crystal and Saturated Rubidium Spectroscopy. This study was supported in part by NSF grant PHY99-12312.
Chirped Grating Tunable Lasers for the Infrared Molecular Fingerprint Spectral Region
2013-09-01
lasers with chirped gratings and compare both normal DFB (pump stripe perpendicular to grating) and -DFB (pump stripe perpendicular to facets...structure. Because the period of grating increases gradually laterally, wavelength tuning is implemented by shifting pump stripe to different positions on...tilted with respect to facets and adjusting the pump stripe normal to the grating. Continuous tuning of 30 nm around 3.1 µm with 320 mW single facet
Optical Sensing Device Containing Fiber Bragg Gratings
2000-08-01
Fabry - Perot (SFP) filter-based interrogation (Kersey et al. Opt. Lett.. 18, 1370-2. 1993), tunable acousto-optic filter inteiTOgation (Geiger et al...a tunable Fabry - Perot filter, and a tunable acousto-optical filter. Alternatively, scanning filter 28 can be omitted in device 10 of the present...invention when broadband light source 20 is a tunable broadband light source. More preferably, scanning filter 28 is a tunable Fabry - Perot filter
Deformable silicone grating fabricated with a photo-imprinted polymer mold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Itsunari, E-mail: yamada.i@e.usp.ac.jp; Nishii, Junji; Saito, Mitsunori
A tunable transmission grating was fabricated by molding a silicone elastomer (polydimethylsiloxane). Its optical characteristics were then evaluated during compression. For fabrication, a glass plate with a photoimprinted polymer grating film was used as a mold. Both the grating period and diffraction transmittance of the molded elastomer were functions of the compressive stress. The grating period changed from 3.02 to 2.86 μm during compressing the elastomer in the direction perpendicular to the grooves.
Graphene-based active slow surface plasmon polaritons
Lu, Hua; Zeng, Chao; Zhang, Qiming; Liu, Xueming; Hossain, Md Muntasir; Reineck, Philipp; Gu, Min
2015-01-01
Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of ~2.1 μm and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers. PMID:25676462
Laser-induced transient grating setup with continuously tunable period
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega-Flick, A.; Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico; Eliason, J. K.
2015-12-15
We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.
Silicon graphene Bragg gratings.
Capmany, José; Domenech, David; Muñoz, Pascual
2014-03-10
We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.
Optically Tunable Gratings Based on Coherent Population Oscillation.
Zhang, Xiao-Jun; Wang, Hai-Hua; Wang, Lei; Wu, Jin-Hui
2018-05-01
We theoretically study the optically tunable gratings based on a L-type atomic medium using coherent population oscillations from the angle of reflection and transmission of the probe field. Adopting a standing-wave driving field, the refractive index of the medium as well as the absorption are periodically modified. Consequently, the Bragg scattering causes the effective reflection. We show that different intensities of the control field lead to three types of reflection profile which actually correspond to different absorption/amplification features of the medium. We present a detailed analyses about the influence of amplification on the reflection profile as well. The coherent population oscillation is robust to the dephasing effect, and such induced gratings could have promising applications in nonlinear optics and all-optical information processing.
NASA Technical Reports Server (NTRS)
Flamant, P. H.; Menzies, R. T.; Kavaya, M. J.; Oppenheim, U. P.
1983-01-01
A grating-tunable TEA-CO2 laser with an unstable resonator cavity, modified to allow injection of CW CO2 laser radiation at the resonant transition line by means of an intracavity NaCl window, has been used to study the coupling requirements for generation of single frequency pulses. The width and shape of the mode selection region, and the dependence of the gain-switched spike buildup time and the pulse shapes on the intensity and detuning frequency of the injected radiation are reported. Comparisons of the experimental results with previously reported mode selection behavior are discussed.
Chen, Xiao; Yan, Bin-bin; Song, Fei-jun; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal
2012-10-20
A digital micromirror device (DMD) is a kind of widely used spatial light modulator. We apply DMD as wavelength selector in tunable fiber lasers. Based on the two-dimensional diffraction theory, the diffraction of DMD and its effect on properties of fiber laser parameters are analyzed in detail. The theoretical results show that the diffraction efficiency is strongly dependent upon the angle of incident light and the pixel spacing of DMD. Compared with the other models of DMDs, the 0.55 in. DMD grating is an approximate blazed state in our configuration, which makes most of the diffracted radiation concentrated into one order. It is therefore a better choice to improve the stability and reliability of tunable fiber laser systems.
All-fibre ytterbium laser tunable within 45 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullina, S R; Babin, S A; Vlasov, A A
2007-12-31
A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)
Tunable Infrared Semiconductor Lasers
2013-12-20
stripe to different positions of an addressable chirped, location-dependent period grating to select the different lasing wavelengths. Interferometric...grating or vernier effects. Our tuning mechanism is to shift the pump stripe to different positions of an addressable chirped, location-dependent period... stripe is applied and the lateral direction is the perpendicular direction across the pump stripe and parallel to the grating lines. The chirped
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandula, Gábor, E-mail: mandula.gabor@wigner.mta.hu; Kis, Zsolt; Lengyel, Krisztián
We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for amore » wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.« less
Freely Tunable Broadband Polarization Rotator for Terahertz Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping
2014-12-28
A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.
Recent progress in InP/polymer-based devices for telecom and data center applications
NASA Astrophysics Data System (ADS)
Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert
2015-02-01
Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.
NASA Astrophysics Data System (ADS)
Bindhaiq, Salem; Supa'at, Abu Sahmah M.; Zulkifli, Nadiatulhuda; Shaddad, Redhwan Q.; Mataria, Abdallah
2014-07-01
A high data transmission rate is the main requirement for next-generation telecommunication networks. A design for a 40 Gb/s time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 is presented. The use of a modulated grating Y-branch (MG-Y) laser is proposed as an upstream tunable colorless laser source to upgrade the optical network unit. The electronically tuned MG-Y externally modulated laser with a 10 Gb/s modulation rate is applied to a TWDM-PON and presented across a 3.2-nm tuning range. The performance of the proposed laser is analyzed in terms of bit error rate, eye diagram, and optical signal-to-noise ratio. The proposed TWDM-PON achieved an aggregated data rate of 40 Gb/s along 40 km of bidirectional fiber at a 1:128 splitting ratio without amplification and dispersion compensation.
Design of compressors for FEL pulses using deformable gratings
NASA Astrophysics Data System (ADS)
Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca
2017-06-01
We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.
Tunable, superconducting, surface-emitting teraherz source
Welp, Ulrich [Lisle, IL; Koshelev, Alexei E [Bolingbrook, IL; Gray, Kenneth E [Evanston, IL; Kwok, Wai-Kwong [Evanston, IL; Vlasko-Vlasov, Vitalii [Downers Grove, IL
2009-10-27
A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.
Tunable, superconducting, surface-emitting teraherz source
Welp, Ulrich; Koshelev, Alexei E.; Gray, Kenneth E.; Kwok, Wai-Kwong; Vlasko-Vlasov, Vitalii
2010-05-11
A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.
NASA Astrophysics Data System (ADS)
Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald
2009-05-01
A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.
Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng
2011-06-20
A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.
Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings
Gan, Qiaoqiang; Gao, Yongkang; Wagner, Kyle; Vezenov, Dmitri; Ding, Yujie J.; Bartoli, Filbert J.
2011-01-01
We report the experimental observation of a trapped rainbow in adiabatically graded metallic gratings, designed to validate theoretical predictions for this unique plasmonic structure. One-dimensional graded nanogratings were fabricated and their surface dispersion properties tailored by varying the grating groove depth, whose dimensions were confirmed by atomic force microscopy. Tunable plasmonic bandgaps were observed experimentally, and direct optical measurements on graded grating structures show that light of different wavelengths in the 500–700-nm region is “trapped” at different positions along the grating, consistent with computer simulations, thus verifying the “rainbow” trapping effect. PMID:21402936
Intracore and extracore examination of fiber gratings with coherent detection
NASA Astrophysics Data System (ADS)
Froggatt, Mark Earl
2001-06-01
This thesis introduces several new methods of measurement to aid in the production and evaluation of Bragg gratings in optical fiber. Five measurements are described: UV fringe visualization for grating production, weak grating measurement for distributed sensing, strong grating measurement for telecommunication applications, second harmonic grating measurement for grating chirp assessment, and grating visualization using radiation diffraction from strong Bragg gratings. The weak grating measurement for distributed strain sensing is a summary of work published prior to beginning the thesis research, and is provided for background purposes. The UV fringe visualization is accomplished by using a phase mask very close to the plane of the fiber to diffract the incoming beams used to write the Bragg grating into nearly parallel alignment, leading to macroscopic fringes indicative of the phase, frequency, amplitude, and contrast of the microscopic fringes incident on the fiber. The weak grating measurement uses Optical Frequency Domain Reflectometry (OFDR) to measure the spatial distribution of the coupling strength of weak gratings. Included in the description of the OFDR technique are recent advances in the precision monitoring of the emission wavelength of tunable lasers. The precise monitoring of wavelength is critical to the functioning of OFDR. The strong grating measurement is based on a modified form of OFDR and an analysis of the problem in the time and frequency domains to produce accurate measurements of both the reflection and transmission Transfer Functions for Bragg gratings. This measurement technique is also applicable to a wide variety of optical fiber devices, and is shown to be scalable to multiple port devices. The second-harmonic measurement for grating chirp analysis is similar to the weak grating measurement, but it was done at a wavelength resonant with the second- harmonic grating in the fiber-780 nm for 1550 nm reflection gratings. The second-harmonic grating results from nonlinearities in the grating growth process and, due to the great sensitivity of OFDR, is detectable for almost all fiber gratings. The grating visualization also uses half-wavelength (780 nm) illumination of the grating through the core. This technique uses the diffraction of light into the radiation modes to make the grating in the fiber externally visible. By operating near the perpendicular radiation condition, and introducing coherent counter- propagating light, the spatial frequency and the amplitude of the grating as functions of distance along the fiber can be measured. To better understand the radiation from Bragg gratings, a technique known as the Volume Current Method (VCM) was used to derive an expression for the radiation from a Bragg grating for all of the LP fiber modes.
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
Osuch, Tomasz; Markowski, Konrad; Jędrzejewski, Kazimierz
2015-06-10
A versatile numerical model for spectral transmission/reflection, group delay characteristic analysis, and design of tapered fiber Bragg gratings (TFBGs) is presented. This approach ensures flexibility with defining both distribution of refractive index change of the gratings (including apodization) and shape of the taper profile. Additionally, sensing and tunable dispersion properties of the TFBGs were fully examined, considering strain-induced effects. The presented numerical approach, together with Pareto optimization, were also used to design the best tanh apodization profiles of the TFBG in terms of maximizing its spectral width with simultaneous minimization of the group delay oscillations. Experimental verification of the model confirms its correctness. The combination of model versatility and possibility to define the other objective functions of Pareto optimization creates a universal tool for TFBG analysis and design.
Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation
NASA Astrophysics Data System (ADS)
Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching
2017-02-01
Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.
Tunable dark modes in one-dimensional “diatomic” dielectric gratings
Zeng, Bo; Majumdar, Arka; Wang, Feng
2015-05-04
Recently researchers have demonstrated ultra high quality factor (Q) resonances in one-dimensional (1D) dielectric gratings. Here we theoretically investigate a new class of subwavelength 1D gratings, namely “diatomic” gratings with two nonequivalent subcells in one period, and utilize their intrinsic dark modes to achieve robust ultra high Q resonances. Such “diatomic” gratings provide extra design flexibility, and enable high Q resonators using thinner geometry with smaller filling factors compared to conventional designs like the high contrast gratings (HCGs). More importantly, we show that these high Q resonances can be efficiently tuned in situ, making the design appealing in various applicationsmore » including optical sensing, filtering and displays.« less
Tunable Bragg filters with a phase transition material defect layer
Wang, Xi; Gong, Zilun; Dong, Kaichen; ...
2016-01-01
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Bragg filters with a phase transition material defect layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xi; Gong, Zilun; Dong, Kaichen
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Stable Levitation Based on Casimir Interaction between Nanostructures
NASA Astrophysics Data System (ADS)
Liu, Xianglei; Zhang, Zhuomin M.
2016-03-01
Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.
Delay-tunable gap-soliton-based slow-light system
NASA Astrophysics Data System (ADS)
Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.
2006-12-01
We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.
Polarization-independent tunable spectral slicing filter in Ti:LiNbO3.
Rabelo, Renato C; Eknoyan, Ohannes; Taylor, Henry F
2011-02-01
A two-port polarization-independent tunable spectral slicing filter at the 1530 nm wavelength regime is presented. The design utilizes an asymmetric interferometer with a sparse index grating along its arms. The sparse grating makes it possible to select equally spaced frequency channels from an incident WDM signal and to place nulls between them to coincide with the signal comb frequency. The number of selected channels and nulls between them depends on the number of coupling regions used in the sparse grating. The free spectral range depends on the spacing between the coupling regions. The Z-transform method is used to synthesize the filter and determine the spectral response. The operation of a device with six coupling regions is demonstrated, and good agreement with theoretical predictions is obtained. A 3 dB bandwidth of ∼1 nm and thermal tuning over a range of ∼13 nm are measured.
Controlling total spot power from holographic laser by superimposing a binary phase grating.
Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying
2011-04-25
By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.
Surveillance technique for hybrid WDM/PS-PON using a tunable OTDR
NASA Astrophysics Data System (ADS)
Hann, Swook; Yoo, Jun-sang; Park, Chang-soo
2005-05-01
A surveillance technique for passive optical networks (PON) is presented. The technique is based on the remote sensing of fiber Bragg grating using a tunable OTDR. Hybrid architecture of WDM and passive splitter-PON can be analyzed by the surveillance method at the central office under in-service state of PON.
Discrete wavelength-locked external cavity laser
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)
2005-01-01
An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.
Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings
NASA Astrophysics Data System (ADS)
Nicolescu, Elena
Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace the polarizers in the system, thereby greatly increasing the filter throughput. We then turn our attention to a Fourier filtering technique. This is a fundamentally different filtering approach involving a single PG where the filtering functionality involves selecting a spectral band with a movable aperture or slit and a diffractive element (PG in our case). Finally, we study the integration of a PG in a multi-channel wavelength blocker system focusing on the practical and fundamental limitations of using a PG as a variable optical attenuator/wavelength blocker in a commercial optical telecommunications network.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1999-08-01
Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.
A novel fiber Bragg grating wavelength demodulation system based on F-P etalon
NASA Astrophysics Data System (ADS)
Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan
2014-10-01
This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation
NASA Astrophysics Data System (ADS)
Zdora, M.-C.; Thibault, P.; Deyhle, H.; Vila-Comamala, J.; Rau, C.; Zanette, I.
2018-05-01
X-ray phase-contrast and dark-field imaging provides valuable, complementary information about the specimen under study. Among the multimodal X-ray imaging methods, X-ray grating interferometry and speckle-based imaging have drawn particular attention, which, however, in their common implementations incur certain limitations that can restrict their range of applications. Recently, the unified modulated pattern analysis (UMPA) approach was proposed to overcome these limitations and combine grating- and speckle-based imaging in a single approach. Here, we demonstrate the multimodal imaging capabilities of UMPA and highlight its tunable character regarding spatial resolution, signal sensitivity and scan time by using different reconstruction parameters.
Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System
1994-05-01
for an ideal AOTF, at 833 and 838 nm using a TeO2 crystal ............................ 33 Figure 3.12. Frequency characteristics of Equation (3.43...multiple channels in an AOTF requires the presence of multiple RF frequencies to establish the complex grating. Since the crystal used in the AOTF ( TeO2 ) is...in germano- silicate glass . This index modulation, Bragg grating, acts as an optical band rejection filter for those wavelengths that meet the Bragg
Tunable overlapping long-period fiber grating and its bending vector sensing application
NASA Astrophysics Data System (ADS)
Hu, Wei; Zhang, Weigang; Chen, Lei; Wang, Song; Zhang, Yunshan; Zhang, Yanxin; Kong, Lingxin; Yu, Lin; Yan, Tieyi; Li, Yanping
2018-03-01
A novel overlapping long-period fiber grating (OLPFG) is proposed and experimentally demonstrated in this paper. The OLPFG is composed of two partially overlapping long-period fiber gratings (LPFG). Based on the coupled model theory and transfer matrix method, it is found that the phase shift LPFG and LPFGs interference are two special situations of the proposed OLPFG. Moreover, the confirmation experiments verified that the proposed OLPFG has a high bending sensitivity in opposite directions, and the temperature crosstalk can be compensated spontaneously.
Bandwidth-Tunable Fiber Bragg Gratings Based on UV Glue Technique
NASA Astrophysics Data System (ADS)
Fu, Ming-Yue; Liu, Wen-Feng; Chen, Hsin-Tsang; Chuang, Chia-Wei; Bor, Sheau-Shong; Tien, Chuen-Lin
2007-07-01
In this study, we have demonstrated that a uniform fiber Bragg grating (FBG) can be transformed into a chirped fiber grating by a simple UV glue adhesive technique without shifting the reflection band with respect to the center wavelength of the FBG. The technique is based on the induced strain of an FBG due to the UV glue adhesive force on the fiber surface that causes a grating period variation and an effective index change. This technique can provide a fast and simple method of obtaining the required chirp value of a grating for applications in the dispersion compensators, gain flattening in erbium-doped fiber amplifiers (EDFAs) or optical filters.
Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers
NASA Astrophysics Data System (ADS)
Brox, O.; Wenzel, H.; Della Case, P.; Tawfieq, M.; Sumpf, B.; Weyers, M.; Knigge, A.
2018-02-01
Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system
Monolithically Integrated Fiber Optic Coupler
2013-01-14
tilted Bragg gratings 24 are thermoelectric coolers (TECs) 30 that can modify the pitch of the tilted Bragg gratings 24, thereby changing their...reflective properties at specific wavelengths to provide tunability. Heating or cooling by thermoelectric coolers 30 causes expansion or contraction of...of a different wavelength of light. While thermoelectric coolers are preferred, devices 30 can be any reversible cooling/heating device that is
Universal Network Access System
2003-11-01
128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1
Grating-assisted demodulation of interferometric optical sensors.
Yu, Bing; Wang, Anbo
2003-12-01
Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.
Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.
Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto
2017-02-01
Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.
Simultaneous interrogation of interferometric and Bragg grating sensors
NASA Astrophysics Data System (ADS)
Brady, G.; Kalli, K.; Webb, D. J.; Jackson, D. A.; Reekie, L.; Archambault, J. L.
1995-06-01
We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched filter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of \\similar 0.05 mu 3 / \\radical Hz \\end-radical at 20 Hz, while the interferometric phase resolution is better than 1mrad/ \\radical Hz \\end-radical at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.
NASA Astrophysics Data System (ADS)
Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki
2012-11-01
This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.
NASA Astrophysics Data System (ADS)
Ma, Suodong; Pan, Qiao; Shen, Weimin
2016-09-01
As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.
Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia
2017-11-10
A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318 MHz (∼2.57 pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33 pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.
Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang
2017-05-15
In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.
NASA Astrophysics Data System (ADS)
Wang, Qi; Song, Huaqing; Wang, Xingpeng; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated thermally tunable 1- μm single-frequency fiber lasers utilizing loop mirror filters (LMFs) with unpumped Yb-doped fibers. The frequency selection and tracking was achieved by combining a fiber Bragg grating (FBG) and a dynamic grating established inside the LMF. The central emission wavelength was at 1064.07 nm with a tuning range of 1.4 nm, and the measured emission linewidth was less than 10 kHz. We also systematically studied the wavelength-tracking thermal stability of the LMF with separate thermal treatment upon the FBG and LMF, respectively. Finally, we presented a selection criterion for the minimum unpumped doped fiber length inside the LMF with experimental verification.
Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien
2007-08-01
We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).
Tunable fiber Bragg grating ring lasers using macro fiber composite actuators
NASA Astrophysics Data System (ADS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-10-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.
Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-01-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.
NASA Astrophysics Data System (ADS)
Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter
2017-11-01
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.
NASA Astrophysics Data System (ADS)
Kalli, K.; Brady, G. P.; Webb, D. J.; Jackson, D. A.; Zhang, L.; Bennion, I.
1995-12-01
We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 n 3 / \\radical Hz \\end-radical at 7 Hz for a wavelength of 1535 nm.
Theory of the special Smith-Purcell radiation from a rectangular grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; He, Zhigang, E-mail: hezhg@ustc.edu.cn; Jia, Qika
2015-12-15
The recently uncovered special Smith-Purcell radiation (S-SPR) from the rectangular grating has significantly higher intensity than the ordinary Smith-Purcell radiation (SPR). Its monochromaticity and directivity are also much better. Here we explored the mechanism of the S-SPR by applying the fundamental electromagnetic theory and simulations. We have confirmed that the S-SPR is exactly from the radiating eigen modes of the grating. Its frequency and direction are well correlated with the beam velocity and structure parameters, which indicates its promising applications in tunable wave generation and beam diagnostic.
Fabrication of tunable diffraction grating by imprint lithography with photoresist mold
NASA Astrophysics Data System (ADS)
Yamada, Itsunari; Ikeda, Yusuke; Higuchi, Tetsuya
2018-05-01
We fabricated a deformable transmission silicone [poly(dimethylsiloxane)] grating using a two-beam interference method and imprint lithography and evaluated its optical characteristics during a compression process. The grating pattern with 0.43 μm depth and 1.0 μm pitch was created on a silicone surface by an imprinting process with a photoresist mold to realize a simple, low-cost fabrication process. The first-order diffraction transmittance of this grating reached 10.3% at 632.8 nm wavelength. We also measured the relationship between the grating period and compressive stress to the fabricated elements. The grating period changed from 1.0 μm to 0.84 μm by 16.6% compression of the fabricated element in one direction, perpendicular to the grooves, and the first-order diffraction transmittance was 8.6%.
Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weiwei; Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; Jia, Qika
The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation canmore » be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.« less
Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2014-02-01
We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.
Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2014-01-01
We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.
Widely tunable quantum cascade lasers for spectroscopic sensing
NASA Astrophysics Data System (ADS)
Wagner, J.; Ostendorf, R.; Grahmann, J.; Merten, A.; Hugger, S.; Jarvis, J.-P.; Fuchs, F.; Boskovic, D.; Schenk, H.
2015-01-01
In this paper recent advances in broadband-tuneable mid-infrared (MIR) external-cavity quantum cascade lasers (EC-QCL) technology are reported as well as their use in spectroscopic process analysis and imaging stand-off detection of hazardous substances, such as explosive and related precursors. First results are presented on rapid scan EC-QCL, employing a custom-made MOEMS scanning grating in Littrow-configuration as wavelength-selective optical feedback element. This way, a scanning rate of 1 kHz was achieved, which corresponds to 2000 full wavelength scans per second. Furthermore, exemplary case studies of EC-QCL based MIR spectroscopy will be presented. These include timeresolved analysis of catalytic reactions in chemical process control, as well as imaging backscattering spectroscopy for the detection of residues of explosives and related precursors in a relevant environment.
NASA Technical Reports Server (NTRS)
Newman, Bronjelyn; Halpern, Joshua B.
1997-01-01
Tunable diode lasers are reliable sources of narrow-band light and comparatively cheap. Optical feedback simplifies frequency tuning of the laser diodes. We are building an inexpensive diode laser system incorporating optical feedback from a diffraction grating. The external optical cavity can be used with lasers that emit between 2 and 100 mW, and will also work if they are pulsed, although this will significantly degrade the bandwidth. The diode laser output power and bandwidth are comparable to CW dye lasers used in kinetics and dynamics experiments. However, their cost and maintenance will be much less as will alignment time. We intend to use the diode lasers to investigate CN and C2 kinetics as well as to study dissociation dynamics of atmospherically important molecules.
Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.
Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual
2003-10-01
We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.
Tunable Optical Assembly with Vibration Dampening
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Allison, Sidney G.; Fox, Robert L.
2008-01-01
Since their market introduction in 1995, fiber Bragg gratings (FBGs) have emerged as excellent means of measuring such parameters as strain and temperature. Distributed-grating sensing is particularly beneficial for such structural-health monitoring applications such as those of 'smart' structures or integrated vehicle health management in aerospace vehicles. Because of the variability of their output wavelengths, tunable lasers have become widely used as means of measuring FBGs. Several versions of a lightweight assembly for strain-tuning an FBG and dampening its vibrations have been constructed. The main components of such an assembly are one or more piezoelectric actuators, an optical fiber containing one or more Bragg grating(s), a Bragg-grating strain-measurement system, and a voltage source for actuation. The piezoelectric actuators are, more specifically, piezoceramic fiber composite actuators and, can be, still more specifically, of a type known in the art as macro-fiber composite (MFC) actuators. In fabrication of one version of the assembly, the optical fiber containing the Bragg grating(s) is sandwiched between the piezoelectric actuators along with an epoxy that is used to bond the optical fiber to both actuators, then the assembly is placed in a vacuum bag and kept there until the epoxy is cured. Bonding an FBG directly into an MFC actuator greatly reduces the complexity, relative to assemblies, that include piezoceramic fiber composite actuators, hinges, ferrules, and clamp blocks with setscrews. Unlike curved actuators, MFC actuators are used in a flat configuration and are less bulky. In addition, the MFC offers some vibration dampening and support for the optical fiber whereas, in a curved piezoelectric actuator assembly, the optical fiber is exposed, and there is nothing to keep the exposed portion from vibrating.
Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.
Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A
2016-06-28
Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.
Tunable liquid crystal photonic devices
NASA Astrophysics Data System (ADS)
Fan, Yun-Hsing
2005-07-01
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo
2013-11-18
We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.
All optical controlled photonic integrated circuits using azo dye functionized sol-gel material
NASA Astrophysics Data System (ADS)
Ke, Xianjun
The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.
NASA Astrophysics Data System (ADS)
Allison, Sidney G.; Shams, Qamar A.; Geddis, Demetris L.
2005-11-01
The demand for high safety and reliability standards for aerospace vehicles has resulted in time-consuming periodic on-ground inspections. These inspections usually call for the disassembling and reassembling of the vehicle, which can lead to damage or degradation of structures or auxiliary systems. In order to increase aerospace vehicle safety and reliability while reducing the cost of inspection, an on-board real-time structural health monitoring sensing system is required. There are a number of systems that can be used to monitor the structures of aerospace vehicles. Fiber optic sensors have been at the forefront of the health monitoring sensing system research. Most of the research has been focused on the development of Bragg grating-based fiber optic sensors. Along with the development of fiber Bragg grating sensors has been the development of a grating measurement technique based on the principle of optical frequency domain reflectometry (OFDR), which enables the interrogation of hundreds of low reflectivity Bragg gratings. One drawback of these measurement systems is the 1 - 3 Hz measurement speed, which is limited by commercially available tunable lasers. The development of high-speed fiber stretching mechanisms to provide high rate tunable Erbium-doped optical fiber lasers can alleviate this drawback. One successful approach used a thin-layer composite unimorph ferroelectric driver and sensor (THUNDER) piezoelectric actuator, and obtained 5.3-nm wavelength shift. To eliminate the mechanical complexity of the THUNDER actuator, the research reported herein uses the NASA Langley Research Center (LaRC) Macro-Fiber Composite (MFC) actuator to tune Bragg grating based optical fibers.
Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers
NASA Astrophysics Data System (ADS)
Noordegraaf, Danny; Scolari, Lara; Lægsgaard, Jesper; Rindorf, Lars; Tanggaard Alkeskjold, Thomas
2007-06-01
We demonstrate electrically and mechanically induced long period gratings (LPGs) in a photonic crystal fiber (PCF) filled with a high-index liquid crystal. The presence of the liquid crystal changes the guiding properties of the fiber from an index guiding fiber to a photonic bandgap guiding fiber - a so called liquid crystal photonic bandgap (LCPBG) fiber. Both the strength and resonance wavelength of the gratings are highly tunable. By adjusting the amplitude of the applied electric field, the grating strength can be tuned and by changing the temperature, the resonance wavelength can be tuned as well. Numerical calculations of the higher order modes of the fiber cladding are presented, allowing the resonance wavelengths to be calculated. A high polarization dependent loss of the induced gratings is also observed.
Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang
2011-05-01
The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.
NASA Astrophysics Data System (ADS)
Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio
2015-01-01
With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.
Smart architecture for stable multipoint fiber Bragg grating sensor system
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung
2017-12-01
In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.
Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors.
Mansuripur, Tobias S; Menzel, Stefan; Blanchard, Romain; Diehl, Laurent; Pflügl, Christian; Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D; Loncar, Marko; Capasso, Federico
2012-10-08
We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 μm (63 cm(-1)), from 8.32 to 8.78 μm. The peak optical output power exceeds 280 mW for nine of the modes.
The use of photonic techniques in tunable microwave oscillators
NASA Astrophysics Data System (ADS)
Madziar, K.; Szymańska, A.; Galwas, B.
2013-07-01
In this paper, we present opportunities to use photonic techniques in tuning process of opto-electronic oscillators. These opportunities involve wavelength controlled delay lines and fiber Bragg gratings.
Broadly tunable picosecond ir source
Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.
1980-04-23
A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 ..mu..m picosecond pulses (1) pass through a 4.5 cm long LiNbO/sub 3/ optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO/sub 3/ optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 ..mu..m along both pump lines are 6 to 8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 ..mu..m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 ..mu..J of tunable radiation over the 14.8 to 18.5 ..mu..m region. The bandwidth and wavelength of both the 2 and 16 ..mu..m radiation output are controlled solely by the diffraction grating.
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
Freely-tunable broadband polarization rotator for terahertz waves
NASA Astrophysics Data System (ADS)
Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu
It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.
Broadly tunable picosecond IR source
Campillo, Anthony J.; Hyer, Ronald C.; Shapiro, Stanley J.
1982-01-01
A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 .mu.m picosecond pulses (1) pass through a 4.5 cm long LiNbO.sub.3 optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO.sub.3 optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 .mu.m along both pump lines are 6-8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 .mu.m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 .mu.J of tunable radiation over the 14.8 to 18.5 .mu.m region. The bandwidth and wavelength of both the 2 and 16 .mu.m radiation output are controlled solely by the diffraction grating.
Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs
NASA Astrophysics Data System (ADS)
Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo
2006-05-01
A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.
Bharathan, Gayathri; Woodward, Robert I; Ams, Martin; Hudson, Darren D; Jackson, Stuart D; Fuerbach, Alex
2017-11-27
We report the development of a widely tunable all-fiber mid-infrared laser system based on a mechanically robust fiber Bragg grating (FBG) which was inscribed through the polymer coating of a Ho 3+ -Pr 3+ co-doped double clad ZBLAN fluoride fiber by focusing femtosecond laser pulses into the core of the fiber without the use of a phase mask. By applying mechanical tension and compression to the FBG while pumping the fiber with an 1150 nm laser diode, a continuous wave (CW) all-fiber laser with a tuning range of 37 nm, centered at 2870 nm, was demonstrated with up to 0.29 W output power. These results pave the way for the realization of compact and robust mid-infrared fiber laser systems for real-world applications in spectroscopy and medicine.
Multi-gas sensing with quantum cascade laser array in the mid-infrared region
NASA Astrophysics Data System (ADS)
Bizet, Laurent; Vallon, Raphael; Parvitte, Bertrand; Brun, Mickael; Maisons, Gregory; Carras, Mathieu; Zeninari, Virginie
2017-05-01
Wide tunable lasers sources are useful for spectroscopy of complex molecules that have broad absorption spectra and for multiple sensing of smaller molecules. A region of interest is the mid-infrared region, where many species have strong ro-vibrational modes. In this paper a novel broad tunable source composed of a QCL DFB array and an arrayed waveguide grating (also called multiplexer) was used to perform multi-species spectroscopy (CO, C2H2, CO2). The array and the multiplexer are associated in a way to obtain a prototype that is non-sensitive to mechanical vibrations. A 2190-2220 cm^{-1} spectral range is covered by the chip. The arrayed waveguide grating combines beams to have a single output. A multi-pass White cell was used to demonstrate the efficiency of the multiplexer.
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang
2015-01-01
We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed Mohammed Maim
This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.
Research on the demodulation techniques of long-period fiber gratings strain sensing with low cost
NASA Astrophysics Data System (ADS)
Wang, Qingwei; Liu, Yueming; Tian, Weijian; Feng, Guilan
2012-10-01
The working principle of LPFG(Long-Period Fiber Grating) is based on coupling effect between propagating core-mode and co-propagating cladding-modes. The effective refractive index of cladding-modes could be obviously influenced by the environmental changes resulting in LPFG more sensitive than FBG (Fiber Bragg Grating) in sensing areas, such as temperature, strain, concentration, bending and etc. LPFG should have more potential in the field of sensors compared with FBG. One of the challenges in using LPFG for environmental sensing is how to interrogate the signal from the LPFG transmission spectrum, due to the large spectral range of the resonant dip. Nowadays the application of LPFG is normally limited in signal interrogation of FBG as optical edge filter. The signal interrogation of LPFG itself needs further research. Presently research on signal interrogation of fiber grating focuses on wavelength interrogation. The aim of wavelength interrogation is to get the wavelength shift caused by environmental change. To solve these problems, a kind of strain sensing interrogation technique for LPFG with low-cost based on tunable FBGs has been developed. Comparing with the method using Fabry-Perot cavity, tunable FBGs can lower the cost with the guarantee of sensing precision. The cost is further lowered without using expensive optical instruments such as optical switch. The problem of temperature cross-sensitivity was solved by using reference gratings. An experiment was performed to demonstrate the interrogation system. And in the experiment, the sensing signal of LPFG applied 0-1300μɛ was successfully interrogated. The results of the interrogation system and OSA are similar.
Bi-directional ROADM with one pair of NxN cyclic-AWGs for over N wavelength channels configuration
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Mu
2018-01-01
This paper presents a bidirectional optical add-drop multiplexer (BROADM) with permitting white spectral channels input in bidirectional configuration. The filter routing rule of array waveguide grating (AWG) is applied for the wavelength channels (WCs) that need to be added and dropped by using the corresponding tunable fiber Bragg gratings (FBGs). The other WCs pass through output by tuning FBG filter spectra away from the WCs. The bandwidth between two adjacent WCs of each pair of ports in AWG is wider than one channel spacing so that the filter spectra of FBG is tuned to free spectral range (FSR) region to realize the wavelength routing function without interfering other WCs. The WCs can be flexibly handled by installing the corresponding tunable FBG. Therefore, the proposed BROADM is more flexible and has higher transmission capacity in the optical network.
Free-space wavelength-multiplexed optical scanner demonstration.
Yaqoob, Zahid; Riza, Nabeel A
2002-09-10
Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
Monolithic single mode interband cascade lasers with wide wavelength tunability
NASA Astrophysics Data System (ADS)
von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.
2016-11-01
Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.
MEMS tunable grating micro-spectrometer
NASA Astrophysics Data System (ADS)
Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.
2017-11-01
The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.
The tunable optical magneto-electric effect in patterned manganese oxide superlattices
NASA Astrophysics Data System (ADS)
Pei, H. Y.; Zhang, Y. J.; Guo, S. J.; Ren, L. X.; Yan, H.; Chen, C. L.; Jin, K. X.; Luo, B. C.
2018-05-01
The optical magneto-electric (OME) effect has been widely investigated in magnetic materials, but obtaining the large and tunable OME effect is an ongoing challenge. We here design a tri-color superlattice composed of manganese oxides, Pr0.9Ca0.1MnO3, La0.9Sr0.1MnO3, and La0.9Sb0.1MnO3, where the space-inversion and time-reversal symmetries are broken. With the aid of the grating structure, the OME effect for near-infrared light in tri-color superlattices is investigated systematically through the Bragg diffraction method. The relative change of diffracted light intensity of the order n = ±1 has a strong dependence on the magnetization and polarization of the tri-color superlattice, whether the superlattice is irradiated in reflection or transmission geometries. Otherwise, the relative change of diffracted light intensity increases with the increase in the superlattice period and with the decrease in the grating period. The maximum relative change of diffracted light intensity in tri-color superlattices with the grating structure patterned is as large as 8.27%. These results pave the way for designing next-generation OME devices based on manganese oxides.
Widely tunable chaotic fiber laser for WDM-PON detection
NASA Astrophysics Data System (ADS)
Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian
2014-05-01
A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-09
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-01-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
NASA Astrophysics Data System (ADS)
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Tunable Far Infrared Semiconductor Sources.
1984-01-01
plasmons in Si-MOS4 hot electron transport in Si-MOS-devices a , ABSTR ACT (Coathwe st e verse 8641 It ut’.weemY dmd ideti ty by block tnmber) {fhe...After baking at 900C for 20 minutes the photoresist was -17- exposed for 8 seconds on the SUss-MJB3-contact lithography machine. To obtain grating...could fabricate Al gratings with 1.5 am - periods on Si-MOSFETs and GaAs-samples by optical contact lithography and lift-off metallization. Fig. 8 shows
Dubček, Tena; Lelas, Karlo; Jukić, Dario; ...
2015-12-07
Here we propose the realization of a grating assisted tunneling scheme for tunable synthetic magnetic fields in optically induced one- and two-dimensional dielectric photonic lattices. As a signature of the synthetic magnetic fields, we demonstrate conical diffraction patterns in particular realization of these lattices, which possess Dirac points in k-space. Lastly, we compare the light propagation in these realistic (continuous) systems with the evolution in discrete models representing the Harper-Hofstadter Hamiltonian, and obtain excellent agreement.
Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.
2010-01-01
The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity losses. In order to maximize the output power, an analysis and optimization of the EC laser parameters has been performed. The parameters of the beam emitted from the gain medium, such as divergence angle, beam profile, and astigmatism, have been investigated. The gain medium has been fully characterized before and after each stage of modification. The main modification steps are coating one facet of the gain chip with a high reflectivity mirror and the other facet with an anti-reflection layer. Then the chip is mounted in the EC-QCL. The optomechanical design has been reviewed and improved to provide for precise collimation of the strongly divergent beam of the QCL and the tuning diffraction grating.
Reconfigurable optical assembly of nanostructures
Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun
2016-01-01
Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays. PMID:27337216
Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther
2017-08-04
The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.
Portable fiber-coupled diode-laser-based sensor for multiple trace gas detection
NASA Technical Reports Server (NTRS)
Lancaster, D. G.; Richter, D.; Tittel, F. K.
1999-01-01
Tunable narrowband mid-infrared radiation from 3.25 to 4.4 micrometers is generated by a compact fiber-coupled, difference-frequency-based spectroscopic source. A 20-mW external cavity diode laser (with a tuning range from 814 to 870 nm) and a 50-mW distributed-Bragg-reflector diode-laser-seeded ytterbium-doped fiber amplifier operating at 1083 nm are difference-frequency mixed in a multi-grating, temperature-controlled periodically poled LiNbO3 crystal. A conversion efficiency of 0.44 mW/(W2cm) (corresponding to a power of approximately equal to 3 microW at 3.3 micrometers) represents the highest conversion efficiency reported for a portable device. Performance characteristics of such a sensor and its application to spectroscopic detection of CO2, N2O, H2CO, HCl, NO2, and CH4 will be reported in this work.
Mukherjee, Anadi; Dunayevskiy, Ilya; Prasanna, Manu; Go, Rowel; Tsekoun, Alexei; Wang, Xiaojun; Fan, Jenyu; Patel, C Kumar N
2008-04-01
The need for the detection of chemical warfare agents (CWAs) is no longer confined to battlefield environments because of at least one confirmed terrorist attack, the Tokyo Subway [Emerg. Infect. Dis. 5, 513 (1999)] in 1995, and a suspected, i.e., a false-alarm of a CWA in the Russell Senate Office Building [Washington Post, 9 February 2006, p. B01]. Therefore, detection of CWAs with high sensitivity and low false-alarm rates is considered an important priority for ensuring public safety. We report a minimum detection level for a CWA simulant, dimethyl methyl phosphonate (DMMP), of <0.5 ppb (parts in 10(9)) by use of a widely tunable external grating cavity quantum cascade laser and photoacoustic spectroscopy. With interferents present in Santa Monica, California street air, we demonstrate a false-alarm rate of 1:10(6) at a detection threshold of 1.6 ppb.
Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther
2017-01-01
The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy. PMID:28777291
Designing Ratchets in Ultra-cold Atoms for the Advanced Undergraduate Laboratory
NASA Astrophysics Data System (ADS)
Hachtel, Andrew; Gillette, Matthew; Clements, Ethan; Zhong, Shan; Ducay, Rey; Bali, Samir
2014-05-01
We propose to perform ratchet experiments in cold Rubidium atoms using state-of-the-art home-built tapered amplifier and imaging systems. Our tapered amplifier system amplifies the output from home-built external cavity tunable diode lasers up to a factor 100 and costs less than 5,000, in contrast to commercial tapered amplifier systems, which cost upward of 20,000. We have developed an imaging system with LabVIEW integration, which allows for approximately 2 millisecond exposures and microsecond control of experimental parameters. Our imaging system also costs less than 5,000 in comparison to commercial options, which cost between 40-50,000. Progress toward implementation of a one-dimensional rocking ratchet is described. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.
NASA Astrophysics Data System (ADS)
Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong
2018-03-01
In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo
2010-03-01
In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.
High accuracy demodulation for twin-grating based sensor network with hybrid TDM/FDM
NASA Astrophysics Data System (ADS)
Ai, Fan; Sun, Qizhen; Cheng, Jianwei; Luo, Yiyang; Yan, Zhijun; Liu, Deming
2017-04-01
We demonstrate a high accuracy demodulation platform with a tunable Fabry-Perot filter (TFF) for twin-grating based fiber optic sensing network with hybrid TDM/FDM. The hybrid TDM/FDM scheme can improve the spatial resolution to centimeter but increases the requirement of high spectrum resolution. To realize the demodulation of the complex twin-grating spectrum, we adopt the TFF demodulation method and compensate the environmental temperature change and nonlinear effect through calibration FBGs. The performance of the demodulation module is tested by a temperature experiment. Spectrum resolution of 1pm is realized with precision of 2.5pm while the environmental temperature of TFF changes 9.3°C.
Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.
Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency
NASA Astrophysics Data System (ADS)
Wu, Jun
2016-06-01
Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.
Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate.
Meyn, J P; Fejer, M M
1997-08-15
We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.
Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli
2012-03-12
The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.
Direct detector for terahertz radiation
Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Shaner, Eric A [Albuquerque, NM; Allen, S James [Santa Barbara, CA
2008-09-02
A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang
2018-05-01
Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.
NASA Astrophysics Data System (ADS)
Badham, Katherine Emily
This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.
Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie
2017-10-02
Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.
NASA Astrophysics Data System (ADS)
Cao, Jianjun; Kong, Yan; Gao, Shumei; liu, Cheng
2018-01-01
Graphene has been demonstrated to have extraordinary large second order nonlinear susceptibility that can be applied in generating mid-infrared (MIR) and terahertz waves through the difference frequency process. In this study, we exploit the highly localized electric fields caused by plasmon resonances to increase the nonlinear response from graphene. The proposed structure contains a graphene sheet on a gold grating substrate that sustains both surface plasmons at the near-infrared on the gold surface and plasmons at the MIR on the graphene surface. Based on finite difference time domain (FDTD) numerical simulations, more than 3 orders of magnitude improvement of the MIR generation efficiency is obtained by placing graphene sheets on a gold grating substrate under resonance conditions instead of placing them on a flat substrate. With the same gold grating substrate, MIR waves tunable from 30 to 55 THz are generated by tuning the gate voltage of the graphene sheet.
On-chip broadband spectral filtering using planar double high-contrast grating reflectors
NASA Astrophysics Data System (ADS)
Horie, Yu; Arbabi, Amir; Faraon, Andrei
2015-02-01
We propose a broadband free-space on-chip spectrometer based on an array of integrated narrowband filters consisting of Fabry-Perot resonators formed by two high-contrast grating (HCG) based reflectors separated by a low-index thin layer with a fixed cavity thickness. Using numerical simulations, broadband tunability of resonance wavelengths was achieved only by changing the in-plane grating parameters such as period or duty cycle of HCGs while the substrate geometry was kept fixed. Experimentally, the HCG reflectors were fabricated on silicon on insulator (SOI) substrates and high reflectivity was measured, fabrication process for the proposed double HCG-based narrowband filter array was developed. The filtering function that can be spanned over a wide range of wavelengths was measured.
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
NASA Astrophysics Data System (ADS)
Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar
2017-04-01
This paper demonstrates the interrogation of a fiber Bragg grating with a flat-topped reflection spectrum centred on 1649.55 nm using only a single mode tunable 1651.93 nm semiconductor laser and a fiber ring resonator. The Bragg shift is accurately measured with the fiber-optic ring resonator that has a free spectral range (FSR) of 0.1008 GHz and a broadband photo-detector. Laser wavelength modulation and harmonic detection are used to transform the gentle edges of the flat-topped FBG spectrum into prominent leading and trailing peaks, either of which can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution of 0.9 pm. A Raspberry Pi-based low-cost embedded processor is used to measure the temperature-induced spectral shifts over the range 30˚C - 80˚C. The shift was linear with a temperature sensitivity of 12.8 pm/˚C. This technique does not use an optical spectrum analyzer at any stage of its design or operation. The laser does not need to be pre-characterized either. This technique can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments.
Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui
2006-09-15
A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.
Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo
2009-01-01
We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.
Fazal, Irfan; Yilmaz, Omer; Nuccio, Scott; Zhang, Bo; Willner, Alan E; Langrock, Carsten; Fejer, Martin M
2007-08-20
10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.
GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.
2017-02-01
GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
Laser photoacoustic sensor for air toxicity measurements
NASA Astrophysics Data System (ADS)
Prasad, Coorg R.; Lei, Jie; Shi, Wenhui; Li, Guangkun; Dunayevskiy, Ilya; Patel, C. Kumar N.
2012-06-01
US EPA's Clean Air Act lists 187 hazardous air pollutants (HAP) or airborne toxics that are considered especially harmful to health, and hence the measurement of their concentration is of great importance. Numerous sensor systems have been reported for measuring these toxic gases and vapors. However, most of these sensors are specific to a single gas or able to measure only a few of them. Thus a sensor capable of measuring many of the toxic gases simultaneously is desirable. Laser photoacoustic spectroscopy (LPAS) sensors have the potential for true broadband measurement when used in conjunction with one or more widely tunable laser sources. An LPAS gas analyzer equipped with a continuous wave, room temperature IR Quantum Cascade Laser tunable over the wavelength range of 9.4 μm to 9.7 μm was used for continuous real-time measurements of multiple gases/chemical components. An external cavity grating tuner was used to generate several (75) narrow line output wavelengths to conduct photoacoustic absorption measurements of gas mixtures. We have measured various HAPs such as Benzene, Formaldehyde, and Acetaldehyde in the presence of atmospheric interferents water vapor, and carbon dioxide. Using the preliminary spectral pattern recognition algorithm, we have shown our ability to measure all these chemical compounds simultaneously in under 3 minutes. Sensitivity levels of a few part-per-billion (ppb) were achieved with several of the measured compounds with the preliminary laboratory system.
Structural Health Monitoring of Composite Materials Using Distributed Fiber Bragg Sensors
NASA Technical Reports Server (NTRS)
Grant, Joseph; Kual, Raj; Taylor, Scott; Jackson, Kurt V.; Myers, George; Wang, Y.; Sharma, A.; Burdine, Robert (Technical Monitor)
2002-01-01
Health monitoring of polymer matrix composite materials using fiber optic Bragg grating (FBG) sensors is accomplished using a tunable IR (infrared) laser via transmission mode. Results are presented from experiments of composite structures with FBG's embedded at various orientations, and surface measurements of various cryogenic composite vessels.
Blood oxygenation and flow measurements using a single 720-nm tunable V-cavity laser.
Feng, Yafei; Deng, Haoyu; Chen, Xin; He, Jian-Jun
2017-08-01
We propose and demonstrate a single-laser-based sensing method for measuring both blood oxygenation and microvascular blood flow. Based on the optimal wavelength range found from theoretical analysis on differential absorption based blood oxygenation measurement, we designed and fabricated a 720-nm-band wavelength tunable V-cavity laser. Without any grating or bandgap engineering, the laser has a wavelength tuning range of 14.1 nm. By using the laser emitting at 710.3 nm and 724.4 nm to measure the oxygenation and blood flow, we experimentally demonstrate the proposed method.
Determination of the space-charge field amplitude in polymeric photorefractive polymers.
Hwang, Ui-Jung; Choi, Chil-Sung; Vuong, Nguyen Quoc; Kim, Nakjoong
2005-12-22
The space-charge field built in a polymeric photorefractive polymer was calculated by a simple method based on the oriented gas model. When anisotropic chromophores in a photorefractive polymer were exposed to an external field, they oriented preferentially to exhibit a birefringence. Then, under illumination of two coherent beams and an external field, they reoriented to form a photorefractive grating. During the formation of the grating, the chromophores were reoriented by the space-charge field as well as by the external applied field. The birefringence induced in the material by an external electric field was determined by measuring the transmittance of the sample which is placed between crossed polarizers, where birefringence depicts the orientation of the chromophores. By measuring the diffraction efficiency with a modified degenerate four-wave mixing setup, the index amplitude of the grating was determined. Finally, the space-charge field was determined by comparing the diffraction efficiency with the birefringence with respect to the applied electric field. In our study, the space-charge field was about 20% of the external applied field, which coincided with previous results obtained from our laboratory.
Impact damage monitoring in CFRP using fiber Bragg grating ultrasound sensors
NASA Astrophysics Data System (ADS)
Tsuda, Hiroshi; Lee, Jung-Ryul; Eguchi, Shunji
2006-03-01
Impact damage in CFRP was monitored by ultrasonic inspection method using small-diameter fiber Bragg grating (FBG) sensors. The FBG ultrasound detection system consisted of broadband light source, FBG sensor and tunable optical filter. Broadband light was launched into the FBG sensor. Light reflected from the FBG sensor was transmitted through the tunable optical filter whose transmissive wavelength range is comparable to the reflected wavelength range of the FBG sensor. The operating wavelength of tunable filter was set to optimize the sensitivity of ultrasound detection. Ultrasound vibration was converted into change in intensity of light transmitted through the filter. A cross-ply carbon fiber-reinforced plastic (CFRP) plate was used as a test specimen for impact damage monitoring. A 6.3 X 9mm2 impact damage was introduced by ball dropping. Both FBG ultrasound sensor and piezoelectric ultrasound transmitter were attached on the CFRP surface. The change in responses to ultrasound excited by either spike signal or toneburst signal before and after impact damage was investigated. In response to ultrasound excited by spike signal, the response after impact damage showed a scattered behavior where the period of response signal got longer. In response to ultrasound excited by toneburst signal, damage signal features scattered and distorted waveform. Experimental results proved that the FBG inspection system could monitor a 6.3 X 9mm2 impact damage in CFRP.
NASA Astrophysics Data System (ADS)
Jornet, Josep Miquel; Thawdar, Ngwe; Woo, Ethan; Andrello, Michael A.
2017-05-01
Terahertz (THz) communication is envisioned as a key wireless technology to satisfy the need for 1000x faster wireless data rates. To date, major progress on both electronic and photonic technologies are finally closing the so-called THz gap. Among others, graphene-based plasmonic nano-devices have been proposed as a way to enable ultra-broadband communications above 1THz. The unique dynamic complex conductivity of graphene enables the propagation of Surface Plasmon Polariton (SPP) waves at THz frequencies. In addition, the conductivity of graphene and, thus, the SPP propagation properties, can be dynamically tuned by means of electrostatic biasing or material doping. This result opens the door to frequency-tunable devices for THz communications. In this paper, the temporal dynamics of graphene-enhanced metallic grating structures used for excitation and detection of SPP waves at THz frequencies are analytically and numerically modeled. More specifically, the response of a metallic grating structure built on top of a graphene-based heterostructure is analyzed by taking into account the grating period and duty cycle and the Fermi energy of the graphene layer. Then, the interfacial charge transfer between a metallic back-gate and the graphene layer in a metal/dielectric/graphene stack is analytically modeled, and the range of achievable Fermi energies is determined. Finally, the rate at which the Fermi energy in graphene can be tuned is estimated starting from the transmission line model of graphene. Extensive numerical and simulation results with COMSOL Multi-physics are provided. The results show that the proposed structure enables dynamic frequency systems with THz bandwidths, thus, enabling resilient communication techniques such as time-hopping THz modulations.
Polarization-independent high-speed photodetector based on a two-dimensional focusing grating
NASA Astrophysics Data System (ADS)
Duan, Xiaofeng; Chen, Hailang; Huang, Yongqing; Liu, Kai; Cai, Shiwei; Ren, Xiaomin
2018-01-01
We demonstrate a reflection-enhanced high-speed photodetector, which integrated a mushroom-mesa p-i-n structure on a two-dimensional (2D) nonperiodic focusing grating. Mushroom-mesa p-i-n photodetectors exhibit a high frequency response owing to their low resistance capacity (RC) time constant. 2D nonperiodic focusing gratings not only can increase the external quantum efficiency of the device owing to their reflecting and focusing abilities, but also are not sensitive to the polarization of the incident light. The external quantum efficiency of this device is 44.71% and the measured 3 dB bandwidth is up to 32 GHz.
Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A
2017-10-15
Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50 MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.
Angular-dependent polarization-insensitive filter fashioned with zero-contrast grating.
Gao, Xumin; Wu, Tong; Xu, Yin; Li, Xin; Bai, Dan; Zhu, Gangyi; Zhu, Hongbo; Wang, Yongjin
2015-06-15
We report here an angular-dependent polarization-insensitive filter fashioned with a free-standing zero-contrast grating (ZCG), which is implemented on an HfO(2)/Silicon platform. The spectral characteristics are investigated by rigorous coupled-wave analysis method and measured on angular-resolved micro-reflectance system. The proposed ZCG structure experimentally shows that the polarization-insensitive resonances occur at 595nm for the incidence angle θ of 12.8° and 500nm for the incidence angle θ of 14.2°. When the incident light is normal to the grating surface, the ZCG device generates yellow and red colors for p- and s-polarization, respectively. The experimental results are in good agreement with the simulations, which indicate that the free-standing ZCG device is promising for polarization-insensitive filter and polarization-controlled tunable color filter.
Fiber Bragg grating sensor interrogators on chip: challenges and opportunities
NASA Astrophysics Data System (ADS)
Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio
2017-04-01
In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.
Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun
2015-09-01
A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.
Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.
Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi
2017-02-01
Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.
External cavity cascade diode lasers tunable from 3.05 to 3.25 μm
NASA Astrophysics Data System (ADS)
Wang, Meng; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Lu, Ming; Stein, Aaron; Belenky, Gregory
2018-01-01
The external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ˜25 meV of tuning range.
External cavity cascade diode lasers tunable from 3.05 to 3.25 μm
Wang, Meng; Hosoda, Takashi; Shterengas, Leon; ...
2017-09-14
Here, the external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ~25 meV of tuning range.
An on-chip colloidal magneto-optical grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikockis, M.; Wijesinghe, H.; Chen, A.
2016-04-18
Interacting nano- and micro-particles provide opportunities to create a wide range of useful colloidal and soft matter constructs. In this letter, we examine interacting superparamagnetic polymeric particles residing on designed permalloy (Ni{sub 0.8} Fe{sub 0.2}) shapes that are subject to weak time-orbiting magnetic fields. The precessing field and magnetic barriers that ensue along the outer perimeter of the shapes allow for containment concurrent with independent field-tunable ordering of the dipole-coupled particles. These remotely activated arrays with inter-particle spacing comparable to the wavelength of light yield microscopic on-chip surface gratings for beam steering and magnetically regulated light diffraction applications.
Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp
NASA Astrophysics Data System (ADS)
Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei
2018-01-01
Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.
Ummy, M A; Madamopoulos, N; Razani, M; Hossain, A; Dorsinville, R
2012-10-08
We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.
One-dimensional photonic crystals for code-division multiple access
NASA Astrophysics Data System (ADS)
Wang, Shamino Yuanliang
One-dimensional photonic crystals exhibit reduced group velocity and huge dispersion at their rejection band edge frequencies. Therefore they are natural candidates as optical delay lines, dispersion compensators, and pulse reshapers. Using wavelength tunable pulses spectrally sliced from a mode-locked fiber laser, the transmission mode measurement was performed in the time domain with single picosecond resolution. Group delays and dispersion were measured with an autocorrelator as an ultrafast optical detector and cross-correlator. Our experimental results agree qualitatively with the theoretical and simulation predictions. A maximum group delay of 10 ps for a commercial 3 mm long uniform fiber Bragg grating and that of 22.6 ps for a research laboratory fabricated 1 cm grating were measured, corresponding to a group velocity 66% of the speed of light in bare fiber. We have also demonstrated in the overlap transmission region of a grating pair both gratings contribute to the group delay while the group velocity dispersion was canceled, resulting in additive delay in transmission with minimal pulse reshaping. This compound grating configuration was further expanded as specially designed grating sequence encoders and decoders in matched filter CDMA. The transmitter grating sequence temporally stretched the input pulse into a long time scale low peak intensity pseudorandom noise, while the conjugate grating sequence in the receiver performed pulse reconstruction and data recovery. A temporal FWHM contrast ratio of 2.5 and a peak intensity contrast ratio of 10 between the correctly and incorrectly decoded signals were achieved. Armed with more sophisticated grating designs we believe this would be a powerful solution to CDMA orthogonal code requirements.
Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong
2010-03-15
We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
NASA Astrophysics Data System (ADS)
Hann, Swook; Kim, Dong-Hwan; Park, Chang-Soo
2006-04-01
A monitoring technique for multiple power splitter-passive optical networks (PS-PON) is presented. The technique is based on the remote sensing of fiber Bragg grating (FBG) using a tunable OTDR. To monitor the multiple PS-PON, the FBG can be used for a wavelength dependent reflective reference on each branch end of the PS. The FBG helps discern an individual event of the multiple PS-PON for the monitoring in collaborate with information of Rayleigh backscattered power. The multiple PS-PON can be analyzed by the monitoring method at the central office under 10-Gbit/s in-service.
Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation
2012-05-11
modulation experiments 65 5.1 Review of FM lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Fabry - Perot lasers...asymmetrical Mach Zehnder interferometers (a-MZI) [17, 34], Fabry - Perot filters [35], fiber Bragg gratings [36] and tunable integrated filters [37, 38...transmitting subcarrier-multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot
Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.
Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong
2017-09-12
The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.
THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.
2000-01-01
A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.
NASA Astrophysics Data System (ADS)
Asquini, Rita; d'Alessandro, Antonio; Salusti, Andrea; Gizzi, Claudio
2003-08-01
A tunable waveguide grating router (WGR) design is reported, where a subpicosecond phase shift is obtained by means of the electro-optically induced refractive index change in the arms of an arrayed-waveguide grating (AWG) made of highly nonlinear poled polymer CLD-75/APC. The polymer consists of a guest-host system, formed by a ring-locked phenyltetraene bridged cromophore dispersed in an amorphous polycarbonate, with coefficient r33=55pm/V and propagation losses of 1.7dB/cm. We propose a multilayer structure on Si substrate, where segments of each waveguide of the AWG are sandwiched between a ground gold electrode and electrodes whose length varies over the AWG. Numerical simulations of a device with electrode length difference of 250μm show a tuning range of 11nm centered at 1550nm by varying the applied voltage from -90V to +90V. From the optimized AWG, a WGR operating with 16 channels spaced by 100GHz has been designed. The WGR is made of single-mode rib waveguides and buffers whose thicknesses are respectively 1.8μm and 1.7μm. A broader tunability range is obtained using the push-pull technique, which induces a refractive index change of opposite sign in two halves of the AWG. A crosstalk of -40dB with tuning range of 22nm over the C-band was figured out.
NASA Astrophysics Data System (ADS)
Xu, Yuanzhong
The main objective of the project was to develop ``eye-safe'' fiber-grating lasers for pollution measurement and monitoring. Fiber grating lasers have a number of advantages such as narrow linewidth and precise wavelength control over the semiconductor counterparts. Three types of Erbium doped fiber grating lasers emitting in 1.5 μm band were developed and characterized in this work. We first used an entirely original approach to develop tunable dual-wavelength switchable fiber grating laser for differential absorption spectroscopy. The lam can switch between two wavelengths with each wavelength being independently tunable. It's characterized by >6-mW output power, <2% intensity fluctuation, 100s Hz switching speed and 1:100,000 wavelength extinction ratio. The outstanding advantage of this approach is the simplicity in laser configuration as well as in detection system for dual wavelength laser, because it uses only an overlapped gain medium and one detector for both wavelengths. Main drawbacks of the prototype laser are slow switching speed (100s Hz) and multimode operation, which could be overcome by cavity dampening and modification in laser configuration. Short cavity erbium-doped fiber grating lasers using high Erbium concentration were also studied. A 6-cm long fiber-grating laser pumped by a 980-nm laser diode was constructed. The linewidth of the laser is very narrow (~100s kHz) but its output slope efficiency is relatively low (~1%). Furthermore, the ion clustering effect arising from high Er concentration tends to cause self-pulsation and thus instability to the laser. By replacing the Erbium doped fiber with Er/Yb codoped one, the fiber grating laser was made more stable and efficient. The ion clustering effect disappears in the laser output due to the low Erbium concentration in Er/Yb codoped fiber, while the Er/Yb codoped fiber's two orders higher pump absorption at 980 nm results in as large as 10 ~ 30% output slope efficiency in about 2 cm long laser. On the other hand, strong pump absorption in Er/Yb fiber was found to cause significant thermal effects in Er/Yb fiber grating lasers, which can be eliminated by ensuring proper thermal dissipation. Because of fiber laser's long lifetime at the upper laser level, its wavelength cannot be directly modulated at high speed. The widely used wavelength modulation spectroscopy (WMS) method is thus not suitable when using fiber laser sources in gas detection. The wavelength sweep scheme was thus employed as an alternative. Laser wavelength/frequency requirement and noise cancellation in this scheme are discussed. For a demonstration of fiber grating laser's application to pollutant monitoring and industrial sensing, laser spectroscopy of C2H 2 gas was undertaken with the Er/Yb codoped fiber-grating laser. A 10 -4 detection sensitivity was achieved. This is the first time, to our knowledge, that a single frequency fiber-grating laser was used in rapid laser spectroscopy. The investigation has shown that the fiber grating lasers are high performance as well as low cost, rugged and portable laser sources, very suitable for industrial sensing and pollution monitoring. A number of important pollutants, such as CO, CO2, H2S and C2H2 have absorption peaks around 1.55-μm wavelength and thus can be sensed with these lasers. Although the fiber lasers investigated here operate in the 1.5-μm window, the results are also very useful for fiber lasers that use the same operation principle in other wavelength regions.
NASA Astrophysics Data System (ADS)
Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki
2018-03-01
We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.
Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.
Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei
2012-08-27
A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tengxing; Peng, Yujia; Jiang, Wei
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
Wang, Tengxing; Peng, Yujia; Jiang, Wei; ...
2016-10-31
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
NASA Astrophysics Data System (ADS)
Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian
2014-03-01
We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.
Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.
Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P
2014-02-10
We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.
Tunable dual-band graphene-based infrared reflectance filter.
Goldflam, Michael D; Ruiz, Isaac; Howell, Stephen W; Wendt, Joel R; Sinclair, Michael B; Peters, David W; Beechem, Thomas E
2018-04-02
We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm -1 . Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.
Color display and encryption with a plasmonic polarizing metamirror
NASA Astrophysics Data System (ADS)
Song, Maowen; Li, Xiong; Pu, Mingbo; Guo, Yinghui; Liu, Kaipeng; Yu, Honglin; Ma, Xiaoliang; Luo, Xiangang
2018-01-01
Structural colors emerge when a particular wavelength range is filtered out from a broadband light source. It is regarded as a valuable platform for color display and digital imaging due to the benefits of environmental friendliness, higher visibility, and durability. However, current devices capable of generating colors are all based on direct transmission or reflection. Material loss, thick configuration, and the lack of tunability hinder their transition to practical applications. In this paper, a novel mechanism that generates high-purity colors by photon spin restoration on ultrashallow plasmonic grating is proposed. We fabricated the sample by interference lithography and experimentally observed full color display, tunable color logo imaging, and chromatic sensing. The unique combination of high efficiency, high-purity colors, tunable chromatic display, ultrathin structure, and friendliness for fabrication makes this design an easy way to bridge the gap between theoretical investigations and daily-life applications.
A single-stage optical load-balanced switch for data centers.
Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying
2012-10-22
Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.
Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V
2007-08-06
We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.
NASA Astrophysics Data System (ADS)
Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy
2016-05-01
It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.
Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.
Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D
2006-03-15
We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.
NASA Astrophysics Data System (ADS)
Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh
2017-01-01
We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2015-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2016-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolde, Jill A., E-mail: jill.nolde@nrl.navy.mil; Kim, Chul Soo; Jackson, Eric M.
2015-06-29
We demonstrate up to 39% resonant enhancement of the quantum efficiency (QE) of a low dark current nBn midwave infrared photodetector with a 0.5 μm InAsSb absorber layer. The enhancement was achieved by using a 1D plasmonic grating to couple incident light into plasmon modes propagating in the plane of the device. The plasmonic grating is composed of stripes of deposited amorphous germanium overlaid with gold. Devices with and without gratings were processed side-by-side for comparison of their QEs and dark currents. The peak external QE for a grating device was 29% compared to 22% for a mirror device when themore » illumination was polarized perpendicularly to the grating lines. Additional experiments determined the grating coupling efficiency by measuring the reflectance of analogous gratings deposited on bare GaSb substrates.« less
NASA Technical Reports Server (NTRS)
Stenholm, Ingrid; DeYoung, Russell J.
2001-01-01
Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.
Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system
NASA Astrophysics Data System (ADS)
Li, Linxin; Liu, Quan; Chen, Junming; Wang, Leilei; Jin, Yunxia; Yang, Yifeng; Shao, Jianda
2017-02-01
We report on a polarization-independent all-dielectric trapezoidal bilayer grating with broadband and high diffraction efficiency. The bilayer trapezoidal grating ridge on a reflector consists of an HfO2 layer and a SiO2 layer. The theoretical -1st order efficiencies of the grating are more than 95% with wavelength range from 1010 nm to 1080 nm for both TE and TM polarizations. The fabrication tolerances depending on the HfO2 and SiO2 layer grating ridge depths are enough to obtain the designed grating using current craft. The fabricated grating with exceeding 94% efficiency from 1000 nm to 1085 nm measured by a non-polarization laser has been fabricated and applied in a spectral beam combining external cavity to combine eight beams into one beam output with 10.77 kW.
5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther
2018-02-01
In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.
Liu, Bo; Braiman, Yehuda
2018-02-06
In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
NASA Astrophysics Data System (ADS)
Liu, Bo; Braiman, Yehuda
2018-05-01
We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Braiman, Yehuda
In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
Strain-induced tunable negative differential resistance in triangle graphene spirals
NASA Astrophysics Data System (ADS)
Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen
2018-05-01
Using non-equilibrium Green’s function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.
Strain-induced tunable negative differential resistance in triangle graphene spirals.
Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen
2018-05-18
Using non-equilibrium Green's function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.
Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.
Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo
2011-12-05
We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.
NASA Astrophysics Data System (ADS)
Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi
2018-05-01
By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.
Optical fiber endface biosensor based on resonances in dielectric waveguide gratings
NASA Astrophysics Data System (ADS)
Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli
2000-05-01
A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.
Aluminum alloy material structure impact localization by using FBG sensors
NASA Astrophysics Data System (ADS)
Zhu, Xiubin
2014-12-01
The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.
Rigorous coupled wave analysis of acousto-optics with relativistic considerations.
Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan
2015-09-01
A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples.
Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors
NASA Astrophysics Data System (ADS)
González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.
2017-04-01
Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Mu, Quanquan; Cao, Zhaoliang; Lu, Xinghai; Ma, Ji; Xuan, Li
2017-08-01
This paper reports the ultra-broad 149.1 nm lasing emission from 573.2 to 722.3 nm using a simple [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM)-doped holographic polymer-dispersed liquid crystal (HPDLC) grating quasi-waveguide configuration by varying the grating period. The lasing emission beams show s-polarization property. The quasi-waveguide structure, which contained the cover glass, the DCM-doped HPDLC grating, the semiconducting polymer film poly[-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV), and the substrate were confirmed to decrease lasing threshold and broaden lasing wavelength. The operational lifetime of the device is 240 000 pulses, which corresponds to an overall laser duration of more than 6 h at a repetition rate of 10 Hz. In addition, the dual-wavelength lasing range from the 8th and 9th order is over 40 nm. The electrical tunability of the dual-wavelength lasing emission is over 1 nm. The experimental results facilitated the decreased lasing threshold and broadened lasing wavelength range of organic solid-state lasers.
External Cavity Coherent Transmitter Modules
1990-11-01
Lasers 141 Tunability Aspects of DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory...Linewidth Considerations for DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory
Liu, Shuo; Yan, Fengping; Feng, Ting; Wu, Beilei; Dong, Ze; Chang, Gee-Kung
2014-08-20
A kind of switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror is presented and experimentally demonstrated. By adjusting the polarization controllers (PCs), stable dual-wavelength operation is obtained at the 2 μm band. The optical signal-to-noise ratio (OSNR) is better than 56 dB. The wavelength tuning is performed by applying static strain into the fiber Bragg grating. A tuning range from 0 to 5.14 nm is achieved for the dual-wavelength spacing. By adjusting the PCs properly, the fiber laser can also operate in single-wavelength state with the OSNR for each wavelength more than 50 dB.
Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy.
Diba, Abdou S; Xie, Feng; Gross, Barry; Hughes, Lawrence C; Zah, Chung-en; Moshary, Fred
2015-10-19
Feasibility of using a mid-Infrared tunable sampled-grating distributed Bragg reflectors quantum cascade laser for high resolution multicomponent trace gas spectroscopy is demonstrated. By controlling the driving currents to the front and back sections of the laser, we were able to tune a pulsed 4.55 µm laser over a frequency range a of 30 cm(-1) with high resolution, accuracy and repeatability. The laser was applied to absorption spectroscopy of ambient and reduced pressure (150 Torr) air in a 205 meters multi-pass Herriott cell, and by using standard LSQ fitting to a spectral database of these trace gases (HITRAN), the concentrations of nitrous oxide, carbon monoxide, and water vapor were retrieved.
Rao, Gottipaty N; Karpf, Andreas
2010-09-10
A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, R.; Marchenko, D.; Mandon, J.
We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.
NASA Astrophysics Data System (ADS)
Goodwin, Peter M.; Marshall, Bruce R.; Stevens, Gerald D.; Dattelbaum, Dana M.
2013-03-01
Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.
Goodwin, Peter M; Marshall, Bruce R; Stevens, Gerald D; Dattelbaum, Dana M
2013-03-01
Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.
Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.
St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei
2015-12-01
Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000 μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.
Tunable dual-band graphene-based infrared reflectance filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldflam, Michael D.; Ruiz, Isaac; Howell, Stephen W.
Here, we experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm –1. Electromagnetic simulationsmore » verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.« less
Tunable dual-band graphene-based infrared reflectance filter
Goldflam, Michael D.; Ruiz, Isaac; Howell, Stephen W.; ...
2018-03-23
Here, we experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm –1. Electromagnetic simulationsmore » verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.« less
Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin
2017-06-10
A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.
Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar
2017-04-20
This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0 μϵ to 12,000 μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12 pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li
2016-11-01
Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
2000-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
1998-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.
In-fiber Fabry-Perot refractometer assisted by a long-period grating.
Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V
2010-02-15
We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5).
Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José
2008-01-07
We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.
NASA Astrophysics Data System (ADS)
Shin, Yong-Wook; Sung, Won Ju; Eknoyan, O.; Madsen, C. K.; Taylor, H. F.
2012-04-01
A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.
Metal-polymer nanocomposites for stretchable optics and plasmonics
NASA Astrophysics Data System (ADS)
Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo
2016-12-01
Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.
Integrated waveguide Bragg gratings for microwave photonics signal processing.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2013-10-21
Integrated Microwave photonics (IMWP) signal processing using Photonic Integrated Circuits (PICs) has attracted a great deal of attention in recent years as an enabling technology for a number of functionalities not attainable by purely microwave solutions. In this context, integrated waveguide Bragg grating (WBG) devices constitute a particularly attractive approach thanks to their compactness and flexibility in producing arbitrarily defined amplitude and phase responses, by directly acting on coupling coefficient and perturbations of the grating profile. In this article, we review recent advances in the field of integrated WBGs applied to MWP, analyzing the advantages leveraged by an integrated realization. We provide a perspective on the exciting possibilities offered by the silicon photonics platform in the field of MWP, potentially enabling integration of highly-complex active and passive functionalities with high yield on a single chip, with a particular focus on the use of WBGs as basic building blocks for linear filtering operations. We demonstrate the versatility of WBG-based devices by proposing and experimentally demonstrating a novel, continuously-tunable, integrated true-time-delay (TTD) line based on a very simple dual phase-shifted WBG (DPS-WBG).
Manipulating Smith-Purcell Emission with Babinet Metasurfaces
NASA Astrophysics Data System (ADS)
Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin
2016-10-01
Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C -aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C -aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C -aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.
Manipulating Smith-Purcell Emission with Babinet Metasurfaces.
Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin
2016-10-07
Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C-aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C-aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C-aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.
Curved Piezoelectric Actuators for Stretching Optical Fibers
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.
Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech
2016-04-18
We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.
Single steady frequency and narrow-linewidth external-cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng
2003-11-01
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.
Microfluidic oscillators with widely tunable periods
Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi
2013-01-01
We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between 0.3 s to 4.1 h by tuning an external membrane capacitor. This capacitor allows multiple adjustable periods at a given input flow-rate, thus providing great flexibility in device operation. Also, we show that a sufficiently large external capacitance, relative to the internal capacitance of the microfluidic valve itself, is a critical requirement for oscillation. These widely tunable microfluidic oscillators are envisioned to be broadly useful for the study of biological rhythms, as on-chip timing sources for microfluidic logic circuits, and other applications that require variation in timed flow switching. PMID:23429765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch; Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich; Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch
2015-11-30
In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolutionmore » molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.« less
Optical, Electronic and Optoelectronic Material and Device Research
1993-10-31
11, pp. 1275-1277 (September 1991). G. Griffel , W. K. Marshall, I. Grav6, and A. Yariv, "Frequency Control Using a Complex Effective Reflectivity in...Temperatures (5K)," Applied Physics Letters, vol. 58, no. 24, pp. 2752-2754 (June 1991). G. Griffel and A. Yariv, "Frequency Response and Tunability...of Grating- Assisted Directional Couplers," IEEE Journal of Quantum Electronics, vol. 27, no. 5, pp. 1115-1118 (May 1991). G. Griffel , H. Z. Chen, Ilan
2008-07-01
hours. The detector signals are post-processed with a software lock-in amplifier to recover the WMS-1f and WMS-2f signals. The TDLAS sensor utilizes...Figure 6. Schematic of TDLAS sensor for temperature and water vapor concentration. Fiber Diode lasers Grating Fiber Detectors Demultiplexer Multiplexer...within the combustor. Tunable diode laser- based absorption spectroscopy ( TDLAS ) is used to measure water vapor concentration and static temperature near
NASA Technical Reports Server (NTRS)
Varanasi, Prasad
1992-01-01
Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.
Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.
DiPippo, William; Lee, Bong Jae; Park, Keunhan
2010-08-30
This paper reports the design analysis of a microfabricatable mid-infrared (mid-IR) surface plasmon resonance (SPR) sensor platform. The proposed platform has periodic heavily doped profiles implanted into intrinsic silicon and a thin gold layer deposited on top, making a physically flat grating SPR coupler. A rigorous coupled-wave analysis was conducted to prove the design feasibility, characterize the sensor's performance, and determine geometric parameters of the heavily doped profiles. Finite element analysis (FEA) was also employed to compute the electromagnetic field distributions at the plasmon resonance. Obtained results reveal that the proposed structure can excite the SPR on the normal incidence of mid-IR light, resulting in a large probing depth that will facilitate the study of larger analytes. Furthermore, the whole structure can be microfabricated with well-established batch protocols, providing tunability in the SPR excitation wavelength for specific biosensing needs with a low manufacturing cost. When the SPR sensor is to be used in a Fourier-transform infrared (FTIR) spectroscopy platform, its detection sensitivity and limit of detection are estimated to be 3022 nm/RIU and ~70 pg/mm(2), respectively, at a sample layer thickness of 100 nm. The design analysis performed in the present study will allow the fabrication of a tunable, disposable mid-IR SPR sensor that combines advantages of conventional prism and metallic grating SPR sensors.
Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael
2018-04-02
We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.
Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology
NASA Astrophysics Data System (ADS)
Condori Quispe, Hugo O.; Encomendero-Risco, Jimy J.; Xing, Huili Grace; Sensale-Rodriguez, Berardi
2016-08-01
We theoretically analyze the operation of a terahertz amplifier consisting of a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT) in a grating-gate topology. In these devices, the key element enabling substantial power gain is the efficient coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e., the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as discussed in previous works, therefore potentially enabling terahertz amplification with associated power gains >40 dB.
Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condori Quispe, Hugo O.; Sensale-Rodriguez, Berardi; Encomendero-Risco, Jimy J.
2016-08-08
We theoretically analyze the operation of a terahertz amplifier consisting of a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT) in a grating-gate topology. In these devices, the key element enabling substantial power gain is the efficient coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e., the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as discussed in previous works, therefore potentially enabling terahertz amplification with associated power gains >40 dB.
NASA Astrophysics Data System (ADS)
Blinov, L. M.; Lazarev, V. V.; Yudin, S. G.; Artemov, V. V.; Palto, S. P.; Gorkunov, M. V.
2018-01-01
The electro-optic effect in three nanoscale heterostructures, in each of which a thin layer of dielectric or ferroelectric material is inserted between two planar metal electrodes, has been studied. Each structure has one aluminum layer, containing a subwavelength grating with a period of 400 nm, contacting with either the glass substrate or air. The light transmission spectra of structures with subwavelength grating contain characteristic plasmon dips. Short external-voltage pulses affect the change in the refractive index of the corresponding active layer. Significant values of these changes may be useful for designing optical modulators.
Polymer waveguide grating sensor integrated with a thin-film photodetector
Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo
2014-01-01
This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407
NASA Astrophysics Data System (ADS)
Yang, Yue
The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping. (Abstract shortened by ProQuest.).
Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam
NASA Astrophysics Data System (ADS)
Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.
2018-04-01
We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.
Quantum cascade lasers: from tool to product.
Razeghi, M; Lu, Q Y; Bandyopadhyay, N; Zhou, W; Heydari, D; Bai, Y; Slivken, S
2015-04-06
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication.
Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan
2017-11-01
The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.
Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials
NASA Astrophysics Data System (ADS)
Hou, Zhilin; Assouar, Badreddine
2018-02-01
We theoretically and numerically report on the tunable elastic Parity-Time (PT) symmetric structure based on shunted piezoelectric units. We show that the elastic loss and gain can be archived in piezoelectric materials when they are shunted by external circuits containing positive and negative resistances. We present and discuss, as an example, the strongly dependent relationship between the exceptional points of a three-layered system and the impedance of their external shunted circuit. The achieved results evidence that the PT symmetric structures based on this proposed concept can actively be tuned without any change of their geometric configurations.
10-Gb/s direct modulation of polymer-based tunable external cavity lasers.
Choi, Byung-Seok; Oh, Su Hwan; Kim, Ki Soo; Yoon, Ki-Hong; Kim, Hyun Soo; Park, Mi-Ran; Jeong, Jong Sool; Kwon, O-Kyun; Seo, Jun-Kyu; Lee, Hak-Kyu; Chung, Yun C
2012-08-27
We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively. We directly modulate this laser at 10 Gb/s and transmit the modulated signal over 20 km of standard single-mode fiber. The power penalty is measured to be <2.8 dB at the bit-error rate (BER) of 10(-10).
NASA Astrophysics Data System (ADS)
Wang, Deng-Shan; Liu, Jiang; Wang, Lizhen
2018-03-01
In this paper, we investigate matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross-Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic-molecular matter-wave solitons.
NASA Astrophysics Data System (ADS)
Wang, Tengxing; Rahman, B. M. Farid; Peng, Yujia; Xia, Tian; Wang, Guoan
2015-05-01
A well designed coplanar waveguide (CPW) based center frequency tunable bandpass filter (BPF) at 4 GHz enabled with patterned Permalloy (Py) thin film has been implemented. The operating frequency of BPF is tunable with only DC current without the use of any external magnetic field. Electromagnetic bandgap resonators structure is adopted in the BPF and thus external DC current can be applied between the input and output of the filter for tuning of Py permeability. Special configurations of resonators with multiple narrow parallel sections have been considered for larger inductance tenability; the tunability of CPW transmission lines of different widths with patterned Py thin film on the top of the signal lines is compared and measured. Py thin film patterned as bars is deposited on the top of the multiple narrow parallel sections of the designed filter. No extra area is required for the designed filter configuration. Filter is measured and results show that its center frequency could be tuned from 4 GHz to 4.02 GHz when the DC current is applied from 0 mA to 400 mA.
NASA Astrophysics Data System (ADS)
Patel, C. K. N.
2008-01-01
Tunable laser photoacoustic spectroscopy is maturing rapidly in its applications to real world problems. One of the burning problems of the current turbulent times is the threat of terrorist acts against civilian population. This threat appears in two distinct forms. The first is the potential release of chemical warfare agents (CWA), such as the nerve agents, in a crowded environment. An example of this is the release of Sarin by Aum Shinrikyo sect in a crowded Tokyo subway in 1995. An example of the second terrorist threat is the ever-present possible suicide bomber in crowded environment such as airports, markets and large buildings. Minimizing the impact of both of these threats requires early detection of the presence of the CWAs and explosives. Photoacoustic spectroscopy is an exquisitely sensitive technique for the detection of trace gaseous species, a property that Pranalytica has extensively exploited in its CO2 laser based commercial instrumentation for the sub-ppb level detection of a number of industrially important gases including ammonia, ethylene, acrolein, sulfur hexafluoride, phosphine, arsine, boron trichloride and boron trifluoride. In this presentation, I will focus, however, on our recent use of broadly tunable single frequency high power room temperature quantum cascade lasers (QCL) for the detection of the CWAs and explosives. Using external grating cavity geometry, we have developed room temperature QCLs that produce continuously tunable single frequency CW power output in excess of 300 mW at wavelengths covering 5 μm to 12 μm. I will present data that show a CWA detection capability at ppb levels with false alarm rates below 1:108. I will also show the capability of detecting a variety of explosives at a ppb level, again with very low false alarm rates. Among the explosives, we have demonstrated the capability of detecting homemade explosives such as triacetone triperoxide and its liquid precursor, acetone which is a common household liquid. This capability, deployed at airports and other public places, will go a long way towards increasing public safety and minimizing inconveniences faced in airline travel.
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-01-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
NASA Astrophysics Data System (ADS)
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-03-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu
2015-12-21
Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown tomore » be nearly diffraction-limited, even at high amplifier current.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesim, Yunus E., E-mail: yunus.kesim@bilkent.edu.tr; Battal, Enes; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800
2014-07-15
Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectricmore » properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.« less
Powerless tunable photonic crystal with bistable color and millisecond switching.
Chan, Chia-Tsung; Yeh, J Andrew
2011-07-04
This study demonstrated a tunable photonic crystal (PhC) with 70 nm-wide spectral tuning (535 nm to 605 nm) and 3 ms of response time. The tunable PhC is based on reciprocal capillary action of liquid in the nanoscale PhC voids. By wetting the porous silicon PhC with ethanol and water, the PhC can be bistably switched respectively between liquid-filled state (orange color) and vapor-filled state (yellow color). Owing to the energy barrier between the two wetting states, the tunable PhC can remain at either of the two states with no external power consumption.
NASA Astrophysics Data System (ADS)
Singh, Bipin K.; Pandey, Praveen C.; Rastogi, Vipul
2018-05-01
Tunable temperature dependent terahertz photonic band gaps (PBGs) in one-dimensional (1-D) photonic crystal composed of alternating layers of graded index and semiconductor materials are demonstrated. Results show the influence of temperature, geometrical parameters, grading profile and material damping factor on the PBGs. Number of PBG increases with increasing the layer thickness and their bandwidth can be tuned with external temperature and grading parameters. Lower order band gap is more sensitive to the temperature which shows increasing trend with temperature, and higher order PBGs can also be tuned by controlling the external temperature. Band edges of PBGs are shifted toward higher frequency side with increasing the temperature. Results show that the operational frequencies of PBGs are unaffected when loss involved. This work enables to design tunable Temperature dependent terahertz photonic devices such as reflectors, sensors and filters etc.
Tyszka-Zawadzka, Anna; Janaszek, Bartosz; Szczepański, Paweł
2017-04-03
The tunability of slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands is investigated. For the first time it has been shown that proper design of a GHMM structure forming waveguide layer and the geometry of the waveguide itself allows stopped light to be obtained in an almost freely selected range of wavelengths within SCLU bands. In particular, the possibility of controlling light propagation in GHMM waveguides by external biasing has been presented. The change of external electric field enables the stop light of the selected wavelength as well as the control of a number of modes, which can be stopped, cut off or supported. Proposed GHMM waveguides could offer great opportunities in the field of integrated photonics that are compatible with CMOS technology, especially since such structures can be utilized as photonic memory cells, tunable optical buffers, delays, optical modulators etc.
Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin; Guo, Wanlin
2016-01-01
Low-dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low-dimensional carbon, boron nitride, metal-dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one- and two-dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324-350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article.
NASA Astrophysics Data System (ADS)
Yakovlev, Egor V.; Troshina, Anna V.; Korsakova, Sofia A.; Andronik, Mikhail; Rodionov, Ilya A.; Aliev, Ismail N.; Zaytsev, Kirill I.; Cherkasova, Olga P.; Tuchin, Valery V.; Yurchenko, Stanislav O.
2018-04-01
Colloidal suspensions and tunable self-assembly of colloidal particles attract a great interest in recent years. In this paper, we propose a new setup and technology for studies of self-assembly of colloidal particles, interection of which between themselves is tuned by external rotating electric fields. We reveal wide prospectives of electric field employment for tunable self-assembly, from suspensions of inorganic particles to ensembles of biological cells. These results make enable particle-resolved studies of various collective phenomena and fundamental processes in many-particle systems in equilibrium state and far from it, while the dynamics can be resolved at the level of individual particles using video microscopy. For the first time, we demonstrate that, apart from ability to prepare photonic crystalline films of inorganic silica particles, the tunable self-assembly provides a novel technological way for manipulation with ensembles of biological cells by control of interactions between them.
Smietana, Mateusz; Bock, Wojtek J; Mikulic, Predrag; Chen, Jiahua
2010-01-01
The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD>1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n>2.2 at λ=1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters.
Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers
NASA Astrophysics Data System (ADS)
Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.
2011-09-01
Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-01-15
A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.
Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Phillips, Mark C.
2015-07-01
A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.
Detection of orbital angular momentum using a photonic integrated circuit.
Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen
2016-06-20
Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states.
Photonic integrated circuits based on sampled-grating distributed-Bragg-reflector lasers
NASA Astrophysics Data System (ADS)
Barton, Jonathon S.; Skogen, Erik J.; Masanovic, Milan L.; Raring, James; Sysak, Matt N.; Johansson, Leif; DenBaars, Steven P.; Coldren, Larry A.
2003-07-01
The Sampled-Grating Distributed-Bragg-Reflector laser(SGDBR) provides wide tunability (>40nm), and high output power (>10mW). Driven by the demand for network reconfigurability and ease of implementation, the SGDBR has moved from the research lab to be commercially viable in the marketplace. The SGDBR is most often implemented using an offset-quantum well epitaxial structure in which the quantum wells are etched off in the passive sections. Alternatively, quantum well intermixing has been used recently to achieve the same goal - resulting in improved optical gain and the potential for multiple bandgaps along the device structure. These epitaxial "platforms" provide the basis for more exotic opto-electronic device functionality exhibiting low chirp for digital applications and enhanced linearity for analog applications. This talk will cover state-of-the-art opto-electronic devices based on the SGDBR platform including: integrated Mach-Zehnder modulators, and integrated electro-absorption modulators.
Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang
2012-01-16
By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.
Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Bender, Helmar; Stehle, Christian; Zimmermann, Claus; Slama, Sebastian; Fiedler, Johannes; Scheel, Stefan; Buhmann, Stefan Yoshi; Marachevsky, Valery N.
2014-01-01
In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive interaction between the atoms and the grating in the presence of an external laser source. The Casimir-Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the potential landscape in agreement with the theory based on Rayleigh decompositions.
NASA Astrophysics Data System (ADS)
Awasthi, Suneet Kumar; Panda, Ranjita; Shiveshwari, Laxmi
2017-07-01
The multichannel tunable filter properties of one-dimensional ternary plasma photonic crystal composed of magnetized plasma and lossless dielectric have been theoretically investigated using transfer matrix method in the microwave region. The proposed filters possess 2N - 2 comb-like sharp resonant peaks also called transmission channels for N > 1 in transmission spectra in the absence and presence of an external magnetic field. Due to the coupling between evanescent waves and propagating modes in plasma and dielectric layers, respectively, 2N - 2 transmission channels are found without the addition of any defect, enabling the structure to work as a multichannel filter. Next, the filter properties can be made tunable by the application of an external magnetic field, i.e., channel frequency can either be red or blue shifted depending upon the orientation of an external magnetic field. The number of channels and their positions can also be modulated by changing the number of periods (N) and the incident angle (θo), respectively, for both transverse electric (TE) and transverse magnetic (TM) modes besides other parameters such as plasma collision frequency, thickness of the plasma layer, plasma frequency, etc.
Ali, Mubarak; Ramirez, Patricio; Nguyen, Hung Quoc; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Ensinger, Wolfgang
2012-04-24
We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurable diode showing different rectifying behaviors by applying chemical and electrical signals. The remarkable characteristics of the new nanopore are the sharp response observed in the I-V curves, the improved tunability (with respect to previous designs of symmetric nanopores) which is achieved because of the direct external access to the nanostructure mouths, and the broad range of rectifying properties. The results concern both fundamental concepts useful for the understanding of transport processes in biological systems (ion channels) and applications relevant for tunable nanopore technology (information processing and drug controlled release).
Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages.
Huang, Gaoshan; Wang, Jiyuan; Liu, Zhaoqian; Zhou, Dekai; Tian, Ziao; Xu, Borui; Li, Longqiu; Mei, Yongfeng
2017-12-07
Controllable locomotion in the micro-/nanoscale is challenging and attracts increasing research interest. Tubular microjets self-propelled by microbubbles are intensively investigated due to their high energy conversion efficiency, but the imperfection of the tubular geometry makes it harder to realize linear motion. Inspired by the macro rocket, we designed a tubular microjet with a grating-structured wall which mimics the guiding empennage of the macro rocket, and we found that the fluid can be effectively guided by the grooves. Both theoretical simulation and experimental work have been carried out, and the obtained results demonstrate that the stability margin of the grating-structured microjet can be enhanced. Compared with microjets with smooth walls, the structured microjets show an enhanced ability of moving linearly. In 10% H 2 O 2 , only 20% of the smooth microjets demonstrate linear trajectories, while 80% of the grating-structured microjets keep moving straight. The grating-structured microjet can maintain linear motion under external disturbance. We further propose to increase the stability by introducing a helical grating structure.
NASA Astrophysics Data System (ADS)
Dugin, A. V.; Zel'dovich, Boris Ya; Il'inykh, P. N.; Liberman, V. S.; Nesterkin, O. P.
1992-11-01
The higher spatial harmonics of the photorefractive response have been studied theoretically and experimentally for gratings written by phase-locked detection in an alternating external field. The conditions for writing higher spatial harmonics are derived analytically. The amplitude of the second spatial harmonic has been found experimentally as a function of the spatial frequency in two Bi12TiO20 crystals.
Wavelength tunable L Band polarization-locked vector soliton fiber laser based on SWCNT-SA and CFBG
NASA Astrophysics Data System (ADS)
Yan, Yaxi; Wang, Jiaqi; Wang, Liang; Cheng, Zhenzhou
2018-04-01
Wavelength tunable L-Band polarization-locked vector soliton fiber laser based on single-walled carbon nanotube saturable absorber (SWCNT-SA) and chirped fiber Bragg grating (CFBG) is presented for the first time. By inserting the SWCNT-SA into an all-fiber laser cavity, polarization-locked vector solitons (PLVS) are obtained. The CFBG glued on a plastic cantilever is used for wavelength tuning. By mechanically bending the cantilever, the center wavelength of the PLVS pulses can be continuously tuned from 1606.8 nm to 1614 nm, while the polarization-locked state is kept stable. The properties and dynamics of PLVSs are experimentally investigated and stable PLVS operation including high-order PLVSs is demonstrated. The pulse width and repetition rate are 7.06 ps and 11.9 MHz at a wavelength of 1611 nm, respectively. This work demonstrates the feasibility of using polarization-insensitive CFBG to realize wavelength tuning in PLVS fiber laser.
Dual-wavelength tunable fibre laser with a 15-dBm peak power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latif, A A; Awang, N A; Zulkifli, M Z
2011-08-31
A high-power dual-wavelength tunable fibre laser (HP-DWTFL) operating in the C-band at wavelengths from 1536.7 nm to 1548.6 nm is proposed and demonstrated. The HP-DWTFL utilises an arrayed waveguide grating (AWG) (1 x 16 channels) and is capable of generating eight different dual-wavelength pairs with eight possible wavelength spacings ranging from 0.8 nm (the narrowest spacing) to 12.0 nm (the widest spacing). The average output power and side mode suppression ratio (SMSR) of the HP-DWTFL are measured to be 15 dBm and 52.55 dB, respectively. The proposed HP-DWTFL is highly stable with no variations in the chosen output wavelengths andmore » has minimal changes in the output power. Such a laser has good potential for use in measurements, communications, spectroscopy and terahertz applications. (control of radiation parameters)« less
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.
Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K
2013-02-11
In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.
TWC and AWG based optical switching structure for OVPN in WDM-PON
NASA Astrophysics Data System (ADS)
Bai, Hui-feng; Chen, Yu-xin; Wang, Qin
2015-03-01
With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical network (WDM-PON). This paper proposes a switching structure based on the tunable wavelength converter (TWC) and the arrayed-waveguide grating (AWG) for WDM-PON, in order to provide the function of opitcal virtual private network (OVPN). Using the tunable wavelength converter technology, this switch structure is designed and works between the optical line terminal (OLT) and optical network units (ONUs) in the WDM-PON system. Moreover, the wavelength assignment of upstream/downstream can be realized and direct communication between ONUs is also allowed by privite wavelength channel. Simulation results show that the proposed TWC and AWG based switching structure is able to achieve OVPN function and to gain better performances in terms of bite error rate (BER) and time delay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akulov, V A; Kablukov, S I; Babin, Sergei A
2012-02-28
This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less
Flexible photonic crystal membranes with nanoparticle high refractive index layers.
Karrock, Torben; Paulsen, Moritz; Gerken, Martina
2017-01-01
Flexible photonic crystal slabs with an area of 2 cm 2 are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices.
A 10 micron heterodyne receiver for ultra high resolution astronomical spectroscopy
NASA Technical Reports Server (NTRS)
Buhl, D.; Chin, G.; Faris, J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D.
1980-01-01
An improved CO2 laser heterodyne spectrometer is examined. The present system uses reflective optics to eliminate refocusing at different wavelengths, and the local oscillator is a line-center-stabilized isotopic CO2 laser. A tunable diffraction grating makes possible easy and rapid selection of over 50 transitions per isotope of CO2. The IF (0 to 1.6 GHz) from the HgCdTe photomizer is analyzed by a 128-channel filter bank, consisting of 64 tunable 5-MHz filters and 64 fixed 25-MHz RF filters. These filters provide resolving powers of about 1,000,000 to 10,000,000 and velocity resolution of 50 to 250 m/sec; their output is synchronously detected, integrated, multiplexed and stored in a buffer memory for the desired integration period. Kitt Peak observations show the wide spectral coverage, wide mixer and electronics bandwidth, and high sensitivity of the system.
Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs
NASA Technical Reports Server (NTRS)
Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia
1997-01-01
Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].
NASA Astrophysics Data System (ADS)
Canute Kamikawachi, Ricardo; Rafael Collere Possetti, Gustavo; Falate, Rosane; Muller, Marcia; Luís Fabris, José
2007-05-01
A detailed study of the thermal and strain sensitivities of a long-period grating when the device is immersed in different external media is presented. The range of refractive indices analyzed are within 1.000 to 1.447, corresponding to samples of air, water, ethanol, naphtha, thinner, turpentine, and kerosene. Within the same range of refractive indices, the strain sensitivity is between (-0.24 ± 0.03) and (-0.94 ± 0.11) pm/μɛ. For the grating immersed in these fluids, the refractive index sensitivity ranges from -3 to -1035.6 nm per refractive index units. The coupling thermo-optic coefficients and the strain-optic coefficients are also measured, resulting in the range from (2.45 ± 0.04)×10-5 to (15.89 ± 0.82)×10-5 deg C-1 and (-1.15 ± 0.04) to (-1.61 ± 0.04) μɛ-1, respectively. A noticeable nonlinear behavior of the thermal sensitivity is found for external media with refractive indices higher than 1.430.
Smietana, Mateusz; Bock, Wojtek J.; Mikulic, Predrag; Chen, Jiahua
2010-01-01
The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nd > 1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n > 2.2 at λ = 1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters. PMID:22163527
Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin
2016-01-01
Low‐dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low‐dimensional carbon, boron nitride, metal‐dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one‐ and two‐dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324–350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article. PMID:27818710
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
Optical temperature sensing on flexible polymer foils
NASA Astrophysics Data System (ADS)
Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans
2016-04-01
In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.
Nanoparticles Doped Liquid Crystal Filled Photonic Bandgap Fibers
NASA Astrophysics Data System (ADS)
Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders
2008-10-01
We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum to the one achieved with undoped liquid crystals. New interesting features such as frequency dependent behavior and a transmission spectrum with tunable attenuation on the short wavelength side of the bandgap suggest a potential application of this device as a tunable all-in-fiber gain equalization filter. The tunability of the device is demonstrated by changing the temperature of the liquid crystal and by varying both the amplitude and the frequency of the applied external electric field.
NASA Astrophysics Data System (ADS)
Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.
2011-09-01
We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.
NASA Astrophysics Data System (ADS)
Bock, Carlos; Prat, Josep; Walker, Stuart D.
2005-12-01
A novel time/space/wavelength division multiplexing (TDM/WDM) architecture using the free spectral range (FSR) periodicity of the arrayed waveguide grating (AWG) is presented. A shared tunable laser and a photoreceiver stack featuring dynamic bandwidth allocation (DBA) and remote modulation are used for transmission and reception. Transmission tests show correct operation at 2.5 Gb/s to a 30-km reach, and network performance calculations using queue modeling demonstrate that a high-bandwidth-demanding application could be deployed on this network.
Free-space wavelength-multiplexed optical scanner.
Yaqoob, Z; Rizvi, A A; Riza, N A
2001-12-10
A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.
A MHz speed wavelength sweeping for ultra-high speed FBG interrogation
NASA Astrophysics Data System (ADS)
Kim, Gyeong Hun; Lee, Hwi Don; Eom, Tae Joong; Jeong, Myung Yung; Kim, Chang-Seok
2015-09-01
We demonstrated a MHz speed wavelength-swept fiber laser based on the active mode locking (AML) technique and applied to interrogation system of an array of fiber Bragg grating (FBG) sensors. MHz speed wavelength sweeping of wavelength-swept fiber laser can be obtained by programmable frequency modulation of the semiconductor optical amplifier (SOA) without any wavelength tunable filter. Both static and dynamic strain measurement of FBG sensors were successfully characterized with high linearity of an R-square value of 0.9999 at sweeping speed of 50 kHz.
Target reflectance measurements for calibration of lidar atmospheric backscatter data
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T.; Haner, D. A.; Oppenheim, U. P.; Flamant, P. H.
1983-01-01
Wavelength and angular dependence of reflectances and depolarization in the 9-11 micron region are reported for four standard targets: flowers of sulfur, flame-sprayed aluminum, 20-grit sandblasted aluminum, and 400-grit silicon carbon sandpaper. Measurements are presented and compared using a CW CO2 grating-tunable laser in a laboratory backscatter apparatus, an integrating sphere, and a coherent pulsed TEA-CO2 lidar system operating in the 9-11 micron region. Reflectance theory related to the use of hard targets to calibrate lidar atmospheric backscatter data is discussed.
A wavelength scannable XeCl oscillator-ring amplifier laser system
NASA Technical Reports Server (NTRS)
Pacala, T. J.; Mcdermid, I. S.; Laudenslager, J. B.
1982-01-01
A holographic grating at grazing angle of incidence was used to achieve tunable, narrow bandwidth (0.005 nm) operation of a XeCl oscillator for injection locking of a ring amplifier. The amplifier's narrow bandwidth output energy was constant and equal to the untuned, broadband output (approximately 15 mJ) in regions where injection locking was achieved. Scanning was provided by use of a stepping motor-driven differential micrometer on the tuning mirror. This system was used to produce a laser excitation spectrum of hydroxyl radicals (OH) in a flame.
NASA Astrophysics Data System (ADS)
Whitesides, George M.; Tang, Sindy K. Y.
2006-09-01
Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.
White, James D; Scholten, Robert E
2012-11-01
We describe a compact laser wavelength measuring instrument based on a small diffraction grating and a consumer-grade webcam. With just 1 pW of optical power, the instrument achieves absolute accuracy of 0.7 pm, sufficient to resolve individual hyperfine transitions of the rubidium absorption spectrum. Unlike interferometric wavemeters, the instrument clearly reveals multimode laser operation, making it particularly suitable for use with external cavity diode lasers and atom cooling and trapping experiments.
The Characteristics in the Sensitivity of Microfiber Fabry-Perot Interferometric Transducers
NASA Astrophysics Data System (ADS)
Wang, Xiuxin; Li, Zhangyong; Lin, Jinzhao; Wang, Wei; Tian, Yin; Pang, Yu
2018-01-01
We inscribe a Fabry-Perot (FP) resonator in the microfiber utilizing the 193-nm UV exposure and the phase mask technique. Some new characteristics in contrast to the conventional counterparts are measured, which are attributed to the index change in the grating and the dispersion of the effective grating length, respectively. The FP spectral dependencies on external strain, temperature, and refractive index are investigated. Our fabricated structures can have potential of acting as ultrasonic transducers and photo acoustic imaging.
Studies on 405nm blue-violet diode laser with external grating cavity
NASA Astrophysics Data System (ADS)
Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo
2016-03-01
Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.
Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M
2016-01-01
We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.
Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.
Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan
2016-07-11
The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
3.1 W narrowband blue external cavity diode laser
NASA Astrophysics Data System (ADS)
Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui
2018-03-01
We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.
Ascorbe, Joaquin; Corres, Jesus M; Del Villar, Ignacio; Matias, Ignacio R
2018-06-07
Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.
Design of a fiber-optic interrogator module for telecommunication satellites
NASA Astrophysics Data System (ADS)
Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus
2017-11-01
In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.
SO2 Spectroscopy with A Tunable UV Laser
NASA Technical Reports Server (NTRS)
Morey, W. W.; Penney, C. M.; Lapp, M.
1973-01-01
A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.
Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators
Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert
2017-01-01
We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962
Rewritable three-dimensional holographic data storage via optical forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yetisen, Ali K., E-mail: ayetisen@mgh.harvard.edu; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Montelongo, Yunuen
2016-08-08
The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurablemore » slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.« less
Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning
NASA Astrophysics Data System (ADS)
Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo
2018-07-01
In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.
High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang
2009-10-01
A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.
A low-cost, tunable laser lock without laser frequency modulation
NASA Astrophysics Data System (ADS)
Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.
2015-05-01
Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.
Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range.
Choi, Eunsuk; Sul, Onejae; Hwang, Soonhyung; Cho, Joonhyung; Chun, Hyunsuk; Kim, Hongjun; Lee, Seung-Beck
2014-10-24
When developing an electronic skin with touch sensation, an array of tactile pressure sensors with various ranges of pressure detection need to be integrated. This requires low noise, highly reliable sensors with tunable sensing characteristics. We demonstrate the operation of tactile pressure sensors that utilize the spatial distribution of contact electrodes to detect various ranges of tactile pressures. The device consists of a suspended elastomer diaphragm, with a carbon nanotube thin-film on the bottom, which makes contact with the electrodes on the substrate with applied pressure. The electrodes separated by set distances become connected in sequence with tactile pressure, enabling consecutive electrodes to produce a signal. Thus, the pressure is detected not by how much of a signal is produced but by which of the electrodes is registering an output. By modulating the diaphragm diameter, and suspension height, it was possible to tune the pressure sensitivity and sensing range. Also, adding a fingerprint ridge structure enabled the sensor to detect the periodicity of sub-millimeter grating patterns on a silicon wafer.
NASA Astrophysics Data System (ADS)
Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.
Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.
Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics.
Gutruf, Philipp; Zeller, Eike; Walia, Sumeet; Nili, Hussein; Sriram, Sharath; Bhaskaran, Madhu
2015-09-16
The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Tianqi; Wang, Jing; Liao, Yipeng; Wang, Xin; Wang, Shanshan
2018-04-30
An all-fiber Mach-Zehnder interferometer (MZI) for two quasi-continuous points' temperature sensing in seawater is proposed. Based on the beam propagation theory, transmission spectrum is designed to present two sets of clear and independent interferences. Following this design, MZI is fabricated and two points' temperature sensing in seawater are demonstrated with sensitivities of 42.69pm/°C and 39.17pm/°C, respectively. By further optimization, sensitivity of 80.91pm/°C can be obtained, which is 3-10 times higher than fiber Bragg gratings and microfiber resonator, and higher than almost all similar MZI based temperature sensors. In addition, factors affecting sensitivities are also discussed and verified in experiment. The two points' temperature sensing demonstrated here show advantages of simple and compact construction, robust structure, easy fabrication, high sensitivity, immunity to salinity and tunable distance of 1-20 centimeters between two points, which may provide references for macroscopic oceanic research and other sensing applications based on MZIs.
NASA Astrophysics Data System (ADS)
Shabani, H.; Doblas, A.; Saavedra, G.; Preza, C.
2018-02-01
Three-dimensional (3D) structured illumination (SI) patterns that include lateral and axial variations have attracted more attention recently as their use in fluorescence microscope enhances the 3D resolution of the native imaging system. 3D SI patterns have already been created by interfering three mutually-coherent waves using a diffraction grating or some electro-optical devices such as spatial light modulators. Here, an interesting approach to generate a 3D SI pattern of tunable modulation frequency is shown. Our proposed illumination system is based on the incoherent illumination of a Fresnel biprism using several equidistant linear sources (i.e., slits). Previously, we investigated and compared numerically this tunable SI microscopy (SIM) system with the one achieved with three-wave interference. In this contribution, we implement our proposed incoherent 3D SIM system of tunable-frequency in an open-setup. We evaluate the axial confinement of the illumination pattern obtained with this system by recording the SI pattern using a mirror sample and different number of slits and compare these data with simulation results. Moreover, we verify that with a higher number of slits used, the axial confinement of the pattern increases, and consequently, the system's optical sectioning capability improves.
CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating.
Zhang, Jun; Peng, Hangyu; Fu, Xihong; Liu, Yun; Qin, Li; Miao, Guoqing; Wang, Lijun
2013-02-11
An external cavity structure based on the -1st transmission grating is introduced to spectral beam combining a 970 nm diode laser bar. A CW output power of 50.8 W, an electro-optical conversion efficiency of 45%, a spectral beam combining efficiency of 90.2% and a holistic M(2) value of 10.9 are achieved. This shows a way for a diode laser source with several KW power and diffraction-limited beam quality at the same time.
Temperature insensitive refractive index sensor based on concatenated long period fiber gratings
NASA Astrophysics Data System (ADS)
Tripathi, Saurabh M.; Bock, Wojtek J.; Mikulic, Predrag
2013-10-01
We propose and demonstrate a temperature immune biosensor based on two concatenated LPGs incorporating a suitable inter-grating-space (IGS). Compensating the thermal induced phase changes in the grating region by use of an appropriate length of the IGS the temperature insensitivity has been achieved. Using standard telecommunication grade single-mode fibers we show that a length ratio of ~8.2 is sufficient to realize the proposed temperature insensitivity. The resulting sensor shows a refractive index sensitivity of 423.28 nm/RIU displaying the capability of detecting an index variation of 2.36 × 10-6 RIU in the bio-samples. The sensor can also be applied as a temperature insensitive WMD channel isolation filter in the optical communication systems, removing the necessity of any external thermal insulation packaging.
Tunable graded rod laser assembly
NASA Technical Reports Server (NTRS)
AuYeung, John C. (Inventor)
1985-01-01
A tunable laser assembly including a pair of radially graded indexed optical segments aligned to focus the laser to form an external resonant cavity with an optical axis, the respective optical segments are retativity moveable along the optical axis and provide a variable et aion gap sufficient to permit variable tuning of the laser wavelength without altering the effective length of the resonant cavity. The gap also include a saturable absorbing material providing a passive mode-locking of the laser.
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
NASA Astrophysics Data System (ADS)
Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.
2017-07-01
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
Fast wavelength tuning techniques for external cavity lasers
Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX
2011-01-11
An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.
Design of vibration sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Zhengyi; Liu, Chuntong
2017-12-01
Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.
Mode Tracker for Mode-Hop-Free Operation of a Laser
NASA Technical Reports Server (NTRS)
Wysocki, Gerard; Tittel, Frank K.; Curl, Robert F.
2010-01-01
A mode-tracking system that includes a mode-controlling subsystem has been incorporated into an external-cavity (EC) quantum cascade laser that operates in a mid-infrared wavelength range. The mode-tracking system makes it possible to perform mode-hop-free wavelength scans, as needed for high-resolution spectroscopy and detection of trace gases. The laser includes a gain chip, a beam-collimating lens, and a diffraction grating. The grating is mounted on a platform, the position of which can be varied to effect independent control of the EC length and the grating angle. The position actuators include a piezoelectric stage for translation control and a motorized stage for coarse rotation control equipped with a piezoelectric actuator for fine rotation control. Together, these actuators enable control of the EC length over a range of about 90 m with a resolution of 0.9 nm, and control of the grating angle over a coarse-tuning range of +/-6.3deg and a fine-tuning range of +/-520 microrad with a resolution of 10 nrad. A mirror mounted on the platform with the grating assures always the same direction of the output laser beam.
Electrically tunable metasurface based on Mie-type dielectric resonators.
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-21
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review
Alvankarian, Jafar; Majlis, Burhanuddin Yeop
2015-01-01
The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519
Electrically tunable metasurface based on Mie-type dielectric resonators
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-01-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak. PMID:28220861
A tunable acoustic metamaterial with double-negativity driven by electromagnets
Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin
2016-01-01
With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
NASA Astrophysics Data System (ADS)
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-07-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.
Electrically tunable metasurface based on Mie-type dielectric resonators
NASA Astrophysics Data System (ADS)
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
NASA Astrophysics Data System (ADS)
Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson
2004-05-01
Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.
High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet.
Aadhi, A; Apurv Chaitanya, N; Singh, R P; Samanta, G K
2014-06-15
We report the development of a compact, high-power, continuous-wave, single-frequency, ultraviolet (UV) source with extended wavelength tunability. The device is based on single-pass, intracavity, second-harmonic-generation (SHG) of the signal radiation of a singly resonant optical parametric oscillator (SRO) working in the visible and near-IR wavelength range. The SRO is pumped in the green with a 25-mm-long, multigrating, MgO doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) as nonlinear crystal. Using three grating periods, 8.5, 9.0, and 9.5 μm of the MgO:sPPLT crystal and a single set of cavity mirrors, the SRO can be tuned continuously across 710.7-836.3 nm in the signal and corresponding idler across 2115.8-1462.1 nm with maximum idler power of 1.9 W and maximum out-coupled signal power of 254 mW. By frequency-doubling the intracavity signal with a 5-mm-long bismuth borate (BIBO) crystal, we can further tune the SRO continuously over 62.8 nm across 355.4-418.2 nm in the UV with maximum single-frequency UV power, as much as 770 mW at 398.28 nm in a Gaussian beam profile. The UV radiation has an instantaneous line-width of ∼14.5 MHz and peak-peak frequency stability of 151 MHz over 100 s. More than 95% of the tuning range provides UV power >260 mW. Access to lower UV wavelengths can in principle be realized by operating the SRO in the visible using shorter grating periods.
All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.
Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K
2015-01-01
We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5 μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3 MHz and power >100 mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15 nm·cm, respectively.
Chemical Sensing Sensitivity of Long-Period Grating Sensor Enhanced by Colloidal Gold Nanoparticles
Tang, Jaw-Luen; Wang, Jien-Neng
2008-01-01
A simple and effective method is proposed to improve spectral sensitivity and detection limit of long period gratings for refractive index or chemical sensing, where the grating surface is modified by a monolayer of colloidal gold nanoparticles. The transmission spectra and optical properties of gold nanospheres vary with the different refractive index of the environment near the surface of gold nanospheres. The sensor response of gold colloids increases linearly with solvents of increasing refractive index. The results for the measurement of sucrose and sodium chloride solutions are reported, which show that this type of sensor can provide a limiting resolution of ∼10-3 to ∼10-4 for refractive indices in the range of 1.34 to 1.39 and a noticeable increase in detection limit of refractive index to external medium. PMID:27879701
Development of a wavelength tunable filter using MEMS technology
NASA Astrophysics Data System (ADS)
Liu, Junting
Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.
Lewicki, Rafał; Doty, James H.; Curl, Robert F.; Tittel, Frank K.; Wysocki, Gerard
2009-01-01
A transportable prototype Faraday rotation spectroscopic system based on a tunable external cavity quantum cascade laser has been developed for ultrasensitive detection of nitric oxide (NO). A broadly tunable laser source allows targeting the optimum Q3/2(3/2) molecular transition at 1875.81 cm−1 of the NO fundamental band. For an active optical path of 44 cm and 1-s lock-in time constant minimum NO detection limits (1σ) of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. Laboratory performance evaluation and results of continuous, unattended monitoring of atmospheric NO concentration levels are reported. PMID:19625625
Nanotube mode locked, wavelength-tunable, conventional and dissipative solitons fiber laser
NASA Astrophysics Data System (ADS)
Yun, Ling; Zhao, Wei
2018-01-01
We report the generation of widely wavelength tunable conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped fiber laser passively mode-locked by nanotube saturable absorber. The tuning ranges of CSs and DSs are ∼15 and ∼25 nm, respectively. In anomalous dispersion regime, the output CS exhibits symmetrical spectral sidebands with transform-limited pulse duration of ∼1.1 ps. In the contrastive case of normal dispersion regime, the DS has rectangular spectrum profile and large frequency chirp, which presents pulse duration of ∼13.5 ps, and can be compressed to ∼0.4 ps external to the cavity. This fiber laser can provide two distinct types of tunable soliton sources, which is attractive for practical applications in telecommunications.
Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing
NASA Astrophysics Data System (ADS)
Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi
2017-03-01
We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.
NASA Astrophysics Data System (ADS)
Hirayama, Toru; Kozawa, Yuichi; Nakamura, Takahiro; Sato, Shunichi
2006-12-01
We demonstrated a generation of cylindrically symmetric, polarized laser beams with narrow linewidth and fine tunability. Since an LP11 mode beam in an optical fiber is a superposition of an HE21 (hybrid) mode beam and a TE01 or TM01 mode beam, firstly, a higher order transverse (TEM01 or TEM10) mode laser beam with narrow linewidth and fine tunability was generated from an external cavity diode laser (ECDL) in conjunction with a phase adjustment plate. Then the beam generated was passed in a two mode optical fiber. A doughnut shaped laser beam with the cylindrically symmetric polarization (a radially or azimuthally polarized beam) was obtained by properly adding stress-induced birefringence in the optical fiber.
Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation.
Wu, Di M; Solomon, Michelle L; Naik, Gururaj V; García-Etxarri, Aitzol; Lawrence, Mark; Salleo, Alberto; Dionne, Jennifer A
2018-02-01
Chameleons are masters of light, expertly changing their color, pattern, and reflectivity in response to their environment. Engineered materials that share this tunability can be transformative, enabling active camouflage, tunable holograms, and novel colorimetric medical sensors. While progress has been made in creating artificial chameleon skin, existing schemes often require external power, are not continuously tunable, and may prove too stiff or bulky for applications. Here, a chemically tunable, large-area metamaterial is demonstrated that accesses a wide range of colors and refractive indices. An ordered monolayer of nanoresonators is fabricated, then its optical response is dynamically tuned by infiltrating its polymer substrate with solvents. The material shows a strong magnetic response with a dependence on resonator spacing that leads to a highly tunable effective permittivity, permeability, and refractive index spanning negative and positive values. The unity-order index tuning exceeds that of traditional electro-optic and photochromic materials and is robust to cycling, providing a path toward programmable optical elements and responsive light routing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of sub-micrometer patterned permalloy thin film in tunable radio frequency inductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel
Electrical tunable meander line inductor using coplanar waveguide structures with patterned permalloy (Py) thin film has been designed and implemented in this paper. High resistivity Si substrate is used to reduce the dielectric loss from the substrate. Inductor is implemented with a 60 nm thick Py deposited and patterned on top of the gold meander line, and Py film is patterned with dimension of 440 nm 10 lm to create the shape anisotropy field, which in turn increases the FMR frequency. Compared to a regular meanderline inductor without the application of sub-micrometer patterned Py thin film, the inductance density hasmore » been increased to 20% for the implemented inductor with patterned Py. Measured FMR frequency of the patterned Py is 4.51 GHz without the application of any external magnetic field. This has enabled the inductor application in the practical circuit boards, where the large external magnet is unavailable. Inductance tunability of the implemented inductor is demonstrated by applying a DC current. Applied DC current creates a magnetic field along the hard axis of the patterned Py thin film, which changes the magnetic moment of the thin film and thus, decreases the inductance of the line. Measured results show that the inductance density of the inductor can be varied 5% by applying 300 mA DC current, larger inductance tunability is achievable by increasing the thickness of Py film. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918766]« less
High peak power actively Q-switched mid-infrared fiber lasers at 3 μm
NASA Astrophysics Data System (ADS)
Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Si, Jinhai
2017-04-01
Diode-pumped pulsed Er3+-doped ZBLAN fiber lasers at 2.8 μm actively Q-switched by using an mechanical Q-switch with feedbacks of a protected gold mirror and a blazing grating were investigated, respectively. A pulse energy of 0.13 mJ and repetition rate of 10 kHz with a pulse width of 127.3 ns at 2.78 μm was obtained when using a protected gold mirror as the feedback. By replacing the mirror with a blazing grating in Littrow configuration, the wavelength of the Q-switched pulse train was tunable with over 100 nm tuning range from 2.71 to 2.82 μm and a linewidth of 1.5 nm. A maxinmum pulse energy of up to 0.15 mJ and repetition rate of 10 kHz with a pulse width of 92.6 ns was achieved, yielding the maximum peak power of exceeding 1.6 kW. The pulse energy and peak power, to our knowledge, are the highest ever reported in the mid-infrared Q-switched fiber lasers.
NASA Astrophysics Data System (ADS)
Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Martínez, F. J.; Pascual, I.; Beléndez, A.
2018-02-01
Holographic polymer dispersed liquid crystals (HPDLCs) are the result of the optimization of the photopolymer fabrication techniques. They are made by recording in a photopolymerization induced phase separation process (PIPS) in which the liquid crystal molecules diffuse to dark zones in the diffraction grating originated. Thanks to the addition of liquid crystal molecules to the composition, this material has a dynamic behavior by reorientation of the liquid crystal molecules applying an electrical field. In this sense, it is possible to use this material to make dynamic devices. In this work, we study the behavior of this material working in low frequencies with different spatial periods of blazed gratings, a sharp profile whose recording is possible thanks to the addition of a Holoeye LCoS-Pluto spatial light modulator with a resolution of 1920 × 1080 pixels (HD) and a pixel size of 8 × 8 μm2. This device allows us to have an accurate and dynamic control of the phase and amplitude of the recording beam.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang
2010-04-01
A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.
Research on pressure tactile sensing technology based on fiber Bragg grating array
NASA Astrophysics Data System (ADS)
Song, Jinxue; Jiang, Qi; Huang, Yuanyang; Li, Yibin; Jia, Yuxi; Rong, Xuewen; Song, Rui; Liu, Hongbin
2015-09-01
A pressure tactile sensor based on the fiber Bragg grating (FBG) array is introduced in this paper, and the numerical simulation of its elastic body was implemented by finite element software (ANSYS). On the basis of simulation, fiber Bragg grating strings were implanted in flexible silicone to realize the sensor fabrication process, and a testing system was built. A series of calibration tests were done via the high precision universal press machine. The tactile sensor array perceived external pressure, which is demodulated by the fiber grating demodulation instrument, and three-dimension pictures were programmed to display visually the position and size. At the same time, a dynamic contact experiment of the sensor was conducted for simulating robot encountering other objects in the unknown environment. The experimental results show that the sensor has good linearity, repeatability, and has the good effect of dynamic response, and its pressure sensitivity was 0.03 nm/N. In addition, the sensor also has advantages of anti-electromagnetic interference, good flexibility, simple structure, low cost and so on, which is expected to be used in the wearable artificial skin in the future.
NASA Astrophysics Data System (ADS)
Bock, Carlos; Prat, Josep
2005-04-01
A hybrid WDM/TDM PON architecture implemented by means of two cascaded Arrayed Waveguide Gratings (AWG) is presented. Using the Free Spectral Range (FSR) periodicity of AWGs we transmit unicast and multicast traffic on different wavelengths to each Optical Network Unit (ONU). The OLT is equipped with two laser stacks, a tunable one for unicast transmission and a fixed one for multicast transmission. We propose the ONU to be reflective in order to avoid any light source at the Costumer Premises Equipment (CPE). Optical transmission tests demonstrate correct transmission at 2.5 Gbps up to 30 km.
Analysis of the tunable asymmetric fiber F-P cavity for fiber sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haitao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot,F-P) interferometric cavity with good linearity and wide dynamic range is successfully designed basing on optical thin film characteristic matrix theory; by choosing the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity is fabricated by depositing the multi-layer thin films on the optical fiber's end face. The demodulation method for the wavelength shift of fiber Bragg grating (FBG) sensor basing on the F-P cavity is demonstrated and a theoretical formula is obtained. And the experimental results coincide well with computational results obtained from the theoretical model.
NASA Astrophysics Data System (ADS)
Buchhave, Preben; Kukhtarev, Nickolai; Kukhtareva, Tatiana; Edwards, Matthew E.; Reagan, Michael A.; Lyuksyutov, Sergei F.
2003-10-01
A holographic radial diffraction grating (HRDG) is an efficient optical element for splitting single laser beam on three 0, -1st, and +1st- diffraction order beams. The rotation of the grating at certain velocity allows a window for quality control over the frequency detuning between -1st, and +1st diffracted beams. The running interference fringes produced by the beams and projected on photorefractive crystal induce running holographic gratings in the crystal. This simple configuration is an effective tool for the study of such phenomena as space charge waves [1], domains motion [2], and electric current generation [3]. Specifics of photorefractive mechanism in cubic photorefractive crystals (BSO, BTO) normally require a use of external electric field to produce reasonable degree of refractive index modulation to observe associated with it phenomena. In this work we provide a direct experimental observation of the electric current generated in photorefractive BSO using running grating technique without an applied electric field. Moving interference fringes modulate a photoconductivity and an electric field in photorefractive crystal thus creating the photo electro-motive force (emf) and the current. The magnitude of the current varies between 1 and 10 nA depending on the rotation speed of HRDG. The peculiarities of the current behavior include a backward current flow, and current oscillations. The holographic current generated through this technique can find applications in non-destructive testing for ultra-sensitive vibrometry, materials characterization, and for motion sensors. References [1] S.F. Lyuksyutov, P. Buchhave, and M.V. Vasnetsov, Physical Review Letters, 79, No.1, 67-70 (1997) [2] P. Buchhave, S. Lyuksyutov, M. Vasnetsov, and C. Heyde, Journal Optical Society of America B, 13, No.11 2595-2602 (1996) [3] M. Vasnetsov, P. Buchhave, and S. Lyuksyutov Optics Communications, 137, 181-191 (1997)
Free-electron laser from wave-mechanical beats of 2 electron beams
NASA Technical Reports Server (NTRS)
Lichtenstein, R. M.
1982-01-01
It is possible, though technically difficult, to produce beams of free electrons that exhibit beats of a quantum mechanical nature. (1) the generation of electromagnetic radiation, e.g., light, based on the fact that the beats give rise to alternating charge and current densities; and a frequency shifter, based on the fact that a beam with beats constitutes a moving grating. When such a grating is exposed to external radiation of suitable frequency and direction, the reflected rediation will be shifted in frequency, since the grating is moving. A twofold increase of the frequency is readily attainable. It is shown that it is impossible to generate radiation, because the alternating electromagnetic fields that accompany the beats cannot reform themselves into freely propagating waves. The frequency shifter is useless as a practical device, because its reflectance is extremely low for realizable beams.
A four-port vertical-coupling optical interface based on two-dimensional grating coupler
NASA Astrophysics Data System (ADS)
Zhang, Zan; Zhang, Zanyun; Huang, Beiju; Cheng, Chuantong; Gao, Tianxi; Hu, Xiaochuan; Zhang, Lin; Chen, Hongda
2016-10-01
In this work, a fiber-to-chip optical interface with four output ports is proposed. External lights irradiate vertically from single mode fiber to the center of optical interface can be coupled into silicon photonic chips and split into four siliconon- insulator (SOI) waveguides. If the light is circular polarized, the power of light will be equally split into four ports. Meanwhile, all lights travel in the four channel will be converted into TE polarization. The optical interface is based on a two-dimensional grating coupler with carefully designed duty cycle and period. Simulation results show that the coupling efficiency of each port can reach 11.6% so that the total coupling efficiency of the interface is 46.4%. And Lights coupled into four waveguides are all converted into TE polarization. Further, the optical interface has a simple grating structure allowing for easy fabrication.
NASA Technical Reports Server (NTRS)
Poultney, S.; Chen, D.; Steinberg, G.; Wu, F.; Pires, A.; Miller, M. D.; Mcnally, M.
1980-01-01
Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability.
SATO, Osamu
2012-01-01
Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438
Tunable spin splitting and spin lifetime in polar WSTe monolayer
NASA Astrophysics Data System (ADS)
Adhib Ulil Absor, Moh.; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo
2018-04-01
The established spin splitting with out-of-plane Zeeman spin polarizations in the monolayer (ML) of transition metal dichalcogenides (TMDs) is dictated by inversion symmetry breaking together with mirror symmetry in the surface plane. Here, by density functional theory calculations, we find that mirror symmetry breaking in the polar WSTe ML leads to large spin splitting exhibiting in-plane Rashba spin polarizations. We also find that the interplay between the out-of-plane Zeeman- and in-plane Rashba spin-polarized states sensitively affects the spin lifetime, which can be effectively controlled by in-plane strain. In addition, the tunability of spin splitting using an external electric field is also demonstrated. Our study clarifies that the use of in-plane strain and an external electric field is effective for tuning the spin splitting and spin lifetime of the polar WSTe ML; thus, it is useful for designing spintronic devices.
Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure
NASA Astrophysics Data System (ADS)
Ji, Hongyu; Zhang, Bo; Wang, Guocui; Wang, Wei; Shen, Jingling
2018-04-01
We propose a photo-excited tunable multi-frequency metamaterial (MM) switch that can be used in the terahertz region. This metamaterial switch is composed of a polyimide substrate and a hybrid metal-semiconductor square split-ring resonator (SRR) with two gaps, with various semiconductors placed in critical regions of the metallic resonator. By changing the incident pump power, we were able to tune the conductivity of the diverse semiconductors filling the gaps of the SRR, and by using an external exciting beam, we were able to modulate the resonant absorption properties of the composite metamaterial structure. We demonstrated the tunable multi-frequency metamaterial switch by irradiating the composite metamaterial structure with a pump laser. In addition, we proposed a tunable metamaterial switch based on a circular metallic split-ring resonator.
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-01-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (∼450 nm) to red (∼750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole–Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays. PMID:26178323
Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.
Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A
2017-10-25
Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.
NASA Astrophysics Data System (ADS)
Jin, Wa; Bi, Wei-hong; Fu, Xing-hu; Fu, Guang-wei
2017-09-01
We report periodical rocking long period gratings (PR-LPGs) in PANDA fibers fabricated with CO2 laser. The PR-LPGs achieve very high coupling efficiency of 19 dB with 12 periods and a 3.5° twist angle in just one scanning cycle, which is much more effective than the conventional CO2 laser fabrication technique. This type of LPGs exhibits polarization-selective resonance dips which demonstrate different sensitivities to environmental parameters. The high temperature and external refractive index sensitivities are measured simultaneously, so it can be used as a wavelength-selective polarization filter and sensor.
Functionalization of a long period grating coated with gold nanoparticles for glyphosate detection
NASA Astrophysics Data System (ADS)
Heidemann, Bárbara R.; Pereira, Júlia C.; Chiamenti, Ismael; Oliveira, Marcela M.; Muller, Marcia; Fabris, José L.
2017-04-01
This work describes a method for producing a nanostructured fiber optic device for sensing of pesticides in water environment. The device consists of a long period grating with a coating of gold nanoparticles functionalized with cysteamine. The LPG shows attenuation bands near the phase matching turning point at the visible spectral range. A bottom-up production route was used to deposit gold nanoparticles on the fiber surface. Sensitivity to the refractive index of the external medium was measured before and after the layer deposition. Cysteamine was used as a ligand for glyphosate present in water at a concentration of 100 μM.
Switching terahertz wave with grating-coupled Kretschmann configuration.
Jiu-Sheng, Li
2017-08-07
We present a terahertz wave switch utilizing Kretschmann configuration which consists of high-refractive-index prism-liquid crystal-periodically grooved metal grating. The switching mechanism of the terahertz switch is based on spoof surface plasmon polariton (SSPP) excitation in the attenuated total reflection regime by changing the liquid crystal refractive index. The results highlighted the fact that the feasibility to "tune" the attenuated total reflection terahertz wave intensity by using the external applied bias voltage. The extinction ratio of the terahertz switch reaches 31.48dB. The terahertz switch has good control ability and flexibility, and can be used in potential terahertz free space device systems.
NASA Astrophysics Data System (ADS)
Iadicicco, Agostino; Cutolo, A.; Campopiano, Stefania
2014-05-01
This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers (HC-PCFs) by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the sensitivity of LPGs in HC-PCF to environmental parameters such as strain, temperature and static pressure are presented and discussed.
Metasurface external cavity laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S.
2015-11-30
A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.
NASA Astrophysics Data System (ADS)
Rayner, Timothy; Weida, Miles; Pushkarsky, Michael; Day, Timothy
2007-04-01
Terrorists both with IEDs and suicide bombers are targeting civilian infrastructures such as transportation systems. Although explosive detection technologies exist and are used effectively in aviation, these technologies do not lend themselves well to protecting open architecture soft targets, as they are focused on a checkpoint form factor that limits throughput. However, remote detection of explosives and other chemicals would enable these kinds of targets to be protected without interrupting the flow of commerce. Tunable mid-IR laser technology offers the opportunity to detect explosives and other chemicals remotely and quickly. Most chemical compounds, including explosives, have their fundamental vibrational modes in the mid-infrared region (3 to 15μm). There are a variety of techniques that focus on examining interactions that have proven effective in the laboratory but could never work in the field due to complexity, size, reliability and cost. Daylight Solutions has solved these problems by integrating quantum cascade gain media into external tunable cavities. This has resulted in miniaturized, broadly tunable mid-IR laser sources. The laser sources have a capability to tune to +/- 5% of their center wavelength, which means they can sweep through an entire absorption spectrum to ensure very good detection and false alarm performance compared with fixed wavelength devices. These devices are also highly portable, operate at room temperature, and generate 10's to 100's of mW in optical power, in pulsed and continuous wave configurations. Daylight Solutions is in the process of developing a variety of standoff explosive and chemical weapon detection systems using this technology.
Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.
Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J
2013-06-17
We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.
pH Memory Effects of Tunable Block Copolymer Photonic Gels and Their Applications
NASA Astrophysics Data System (ADS)
Kang, Youngjong; Thomas, Edwin L.
2007-03-01
Materials with hysteresis, showing a bistable state to the external stimuli, have been widely investigated due to their potential applications. For example, they could be used as memory devices or optical switches when they have magnetic or optical hysteresis response to the external stimuli. Here we report pH tunable photonic gels which are spontaneously assembled from block copolymers. The general idea of this research is based on the selective swelling of block copolymer lamellar mesogels, where the solubility of one block is responsive to the change of pH. In this system, the domain spacing of the lamellar is varied with the extent of swelling. As a model system, we used protonated polystyrene-b-poly(2-vinly pyridine) (PS-b-P2VP) block copolymers forming lamellar structures. The photonic gel films prepared from protonated PS-b-P2VP show a strong reflectance in aqueous solution and the band position was varied with pH. Interestingly, a very strong optical hysteresis was observed while the reflection band of photonic gels was tuned by changing pH. We anticipate that pH tunable photonic gels with hysteresis can be applicable to novel applications such as a component of memory devices, photonic switches or drug delivery vehicles.
NASA Astrophysics Data System (ADS)
Zemek, P. G.
2017-12-01
Quantum Cascade Lasers (QCLs) are quickly replacing Tunable Diode Lasers (TDL) for multi-target species identification and quantification in both extractive and open-path (OP) Optical Remote Sensing (ORS) fence-line instrumentation. As was seen with TDL incorporation and pricing drops as the adoption by the telecommunications industry and its current scaling has improved robustness and pricing, the QCL is also, albiet more slowly, becoming a mature market. There are several advantages of QCLs over conventional TDLs such as improved brightness and beam density, high resolution, as well as the incorporation of external etalons or internal gratings to scan over wide spectral areas. QCLs typically operate in the Mid infra-red (MIR) as opposed to the Near-Infrared (NIR) region used with TDL. The MidIR is a target rich absorption band area where compounds have high absorbtivity coefficients resulting in better detection limits as compared to TDL instruments. The use of novel chemometrics and more sensitive non-cryo-cooled detectors has allowed some of the first QCL open-path instruments in both active and passive operation. Data and field studies of one of the newest QCL OP systems is presented that allows one system to measure multiple target compounds. Multiple QCL spectral regions may be stitched together to increase the capability of QCLs over TDL OP systems. A comparison of several ORS type systems will be presented.
V-shaped resonators for addition of broad-area laser diode arrays
Liu, Bo; Liu, Yun; Braiman, Yehuda Y.
2012-12-25
A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.
Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mégret, Patrice; Caucheteur, Christophe
2014-07-28
During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.
Weldon, Vincent; McInerney, David; Phelan, Richard; Lynch, Michael; Donegan, John
2006-04-01
Tuneable laser diodes were characterized and compared for use as tuneable sources in gas absorption spectroscopy. Specifically, the characteristics of monolithic widely tuneable single frequency lasers, such as sampled grating distributed Bragg reflector laser and modulated grating Y-branch laser diodes, recently developed for optical communications, with operating wavelengths in the 1,520 nm
Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I
2016-07-26
Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.
Mixed-Halide Perovskites with Stabilized Bandgaps.
Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P
2017-11-08
One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.
Highly integrated optical heterodyne phase-locked loop with phase/frequency detection.
Lu, Mingzhi; Park, Hyunchul; Bloch, Eli; Sivananthan, Abirami; Bhardwaj, Ashish; Griffith, Zach; Johansson, Leif A; Rodwell, Mark J; Coldren, Larry A
2012-04-23
A highly-integrated optical phase-locked loop with a phase/frequency detector and a single-sideband mixer (SSBM) has been proposed and demonstrated for the first time. A photonic integrated circuit (PIC) has been designed, fabricated and tested, together with an electronic IC (EIC). The PIC integrates a widely-tunable sampled-grating distributed-Bragg-reflector laser, an optical 90 degree hybrid and four high-speed photodetectors on the InGaAsP/InP platform. The EIC adds a single-sideband mixer, and a digital phase/frequency detector, to provide single-sideband heterodyne locking from -9 GHz to 7.5 GHz. The loop bandwith is 400 MHz. © 2012 Optical Society of America
Two dimensional photoacoustic imaging using microfiber interferometric acoustic transducers
NASA Astrophysics Data System (ADS)
Wang, Xiu Xin; Li, Zhang Yong; Tian, Yin; Wang, Wei; Pang, Yu; Tam, Kin Yip
2018-07-01
Photoacoustic imaging transducer with a pair of wavelength-matched Bragg gratings (forming a Fabry-Perot cavity) inscribed on a short section of microfiber has been developed. A tunable laser with wavelength that matched to one of selected fringe slopes was used to transmit the acoustic induced wavelength. Interferometric fringes with high finesse in transmission significantly enhanced the sensitivity of the transducer even under very small acoustic perturbations. The performance of this novel transducer was evaluated through the imaging studies of human hairs (∼98 μm in diameter). The spatial resolution is 300 μm. We have demonstrated that the novel transducer developed in this study is a versatile tool for photoacoustic imaging study.
Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik
2013-12-16
Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett.36, 864-866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.
NASA Astrophysics Data System (ADS)
Coetzee, R. S.; Zheng, X.; Fregnani, L.; Laurell, F.; Pasiskevicius, V.
2018-06-01
A high-energy, ns, narrow-linewidth optical parametric oscillator and amplifier system based on large-aperture periodically poled Rb:KTP is presented. The 2 µm seed source is a singly resonant OPO locked with a transversely chirped volume Bragg grating, allowing a wavelength tuning of 21 nm and output linewidth of 0.56 nm. A maximum output energy of 52 mJ and conversion efficiency of 36% was obtained from the amplifier for a pump energy of 140 mJ. The high-energy and the robust and narrow dual-wavelength spectra obtained make this system an ideal pump source for difference frequency generation-based THz generation schemes.
Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes
Liu, Xueming; Han, Dongdong; Sun, Zhipei; Zeng, Chao; Lu, Hua; Mao, Dong; Cui, Yudong; Wang, Fengqiu
2013-01-01
Multi-wavelength lasers have widespread applications (e.g. fiber telecommunications, pump-probe measurements, terahertz generation). Here, we report a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550, and 1560 nm, which are tunable by stretching fiber Bragg gratings. The output pulse duration is around 6 ps with a spectral width of ~0.5 nm, agreeing well with the numerical simulations. The triple-laser system is controlled precisely and insensitive to environmental perturbations with <0.04% amplitude fluctuation. Our method provides a simple, stable, low-cost, multi-wavelength ultrafast-pulsed source for spectroscopy, biomedical research and telecommunications. PMID:24056500
NASA Astrophysics Data System (ADS)
Mahmoud, Mohamed; Fayed, Heba A.; Aly, Moustafa H.; Aboul Seoud, A. K.
2011-08-01
A new device, optical cross add drop multiplexer (OXADM), is proposed and analyzed. It uses the combination concept of optical add drop multiplexer (OADM) and optical cross connect (OXC). It enables a wavelength switch while implementing add and drop functions simultaneously. So, it expands the applications in fiber to the home (FTTH) and optical core networks. A very high isolation crosstalk level (~ 60 dB) is achieved. Also, a bidirectional OXADM and N×N OXADM are proposed. Finally, a multistage OXADM is presented making some sort of wavelength buffering. To make these devices operate more efficient, tunable fiber Bragg gratings (TFBGs) switches are used to control the operation mechanism.
Theoretical Investigation of Tunable Goos-Hänchen Shifts in a Four-Level Quantum System
NASA Astrophysics Data System (ADS)
Jafarzadeh, Hossein; Payravi, Mohammad
2018-05-01
Goos-Hänchen (GH) shifts in the reflected and transmitted light have been discussed in a cavity with four-level quantum system. It is realized that the refraction index of intracavity medium can be negative by manipulating the external coherent laser fields. For the negative refraction index of intracavity medium, the GH shifts of reflected and transmitted light beams have been analyzed in a parametric condition. It is found that due to modulation of laser signals and relative phase between applied fields, large and tunable GH shifts in reflected and transmitted light beams can be obtained.
Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED
NASA Astrophysics Data System (ADS)
Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.
2014-03-01
Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.
Tilt-tuned etalon locking for tunable laser stabilization.
Gibson, Bradley M; McCall, Benjamin J
2015-06-15
Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4 cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.
NASA Technical Reports Server (NTRS)
Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George
2013-01-01
A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.
Electronically tunable metamaterials using subwavelength magnetoresponsive particles
NASA Astrophysics Data System (ADS)
Allen, Monica; Allen, Jeffery; Parrow, Jacob; Asif, Sajid; Iftikar, Adnan; Wenner, Brett; Braaten, Benjamin
We demonstrate tunability of material properties of an engineered electromagnetic material in the RF regime using microparticles that respond to static magnetic biasing fields. The magnetic particles align with field lines creating a short/inductive state of the switch in the addressed voxel. When the biasing magnetic field is removed, the switch returns to an open/capacitive state. Each voxel measures 1.5 mm x 1.5 mm x 0.508 mm in the x, y, and z direction respectively, with a 0.9 mm diameter cylindrical cavity. The cavity is along the z-axis and is partially filled with microparticles composed of a magnetite core with Ag coating. Cu foil placed on the top and bottom encloses the particles in the cavity and acts as the biasing electrodes. Switching between inductive and capacitive states in spatially addressed voxels controls the cumulative ɛ and μ of the host material (i.e., layer) and controls the phase of an incident wave. We present finite element based models of prototype voxels with experimental measurements that validate the models on a host. This research can be applied to real-time tuning of material parameters with subwavelength voxel precision enabling wave control/manipulation as well as devices for switching and software-dictated tunable impedance capabilities. Authors JWA, MSA and BRW are grateful for support from AFOSR Lab Task 17RWCOR397 (Dr. H. Weinstock). NDSU was supported by (FA-8651-15-2-002) from the US Air Force Research Laboratory Munitions Directorate.
NASA Astrophysics Data System (ADS)
Wen-Long, Tian; Zhao-Hua, Wang; Jiang-Feng, Zhu; Zhi-Yi, Wei
2016-01-01
We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. Two MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3 μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Key Scientific Instruments Development Program of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant Nos. 61205130 and 11174361), and the Key Deployment Project of Chinese Academy of Sciences (Grant No. KJZD-EW-L11-03).
A tunable optofluidic circular liquid fiber
NASA Astrophysics Data System (ADS)
Li, Lei; Wu, Wei; Shi, Yang; Gong, Enze; Yang, Yi
2016-01-01
This paper presents a tunable optofluidic circular liquid fiber through the numerical simulation. Fiber is a significant optical device and has been widely applied on optical fiber communication. But the fiber based solid has limited tunability. Compared to solid fiber, the fiber based liquid material is relatively infrequent. Cause for the liquid optical device has more freedom tunable properties than solid counterpart, it has attracted more interest. The traditional optofluidic waveguide is designed like a sandwich in planar channel. This two-dimensional (2D) structure liquid waveguide will face huge transmission loss in the perpendicular direction of the flow streams. In this paper, a curving microchannel is designed inside the microchip to produce centrifugal effect. Two different liquids are injected into the chip by external pumps. In a particular situation, the core flow will be totally surrounded by the cladding flow. So the liquid can form an optical waveguide. Its structure is similar to an optical fiber which high refractive index (RI) liquid is core of the waveguide and the low RI liquid is cladding of the waveguide. Profit from the reconfigurability of liquid material, this liquid fiber has excellent tunability. The diameter of the core flow can be tuned in a wider range by changing the volume ratio of the flows through the finite element analysis. It is predictable that such a tunable liquid fiber may find wider applications in lab-on-a-chip systems and integrated optical devices.
NASA Astrophysics Data System (ADS)
Yeh, Wei-Hsun
Surface plasmon resonance (SPR) is a powerful tool in probing interfacial events in that any changes of effective refractive index in the interface directly impact the behavior of surface plasmons, an electromagnetic wave, travelling along the interface. Surface plasmons (SPs) are generated only if the momemtum of incident light matches that of SPs in the interface. This thesis focuses on tuning the behavior of SPs by changing the topology of diffraction gratings, monitoring the thickness of thin films by diffraction gratings, and use of dispersion images to analyze complex optical responses of SPs through diffraction gratings. Chapter 1 covers the background/principle of SPR, comprehensive literature review, sensor applications, control of SPR spectral responses, and sensitivity of SPR. In Chapter 2, we illustrate a chirped grating with varying surface topology along its spatial position. We demonstrated that the features of nanostructure such as pitch and amplitude significantly impact the behavior of enhanced transmission. In addition, we also illustrate the sensing application of chirped grating and the results indicate that the chirped grating is a sensitive and information rich SPR platform. In chapter 3, we used a commercial DVD diffraction grating as a SPR coupler. A camera-mounted microscope with Bertrend lens attachment is used to observe the enhanced transmission. We demonstrate that this system can monitor the SPR responses and track the thickness of a silicon monoxide film without using a spectrophotometer. Surface plasmons are a result of collective oscillation of free electrons in the metal/dielectric interface. Thus, the interaction of SPs with delocalized electrons from molecular resonance is complex. In chapter 4, we perform both experimental and simulation works to address this complex interaction. Detailed examination and analysis show nontypical SPR responses. For p-polarized light, a branch of dispersion curve and quenching of SPs in the Q band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed. Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films. In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximum enhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Mermelstein, Marc D.
2018-02-01
The thermal grating (TG) and inversion grating (IG) TMI gain dependence on the light beating intensity spectrum is investigated. TMI gain is restricted to intensity bandwidths comparable to the thermal gain bandwidth of 20 kHz. Seed laser phase noise generates intensity spectra determined by the laser linewidth and the relative group delay time of the gain fiber. These spectral bandwidths exceed the thermal gain bandwidth by orders of magnitude in both the coherent and incoherent regimes, making them unlikely sources of TMI. It is suggested that phase noise generated in the gain fiber due to external perturbations may be the source of the TMI.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhao, Hua; Xu, Chao; Li, Liang; Hu, Guangwei; Zhang, Jingwen
2014-10-01
Photorefractive (PR) phase gratings were used in coupling energy between visible light and surface plasmon polaritons in indium-tin oxide (ITO)-coated iron-doped lithium niobate (Fe:LN) crystal slabs via electrostatic modification at the ITO/LN interface based on a strong photovoltaic effect. The energy coupling is considered to be responsible for several interesting observations: (1) dynamic reflectivity change from 3.25 to 37.0% of the very first reflection at the entrance slab interface, (2) total light reflectivity as high as 89%, and (3) two-dimensional diffraction patterns without external feedback needed.
Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.
Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan
2014-12-10
High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1 nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.
Laboratory tools and e-learning elements in training of acousto-optics
NASA Astrophysics Data System (ADS)
Barócsi, Attila; Lenk, Sándor; Ujhelyi, Ferenc; Majoros, Tamás.; Maák, Paál.
2015-10-01
Due to the acousto-optic (AO) effect, the refractive index of an optical interaction medium is perturbed by an acoustic wave induced in the medium that builds up a phase grating that will diffract the incident light beam if the condition of constructive interference is satisfied. All parameters, such as magnitude, period or phase of the grating can be controlled that allows the construction of useful devices (modulators, switches, one or multi-dimensional deflectors, spectrum analyzers, tunable filters, frequency shifters, etc.) The research and training of acousto-optics have a long-term tradition at our department. In this presentation, we introduce the related laboratory exercises fitted into an e-learning frame. The BSc level exercise utilizes a laser source and an AO cell to demonstrate the effect and principal AO functions explaining signal processing terms such as amplitude or frequency modulation, modulation depth and Fourier transformation ending up in building a free space sound transmitting and demodulation system. The setup for MSc level utilizes an AO filter with mono- and polychromatic light sources to learn about spectral analysis and synthesis. Smart phones can be used to generate signal inputs or outputs for both setups as well as to help students' preparation and reporting.
Smart textile sensing system for human respiration monitoring based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Chang-yun; Li, Hong-qiang; Song, Hui-chao; Xu, Fan-jie
2009-07-01
Magnetic resonance imaging (MRI) has become an indispensable aid to diagnosis and treatment. As the doctor cannot accompany the patient, it is essential that the patient be monitored remotely to avoid the risk of respiration being impaired by anesthetic drugs or upper airway obstruction. A smart wearable textile sensing system is described in this paper. A fiber Bragg grating (FBG) with polymer encapsulation has been woven into an elastic bandage to detect the respiration motion. According to the strain principle of FBG, the breathing rate and intensity can be obtained by measuring the variety of FBG reflected wavelength. In order to eliminate the temperature cross-sensitivity, a FBG temperature sensor has also been woven into the bandage to achieve the temperature compensation computing. Based on the tunable Fabry-Perot filter wavelength demodulated theory, wavelength measuring method and data processing arithmetic have been presented, and the system with ARM microprocessor has been designed to process and display the breathing information. The experiments to the system have proved that the wavelength measuring range is about 40nm, the resolution of wavelength can arrive at 2pm, and the sampling rate is 5Hz.
Ouyang, Yang; Liu, Jianxia; Xu, Xiaofeng; Zhao, Yujia; Zhou, Ai
2018-04-11
A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG) fabricated by electric arc discharge (EAD) is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m -1 and -51.5 pm/m -1 , respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.
Four-quadrant gratings moiré fringe alignment measurement in proximity lithography.
Zhu, Jiangping; Hu, Song; Yu, Junsheng; Zhou, Shaolin; Tang, Yan; Zhong, Min; Zhao, Lixin; Chen, Minyong; Li, Lanlan; He, Yu; Jiang, Wei
2013-02-11
This paper aims to deal with a four-quadrant gratings alignment method benefiting from phase demodulation for proximity lithography, which combines the advantages of interferometry with image processing. Both the mask alignment mark and the wafer alignment mark consist of four sets of gratings, which bring the convenience and simplification of realization for coarse alignment and fine alignment. Four sets of moiré fringes created by superposing the mask alignment mark and the wafer alignment mark are highly sensitive to the misalignment between them. And the misalignment can be easily determined through demodulating the phase of moiré fringe without any external reference. Especially, the period and phase distribution of moiré fringes are unaffected by the gap between the mask and the wafer, not excepting the wavelength of alignment illumination. Disturbance from the illumination can also be negligible, which enhances the technological adaptability. The experimental results bear out the feasibility and rationality of our designed approach.
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-01-01
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-07-09
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.
Liquefied Petroleum Gas Monitoring System Based on Polystyrene Coated Long Period Grating
Zotti, Aldobenedetto; Palumbo, Giovanna; Zuppolini, Simona; Consales, Marco; Cutolo, Antonello; Borriello, Anna; Zarrelli, Mauro; Iadicicco, Agostino
2018-01-01
In this work, we report the in-field demonstration of a liquefied petroleum gas monitoring system based on optical fiber technology. Long-period grating coated with a thin layer of atactic polystyrene (aPS) was employed as a gas sensor, and an array comprising two different fiber Bragg gratings was set for the monitoring of environmental conditions such as temperature and humidity. A custom package was developed for the sensors, ensuring their suitable installation and operation in harsh conditions. The developed system was installed in a real railway location scenario (i.e., a southern Italian operative railway tunnel), and tests were performed to validate the system performances in operational mode. Daytime normal working operations of the railway line and controlled gas expositions, at very low concentrations, were the searched realistic conditions for an out-of-lab validation of the developed system. Encouraging results were obtained with a precise indication of the gas concentration and external conditioning of the sensor. PMID:29734731
Tunable Soft X-Ray Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtele, Jonathan; Gandhi, Punut; Gu, X-W
A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less
Strain evaluation of strengthened concrete structures using FBG sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau Kintak; Zhou Limin; Ye Lin
1999-12-02
Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wavemore » (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.« less
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Mumma, M. J.
1980-01-01
A diode laser based IR heterodyne spectrometer for laboratory and field use was developed for high efficiency operation between 7.5 and 8.5 microns. The local oscillator is a PbSSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed cycle cooler. The laser output frequency is controlled and stabilized using a high precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. Single laser modes are selected by a grating placed in the local oscillator beam. The system employs reflecting optics throughout to minimize losses from internal reflection and absorption, and to eliminate chromatic effects. Spectral analysis of the diode laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the infrared spectral regions over which useful heterodyne operation can be achieved. System performance has been studied by making heterodyne measurements of etalon fringes and several Freon 13 (CF3Cl) absorption lines against a laboratory blackbody source. Preliminary field tests have also been performed using the Sun as a source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Anyuan; Liu, Erfu; Long, Mingsheng
2016-05-30
We studied electrical transport properties including gate-tunable rectification inversion and polarity inversion, in atomically thin graphene/WSe{sub 2} heterojunctions. Such engrossing characteristics are attributed to the gate tunable mismatch of Fermi levels of graphene and WSe{sub 2}. Also, such atomically thin heterostructure shows excellent performances on photodetection. The responsivity of 66.2 mA W{sup −1} (without bias voltage) and 350 A W{sup −1} (with 1 V bias voltage) can be reached. What is more, the devices show great external quantum efficiency of 800%, high detectivity of 10{sup 13} cm Hz{sup 1/2}/W, and fast response time of 30 μs. Our study reveals that vertical stacking of 2D materials has great potentialmore » for multifunctional electronic and optoelectronic device applications in the future.« less
Selection of fiber-optical components for temperature measurement for satellite applications
NASA Astrophysics Data System (ADS)
Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.
2017-11-01
The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to investigate the radiation induced wavelength shift. The FBGs react on temperature and strain change, so a decoupling of both physical effects must be assured to allow a precise measurement over large temperature ranges and corresponding potential mechanical stress, passed from the structure to the sensor. This potential source of error is addressed with the design of a strain-decoupled temperature transducer to which the FBGs are glued. The design of the transducer and measurement results of a bending test are provided within this paper. An outlook of the usage of fiber-optical sensing in space applications will be given. One promising field of application are the so called photonically-wired spacecraft panels, where optical fibers with integrated FBGs are being integrated in panels for temperature measurements and high-speed data transfer at the same time.
The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II
Schäfers, F.; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th.
2016-01-01
A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047
Tunable Holstein model with cold polar molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Felipe; Krems, Roman V.
2011-11-15
We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external dc electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer canmore » be modified by tuning experimental parameters.« less
Edge states in a ferromagnetic honeycomb lattice with armchair boundaries
NASA Astrophysics Data System (ADS)
Pantaleón, Pierre A.; Xian, Y.
2018-02-01
We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair boundaries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the boundary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge states are topologically protected and also tunable. Our results may explain the origin of the novel edge states recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental confirmations.
NASA Astrophysics Data System (ADS)
Ko, Kwang-Hoon; Kim, Yonghee; Park, Hyunmin; Cha, Yong-Ho; Kim, Taek-Soo; Lee, Lim; Lim, Gwon; Han, Jaemin; Ko, Kwang-Hee; Jeong, Do-Young
2015-08-01
Continuous-wave single-frequency tunable 544- and 272-nm beams have been demonstrated by the second- and fourth-harmonic conversions of a 1088-nm fundamental beam from a diode-oscillator fiber-amplifier. The single-pass second-harmonic generation with a MgO-doped periodically poled stoichiometric LiTaO3 crystal and the external-cavity frequency-doubling technique with a bulk BBO crystal were employed to achieve an approximately 6-W 544-nm beam and a 1.5-W 272-nm beam, respectively. We characterized the second- and fourth-harmonic generations and discussed their applications to calcium spectroscopy.
Active sieving across driven nanopores for tunable selectivity
NASA Astrophysics Data System (ADS)
Marbach, Sophie; Bocquet, Lydéric
2017-10-01
Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.
A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Yamamoto, Shu; Kazovsky, Leonid G.
2005-01-01
A novel and high-performance passive optical network (PON), the SUCCESS-DWA PON, employs dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. In the downstream, tunable lasers, an arrayed waveguide grating, and coarse/fine filtering combine to create a flexible new optical access solution. In the upstream, several distributed and centralized schemes are proposed and investigated. The network performance is compared to conventional TDM-PONs under different traffic models, including the self-similar traffic model and the transaction-oriented model. Broadcast support and deployment issues are addressed. The network's excellent scalability can bridge the gap between conventional TDM-PONs and WDM-PONs. The powerful architecture is a promising candidate for next generation optical access networks.
Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B
2012-04-23
We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America
Gradient polymer network liquid crystal with a large refractive index change.
Ren, Hongwen; Xu, Su; Wu, Shin-Tson
2012-11-19
A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.
Analysis of the tunable asymmetric fiber F-P cavity for fiber strain sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haotao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot, F-P) interferometric cavity with the good linearity and wide dynamic range was successfully designed based on the optical thin film characteristic matrix theory; by adjusting the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity was fabricated by depositing the multi-layer thin films on the optical fiber's end face. The asymmetric F-P cavity has the extensive potential application. In this paper, the demodulation method for the wavelength shift of the fiber Bragg grating (FBG) sensor based on the F-P cavity is demonstrated, and a theoretical formula is obtained. And the experimental results coincide well with the computational results obtained from the theoretical model.
The characteristic of gap FBG and its application
NASA Astrophysics Data System (ADS)
Yang, Yuanhong; Hu, Jun; Liu, Xuejing; Jin, Wei
2015-07-01
A gap fiber Bragg grating (g-FBG) is fabricated by cutting a uniform FBG in the middle to introduce a small air gap between the two sections. Numerical and experimental investigations show that the g-FBG has the characteristics of both a phase shifted FBG and a Fizeau interferometer. The influence of the air-gap shift longitudinally or transversely with respect to the fiber central axis and temperature to g-FBG's spectrums are investigated with numerical simulation and experiments, and the mathematic models are made. Based on g-FBG's different sensitivity to gap width and temperature, a micro-gap and temperature simultaneous measurement sensor was demonstrated. And a g-FBG based tunable fiber ring laser with a narrow line-width is demonstrated.
Magnetically tunable 1D Coulomb drag: Theory
NASA Astrophysics Data System (ADS)
Tylan-Tyler, Anthony; Tang, Yuhe; Levy, Jeremy
In this work, we examine the Coulomb drag effect in 1D nanowires in close proximity, focusing on experimental parameters relevant to complex-oxide nanostructures. Previous work on this problem examined Coulomb drag through quantum point contacts, where effective capacitive coupling between the 2D leads of the system generates the drag voltage. In our case, the entire system is composed of 1D components and thus a more careful treatment of the Coulomb interactions is required. This more complex environment then leads to the ability to switch the drag voltage by an applied magnetic field without altering the current supplied to the drive system. We gratefully acknowledge financial support from ONR N00014-15-1-2847 and DOE DE-SC0014417.
Micro benchtop optics by bulk silicon micromachining
Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.
2000-01-01
Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.
Transient Plasma Photonic Crystals for High-Power Lasers.
Lehmann, G; Spatschek, K H
2016-06-03
A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.
Design and implementation of novel nonlinear processes in bulk and waveguide periodic structures
NASA Astrophysics Data System (ADS)
Kajal, Meenu
The telecommunication networks are facing increasing demand to implement all-optical network infrastructure for enabling the wide deployment of new triple play high-speed services (e.g. IPTV, Video On Demand, Voice over IP). One of the challenges with such video broadcasting applications is that these are much more distributed and multi-point in nature unlike the traditional point-to-point communication networks. Currently deployed high-speed electronic components in the optical networks are incapable of handling the unprecedented bandwidth demand for real-time multimedia based broadcasting. The solution essentially lies in increasing the transparency of networks i.e. by replacing high speed signal processing electronics with all-optical signal processors capable of performing signal manipulations such as wavelength switching, time and wavelength division multiplexing, optical pulse compression etc. all in optical domain. This thesis aims at providing an all-optical solution for broadband wavelength conversion and tunable broadcasting, a crucial optical network component, based on quasi-phase-matched wave mixing in nonlinear materials. The quasi phase matching (QPM) technique allows phase matching in long crystal lengths by employing domain-inverted gratings to periodically reverse the sign of nonlinearity, known as periodic poling. This results into new frequency components with high conversion efficiency and has been successfully implemented towards various processes such as second harmonic generation (SHG), sum- and difference- frequency generation (SFG and DFG). Conventionally, the optical networks has an operation window of ˜35 nm centered at 1.55 mum, known as C-band. The wavelength conversion of a signal channel in C-band to an output channel also in the C-band has been demonstrated in periodically poled lithium niobate (PPLN) waveguides via the process of difference frequency mixing, cascaded SHG/DFG and cascaded SFG/DFG. While a DFG process utilized a pump wavelength in 775nm regime, it suffered from low efficiency due to mode mismatch between the pump and the signal wavelengths; whereas the technique based on cSHG/DFG or cSFG/DFG eliminated the mode mismatch problem with pump(s) lying in the 1.55 mum wavelength regime. In this thesis, for the first time a flattened bandwidth of cSFG/DFG have been experimentally realized by slight detuning of the pump wavelengths from their phase matching condition. Moreover, employing two closely spaced pumps in a cSFG/DFG process in a PPLN waveguide, a signal has been broadcast to three idlers in C-band. Although a uniform period PPLN grating increases efficiency by the use of highest nonlinearity tensor coefficient via QPM, it suffers from the limitation of a narrow bandwidth of frequency doubling. The narrow bandwidth restricts the choice of pump wavelengths in a cascaded conversion process and consequently the converted signal wavelength is also fixed for a given signal wavelength. Enhancing the frequency doubling bandwidth is necessary for mainly two reasons: firstly, to achieve the tunability of wavelength conversion of a signal to any channel in the communication band; and secondly, to broadcast a signal to several channels simultaneously by employing multiple pump lasers within its broad bandwidth. The first engineered PPLN device proposed and demonstrated in this thesis for broadband wavelength conversion has an aperiodic domain in the center of an otherwise periodic grating. This phase-shifted or aperiodic (a-) PPLN has a dual-peak SH response with an increase in bandwidth compared to a uniform PPLN. It has also been shown that using temperature tuning, the phase matching conditions of the aPPLN can be varied and its SH bandwidth can be further enhanced. The triple-idler broadcasting is shown and for the first time, the idlers are tuned across 40 channels in C-band with flexible location and mutual spacing in the WDM grid assisted with pump detuning and temperature tuning. Although the temperature-tuning scheme solves the problem of narrow SH bandwidth and tunability of conversion, the slow speed of temperature change makes it inadequate for ultra-fast WDM applications. Therefore, a temperature-independent broadband device has been demonstrated for the first time in this dissertation, using a step-chirped grating (SCG), which has an inherent 30-nm SH bandwidth overlapping the C-band. This device obviates the need of temperature tuning and leads to tunable wavelength conversion and flexible broadcasting. Employing a single tuned pump wavelength in the SC-PPLN, conversion of a signal in C-band to tunable dual idlers via cSHG/DFG process is demonstrated for the first time. Also by taking advantage of the broad SH-SF bandwidth, for the first time, agile broadcasting of a signal to seven idlers spanning across C-band with variable position in the grid is realized based on cSHG/DFG and cSFG/DFG processes. By tuning the two pump wavelengths over less than 6 nm, broadcasting is achieved across ˜70 WDM channels within the 50 GHz spacing WDM grid. (Abstract shortened by UMI.).
Dual light field and polarization imaging using CMOS diffractive image sensors.
Jayasuriya, Suren; Sivaramakrishnan, Sriram; Chuang, Ellen; Guruaribam, Debashree; Wang, Albert; Molnar, Alyosha
2015-05-15
In this Letter we present, to the best of our knowledge, the first integrated CMOS image sensor that can simultaneously perform light field and polarization imaging without the use of external filters or additional optical elements. Previous work has shown how photodetectors with two stacks of integrated metal gratings above them (called angle sensitive pixels) diffract light in a Talbot pattern to capture four-dimensional light fields. We show, in addition to diffractive imaging, that these gratings polarize incoming light and characterize the response of these sensors to polarization and incidence angle. Finally, we show two applications of polarization imaging: imaging stress-induced birefringence and identifying specular reflections in scenes to improve light field algorithms for these scenes.
Bocksrocker, Tobias; Preinfalk, Jan Benedikt; Asche-Tauscher, Julian; Pargner, Andreas; Eschenbaum, Carsten; Maier-Flaig, Florian; Lemme, Uli
2012-11-05
White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.
Volume Bragg grating improves characteristic of resonantly diode-pumped Er:YAG, 1.65-μm DPSSL
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-02-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62%. As a result, the incident power threshold was reduced by a factor of 2.5; the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing.
COS FUV BOA performance at LP4
NASA Astrophysics Data System (ADS)
White, James
2016-10-01
This is a program to observe the photometric standard star G191-B2B with the bright object aperture (BOA) for one external orbit. Spectra will be obtained in the G130M, G160M, and G140L gratings at one cenwave each to 1) roughly measure the spectral resolution and 2) obtain the cross-dispersion profiles
Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling
2016-06-28
Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.
Design of a photonic integrated based optical interrogator
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.
2017-02-01
Optical sensors based on Fiber Bragg Gratings (FBGs) are used in several applications and industries. In order for fiber optic sensors to compete with electrical sensors, several critical parameters of both the sensors and sensor interrogators need to be in place such as performance, cost, size, reliability relevant to the target application. Here we have developed a tunable laser based optical interrogator which delivers high performance (up to 8kHz sweep-rate and 120dB dynamic range) and precision (<100fm) by optimizing the laser calibration of a telecom tunable laser and incorporating optical periodic wavelength references (e.g. MZI) to correct and compensate for wavelength non-linearity and noise during operation. Scaling up optical sensing systems to deliver high level of performance over a large number of sensors is enabled by synchronizing multiple interrogators. Further improvements can be achieved by using photonic integrated circuit (PIC) technology which reduces the footprint, cost, and improves performance. There exists several PIC technology platforms (e.g. InP, Si, TriPlex) that could be used to develop different optical building blocks used in the interrogator. Such building blocks include the tunable laser, couplers, photodiodes, MZIs, etc. are available on the InP platform. Here we have demonstrated the operation of an interrogator using PIC technology to replace many of the discrete optical components. The design and chip manufacturing was carried out as part of an InP multi-project wafer (MPW) run under the EU PARADIGM project. A custom package supporting fiber arrays was designed and manufactured to demonstrate the PIC functionality in an optical interrogator.
Huang, Chang-Bing; Lu, Zhong-Lin; Zhou, Yifeng
2010-01-01
What underlies contrast sensitivity improvements in adults with anisometropic amblyopia following perceptual learning in grating contrast detection? In this paper, we adopted the external noise approach (Z.-L. Lu & B. A. Dosher, 1998) to identify the mechanisms underlying perceptual learning in adults with anisometropic amblyopia. By measuring contrast thresholds in a range of external noise conditions at two performance levels (79.3% and 70.7%), we found that a mixture of internal additive noise reduction and external noise exclusion underlay training induced contrast sensitivity improvements in adults with anisometropic amblyopia. In comparison, normal adults exhibited only small amount of external noise exclusion under the same training conditions. The results suggest that neural plasticity may be more robust in amblyopia, lending further support of perceptual learning as a potential treatment for adult amblyopia. PMID:20053087
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.
Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy
2017-01-01
Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.
Nonlinear tuning techniques of plasmonic nano-filters
NASA Astrophysics Data System (ADS)
Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.
2015-02-01
In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.
NASA Astrophysics Data System (ADS)
Cleary, Justin W.; Peale, Robert E.; Saxena, Himanshu; Buchwald, Walter R.
2011-05-01
The observation of THz regime transmission resonances in an InGaAs/InP high electron mobility transistor (HEMT) can be attributed to excitation of plasmons in its two-dimensional electron gas (2DEG). Properties of grating-based, gate-voltage tunable resonances are shown to be adequately modeled using commercial finite element method (FEM) software when the HEMT layer structure, gate geometry and sheet charge concentration are taken into account. The FEM results are shown to produce results consistent with standard analytical theories in the 10-100 cm-1 wavenumber range. An original analytic formula presented here describes how the plasmonic resonance may change in the presence of a virtual gate, or region of relatively high free charge carriers that lies in the HEMT between the physical grating gate and the 2DEG. The virtual gate and corresponding analytic formulation are able to account for the red-shifting experimentally observed in plasmonic resonances. The calculation methods demonstrated here have the potential to greatly aid in the design of future detection devices that require specifically tuned plasmonic modes in the 2DEG of a HEMT, as well as giving new insights to aid in the development of more complete analytic theories.
High Contrast Internal and External Coronagraph Masks Produced by Various Techniques
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatha; Wilson, Daniel; White, Victor; Muller, Richard; Dickie, Matthew; Yee, Karl; Ruiz, Ronald; Shaklan, Stuart; Cady, Eric; Kern, Brian;
2013-01-01
Masks for high contrast internal and external coronagraphic imaging require a variety of masks depending on different architectures to suppress star light. Various fabrication technologies are required to address a wide range of needs including gradient amplitude transmission, tunable phase profiles, ultra-low reflectivity, precise small scale features, and low-chromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks, and lab-scale external occulter type masks by various techniques including electron beam, ion beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each. Further development is in progress to produce circular masks of various kinds for obscured aperture telescopes.
Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2018-01-01
We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.
Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors
Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João
2016-01-01
The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749
NASA Astrophysics Data System (ADS)
Smietana, M.; Bock, W. J.; Mikulic, P.
2011-11-01
This paper presents the temperature sensing properties of a silicon nitride (SiNx) nanocoated long-period grating (LPG). A high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited SiNx nanocoating was applied to tune the external refractive index (RI) sensitivity of LPGs written with UV and electric arc techniques in boron co-doped and standard germanium doped fibers, respectively. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as are required for optical sensors. Thanks to the high-RI SiNx nanocoating, which is less than 90 nm thick, it is possible to reduce RI sensitivity over a wide range (from nD = 1.333 to 1.479), simultaneously decreasing its cross-sensitivity to temperature. For the presented nanocoated LPGs, the temperature effect on resonance wavelength is linear and slightly dependent on the thermo-optic coefficient of the surrounding liquid. The other advantage of the nanocoating is that it makes the resonance clearly visible in the whole investigated external RI range. To the best of our knowledge, this work presents for the first time a nanocoating able to simultaneously tune the RI sensitivity and enable temperature measurements in high-RI liquids applied to LPGs.
Quantitative method for gait pattern detection based on fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Ding, Lei; Tong, Xinglin; Yu, Lie
2017-03-01
This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.
Compact spectrometer for precision studies of multimode behavior in an extended-cavity diode laser
NASA Astrophysics Data System (ADS)
Roach, Timothy; Golemi, Josian; Krueger, Thomas
2016-05-01
We have built a compact, inexpensive, high-precision spectrometer and used it to investigate the tuning behavior of a grating stabilized extended-cavity diode laser (ECDL). A common ECDL design uses a laser chip with an uncoated (partially reflecting) front facet, and the laser output exhibits a complicated pattern of mode hops as the frequency is tuned, in some cases even showing chaotic dynamics. Our grating spectrometer (based on a design by White & Scholten) monitors a span of 4000 GHz (8 nm at 780 nm) with a linewidth of 3 GHz, which with line-splitting gives a precision of 0.02 GHz in determining the frequency of a laser mode. We have studied multimode operation of the ECDL, tracking two or three simultaneous chip cavity modes (spacing ~ 30 GHz) during tuning via current or piezo control of the external cavity. Simultaneous output on adjacent external cavity modes (spacing ~ 5 GHz) is monitored by measuring an increase in the spectral linewidth. Computer-control of the spectrometer (for line-fitting and averaging) and of the ECDL (electronic tuning) allows rapid collection of spectral data sets, which we will use to test mathematical simulation models of the non-linear laser cavity interactions.
NASA Astrophysics Data System (ADS)
Han, Young-Geun
2017-04-01
Transmission characteristics of periodically surface-corrugated long-period gratings (LPGs) inscribed on photonic crystal fibers (PCFs) using a wet-etching technique were experimentally investigated. A conventional wet method was implemented to periodically engrave the silica cladding region of the PCFs resulting in the periodic surface corrugation in the PCF. After applying the external strain to the PCF with the periodic surface micro-ridges, periodic modulation of refractive index based on the photoelastic effect is induced resulting in the formation of the PCF-based LPG. Increasing the applied strain successfully improves the extinction ratio of the resonant peak of the PCF-based LPG without the resonant wavelength shift. We also measured the transmission characteristics of the PCF-based LPG with variations in temperature and ambient index.
Metamaterials based on the phase transition of VO2
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Lu, Junpeng; Renshaw Wang, Xiao
2018-01-01
In this article, we present a comprehensive review on recent research progress in design and fabrication of active tunable metamaterials and devices based on phase transition of VO2. Firstly, we introduce mechanisms of the metal-to-insulator phase transition (MIPT) in VO2 investigated by ultrafast THz spectroscopies. By analyzing the THz spectra, the evolutions of MIPT in VO2 induced by different external excitations are described. The superiorities of using VO2 as building blocks to construct highly tunable metamaterials are discussed. Subsequently, the recently demonstrated metamaterial devices based on VO2 are reviewed. These metamaterials devices are summarized and described in the categories of working frequency. In each working frequency range, representative metamaterials based on VO2 with different architectures and functionalities are reviewed and the contributions of the MIPT of VO2 are emphasized. Finally, we conclude the recent reports and provide a prospect on the strategies of developing future tunable metamaterials based on VO2.
Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
Vijayraghavan, Karun; Jiang, Yifan; Jang, Min; Jiang, Aiting; Choutagunta, Karthik; Vizbaras, Augustinas; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2013-01-01
Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.
Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser
NASA Astrophysics Data System (ADS)
Fukuoka, D.; Muro, K.; Noda, K.
2016-02-01
A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.
Photonic instantaneous frequency measurement of wideband microwave signals.
Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin; Ning, Tigang
2017-01-01
We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.
High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.
Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M
2012-12-15
We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8 W over 77% of the tuning range together with >3 W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.
NASA Astrophysics Data System (ADS)
Lai, Zhi; Zeng, Xiaodong; Fan, Zhaojin; Xu, Zhichen
2016-09-01
The parameters of light source in synthetic aperture ladar (SAL) is very important to both the design of system and the signal processing algorithm. As the light source in the SAL, the fiber laser use PZT (piezoelectric ceramics) tube stretching the fiber Bragg grating in order to tune the laser frequency. So it is necessary to obtain the deformation and frequency response of PZT tube driven by saw-tooth voltage of different periods. Accordingly, the homodyne detection is used to measure the girth variation of PZT tube. Meanwhile, the frequency response of PZT tube can be viewed with the homodyne signal. The results from measuring a PZT tube show that the method can work well.
NASA Technical Reports Server (NTRS)
Smyth, K. C.; Brauman, J. I.
1972-01-01
The relative cross section for the gas-phase photodetachment of electrons has been determined for NH2(-) in the wavelength region of 1195 to 1695 nm and for AsH2(-) in the region from 620 to 1010 nm. An ion cyclotron resonance spectrometer was used to generate, trap, and detect negative ions. A 1000-W xenon arc lamp with a grating monochromator was used as the light source, except for one series of experiments in which a tunable laser was employed. Single sharp thresholds were observed in both cross sections, and the following electron affinity values were determined: 0.744 (plus or minus 0.022) eV for NH2. and 1.27 (plus or minus 0.03) eV for AsH2.
High-speed switching of biphoton delays through electro-optic pump frequency modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.
The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less
High-speed switching of biphoton delays through electro-optic pump frequency modulation
Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; ...
2016-12-08
The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less
Self-Motion and the Shaping of Sensory Signals
Jenks, Robert A.; Vaziri, Ashkan; Boloori, Ali-Reza
2010-01-01
Sensory systems must form stable representations of the external environment in the presence of self-induced variations in sensory signals. It is also possible that the variations themselves may provide useful information about self-motion relative to the external environment. Rats have been shown to be capable of fine texture discrimination and object localization based on palpation by facial vibrissae, or whiskers, alone. During behavior, the facial vibrissae brush against objects and undergo deflection patterns that are influenced both by the surface features of the objects and by the animal's own motion. The extent to which behavioral variability shapes the sensory inputs to this pathway is unknown. Using high-resolution, high-speed videography of unconstrained rats running on a linear track, we measured several behavioral variables including running speed, distance to the track wall, and head angle, as well as the proximal vibrissa deflections while the distal portions of the vibrissae were in contact with periodic gratings. The measured deflections, which serve as the sensory input to this pathway, were strongly modulated both by the properties of the gratings and the trial-to-trial variations in head-motion and locomotion. Using presumed internal knowledge of locomotion and head-rotation, gratings were classified using short-duration trials (<150 ms) from high-frequency vibrissa motion, and the continuous trajectory of the animal's own motion through the track was decoded from the low frequency content. Together, these results suggest that rats have simultaneous access to low- and high-frequency information about their environment, which has been shown to be parsed into different processing streams that are likely important for accurate object localization and texture coding. PMID:20164407
Dynamic Photorefractive Memory and its Application for Opto-Electronic Neural Networks.
NASA Astrophysics Data System (ADS)
Sasaki, Hironori
This dissertation describes the analysis of the photorefractive crystal dynamics and its application for opto-electronic neural network systems. The realization of the dynamic photorefractive memory is investigated in terms of the following aspects: fast memory update, uniform grating multiplexing schedules and the prevention of the partial erasure of existing gratings. The fast memory update is realized by the selective erasure process that superimposes a new grating on the original one with an appropriate phase shift. The dynamics of the selective erasure process is analyzed using the first-order photorefractive material equations and experimentally confirmed. The effects of beam coupling and fringe bending on the selective erasure dynamics are also analyzed by numerically solving a combination of coupled wave equations and the photorefractive material equation. Incremental recording technique is proposed as a uniform grating multiplexing schedule and compared with the conventional scheduled recording technique in terms of phase distribution in the presence of an external dc electric field, as well as the image gray scale dependence. The theoretical analysis and experimental results proved the superiority of the incremental recording technique over the scheduled recording. Novel recirculating information memory architecture is proposed and experimentally demonstrated to prevent partial degradation of the existing gratings by accessing the memory. Gratings are circulated through a memory feed back loop based on the incremental recording dynamics and demonstrate robust read/write/erase capabilities. The dynamic photorefractive memory is applied to opto-electronic neural network systems. Module architecture based on the page-oriented dynamic photorefractive memory is proposed. This module architecture can implement two complementary interconnection organizations, fan-in and fan-out. The module system scalability and the learning capabilities are theoretically investigated using the photorefractive dynamics described in previous chapters of the dissertation. The implementation of the feed-forward image compression network with 900 input and 9 output neurons with 6-bit interconnection accuracy is experimentally demonstrated. Learning of the Perceptron network that determines sex based on input face images of 900 pixels is also successfully demonstrated.
Optimizing Ti:Sapphire laser for quantitative biomedical imaging
NASA Astrophysics Data System (ADS)
James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.
2018-02-01
Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.
Electrically tunable negative refraction in core/shell-structured nanorod fluids.
Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng
2014-10-21
We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized.
Mechanical stress-controlled tunable active frequency-selective surface
NASA Astrophysics Data System (ADS)
Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao
2017-01-01
This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.
Research on a high-precision calibration method for tunable lasers
NASA Astrophysics Data System (ADS)
Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai
2018-03-01
Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.
Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong
2016-01-01
This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475
Park, Changwon; Ryou, Junga; Hong, Suklyun; ...
2015-07-02
Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures. We established the first phase diagram summarizing the stacking-dependent gap openings of BLG for a given field. Lastly, we further identified high-density midgap states, localized on grain boundaries, even under a strong field, which can considerably reduce the overall transport gap.
Scalable, high-capacity optical switches for Internet routers and moving platforms
NASA Astrophysics Data System (ADS)
Joe, In-Sung
Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming packet, and conventional continuous-mode receivers are not suitable for this application. An Embedded Clock Transport (ECT) technique is adopted here. The ECT combines a clock tone with the data payload before the transmission. Simple band pass filtering can extract the transmitted clock tone, and low pass filtering can recover the data. Error-free transmissions at 2.488 Gb/s with ˜16 ns clock recovery time were demonstrated.
Negative stiffness honeycombs as tunable elastic metamaterials
NASA Astrophysics Data System (ADS)
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
Reconfigurable optical interconnection network for multimode optical fiber sensor arrays
NASA Technical Reports Server (NTRS)
Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.
1992-01-01
A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.
[INVITED] Tilted fiber grating mechanical and biochemical sensors
NASA Astrophysics Data System (ADS)
Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques
2016-04-01
The tilted fiber Bragg grating (TFBG) is a new kind of fiber-optic sensor that possesses all the advantages of well-established Bragg grating technology in addition to being able to excite cladding modes resonantly. This device opens up a multitude of opportunities for single-point sensing in hard-to-reach spaces with very controllable cross-sensitivities, absolute and relative measurements of various parameters, and an extreme sensitivity to materials external to the fiber without requiring the fiber to be etched or tapered. Over the past five years, our research group has been developing multimodal fiber-optic sensors based on TFBG in various shapes and forms, always keeping the device itself simple to fabricate and compatible with low-cost manufacturing. This paper presents a brief review of the principle, fabrication, characterization, and implementation of TFBGs, followed by our progress in TFBG sensors for mechanical and biochemical applications, including one-dimensional TFBG vibroscopes, accelerometers and micro-displacement sensors; two-dimensional TFBG vector vibroscopes and vector rotation sensors; reflective TFBG refractometers with in-fiber and fiber-to-fiber configurations; polarimetric and plasmonic TFBG biochemical sensors for in-situ detection of cell, protein and glucose.
Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks
NASA Astrophysics Data System (ADS)
Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi
2016-03-01
Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.
Tunable Amorphous Photonic Materials with Pigmentary Colloidal Nanostructures
Han, Jinkyu; Lee, Elaine; Dudoff, Jessica K.; ...
2017-01-31
Amorphous photonic structures using pigmentary α-Fe 2O 3/SiO 2 core–shell nanoparticles are succesfully fabricated. The resulting non-iridicent brilliant colors can be manipulated by shell thickness, particle concentration, and external electrical stimuli using electrophoretic deposition process. In conclusion, fully reversible and instantaneous color changes as well as noticeable difference between transmitted and reflected colors is observed.
Self-assembled Tunable Photonic Hyper-crystals
2014-07-16
a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to...monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. 2 Approved for public release...assembly of photonic hyper crystals has been achieved by application of external magnetic field to a cobalt nanoparticle based ferrofluid. Unique spectral
The Cassini mission: Infrared and microwave spectroscopic measurements
NASA Technical Reports Server (NTRS)
Kunde, V. G.
1989-01-01
The Cassini Orbiter and Titan Probe model payloads include a number of infrared and microwave instruments. This document describes: (1) the fundamental scientific objectives for Saturn and Titan which can be addressed by infrared and microwave instrumentation, (2) the instrument requirements and the accompanying instruments, and (3) the synergism resulting from the comprehensive coverage of the total infrared and microwave spectrum by the complement of individual instruments. The baseline consists of four instruments on the orbiter and two on the Titan probe. The orbiter infrared instruments are: (1) a microwave spectrometer and radiometer; (2) a far to mid-infrared spectrometer; (3) a pressure modulation gas correlation spectrometer, and (4) a near-infrared grating spectrometer. The two Titan probe infrared instruments are: (1) a near-infrared instrument, and (2) a tunable diode laser infrared absorption spectrometer and nephelometer.
Tunable tunneling: stationary states of the Bose-Einstein condensate in traps of finite depth
NASA Astrophysics Data System (ADS)
Mahmud, K. W.
2001-03-01
The complete set of stationary solutions in a finite square well for repulsive and attractive Bose-Einstein condensates was obtained. An immediate application of these different solution types is tunable tunneling. Magnetically tunable Feshbach resonances [1] can change the scattering length of certain atoms, such as ^85Rb , by several orders of magnitude, including the sign, and thereby also change the mean field nonlinearity term of the equation and the tunneling of the wavefunction. Extending earlier work on the solutions of the Gross-Pitaevskii equation under box and periodic boundary conditions [2,3], we find both linear-type localized solutions and uniquely nonlinear partially localized states where the tails of the wavefunction become nonzero at infinity when the nonlinearity increases. The tunneling and localization of the wavefunction therefore becomes an external experimentally controllable parameter. PACS numbers: 03.75.Fi, 05.30.Jp, 67.40.-w 1. Ph. Courteille et al., Phys. Rev. Lett. 81, 69 (1998) 2, 3. L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A 62, 063610 and 063611 (2000)
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-01-01
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices’ performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves. PMID:27901088
Towards a continuous glucose monitoring system using tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Haase, Katharina; Müller, Niklas; Petrich, Wolfgang
2018-02-01
We present a reagent-free approach for long-term continuous glucose monitoring (cgm) of liquid samples using midinfrared absorption spectroscopy. This method could constitute an alternative to enzymatic glucose sensors in order to manage the widespread disease of Diabetes. In order to acquire spectra of the liquid specimen, we use a spectrally tunable external-cavity (EC-) quantum cascade laser (QCL) as radiation source in combination with a fiber-based in vitro sensor setup. Hereby we achieve a glucose sensitivity in pure glucose solutions of 3 mg/dL (RMSEP). Furthermore, the spectral tunability of the EC-QCL enables us to discriminate glucose from other molecules. We exemplify this by detecting glucose among other saccharides with an accuracy of 8 mg/dL (within other monosaccharides, RMSEVC) and 14 mg/dL (within other mono- and disaccharides, RMSECV). Moreover, we demonstrate a characterization of the significance of each wavenumber for an accurate prediction of glucose among other saccharides using an evolutionary algorithm. We show, that by picking 10 distinct wavenumbers we can achieve comparable accuracies to the use of a complete spectrum.
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-11-30
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices' performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves.
NASA Astrophysics Data System (ADS)
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-11-01
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices’ performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves.
NASA Astrophysics Data System (ADS)
Adhikari, K.; Choudhury, S.; Mandal, R.; Barman, S.; Otani, Y.; Barman, A.
2017-01-01
Ferromagnetic nano-cross structures promise exotic static magnetic configurations and very rich and tunable magnetization dynamics leading towards potential applications in magnetic logic and communication devices. Here, we report an experimental study of external magnetic field tunable static magnetic configurations and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm lengths (L). Broadband ferromagnetic resonance measurements showed a strong variation in the number of spin-wave (SW) modes and mode frequencies (f) with bias field magnitude (H). Simulated static magnetic configurations and SW mode profiles explain the rich variation of the SW spectra, including mode softening, mode crossover, mode splitting, and mode merging. Such variation of SW spectra is further modified by the size of the nano-cross. Remarkably, with decreasing arm length of nano-cross structures, the onion magnetization ground state becomes more stable. Calculated magnetostatic field distributions support the above observations and revealed the non-collective nature of the dynamics in closely packed nano-cross structures. The latter is useful for their possible applications in magnetic storage and memory devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Rui; Ni, Jun, E-mail: junni@mail.tsinghua.edu.cn; Collaborative Innovative Center of Quantum Matter, Beijing 100084
2015-12-28
We have investigated the magnetic properties of silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain by the first-principles calculations. We find that Cr and Fe doped silicenes show strain-tunable magnetism. (1) The magnetism of Cr and Fe doped silicenes exhibits sharp transitions from low spin states to high spin states by a small isotropic tensile strain. Specially for Fe doped silicene, a nearly nonmagnetic state changes to a high magnetic state by a small isotropic tensile strain. (2) The magnetic moments of Fe doped silicene also show a sharp jump to ∼2 μ{sub B} at amore » small threshold of the uniaxial strain, and the magnetic moments of Cr doped silicene increase gradually to ∼4 μ{sub B} with the increase of uniaxial strain. (3) The electronic and magnetic properties of Cr and Fe doped silicenes are sensitive to the magnitude and direction of the external strain. The highly tunable magnetism may be applied in the spintronic devices.« less
Tunable two-dimensional interfacial coupling in molecular heterostructures
Xu, Beibei; Chakraborty, Himanshu; Yadav, Vivek K.; ...
2017-08-22
Two-dimensional van der Waals heterostructures are of considerable interest for the next generation nanoelectronics because of their unique interlayer coupling and optoelectronic properties. Here, we report a modified Langmuir–Blodgett method to organize twodimensional molecular charge transfer crystals into arbitrarily and vertically stacked heterostructures, consisting of bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF)/C 60 and poly (3-dodecylthiophene-2,5-diyl) (P3DDT)/C 60 nanosheets. A strong and anisotropic interfacial coupling between the charge transfer pairs is demonstrated. The van der Waals heterostructures exhibit pressure dependent sensitivity with a high piezoresistance coefficient of -4.4 × 10 -6 Pa -1, and conductance and capacitance tunable by external stimuli (ferroelectric field and magneticmore » field). Density functional theory calculations confirm charge transfer between the n-orbitals of the S atoms in BEDT–TTF of the BEDT–TTF/C 60 layer and the π* orbitals of C atoms in C 60 of the P3DDT/C 60 layer contribute to the inter-complex CT. Thus, the two-dimensional molecular van der Waals heterostructures with tunable optical–electronic–magnetic coupling properties are promising for flexible electronic applications.« less
Continuous wave room temperature external ring cavity quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.
2015-06-29
An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.
Using phase locking for improving frequency stability and tunability of THz-band gyrotrons
NASA Astrophysics Data System (ADS)
Adilova, Asel B.; Gerasimova, Svetlana A.; Melnikova, Maria M.; Tyshkun, Alexandra V.; Rozhnev, Andrey G.; Ryskin, Nikita M.
2018-04-01
Medium-power (10-100 W) THz-band gyrotrons operating in a continuous-wave (CW) mode are of great importance for many applications such as NMR spectroscopy with dynamic nuclear polarization (DNP/NMR), plasma diagnostics, nondestructive inspection, stand-off detection of radioactive materials, biomedical applications, etc. For all these applications, high frequency stability and tunability within 1-2 GHz frequency range is typically required. Apart from different existing techniques for frequency stabilization, phase locking has recently attracted strong interest. In this paper, we present the results of theoretical analysis and numerical simulation for several phase locking techniques: (a) phase locking by injection of the external driving signal; (b) mutual phase locking of two coupled gyrotrons; and (c) selfinjection locking by a wave reflected from the remote load.
Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers
NASA Astrophysics Data System (ADS)
Fuchs, Frank; Hugger, Stefan; Kinzer, Michel; Aidam, Rolf; Bronner, Wolfgang; Lösch, Rainer; Yang, Quankui; Degreif, Kai; Schnürer, Frank
2010-11-01
The use of a tunable midinfrared external cavity quantum cascade laser for the standoff detection of explosives at medium distances between 2 and 5 m is presented. For the collection of the diffusely backscattered light, a high-performance infrared imager was used. Illumination and wavelength tuning of the laser source was synchronized with the image acquisition, establishing a hyperspectral data cube. Sampling of the backscattered radiation from the test samples was performed in a noncooperative geometry at angles of incidence far away from specular reflection. We show sensitive detection of traces of trinitrotoluene and pentaerythritol tetranitrate on real-world materials, such as standard car paint, polyacrylics from backpacks, and jeans fabric. Concentrations corresponding to fingerprints were detected, while concepts for false alarm suppression due to cross-contaminations were presented.
Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm
NASA Technical Reports Server (NTRS)
Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.
1998-01-01
We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.
NASA Astrophysics Data System (ADS)
Shi, Guang; Wang, Wen; Zhang, Fumin
2018-03-01
The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
NASA Astrophysics Data System (ADS)
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhiguo; Shen, Chunyan; Li, Luming
2018-03-01
Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.
Temperature and strain characterization of long period gratings in air guiding fiber
NASA Astrophysics Data System (ADS)
Iadicicco, Agostino; Cutolo, Antonello; Cusano, Andrea; Campopiano, Stefania
2013-05-01
This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. This procedure permits to preserve the holey structure of the host fiber avoiding any hole collapsing and it enables a local effective refractive index change due to the size and shape modifications of core and cladding holes. Periodically repeated EAD treatments permit the fabrication of LPGs based devices in hollow core optical fibers enabling new functionalities hitherto not possible. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the HC-LPGs sensitivity to environmental parameters such as strain and temperature are investigated.
On a Road to "Soft" Optical MEMS
NASA Astrophysics Data System (ADS)
Yang, Shu; Mach, Peter; Krupenkin, Tom
2003-03-01
A phenomenon of electrowetting has been applied to the actuation of micro-optical devices. The devices use small droplets of transparent conductive liquids to manipulate light in a useful way. The form and position of these droplets is controlled by the applied voltage. Both fiber based and open space optical devices are demonstrated. As an example of an open space optical device, a tunable liquid microlens capable of adjusting its focal length and lateral position is discussed. The microlens consists of a droplet of a transparent conductive liquid placed on a dielectric substrate with underlying electrodes. By varying the voltage applied to the structure, both the position and curvature of microlens can be reversibly changed. Similarly, electrowetting actuation of fluids in micro channels is employed to provide dynamic and reversible tuning of the optical fiber structures. When combined with in-fiber gratings or etched fibers this approach yields tunable broadband and narrowband filters with a large dynamic range. Both the surface and bulk properties of the materials are found important to control the device performance. Fundamental problems, such as stick-slip behavior and contact angle hysteresis associated with the surface roughness and surface contamination, are studied to optimize the choice of dielectric materials and their coatings. Some of the possible ways to control these phenomena are outlined. Several potential applications of the proposed approach are also discussed.