Sample records for tunable filter imaging

  1. Tunable electro-optic filter stack

    DOEpatents

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  2. Tunable thin-film optical filters for hyperspectral microscopy

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  3. On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained.

    PubMed

    Chowdhury, Debbrota Paul; Bakshi, Sambit; Guo, Guodong; Sa, Pankaj Kumar

    2017-11-27

    In this paper, an overall framework has been presented for person verification using ear biometric which uses tunable filter bank as local feature extractor. The tunable filter bank, based on a half-band polynomial of 14th order, extracts distinct features from ear images maintaining its frequency selectivity property. To advocate the applicability of tunable filter bank on ear biometrics, recognition test has been performed on available constrained databases like AMI, WPUT, IITD and unconstrained database like UERC. Experiments have been conducted applying tunable filter based feature extractor on subparts of the ear. Empirical experiments have been conducted with four and six subdivisions of the ear image. Analyzing the experimental results, it has been found that tunable filter moderately succeeds to distinguish ear features at par with the state-of-the-art features used for ear recognition. Accuracies of 70.58%, 67.01%, 81.98%, and 57.75% have been achieved on AMI, WPUT, IITD, and UERC databases through considering Canberra Distance as underlying measure of separation. The performances indicate that tunable filter is a candidate for recognizing human from ear images.

  4. Imaging spectrometer using a liquid crystal tunable filter

    NASA Astrophysics Data System (ADS)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  5. Thin-film tunable filters for hyperspectral fluorescence microscopy

    PubMed Central

    Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant

    2013-01-01

    Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519

  6. Tunable filters for multispectral imaging of aeronomical features

    NASA Astrophysics Data System (ADS)

    Goenka, C.; Semeter, J. L.; Noto, J.; Dahlgren, H.; Marshall, R.; Baumgardner, J.; Riccobono, J.; Migliozzi, M.

    2013-10-01

    Multispectral imaging of optical emissions in the Earth's upper atmosphere unravels vital information about dynamic phenomena in the Earth-space environment. Wavelength tunable filters allow us to accomplish this without using filter wheels or multiple imaging setups, but with identifiable caveats and trade-offs. We evaluate one such filter, a liquid crystal Fabry-Perot etalon, as a potential candidate for the next generation of imagers for aeronomy. The tunability of such a filter can be exploited in imaging features such as the 6300-6364 Å oxygen emission doublet, or studying the rotational temperature of N2+ in the 4200-4300 Å range, observations which typically require multiple instruments. We further discuss the use of this filter in an optical instrument, called the Liquid Crystal Hyperspectral Imager (LiCHI), which will be developed to make simultaneous measurements in various wavelength ranges.

  7. Spectral imagery with an acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Smith, W. Hayden; Schempp, W. V.; Conner, C. P.; Katzka, P.

    1987-01-01

    .A spectral imager for astronomy and aeronomy has been fabricated using collinear or non-collinear acoustooptic tunable filters (AOTFs). The AOTF provides high transparency, rapid tunability over a wide wavelength range, a capability of varying the bandwidth by more than an order of magnitude, high etendue, and linearly polarized output. Some typical observational applications of acoustooptic tunable filters used in several configurations at astronomical telescopes are demonstrated.

  8. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  9. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.

    PubMed

    Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I

    2015-09-01

    A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.

  10. Simultaneous imaging of cellular morphology and multiple biomarkers using an acousto-optic tunable filter-based bright field microscope.

    PubMed

    Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris

    2014-05-01

    An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.

  11. Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings

    NASA Astrophysics Data System (ADS)

    Nicolescu, Elena

    Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace the polarizers in the system, thereby greatly increasing the filter throughput. We then turn our attention to a Fourier filtering technique. This is a fundamentally different filtering approach involving a single PG where the filtering functionality involves selecting a spectral band with a movable aperture or slit and a diffractive element (PG in our case). Finally, we study the integration of a PG in a multi-channel wavelength blocker system focusing on the practical and fundamental limitations of using a PG as a variable optical attenuator/wavelength blocker in a commercial optical telecommunications network.

  12. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too.

  13. Investigation of magnesium fluoride crystals for imaging acousto-optic tunable filter applications.

    PubMed

    Voloshinov, Vitaly B; Gupta, Neelam

    2006-05-01

    Results of an investigation of acousto-optic (AO) cells using single crystals of magnesium fluoride (MgF2) are presented. Two acousto-optic tunable filter (AOTF) cells for imaging application have been designed and tested in the visible and ultraviolet (UV) regions of the spectrum from 190 to 490 nm. The two imaging filters were developed by using the wide-angle AO interaction geometry in the (010) and (11 0) planes of the crystal. These filters were used to obtain spectral images at the shortest wavelengths achieved so far. Advantages and drawbacks of this crystal are discussed and photoelastic, acoustic, and AO properties of MgF2 are examined. The investigation confirmed that MgF2-based AOTF cells can be used in the deep UV region up to 110 nm.

  14. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Diego, J. A.; De Leo, M. A.; Cepa, J.

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. Wemore » compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.« less

  15. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    PubMed

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  16. Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter.

    PubMed

    Tam, A M W; Qi, G; Srivastava, A K; Wang, X Q; Fan, F; Chigrinov, V G; Kwok, H S

    2014-06-10

    In this paper, we present a novel design configuration of double DHFLC wave plate continuous tunable Lyot filter, which exhibits a rapid response time of 185 μs, while the high-contrast ratio between the passband and stop band is maintained throughout a wide tunable range. A DHFLC tunable filter with a high-contrast ratio is attractive for realizing high-speed optical processing devices, such as multispectral and hyperspectral imaging systems, real-time remote sensing, field sequential color display, and wavelength demultiplexing in the metro network. In this work, an experimental prototype for a single-stage DHFLC Lyot filter of this design has been fabricated using photoalignment technology. We have demonstrated that the filter has a continuous tunable range of 30 nm for a blue wavelength, 45 nm for a green wavelength, and more than 50 nm for a red wavelength when the applied voltage gradually increases from 0 to 8 V. Within this tunable range, the contrast ratio of the proposed double wave plate configuration is maintained above 20 with small deviation in the transmittance level. Simulation and experimental results showed the proposed double DHFLC wave plate configuration enhances the contrast ratio of the tunable filter and, thus, increases the tunable range of the filter when compared with the Lyot filter using a single DHFLC wave plate. Moreover, we have proposed a polarization insensitive configuration for which the efficiency of the existing prototype can theoretically be doubled by the use of polarization beam splitters.

  17. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  18. Combined laser heating and tandem acousto-optical filter for two-dimensional temperature distribution on the surface of the heated microobject

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Kutuza, I. B.; Zinin, P. V.; Machikhin, A. S.; Troyan, I. A.; Bulatov, K. M.; Batshev, V. I.; Mantrova, Y. V.; Gaponov, M. I.; Prakapenka, V. B.; Sharma, S. K.

    2018-01-01

    Recently it has been shown that it is possible to measure the two-dimensional distribution of the surface temperature of microscopic specimens. The main component of the system is a tandem imaging acousto-optical tunable filter synchronized with a video camera. In this report, we demonstrate that combining the laser heating system with a tandem imaging acousto-optical tunable filter allows measurement of the temperature distribution under laser heating of the platinum plates as well as a visualization of the infrared laser beam, that is widely used for laser heating in diamond anvil cells.

  19. Research on imaging spectrometer using LC-based tunable filter

    NASA Astrophysics Data System (ADS)

    Shen, Zhixue; Li, Jianfeng; Huang, Lixian; Luo, Fei; Luo, Yongquan; Zhang, Dayong; Long, Yan

    2012-09-01

    A liquid crystal tunable filter (LCTF) with large aperture is developed using PDLC liquid crystal. A small scale imaging spectrometer is established based on this tunable filter. This spectrometer can continuously tuning, or random-access selection of any wavelength in the visible and near infrared (VNIR) band synchronized with the imaging processes. Notable characteristics of this spectrometer include the high flexibility control of its operating channels, the image cubes with high spatial resolution and spectral resolution and the strong ability of acclimation to environmental temperature. The image spatial resolution of each tuning channel is almost near the one of the same camera without the LCTF. The spectral resolution is about 20 nm at 550 nm. This spectrometer works normally under 0-50°C with a maximum power consumption of 10 Watts (with exclusion of the storage module). Due to the optimization of the electrode structure and the driving mode of the Liquid Crystal cell, the switch time between adjacent selected channels can be reduced to 20 ms or even shorter. Spectral imaging experiments in laboratory are accomplished to verify the performance of this spectrometer, which indicate that this compact imaging spectrometer works reliably, and functionally. Possible applications of this imaging spectrometer include medical science, protection of historical relics, criminal investigation, disaster monitoring and mineral detection by remote sensing.

  20. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    PubMed

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  1. Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    The goal of this article is to present a novel method for spectral characterization and calibration of spectrometers and hyper-spectral imaging systems based on non-collinear acousto-optical tunable filters. The method characterizes the spectral tuning curve (frequency-wavelength characteristic) of the AOTF (Acousto-Optic Tunable Filter) filter by matching the acquired and modeled spectra of the HgAr calibration lamp, which emits line spectrum that can be well modeled via AOTF transfer function. In this way, not only tuning curve characterization and corresponding spectral calibration but also spectral resolution assessment is performed. The obtained results indicated that the proposed method is efficient, accurate and feasible for routine calibration of AOTF spectrometers and hyper-spectral imaging systems and thereby a highly competitive alternative to the existing calibration methods.

  2. Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli

    2018-03-01

    We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.

  3. Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters

    PubMed Central

    Rocha-Mendoza, Israel; Licea-Rodriguez, Jacob; Marro, Mónica; Olarte, Omar E.; Plata-Sanchez, Marcos; Loza-Alvarez, Pablo

    2015-01-01

    We perform rapid spontaneous Raman 2D imaging in light-sheet microscopy using continuous wave lasers and interferometric tunable filters. By angularly tuning the filter, the cut-on/off edge transitions are scanned along the excited Stokes wavelengths. This allows obtaining cumulative intensity profiles of the scanned vibrational bands, which are recorded on image stacks; resembling a spectral version of the knife-edge technique to measure intensity profiles. A further differentiation of the stack retrieves the Raman spectra at each pixel of the image which inherits the 3D resolution of the host light sheet system. We demonstrate this technique using solvent solutions and composites of polystyrene beads and lipid droplets immersed in agar and by imaging the C–H (2800-3100cm−1) region in a C. elegans worm. The image acquisition time results in 4 orders of magnitude faster than confocal point scanning Raman systems, allowing the possibility of performing fast spontaneous Raman·3D-imaging on biological samples. PMID:26417514

  4. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  5. Intensity modulation of a terahertz bandpass filter: utilizing image currents induced on MEMS reconfigurable metamaterials.

    PubMed

    Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao

    2018-01-01

    We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.

  6. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source.

    PubMed

    Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P

    2014-06-01

    A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.

  7. Target Detection Using an AOTF Hyperspectral Imager

    NASA Technical Reports Server (NTRS)

    Cheng, L-J.; Mahoney, J.; Reyes, F.; Suiter, H.

    1994-01-01

    This paper reports results of a recent field experiment using a prototype system to evaluate the acousto-optic tunable filter polarimetric hyperspectral imaging technology for target detection applications.

  8. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    NASA Astrophysics Data System (ADS)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband rejection, and constant bandwidth is designed, simulated, fabricated and measured. The filters are fabricated using barium strontium titanate (BST) varactors. Electromagnetic simulations and measured results of the tunable two-pole ferroelectric filter are analyzed to explore the origins of high insertion loss in ferroelectric filters. The results indicate that the high-permittivity of the BST (a ferroelectric) not only makes the filters tunable and compact, but also increases the conductive loss of the ferroelectric-based tunable resonators which translates into high insertion loss in ferroelectric filters.

  9. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  10. Chromatic aberrations correction for imaging spectrometer based on acousto-optic tunable filter with two transducers.

    PubMed

    Zhao, Huijie; Wang, Ziye; Jia, Guorui; Zhang, Ying; Xu, Zefu

    2017-10-02

    The acousto-optic tunable filter (AOTF) with wide wavelength range and high spectral resolution has long crystal and two transducers. A longer crystal length leads to a bigger chromatic focal shift and the double-transducer arrangement induces angular mutation in diffracted beam, which increase difficulty in longitudinal and lateral chromatic aberration correction respectively. In this study, the two chromatic aberrations are analyzed quantitatively based on an AOTF optical model and a novel catadioptric dual-path configuration is proposed to correct both the chromatic aberrations. The test results exhibit effectiveness of the optical configuration for this type of AOTF-based imaging spectrometer.

  11. Microelectromechanical systems-based visible-near infrared Fabry-Perot tunable filters using quartz substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Tan, Songsheng; Zander, Dennis R.

    2012-07-01

    There is a need to develop miniature optical tunable filters for small hyperspectral imagers. We plan to develop a number of miniature Fabry-Perot tunable filters (FPTFs) using microelectromechanical systems (MEMS) technology, each operating over a different wavelength region, to cover spectral regions from the visible to the longwave infrared (IR). Use of a MEMS-based FPTF as a dispersive element will reduce the size, weight, and power requirements of hyperspectral imagers and make them less expensive. A key requirement for such a filter is a large optical aperture. Recently, we succeeded in fabricating FPTFs with a 6 mm optical aperture operating in the visible to near IR spectral region (400 to 800 nm) using commercially available thin quartz wafers as the substrate. The FPTF design contains one fixed silver (Ag) mirror and one electrostatically movable Ag mirror, each grown on a quartz substrate with a low total thickness variation. Gold (Au) bumps are used to control the initial air gap distance between the two mirrors, and Au-Au bonding is used to bond the device. We describe material selection, device design, modeling, fabrication, interferometric, and spectral characterizations.

  12. Optical Sensing Device Containing Fiber Bragg Gratings

    DTIC Science & Technology

    2000-08-01

    Fabry - Perot (SFP) filter-based interrogation (Kersey et al. Opt. Lett.. 18, 1370-2. 1993), tunable acousto-optic filter inteiTOgation (Geiger et al...a tunable Fabry - Perot filter, and a tunable acousto-optical filter. Alternatively, scanning filter 28 can be omitted in device 10 of the present...invention when broadband light source 20 is a tunable broadband light source. More preferably, scanning filter 28 is a tunable Fabry - Perot filter

  13. Development of thin-film tunable band-pass filters based hyper-spectral imaging system applied for both surface enhanced Raman scattering and plasmon resonance Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Iga, Mitsuhiro; Kakuryu, Nobuyuki; Tanaami, Takeo; Sajiki, Jiro; Isozaki, Katsumi; Itoh, Tamitake

    2012-10-01

    We describe the development of a hyper-spectral imaging (HSI) system composed of thin-film tunable band-pass filters (TF-TBPFs) and its application to inhomogeneous sample surfaces. Compared with existing HSI systems, the system has a simpler optical arrangement and has an optical transmittance of up to 80% owing to polarization independence. The HSI system exhibits a constant spectral resolution over a spectral window of 80 nm (530 to 610 nm) and tunable spectral resolution from 1.5 to 3.0 nm, and requires only 5.4 s per measurement. Plasmon resonance and surface enhanced Raman scattering (SERS) from inhomogeneous surfaces dispersed with Ag nanoparticles (NP) have been measured with the HSI system. The measurement of multiple Ag NPs is consistent with conventional isolated NP measurements as explained by the electromagnetic mechanism of SERS, demonstrating the validity of the HSI system.

  14. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun

    2018-05-01

    We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.

  15. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  16. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  17. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  18. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  19. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  20. Spectroscopic imaging using acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice

    2007-07-01

    We report on novel hyper-spectral imaging filter-modules based on acousto-optic tuneable filters (AOTF). The AOTF functions as a full-field tuneable bandpass filter which offers fast continuous or random access tuning with high filtering efficiency. Due to the diffractive nature of the device, the unfiltered zero-order and the filtered first-order images are geometrically separated. The modules developed exploit this feature to simultaneously route both the transmitted white-light image and the filtered fluorescence image to two separate cameras. Incorporation of prisms in the optical paths and careful design of the relay optics in the filter module have overcome a number of aberrations inherent to imaging through AOTFs, leading to excellent spatial resolution. A number of practical uses of this technique, both for in vivo auto-fluorescence endoscopy and in vitro fluorescence microscopy were demonstrated. We describe the operational principle and design of recently improved prototype instruments for fluorescence-based diagnostics and demonstrate their performance by presenting challenging hyper-spectral fluorescence imaging applications.

  1. A high-transmission liquid-crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection

    NASA Astrophysics Data System (ADS)

    Liu, Zhonglun; Xin, Zhaowei; Long, Huabao; Wei, Dong; Dai, Wanwan; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Previous studies have presented the usefulness of typical liquid-crystal Fabry-Perot (LC-FP) infrared filters for spectral imaging detection. Yet, their infrared transmission performances still remain to improve or even rise. In this paper, we propose a new type of electrically tunable LC-FP infrared filter to solve the problem above. The key component of the device is a FP resonant cavity composed of two parallel plane mirrors, in which the zinc selenide (ZnSe) materials with a very high transmittance in the mid-long-wavelength infrared regions are used as the electrode substrates and a layer of nano-aluminum (Al) film, which is directly contacted with liquid-crystal materials, is chosen to make high reflective mirrors as well as the electrodes. Particularly, it should be noted that the directional layer made up of ployimide (PI) used previously is removed. The experiment results indicate that the filter can reduce the absorption of infrared wave remarkably, and thus highlight a road to effectively improve the infrared transmittance ability.

  2. Use of acousto-optic tunable filter in fluorescence imaging endoscopy

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice; Aprahamian, Marc

    2003-10-01

    A prototype instrument for fluorescence-based medical diagnostics in vivo is described. The system consists of a rigid endoscope comprising a UV laser-source for fluorescence excitation and a white light source for direct imaging. An acousto-optic tuneable filter (AOTF) is employed as a full-field tuneable bandpass filter. This allows fast continuous or random-access tuning with high filtering efficiency. A study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on a rat model. In particular, the aim was to detect autofluorescence of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response.

  3. Widely tunable erbium-doped fiber laser based on multimode interference effect.

    PubMed

    Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P

    2010-01-18

    A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

  4. Tunable semiconductor laser at 1025-1095 nm range for OCT applications with an extended imaging depth

    NASA Astrophysics Data System (ADS)

    Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej

    2015-03-01

    Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.

  5. Acousto-optic tunable filter chromatic aberration analysis and reduction with auto-focus system

    NASA Astrophysics Data System (ADS)

    Wang, Yaoli; Chen, Yuanyuan

    2018-07-01

    An acousto-optic tunable filter (AOTF) displays optical band broadening and sidelobes as a result of the coupling between the acoustic wave and optical waves of different wavelengths. These features were analysed by wave-vector phase matching between the optical and acoustic waves. A crossed-line test board was imaged by an AOTF multi-spectral imaging system, showing image blurring in the direction of diffraction and image sharpness in the orthogonal direction produced by the greater bandwidth and sidelobes in the former direction. Applying the secondary-imaging principle and considering the wavelength-dependent refractive index, focal length varies over the broad wavelength range. An automatic focusing method is therefore proposed for use in AOTF multi-spectral imaging systems. A new method for image-sharpness evaluation, based on improved Structure Similarity Index Measurement (SSIM), is also proposed, based on the characteristics of the AOTF imaging system. Compared with the traditional gradient operator, as same as it, the new evaluation function realized the evaluation between different image quality, thus could achieve the automatic focusing for different multispectral images.

  6. Hyperspectral microscope imaging methods to classify gram-positive and gram-negative foodborne pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...

  7. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2017-06-01

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  8. Reconstructing Spectral Scenes Using Statistical Estimation to Enhance Space Situational Awareness

    DTIC Science & Technology

    2006-12-01

    simultane- ously spatially and spectrally deblur the images collected from ASIS. The algorithms are based on proven estimation theories and do not...collected with any system using a filtering technology known as Electronic Tunable Filters (ETFs). Previous methods to deblur spectral images collected...spectrally deblurring then the previously investigated methods. This algorithm expands on a method used for increasing the spectral resolution in gamma-ray

  9. Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range.

    PubMed

    Zheng, Zhenrong; Yang, Guowei; Li, Haifeng; Liu, Xu

    2011-01-31

    A method to extend spectral range of tunable optical filter is proposed in this paper. Two same tunable Fabry-Perot filters and an additional tunable filter with different free spectral range are cascaded to extend spectral range and reduce sidelobes. Over 400 nm of free spectral range and 4 nm of full width at half maximum of the filter were achieved. Design procedure and simulation are described in detail. An experimental 3-stage tunable Fabry-Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results revealed that a compact and extended tunable spectral range of Fabry-Perot filter can be easily attainable by this method.

  10. Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James; hide

    2002-01-01

    Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.

  11. Design of far-infrared acousto-optic tunable filter based on backward collinear interaction.

    PubMed

    Voloshinov, Vitaly B; Porokhovnichenko, Dmitriy L; Dyakonov, Evgeniy A

    2018-04-10

    The paper proposes a design of acousto-optic cell applying backward collinear interaction and acoustic mode transformation in a KRS-5 crystal. This cell may serve as an acousto-optic tunable filter for far-infrared spectral range and is able to operate both with collimated optical beams and with divergent beams forming images. The problem of acoustic mode transformation by wave reflection from the crystal facet away from symmetry planes has been solved. Polarization properties of the backward collinear interaction in optically isotropic media are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Compact OAM microscope for edge enhancement of biomedical and object samples

    NASA Astrophysics Data System (ADS)

    Gozali, Richard; Nguyen, Thien-An; Bendau, Ethan; Alfano, Robert R.

    2017-09-01

    The production of orbital angular momentum (OAM) by using a q-plate, which functions as an electrically tunable spatial frequency filter, provides a simple and efficient method of edge contrast in biological and medical sample imaging for histological evaluation of tissue, smears, and PAP smears. An instrument producing OAM, such as a q-plate, situated at the Fourier plane of a 4f lens system, similar to the use of a high-pass spatial filter, allows the passage of high spatial frequencies and enables the production of an image with highly illuminated edges contrasted against a dark background for both opaque and transparent objects. Compared with ordinary spiral phase plates and spatial light modulators, the q-plate has the added advantage of electric control and tunability.

  13. Tunable Optical Filters for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crandall, Charles; Clark, Natalie; Davis, Patricia P.

    2007-01-01

    Spectrally tunable liquid crystal filters provide numerous advantages and several challenges in space applications. We discuss the tradeoffs in design elements for tunable liquid crystal birefringent filters with special consideration required for space exploration applications. In this paper we present a summary of our development of tunable filters for NASA space exploration. In particular we discuss the application of tunable liquid crystals in guidance navigation and control in space exploration programs. We present a summary of design considerations for improving speed, field of view, transmission of liquid crystal tunable filters for space exploration. In conclusion, the current state of the art of several NASA LaRC assembled filters is presented and their performance compared to the predicted spectra using our PolarTools modeling software.

  14. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.

    PubMed

    Zhang, Huaidong; Muhammmad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2014-09-01

    An electrically tunable infrared (IR) filter based on the liquid crystal (LC) Fabry-Perot (FP) key structure, which works in the wavelength range from 5.5 to 12 μm, is designed and fabricated successfully. Both planar reflective mirrors with a very high reflectivity of ∼95%, which are shaped by depositing a layer of aluminum (Al) film over one side of a double-sided polished zinc selenide wafer, are coupled into a dual-mirror FP cavity. The LC materials are filled into the FP cavity with a thickness of ∼7.5  μm for constructing the LC-FP filter, which is a typical type of sandwich architecture. The top and bottom mirrors of the FP cavity are further coated by an alignment layer with a thickness of ∼100  nm over Al film. The formed alignment layer is rubbed strongly to shape relatively deep V-grooves to anchor LC molecules effectively. Common optical tests show some particular properties; for instance, the existing three transmission peaks in the measured wavelength range, the minimum full width at half-maximum being ∼120  nm, and the maximum adjustment extent of the imaging wavelength being ∼500  nm through applying the voltage driving signal with a root mean square (RMS) value ranging from 0 to ∼19.8  V. The experiment results are consistent with the simulation, according to our model setup. The spectral images obtained in the long-wavelength IR range, through the LC-FP device driven by the voltage signal with a different RMS value, demonstrates the prospect of the realization of smart spectral imaging and further integrating the LC-FP filter with IR focal plane arrays. The developed LC-FP filters show some advantages, such as electrically tunable imaging wavelength, very high structural and photoelectronic response stability, small size and low power consumption, and a very high filling factor of more than 95% compared with common MEMS-FP spectral imaging approaches.

  15. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    PubMed

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass filter is found to be very much effective in edge enhancement whereas fuzzy conditional entropy efficiently distinguishes vessels of different widths. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Lifetime Fluorescence and Raman Imaging for Detection of Wound Failure and Heterotopic Ossification

    DTIC Science & Technology

    2015-12-01

    containing ten bandpass filters ( Semrock Fluorescence filters) centered at: 407nm, 434 nm, 465 nm, 494 nm, 520 nm, 542 nm, 572 nm, 605 nm, 652 nm, 676 nm...meat (~2 - 3 mm thickness), and a bottom piece (~8 mm). The system was built around an 852 nm tunable narrow-band optical filter ( Semrock , LL01-852...optical filters to block light that falls outside the detection band: 785 nm notch filter ( Semrock , NF03-785E-25), and a bandpass filter at 842 nm

  17. Lifetime Fluorescence and Raman Imaging for Detection of Wound Failure and Heterotopic Ossification

    DTIC Science & Technology

    2014-10-01

    Filter Wheel) containing ten bandpass filters ( Semrock Fluorescence filters) centered at: 407nm, 434 nm, 465 nm, 494 nm, 520 nm, 542 nm, 572 nm...and a bottom piece (~8 mm). The system was built around an 852 nm tunable narrow-band optical filter ( Semrock , LL01-852-25) mounted in front of...light that falls outside the detection band: 785 nm notch filter ( Semrock , NF03-785E-25), and a bandpass filter at 842 nm ( Semrock , FF01-842/56-25

  18. Development of a multispectral structured-illumination reflectance imaging (SIRI) system and its application to bruise detection of apples

    USDA-ARS?s Scientific Manuscript database

    Structured-illumination reflectance imaging (SIRI) is a new, promising imaging modality for enhancing quality detection of food. A liquid-crystal tunable filter (LCTF)-based multispectral SIRI system was developed and used for selecting optimal wavebands to detect bruising in apples. Immediately aft...

  19. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials.

    PubMed

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2011-04-01

    In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy

  20. Tunable Bragg filters with a phase transition material defect layer

    DOE PAGES

    Wang, Xi; Gong, Zilun; Dong, Kaichen; ...

    2016-01-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  1. Tunable Bragg filters with a phase transition material defect layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xi; Gong, Zilun; Dong, Kaichen

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  2. Comparison of the Frequency Response and Voltage Tuning Characteristics of a FFP and a MEMS Fiber Optic Tunable Filter

    DTIC Science & Technology

    2004-05-12

    Structural Engineering, La Jolla, CA 92093 14. ABSTRACT Tunable optical filters based on a Fabry - Perot element are a critical component in many...wavelength based fiber optic sensor systems. This report compares the performance of two fiber-pigtailed tunable optical filters, the fiber Fabry - Perot (FFP...both filters suggests that they can operate at frequencies up to 20 kHz and possibly as high as 100 kHz. 15. SUBJECT TERMS Tunable Fabry - Perot filters

  3. Nanophotonic Image Sensors.

    PubMed

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Information theoretic methods for image processing algorithm optimization

    NASA Astrophysics Data System (ADS)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  5. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  6. Effect of Selectively Etched Ferroelectric Thin-Film Layer on the Performance of a Tunable Bandpass Filter

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; Vignesparamoorthy, Sivaruban; Mueller, Carl; VanKeuls, Fred; Warner, Joseph; Miranda, Felix A.

    2001-01-01

    The main purpose of this work is to study the effect of a selectively etched ferroelectric thin film layer on the performance of an electrically tunable filter. An X-band tunable filter was designed, fabricated and tested on a selectively etched Barium Strontium Titanate (BSTO) ferroelectric thin film layer. Tunable filters with varying lengths of BSTO thin-film in the input and output coupling gaps were modeled, as well as experimentally tested. Experimental results showed that filters with coupling gaps partially filled with BSTO maintained frequency tunability and improved the insertion loss by approx. 2dB. To the best of our knowledge, these results represent the first experimental demonstration of the advantages of selective etching in the performance of thin film ferroelectric-based tunable microwave components.

  7. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  8. Nanophotonic Image Sensors

    PubMed Central

    Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R. S.

    2016-01-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial‐based THz image sensors, filter‐free nanowire image sensors and nanostructured‐based multispectral image sensors. This novel combination of cutting edge photonics research and well‐developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. PMID:27239941

  9. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    PubMed

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  10. Design of efficient circularly symmetric two-dimensional variable digital FIR filters

    PubMed Central

    Bindima, Thayyil; Elias, Elizabeth

    2016-01-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739

  11. Tunable-optical-filter-based white-light interferometry for sensing.

    PubMed

    Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng

    2005-06-15

    We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.

  12. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; hide

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  13. Near- infrared imager and slitless spectrograph (NIRISS): a new instrument on James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Maszkiewicz, Michael

    2017-11-01

    The James Webb Space Telescope (JWST) is a 6.5 m diameter deployable telescope that will orbit the L2 Earth-Sun point beginning in 2018. NASA is leading the development of the JWST mission with their partners, the European Space Agency and the Canadian Space Agency. The Canadian contribution to the mission is the Fine Guidance Sensor (FGS). Originally, the FGS incorporated a flexible narrow spectral band science imaging capability in the form of the Tunable Filter Imaging Module -TFI, based on a scanning Fabry-Perot etalon. In the course of building and testing of the TFI flight model, numerous technical issues arose with unforeseeable length of required mitigation effort. In addition to that, emerging new science priorities caused that in summer of 2011 a decision was taken to replace TFI with a new instrument called Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS preserves most of the TFI opto-mechanical design: focusing mirror, collimator and camera TMA telescopes, dual filter and pupil wheel and detectors but, instead of a tunable etalon, uses set of filters and grisms for wavelength selection and dispersion. The FGS-Guider and NIRISS have completed their instrument-level cryogenic testing and were delivered to NASA Goddard in late July 2012 for incorporation into the Integrated Science Instrument Module (ISIM).

  14. Tunable rejection filters with ultra-wideband using zeroth shear mode plate wave resonators

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Sannomiya, Toshio; Tanaka, Shuji

    2017-07-01

    This paper reports wide band rejection filters and tunable rejection filters using ultra-wideband zeroth shear mode (SH0) plate wave resonators. The frequency range covers the digital TV band in Japan that runs from 470 to 710 MHz. This range has been chosen to meet the TV white space cognitive radio requirements of rejection filters. Wide rejection bands were obtained using several resonators with different frequencies. Tunable rejection filters were demonstrated using Si diodes connected to the band rejection filters. Wide tunable ranges as high as 31% were measured by applying a DC voltage to the Si diodes.

  15. Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform.

    PubMed

    Zhou, Nan; Zheng, Shuang; Long, Yun; Ruan, Zhengsen; Shen, Li; Wang, Jian

    2018-02-19

    We propose and demonstrate a reconfigurable and tunable chip-scale comb filter and (de)interleaver on a silicon platform. The silicon-based photonic integrated device is formed by Sagnac loop mirrors (SLMs) with directional couplers replaced by multi-mode interference (MMI) assisted tunable Mach-Zehnder interferometer (MZI) couplers. The device can be regarded as a large SLM incorporating two small SLMs which form a Fabry-Perot (FP) cavity. By appropriately adjusting the micro-heaters in tunable MZI couplers and cavity, switchable operation between comb filter and (de)interleaver and extinction ratio and wavelength tunable operations of comb filter and (de)interleaver are achievable by thermo-optic tuning. Reconfigurable comb filter and (de)interleaver is demonstrated in the experiment. The central wavelength shifts of comb filter and (de)interleaver are demonstrated with wavelength tuning efficiencies of ~0.0224 nm/mW and ~0.0193 nm/mW, respectively. The 3-dB bandwidth of the comb filter is ~0.032 nm. The 3-dB and 20-dB bandwidths of the (de)interleaver passband are ~0.225 nm and ~0.326 nm. The obtained results indicate that the designed and fabricated device provides switchable comb filtering and interleaving functions together with extinction ratio and wavelength tunabilities. Reconfigurable and tunable silicon-based comb filter and (de)interleaver may find potential applications in robust wavelength-division multiplexing (WDM) optical communication systems.

  16. 3D-NTT: a versatile integral field spectro-imager for the NTT

    NASA Astrophysics Data System (ADS)

    Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.

    2008-07-01

    The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT

  17. Tunable multimode-interference bandpass fiber filter.

    PubMed

    Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P

    2010-02-01

    We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.

  18. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  19. Detection et caracterisation de naines brunes et exoplanetes avec un filtre accordable pour applications dans l'espace

    NASA Astrophysics Data System (ADS)

    Ingraham, Patrick Jon

    This thesis determines the capability of detecting faint companions in the presence of speckle noise when performing space-based high-contrast imaging through spectral differential imagery (SDI) using a low-order Fabry-Perot etalon as a tunable filter. The performance of such a tunable filter is illustrated through the Tunable Filter Imager (TFI), an instrument designed for the James Webb Space Telescope (JWST). Using a TFI prototype etalon and a custom designed test bed, the etalon's ability to perform speckle-suppression through SDI is demonstrated experimentally. Improvements in contrast vary with separation, ranging from a factor of ˜10 at working angles greater than 11 lambda/D and increasing up to a factor of ˜60 at 5 lambda/D. These measurements are consistent with a Fresnel optical propagation model which shows the speckle suppression capability is limited by the test bed and not the etalon. This result demonstrates that a tunable filter is an attractive option to perform high-contrast imaging through SDI. To explore the capability of space-based SDI using an etalon, we perform an end-to-end Fresnel propagation of JWST and TFI. Using this simulation, a contrast improvement ranging from a factor of ˜7 to ˜100 is predicted, depending on the instrument's configuration. The performance of roll-subtraction is simulated and compared to that of SDI. The SDI capability of the Near-Infrared Imager and Slitless Spectrograph (NIRISS), the science instrument module to replace TFI in the JWST Fine Guidance Sensor is also determined. Using low resolution, multi-band (0.85-2.4 microm) multi-object spectroscopy, 104 objects towards the central region of the Orion Nebular Cluster have been assigned spectral types including 7 new brown dwarfs, and 4 new planetary mass candidates. These objects are useful for determining the substellar initial mass function and for testing evolutionary and atmospheric models of young stellar and substellar objects. Using the measured H band magnitudes, combined with our determined extinction values, the classified objects are used to create an Hertzsprung-Russell diagram for the cluster. Our results indicate a single epoch of star formation beginning ˜1 Myr ago. The initial mass function of the cluster is derived and found to be consistent with the values determined for other young clusters and the galactic disk.

  20. Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,

    DTIC Science & Technology

    The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique

  1. Contrast performance modeling of broadband reflective imaging systems with hypothetical tunable filter fore-optics

    NASA Astrophysics Data System (ADS)

    Hodgkin, Van A.

    2015-05-01

    Most mass-produced, commercially available and fielded military reflective imaging systems operate across broad swaths of the visible, near infrared (NIR), and shortwave infrared (SWIR) wavebands without any spectral selectivity within those wavebands. In applications that employ these systems, it is not uncommon to be imaging a scene in which the image contrasts between the objects of interest, i.e., the targets, and the objects of little or no interest, i.e., the backgrounds, are sufficiently low to make target discrimination difficult or uncertain. This can occur even when the spectral distribution of the target and background reflectivity across the given waveband differ significantly from each other, because the fundamental components of broadband image contrast are the spectral integrals of the target and background signatures. Spectral integration by the detectors tends to smooth out any differences. Hyperspectral imaging is one approach to preserving, and thus highlighting, spectral differences across the scene, even when the waveband integrated signatures would be about the same, but it is an expensive, complex, noncompact, and untimely solution. This paper documents a study of how the capability to selectively customize the spectral width and center wavelength with a hypothetical tunable fore-optic filter would allow a broadband reflective imaging sensor to optimize image contrast as a function of scene content and ambient illumination.

  2. Tunable fiber laser based on the refractive index characteristic of MMI effects

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Qi, Yanhui; Kang, Zexin; Bai, Yunlong; Jian, Shuisheng

    2014-04-01

    A tunable erbium-doped all-fiber laser has been demonstrated. This tunable laser is based on a tunable fiber filter using the refractive index characteristics of multimode interference effects. A thinner no-core fiber with a diameter of 104 μm is used to fabricate the tunable fiber filter. The joint point of the thinner no-core fiber with SMF is a taper, which improves its sensitivity for refractive index changes. The filter exhibits a very sensitive response to the change of the environmental refractive index, which is about 1000 nm/RIU in the RI range from 1.418 to 1.427. The tunable fiber laser based on the filter achieved a tunability of 32 nm, with the wavelength tuned from 1532 nm to 1564 nm covering the full C-band. The 3 dB bandwidth of the tunable laser is less than 0.02 nm with the signal-to-noise ratio of about 40 dB.

  3. Development, characterization, and modeling of a tunable filter camera

    NASA Astrophysics Data System (ADS)

    Sartor, Mark Alan

    1999-10-01

    This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide background for the design requirements for the TFC development, the mission and principles of operation behind the multi-channel system will be reviewed. Given the combination of the flexibility, simplicity, and sensitivity, the TFC and its multiple-channel extension can play a significant role in the next generation of remote-sensing instruments.

  4. Classification of Salmonella serotypes with hyperspectral microscope imagery

    USDA-ARS?s Scientific Manuscript database

    Previous research has demonstrated an optical method with acousto-optic tunable filter (AOTF) based hyperspectral microscope imaging (HMI) had potential for classifying gram-negative from gram-positive foodborne pathogenic bacteria rapidly and nondestructively with a minimum sample preparation. In t...

  5. Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry-Perot for spectral imaging detection.

    PubMed

    Lin, Jiuning; Tong, Qing; Lei, Yu; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2017-03-01

    An electrically tunable infrared (IR) filter based on a key cascaded liquid-crystal Fabry-Perot (C-LC-FP) working in the wavelength range of 3-5 μm is presented. The C-LC-FP is constructed by closely stacking two FP microcavities with different depths of 12 and 15 μm and fully filled by nematic LC materials. Through continuous wavelength selection of both microcavities, radiation with a high transmittance and narrow bandwidth can pass through the filter. According to the electrically controlled birefringence characteristics of nematic LC molecules, the transmission spectrum can be shifted through applying a dual voltage signal over the C-LC-FP. Compared with common LC-FPs with a single microcavity, the C-LC-FP demonstrates better transmittance peak morphology and spectral selection performance. To be more specific, the number and the shifted scope of the IR transmission peak can be decreased and widened, respectively.

  6. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  7. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  8. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  9. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  10. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  11. Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera

    NASA Astrophysics Data System (ADS)

    Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran

    2017-02-01

    Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.

  12. MEMS FPI-based smartphone hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri

    2016-05-01

    This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.

  13. Polarization-independent fiber filter with an all-polarization-maintaining fiber loop for tunable fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang

    2018-05-01

    Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.

  14. Ultra-wideband ladder filter using SH(0) plate wave in thin LiNbO(3) plate and its application to tunable filter.

    PubMed

    Kadota, Michio; Tanaka, Shuji

    2015-05-01

    A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space.

  15. A K-band Frequency Agile Microstrip Bandpass Filter using a Thin Film HTS/Ferroelectric/dielectric Multilayer Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.

    1998-01-01

    We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.

  16. Liquid-crystal-based tunable plasmonic waveguide filters

    NASA Astrophysics Data System (ADS)

    Yin, Shengtao; Liu, Yan Jun; Xiao, Dong; He, Huilin; Luo, Dan; Jiang, Shouzhen; Dai, Haitao; Ji, Wei; Sun, Xiao Wei

    2018-06-01

    We propose a liquid-crystal-based tunable plasmonic waveguide filter and numerically investigate its filtering properties. The filter consists of a metal-insulator-metal waveguide with a nanocavity resonator. By filling the nanocavity with birefringent liquid crystals (LCs), we could then vary the effective refractive index of the nanocavity by controlling the alignment of the LC molecules, hence making the filter tunable. The tunable filtering properties are further analyzed in details via the temporal coupled mode theory (CMT) and the finite-difference time-domain (FDTD) method. The simulation results show that the resonant wavelengths have linear redshift as the refractive index of the nanocavity increases and the coupling efficiency is more than 65% without considering the internal loss in the nanocavity and waveguides. These achieved results by the FDTD simulations can be also accurately analyzed by CMT. The compact design of our proposed plasmonic filters is especially favorable for integration, and such filters could find many important potential applications in high-density plasmonic integration circuits.

  17. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.

    PubMed

    Stürzl, Ninette; Lebedkin, Sergei; Klumpp, Stefanie; Hennrich, Frank; Kappes, Manfred M

    2013-05-07

    We describe a micro-Raman setup allowing for efficient resonance Raman spectroscopy (RRS), i.e., mapping of Raman spectra as a function of tunable laser excitation wavelength. The instrument employs angle-tunable bandpass optical filters which are integrated into software-controlled Raman and laser cleanup filter devices. These automatically follow the excitation laser wavelength and combine tunability with high bandpass transmission as well as high off-band blocking of light. Whereas the spectral intervals which can be simultaneously acquired are bandpass limited to ~350 cm(-1), they can be tuned across the spectrum of interest to access all characteristic Raman features. As an illustration of performance, we present Raman mapping of single-walled carbon nanotubes (SWNTs): (i) in a small volume of water-surfactant dispersion as well as (ii) after deposition onto a substrate. A significant improvement in the acquisition time (and efficiency) is demonstrated compared to previous RRS implementations. These results may help to establish (micro) Raman spectral mapping as a routine tool for characterization of SWNTs as well as other materials with a pronounced resonance Raman response in the visible-near-infrared spectral region.

  18. Color display and encryption with a plasmonic polarizing metamirror

    NASA Astrophysics Data System (ADS)

    Song, Maowen; Li, Xiong; Pu, Mingbo; Guo, Yinghui; Liu, Kaipeng; Yu, Honglin; Ma, Xiaoliang; Luo, Xiangang

    2018-01-01

    Structural colors emerge when a particular wavelength range is filtered out from a broadband light source. It is regarded as a valuable platform for color display and digital imaging due to the benefits of environmental friendliness, higher visibility, and durability. However, current devices capable of generating colors are all based on direct transmission or reflection. Material loss, thick configuration, and the lack of tunability hinder their transition to practical applications. In this paper, a novel mechanism that generates high-purity colors by photon spin restoration on ultrashallow plasmonic grating is proposed. We fabricated the sample by interference lithography and experimentally observed full color display, tunable color logo imaging, and chromatic sensing. The unique combination of high efficiency, high-purity colors, tunable chromatic display, ultrathin structure, and friendliness for fabrication makes this design an easy way to bridge the gap between theoretical investigations and daily-life applications.

  19. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    NASA Astrophysics Data System (ADS)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  20. Design of multi-wavelength tunable filter based on Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  1. Phase-shifted Solc-type filter based on thin periodically poled lithium niobate in a reflective geometry.

    PubMed

    Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng

    2018-04-30

    Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.

  2. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    PubMed

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  3. Shortwave infrared hyperspectral Imaging for cotton foreign matter classification

    USDA-ARS?s Scientific Manuscript database

    Various types of cotton foreign matter seriously reduce the commercial value of cotton lint and further degrade the quality of textile products for consumers. This research was aimed to investigate the potential of a non-contact technique, i.e., liquid crystal tunable filter (LCTF) hyperspectral ima...

  4. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  5. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  6. Label-free observation of tissues by high-speed stimulated Raman spectral microscopy and independent component analysis

    NASA Astrophysics Data System (ADS)

    Ozeki, Yasuyuki; Otsuka, Yoichi; Sato, Shuya; Hashimoto, Hiroyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2013-02-01

    We have developed a video-rate stimulated Raman scattering (SRS) microscope with frame-by-frame wavenumber tunability. The system uses a 76-MHz picosecond Ti:sapphire laser and a subharmonically synchronized, 38-MHz Yb fiber laser. The Yb fiber laser pulses are spectrally sliced by a fast wavelength-tunable filter, which consists of a galvanometer scanner, a 4-f optical system and a reflective grating. The spectral resolution of the filter is ~ 3 cm-1. The wavenumber was scanned from 2800 to 3100 cm-1 with an arbitrary waveform synchronized to the frame trigger. For imaging, we introduced a 8-kHz resonant scanner and a galvanometer scanner. We were able to acquire SRS images of 500 x 480 pixels at a frame rate of 30.8 frames/s. Then these images were processed by principal component analysis followed by a modified algorithm of independent component analysis. This algorithm allows blind separation of constituents with overlapping Raman bands from SRS spectral images. The independent component (IC) spectra give spectroscopic information, and IC images can be used to produce pseudo-color images. We demonstrate various label-free imaging modalities such as 2D spectral imaging of the rat liver, two-color 3D imaging of a vessel in the rat liver, and spectral imaging of several sections of intestinal villi in the mouse. Various structures in the tissues such as lipid droplets, cytoplasm, fibrous texture, nucleus, and water-rich region were successfully visualized.

  7. Optical filters for wavelength selection in fluorescence instrumentation.

    PubMed

    Erdogan, Turan

    2011-04-01

    Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.

  8. An imaging vector magnetograph for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Mickey, D. L.; Labonte, B. J.; Canfield, R. C.

    1989-01-01

    Researchers describe the conceptual design of a new imaging vector magnetograph currently being constructed at the University of Hawaii. The instrument combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and on-line digital image processing. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (5 by 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectral range (5000 to 7000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically-dominated chromosphere, as well as effective co-alignment with Solar-A's X ray images. Researchers expect to have the instrument in operation at Mees Solar Observatory (Haleakala) in early 1991. They have chosen to use tunable filters as wavelength-selection elements in order to emphasize the spatial relationships between magnetic field elements, and to permit construction of a compact, efficient instrument. This means that spectral information must be obtained from sequences of images, which can cause line profile distortions due to effects of atmospheric seeing.

  9. The potential for early and rapid pathogen detection within poultry processing through hyperspectral microscopy

    USDA-ARS?s Scientific Manuscript database

    The acquisition of hyperspectral microscopic images containing both spatial and spectral data has shown potential for the early and rapid optical classification of foodborne pathogens. A hyperspectral microscope with a metal halide light source and acousto-optical tunable filter (AOTF) collects 89 ...

  10. Two kinds of novel tunable Thulium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong

    2014-11-01

    Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.

  11. Correlation of Electric Field and Critical Design Parameters for Ferroelectric Tunable Microwave Filters

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred W.; Miranda, Felix A.; Canedy, Chadwick L.; Aggarwal, Sanjeev; Venkatesan, Thirumalai; Ramesh, Ramamoorthy

    2000-01-01

    The correlation of electric field and critical design parameters such as the insertion loss, frequency ability return loss, and bandwidth of conductor/ferroelectric/dielectric microstrip tunable K-band microwave filters is discussed in this work. This work is based primarily on barium strontium titanate (BSTO) ferroelectric thin film based tunable microstrip filters for room temperature applications. Two new parameters which we believe will simplify the evaluation of ferroelectric thin films for tunable microwave filters, are defined. The first of these, called the sensitivity parameter, is defined as the incremental change in center frequency with incremental change in maximum applied electric field (EPEAK) in the filter. The other, the loss parameter, is defined as the incremental or decremental change in insertion loss of the filter with incremental change in maximum applied electric field. At room temperature, the Au/BSTO/LAO microstrip filters exhibited a sensitivity parameter value between 15 and 5 MHz/cm/kV. The loss parameter varied for different bias configurations used for electrically tuning the filter. The loss parameter varied from 0.05 to 0.01 dB/cm/kV at room temperature.

  12. Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2011-08-01

    We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.

  13. MWIR thermal imaging spectrometer based on the acousto-optic tunable filter.

    PubMed

    Zhao, Huijie; Ji, Zheng; Jia, Guorui; Zhang, Ying; Li, Yansong; Wang, Daming

    2017-09-01

    Mid-wavelength IR (MWIR) thermal imaging spectrometers are widely used in remote sensing, industrial detection, and military applications. The acousto-optic tunable filter (AOTF)-based spectrometer has the advantages of fast tuning, light weight, and no moving parts, which make it ideally suited for MWIR applications. However, when designing an AOTF imaging spectrometer, the traditional method uses a refractive grating or parallel glass model in optical design software to simulate the AOTF, lowering the imaging performance of the optical system. In this paper, an accurate simulating model for an actual MWIR AOTF using the user-defined surface function in ZEMAX is presented, and an AOTF-based MWIR thermal imaging spectrometer is designed and tested successfully. It is based on a MWIR tellurium dioxide (TeO 2 ) AOTF with an operational spectral range from 3.0 to 5.0 μm and a spectral resolution of 30.8 nm at 3.392 μm. The optical system employs a three-mirror off-axis afocal telescope with a 2.4°×2.0° field of view. The operation of the MWIR thermal imaging spectrometer and its image acquisition are computer controlled. Furthermore, the imaging spectrometer is tested in the laboratory, and several experiments are also presented. The experimental results indicate that the proposed AOTF model is efficient, and also show that the imaging spectrometer has the ability to distinguish the real hot target from the interfering target effectively.

  14. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    PubMed

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  15. Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification

    NASA Astrophysics Data System (ADS)

    Suwansukho, Kajpanya; Sumriddetchkajorn, Sarun; Buranasiri, Prathan

    2011-07-01

    A single-wavelength spectral-imaging-based Thai jasmine rice breed identification is demonstrated. Our nondestructive identification approach relies on a combination of fluorescent imaging and simple image processing techniques. Especially, we apply simple image thresholding, blob filtering, and image subtracting processes to either a 545 or a 575nm image in order to identify our desired Thai jasmine rice breed from others. Other key advantages include no waste product and fast identification time. In our demonstration, UVC light is used as our exciting light, a liquid crystal tunable optical filter is used as our wavelength seclector, and a digital camera with 640activepixels×480activepixels is used to capture the desired spectral image. Eight Thai rice breeds having similar size and shape are tested. Our experimental proof of concept shows that by suitably applying image thresholding, blob filtering, and image subtracting processes to the selected fluorescent image, the Thai jasmine rice breed can be identified with measured false acceptance rates of <22.9% and <25.7% for spectral images at 545 and 575nm wavelengths, respectively. A measured fast identification time is 25ms, showing high potential for real-time applications.

  16. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  17. AOTF microscope for imaging with increased speed and spectral versatility.

    PubMed Central

    Wachman, E S; Niu, W; Farkas, D L

    1997-01-01

    We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289

  18. Developing handheld real time multispectral imager to clinically detect erythema in darkly pigmented skin

    NASA Astrophysics Data System (ADS)

    Kong, Linghua; Sprigle, Stephen; Yi, Dingrong; Wang, Fengtao; Wang, Chao; Liu, Fuhan

    2010-02-01

    Pressure ulcers have been identified as a public health concern by the US government through the Healthy People 2010 initiative and the National Quality Forum (NQF). Currently, no tools are available to assist clinicians in erythema, i.e. the early stage pressure ulcer detection. The results from our previous research (supported by NIH grant) indicate that erythema in different skin tones can be identified using a set of wavelengths 540, 577, 650 and 970nm. This paper will report our recent work which is developing a handheld, point-of-care, clinicallyviable and affordable, real time multispectral imager to detect erythema in persons with darkly pigmented skin. Instead of using traditional filters, e.g. filter wheels, generalized Lyot filter, electrical tunable filter or the methods of dispersing light, e.g. optic-acoustic crystal, a novel custom filter mosaic has been successfully designed and fabricated using lithography and vacuum multi layer film technologies. The filter has been integrated with CMOS and CCD sensors. The filter incorporates four or more different wavelengths within the visual to nearinfrared range each having a narrow bandwidth of 30nm or less. Single wavelength area is chosen as 20.8μx 20.8μ. The filter can be deposited on regular optical glass as substrate or directly on a CMOS and CCD imaging sensor. This design permits a multi-spectral image to be acquired in a single exposure, thereby providing overwhelming convenience in multi spectral imaging acquisition.

  19. A Very Compact, High Speed and Rugged Acousto-Optic Tunable Filter for Wavelength Division Demultiplexing in Fiber Optic Communication Networks. Phase 1

    DTIC Science & Technology

    1995-06-30

    Novel concepts of near-collinear/collinear acousto - optic interactions have been investigated during this SBIR Phase I program. As a result, several...new acousto - optic tunable filters have been built and tested. The program is highlighted by: (1) Design, fabrication and experimental demonstration of...a novel TeO2 near-collinear acousto - optic tunable filter has been designed, fabricated and tested. The device exhibits a 1.29 nm spectral resolution

  20. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    NASA Astrophysics Data System (ADS)

    Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong

    2013-06-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  1. All-fiber tunable MMI fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.

    2009-05-01

    We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.

  2. Reconfigurable Sensor Monitoring System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  3. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  4. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    PubMed

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  5. Arbitrary frequency tunable radio frequency bandpass filter based on nano-patterned Permalloy coplanar waveguide (invited)

    NASA Astrophysics Data System (ADS)

    Wang, Tengxing; Rahman, B. M. Farid; Peng, Yujia; Xia, Tian; Wang, Guoan

    2015-05-01

    A well designed coplanar waveguide (CPW) based center frequency tunable bandpass filter (BPF) at 4 GHz enabled with patterned Permalloy (Py) thin film has been implemented. The operating frequency of BPF is tunable with only DC current without the use of any external magnetic field. Electromagnetic bandgap resonators structure is adopted in the BPF and thus external DC current can be applied between the input and output of the filter for tuning of Py permeability. Special configurations of resonators with multiple narrow parallel sections have been considered for larger inductance tenability; the tunability of CPW transmission lines of different widths with patterned Py thin film on the top of the signal lines is compared and measured. Py thin film patterned as bars is deposited on the top of the multiple narrow parallel sections of the designed filter. No extra area is required for the designed filter configuration. Filter is measured and results show that its center frequency could be tuned from 4 GHz to 4.02 GHz when the DC current is applied from 0 mA to 400 mA.

  6. RF-MEMS tunable interdigitated capacitor and fixed spiral inductor for band pass filter applications

    NASA Astrophysics Data System (ADS)

    Bade, Ladon Ahmed; Dennis, John Ojur; Khir, M. Haris Md; Wen, Wong Peng

    2016-11-01

    This research presents the tunable Radio Frequency Micro Electromechanical Systems (RF-MEMS) coupled band-pass filter (BPF), which possess a wide tuning range and constructed by using the Chebyshev fourth degree equivalent circuit consisting of fixed inductors and interdigitated tunable capacitors. The suggested method was authenticated by designing a new tunable BPF with a 100% tuning range from 3.1 GHz to 4.9 GHz. The Metal Multi-User MEMS Process (Metal MUMPs) was involved in the process of design of this band-pass filter. It aimed to achieve the reconfiguration of frequencies and show high efficiency of RF in the applications that using Ultra Wide Band (UWB) such as wireless sensor networks. The RF performance of this filter was found to be very satisfactory due to its simple fabrication. Moreover, it showed less insertion loss of around 4 dB and high return loss of around 20 dB.

  7. Ion irradiation effects on lithium niobate etalons for tunable spectral filters

    NASA Astrophysics Data System (ADS)

    Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.

    2017-11-01

    Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle, coupled with the HV field, could trigger a dielectric breakdown in the Lithium Niobate. In this paper we present the electro-optical results obtained when exposing a set of LN samples and a lowquality full size etalon to different radiation conditions. In a first irradiation campaign, performed at the Centre for Micro Analysis of Materials (CMAM-Madrid) facilities, we were mainly focused on the long-term degradation effects with a series of high flux (109 cm-2 s-1) proton tests at an energy of 10 MeV. In order to study the possibility of a single ion breakdown, a second campaign was carried out, at the Texas A&M University (TAMU), exposing Lithium Niobate to high LET ion species (78Kr, 40Ar, 129Xe, 197Au) accelerated to the GeV energy range to penetrate or even pass through the entire Lithium Niobate thickness.

  8. Wavelength-Scanning SPR Imaging Sensors Based on an Acousto-Optic Tunable Filter and a White Light Laser

    PubMed Central

    Zeng, Youjun; Wang, Lei; Wu, Shu-Yuen; He, Jianan; Qu, Junle; Li, Xuejin; Ho, Ho-Pui; Gu, Dayong; Gao, Bruce Zhi; Shao, Yonghong

    2017-01-01

    A fast surface plasmon resonance (SPR) imaging biosensor system based on wavelength interrogation using an acousto-optic tunable filter (AOTF) and a white light laser is presented. The system combines the merits of a wide-dynamic detection range and high sensitivity offered by the spectral approach with multiplexed high-throughput data collection and a two-dimensional (2D) biosensor array. The key feature is the use of AOTF to realize wavelength scan from a white laser source and thus to achieve fast tracking of the SPR dip movement caused by target molecules binding to the sensor surface. Experimental results show that the system is capable of completing a SPR dip measurement within 0.35 s. To the best of our knowledge, this is the fastest time ever reported in the literature for imaging spectral interrogation. Based on a spectral window with a width of approximately 100 nm, a dynamic detection range and resolution of 4.63 × 10−2 refractive index unit (RIU) and 1.27 × 10−6 RIU achieved in a 2D-array sensor is reported here. The spectral SPR imaging sensor scheme has the capability of performing fast high-throughput detection of biomolecular interactions from 2D sensor arrays. The design has no mechanical moving parts, thus making the scheme completely solid-state. PMID:28067766

  9. Tunable all-fiber dissipative-soliton laser with a multimode interference filter.

    PubMed

    Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan

    2012-09-15

    We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.

  10. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    PubMed

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  11. A nu-space for image correlation spectroscopy: characterization and application to measure protein transport in live cells

    NASA Astrophysics Data System (ADS)

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  12. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements.

    PubMed

    Liu, X-L; Liu, H-N; Tan, P-H

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  13. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity

    NASA Astrophysics Data System (ADS)

    Supradeepa, V. R.; Long, Christopher M.; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E.; Weiner, Andrew M.

    2012-03-01

    Photonic technologies have received considerable attention regarding the enhancement of radiofrequency electrical systems, including high-frequency analogue signal transmission, control of phased arrays, analog-to-digital conversion and signal processing. Although the potential of radiofrequency photonics for the implementation of tunable electrical filters over broad radiofrequency bandwidths has been much discussed, the realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for radiofrequency photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability and bandwidth reconfiguration. In one configuration, tuning of the radiofrequency passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes the comb spectra, resulting in Gaussian radiofrequency filter lineshapes exhibiting an extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.

  14. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  15. Development and Acceptance Testing of the Dual Wheel Mechanism for the Tunable Filter Imager Cryogenic Instrument on the JWST

    NASA Technical Reports Server (NTRS)

    Leckie, Martin; Ahmad, Zakir

    2010-01-01

    The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.

  16. Tunable Microstrip Filters Using Selectively Etched Ferroelectric Thin-Film Varactors for Coupling

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Subramanyam, Guru; Miranda, Felix A.

    2006-01-01

    We report on the use of patterned ferroelectric films to fabricate proof of concept tunable one-pole microstrip filters with excellent transmission and mismatch/reflection properties at frequencies up to 24 GHz. By controlling the electric field distribution within the coupling region between the resonator and input/output lines, sufficiently high loaded and unloaded Q values are maintained so as to be useful for microstrip filter design, with low mismatch loss. In the 23 - 24 GHz region, the filter was tunable over a 100 MHz range, the loaded and unloaded Q values were 29 and 68, respectively, and the reflection losses were below -16 dB, which demonstrates the suitability of these films for practical microwave applications.

  17. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging of the full vector magnetic field at the height of maximum magnetic influence (minimum plasma beta) can be accomplished, albeit difficult, by measuring the Zeeman splitting of the CIV resonance pair. Designs of multiple VUV FPIs can be developed for integration into future orbiting solar observatories to obtain rapid cadence, spectral imaging of the transition region.

  18. Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)

    NASA Astrophysics Data System (ADS)

    Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le

    2017-02-01

    A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.

  19. Amplitude and phase measurements based on low-coherence interferometry with acousto-optic spectral image filtration

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander; Burmak, Ludmila; Pozhar, Vitold

    2018-04-01

    The manuscript addresses the advantages and possible applications of acousto-optic image spectral filtration in lowcoherence interferometry. In particular, an effective operation of acousto-optical tunable filters in combination with Michelson-type interferometers is shown. The results of original experiments are presented. It is demonstrated that amplitude and phase spatial distributions of light waves reflected from or transmitted through the object can be fast determined in contactless manner for any spectral intervals with use of the presented techniques.

  20. Optically tunable optical filter

    NASA Astrophysics Data System (ADS)

    James, Robert T. B.; Wah, Christopher; Iizuka, Keigo; Shimotahira, Hiroshi

    1995-12-01

    We experimentally demonstrate an optically tunable optical filter that uses photorefractive barium titanate. With our filter we implement a spectrum analyzer at 632.8 nm with a resolution of 1.2 nm. We simulate a wavelength-division multiplexing system by separating two semiconductor laser diodes, at 1560 nm and 1578 nm, with the same filter. The filter has a bandwidth of 6.9 nm. We also use the same filter to take 2.5-nm-wide slices out of a 20-nm-wide superluminescent diode centered at 840 nm. As a result, we experimentally demonstrate a phenomenal tuning range from 632.8 to 1578 nm with a single filtering device.

  1. Artificial Structural Color Pixels: A Review

    PubMed Central

    Zhao, Yuqian; Zhao, Yong; Hu, Sheng; Lv, Jiangtao; Ying, Yu; Gervinskas, Gediminas; Si, Guangyuan

    2017-01-01

    Inspired by natural photonic structures (Morpho butterfly, for instance), researchers have demonstrated varying artificial color display devices using different designs. Photonic-crystal/plasmonic color filters have drawn increasing attention most recently. In this review article, we show the developing trend of artificial structural color pixels from photonic crystals to plasmonic nanostructures. Such devices normally utilize the distinctive optical features of photonic/plasmon resonance, resulting in high compatibility with current display and imaging technologies. Moreover, dynamical color filtering devices are highly desirable because tunable optical components are critical for developing new optical platforms which can be integrated or combined with other existing imaging and display techniques. Thus, extensive promising potential applications have been triggered and enabled including more abundant functionalities in integrated optics and nanophotonics. PMID:28805736

  2. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source.

    PubMed

    Choma, Michael A; Hsu, Kevin; Izatt, Joseph A

    2005-01-01

    The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.

  3. Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban

    2003-01-01

    The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.

  4. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    PubMed

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  5. The Lockheed alternate partial polarizer universal filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1976-01-01

    A tunable birefringent filter using an alternate partial polarizer design has been built. The filter has a transmission of 38% in polarized light. Its full width at half maximum is .09A at 5500A. It is tunable from 4500 to 8500A by means of stepping motor actuated rotating half wave plates and polarizers. Wave length commands and thermal compensation commands are generated by a PPD 11/10 minicomputer. The alternate partial polarizer universal filter is compared with the universal birefringent filter and the design techniques, construction methods, and filter performance are discussed in some detail. Based on the experience of this filter some conclusions regarding the future of birefringent filters are elaborated.

  6. Spatial arrangement of color filter array for multispectral image acquisition

    NASA Astrophysics Data System (ADS)

    Shrestha, Raju; Hardeberg, Jon Y.; Khan, Rahat

    2011-03-01

    In the past few years there has been a significant volume of research work carried out in the field of multispectral image acquisition. The focus of most of these has been to facilitate a type of multispectral image acquisition systems that usually requires multiple subsequent shots (e.g. systems based on filter wheels, liquid crystal tunable filters, or active lighting). Recently, an alternative approach for one-shot multispectral image acquisition has been proposed; based on an extension of the color filter array (CFA) standard to produce more than three channels. We can thus introduce the concept of multispectral color filter array (MCFA). But this field has not been much explored, particularly little focus has been given in developing systems which focuses on the reconstruction of scene spectral reflectance. In this paper, we have explored how the spatial arrangement of multispectral color filter array affects the acquisition accuracy with the construction of MCFAs of different sizes. We have simulated acquisitions of several spectral scenes using different number of filters/channels, and compared the results with those obtained by the conventional regular MCFA arrangement, evaluating the precision of the reconstructed scene spectral reflectance in terms of spectral RMS error, and colorimetric ▵E*ab color differences. It has been found that the precision and the the quality of the reconstructed images are significantly influenced by the spatial arrangement of the MCFA and the effect will be more and more prominent with the increase in the number of channels. We believe that MCFA-based systems can be a viable alternative for affordable acquisition of multispectral color images, in particular for applications where spatial resolution can be traded off for spectral resolution. We have shown that the spatial arrangement of the array is an important design issue.

  7. Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers

    NASA Astrophysics Data System (ADS)

    Brunetti, A. C.; Scolari, L.; Weirich, J.; Eskildsen, L.; Bellanca, G.; Bassi, P.; Bjarklev, A.

    2008-10-01

    A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at λ = 1364 nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed by increasing the temperature from 25 °C to 100 °C. The measurements are compared to a simulated spectrum obtained by means of a vectorial Beam Propagation Method model.

  8. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    PubMed

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  9. Tunable reflecting terahertz filter based on chirped metamaterial structure

    PubMed Central

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  10. Measurement of two-dimensional thickness of micro-patterned thin film based on image restoration in a spectroscopic imaging reflectometer.

    PubMed

    Kim, Min-Gab; Kim, Jin-Yong

    2018-05-01

    In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.

  11. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  12. Liquid crystal photonic bandgap fiber components

    NASA Astrophysics Data System (ADS)

    Scolari, L.; Alkeskjold, T. T.; Noordegraaf, D.; Tartarini, G.; Bassi, P.; Bjarklev, A.

    2007-11-01

    Liquid crystal photonic bandgap fibers represent a promising platform for the design of all-in-fiber optical devices, which show a high degree of tunability and exhibit novel optical properties for the manipulation of guided light. In this review paper we present tunable fiber devices for spectral filtering, such as Gaussian filters and notch filters, and devices for polarization control and analysis, such as birefringence control devices and switchable and rotatable polarizers.

  13. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  14. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    NASA Astrophysics Data System (ADS)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  15. Spectral and Polarimetric Analysis of Hyperspectral Data Collected by an Acousto-Optic Tunable Filter System

    DTIC Science & Technology

    1993-09-23

    dioxide ( TeO2 ) crystal which splits a beam of light entering the sensor into a set of two narrow band, orthogonally polarized images for each...See Figure 3) These laws hold true for Light ry V m .Li t ray , &o r air RefairRefractive lade: a, )’i i .- t 1 V Refractive inaex n’ Glass or

  16. First Results of Exoplanet Observations with the Gran Telescopio Canarias: Narrow-Band Transit Photometry Capable of Detecting Super-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.

    2010-01-01

    We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  17. Novel, in-situ Raman and fluorescence measurement techniques: Imaging using optical waveguides

    NASA Astrophysics Data System (ADS)

    Carter, Jerry Chance

    The following dissertation describes the development of methods for performing standoff and in- situ Raman and fluorescence spectroscopy for chemical imaging and non-imaging analytical applications. The use of Raman spectroscopy for the in- situ identification of crack cocaine and cocaine.HCl using a fiberoptic Raman probe and a portable Raman spectrograph has been demonstrated. We show that the Raman spectra of both forms of cocaine are easily distinguishable from common cutting agents and impurities such as benzocaine and lidocaine. We have also demonstrated the use of Raman spectroscopy for in-situ identification of drugs separated by thin layer chromatography. We have investigated the use of small, transportable, Raman systems for standoff Raman spectroscopy (e.g. <20 m). For this work, acousto-optical (AOTF) and liquid crystal tunable filters (LCTF) are being used both with, and in place of dispersive spectrographs and fixed filtering devices. In addition, we improved the flexibility of the system by the use of a modified holographic fiber-optic probe for light and image collection. A comparison of tunable filter technologies for standoff Raman imaging is discussed along with the merits of image transfer devices using small diameter image guides. A standoff Raman imaging system has been developed that utilizes a unique polymer collection mirror. The techniques used to produce these mirrors make it easy to design low f/# polymer mirrors. The performance of a low f/# polymer mirror system for standoff Raman chemical imaging has been demonstrated and evaluated. We have also demonstrated remote Raman hyperspectral imaging using a dimension-reduction, 2-dimensional (2-D) to 1-dimensional (1-D), fiber optic array. In these studies, a modified holographic fiber-optic probe was combined with the dimension-reduction fiber array for remote Raman imaging. The utility of this setup for standoff Raman imaging is demonstrated by monitoring the polymerization of dibromostyrene. To further demonstrate the utility of in- situ spectral imaging, we have shown that small diameter (350 μm) image guides can be used for in-situ measurements of analyte transport in thin membranes. This has been applied to the measurement of H2O diffusion in Nafion™ membranes using the luminescent compound, [Ru(phen)2dppz] 2+, which is a H2O indicator.

  18. A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.

    2008-06-01

    We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.

  19. Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae

    2006-12-01

    We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.

  20. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach-Zehnder interferometer and tunable filter

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2  ×  2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.

  1. Photonics and bioinspiration

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2014-10-01

    Biological systems exploiting light have benefitted from thousands of years of genetic evolution and can provide insight to support the development of new approaches for imaging, image processing and communication. For example, biological vision systems can provide significant diversity, yet are able to function with only a minimal degree of neural processing. Examples will be described underlying the processes used to support the development of new concepts for photonic systems, ranging from uncooled bolometers and tunable filters, to asymmetric free-space optical communication systems and new forms of camera capable of simultaneously providing spectral and polarimetric diversity.

  2. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  3. End-to-end simulations of the visible tunable filter for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfgang; Schubert, Matthias; Ellwarth, Monika; Baumgartner, Jörg; Bell, Alexander; Fischer, Andreas; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas; von der Lühe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael

    2016-08-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope that is currently under construction on Maui (Hawaii). The VTF is being developed by the Kiepenheuer Institut fuer Sonnenphysik in Freiburg as a German contribution to the DKIST. We perform end-to-end simulations of spectropolarimetric observations with the VTF to verify the science requirements of the instrument. The instrument is simulated with two Etalons, and with a single Etalon. The clear aperture of the Etalons is 250 mm, corresponding to a field of view with a diameter of 60 arcsec in the sky (42,000 km on the Sun). To model the large-scale figure errors we employ low-order Zernike polynomials (power and spherical aberration) with amplitudes of 2.5 nm RMS. We use an ideal polarization modulator with equal modulation coefficients of 3-1/2 for the polarization modulation We synthesize Stokes profiles of two iron lines (630.15 nm and 630.25 nm) and for the 854.2 nm line of calcium, for a range of magnetic field values and for several inclination angles. We estimated the photon noise on the basis of the DKIST and VTF transmission values, the atmospheric transmission and the spectral flux from the Sun. For the Fe 630.25 nm line, we obtain a sensitivity of 20 G for the longitudinal component and for 150 G for the transverse component, in agreement with the science requirements for the VTF.

  4. Bilateral filter regularized accelerated Demons for improved discontinuity preserving registration.

    PubMed

    Demirović, D; Šerifović-Trbalić, A; Prljača, N; Cattin, Ph C

    2015-03-01

    The classical accelerated Demons algorithm uses Gaussian smoothing to penalize oscillatory motion in the displacement fields during registration. This well known method uses the L2 norm for regularization. Whereas the L2 norm is known for producing well behaving smooth deformation fields it cannot properly deal with discontinuities often seen in the deformation field as the regularizer cannot differentiate between discontinuities and smooth part of motion field. In this paper we propose replacement the Gaussian filter of the accelerated Demons with a bilateral filter. In contrast the bilateral filter not only uses information from displacement field but also from the image intensities. In this way we can smooth the motion field depending on image content as opposed to the classical Gaussian filtering. By proper adjustment of two tunable parameters one can obtain more realistic deformations in a case of discontinuity. The proposed approach was tested on 2D and 3D datasets and showed significant improvements in the Target Registration Error (TRE) for the well known POPI dataset. Despite the increased computational complexity, the improved registration result is justified in particular abdominal data sets where discontinuities often appear due to sliding organ motion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    PubMed

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  6. All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.

    PubMed

    Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun

    2016-04-04

    An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications.

  7. Tunable Filter Made From Three Coupled WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey

    2006-01-01

    A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery-modes of the third WGM resonator to an output optical fiber. The filter operates at a nominal wavelength of 1,550 nm and can be tuned over a frequency range of plus or minus 12 GHz by applying a potential in the range of plus or minus 150 V to the electrodes. The insertion loss (the loss between the input and output coupling optical fibers) was found to be repeatable at 6 dB. The resonance quality factor (Q) of the main sequence of resonator modes was found to be 5 x 10(exp 6), which corresponds to a bandwidth of 30 MHz. The filter can be shifted from one operating frequency to another within a tuning time less than or equal to 30 micro seconds. The transmission curve of the filter at frequencies near the middle of the passband closely approximates a theoretical third-order Butterworth filter profile, as shown in Figure 2.

  8. Tunable THz notch filter with a single groove inside parallel-plate waveguides.

    PubMed

    Lee, Eui Su; Jeon, Tae-In

    2012-12-31

    A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

  9. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    NASA Astrophysics Data System (ADS)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  10. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    PubMed

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  11. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  12. Highly efficient all-fiber tunable polarization filter using torsional acoustic wave.

    PubMed

    Lee, Kwang Jo; Park, Hyun Chul; Kim, Byoung Yoon

    2007-09-17

    We demonstrate an all-fiber tunable polarization filter with high coupling efficiency based on acousto-optic coupling between two optical polarization modes of the LP(01) mode propagating in a highly birefringent single mode optical fiber. An over-coupling between the two polarization modes is realized over the wavelength range from 1530 nm to 1610 nm using traveling torsional acoustic wave. The measured 3-dB optical bandwidth of the filter was 4.8 nm at the wavelength around 1550 nm. The details of the filter transmission and the coupling characteristics are discussed.

  13. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  14. Experimental demonstration of a ferroelectric liquid crystal tunable filter for fast demodulation of FBG sensors

    NASA Astrophysics Data System (ADS)

    Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald

    2009-05-01

    A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.

  15. Design of a nano-layered tunable optical filter

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Awasthi, S. K.; Malaviya, U.; Ojha, S. P.

    2006-12-01

    A novel theory to design tunable band pass filters using one-dimensional nano-photonic structures is proposed. Periodic structures consisting of different dielectrics and semiconductor materials are considered. A detailed mathematical analysis is presented to predict allowed and forbidden bands of wavelengths with variation of angle of incidence and lattice parameters. It is possible to get desired ranges of the electromagnetic spectrum filtered with this structure by changing the incidence angle of light and/or changing the value of the lattice parameters.

  16. A Novel, Poly-Etalon, Fabry-Perot for Planetary Research

    NASA Technical Reports Server (NTRS)

    Kerr, Robert B.; Doe, Richard; Noto, John

    1997-01-01

    In an effort to develop a mechanically robust, high throughput and solid state spectrometer several liquid crystal Fabry-Perot etalons were constructed. The etalons were tested for spectral response, radiation resistance and optical transmission. The first year of this project was spent developing and understanding the properties of the liquid crystal etalons; in the second year an intensified all-sky imaging system was developed around a pair of LC etalons. The imaging system, developed jointly with SRI International represents a unique brassboard to demonstrate the use of LC etalons as tunable filters. The first set of etalons constructed in year one of this project were tested for spectral response and throughput while etalon surrogates were exposed to proton radiation simulating the exposure of an object in Low Earth Orbit (LEO). The 2" diameter etalons had a measure finesse of approximately 10 and were tunable over five orders. Liquid crystals exposed to proton irradiation showed no signs of damage. In year two two larger diameter (3") etalons were constructed with gaps of 3 and 5 microns. This pair of etalons is for use in a high resolution, all-sky spectral imager. The WATUMI imager system follows the heritage of all sky, narrow band, intensified imagers however it includes two LC Fabry-Perot etalons to provide tunability and the ability to switch wavelengths rapidly, an import consideration in auroral airglow imaging. This work also resulted in two publications and one poster presentation. The instrument will be uniquely capable, with superior throughput and speed, to measure optical airglow of multiple emission lines in harsh conditions.

  17. Performance evaluation and modeling of a conformal filter (CF) based real-time standoff hazardous material detection sensor

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Tazik, Shawna K.; Bangalore, Arjun S.; Treado, Patrick J.; Klem, Ethan; Temple, Dorota

    2017-05-01

    Hyperspectral imaging (HSI) systems can provide detection and identification of a variety of targets in the presence of complex backgrounds. However, current generation sensors are typically large, costly to field, do not usually operate in real time and have limited sensitivity and specificity. Despite these shortcomings, HSI-based intelligence has proven to be a valuable tool, thus resulting in increased demand for this type of technology. By moving the next generation of HSI technology into a more adaptive configuration, and a smaller and more cost effective form factor, HSI technologies can help maintain a competitive advantage for the U.S. armed forces as well as local, state and federal law enforcement agencies. Operating near the physical limits of HSI system capability is often necessary and very challenging, but is often enabled by rigorous modeling of detection performance. Specific performance envelopes we consistently strive to improve include: operating under low signal to background conditions; at higher and higher frame rates; and under less than ideal motion control scenarios. An adaptable, low cost, low footprint, standoff sensor architecture we have been maturing includes the use of conformal liquid crystal tunable filters (LCTFs). These Conformal Filters (CFs) are electro-optically tunable, multivariate HSI spectrometers that, when combined with Dual Polarization (DP) optics, produce optimized spectral passbands on demand, which can readily be reconfigured, to discriminate targets from complex backgrounds in real-time. With DARPA support, ChemImage Sensor Systems (CISS™) in collaboration with Research Triangle Institute (RTI) International are developing a novel, real-time, adaptable, compressive sensing short-wave infrared (SWIR) hyperspectral imaging technology called the Reconfigurable Conformal Imaging Sensor (RCIS) based on DP-CF technology. RCIS will address many shortcomings of current generation systems and offer improvements in operational agility and detection performance, while addressing sensor weight, form factor and cost needs. This paper discusses recent test and performance modeling results of a RCIS breadboard apparatus.

  18. Planetary investigation utilizing an imaging spectrometer system based upon charge injection technology

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Harvey, P.; Swift, R.

    1975-01-01

    An intrinsic silicon charge injection device (CID) television sensor array has been used in conjunction with a CaMoO4 colinear tunable acousto optic filter, a 61 inch reflector, a sophisticated computer system, and a digital color TV scan converter/computer to produce near IR images of Saturn and Jupiter with 10A spectral resolution and approximately 3 inch spatial resolution. The CID camera has successfully obtained digitized 100 x 100 array images with 5 minutes of exposure time, and slow-scanned readout to a computer. Details of the equipment setup, innovations, problems, experience, data and final equipment performance limits are given.

  19. Characterizing SOI Wafers By Use Of AOTF-PHI

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Li, Guann-Pyng; Zang, Deyu

    1995-01-01

    Developmental nondestructive method of characterizing layers of silicon-on-insulator (SOI) wafer involves combination of polarimetric hyperspectral imaging by use of acousto-optical tunable filters (AOTF-PHI) and computational resources for extracting pertinent data on SOI wafers from polarimetric hyperspectral images. Offers high spectral resolution and both ease and rapidity of optical-wavelength tuning. Further efforts to implement all of processing of polarimetric spectral image data in special-purpose hardware for sake of procesing speed. Enables characterization of SOI wafers in real time for online monitoring and adjustment of production. Also accelerates application of AOTF-PHI to other applications in which need for high-resolution spectral imaging, both with and without polarimetry.

  20. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  1. Wide range optofluidically tunable multimode interference fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; LiKamWa, P.; May-Arrioja, D. A.

    2014-08-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range.

  2. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter.

    PubMed

    Zhang, Z X; Xu, Z W; Zhang, L

    2012-11-19

    We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.

  3. FM and FSK response of tunable two-electrode DFB lasers and their performance with noncoherent detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, A.E.; Kuznetsov, M.; Kaminow, I.P.

    1989-12-01

    Two-electrode DFB lasers show promise for combining high speed and frequency tunability for FDM-FSK networks. The authors have measured the FM and FSK response of such lasers up to modulation frequencies of {approximately} GHz. Using these lasers in a noncoherent detection system in which a fiber Fabry-Perot tunable optical filter converts an FSK signal into ASK format, the authors demonstrate 10{sup {minus}9} BER up to 1 Gbit/s. Nonuniform FM response and consequent tone broadening of the optical-filtering FSK spectra can lead to system power penalties due to optical-filtering effects. Thus, for a given FM response, they can project the behaviormore » of these lasers in FSK optical systems.« less

  4. Acousto-optic tunable filter spectrometers in space missions [Invited].

    PubMed

    Korablev, Oleg I; Belyaev, Denis A; Dobrolenskiy, Yuri S; Trokhimovskiy, Alexander Y; Kalinnikov, Yuri K

    2018-04-01

    Spectrometers employing acousto-optic tunable filters (AOTFs) rapidly gain popularity in space, and in particular on interplanetary missions. They allow for reducing volume, mass, and complexity of the instrumentation. To date, space operations of 11 AOTF spectrometers are reported in the literature. They were used for analyzing ocean color, greenhouse gases, atmospheres of Mars and Venus, and for lunar mineralogy. More instruments for the Moon, Mars, and asteroid mineralogy are in flight, awaiting launch, or in the state of advanced development. The AOTFs are used in point (pencil-beam) spectrometers for selecting echelle diffraction orders, or in hyper-spectral imagers and microscopes. We review the AOTF-employing devices flown in space or ready to set off. The paper considers basic principles of the AOTF and science applications of the AOTF spectrometers, and describes developed instruments in some detail. We also address some advanced developments for future missions and plans. In addition, we discuss lessons learned during instrument design, build, calibration, and exploitation, and advantages and limitations in implementing the AOTF-based systems in space instrumentation.

  5. Optofluidic-Tunable Color Filters And Spectroscopy Based On Liquid-Crystal Microflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuennet, J. G.; Vasdekis, Andreas E.; Psaltis, D.

    The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption, fluorescence, or Raman analysis. We describe such tunable filters based on the micro-flow of liquid crystals. The filter operation is based on the wavelength dependent liquid crystal birefringence that can be tuned by modifying the flow velocity field in the microchannel. The latter is possible both temporally and spatially by varying the inlet pressure and the channel geometry respectively. We explored the use of these optofluidic filters for on-chip absorption spectroscopy; by integrating the distance dependent color filter with a dye-filled micro-channel, themore » absorption spectrum of a dye could be measured. Liquid crystal microflows simplify substantially the optofluidic integration, actuation and tuning of color filters for lab-on-a-chip spectroscopic applications.« less

  6. Passband switchable microwave photonic multiband filter

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693

  7. Passband switchable microwave photonic multiband filter.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-02

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity.

  8. Tunable optical filters with wide wavelength range based on porous multilayers

    NASA Astrophysics Data System (ADS)

    Mescheder, Ulrich; Khazi, Isman; Kovacs, Andras; Ivanov, Alexey

    2014-08-01

    A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis.

  9. Tunable optical filters with wide wavelength range based on porous multilayers.

    PubMed

    Mescheder, Ulrich; Khazi, Isman; Kovacs, Andras; Ivanov, Alexey

    2014-01-01

    A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis.

  10. Tunable optical filters with wide wavelength range based on porous multilayers

    PubMed Central

    2014-01-01

    A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis. PMID:25232293

  11. Tunable dual-wavelength fiber laser based on an MMI filter in a cascaded Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Kang, Zexin; Qi, Yanhui; Jian, Shuisheng

    2014-04-01

    A widely tunable dual-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop interferometer incorporating a multimode interference filter is proposed and experimentally demonstrated in this paper. The mode selection is implemented by using the cascaded Sagnac loop interferometer with two segments of polarization maintaining fibers, and the wavelength tuning was achieved by using the refractive index characteristic of multimode interference effects. The tunable dual-wavelength fiber laser has a wavelength tuning of about 40 nm with a signal-to-noise ratio of more than 50 dB.

  12. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  13. Two-dimensional grating guided-mode resonance tunable filter.

    PubMed

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  14. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, R.J.; Patterson, F.

    1996-05-07

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

  15. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, Robert J.; Patterson, Frank

    1996-01-01

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

  16. Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration.

    PubMed

    Mora, José; Ortigosa-Blanch, Arturo; Pastor, Daniel; Capmany, José

    2006-08-21

    We present a full theoretical and experimental analysis of a novel all-optical microwave photonic filter combining a mode-locked fiber laser and a Mach-Zenhder structure in cascade to a 2x1 electro-optic modulator. The filter is free from the carrier suppression effect and thus it does not require single sideband modulation. Positive and negative coefficients are obtained inherently in the system and the tunability is achieved by controlling the optical path difference of the Mach-Zenhder structure.

  17. Continuously tunable optical notch filter and band-pass filter systems that cover the visible to near-infrared spectral ranges.

    PubMed

    Jeong, Mi-Yun; Mang, Jin Yeob

    2018-03-10

    Spatially continuous tunable optical notch and band-pass filter systems that cover the visible (VIS) and near-infrared (NIR) spectral ranges from ∼460  nm to ∼1,000  nm are realized by combining left- and right-handed circular cholesteric liquid crystal (CLC) wedge cells with continuous pitch gradient. The notch filter system is polarization independent in all of the spectral ranges. The band-pass filter system, when the left- and right-handed CLCs are arranged in a row, is polarization independent, while when they are arranged at right angles, they are polarization dependent; furthermore, the full-width at half-maximum of the band-pass filter can be changed reversibly from the original bandwidth of 36 nm to 16 nm. Depending on the CLC materials, this strategy could be applied to the UV, VIS, and IR spectral ranges. Due to the high performance in the broad spectral range, cost-effective facile fabrication process, simple mechanical control, and small size, it is expected that our optical tunable filter strategies could become one of the key parts of laser-based Raman spectroscopy, fluorescence, life science devices, optical communication systems, astronomical telescopes, and so forth.

  18. Electro-optical tunable birefringent filter

    DOEpatents

    Levinton, Fred M [Princeton, NJ

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  19. A Low-Voltage and High Uniformity Nano-Electro-Mechanical System Tunable Color Filter Based on Subwavelength Grating

    NASA Astrophysics Data System (ADS)

    Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki

    2012-11-01

    This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.

  20. Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.

    PubMed

    St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei

    2015-12-01

    Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000  μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.

  1. An excitation wavelength-scanning spectral imaging system for preclinical imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul

    2008-02-01

    Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.

  2. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  3. A Large Aperture Fabry-Perot Tunable Filter Based On Micro Opto Electromechanical Systems Technology

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt; Mott, Brent; Powell, Dan; Barclay, Rich; Hsieh, Wen-Ting

    2002-01-01

    A research and development effort sponsored by the NASA Goddard Spaceflight Center (GSFC) is focused on applying Micro Opto Electromechanical Systems (MOEMS) technology to create a miniature Fabry-Perot tunable etalon for space and ground-based near infrared imaging spectrometer applications. Unlike previous devices developed for small-aperture telecommunications systems, the GSFC research is directed toward a novel 12 - 40 mm aperture for astrophysical studies, including emission line imaging of galaxies and nebulae, and multi-spectral redshift surveys in the 1.1 - 2.3 micron wavelength region. The MOEMS design features integrated electrostatic scanning of the 11-micron optical gap, and capacitance micrometry for closed loop control of parallelism within a 10-nm tolerance. The low thermal mass and inertia inherent in MOEMS devices allows for rapid cooling to the proposed 30 K operating temperature, and high frequency response. Achieving the proposed 6-nm aperture flatness (with an effective finesse of 50) represents the primary technical challenge in the current 12-mm prototype.

  4. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter.

    PubMed

    Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P

    2015-01-01

    A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz.

  5. Instrument performance enhancement and modification through an extended instrument paradigm

    NASA Astrophysics Data System (ADS)

    Mahan, Stephen Lee

    An extended instrument paradigm is proposed, developed and shown in various applications. The CBM (Chin, Blass, Mahan) method is an extension to the linear systems model of observing systems. In the most obvious and practical application of image enhancement of an instrument characterized by a time-invariant instrumental response function, CBM can be used to enhance images or spectra through a simple convolution application of the CBM filter for a resolution improvement of as much as a factor of two. The CBM method can be used in many applications. We discuss several within this work including imaging through turbulent atmospheres, or what we've called Adaptive Imaging. Adaptive Imaging provides an alternative approach for the investigator desiring results similar to those obtainable with adaptive optics, however on a minimal budget. The CBM method is also used in a backprojected filtered image reconstruction method for Positron Emission Tomography. In addition, we can use information theoretic methods to aid in the determination of model instrumental response function parameters for images having an unknown origin. Another application presented herein involves the use of the CBM method for the determination of the continuum level of a Fourier transform spectrometer observation of ethylene, which provides a means for obtaining reliable intensity measurements in an automated manner. We also present the application of CBM to hyperspectral image data of the comet Shoemaker-Levy 9 impact with Jupiter taken with an acousto-optical tunable filter equipped CCD camera to an adaptive optics telescope.

  6. Frequency selective infrared optical filters for micro-bolometers

    NASA Astrophysics Data System (ADS)

    Creazzo, Timothy A.; Zablocki, Mathew J.; Zaman, Lenin; Sharkawy, Ahmed; Mirotznik, Mark S.; Prather, Dennis W.

    2017-05-01

    Current micro-bolometers are broadband detectors and tend to absorb a broad window of the IR spectrum for thermal imaging. Such systems are limited due to their lack of sensitivity to blackbody radiation, as well as the inability to spectrally discern multiple wavelengths in the field of view for hyperspectral imaging (HSI). As a result, many important applications such as low concentration chemical detection cannot be performed. One solution to this problem is to employ a system with thermoelectrically cooled or liquid nitrogen cooled sensors, which can lead to higher sensitivity in detection. However, one major drawback of these systems is the size, weight and power (SWaP) issue as they tend to be rather bulky and cumbersome, which largely challenges their use in unmanned aerial vehicles. Further, spectral filtering is commonly performed with large hardware and moving gratings, greatly increasing the SWaP of the system. To this point, Lumilant's effort is to develop wavelength selective uncooled IR filters that can be integrated onto a microbolometer, to exceed the sensitivity imposed by the blackbody radiation limit. We have demonstrated narrowband absorbers and electrically tunable filters addressing the need for low-SWaP platforms.

  7. Design of tunable thermo-optic C-band filter based on coated silicon slab

    NASA Astrophysics Data System (ADS)

    Pinhas, Hadar; Malka, Dror; Danan, Yossef; Sinvani, Moshe; Zalevsky, Zeev

    2018-03-01

    Optical filters are required to have narrow band-pass filtering in the spectral C-band for applications such as signal tracking, sub-band filtering or noise suppression. These requirements lead to a variety of filters such as Mach-Zehnder interferometer inter-leaver in silica, which offer thermo-optic effect for optical switching, however, without proper thermal and optical efficiency. In this paper we propose tunable thermo-optic filtering device based on coated silicon slab resonator with increased Q-factor for the C-band optical switching. The device can be designed either for long range wavelength tuning of for short range with increased wavelength resolution. Theoretical examination of the thermal parameters affecting the filtering process is shown together with experimental results. Proper channel isolation with an extinction ratio of 20dBs is achieved with spectral bandpass width of 0.07nm.

  8. Research on a high-precision calibration method for tunable lasers

    NASA Astrophysics Data System (ADS)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  9. Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization.

    PubMed

    Gladish, James C; Duncan, Donald D

    2017-01-20

    Herein, we discuss the remote assessment of the subwavelength organizational structure of a medium. Specifically, we use spectral imaging polarimetry, as the vector nature of polarized light enables it to interact with optical anisotropies within a medium, while the spectral aspect of polarization is sensitive to small-scale structure. The ability to image these effects allows for inference of spatial structural organization parameters. This work describes a methodology for revealing structural organization by exploiting the Stokes/Mueller formalism and by utilizing measurements from a spectral imaging polarimeter constructed from liquid crystal variable retarders and a liquid crystal tunable filter. We provide results to validate the system and then show results from measurements on a mineral sample.

  10. FIFI: The MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Geis, Norbert; Genzel, Reinhard; Haggerty, M.; Herrmann, F.; Jackson, J.; Madden, Suzanne C.; Nikola, T.; Poglitsch, Albrecht; Rumitz, M.; Stacey, G. J.

    1995-01-01

    We describe the performance characteristics of the MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) for the Kuiper Airborne Observatory (KAO). The spectrometer features two or three cryogenic tunable Fabry-Perot filters in series giving spectral resolution R of up to 10(exp 5) in the range of 40 microns less than lambda less than 200 microns, and an imaging 5x5 array of photoconductive detectors with variable focal plane plate scale. The instrument works at background limited sensitivity of up to 2 x 10(exp -19) W cm(exp -2) Hz(exp -1/2) per pixel per resolution element at R = 10(exp 5) on the KAO.

  11. Bandwidth tunable microwave photonic filter based on digital and analog modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong

    2018-05-01

    A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.

  12. Continued Development of an Ultra-Narrow Bandpass Filter for Solar Research

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1993-01-01

    The objective of work under this task was to develop ultranarrow optical bandpass filters and related technology necessary for construction of a compact solar telescope capable of operating unattended in space. The scientific problems to which such a telescope could be applied include solar seismology, solar activity monitoring, solar irradiance variations, solar magnetic field evolution, and the location of targets for narrow-field specialized telescopes. We have demonstrated a Y-cut lithium-niobate Fabry-Perot etalon. This filter will be used on the Flare Genesis Experiment. We also obtained solar images with a Z-cut etalon. The technical report on etalon filters is attached to this final report. We believe that work under this grant will lead to the commercial availability of a universal optical filter with approximately 0.1 A bandwidth. Progress was made toward making a suitable 1-2 A tunable blocker filter, but it now appears that the best approach is to make a double-cavity etalon that will not require such a narrow blocker. Broader band blockers are commercially available.

  13. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.

    PubMed

    Khodaee, M; Banakermani, M; Baghban, H

    2015-10-10

    Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34  THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.

  14. Dependence on fiber Fabry-Pérot tunable filter characteristics in an all-fiber swept-wavelength laser for use in an optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Stay, Justin L.; Carr, Dustin; Ferguson, Steve; Haber, Todd; Jenkins, Robert; Mock, Joel

    2017-02-01

    Optical coherence tomography (OCT) has become a useful and common diagnostic tool within the field of ophthalmology. Although presently a commercial technology, research continues in improving image quality and applying the imaging method to other tissue types. Swept-wavelength lasers based upon fiber ring cavities containing fiber Fabry-Ṕerot tunable filters (FFP-TF), as an intracavity element, provide swept-source optical coherence tomography (SS-OCT) systems with a robust and scalable platform. The FFP-TF can be fabricated within a large range of operating wavelengths, free spectral ranges (FSR), and finesses. To date, FFP-TFs have been fabricated at operating wavelengths from 400 nm to 2.2 µm, FSRs as large as 45 THz, and finesses as high as 30 000. The results in this paper focus on presenting the capability of the FFP-TF as an intracavity element in producing swept-wavelength lasers sources and quantifying the trade off between coherence length and sweep range. We present results within a range of feasible operating conditions. Particular focus is given to the discovery of laser configurations that result in maximization of sweep range and/or power. A novel approach to the electronic drive of the PZT-based FFP-TF is also presented, which eliminates the need for the existence of a mechanical resonance of the optical device. This approach substantially increases the range of drive frequencies with which the filter can be driven and has a positive impact for both the short all-fiber laser cavity (presented in this paper) and long cavity FDML designs as well.

  15. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.

  16. Multichannel tunable filter properties of 1D magnetized ternary plasma photonic crystal in the presence of evanescent wave

    NASA Astrophysics Data System (ADS)

    Awasthi, Suneet Kumar; Panda, Ranjita; Shiveshwari, Laxmi

    2017-07-01

    The multichannel tunable filter properties of one-dimensional ternary plasma photonic crystal composed of magnetized plasma and lossless dielectric have been theoretically investigated using transfer matrix method in the microwave region. The proposed filters possess 2N - 2 comb-like sharp resonant peaks also called transmission channels for N > 1 in transmission spectra in the absence and presence of an external magnetic field. Due to the coupling between evanescent waves and propagating modes in plasma and dielectric layers, respectively, 2N - 2 transmission channels are found without the addition of any defect, enabling the structure to work as a multichannel filter. Next, the filter properties can be made tunable by the application of an external magnetic field, i.e., channel frequency can either be red or blue shifted depending upon the orientation of an external magnetic field. The number of channels and their positions can also be modulated by changing the number of periods (N) and the incident angle (θo), respectively, for both transverse electric (TE) and transverse magnetic (TM) modes besides other parameters such as plasma collision frequency, thickness of the plasma layer, plasma frequency, etc.

  17. Tunable dual-band graphene-based infrared reflectance filter.

    PubMed

    Goldflam, Michael D; Ruiz, Isaac; Howell, Stephen W; Wendt, Joel R; Sinclair, Michael B; Peters, David W; Beechem, Thomas E

    2018-04-02

    We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm -1 . Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.

  18. Wideband-frequency tunable optoelectronic oscillator based on injection locking to an electronic oscillator.

    PubMed

    Fleyer, Michael; Sherman, Alexander; Horowitz, Moshe; Namer, Moshe

    2016-05-01

    We experimentally demonstrate a wideband-frequency tunable optoelectronic oscillator (OEO) based on injection locking of the OEO to a tunable electronic oscillator. The OEO cavity does not contain a narrowband filter and its frequency can be tuned over a broad bandwidth of 1 GHz. The injection locking is based on minimizing the injected power by adjusting the frequency of one of the OEO cavity modes to be approximately equal to the frequency of the injected signal. The phase noise that is obtained in the injection-locked OEO is similar to that obtained in a long-cavity self-sustained OEO. Although the cavity length of the OEO was long, the spurious modes were suppressed due to the injection locking without the need to use a narrowband filter. The spurious level was significantly below that obtained in a self-sustained OEO after inserting a narrowband electronic filter with a Q-factor of 720 into the cavity.

  19. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  20. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  1. Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser

    PubMed Central

    Han, Kyu Young; Ha, Taekjip

    2016-01-01

    We describe a dual-color three-dimensional stimulated emission depletion (3D-STED) microscopy employing a single laser source with a repetition rate of 80 MHz. Multiple excitation pulses synchronized with a STED pulse were generated by a photonic crystal fiber and the desired wavelengths were selected by an acousto-optic tunable filter with high spectral purity. Selective excitation at different wavelengths permits simultaneous imaging of two fluorescent markers at a nanoscale resolution in three dimensions. PMID:26030581

  2. Double-Diffusive Convection During Growth of Halides and Selenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of several materials such as mercurous chloride, mercurous bromide, mercurous iodide, lead chloride lead bromide, lead iodide, thallium arsenic selenide, gallium selenide, zince sulfide zinc selenide and several crystals into devices. We have used both Bridgman and physical vapor transport (PVT) crystal growth methods. In the past have examined PVT growth numerically for conditions where the boundary of the enclosure is subjected to a nonlinear thermal profile. Since past few months we have been working on binary and ternary materials such as selenoiodides, doped zinc sulfides and mercurous chloro bromide and mercurous bromoiodides. In the doped and ternary materials thermal and solutal convection play extremely important role during the growth. Very commonly striations and banding is observed. Our experiments have indicated that even in highly purified source materials, homogeneity in 1-g environment is very difficult. Some of our previous numerical studies have indicated that gravity level less than 10-4 (?-g) helps in controlling the thermosolutal convection. We will discuss the ground based growth results of HgClxBr(1-x) and ZnSe growth results for the mm thick to large cm size crystals. These results will be compared with our microgravity experiments performed with this class of materials. For both HgCl-HgBr and ZnS-ZnSe the lattice parameters of the mixtures obey Vagard's law in the studied composition range. The study demonstrates that properties are very anisotropic with crystal orientation, and performance achievement requires extremely careful fabrication to utilize highest figure of merit. In addition, some parameters such as crystal growth fabrication, processing time, resolution, field of view and efficiency will be described based on novel solid solution materials. It was predicted that very similar to the pure compounds solid solutions also have very large anisotropy, and very precise oriented and homogeneous bulk and thin film crystals is required to achieve maximum performance of laser or imagers. Some of the parameters controlling the homogeneity such as thermos-solutal convection driven forces can be controlled in microgravity environments to utilize the benefits of these unique materials.

  3. Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave.

    PubMed

    Song, Du-Ri; Jun, Chang Su; Do Lim, Sun; Kim, Byoung Yoon

    2014-12-15

    Torsional mode acousto-optic tunable filter (AOTF) is demonstrated using a metal-coated birefringent optical fiber for an improved robustness. The changes in acoustic and optical properties of a metal-coated birefringent optical fiber induced by the thin metal coating were analyzed experimentally and theoretically. The filter wavelength shift is successfully explained as a result of combined effect of acoustic wavelength change and optical birefringence change. We also demonstrated a small form-factor configuration by coiling the fiber with 6 cm diameter without performance degradation. The center wavelength of the filter can be tuned >35 nm by changing the applied frequency, and the coupling efficiency is higher than 92% with <5 nm 3-dB bandwidth.

  4. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    PubMed

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  5. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film.

    PubMed

    Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K

    2009-10-26

    A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.

  6. A tunable hole-burning filter for lidar applications

    NASA Astrophysics Data System (ADS)

    Billmers, R. I.; Davis, J.; Squicciarini, M.

    The fundamental physical principles for the development of a 'hole-burning' optical filter based on saturable absorption in dye-doped glasses are outlined. A model was developed to calculate the required pump intensity, throughput, and linewidth for this type of filter. Rhodamine 6G, operating at 532 nm, was found to require a 'warm-up' time of 110 pulses and a pump intensity of 100 kW/sq cm per pulse. The linewidth was calculated to be approximately 15 GHz at 77 K with a throughput of at least 25 percent and five orders of magnitude noise suppression. A 'hole-burning' filter offers significant advantages over current filter technology, including tunability over a 10-nm bandwidth, perfect wavelength and bandwidth matching to the transmitting laser in a pulsed lidar system, transform limited response times, and moderately high throughputs (at least 25 percent).

  7. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  8. Sidelobe suppression in all-fiber acousto-optic tunable filter using torsional acoustic wave.

    PubMed

    Lee, Kwang Jo; Hwang, In-Kag; Park, Hyun Chul; Kim, Byoung Yoon

    2010-06-07

    We propose two techniques to suppress intrinsic sidelobe spectra in all-fiber acousto-optic tunable filter using torsional acoustic wave. The techniques are based on either double-pass filter configuration or axial tailoring of mode coupling strength along an acousto-optic interaction region in a highly birefringent optical fiber. The sidelobe peak in the filter spectrum is experimentally suppressed from -8.3 dB to -16.4 dB by employing double-pass configuration. Axial modulation of acousto-optic coupling strength is proposed using axial variation of the fiber diameter, and the simulation results show that the maximum side peak of -9.3 dB can be reduced to -22.2dB. We also discuss the possibility of further spectral shaping of the filter based on the axial tailoring of acousto-optic coupling strength.

  9. Autofluorescence of pigmented skin lesions using a pulsed UV laser with synchronized detection: clinical results

    NASA Astrophysics Data System (ADS)

    Cheng, Haynes P. H.; Svenmarker, Pontus; Xie, Haiyan; Tidemand-Lichtenberg, Peter; Jensen, Ole B.; Bendsoe, Niels; Svanberg, Katarina; Petersen, Paul Michael; Pedersen, Christian; Andersson-Engels, Stefan; Andersen, Peter E.

    2010-04-01

    We report preliminary clinical results of autofluorescence imaging of malignant and benign skin lesions, using pulsed 355 nm laser excitation with synchronized detection. The novel synchronized detection system allows high signal-tonoise ratio to be achieved in the resulting autofluorescence signal, which may in turn produce high contrast images that improve diagnosis, even in the presence of ambient room light. The synchronized set-up utilizes a compact, diode pumped, pulsed UV laser at 355 nm which is coupled to a CCD camera and a liquid crystal tunable filter. The excitation and image capture is sampled at 5 kHz and the resulting autofluorescence is captured with the liquid crystal filter cycling through seven wavelengths between 420 nm and 580 nm. The clinical study targets pigmented skin lesions and evaluates the prospects of using autofluorescence as a possible means in differentiating malignant and benign skin tumors. Up to now, sixteen patients have participated in the clinical study. The autofluorescence images, averaged over the exposure time of one second, will be presented along with histopathological results. Initial survey of the images show good contrast and diagnostic results show promising agreement based on the histopathological results.

  10. An electronically tunable, first-order Fabry-Perot infrared filter

    NASA Astrophysics Data System (ADS)

    Knudtson, J. T.; Levy, D. S.; Herr, K. C.

    1995-04-01

    A tunable infrared filter capable of scanning from 8.2 to 12.8 micrometers has been designed, constructed and tested. It is a first order Fabry Perot interferometer with piezoelectrically driven cavity spacing. Multilayer dielectric coatings for the partially transmitting mirrors were designed to minimize the wavelength dependent phase change produced by reflection. The transmission bandwidth ranged from 2.8 to 4.0% across the tuning range. Continuous scanning at 20 Hz rates was demonstrated.

  11. Infrared fiber coupled acousto-optic tunable filter spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    1990-01-01

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  12. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  13. Hyperspectral proximal sensing of Salix Alba trees in the Sacco river valley (Latium, Italy).

    PubMed

    Moroni, Monica; Lupo, Emanuela; Cenedese, Antonio

    2013-10-29

    Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are 'healthier' than those downstream.

  14. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  15. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  16. Tunable multiwavelength fiber laser based on a θ-shaped microfiber filter

    NASA Astrophysics Data System (ADS)

    Li, Yue; Xu, Zhilin; Luo, Yiyang; Xiang, Yang; Yan, Zhijun; Liu, Deming; Sun, Qizhen

    2018-06-01

    We propose and experimentally demonstrate a flexibly tunable multiwavelength fiber ring laser based on a θ-shaped microfiber filter in conjunction with an erbium-doped fiber amplifier. The stable operation of the multiwavelength lasing is successfully achieved at room temperature, with the peak power fluctuation less than 0.519 dB. By micro-adjusting the cavity length of the filter, the channel spacing can be independently tuned within the gain range of the optical amplifier. We have achieved 0.084 nm-spacing 48 channel, 0.147 nm-spacing 25 channel, 0.190 nm-spacing 20 channel and 0.302 nm-spacing 15 channel lasing wavelengths at room temperature.

  17. Electrically tunable spin filtering for electron tunneling between spin-resolved quantum Hall edge states and a quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.

    2014-06-30

    Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.

  18. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.

  19. Non-invasive, Contrast-enhanced Spectral Imaging of Breast Cancer Signatures in Preclinical Animal Models In vivo

    PubMed Central

    Ramanujan, V Krishnan; Ren, Songyang; Park, Sangyong; Farkas, Daniel L

    2011-01-01

    We report here a non-invasive multispectral imaging platform for monitoring spectral reflectance and fluorescence images from primary breast carcinoma and metastatic lymph nodes in preclinical rat model in vivo. The system is built around a monochromator light source and an acousto-optic tunable filter (AOTF) for spectral selection. Quantitative analysis of the measured reflectance profiles in the presence of a widely-used lymphazurin dye clearly demonstrates the capability of the proposed imaging platform to detect tumor-associated spectral signatures in the primary tumors as well as metastatic lymphatics. Tumor-associated changes in vascular oxygenation and interstitial fluid pressure are reasoned to be the physiological sources of the measured reflectance profiles. We also discuss the translational potential of our imaging platform in intra-operative clinical setting. PMID:21572915

  20. Large tunable optical delays via self-phase modulation and dispersion

    NASA Astrophysics Data System (ADS)

    Okawachi, Yoshitomo; Sharping, Jay E.; Xu, Chris; Gaeta, Alexander L.

    2006-12-01

    We demonstrate all-optically tunable delays in optical fiber via a dispersive stage and two stages of nonlinear spectral broadening and filtering. With this scheme, we achieve continuously tunable delays of 3.5- ps pulses and advancements over a total range of more than 1200 pulsewidths. Our technique is applicable to a wide range of pulse durations and delays.

  1. Tunable single frequency fiber laser based on FP-LD injection locking.

    PubMed

    Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou

    2013-05-20

    We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.

  2. Design of a miniature solid state NIR spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyi; Wang, Xiaolu L.; Soos, Jolanta I.; Crisp, Joy A.

    1995-06-01

    For aerospace applications a miniature, solid-state near infrared (NIR) spectrometer based on an acousto-optic tunable filter (AOTF) has been developed and built at Brimrose Corp. of America. In this spectrometer a light emitting diode (LED) array as light source, a set of optical fibers as the lightwave transmission route, and a miniature AOTF as a tunable filter were adopted. This approach makes the spectrometer very compact, light-weight, rugged and reliable, with low operating power and long lifetime.

  3. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming

    2018-01-01

    We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.

  4. Optical notch filter with tunable bandwidth based on guided-mode resonant polarization-sensitive spectral feature.

    PubMed

    Qian, Linyong; Zhang, Dawei; Dai, Bo; Wang, Qi; Huang, Yuanshen; Zhuang, Songlin

    2015-07-13

    A novel bandwidth-tunable notch filter is proposed based on the guided-mode resonance effect. The notch is created due to the superposition spectra response of two guided-mode resonant filters. The compact, bandwidth tuning capability is realized by taking advantage the effect of spectra-to-polarization sensitivity in one-dimensional classical guided-mode resonance filter, and using a liquid crystal polarization rotator for precise and simple polarization control. The operation principle and the design of the device are presented, and we demonstrate it experimentally. The central wavelength is fixed at 766.4 nm with a relatively symmetric profile. The full width at half maximum bandwidth could be tuned from 8.6 nm to 18.2 nm by controlling the applied voltage in electrically-driving polarization rotator.

  5. Programmable controlled mode-locked fiber laser using a digital micromirror device.

    PubMed

    Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2017-05-15

    A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.

  6. Geometrical calibration of an AOTF hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.

  7. A tunable erbium-doped fiber ring laser with power-equalized output

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lin, Ming-Ching; Chi, Sien

    2006-12-01

    We propose and demonstrate a tunable erbium-based fiber ring laser with power-equalized output. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable laser oscillation. This proposed laser can obtain the flatter lasing wavelength in an effectively operating range of 1533.3 to 1574.6 nm without any other operating mechanism. Moreover, the performances of the output power, wavelength tuning range, and side-mode suppression ratio (SMSR) were studied.

  8. Multimodal transmission property in a liquid-filled photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Miao, Yinping; Song, Binbin; Zhang, Hao; Liu, Bo; Liu, Yange; Yan, Donglin

    2015-02-01

    The multimode interference (MMI) effect in a liquid-filled photonic crystal fiber (PCF) has been experimentally demonstrated by fully infiltrating the air-hole cladding of a solid-core PCF with the refractive index (RI) matching liquid whose RI is close to the silica background. Due to the weak mode confinement capability of the cladding region, several high-order modes are excited to establish the multimode interference effect. The multimode interferometer shows a good temperature tunability of 12.30 nm/K, which makes it a good candidate for a highly tunable optical filtering as well as temperature sensing applications. Furthermore, this MMI effect would have great promise in various applications such as highly sensitive multi-parameter sensing, tunable optically filtering, and surface-enhanced Raman scattering.

  9. Nonlinear systems for frequency conversion from IR to RF

    NASA Astrophysics Data System (ADS)

    Dolasinski, Brian D.

    The objective of this dissertation is to evaluate and develop novel sources for tunable narrowband IR generation, tunable narrowband THz generation, and ultra-wideband RF generation to be used in possible non-destructive evaluation systems. Initially a periodically poled Lithium Niobate (PPLN) based optical parametric amplifier (OPA) is designed using a double-pass configuration where a small part of the pump is used on the first pass to generate a signal, which is reflected and filtered by an off-axis etalon. The portion of the pump that is not phase matched on the first pass is retro-reflected back into the PPLN crystal and is co-aligned with the narrow bandwidth filtered signal and amplified. We demonstrate that the system is tunable in the 1.4 microm -1.6 microm signal range with a linewidth of 5.4 GHz. Next the outputs of seeded, dual periodically poled lithium niobate (PPLN) optical parametric amplifiers (OPA) are combined in the nonlinear crystal 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) to produce a widely tunable narrowband THz source via difference frequency generation (DFG). We have demonstrated that this novel configuration enables the system to be seamlessly tuned, without mode-hops, from 1.2 THz to 26.3 THz with a minimum bandwidth of 3.1 GHz. The bandwidth of the source was measured by using the THz transmission spectrum of water vapor lines over a 3-meter path length. By selecting of the DFG pump wavelength to be at 1380 nm and the signal wavelength to tune over a range from 1380 nm to 1570 nm, we produced several maxima in the output THz spectrum that was dependent on the phase matching ability of the DAST crystal and the efficiency of our pyro-electric detector. Due to the effects of dispersive phase matching, filter absorption of the THz waves, and two-photon absorption multiple band gaps in the overall spectrum occur and are discussed. Employing the dual generator scheme, we have obtained THz images at several locations in the spectrum using an infrared camera that runs at a rate of 35 frames per second. We have demonstrated the ability to image 2 THz to 26 THz both in static and in real time conditions. We will present images of carbon fibers illuminated at different THz frequencies. Lastly, microwave generation was demonstrated by ultrafast photo-excitation experiments to induce non-equilibrium quasi-particle relaxation. Using a laser with a pulse energy of 1 mJ and a pulse duration greater than 120 fs (808 nm wavelength) incident on a charged, superconducting YBa2Cu 2O7-delta (YBCO) thin film ring, the photo-response was measured with a series of microwave antennas. From the observed nanosecond response time of the transient pulse, we extracted the frequency spectrum in the GHz regime that was dependent on the incident beam diameter, pulse duration, power, and the physical structure of the YBCO thin film.

  10. Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate.

    PubMed

    Tan, Xiao-Mei; Chen, Hong-Jie; Cui, Hu; Lv, Yao-Kun; Zhao, Guan-Kai; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2017-07-10

    We demonstrate a tunable and switchable dual-waveband 100 GHz high-repetition-rate (HRR) ultrafast fiber laser based on dissipative four-wave-mixing (DFWM) mode-locked technique. Each waveband maintains HRR operation. The DFWM effect was realized by combining a Fabry-Perot (F-P) filter and a piece of highly nonlinear fiber (HNLF). The tunable and switchable operations were achieved by nonlinear polarization rotation (NPR) technique. Through appropriately controlling the filtering effect induced by NPR, the laser could operate at two kinds of tunable regimes. One is that the spacing between these two wavebands could be tuned while keeping their center at 1559 nm. The other is that the central position of the entire dual-waveband is tunable while with the same separation between these two wavebands of 13.2 nm. Moreover, the laser could switch between these two wavebands. Correspondingly, the center of the single-waveband has a tuning range of 15.2 nm. This versatile ultrafast fiber laser may find applications in fields of optical frequency combs, high speed optical communications, where HRR pulses are necessary.

  11. HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing

    PubMed Central

    Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori

    2018-01-01

    Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022

  12. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  13. Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors

    PubMed Central

    Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei

    2014-01-01

    Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs. PMID:24969065

  14. Nano-optomechanical characterization of surface-plasmon-based tunable filter integrated with comb-drive actuator

    NASA Astrophysics Data System (ADS)

    Honma, H.; Mitsudome, M.; Ishida, M.; Sawada, K.; Takahashi, K.

    2017-03-01

    We report a tunable plasmonic color filter consisting of a metamaterial periodic grating and microelectromechanical systems (MEMS) actuator. An aluminum subwavelength grating is integrated with electrostatic comb-drive actuators to expand the metal subwavelength period, which allows continuous control of the excitation wavelength of surface plasmons (SPs). We develop a batch fabrication process by employing a liftoff technique using an electron beam resist altered by the electron dose depending on different aspect ratios (length/width) for various components such as the subwavelength grating, nanohinge flexural suspensions, and comb fingers. We successfully demonstrate a continuous shift in the excitation wavelength over the 514-635 nm range by nanopitch expansion. The design margin of the grating period for SP excitation is evaluated by comparing the experimental pitch variation and theoretically calculated values. The resonance frequency of the tunable filter is optically measured to be approximately 10 kHz. The optically and mechanically obtained values agree well with the theory of electrostatic actuation and finite-difference time-domain simulation.

  15. Tunable dual-band graphene-based infrared reflectance filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, Michael D.; Ruiz, Isaac; Howell, Stephen W.

    Here, we experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm –1. Electromagnetic simulationsmore » verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.« less

  16. Tunable dual-band graphene-based infrared reflectance filter

    DOE PAGES

    Goldflam, Michael D.; Ruiz, Isaac; Howell, Stephen W.; ...

    2018-03-23

    Here, we experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm –1. Electromagnetic simulationsmore » verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.« less

  17. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo

    NASA Astrophysics Data System (ADS)

    McVeigh, Patrick Z.; Mallia, Rupananda J.; Veilleux, Israel; Wilson, Brian C.

    2013-04-01

    In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R2>0.98).

  18. Tunable filters based on an SOI nano-wire waveguide micro ring resonator

    NASA Astrophysics Data System (ADS)

    Shuai, Li; Yuanda, Wu; Xiaojie, Yin; Junming, An; Jianguang, Li; Hongjie, Wang; Xiongwei, Hu

    2011-08-01

    Micro ring resonator (MRR) filters based on a silicon on insulator (SOI) nanowire waveguide are fabricated by electron beam photolithography (EBL) and inductive coupled plasma (ICP) etching technology. The cross-section size of the strip waveguides is 450 × 220 nm2, and the bending radius of the micro ring is around 5 μm. The test results from the tunable filter based on a single ring show that the free spectral range (FSR) is 16.8 nm and the extinction ratio (ER) around the wavelength 1550 nm is 18.1 dB. After thermal tuning, the filter's tuning bandwidth reaches 4.8 nm with a tuning efficiency of 0.12 nm/°C Meanwhile, we fabricated and studied multi-channel filters based on a single ring and a double ring. After measurement, we drew the following conclusions: during the signal transmission of multi-channel filters, crosstalk exists mainly among different transmission channels and are fairly distinct when there are signals input to add ports.

  19. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  20. A novel fiber Bragg grating wavelength demodulation system based on F-P etalon

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan

    2014-10-01

    This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation

  1. White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake

    NASA Astrophysics Data System (ADS)

    Volz, Pierre; Brodwolf, Robert; Zoschke, Christian; Haag, Rainer; Schäfer-Korting, Monika; Alexiev, Ulrike

    2018-05-01

    We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.

  2. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    NASA Astrophysics Data System (ADS)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  3. Optical information processing for NASA's space exploration

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Ochoa, Ellen; Juday, Richard

    1990-01-01

    The development status of optical processing techniques under development at NASA-JPL, NASA-Ames, and NASA-Johnson, is evaluated with a view to their potential applications in future NASA planetary exploration missions. It is projected that such optical processing systems can yield major reductions in mass, volume, and power requirements relative to exclusively electronic systems of comparable processing capabilities. Attention is given to high-order neural networks for distortion-invariant classification and pattern recognition, multispectral imaging using an acoustooptic tunable filter, and an optical matrix processor for control problems.

  4. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  5. A New Optical Design for Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  6. Fixed-frequency and Frequency-agile (au, HTS) Microstrip Bandstop Filters for L-band Applications

    NASA Technical Reports Server (NTRS)

    Saenz, Eileen M.; Subramanyam, Guru; VanKeuls, Fred W.; Chen, Chonglin; Miranda, Felix A.

    2001-01-01

    In this work, we report on the performance of a highly selective, compact 1.83 x 2.08 cm(exp 2) (approx. 0.72 x 0.82 in(exp 2) microstrip line bandstop filter of YBa2CU3O(7-delta) (YBCO) on LaAlO3 (LAO) substrate. The filter is designed for a center frequency of 1.623 GHz for a bandwidth at 3 dB from reference baseline of less than 5.15 MHz, and a bandstop rejection of 30 dB or better. The design and optimization of the filter was performed using Zeland's IE3D circuit simulator. The optimized design was used to fabricate gold (Au) and High-Temperature Superconductor (HTS) versions of the filter. We have also studied an electronically tunable version of the same filter. Tunability of the bandstop characteristics is achieved by the integration of a thin film conductor (Au or HTS) and the nonlinear dielectric ferroelectric SrTiO3 in a conductor/ferroelectric/dielectric modified microstrip configuration. The performance of these filters and comparison with the simulated data will be presented.

  7. Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements

    PubMed Central

    Park, Nam Su; Chun, Soo Kyung; Han, Ga-Hee; Kim, Chang-Seok

    2017-01-01

    We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF) and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic–based wavelength-comb-swept laser (WCSL) can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k) linearity of R2 = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain. PMID:28362318

  8. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber.

    PubMed

    Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-10-20

    An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits.

  9. Nonlinear tuning techniques of plasmonic nano-filters

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-02-01

    In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.

  10. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    NASA Astrophysics Data System (ADS)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  11. Thermal tuning On narrow linewidth fiber laser

    NASA Astrophysics Data System (ADS)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  12. Emission-line maps with OSIRIS-TF: The case of M101

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.

    2013-05-01

    We investigate the suitability of GTC/OSIRIS Tunable Filters (TFs) for obtaining emission-line maps of extended objects. We developed a technique to reconstruct an emission-line image from a set of images taken at consecutive central wavelengths. We demonstrate the feasibility of the reconstruction method by generating a flux calibrated Hα image of the well-known spiral galaxy M101. We tested our emission-line fluxes and ratios by using data present in the literature. We found that the differences in both Hα fluxes and N II/Hα line ratios are ~15% and ~50%, respectively. These results are fully in agreement with the expected values for our observational setup. The proposed methodology will allow us to use OSIRIS/GTC to perform accurate spectrophotometric studies of extended galaxies in the local Universe.

  13. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    PubMed

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  14. A nano grating tunable MEMS optical filter for high-speed on-chip multispectral fluorescent detection.

    PubMed

    Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo

    2009-01-01

    We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.

  15. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  16. Thermo-optic devices on polymer platform

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Keil, Norbert

    2016-03-01

    Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.

  17. Contrast-enhanced dual-energy subtraction imaging using electronic spectrum-splitting and multi-prism x-ray lenses

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Cederström, Björn; Lundqvist, Mats; Ribbing, Carolina; Åslund, Magnus; Diekmann, Felix; Nishikawa, Robert; Danielsson, Mats

    2008-03-01

    Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted, resulting in suppression of the signal from the tissue background and a relative enhancement of the signal from the agent. Although promising, DES is still not widely used in clinical practice. One reason may be the need for two distinctly separated x-ray spectra that are still close to the absorption edge, realized through dual exposures which may introduce motion unsharpness. In this study, electronic spectrum-splitting with a silicon-strip detector is theoretically and experimentally investigated for a mammography model with iodinated contrast agent. Comparisons are made to absorption imaging and a near-ideal detector using a signal-to-noise ratio that includes both statistical and structural noise. Similar to previous studies, heavy absorption filtration was needed to narrow the spectra at the expense of a large reduction in x-ray flux. Therefore, potential improvements using a chromatic multi-prism x-ray lens (MPL) for filtering were evaluated theoretically. The MPL offers a narrow tunable spectrum, and we show that the image quality can be improved compared to conventional filtering methods.

  18. MEMS tunable optical filter based on multi-ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessalegn, Hailu, E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T., E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in

    We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenabilitymore » as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.« less

  19. Hyperspectral Proximal Sensing of Salix Alba Trees in the Sacco River Valley (Latium, Italy)

    PubMed Central

    Moroni, Monica; Lupo, Emanuela; Cenedese, Antonio

    2013-01-01

    Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are ‘healthier’ than those downstream. PMID:24172281

  20. Spectral analysis for automated exploration and sample acquisition

    NASA Technical Reports Server (NTRS)

    Eberlein, Susan; Yates, Gigi

    1992-01-01

    Future space exploration missions will rely heavily on the use of complex instrument data for determining the geologic, chemical, and elemental character of planetary surfaces. One important instrument is the imaging spectrometer, which collects complete images in multiple discrete wavelengths in the visible and infrared regions of the spectrum. Extensive computational effort is required to extract information from such high-dimensional data. A hierarchical classification scheme allows multispectral data to be analyzed for purposes of mineral classification while limiting the overall computational requirements. The hierarchical classifier exploits the tunability of a new type of imaging spectrometer which is based on an acousto-optic tunable filter. This spectrometer collects a complete image in each wavelength passband without spatial scanning. It may be programmed to scan through a range of wavelengths or to collect only specific bands for data analysis. Spectral classification activities employ artificial neural networks, trained to recognize a number of mineral classes. Analysis of the trained networks has proven useful in determining which subsets of spectral bands should be employed at each step of the hierarchical classifier. The network classifiers are capable of recognizing all mineral types which were included in the training set. In addition, the major components of many mineral mixtures can also be recognized. This capability may prove useful for a system designed to evaluate data in a strange environment where details of the mineral composition are not known in advance.

  1. Tunable Universal Filter with Current Follower and Transconductance Amplifiers and Study of Parasitic Influences

    NASA Astrophysics Data System (ADS)

    Jeřábek, Jan; Šotner, Roman; Vrba, Kamil

    2011-11-01

    A universal filter with dual-output current follower (DO-CF), two transconductance amplifiers (OTAs) and two passive elements is presented in this paper. The filter is tunable, of the single-input multiple-output (SIMO) type, and operates in the current mode. Our solution utilizes a low-impedance input node and high-impedance outputs. All types of the active elements used can be realized using our UCC-N1B 0520 integrated circuit and therefore the paper contains not only simulation results that were obtained with the help of behavioral model of the UCC-N1B 0520 element, but also the characteristics that were gained by measurement with the mentioned circuit. The presented simulation and measurement results prove the quality of designed filter. Similar multi-loop structures are very-well known, but there are some drawbacks that are not discussed in similar papers. This paper also contains detailed study of parasitic influences on the filter performance.

  2. Novel Spectro-Temporal Codes and Computations for Auditory Signal Representation and Separation

    DTIC Science & Technology

    2013-02-01

    responses are shown). Bottom right panel (c) shows the Frequency responses of the tunable bandpass filter ( BPF ) triplets that adapt to the incoming...signal. One BPF triplet is associated with each fixed filter, such that coarse filtering of the fixed gammatone filters is followed by additional, finer...is achieved using a second layer of narrower bandpass filters ( BPFs , Q=8) that emulate the filtering functions of outer hair cells (OHCs). In the

  3. Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter.

    PubMed

    Teeka, Chat; Jalil, Muhammad Arif; Yupapin, Preecha P; Ali, Jalil

    2010-12-01

    We propose a novel system of the dynamic optical tweezers generated by a dark soliton in the fiber optic loop. A dark soliton known as an optical tweezer is amplified and tuned within the microring resonator system. The required tunable tweezers with different widths and powers can be controlled. The analysis of dark-bright soliton conversion using a dark soliton pulse propagating within a microring resonator system is analyzed. The dynamic behaviors of soliton conversion in add/drop filter is also analyzed. The control dark soliton is input into the system via the add port of the add/drop filter. The dynamic behavior of the dark-bright soliton conversion is observed. The required stable signal is obtained via a drop and throughput ports of the add/drop filter with some suitable parameters. In application, the trapped light/atom and transportation can be realized by using the proposed system.

  4. Characterization and Modeling of Dual Stage Quadruple Pass Configurations

    NASA Astrophysics Data System (ADS)

    Sellami, M.; Sellami, A.; Berrah, S.

    In this paper, the proposed system achieves a gain of 62dBs. It employs a dual-stage (DS) to enhance the amplification and a tunable band-pass filter (TBF) to filter out the backward amplified spontaneous emission (ASE) that degrades the signal amplification at the input end of the EDFA. The technique there by reduces the effect of ASE self-saturation [1]. This configuration is also useful in reducing the sensitivity of the EDFA to extra strenuous reflections caused by imperfections of the splices and other optical components [2]. as well as improving noise figure and gain. The experimental work will build up by using the active component Silica based EDF (Si-EDF) in Dual Stage Quadruple Pass (DSQP) configuration. By using Tunable Band pass Filter (TBF) in DSQP between the port 1 and port 2 of circulators (CRT2, CRT3) to filter out the unwanted ASE.

  5. A 10 micron heterodyne receiver for ultra high resolution astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Chin, G.; Faris, J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D.

    1980-01-01

    An improved CO2 laser heterodyne spectrometer is examined. The present system uses reflective optics to eliminate refocusing at different wavelengths, and the local oscillator is a line-center-stabilized isotopic CO2 laser. A tunable diffraction grating makes possible easy and rapid selection of over 50 transitions per isotope of CO2. The IF (0 to 1.6 GHz) from the HgCdTe photomizer is analyzed by a 128-channel filter bank, consisting of 64 tunable 5-MHz filters and 64 fixed 25-MHz RF filters. These filters provide resolving powers of about 1,000,000 to 10,000,000 and velocity resolution of 50 to 250 m/sec; their output is synchronously detected, integrated, multiplexed and stored in a buffer memory for the desired integration period. Kitt Peak observations show the wide spectral coverage, wide mixer and electronics bandwidth, and high sensitivity of the system.

  6. A Wide Field of View Plasma Spectrometer

    DOE PAGES

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; ...

    2016-07-01

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  7. UFTI: the 0.8 - 2.5 μm fast track imager for the UK infrared telescope

    NASA Astrophysics Data System (ADS)

    Roche, Patrick F.; Lucas, Philip W.; Mackay, Craig D.; Ettedgui-Atad, Eli; Hastings, Peter R.; Bridger, Alan; Rees, Nicholas P.; Leggett, Sandy K.; Davis, Chris; Holmes, Alan R.; Handford, Tony

    2003-03-01

    In 1996, it was proposed to build a near-infrared imager for the 3.8-m UK Infrared Telescope in Hawaii, to exploit the 1024 pixel format detectors that were then becoming available. In order to achieve a fast delivery, the instrument was kept simple and existing designs were reused or modified where possible. UFTI was delivered within 2.5 years of the project start. The instrument is based around a 1k Rockwell Hawaii detector and a LSR Astrocam controller and uses the new Mauna Kea optimized J,H,K filter set along with I and Z broad-band filters and several narrow-band line filters. The instrument is cooled by a CTI cry-cooler, while the mechanisms are operated by cold, internal, Bergelahr stepping motors. On UKIRT it can be coupled to a Fabry-Perot etalon for tunable narrow-band imaging at K, or a waveplate for imaging polarimetry through 1-2.5 μm the cold analyzer is a Barium Borate Wollaston prism. UFTI was designed to take full advantage of the good image quality delivered by UKIRT on conclusion of the upgrades program, and has a fine scale of 0.09 arcsec/pixel. It is used within the UKIRT observatory environment and was the first instrument integrated into ORAC, the Observatory Reduction and Acquisition Control System. Results obtained during instrument characterization in the lab and over the last 3 years on UKIRT are presented, along with performance figures. UFTI has now been used on UKIRT for several hundred nights, and aspects of instrument performance are discussed.

  8. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband.

    PubMed

    Tang, Haitao; Yu, Yuan; Wang, Ziwei; Xu, Lu; Zhang, Xinliang

    2018-05-15

    A novel wideband tunable optoelectronic oscillator based on a microwave photonic filter (MPF) with an ultra-narrow passband is proposed and experimentally demonstrated. The single-passband MPF is realized by cascading an MPF based on stimulated Brillouin scattering and an infinite impulse response (IIR) MPF based on an active fiber recirculating delay loop. The measured full width at half-maximum bandwidth of the cascaded MPFs is 150 kHz. To the best of my knowledge, this is the first time realizing such a narrow passband in single-passband MPF. The oscillation frequency of the OEO can be tuned from 0 to 40 GHz owing to the wideband tunability of the MPF. Thanks to the ultrahigh mode selectivity of the IIR filter, the mode hopping is successfully suppressed. A stable microwave signal at 8.18 GHz is obtained with a phase noise of -113  dBc/Hz at 10 kHz, and the side mode noise is below -95  dBc/Hz. The signal-to-noise ratio exceeds 50 dB during the tuning process.

  9. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    PubMed

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  10. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    PubMed

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  11. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  12. Imaging spectrometry - Technology and applications

    NASA Technical Reports Server (NTRS)

    Solomon, Jerry E.

    1989-01-01

    The development history and current status of NASA imaging-spectrometer (IS) technology are discussed in a review covering the period 1982-1988. Consideration is given to the Airborne IS first flown in 1982, the second-generation Airborne Visible and IR IS (AVIRIS), the High-Resolution IS being developed for the EOS polar platform, improved two-dimensional focal-plane arrays for the short-wave IR spectral region, and noncollinear acoustooptic tunable filters for use as spectral dispersing elements. Also examined are approaches to solving the data-processing problems posed by the high data volumes of state-of-the-art ISs (e.g., 160 MB per 600 x 600-pixel AVIRIS scene), including intelligent data editing, lossless and lossy data compression techniques, and direct extraction of scientifically meaningful geophysical and biophysical parameters.

  13. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  14. Spectrum-agile hundred-watt-level high-power random fiber laser enabled by watt-level tunable optical filter

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Song, Jiaxin; Wu, Hanshuo; Zhang, Hanwei; Wu, Jian; Zhou, Pu

    2018-06-01

    Through high-fidelity numerical modeling and careful system-parameter design, we demonstrate the spectral manipulation of a hundred-watt-level high-power random fiber laser (RFL) by employing a watt-level tunable optical filter. Consequently, a >100-W RFL with the spectrum-agile property is achieved. The central wavelength can be continuously tuned with a range of ∼20 nm, and the tuning range of the full width at half maximum linewidth, which is closely related to the central wavelength, covers ∼1.1 to ∼2.7 times of the minimum linewidth.

  15. Ultrasonic control of terahertz radiation via lattice anharmonicity in LiNbO3

    NASA Astrophysics Data System (ADS)

    Poolman, R. H.; Ivanov, A. L.; Muljarov, E. A.

    2011-06-01

    We propose a tunable terahertz (THz) filter using the resonant acousto-optic (RAO) effect. We present a design based on a transverse optical (TO) phonon mediated interaction between a coherent acoustic wave and the THz field in LiNbO3. We predict a tunable range for the filter of up to 4 THz via the variation of the acoustic frequency between 0.1 and 1 GHz. The RAO effect in this case is due to cubic and quartic anharmonicities between TO phonons and the acoustic field. The effect of the interference between the anharmonicities is also discussed.

  16. Generation of Optical Millimeter Wave Using Two Cascaded Polarization Modulators Based on Frequency Octupling Without Filtering

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi

    2015-11-01

    An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.

  17. Compositionally Graded Multilayer Ceramic Capacitors.

    PubMed

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less

  19. Experimental demonstration of wavelength domain rogue-free ONU based on wavelength-pairing for TDM/WDM optical access networks.

    PubMed

    Lee, Jie Hyun; Park, Heuk; Kang, Sae-Kyoung; Lee, Joon Ki; Chung, Hwan Seok

    2015-11-30

    In this study, we propose and experimentally demonstrate a wavelength domain rogue-free ONU based on wavelength-pairing of downstream and upstream signals for time/wavelength division-multiplexed optical access networks. The wavelength-pairing tunable filter is aligned to the upstream wavelength channel by aligning it to one of the downstream wavelength channels. Wavelength-pairing is implemented with a compact and cyclic Si-AWG integrated with a Ge-PD. The pairing filter covered four 100 GHz-spaced wavelength channels. The feasibility of the wavelength domain rogue-free operation is investigated by emulating malfunction of the misaligned laser. The wavelength-pairing tunable filter based on the Si-AWG blocks the upstream signal in the non-assigned wavelength channel before data collision with other ONUs.

  20. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.

    PubMed

    Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli

    2016-03-15

    A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.

  1. Fabrication and metrology of lithium niobate narrowband optical filters for the solar orbiter

    NASA Astrophysics Data System (ADS)

    Gensemer, Stephen D.; Farrant, David

    2014-06-01

    We report on the fabrication of custom voltage tunable etalons for the SO/PHI spaceborne solar imaging instrument [A. Gandorfer, S. K. Solanki, J. Woch, V. M. Pillet, A. A. Herrero, and T. Appourchaux, J. Phys.: Conference Series 271, 012086 (2011)]. The etalons were manufactured to place a transmission maximum within 0.3 Å of the FeI emission line at 6175.0 Å. Meeting this specification requires an overall thickness specified to within ±15 nm, over a 60 mm aperture. We describe here the metrology, modelling and coating procedures we developed to achieve this.

  2. Optical Filter Assembly for Interplanetary Optical Communications

    NASA Technical Reports Server (NTRS)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  3. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  4. Micromachined Radio Frequency (RF) Switches and Tunable Capacitors for Higher Performance Secure Communications Systems

    DTIC Science & Technology

    2003-04-01

    range filters implemented with traditional semiconductor varactor diodes can require complex series-parallel circuit constructions to achieve sufficient...filter slice of the AIU and the varactor array modules are shown in Fig. 6.2. The complexity of the varactor array is clearly apparent. Further, it is...38 Fig. 6.2: Schematic of F-22 AIU UHF tracking filter, 2-pole filter, and varactor diode assembly

  5. Fault detection technique for wavelength division multiplexing passive optical network using chaotic fiber laser

    NASA Astrophysics Data System (ADS)

    Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian

    2014-03-01

    We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.

  6. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    PubMed Central

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332

  7. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  8. Tunable self-seeded multi-wavelength Brillouin-erbium fiber laser based on few-mode fiber filter

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yun-shan; Liu, Chun-xiao

    2017-11-01

    A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser (BEFL) is proposed and demonstrated based on a few-mode fiber filter (FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber (FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber (SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 dB optical signal- to-noise ratio ( OSNR) is realized.

  9. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.

    PubMed

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-09

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  10. Switchable and Tunable Bulk Acoustic Wave Devices Based on Ferroelectric Material

    NASA Astrophysics Data System (ADS)

    Mansour, Almonir

    The explosive development of personal communications systems, navigation, satellite communications as well as personal computer and data processing systems together with the constant demand for higher speeds and larger bandwidths has driven fabrication technology to its limits. This, in turn, necessitates the development of novel functional materials for the fabrication of devices with superior performance and higher capacity at reduced manufacturing costs. Ferroelectric materials such as barium strontium titanate (BST) and strontium titanium oxide (STO) have received more attention by researchers and industry because of their field-induced piezoelectric property. This property gives these types of ferroelectric materials the ability to be switchable and tunable in the presence of an electric field. These features have allowed the ferroelectric materials to be used in many applications such as non-volatile memory and DRAMs, sensors, pyroelectric detectors, and tunable microwave devices. Therefore, with the ever increasing complexity in RF front-end receivers, and the demand for services (which in turn requires more functionalities), ferroelectric bulk acoustic wave (BAW) resonators and filters that are intrinsically switchable and tunable promise to reduce the size and complexity of component parts. In this work, we present the design, fabrication and experimental evaluation of switchable and tunable thin film bulk acoustic wave (BAW) resonators, filters and duplexers for radio frequency (RF) applications. The switchability and tunability of these devices come from utilizing the electrostrictive effect of ferroelectric materials such as barium strontium titanate (BST) with the application of an external DC-bias voltage. The BAW resonators, filters and duplexers in this work were fabricated on different substrates as solidly mounted resonator (SMR) structure with number of periodic layers of silicon dioxide and tantalum oxide as a Bragg reflector in order to acoustically isolate the resonator from the damping effect of the substrate, enhancing the quality factor and temperature compensation.

  11. Hyperspectral Image Analysis for Skin Tumor Detection

    NASA Astrophysics Data System (ADS)

    Kong, Seong G.; Park, Lae-Jeong

    This chapter presents hyperspectral imaging of fluorescence for nonin-vasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect two-dimensional (2D) image data of an object in a number of narrow, adjacent spectral bands. This high-resolution measurement of spectral information reveals a continuous emission spectrum for each image pixel useful for skin tumor detection. The hyperspectral image data used in this study are fluorescence intensities of a mouse sample consisting of 21 spectral bands in the visible spectrum of wavelengths ranging from 440 to 640 nm. Fluorescence signals are measured using a laser excitation source with the center wavelength of 337 nm. An acousto-optic tunable filter is used to capture individual spectral band images at a 10-nm resolution. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the offsets caused during the image capture procedure. The support vector machines with polynomial kernel functions provide decision boundaries with a maximum separation margin to classify malignant tumor and normal tissue from the observed fluorescence spectral signatures for skin tumor detection.

  12. Electrically tunable materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Aftab; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-01

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  13. Enhanced 40 and 80 Gb/s wavelength conversion using a rectangular shaped optical filter for both red and blue spectral slicing.

    PubMed

    Raz, O; Herrera, J; Dorren, H J S

    2009-02-02

    By using a tunable filter with tunability of both bandwidth and wavelength and a very sharp filter roll-off, considerable improvement of all optical Wavelength Conversion, based on Cross Gain and Phase Modulation effects in a Semiconductor Optical Amplifier and spectral slicing, is shown. At 40 Gb/s slicing of blue spectral components is shown to result in a small penalty of 0.7 dB, with a minimal eye broadening, and at 80 Gb/s the low demonstrated 0.5 dB penalty is a dramatic improvement over previously reported wavelength converters using the same principal. Additionally, we give for the first time quantitative results for the case of red spectral slicing at 40 Gb/s which we found to have only 0.5 dB penalty and a narrower time response, as anticipated by previously published theoretical papers. Numerical simulations for the dependence of the eye opening on the filter characteristics highlight the importance of the combination of a sharp filter roll-off and a broad passband.

  14. Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter

    NASA Astrophysics Data System (ADS)

    Wang, Xianjun; Meng, Hongyun; Liu, Shuai; Deng, Shuying; Jiao, Tao; Wei, Zhongchao; Wang, Faqiang; Tan, Chunhua; Huang, Xuguang

    2018-04-01

    In this paper, we numerically investigate the band-stop properties of single- or few-layers doped graphene ribbon arrays operating in the mid-infrared region by finite-difference time-domain method (FDTD). A perfect band-stop filter with extinction ratio (ER) ∼17 dB, 3 dB bandwidth ∼200 nm and the resonance notch located at 6.64 μm can be achieved. And desired working regions can be obtained by tuning the Fermi level (E f ) of the graphene ribbons and the geometrical parameters of the structure. Besides, by tuning the Fermi level of odd or even graphene ribbons with terminal gate voltage, we can achieve a dual-circuit switch with four states combinations of on-to-off. Furthermore, the multiple filter notches can be achieved by stacking few-layers structure, and the filter dips can be dynamically tuned to achieve the tunability and selective characteristics by tuning the Fermi-level of the graphene ribbons in the system. We believe that our proposal has the potential applications in selective filters and active plasmonic switching in the mid-infrared region.

  15. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating.

    PubMed

    Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo

    2013-11-18

    We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.

  16. Development of a tunable filter for coronal polarimetry

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Mathew, S. K.; Gallagher, D.

    2016-07-01

    Measuring magnetic fields in the solar corona is crucial to understanding and predicting the Sun's generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory Large Coronagraph (COSMO LC) is a proposed 1.5 m aperture coronagraph designed to synoptically observe magnetic fields and plasma properties in the large-scale corona to improve our understanding of solar processes that cause space weather. The LC will observe coronal emission lines over the wavelength range from 500 to 1100 nm with a field of view of 1° and a spatial resolution of 2 arcsec. A spectral resolution greater than 8000 over the wavelength range is needed to resolve the polarization signatures of magnetic fields in the emission line profiles. The aperture and field of view of the LC set an étendue requirement of 1.39 m2 deg2 for the postfocus instrumentation. We find that a tunable wide-field birefringent filter using Lithium Niobate crystals can meet the étendue and spectral resolution requirements for the LC spectrometer. We have tested a number of commercially available crystals and verify that crystals of the required size and birefringence uniformity are available. We also evaluate electro-optical tuning of a Lithium Niobate birefringent filter by the application of high voltage. This tunable filter represents a key enabling technology for the COSMO LC.

  17. Impact damage monitoring in CFRP using fiber Bragg grating ultrasound sensors

    NASA Astrophysics Data System (ADS)

    Tsuda, Hiroshi; Lee, Jung-Ryul; Eguchi, Shunji

    2006-03-01

    Impact damage in CFRP was monitored by ultrasonic inspection method using small-diameter fiber Bragg grating (FBG) sensors. The FBG ultrasound detection system consisted of broadband light source, FBG sensor and tunable optical filter. Broadband light was launched into the FBG sensor. Light reflected from the FBG sensor was transmitted through the tunable optical filter whose transmissive wavelength range is comparable to the reflected wavelength range of the FBG sensor. The operating wavelength of tunable filter was set to optimize the sensitivity of ultrasound detection. Ultrasound vibration was converted into change in intensity of light transmitted through the filter. A cross-ply carbon fiber-reinforced plastic (CFRP) plate was used as a test specimen for impact damage monitoring. A 6.3 X 9mm2 impact damage was introduced by ball dropping. Both FBG ultrasound sensor and piezoelectric ultrasound transmitter were attached on the CFRP surface. The change in responses to ultrasound excited by either spike signal or toneburst signal before and after impact damage was investigated. In response to ultrasound excited by spike signal, the response after impact damage showed a scattered behavior where the period of response signal got longer. In response to ultrasound excited by toneburst signal, damage signal features scattered and distorted waveform. Experimental results proved that the FBG inspection system could monitor a 6.3 X 9mm2 impact damage in CFRP.

  18. [Spectral Study on the Effects of Angle-Tuned Filter Wedge Angle Parameter to Reflecting Characteristics].

    PubMed

    Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi

    2015-08-01

    Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.

  19. A Bio-Realistic Analog CMOS Cochlea Filter With High Tunability and Ultra-Steep Roll-Off.

    PubMed

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Cheung, Rebecca; Smith, Leslie S

    2015-06-01

    This paper presents the design and experimental results of a cochlea filter in analog very large scale integration (VLSI) which highly resembles physiologically measured response of the mammalian cochlea. The filter consists of three specialized sub-filter stages which respectively provide passive response in low frequencies, actively tunable response in mid-band frequencies and ultra-steep roll-off at transition frequencies from pass-band to stop-band. The sub-filters are implemented in balanced ladder topology using floating active inductors. Measured results from the fabricated chip show that wide range of mid-band tuning including gain tuning of over 20 dB, Q factor tuning from 2 to 19 as well as the bio-realistic center frequency shift are achieved by adjusting only one circuit parameter. Besides, the filter has an ultra-steep roll-off reaching over 300 dB/dec. By changing biasing currents, the filter can be configured to operate with center frequencies from 31 Hz to 8 kHz. The filter is 9th order, consumes 59.5 ∼ 90.0 μW power and occupies 0.9 mm2 chip area. A parallel bank of the proposed filter can be used as the front-end in hearing prosthesis devices, speech processors as well as other bio-inspired auditory systems owing to its bio-realistic behavior, low power consumption and small size.

  20. Widely tunable opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.

    2012-03-01

    We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.

  1. Compositionally Graded Multilayer Ceramic Capacitors

    DOE PAGES

    Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam; ...

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less

  2. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.

    PubMed

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-02-09

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.

  3. Electric tunable behavior of sputtered lead barium zirconate thin films

    NASA Astrophysics Data System (ADS)

    Wu, Lin-Jung; Wu, Jenn-Ming; Huang, Hsin-Erh; Bor, Hui-Yun

    2007-02-01

    Lead barium zirconate (PBZ) films were grown on Pt /Ti/SiO2/Si substrates by rf-magnetron sputtering. The sputtered PBZ films possess pure perovskite phase, uniform microstructure, and excellent tunable behaviors. The tunability and loss tangent of sputtered PBZ films depend greatly on the oxygen mixing ratio (OMR). The optimal dielectric tunable behavior occurs in the PBZ films sputtered at 10% OMR. The sputtered PBZ film (10% OMR) possesses a value of figure of merit of 60, promising for frequency-agile applications. Bulk acoustic waves induced by electromechanical coupling occur at 2.72GHz, which is useful in fabricating filters and related devices in the microwave range.

  4. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    DTIC Science & Technology

    2016-09-01

    as an example the integration of cryogenic superconductor components, including filters and amplifiers to improve the pulse quality and validate the...5 5.1 CRYOGENIC BAND-PASS FILTERS .............................................................................10 6. BIBLIOGRAPHY...10 16. Gain plot of DARPA SURF tunable band-pass filter tuned to 950-MHz .............................. 10 v 17. VSG at -50 dBm: Experimental

  5. Versatile tunable current-mode universal biquadratic filter using MO-DVCCs and MOSFET-based electronic resistors.

    PubMed

    Chen, Hua-Pin

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.

  6. Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    PubMed Central

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963

  7. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    NASA Astrophysics Data System (ADS)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design methodology for relevant applications. To further demonstrate MCD versatility, we implement a bandstop MCD filter that cascades nine separate resonators to achieve a 6-24 GHz continuous tuning. The disseration concludes with a Galinstan Magnetohydrodynamic (MHD) micropump and summary of my doctoral work. Although presented at the very end of this dissertation, the MHD micropump was indeed the very starting point for all my doctoral research efforts. The invaluable lessons learned here paved the way for development of both LMD and MCD RF-MEMS.

  8. Reconfigurable radio-over-fiber system based on optical switch and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng

    2017-09-01

    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  9. Dynamic tunable notch filters for the Antarctic Impulsive Transient Antenna (ANITA)

    NASA Astrophysics Data System (ADS)

    Allison, P.; Banerjee, O.; Beatty, J. J.; Connolly, A.; Deaconu, C.; Gordon, J.; Gorham, P. W.; Kovacevich, M.; Miki, C.; Oberla, E.; Roberts, J.; Rotter, B.; Stafford, S.; Tatem, K.; Batten, L.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Chen, Y.; Clem, J. M.; Cremonesi, L.; Dailey, B.; Dowkontt, P. F.; Hsu, S.; Huang, J.; Hupe, R.; Israel, M. H.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Ludwig, A. B.; Matsuno, S.; Mulrey, K.; Nam, J.; Nichol, R. J.; Novikov, A.; Prohira, S.; Rauch, B. F.; Ripa, J.; Romero-Wolf, A.; Russell, J.; Saltzberg, D.; Seckel, D.; Shiao, J.; Stockham, J.; Stockham, M.; Strutt, B.; Varner, G. S.; Vieregg, A. G.; Wang, S.; Wissel, S. A.; Wu, F.; Young, R.

    2018-06-01

    The Antarctic Impulsive Transient Antenna (ANITA) is a NASA long-duration balloon experiment with the primary goal of detecting ultra-high-energy (> 1018eV) neutrinos via the Askaryan Effect. The fourth ANITA mission, ANITA-IV, recently flew from Dec 2 to Dec 29, 2016. For the first time, the Tunable Universal Filter Frontend (TUFF) boards were deployed for mitigation of narrow-band, anthropogenic noise with tunable, switchable notch filters. The TUFF boards also performed second-stage amplification by approximately 45 dB to boost the ∼ μV-level radio frequency (RF) signals to ∼ mV-level for digitization, and supplied power via bias tees to the first-stage, antenna-mounted amplifiers. The other major change in signal processing in ANITA-IV is the resurrection of the 90 ° hybrids deployed previously in ANITA-I, in the trigger system, although in this paper we focus on the TUFF boards. During the ANITA-IV mission, the TUFF boards were successfully operated throughout the flight. They contributed to a factor of 2.8 higher total instrument livetime on average in ANITA-IV compared to ANITA-III due to reduction of narrow-band, anthropogenic noise before a trigger decision is made.

  10. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    PubMed

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  11. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    NASA Astrophysics Data System (ADS)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  12. A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhuan; Li, Jianshe; Li, Shuguang; Liu, Qiang; Liu, Yingchao; Zhang, Zhen; Wang, Yujun

    2018-06-01

    A tunable single polarizing filter is proposed by selectively coating gold film on the air holes of photonic crystal fiber (PCF). The polarization properties of the PCF filter are evaluated by the finite-element method. Simulation results show that the loss of y-polarized core mode at 1250 and 1550 nm is 136.23 and 839.73 dB/cm, respectively. Furthermore, we innovatively combine stable modulation with flexible modulation. To be specific, the resonance wavelengths are slowly controlled in a small wavelength range by altering the diameter of the air-hole-coated gold film, while the resonance wavelengths are flexibly controlled in a wide wavelength range by altering the thickness of the gold film or the diameter of the small air holes. When the length of the PCF is 500 µm, the bandwidth of extinction ratio greater than - 20 dB is only 60 nm at the communication window of 1550 nm. It is beneficial to fabricate a narrow-band polarization filter.

  13. The OTELO Project

    NASA Astrophysics Data System (ADS)

    Cepa, J.; Alfaro, E. J.; Castañeda, H. O.; Gallego, J.; González-Serrano, J. I.; González, J. J.; Jones, D. H.; Pérez-García, A. M.; Sánchez-Portal, M.

    2007-06-01

    OSIRIS is the Spanish Day One instrument for the GTC 10.4-m telescope. OSIRIS is a general purpose instrument for imaging, low-resolution long slit and multi-object spectroscopy (MOS). OSIRIS has a field of view of 8.6×8.6 arcminutes, which makes it ideal for deep surveys, and operates in the optical wavelength range from 365 through 1000nm. The main characteristic that makes OSIRIS unique amongst other instruments in 8-10m class telescopes is the use of Tunable Filters (Bland-Hawthorn & Jones 1998). These allow a continuous selection of both the central wavelength and the width, thus providing scanning narrow band imaging within the OSIRIS wavelength range. The combination of the large GTC aperture, large OSIRIS field of view and availability of the TFs makes OTELO a truly unique emission line survey.

  14. Multispectral open-air intraoperative fluorescence imaging.

    PubMed

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  15. Hyperspectral fluorescence imaging system for biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Martin, Matthew E.; Wabuyele, Musundi B.; Panjehpour, Masoud; Phan, Mary N.; Overholt, Bergein F.; Vo-Dinh, Tuan

    2006-02-01

    An advanced hyper-spectral imaging (HSI) system has been developed for use in medical diagnostics. One such diagnostic, esophageal cancer is diagnosed currently through biopsy and subsequent pathology. The end goal of this research is to develop an optical-based technique to assist or replace biopsy. In this paper, we demonstrate an instrument that has the capability to optically diagnose cancer in laboratory mice. We have developed a real-time HSI system based on state-of-the-art liquid crystal tunable filter (LCTF) technology coupled to an endoscope. This unique HSI technology is being developed to obtain spatially resolved images of the slight differences in luminescent properties of normal versus tumorous tissues. In this report, an in-vivo mouse study is shown. A predictive measure of cancer for the mice studied is developed and shown. It is hoped that the results of this study will lead to advances in the optical diagnosis of esophageal cancer in humans.

  16. Trade Study of Implementation of Software Defined Radio (SDR): Fundamental Limitations and Future Prospects

    DTIC Science & Technology

    2008-12-09

    as an antenna followed by an analog signal processing chain ( filters , RF amplifiers) followed by an analog-to- digital converter (ADC) followed by a...Figure 2.3 Block diagram of a DSP- based superheterodyne receiver. ADC RF Filter LNA IF Filter IF Amplifier Tunable Local Oscillator ADC...some band limiting filtering and amplification. In a more realistic architecture (Figure 2.3) that we call the DSP- based superheterodyne receiver, a

  17. Electrically tunable materials for microwave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability aremore » important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.« less

  18. Progress on applications of high temperature superconducting microwave filters

    NASA Astrophysics Data System (ADS)

    Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He

    2017-07-01

    In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.

  19. Microwave active filters based on coupled negative resistance method

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Yang; Itoh, Tatsuo

    1990-12-01

    A novel coupled negative resistance method for building a microwave active bandpass filter is introduced. Based on this method, four microstrip line end-coupled filters were built. Two are fixed-frequency one-pole and two-pole filters, and two are tunable one-pole and two-pole filters. In order to broaden the bandwidth of the end-coupled filter, a modified end-coupled structure is proposed. Using the modified structure, an active filter with a bandwidth up to 7.5 percent was built. All of the filters show significant passband performance improvement. Specifically, the passband bandwidth was broadened by a factor of 5 to 20.

  20. Polarization independent polymer waveguide tunable receivers incorporating a micro-optic circulator

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Park, Tae-Hyun; Park, Su-Hyun; Seo, Jun-Kyu; Oh, Min-Cheol

    2018-06-01

    In order to simplify the receiver configuration in a wavelength division multiplexed optical fiber network, compact wavelength tunable filters have long been expected to be used as channel selectors. Bragg reflector inherently has the most suitable reflection spectrum for filtering a single wavelength from the densely multiplexed wavelength signal. Polymer has high thermo-optic coefficient and good thermal insulation property compared to the other optical waveguide materials such as silicon and silica materials. This can be used to broadly tune the reflection spectrum of Bragg reflector using a simple micro-heater. In this work, a micro-optic circulator component and a polymeric Bragg reflector device are assembled to produce a small form factor tunable receiver. Compared to the integrated-optical versions, the micro-optics are based on well-developed manufacturing processes and can achieve competitive production yields. The device exhibits high reflectivity with a flat top passband, and a polarization dependence of 0.06 nm achieved by virtue of the low birefringence of LFR polymer, which make a significant contribution to the implementation of polarization independent tunable receiver. The wavelength tuning range of 40 nm is demonstrated by using a bottom located heater with a groove for heat isolation.

  1. Digital micromirror devices in Raman trace detection of explosives

    NASA Astrophysics Data System (ADS)

    Glimtoft, Martin; Svanqvist, Mattias; Ågren, Matilda; Nordberg, Markus; Östmark, Henric

    2016-05-01

    Imaging Raman spectroscopy based on tunable filters is an established technique for detecting single explosives particles at stand-off distances. However, large light losses are inherent in the design due to sequential imaging at different wavelengths, leading to effective transmission often well below 1 %. The use of digital micromirror devices (DMD) and compressive sensing (CS) in imaging Raman explosives trace detection can improve light throughput and add significant flexibility compared to existing systems. DMDs are based on mature microelectronics technology, and are compact, scalable, and can be customized for specific tasks, including new functions not available with current technologies. This paper has been focusing on investigating how a DMD can be used when applying CS-based imaging Raman spectroscopy on stand-off explosives trace detection, and evaluating the performance in terms of light throughput, image reconstruction ability and potential detection limits. This type of setup also gives the possibility to combine imaging Raman with non-spatially resolved fluorescence suppression techniques, such as Kerr gating. The system used consists of a 2nd harmonics Nd:YAG laser for sample excitation, collection optics, DMD, CMOScamera and a spectrometer with ICCD camera for signal gating and detection. Initial results for compressive sensing imaging Raman shows a stable reconstruction procedure even at low signals and in presence of interfering background signal. It is also shown to give increased effective light transmission without sacrificing molecular specificity or area coverage compared to filter based imaging Raman. At the same time it adds flexibility so the setup can be customized for new functionality.

  2. Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode.

    PubMed

    Yeh, Chien-Hung; Shih, Fu Y; Wang, Chia H; Chow, Chi W; Chi, Sien

    2008-01-07

    We propose and experimentally demonstrate a continuous wave (CW) tunable-wavelength fiber laser using self-seeding Fabry-Perot laser diode (FP-LD) without optical amplifier inside gain cavity. By employing a tunable bandpass filter (TBF) and a fiber reflected mirror (FRM) within a gain cavity, the fiber laser can lase a single-longitudinal wavelength due to the self-seeding operation. The proposed tunable wavelength laser has a good performance of the output power (> -15 dBm) and optical side-mode suppression ratio (> 40 dB) in the wavelength tuning range of 1533.75 to 1560.95 nm. In addition, the output stabilities of the fiber laser are also investigated.

  3. Tunable plasmon-induced transparency effect based on self-asymmetric H-shaped resonators meta-atoms

    NASA Astrophysics Data System (ADS)

    Cheng, Zhaoxiang; Chen, Lin; Zang, Xiaofei; Cai, Bin; Peng, Yan; Zhu, Yiming

    2015-03-01

    We have proposed and demonstrated a tunable plasmon-induced transparency (PIT) effect from two ways, based on self-asymmetric H-shaped resonators (AHR) meta-atoms. The tunable PIT effect is realized via varying polarization angles and coupling distances. First, by proper design, transition from PIT mode to dipole mode is theoretically and experimentally demonstrated by simply adjusting the polarization angle. Also, the manipulation of ‘dark-mode’ resonance intensity from strong to weak is achieved by varying coupling strength with different distances, which provided insight into the magnetic coupling hybridization mechanism. Prospectively, due to its special tunable characteristics, the AHR meta-atoms may be widely used in slow light, filters and switch devices.

  4. Integrable microwave filter based on a photonic crystal delay line.

    PubMed

    Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.

  5. Aperiodic nanoplasmonic devices for directional colour filtering and sensing.

    PubMed

    Davis, Matthew S; Zhu, Wenqi; Xu, Ting; Lee, Jay K; Lezec, Henri J; Agrawal, Amit

    2017-11-07

    Exploiting the wave-nature of light in its simplest form, periodic architectures have enabled a panoply of tunable optical devices with the ability to perform useful functions such as filtering, spectroscopy, and multiplexing. Here, we remove the constraint of structural periodicity to enhance, simultaneously, the performance and functionality of passive plasmonic devices operating at optical frequencies. By using a physically intuitive, first-order interference model of plasmon-light interactions, we demonstrate a simple and efficient route towards designing devices with flexible, multi-spectral optical response, fundamentally not achievable using periodic architectures. Leveraging this approach, we experimentally implement ultra-compact directional light-filters and colour-sorters exhibiting angle- or spectrally-tunable optical responses with high contrast, and low spectral or spatial crosstalk. Expanding the potential of aperiodic systems to implement tailored spectral and angular responses, these results hint at promising applications in solar-energy harvesting, optical signal multiplexing, and integrated sensing.

  6. Polarization-independent tunable spectral slicing filter in Ti:LiNbO3.

    PubMed

    Rabelo, Renato C; Eknoyan, Ohannes; Taylor, Henry F

    2011-02-01

    A two-port polarization-independent tunable spectral slicing filter at the 1530 nm wavelength regime is presented. The design utilizes an asymmetric interferometer with a sparse index grating along its arms. The sparse grating makes it possible to select equally spaced frequency channels from an incident WDM signal and to place nulls between them to coincide with the signal comb frequency. The number of selected channels and nulls between them depends on the number of coupling regions used in the sparse grating. The free spectral range depends on the spacing between the coupling regions. The Z-transform method is used to synthesize the filter and determine the spectral response. The operation of a device with six coupling regions is demonstrated, and good agreement with theoretical predictions is obtained. A 3 dB bandwidth of ∼1 nm and thermal tuning over a range of ∼13 nm are measured.

  7. Bi-directional ROADM with one pair of NxN cyclic-AWGs for over N wavelength channels configuration

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu

    2018-01-01

    This paper presents a bidirectional optical add-drop multiplexer (BROADM) with permitting white spectral channels input in bidirectional configuration. The filter routing rule of array waveguide grating (AWG) is applied for the wavelength channels (WCs) that need to be added and dropped by using the corresponding tunable fiber Bragg gratings (FBGs). The other WCs pass through output by tuning FBG filter spectra away from the WCs. The bandwidth between two adjacent WCs of each pair of ports in AWG is wider than one channel spacing so that the filter spectra of FBG is tuned to free spectral range (FSR) region to realize the wavelength routing function without interfering other WCs. The WCs can be flexibly handled by installing the corresponding tunable FBG. Therefore, the proposed BROADM is more flexible and has higher transmission capacity in the optical network.

  8. Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng

    2011-11-01

    A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.

  9. Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Sánchez-Pérez, J. V.; Garcia-Raffi, L. M.

    2011-07-01

    The physical properties of a periodic distribution of absorbent resonators is used in this work to design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as experimental validations show that the control of the resonances and the absorption of the scatterers along with their periodic arrangement in air introduce high technological possibilities to control noise. Sound manipulation is perhaps the most obvious application of the structures presented in this work. We apply this methodology to develop a device as an alternative to the conventional acoustic barriers with several properties from the acoustical point of view but also with additional esthetic and constructive characteristics.

  10. Tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer

    NASA Astrophysics Data System (ADS)

    Hernández-Arriaga, M. V.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Álvarez-Tamayo, R. I.; Santiago-Hernández, H.; Bello-Jiménez, M.; Kuzin, E. A.

    2017-11-01

    An experimental study of an all-fiber tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer is presented. A microfiber filter with length of 6 mm and diameter of 20 μm is used to achieve single laser wavelength tuning in a range of 19.4 nm and dual-wavelength laser operation at 1761.8 and 1793.4 nm with a channel spacing of 31.6 nm. The abrupt-tapered structure allows multi-modal interference at the air-cladding interface. The proposed in-fiber interferometer exhibits characteristics of low cost and simple fabrication, making it suitable for practical applications in wavelength filtering and wavelength selection in all-fiber lasers.

  11. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  12. Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang'e-3

    NASA Astrophysics Data System (ADS)

    He, Zhi-Ping; Wang, Bin-Yong; Lü, Gang; Li, Chun-Lai; Yuan, Li-Yin; Xu, Rui; Liu, Bin; Chen, Kai; Wang, Jian-Yu

    2014-12-01

    The Visible and Near-Infrared Imaging Spectrometer (VNIS), using two acousto-optic tunable filters as dispersive components, consists of a VIS/NIR imaging spectrometer (0.45-0.95 μm), a shortwave IR spectrometer (0.9-2.4 μm) and a calibration unit with dust-proofing functionality. The VNIS was utilized to detect the spectrum of the lunar surface and achieve in-orbit calibration, which satisfied the requirements for scientific detection. Mounted at the front of the Yutu rover, lunar objects that are detected with the VNIS with a 45° visual angle to obtain spectra and geometrical data in order to analyze the mineral composition of the lunar surface. After landing successfully on the Moon, the VNIS performed several explorations and calibrations, and obtained several spectral images and spectral reflectance curves of the lunar soil in the region of Mare Imbrium. This paper describes the working principle and detection characteristics of the VNIS and provides a reference for data processing and scientific applications.

  13. NASA Tech Briefs, April 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Analysis of SSEM Sensor Data Using BEAM; Hairlike Percutaneous Photochemical Sensors; Video Guidance Sensors Using Remotely Activated Targets; Simulating Remote Sensing Systems; EHW Approach to Temperature Compensation of Electronics; Polymorphic Electronic Circuits; Micro-Tubular Fuel Cells; Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter; PVM Wrapper; Simulation of Hyperspectral Images; Algorithm for Controlling a Centrifugal Compressor; Hybrid Inflatable Pressure Vessel; Double-Acting, Locking Carabiners; Position Sensor Integral with a Linear Actuator; Improved Electromagnetic Brake; Flow Straightener for a Rotating-Drum Liquid Separator; Sensory-Feedback Exoskeletal Arm Controller; Active Suppression of Instabilities in Engine Combustors; Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs; Chemical Thinning Process for Fabricating UV-Imaging CCDs; Pseudoslit Spectrometer; Waste-Heat-Driven Cooling Using Complex Compound Sorbents; Improved Refractometer for Measuring Temperatures of Drops; Semiconductor Lasers Containing Quantum Wells in Junctions; Phytoplankton-Fluorescence-Lifetime Vertical Profiler; Hexagonal Pixels and Indexing Scheme for Binary Images; Finding Minimum-Power Broadcast Trees for Wireless Networks; and Automation of Design Engineering Processes.

  14. Dual-Band Band-Pass Filter with Fixed Low Band and Fluidically-Tunable High Band

    PubMed Central

    Park, Eiyong; Lim, Daecheon

    2017-01-01

    In this work, we present a dual-band band-pass filter with fixed low-band resonant frequency and tunable high-band resonant frequency. The proposed filter consists of two split-ring resonators (SRRs) with a stub and microfluidic channels. The lower resonant frequency is determined by the length of the SRR alone, whereas the higher resonant frequency is determined by the lengths of the SRR and the stub. Using this characteristic, we fix the lower resonant frequency by fixing the SRR length and tune the higher resonant frequency by controlling the stub length by injecting liquid metal in the microfluidic channel. We fabricated the filter on a Duroid substrate. The microfluidic channel was made from polydimethylsiloxane (PDMS), and eutectic gallium–indium (EGaIn) was used as the liquid metal. This filter operates in two states—with, and without, the liquid metal. In the state without the liquid metal, the filter has resonant frequencies at 1.85 GHz and 3.06 GHz, with fractional bandwidths of 4.34% and 2.94%, respectively; and in the state with the liquid metal, it has resonant frequencies at 1.86 GHz and 2.98 GHz, with fractional bandwidths of 4.3% and 2.95%, respectively. PMID:28813001

  15. Continuously wavelength-tunable passband-flattened fiber comb filter based on polarization-diversified loop structure.

    PubMed

    Jung, Jaehoon; Lee, Yong Wook

    2017-08-16

    Continuous wavelength tuning of optical comb filters, which is an essential functionality for flexible signal processing in reconfigurable optical systems, has been challenging in high order filter structures with two birefringent elements (BEs) or more due to cumbersomeness in finding a combination of waveplates and BEs and complexity in determining their individual azimuthal orientations. Here, we propose a continuously tunable polarization-independent passband-flattened fiber comb filter with two BEs using a polarization-diversified loop structure for the first time. The proposed filter consists of a polarization beam splitter and two groups of a half-wave plate, quarter-wave plate, and polarization-maintaining fiber (PMF). The azimuthal orientation of PMF in the second group is fixed as 22.5°. Orientation angle sets of the four waveplates, which can induce an arbitrary phase shift from 0 to 2π in the passband-flattened transmittance function, are found from the filter transmittance derived using Jones matrix formulation. From theoretical spectral analysis, it is confirmed that passband-flattened comb spectra can be continuously tuned. Theoretical prediction is verified by experimental demonstration. Moreover, the wavelength-dependent evolution of the output state of polarization (SOP) of each PMF is investigated on the Poincare sphere, and the relationship between wavelength tuning and SOP evolution is also discussed.

  16. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  17. Low-bias flat band-stop filter based on velocity modulated gaussian graphene superlattice

    NASA Astrophysics Data System (ADS)

    Sattari-Esfahlan, S. M.; Shojaei, S.

    2018-05-01

    Transport properties of biased planar Gaussian graphene superlattice (PGGSL) with Fermi velocity barrier is investigated by transfer matrix method (TMM). It is observed that enlargement of bias voltage over miniband width breaks the miniband to WSLs leads to suppressing resonant tunneling. Transmission spectrum shows flat wide stop-band property controllable by external bias voltage with stop-band width of near 200 meV. The simulations demonstrate that strong velocity barriers prevent tunneling of Dirac electrons leading to controllable enhancement of stop-band width. By increasing ratio of Fermi velocity in barriers to wells υc stop-band width increase. As wide transmission stop-band width (BWT) of filter is tunable from 40 meV to 340 meV is obtained by enhancing ratio of υc from 0.2 to 1.5, respectively. Proposed structure suggests easy tunable wide band-stop electronic filter with a modulated flat stop-band characteristic by height of electrostatic barrier and structural parameters. Robust sensitivity of band width to velocity barrier intensity in certain bias voltages and flat band feature of proposed filter may be opens novel venue in GSL based flat band low noise filters and velocity modulation devices.

  18. Spectral properties of all-active InP-based microring resonator devices

    NASA Astrophysics Data System (ADS)

    Kapsalis, A.; Alexandropoulos, D.; Mikroulis, S.; Simos, H.; Stamataki, I.; Syvridis, D.; Hamacher, M.; Troppenz, U.; Heidrich, H.

    2006-02-01

    Microring resonators are excellent candidates for very large scale photonic integration due to their compactness, and fabrication simplicity. Moreover a wide range of all-optical signal processing functions can be realized due to the resonance effect. Possible applications include filtering, add/drop of optical beams and power switching, as well as more complex procedures including multiplexing, wavelength conversion, and logic operations. All-active ring components based in InGaAsP/InP are possible candidates for laser sources, lossless filters, wavelength converters, etc. Our work is based on measurement, characterization and proposal of possible exploitation of such devices in a variety of applications. We investigate the spectral characteristics of multi-quantum well InGaAsP(λ=1.55μm)/InP microring structures of various ring diameters and different configurations including racetracks with one or two bus waveguides and MMI couplers. The latter configuration has recently exhibited the possibility to obtain tunable active filters as well as tunable laser sources based on all-active ring-bus-coupler structures. In the case of tunable lasers single mode operation has been achieved by obtaining sufficiently high side mode suppression ratio. The tuning capability is attributed to a coupled cavities effect, resembling the case of multi-section DBR lasers. However, in contrast to the latter, the fabrication of microring resonators is considered an easier task, due to a single step growth procedure, although further investigation must be carried out in order to achieve wide range tunability. Detailed mappings of achievable wavelengths are produced for a wide range of injection current values.

  19. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  20. Designing Birefringent Filters For Solid-State Lasers

    NASA Technical Reports Server (NTRS)

    Monosmith, Bryan

    1992-01-01

    Mathematical model enables design of filter assembly of birefringent plates as integral part of resonator cavity of tunable solid-state laser. Proper design treats polarization eigenstate of entire resonator as function of wavelength. Program includes software modules for variety of optical elements including Pockels cell, laser rod, quarter- and half-wave plates, Faraday rotator, and polarizers.

  1. A wavelength-tunable fiber laser using a novel filter based on a compound interference effect

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao

    2015-01-01

    A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2  ×  2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.

  2. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  3. Spectral shaping of an all-fiber torsional acousto-optic tunable filter.

    PubMed

    Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon

    2014-12-20

    Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.

  4. Nanoparticles Doped Liquid Crystal Filled Photonic Bandgap Fibers

    NASA Astrophysics Data System (ADS)

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders

    2008-10-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum to the one achieved with undoped liquid crystals. New interesting features such as frequency dependent behavior and a transmission spectrum with tunable attenuation on the short wavelength side of the bandgap suggest a potential application of this device as a tunable all-in-fiber gain equalization filter. The tunability of the device is demonstrated by changing the temperature of the liquid crystal and by varying both the amplitude and the frequency of the applied external electric field.

  5. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  6. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Aguayo-Rodríguez, G.; Zaldívar-Huerta, I. E.; García-Juárez, A.; Rodríguez-Asomoza, J.; Larger, L.; Courjal, N.

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  7. Near-Infrared Hyperspectral Image Cubes of Mars during the 1999 Opposition

    NASA Technical Reports Server (NTRS)

    Hillman, John J.; Glenar, D.; Espenak, F.; Chanover, N.; Murphy, J.; Young, L.; Blass, W.

    1999-01-01

    We used the Goddard Space Flight Center, Acousto-Optic Tunable Filter (AOTF) Camera to obtain near-IR spectral image sets of Mars over the 1.6-3.6 micron region during the April 1999 opposition. A complete image set consists of 280 images with a spectral full-width-half maximum of 10 wavenumbers (fixed in frequency), 90 images in H-band (1.55-1.80 micron), 115 images in K-band (1.95-2.50 micron) and 75 images in L-band (2.90-3.70 micron). The short-wavelength limit is set by transmission of AOTF cell and long-wavelength limit is imposed by sensitivity of PICNIC, 256x256, HgCdTe array detector. We will discuss the new array performance and provide preliminary interpretations of some of these results. These measurements were part of a 4-observatory coordinated effort whose overall objective was to assemble a photometrically calibrated, spectrally complete ground-based image cube over the visible and near-IR spectral region. To accomplish this, four observing teams conducted the investigations with instruments spanning 0.4 to 5.0 micron. The instruments and observing facilities were (a) AOTF camera at Apache Point Observatory, 3.5m, f/10, Nasymth focus (this abstract). Primary science targets included the 3 micron water-of hydration feature and CO2, H2O ice (polar regions and clouds); (b) Visible/NIR interference-filter (24 filters) camera at Lowell Observatory, 72" telescope. 430-1050 nm. Science targets were Fe(2+), Fe(3+) mineralogy and coarse grain hematite search; (c) NMSU Tortugas Mountain Observatory, 60 cm telescope, CCD photometry with same filter set as Lowell; (d) KPNO cryogenic grating/slit spectrometer (CRSP/SALLY) at KPNO 2.1 m, f/15 Cassegrain focus (see abstract by D. Glenar, et. al., this meeting). Selected wavelengths in 3-5 micron region (L, M band). Science targets included water-of-hydration feature (3-4 micron long wave extension) and sulfate mineralogy. Observers participating in this campaign included Dave Glenar, John Hillman, Gordon Bjoraker and Fred Espenak from GSFC, Nancy Chanover, Jim Murphy and A. S. MurTell from NMSU, Leslie Young from BU, Diana Blaney from JPL and Dick Joyce from KPNO.

  8. Experiments and analysis of tunable monolithic 1- μm single-frequency fiber lasers with loop mirror filters

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Huaqing; Wang, Xingpeng; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated thermally tunable 1- μm single-frequency fiber lasers utilizing loop mirror filters (LMFs) with unpumped Yb-doped fibers. The frequency selection and tracking was achieved by combining a fiber Bragg grating (FBG) and a dynamic grating established inside the LMF. The central emission wavelength was at 1064.07 nm with a tuning range of 1.4 nm, and the measured emission linewidth was less than 10 kHz. We also systematically studied the wavelength-tracking thermal stability of the LMF with separate thermal treatment upon the FBG and LMF, respectively. Finally, we presented a selection criterion for the minimum unpumped doped fiber length inside the LMF with experimental verification.

  9. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    PubMed

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  10. Spectrum Tunable Quantum Dot-In-A-Well Infrared Detector Arrays for Thermal Imaging

    DTIC Science & Technology

    2008-09-01

    Spectrum tunable quantum dot-in-a- well infrared detector arrays for thermal imaging Jonathan R. Andrews1, Sergio R. Restaino1, Scott W. Teare2...Materials at the University of New Mexico has been investigating quantum dot and quantum well detectors for thermal infrared imaging applications...SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Spectrum tunable quantum dot-in-a- well infrared

  11. Recent progress in plasmonic colour filters for image sensor and multispectral applications

    NASA Astrophysics Data System (ADS)

    Pinton, Nadia; Grant, James; Choubey, Bhaskar; Cumming, David; Collins, Steve

    2016-04-01

    Using nanostructured thin metal films as colour filters offers several important advantages, in particular high tunability across the entire visible spectrum and some of the infrared region, and also compatibility with conventional CMOS processes. Since 2003, the field of plasmonic colour filters has evolved rapidly and several different designs and materials, or combination of materials, have been proposed and studied. In this paper we present a simulation study for a single- step lithographically patterned multilayer structure able to provide competitive transmission efficiencies above 40% and contemporary FWHM of the order of 30 nm across the visible spectrum. The total thickness of the proposed filters is less than 200 nm and is constant for every wavelength, unlike e.g. resonant cavity-based filters such as Fabry-Perot that require a variable stack of several layers according to the working frequency, and their passband characteristics are entirely controlled by changing the lithographic pattern. It will also be shown that a key to obtaining narrow-band optical response lies in the dielectric environment of a nanostructure and that it is not necessary to have a symmetric structure to ensure good coupling between the SPPs at the top and bottom interfaces. Moreover, an analytical method to evaluate the periodicity, given a specific structure and a desirable working wavelength, will be proposed and its accuracy demonstrated. This method conveniently eliminate the need to optimize the design of a filter numerically, i.e. by running several time-consuming simulations with different periodicities.

  12. Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range

    NASA Astrophysics Data System (ADS)

    Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin

    2013-12-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.

  13. Visible and near-infrared imaging spectrometer (VNIS) for in-situ lunar surface measurements

    NASA Astrophysics Data System (ADS)

    He, Zhiping; Xu, Rui; Li, Chunlai; Lv, Gang; Yuan, Liyin; Wang, Binyong; Shu, Rong; Wang, Jianyu

    2015-10-01

    The Visible and Near-Infrared Imaging Spectrometer (VNIS) onboard China's Chang'E 3 lunar rover is capable of simultaneously in situ acquiring full reflectance spectra for objects on the lunar surface and performing calibrations. VNIS uses non-collinear acousto-optic tunable filters and consists of a VIS/NIR imaging spectrometer (0.45-0.95 μm), a shortwave IR spectrometer (0.9-2.4 μm), and a calibration unit with dust-proofing functionality. To been underwent a full program of pre-flight ground tests, calibrations, and environmental simulation tests, VNIS entered into orbit around the Moon on 6 December 2013 and landed on 14 December 2013 following Change'E 3. The first operations of VNIS were conducted on 23 December 2013, and include several explorations and calibrations to obtain several spectral images and spectral reflectance curves of the lunar soil in the Imbrium region. These measurements include the first in situ spectral imaging detections on the lunar surface. This paper describes the VNIS characteristics, lab calibration, in situ measurements and calibration on lunar surface.

  14. Cryogenic metal mesh bandpass filters for submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Dragovan, M.

    1984-01-01

    The design and performance of a tunable double-half-wave bandpass filter centered at 286 microns (Delta lambda/lambda = 0.16) and operating at cryogenic temperatures (for astronomy applications) are presented. The operating principle is explained, and the fabrication of the device, which comprises two identical mutually coupled Fabry-Perot filters with electroformed Ni-mesh reflectors and is tuned by means of variable spacers, is described. A drawing of the design and graphs of computed and measured performance are provided. Significantly improved bandpass characteristics are obtained relative to the single Fabry-Perot filter.

  15. Development of solid tunable optics for ultra-miniature imaging systems

    NASA Astrophysics Data System (ADS)

    Yongchao, Zou

    This thesis focuses on the optimal design, fabrication and testing of solid tunable optics and exploring their applications in miniature imaging systems. It starts with the numerical modelling of such lenses, followed by the optimum design method and alignment tolerance analysis. A miniature solid tunable lens driven by a piezo actuator is then developed. To solve the problem of limited maximum optical power and tuning range in conventional lens designs, a novel multi-element solid tunable lens is proposed and developed. Inspired by the Alvarez principle, a novel miniature solid tunable dual-focus lens, which is designed using freeform surfaces and driven by one micro-electro-mechanical-systems (MEMS) rotary actuator, is demonstrated. To explore the applications of these miniature solid tunable lenses, a miniature adjustable-focus endoscope and one compact adjustable-focus camera module are developed. The adjustable-focus capability of these two miniature imaging systems is fully proved by electrically focusing targets placed at different positions.

  16. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    PubMed

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  17. Integrated narrowband optical filter based on embedded subwavelength resonant grating structures

    DOEpatents

    Grann, Eric B.; Sitter, Jr., David N.

    2000-01-01

    A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.

  18. Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation

    DTIC Science & Technology

    2012-05-11

    modulation experiments 65 5.1 Review of FM lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Fabry - Perot lasers...asymmetrical Mach Zehnder interferometers (a-MZI) [17, 34], Fabry - Perot filters [35], fiber Bragg gratings [36] and tunable integrated filters [37, 38...transmitting subcarrier-multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot

  19. Visible spectral imager for occultation and nightglow (VISION) for the PICASSO Mission

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe; Dekemper, Emmanuel; Vanhellemont, Filip

    2015-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT, Clyde Space Ltd. (UK), and the Centre Spatial de Liège (BE). VTT Technical Research Centre of Finland Ltd. will deliver the Visible Spectral Imager for Occultation and Nightglow (VISION) for the PICASSO mission. The VISION targets primarily the observation of the Earth's atmospheric limb during orbital Sun occultation. By assessing the radiation absorption in the Chappuis band for different tangent altitudes, the vertical profile of the ozone is retrieved. A secondary objective is to measure the deformation of the solar disk so that stratospheric and mesospheric temperature profiles are retrieved by inversion of the refractive raytracing problem. Finally, occasional full spectral observations of polar auroras are also foreseen. The VISION design realized with commercial of the shelf (CoTS) parts is described. The VISION instrument is small, lightweight (~500 g), Piezo-actuated Fabry-Perot Interferometer (PFPI) tunable spectral imager operating in the visible and near-infrared (430 - 800 nm). The spectral resolution over the whole wavelength range will be better than 10 nm @ FWHM. VISION has is 2.5° x 2.5° total field of view and it delivers maximum 2048 x 2048 pixel spectral images. The sun image size is around 0.5° i.e. ~500 pixels. To enable fast spectral data image acquisition VISION can be operated with programmable image sizes. VTT has previously developed PFPI tunable filter based AaSI Spectral Imager for the Aalto-1 Finnish CubeSat. In VISION the requirements of the spectral resolution and stability are tighter than in AaSI. Therefore the optimization of the of the PFPI gap control loop for the operating temperature range and vacuum conditions has to be improved. VISION optical, mechanical and electrical design is described.

  20. Phase-step retrieval for tunable phase-shifting algorithms

    NASA Astrophysics Data System (ADS)

    Ayubi, Gastón A.; Duarte, Ignacio; Perciante, César D.; Flores, Jorge L.; Ferrari, José A.

    2017-12-01

    Phase-shifting (PS) is a well-known technique for phase retrieval in interferometry, with applications in deflectometry and 3D-profiling, which requires a series of intensity measurements with certain phase-steps. Usually the phase-steps are evenly spaced, and its knowledge is crucial for the phase retrieval. In this work we present a method to extract the phase-step between consecutive interferograms. We test the proposed technique with images corrupted by additive noise. The results were compared with other known methods. We also present experimental results showing the performance of the method when spatial filters are applied to the interferograms and the effect that they have on their relative phase-steps.

  1. A Practical Millimeter-Wave Holographic Imaging System with Tunable IF Attenuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Kun; Yang, Ming-Hui; Wu, Liang; Sun, Yun; Sun, Xiao-Wei

    2017-10-01

    A practical millimeter-wave (mmw) holographic imaging system with tunable intermediate frequency (IF) attenuator has been developed. It can be used for the detection of concealed weapons at security checkpoints, especially the airport. The system is utilized to scan the passenger and detect the weapons hidden in the clothes. To reconstruct the three dimensions (3-D) image, a holographic mmw imaging algorithm based on aperture synthesis and back scattering is presented. The system is active and works at 28-33 GHz. Tunable IF attenuator is applied to compensate the intensity and phase differences between multi-channels and multi-frequencies.

  2. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Chaudhuri, S.; Bockstiegel, C.; Gao, J.

    2015-08-01

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Qi > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  3. General optical discrete z transform: design and application.

    PubMed

    Ngo, Nam Quoc

    2016-12-20

    This paper presents a generalization of the discrete z transform algorithm. It is shown that the GOD-ZT algorithm is a generalization of several important conventional discrete transforms. Based on the GOD-ZT algorithm, a tunable general optical discrete z transform (GOD-ZT) processor is synthesized using the silica-based finite impulse response transversal filter. To demonstrate the effectiveness of the method, the design and simulation of a tunable optical discrete Fourier transform (ODFT) processor as a special case of the synthesized GOD-ZT processor is presented. It is also shown that the ODFT processor can function as a real-time optical spectrum analyzer. The tunable ODFT has an important potential application as a tunable optical demultiplexer at the receiver end of an optical orthogonal frequency-division multiplexing transmission system.

  4. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    PubMed

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  5. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    DOEpatents

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  6. Widely tunable chaotic fiber laser for WDM-PON detection

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian

    2014-05-01

    A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.

  7. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  8. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    NASA Astrophysics Data System (ADS)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  9. Real-time Non-invasive Spectral Imaging of Orthotopic Red Fluorescent Protein-expressing Lung Tumor Growth in Nude Mice.

    PubMed

    Zhang, Yong; Zhang, Nan; Zhao, Ming; Hoffman, Robert M

    2015-07-01

    Orthotopic implantation of cancer allows metastasis to occur. The most patient-like metastatic orthotopic models are developed with surgical orthotopic implantation using intact tissue in order to preserve the natural tissue structure of the tumor which contains both cancer cells and stroma. In the present study, we performed a simple thoracotomy by making an intercostal incision between the fourth and fifth ribs on the left side of the chest of nude mice. Lung tumor fragments expressing red fluorescent protein were then implanted on the left lung. It was possible to monitor tumor formation in the lung non-invasively by spectral imaging using the Maestro system with a liquid tunable filter. The model described here has high tumorigenicity in the lung (100%) and a low mortality rate (5%). This imageable nude mouse model using surgical orthotopic implantation of lung cancer will be useful for all types of longitudinal studies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.

    PubMed

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole

    2018-04-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

  11. Partial differential equation transform — Variational formulation and Fourier analysis

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The frequency selection is achieved either by diffusion coefficients or by propagation time. Finally, we explore a large number of practical applications to further demonstrate the utility of proposed PDE transform. PMID:22207904

  12. Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-01-01

    A tunable dichroic polarization beam splitter (tunable DPBS) simultaneously performs the follow functions: 1. Separation of a polarized incident beam into multiple pairs of orthogonally polarized beams; 2. Separation of the propagation direction of two wavelength incident beams after passing through the tunable DPBS; and 3. Control of both advanced polarization and wavelength separation capabilities by varying the temperature of the tunable DPBS. This novel complex optical property is realized by diffraction phenomena using a designed three-dimensional periodic structure of aligned liquid crystals in the tunable DPBS, which was fabricated quickly with precision in a one-step photoalignment using four-beam polarization interferometry. In experiments, we demonstrated that these diffraction properties are obtained by entering polarized beams of wavelengths 532 nm and 633 nm onto the tunable DPBS. These diffraction properties are described using the Jones calculus in a polarization propagation analysis. Of significance is that the aligned liquid crystal structure needed to obtain these diffraction properties was proposed based on a theoretical analysis, and these properties were then demonstrated experimentally. The tunable DPBS can perform several functions of a number of optical elements such as wave plates, polarization beam splitter, dichroic beam splitter, and tunable wavelength filter. Therefore, the tunable DPBS can contribute to greater miniaturization, sophistication, and cost reduction of optical systems used widely in applications, such as optical measurements, communications, and information processing.

  13. Multispectral colour analysis for quantitative evaluation of pseudoisochromatic color deficiency tests

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Fomins, Sergejs

    2010-11-01

    Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.

  14. Signal digitizing system and method based on amplitude-to-time optical mapping

    DOEpatents

    Chou, Jason; Bennett, Corey V; Hernandez, Vince

    2015-01-13

    A signal digitizing system and method based on analog-to-time optical mapping, optically maps amplitude information of an analog signal of interest first into wavelength information using an amplitude tunable filter (ATF) to impress spectral changes induced by the amplitude of the analog signal onto a carrier signal, i.e. a train of optical pulses, and next from wavelength information to temporal information using a dispersive element so that temporal information representing the amplitude information is encoded in the time domain in the carrier signal. Optical-to-electrical conversion of the optical pulses into voltage waveforms and subsequently digitizing the voltage waveforms into a digital image enables the temporal information to be resolved and quantized in the time domain. The digital image may them be digital signal processed to digitally reconstruct the analog signal based on the temporal information with high fidelity.

  15. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors

    NASA Astrophysics Data System (ADS)

    García-Rojas, Jorge; Corradi, Romano L. M.; Boffin, Henri M. J.; Monteiro, Hektor; Jones, David; Wesson, Roger; Cabrera-Lavers, Antonio; Rodríguez-Gil, Pablo

    2017-10-01

    The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.

  16. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    PubMed Central

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  17. Widely-pulsewidth-tunable ultrashort pulse generation from a birefringent carbon nanotube mode-locked fiber laser.

    PubMed

    Liu, Ya; Zhao, Xin; Liu, Jiansheng; Hu, Guoqing; Gong, Zheng; Zheng, Zheng

    2014-08-25

    We demonstrate the generation of soliton pulses covering a nearly one order-of-magnitude pulsewidth range from a simple carbon nanotube (CNT) mode-locked fiber laser with birefringence. A polarization-maintaining-fiber-pigtailed, inline polarization beam splitter and its associated birefringence is leveraged to either enable additional nonlinear polarization evolution (NPE) mode-locking effect or result in a bandwidth-tunable Lyot filter, through adjusting the intracavity polarization settings. The large pulsewidth tuning range is achieved by exploiting both the nonlinear CNT-NPE hybrid mode-locking mechanism that narrows the pulses and the linear filtering effect that broadens them. Induced vector soliton pulses with pulsewidth from 360 fs to 3 ps can be generated, and their time-bandwidth products indicate they are close to transform-limited.

  18. Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang

    2011-05-01

    The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.

  19. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  20. Universal Network Access System

    DTIC Science & Technology

    2003-11-01

    128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1

  1. A 128-Tap Highly Tunable CMOS IF Finite Impulse Response Filter for Pulsed Radar Applications

    DOE PAGES

    Mincey, John Stephen; Su, Eric C.; Silva-Martinez, Jose; ...

    2018-02-28

    A configurable-bandwidth (BW) filter is presented in this paper for pulsed radar applications. Also, to eliminate dispersion effects in the received waveform, a finite impulse response (FIR) topology is proposed, which has a measured standard deviation of an in-band group delay of 11 ns that is primarily dominated by the inherent, fully predictable delay introduced by the sample-and-hold. The filter operates at an IF of 20 MHz, and is tunable in BW from 1.5 to 15 MHz, which makes it optimal to be used with varying pulse widths in the radar. Employing a total of 128 taps, the FIR filtermore » provides greater than 50-dB sharp attenuation in the stopband in order to minimize all out-of-band noise in the low signal-to-noise received radar signal. Fabricated in a 0.18-μm silicon on insulator CMOS process, the proposed filter consumes approximately 3.5 mW/tap with a 1.8-V supply. Finally, a 20-MHz two-tone measurement with 200-kHz tone separation shows IIP3 greater than 8.5 dBm.« less

  2. A 128-Tap Highly Tunable CMOS IF Finite Impulse Response Filter for Pulsed Radar Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincey, John Stephen; Su, Eric C.; Silva-Martinez, Jose

    A configurable-bandwidth (BW) filter is presented in this paper for pulsed radar applications. Also, to eliminate dispersion effects in the received waveform, a finite impulse response (FIR) topology is proposed, which has a measured standard deviation of an in-band group delay of 11 ns that is primarily dominated by the inherent, fully predictable delay introduced by the sample-and-hold. The filter operates at an IF of 20 MHz, and is tunable in BW from 1.5 to 15 MHz, which makes it optimal to be used with varying pulse widths in the radar. Employing a total of 128 taps, the FIR filtermore » provides greater than 50-dB sharp attenuation in the stopband in order to minimize all out-of-band noise in the low signal-to-noise received radar signal. Fabricated in a 0.18-μm silicon on insulator CMOS process, the proposed filter consumes approximately 3.5 mW/tap with a 1.8-V supply. Finally, a 20-MHz two-tone measurement with 200-kHz tone separation shows IIP3 greater than 8.5 dBm.« less

  3. Objective methods for achieving an early prediction of the effectiveness of regional block anesthesia using thermography and hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Landman, Mattijs; de Roode, Rowland; Noordmans, Herke J.; Verdaasdonk, Rudolf M.

    2011-03-01

    An objective method to measure the effectiveness of regional anesthesia can reduce time and unintended pain inflicted to the patient. A prospective observational study was performed on 22 patients during a local anesthesia before undergoing hand surgery. Two non-invasive techniques thermal and oxygenation imaging were applied to observe the region affected by the peripheral block and the results were compared to the standard cold sensation test. The supraclavicular block was placed under ultrasound guidance around the brachial plexus by injecting 20 cc Ropivacaine. The sedation causes a relaxation of the muscles around the blood vessels resulting in dilatation and hence an increase of blood perfusion, skin temperature and skin oxygenation in the lower arm and hand. Temperatures were acquired with an IR thermal camera (FLIR ThermoCam SC640). The data were recorded and analyzed with the ThermaCamTMResearcher and Matlab software. Narrow band spectral images were acquired at selected wavelengths with a CCD camera either combined with a Liquid Crystal Tunable Filter (420-730 nm) or a tunable hyper-wavelength LED light source (450-880nm). Concentration changes of oxygenated and deoxygenated hemoglobin in the dermis of the skin were calculated using the modified Lambert Beer equation. Both imaging methods showed distinct oxygenation and temperature differences at the surface of the skin of the hand with a good correlation to the anesthetized areas. A temperature response was visible within 5 minutes compared to the standard of 30 minutes. Both non-contact methods show to be more objective and can have an earlier prediction for the effectiveness of the anesthetic block.

  4. Integrated programmable photonic filter on the silicon-on-insulator platform.

    PubMed

    Liao, Shasha; Ding, Yunhong; Peucheret, Christophe; Yang, Ting; Dong, Jianji; Zhang, Xinliang

    2014-12-29

    We propose and demonstrate a silicon-on-insulator (SOI) on-chip programmable filter based on a four-tap finite impulse response structure. The photonic filter is programmable thanks to amplitude and phase modulation of each tap controlled by thermal heaters. We further demonstrate the tunability of the filter central wavelength, bandwidth and variable passband shape. The tuning range of the central wavelength is at least 42% of the free spectral range. The bandwidth tuning range is at least half of the free spectral range. Our scheme has distinct advantages of compactness, capability for integrating with electronics.

  5. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  6. In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries, and squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Hemmer, Joerg; Tromberg, Bruce J.; Steiner, Rudolf W.

    1994-05-01

    Certain bacteria are able to synthesize metal-free fluorescent porphyrins and can therefore be detected by sensitive autofluorescence measurements in the red spectral region. The porphyrin-producing bacterium Propionibacterium acnes, which is involved in the pathogenesis of acne vulgaris, was localized in human skin. Spectrally resolved fluorescence images of bacteria distribution in the face were obtained by a slow-scan CCD camera combined with a tunable liquid crystal filter. The structured autofluorescence of dental caries and dental plaque in the red is caused by oral bacteria, like Bacteroides or Actinomyces odontolyticus. `Caries images' were created by time-gated imaging in the ns-region after ultrashort laser excitation. Time-gated measurements allow the suppression of backscattered light and non-porphyrin autofluorescence. Biopsies of oral squamous cell carcinoma exhibited red autofluorescence in necrotic regions and high concentrations of the porphyrin-producing bacterium Pseudomonas aerigunosa. These studies suggest that the temporal and spectral characteristics of bacterial autofluorescence can be used in the diagnosis and treatment of a variety of diseases.

  7. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.

  8. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the resonance quality factors (Q values) of the TM modes are higher. If Q values were not of major concern, it would be better to use the TE modes because the electro-optical shifts of the TE modes are 3 times those of the TM modes.

  9. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition,more » it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.« less

  10. Handheld tunable focus confocal microscope utilizing a double-clad fiber coupler for in vivo imaging of oral epithelium

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory; Hinsdale, Taylor; Cuenca, Rodrigo; Cheng, Yi-Shing Lisa; Wright, John M.; Rees, Terry D.; Jo, Javier A.; Maitland, Kristen C.

    2017-05-01

    A reflectance confocal endomicroscope with double-clad fiber coupler and electrically tunable focus lens is applied to imaging of the oral mucosa. The instrument is designed to be lightweight and robust for clinical use. The tunable lens allows axial scanning through >250 μm in the epithelium when the probe tip is placed in contact with tissue. Images are acquired at 6.6 frames per second with a field of view diameter up to 850 μm. In vivo imaging of a wide range of normal sites in the oral cavity demonstrates the accessibility of the handheld probe. In vivo imaging of clinical lesions diagnosed as inflammation and dysplasia illustrates the ability of reflectance confocal endomicroscopy to image cellular changes associated with pathology.

  11. Tunable Light-Guide Image Processing Snapshot Spectrometer (TuLIPSS) for Earth and Moon Observations

    NASA Astrophysics Data System (ADS)

    Tkaczyk, T. S.; Alexander, D.; Luvall, J. C.; Wang, Y.; Dwight, J. G.; Pawlowsk, M. E.; Howell, B.; Tatum, P. F.; Stoian, R.-I.; Cheng, S.; Daou, A.

    2018-02-01

    A tunable light-guide image processing snapshot spectrometer (TuLIPSS) for Earth science research and observation is being developed through a NASA instrument incubator project with Rice University and Marshall Space Flight Center.

  12. Monolithically Integrated Reconfigurable Filters for Microwave Photonic Links

    NASA Astrophysics Data System (ADS)

    Norberg, Erik J.

    For the purposes of commercial communication and military electronic warfare and radar alike, there is an increasing interest in RF systems that can handle very wide instantaneous bandwidths at high center frequencies. Optical signal processing has the capability to reduce latency, improve size, weight and power (SwAP) performance, and overcome the inherent bandwidth limitations of electronic counterparts. By rapidly pre-filtering wide bandwidth microwave signals in the optical domain, the analog-to-digital conversion (ADC) and subsequent digital signal processing (DSP) can be significantly relieved. Compared to channelizing and add/drop filters for wavelength division multiplexing (WDM) applications, the microwave filter application is much more challenging as it requires a more versatile filter, ideally with tunability in both frequency and bandwidth. In this work such a filter was developed using integrated photonics. By integrating the filter on a single InP chip, the stability required for coherent filtering is met, while the active integration platform offers a flexible filter design and higher tolerance in the coupler and fabrication specifications. Using an entirely deep etched fabrication with a single blanket regrowth, a simple fabrication with high yield is achieved. The reconfigurable filter is designed as an array of uncoupled filter stages with each filter stage reconfigurable as a filter pole or zero with arbitrary magnitude and phase. This gives rise to a flexible ffilter synthesis, much like an optical version of DSP filters. Flat-topped bandpass filters are demonstrated with frequency tunability over 30 GHz, bandwidth adjustable between 1.9 and 5.4 GHz, and stopband rejection >32 dB. In order to meet the stringent spurious-free dynamic range (SFDR) requirements of the microwave application, a novel epitaxial layer integration platform is developed. Optimized for high optical saturation power and low propagation loss, it produces semiconductor optical amplifiers (SOAs) with low distortion and noise. Utilizing a novel characterization method of RF signal distortion for photonic devices, SOAs with state-of-the art SFDR in the range of 115 dB--Hz2/3 and a noise figure of 3.8 dB for 6 dB gain, is demonstrated. It is projected that this platform could ultimately provide integration for photonic microwave filter applications.

  13. Acousto-Optic Imaging Spectrometers for Mars Surface Science

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Blaney, D. L.

    2000-01-01

    NASA's long term plan for Mars sample collection and return requires a highly streamlined approach for spectrally characterizing a landing site, documenting the mineralogical make-up of the site and guiding the collections of samples which represent the diversity of the site. Ideally, image data should be acquired at hundreds of VIS and IR wavelengths, in order to separately distinguish numerous anticipated species, using principal component analysis and linear unmixing. Cameras with bore-sighted point spectrometers can acquire spectra of isolated scene elements, but it requires 10(exp 2) to 10(exp 2) successive motions and precise relative pointing knowledge in order to create a single data cube which qualifies as a spectral map. These and other competing science objectives have to be accomplished within very short lander/rover operational lifetime (a few sols). True, 2-D imaging spectroscopy greatly speeds up the data acquisition process, since the spectra of all pixels in the scene are collected at once. This task can be accomplished with cameras that use electronically tunable acousto-optic tunable filters (AOTFs) as the optical tuning element. AOTFs made from TeO2 are now a mature technology, and operate at wavelengths from near-UV to about 5 microns. Because of incremental improvements in the last few years, present generation devices are rugged, radiation-hard and operate at temperatures down to at least 150K so they can be safely integrated into the ambient temperature optics of in-situ instruments such as planetary or small-body landers. They have been used for ground-based astronomy, and were also baselined for the ST-4 Champollion IR comet lander experiment (CIRCLE), prior to cancellation of the ST-4 mission last year. AIMS (for Acousto-optic Imaging spectrometer), is a prototype lander instrument which is being built at GSFC with support by the NASA OSS Advanced Technologies and Mission Studies, Mars Instrument Definition and Development Program (MIDP). AIMS is capable of tunable spectroscopic imaging of surface mineralogy, ices and dust between 0.5 and 2.4 microns, at a resolving power (lambda/delta lambda) which is typically several hundred. The design spatial resolution, similar to IMP and SSI, will allow mapping at scales down to about 1 cm.

  14. Hyperspectral imaging with near-infrared-enabled mobile phones for tissue oximetry

    NASA Astrophysics Data System (ADS)

    Lin, Jonathan L.; Ghassemi, Pejhman; Chen, Yu; Pfefer, Joshua

    2018-02-01

    Hyperspectral reflectance imaging (HRI) is an emerging clinical tool for characterizing spatial and temporal variations in blood perfusion and oxygenation for applications such as burn assessment, wound healing, retinal exams and intraoperative tissue viability assessment. Since clinical HRI-based oximeters often use near-infrared (NIR) light, NIR-enabled mobile phones may provide a useful platform for future point-of-care devices. Furthermore, quantitative NIR imaging on mobile phones may dramatically increase the availability and accessibility of medical diagnostics for low-resource settings. We have evaluated the potential for phone-based NIR oximetry imaging and elucidated factors affecting performance using devices from two different manufacturers, as well as a scientific CCD. A broadband light source and liquid crystal tunable filter were used for imaging at 10 nm bands from 650 to 1000 nm. Spectral sensitivity measurements indicated that mobile phones with standard NIR blocking filters had minimal response beyond 700 nm, whereas one modified phone showed sensitivity to 800 nm and another to 1000 nm. Red pixel channels showed the greatest sensitivity up to 800 nm, whereas all channels provided essentially equivalent sensitivity at longer wavelengths. Referencing of blood oxygenation levels was performed with a CO-oximeter. HRI measurements were performed using cuvettes filled with hemoglobin solutions of different oxygen saturation levels. Good agreement between absorbance spectra measured with mobile phone and a CCD cameras were seen for wavelengths below 900 nm. Saturation estimates showed root-mean-squared-errors of 5.2% and 4.5% for the CCD and phone, respectively. Overall, this work provides strong evidence of the potential for mobile phones to provide quantitative spectral imaging in the NIR for applications such as oximetry, and generates practical insights into factors that impact performance as well as test methods for performance assessment.

  15. Latitudinal Variations In Vertical Cloud Structure Of Jupiter As Determined By Ground- based Observation With Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kasaba, Y.; Takahashi, Y.; Murata, I.; Uno, T.; Tokimasa, N.; Sakamoto, M.

    2008-12-01

    We conducted ground-based observation of Jupiter with the liquid crystal tunable filter (LCTF) and EM-CCD camera in two methane absorption bands (700-757nm, 872-950nm at 3 nm step: total of 47 wavelengths) to derive detailed Jupiter's vertical cloud structure. The 2-meter reflector telescope at Nishi-Harima astronomical observatory in Japan was used for our observation on 26-30 May, 2008. After a series of image processing (composition of high quality images in each wavelength and geometry calibration), we converted observed intensity to absolute reflectivity at each pixel using standard star. As a result, we acquired Jupiter's data cubes with high-spatial resolution (about 1") and narrow band imaging (typically 7nm) in each methane absorption band by superimposing 30 Jupiter's images obtained in short exposure time (50 ms per one image). These data sets enable us to probe different altitudes of Jupiter from 100 mbar down to 1bar level with higher vertical resolution than using convectional interference filters. To interpret observed center-limb profiles, we developed radiative transfer code based on layer adding doubling algorithm to treat multiple scattering of solar light theoretically and extracted information on aerosol altitudes and optical properties using two-cloud model. First, we fit 5 different profiles simultaneously in continuum data (745-757 nm) to retrieve information on optical thickness of haze and single scattering albedo of cloud. Second, we fit 15 different profiles around 727nm methane absorption band and 13 different profiles around 890 nm methane absorption band to retrieve information on the aerosol altitude location and optical thickness of cloud. In this presentation, we present the results of these modeling simulations and discuss the latitudinal variations of Jupiter's vertical cloud structure.

  16. Tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays for the coupling between localized and delocalized surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Xie, Ze Tao; Ni, Feng Chao; Ma, Qi Chang; Tao, Jin; Li, Jian; Meng, Hongyun; Huang, Xu Guang

    2018-07-01

    Graphene metasurface has attracted a lot of attentions due to the unique tunability for exotic electromagnetic properties. In this work, we propose and numerically investigate a tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays. The variation of transmission at different substrate thickness and the coupled mode are analyzed. It is shown that the Rabi-like splitting can be achieved by the coupling between localized and delocalized graphene surface plasmon polaritons. Tunable coupling strength and positions with different gate-voltages have been discussed. The effect of relaxation time and oblique incidences to resonant responses are also investigated. Additionally, we find an optical analogue of a spring, where the spectral dip vibrates around its equilibrium position at a certain wavelength. Our study suggests that the proposed structure is potentially attractive for realization of tunable double-channel filter, optical switch, and variable optical attenuator based on the graphene metasurface.

  17. Current Status of Thin Film (Ba,Sr) TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romananofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable microwave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg. at 18 GHz and a figure of merit of 74.3 deg./dB). Issues of postannealing, Mn-doping and Ba(x)Sr(1-x)TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  18. Current Status of Thin Film (Ba,Sr)TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable micro-wave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg at 18 GHz and a figure of merit of 74.3 deg/dB). Issues of post-annealing, Mn-doping and Ba(x)Sr(1-x) TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  19. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    PubMed

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  20. Tunable optical filter based on Sagnac phase-shift using single optical ring resonator

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Asghari, Fatemeh

    2010-02-01

    In this paper, a single optical ring resonator connected to a Sagnac loop is used to demonstrate theoretically a novel narrow band optical filter response that is based on Sagnac phase-shift Δ φ. The given filter structure permits the Sagnac rotation to control the filter response. It is shown that by changing the Sagnac rotation rate, we can tune the filter response for desired bandwidths. To increase the wavelength selectivity of the filter, the Sagnac phase-shift should be as small as possible that is limited by the loop length. For Δ φ=0.1 rad, the obtained FWHM is 2.63 MHz for tuning loop length of 2 m. The simulation response agrees fairly with the recently reported experimental result.

  1. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  2. A miniature electronically tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    O'Sullivan, B.; Pietraszewski, K. A. R.

    A miniature electronically tunable, servo controlled Fabry-Perot filter for use in fiber optic sensors, spectroscopy, data and telecommunications, and laser tuning has been developed. The servo control system utilizes capacitance micrometry and piezo technology to maintain stable cavity mirror separations with a noise of less than 0.9nm rms while enabling random access tuning to any wavelength in the design range in less than 0.5ms. Free spectral ranges from 75,000GHz to 300GHz (560nm to 1.5nm at 1500nm wavelength) are typical with finesses between 3 and 300. At present the device has been made commercially available in two formats: fiber optically coupled, with single-mode or multimode fiber, or with a 3mm clear aperture. The design and performance of the instrument are presented along with some typical application examples.

  3. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect

    DOE PAGES

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; ...

    2016-09-26

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a “pinched” p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. In conclusion, thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%–90% transition time, and withmore » efficiency of 3.2 μW/GHz.« less

  4. PLZT Electrooptic Ceramic Photonic Devices for Surface-Normal Operation in Trenches Cut Across Arrays of Optical Fiber

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Katsuhiko

    2005-03-01

    Simple Pb_1-x La_x(Zr_y Ti_z)_1-x/4 O3 (PLZT) electrooptic ceramic photonic device arrays for surface-normal operation have been developed for application to polarization-controller arrays and Fabry-Pérot tunable filter arrays. These arrays are inserted in trenches cut across fiber arrays. Each element of the arrayed structure corresponds to one optical beam and takes the form of a cell. Each sidewall of the cell (width: 50-80 μm) is coated to form an electrode. The arrays have 16 elements at a pitch of 250 μm. The phase modulator has about 1 dB of loss and a half-wavelength voltage of 120 V. A cascade of two PLZT phase modulators (thickness: 300 μm), with each attached to a polyimide lambda/2 plate (thickness:15 μm), is capable of converting an arbitrary polarization to the transverse-electric (TE) or transverse-magnetic (TM) polarization. The response time is 1 μs. The Fabry-Pérot tunable filters have a thickness of 50 μm . The front and back surfaces of each cell are coated by 99%-reflective mirror. The free spectral range (FSR) of the filters is about 10 nm, tunable range is about 10 nm, loss is 2.2 dB, and finesse is 150. The tuning speed of these devices is high, taking only 1 μs.

  5. AOTF-based near-infrared imaging spectrometer for rapid identification of camouflaged target

    NASA Astrophysics Data System (ADS)

    Gao, Zhifan; Zeng, Libo; Wu, Qiongshui

    2014-11-01

    Acousto-optic tunable filter (AOTF) is a novel device for spectrometer. The electronic tunability qualifies it with the most compelling advantages of higher wavelength scan rate over the conventional spectrometers that are mechanically tuned, and the feature of large angular aperture makes the AOTF particularly suitable in imaging applications. In this research, an AOTF-based near-infrared imaging spectrometer was developed. The spectrometer consists of a TeO2 AOTF module, a near-infrared imaging lens assembly, an AOTF controller, an InGaAs array detector, an image acquisition card, and a PC. A precisely designed optical wedge is placed at the emergent surface of the AOTF to deal with the inherent dispersion of the TeO2 that may degrade the spatial resolution. The direct digital synthesizer (DDS) techniques and the phase locked loop (PLL) techniques are combined for radio frequency (RF) signal synthesis. The PLL is driven by the DDS to take advantage of both their merits of high frequency resolution, high frequency scan rate and strong spurious signals resistance capability. All the functions relating to wavelength scan, image acquisition, processing, storge and display are controlled by the PC. Calibration results indicate that the spectral range is 898~1670 nm, the spectral resolution is 6.8 nm(@1064 nm), the wavelength separation between frames in the spectral image assembly is 1.0 nm, and the processing time of a single image is less than 1 ms if a TV camera with 640×512 detector is incorporated. A prototype device was assembled to test the capability of differentiating samples with similar appearances, and satisfactory results were achieved. By this device, the chemical compositions and the distribution information can be obtained simultaneously. This system has the most advantages of no moving parts, fast wavelength scan and strong vibration resistance. The proposed imaging spectrometer has a significant application prospect in the area of identification of camouflaged target from complex backgrounds. In addition, only the objective lens and its accessories are required to be replaced for its use in microscopic spectral imaging system, which may be popularized to a large number of other possible applications.

  6. Software-defined microwave photonic filter with high reconfigurable resolution

    PubMed Central

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-01-01

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062

  7. Software-defined microwave photonic filter with high reconfigurable resolution.

    PubMed

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-10-19

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.

  8. On the Relation Between Facular Bright Points and the Magnetic Field

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Shine, Richard; Tarbell, Theodore; Title, Alan; Scharmer, Goran

    1994-12-01

    Multi-spectral images of magnetic structures in the solar photosphere are presented. The images were obtained in the summers of 1993 and 1994 at the Swedish Solar Telescope on La Palma using the tunable birefringent Solar Optical Universal Polarimeter (SOUP filter), a 10 Angstroms wide interference filter tuned to 4304 Angstroms in the band head of the CH radical (the Fraunhofer G-band), and a 3 Angstroms wide interference filter centered on the Ca II--K absorption line. Three large format CCD cameras with shuttered exposures on the order of 10 msec and frame rates of up to 7 frames per second were used to create time series of both quiet and active region evolution. The full field--of--view is 60times 80 arcseconds (44times 58 Mm). With the best seeing, structures as small as 0.22 arcseconds (160 km) in diameter are clearly resolved. Post--processing of the images results in rigid coalignment of the image sets to an accuracy comparable to the spatial resolution. Facular bright points with mean diameters of 0.35 arcseconds (250 km) and elongated filaments with lengths on the order of arcseconds (10(3) km) are imaged with contrast values of up to 60 % by the G--band filter. Overlay of these images on contemporal Fe I 6302 Angstroms magnetograms and Ca II K images reveals that the bright points occur, without exception, on sites of magnetic flux through the photosphere. However, instances of concentrated and diffuse magnetic flux and Ca II K emission without associated bright points are common, leading to the conclusion that the presence of magnetic flux is a necessary but not sufficient condition for the occurence of resolvable facular bright points. Comparison of the G--band and continuum images shows a complex relation between structures in the two bandwidths: bright points exceeding 350 km in extent correspond to distinct bright structures in the continuum; smaller bright points show no clear relation to continuum structures. Size and contrast statistical cross--comparisons compiled from measurements of over two-thousand bright point structures are presented. Preliminary analysis of the time evolution of bright points in the G--band reveals that the dominant mode of bright point evolution is fission of larger structures into smaller ones and fusion of small structures into conglomerate structures. The characteristic time scale for the fission/fusion process is on the order of minutes.

  9. Wide-aperture TeO₂ AOTF at low temperatures: operation and survival.

    PubMed

    Mantsevich, S N; Korablev, O I; Kalinnikov, Yu K; Ivanov, A Yu; Kiselev, A V

    2015-05-01

    The effect of temperature on the performance in a wide-angle paratellurite acousto-optic tunable filter (AOTF) is analyzed on the example of two different AOTF configurations. The present study is a by-product of the AOTF characterization for space-borne applications. The two AOTFs serve as dispersion elements in spectrometers for Moon and Mars space missions. The operation of the AO filters was tested in the range of -50° to+40°C; we have also demonstrated the survival of an AOTF device at -130°C. The phase matching ultrasound frequency varies with temperature within 2.5×10(-5) K(-1) and 6.6×10(-5) K(-1). We link this temperature shift to elastic characteristics of the TeO2, and demonstrate that it is mostly explained by the temperature modification of the slow acoustic wave velocity. We point out the best reference describing experimental results (Silvestrova et al., 1987). A generalization is made for all wide-angle acousto-optic tunable filters based on tellurium dioxide crystal. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO 3 overlay and intermediate coupling layer

    NASA Astrophysics Data System (ADS)

    Sohn, Kyung-Rak; Song, Jae-Won

    2002-03-01

    Using a side-polished single-mode fiber covered with a polished LiNbO 3 overlay and an intermediate coupling layer, tunable fiber-optic comb filters are demonstrated. The device behaviors based on the modal properties of the fiber and the planar LiNbO 3 waveguide are analyzed by two dimensional beam propagation methods (2-D BPM) and discussed the role of an intermediate coupling layer in terms of coupling efficiency. We also show that the thermo-optic effects of this layer can be utilized to tune the comb filter. When the polished x-cut LiNbO 3 with 200 μm thickness is used as a multimode overlay waveguide, the comb output spectra with free spectral range of 4 nm are measured in 1550 nm wavelength range. The tuning rate as a function of the refractive index of an intermediate coupling layer, Δλ/ Δnb, is about -0.129 nm/-0.001. The experimental results are in good agreement with the calculated results.

  11. Handheld tunable focus confocal microscope utilizing a double-clad fiber coupler for in vivo imaging of oral epithelium

    PubMed Central

    Olsovsky, Cory; Hinsdale, Taylor; Cuenca, Rodrigo; Cheng, Yi-Shing Lisa; Wright, John M.; Rees, Terry D.; Jo, Javier A.; Maitland, Kristen C.

    2017-01-01

    Abstract. A reflectance confocal endomicroscope with double-clad fiber coupler and electrically tunable focus lens is applied to imaging of the oral mucosa. The instrument is designed to be lightweight and robust for clinical use. The tunable lens allows axial scanning through >250  μm in the epithelium when the probe tip is placed in contact with tissue. Images are acquired at 6.6 frames per second with a field of view diameter up to 850  μm. In vivo imaging of a wide range of normal sites in the oral cavity demonstrates the accessibility of the handheld probe. In vivo imaging of clinical lesions diagnosed as inflammation and dysplasia illustrates the ability of reflectance confocal endomicroscopy to image cellular changes associated with pathology. PMID:28541447

  12. Tunable Dielectric Materials and Devices for Broadband Wireless Communications

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Miranda, Felix A.; Dayton, James A. (Technical Monitor)

    1998-01-01

    Wireless and satellite communications are a rapidly growing industries which are slated for explosive growth into emerging countries as well as countries with advanced economies. The dominant trend in wireless communication systems is towards broadband applications such as multimedia file transfer, video transmission and Internet access. These applications require much higher data transmission rates than those currently used for voice transmission applications. To achieve these higher data rates, substantially larger bandwidths and higher carrier frequencies are required. A key roadblock to implementing these systems at K-band (18-26.5 GHz) and Ka-band (26.5-40 GHz) is the need to develop hardware which meets the requirements for high data rate transmission in a cost effective manner. In this chapter, we report on the status of tunable dielectric thin films for devices, such as resonators, filters, phased array antennas, and tunable oscillators, which utilize nonlinear tuning in the control elements. Paraelectric materials such as Barium Strontium Titanate ((Ba, Sr)TiO3) have dielectric constants which can be tuned by varying the magnitude of the electric field across the material. Therefore, these materials can be used to control the frequency and/or phase response of various devices such as electronically steerable phased array antennas, oscillators, and filters. Currently, tunable dielectric devices are being developed for applications which require high tunability, low loss, and good RF power-handling capabilities at microwave and millimeter-wave frequencies. These properties are strongly impacted by film microstructure and device design, and considerable developmental work is still required. However, in the last several years enormous progress has occurred in this field, validating the potential of tunable dielectric technology for broadband wireless communication applications. In this chapter we summarize how film processing techniques, microwave test configurations, and prototype devices have combined to drive the field to its current stage of development.

  13. Bandwidth tunable amplifier for recording biopotential signals.

    PubMed

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  14. High-speed wavelength switching of tunable MEMS vertical cavity surface emitting laser by ringing suppression

    NASA Astrophysics Data System (ADS)

    Inoue, Shunya; Nishimura, Shun; Nakahama, Masanori; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio

    2018-04-01

    For use in wavelength division multiplexing (WDM) with high-speed wavelength routing functions, the fast wavelength switching of tunable lasers is a key function. A tunable MEMS vertical cavity surface emitting laser (VCSEL) is a good candidate as a light source for this purpose. The cantilever in MEMS VCSELs has a high mechanical resonance frequency thanks to its small size, but the switching time is limited by the ringing of the cantilever structure. In this paper, we analyzed the mechanical behavior of a cantilever MEMS mirror and demonstrated ringing-free operation with an engineered voltage signal. The applied voltage waveform was optimized in a two-step format and we experimentally obtained ringing free wavelength switching. We measured the transient response of the wavelength by inserting a tunable filter, exhibiting the settling time of less than 2.5 µs, which corresponds to a half period of the cantilever resonance frequency.

  15. Development of an eye-safe solid-state tunable laser transmitter in the 1.4-1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications

    NASA Astrophysics Data System (ADS)

    Petrova-Mayor, Anna; Wulfmeyer, Volker; Weibring, Petter

    2008-04-01

    An experimental optimization of the efficiency of a gain switched tunable Cr4+:YAG laser at 10 Hz is described. The thermal lensing during pulsed operation was measured. Optimal performance occurred at a crystal temperature of 34 °C and resulted in an output energy of ~7 mJ and a pulse duration of ~35 ns. Tunability in the range of 1350-1500 nm, spectral linewidth of ~200 GHz, and M2<4 are demonstrated. The main laser material parameters are estimated. Such a laser could be employed in a laboratory-based nonscanning lidar system if a narrowband birefringent filter is installed. The tunability will permit the improvement of the Cr4+:YAG transmitter for water-vapor differential absorption lidar if injection seeding is applied.

  16. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  17. Perovskite Superlattices as Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  18. Computational Design of Tunable UV-Vis-IR Filters Based on Silver Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Waters, Michael; Shi, Guangsha; Kioupakis, Emmanouil

    We propose design strategies to develop selective optical filters in the UV-Vis-IR spectrum using the surface plasmon response of silver nanoparticle arrays. Our finite-difference time-domain simulations allow us to rapidly evaluate many nanostructures comprising simple geometries while varying their shape, height, width, and spacing. Our results allow us to identify trends in the filtering spectra as well as the relative amount of absorption and reflection. Optical filtering with nanoparticles is applicable to any transparent substrate and can be easily adapted to existing manufacturing processes while keeping the total cost of materials low. This work was supported by Guardian Industries Corp.

  19. A hyperspectral image optimizing method based on sub-pixel MTF analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Li, Kai; Wang, Jinqiang; Zhu, Yajie

    2015-04-01

    Hyperspectral imaging is used to collect tens or hundreds of images continuously divided across electromagnetic spectrum so that the details under different wavelengths could be represented. A popular hyperspectral imaging methods uses a tunable optical band-pass filter settled in front of the focal plane to acquire images of different wavelengths. In order to alleviate the influence of chromatic aberration in some segments in a hyperspectral series, in this paper, a hyperspectral optimizing method uses sub-pixel MTF to evaluate image blurring quality was provided. This method acquired the edge feature in the target window by means of the line spread function (LSF) to calculate the reliable position of the edge feature, then the evaluation grid in each line was interpolated by the real pixel value based on its relative position to the optimal edge and the sub-pixel MTF was used to analyze the image in frequency domain, by which MTF calculation dimension was increased. The sub-pixel MTF evaluation was reliable, since no image rotation and pixel value estimation was needed, and no artificial information was introduced. With theoretical analysis, the method proposed in this paper is reliable and efficient when evaluation the common images with edges of small tilt angle in real scene. It also provided a direction for the following hyperspectral image blurring evaluation and the real-time focal plane adjustment in real time in related imaging system.

  20. Use of dimensionality to enhance tunable microwave dielectrics

    NASA Astrophysics Data System (ADS)

    Schlom, D. G.; Lee, Che-Hui; Haislmaier, R.; Vlahos, E.; Gopalan, V.; Birol, T.; Zhu, Y.; Kourkoutis, L. F.; Benedek, N.; Kim, Y.; Brock, J. D.; Muller, D. A.; Fennie, C. J.; Orloff, N. D.; Booth, J. C.; Goian, V.; Kamba, S.; Biegalski, M. D.; Bernhagen, M.; Uecker, R.; Xi, X. X.; Takeuchi, I.

    2012-02-01

    The miniaturization and integration of frequency-agile microwave circuits---tunable filters, resonators, phase shifters and more---with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at GHz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems, e.g., BaxSr1-xTiO3, have a paraelectric-to-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss---Srn+1TinO3n+1 phases---where in-plane crystallographic shear (SrO)2 faults provide an alternative to point defects for accommodating non-stoichiometry. In this talk we will establish both experimentally and theoretically the emergence of a ferroelectric and highly tunable ground state in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 40 GHz. With increasing n the (SrO)2 faults are separated further than the ferroelectric coherence length perpendicular to the in-plane polarization, enabling tunability with a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

  1. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  2. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  3. SNR of swept SLEDs and swept lasers for OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Johnson, Bart C.; Atia, Walid; Flanders, Dale; Kuznetsov, Mark; Goldberg, Brian; Kemp, Nate; Whitney, Peter

    2016-03-01

    A back-to-back comparison of a tunable narrow-band SLED (TSLED) and a swept laser are made for OCT applications. Both are 1310 nm sources sweeping at 50 kHz over a 100 nm tuning range and have similar coherence lengths. The TSLED consists of a seed SOA and two amplification SOAs. The ASE is filtered twice by a tunable MEMS Fabry Perot in a polarization multiplexed double-pass arrangement on either side of the middle SOA. This allows very long coherence lengths to be achieved. A fundamental issue with a SLED is that the RIN is proportional to 1/Linewidth, meaning that the longer the coherence length, the higher the RIN. High RIN also leads to increased clock jitter. Most swept source SNR calculations assume that the noise is independent of the amplitude of the signal light: The higher the signal, the higher the SNR. We show that in the case of the TSLED, that the high signal RIN and clock jitter give rise to additional noises that scale with signal power. This leads to an SNR limit in the case of the TSLED: The higher the signal, the higher the noise, so the SNR reaches a limit. While the TSLED has respectable sensitivity, the SNR limit causes noise streaks in an image where the A-line has a high reflectivity point. The laser, which is shot noise limited, does not exhibit this effect. This is illustrated with SNR data and side-by-side images taken with the two sources.

  4. Prototyping of MWIR MEMS-based optical filter combined with HgCdTe detector

    NASA Astrophysics Data System (ADS)

    Kozak, Dmitry A.; Fernandez, Bautista; Velicu, Silviu; Kubby, Joel

    2010-02-01

    In the past decades, there have been several attempts to create a tunable optical detector with operation in the infrared. The drive for creating such a filter is its wide range of applications, from passive night vision to biological and chemical sensors. Such a device would combine a tunable optical filter with a wide-range detector. In this work, we propose using a Fabry-Perot interferometer centered in the mid-wave infrared (MWIR) spectrum with an HgCdTe detector. Using a MEMS-based interferometer with an integrated Bragg stack will allow in-plane operation over a wide range. Because such devices have a tendency to warp, creating less-than-perfect optical surfaces, the Fabry-Perot interferometer is prototyped using the SOI-MUMPS process to ensure desirable operation. The mechanical design is aimed at optimal optical flatness of the moving membranes and a low operating voltage. The prototype is tested for these requirements. An HgCdTe detector provides greater performance than a pyroelectic detector used in some previous work, allowing for lower noise, greater detection speed and higher sensitivity. Both a custom HgCdTe detector and commercially available pyroelectric detector are tested with commercial optical filter. In previous work, monolithic integration of HgCdTe detectors with optical filters proved to be problematic. Part of this work investigates the best approach to combining these two components, either monolithically in HgCdTe or using a hybrid packaging approach where a silicon MEMS Fabry-Perot filter is bonded at low temperature to a HgCdTe detector.

  5. High-resolution 3D laser imaging based on tunable fiber array link

    NASA Astrophysics Data System (ADS)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  6. Silicon graphene Bragg gratings.

    PubMed

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  7. A widely tunable dual-wavelength based on a microring resonator filter device

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Tiu, Z. C.; Ooi, S. I.; Aidit, S. N.; Alizadeh, F.; Yupapin, P.

    2018-06-01

    We demonstrate a stable, tunable dual-wavelength (DW) generated by launching an in-house built supercontinuum (SC) into an add-drop microring resonator (MRR). The MRR is fabricated from a silicon–nitrogen–oxygen substrate. The frequency comb of the filtered SC is obtained with an experimental free spectral range (FSR) from 0.39 to 0.46 nm corresponding to 48.7–57 GHz within the wavelength range 1520–1660 nm. The stability of a generated DW within the ranges 1561.16 and 1561.57 nm over 120 min is examined, where high, stable DW with a very low power fluctuation is achieved. This work has demonstrated the use of waveguide based MRR in the fiber laser system, and a remarkable flat and low power fluctuations frequency comb is achieved using the in-house built SC source and MRR.

  8. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  9. Switchable and tunable dual-wavelength Er-doped fiber ring laser with single-frequency lasing wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan

    2018-02-01

    We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.

  10. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter.

    PubMed

    Boutami, S; Ben Bakir, B; Leclercq, J-L; Letartre, X; Rojo-Romeo, P; Garrigues, M; Viktorovitch, P; Sagnes, I; Legratiet, L; Strassner, M

    2006-04-17

    The authors report a compact and highly selective tunable filter using a Fabry-Perot resonator combining a bottom micromachined 3-pair-InP/air-gap Bragg reflector with a top photonic crystal slab mirror. It is based on the coupling between radiated vertical cavity modes and waveguided modes of the photonic crystal. The full-width at half maximum (FWHM) of the resonance, as measured by microreflectivity experiments, is close to 1.5nm (around 1.55 microm). The presence of the photonic crystal slab mirror results in a very compact resonator, with a limited number of layers. The demonstrator was tuned over a 20nm range for a 4V tuning voltage, the FWHM being kept below 2.5nm. Bending of membranes is a critical issue, and better results (FWHM=0.5nm) should be obtained on the same structure if this technological point is fixed.

  11. Multi-Gigabit Fiber Optic Wide Area Network Development.

    DTIC Science & Technology

    1991-07-01

    to propagate, no modal dispersion can occur. In multimode fiber , a parabolic index profile across the core is often used so that mode travel times are...In the fiber plant, such as connectors, splices couplers, splitters, switches, tunable filters , wavelength division multiplexers and demultiplexers...losses are much higher, at around 0.5 dB, and are usually avoided in long-haul systems. 30 Some fiber plant components have a filtering effect on the

  12. Passively mode-locked tunable fiber laser in a soliton regime

    NASA Astrophysics Data System (ADS)

    Endo, Michiyuki; Ghosh, Gorachand

    1999-04-01

    A stable, passively mode-locked erbium-doped fiber resonator is developed to generate tunable optical pulses with durations of 270 - 325 fs in the soliton regime. The lasing wavelength is tuned continuously over a wavelength range of 60 nm by rotating a bulk band-pass filter inserted in the resonator with a repetition frequency of 45.4 MHz. We reduced the timing jitter by minimizing the intensity fluctuation of the pump source using a feedback loop and by controlling the influence of airflow and temperature fluctuation of the resonator in a sealed box.

  13. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].

    PubMed

    Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph

    2018-04-01

    Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.

  14. Convolution kernels for multi-wavelength imaging

    NASA Astrophysics Data System (ADS)

    Boucaud, A.; Bocchio, M.; Abergel, A.; Orieux, F.; Dole, H.; Hadj-Youcef, M. A.

    2016-12-01

    Astrophysical images issued from different instruments and/or spectral bands often require to be processed together, either for fitting or comparison purposes. However each image is affected by an instrumental response, also known as point-spread function (PSF), that depends on the characteristics of the instrument as well as the wavelength and the observing strategy. Given the knowledge of the PSF in each band, a straightforward way of processing images is to homogenise them all to a target PSF using convolution kernels, so that they appear as if they had been acquired by the same instrument. We propose an algorithm that generates such PSF-matching kernels, based on Wiener filtering with a tunable regularisation parameter. This method ensures all anisotropic features in the PSFs to be taken into account. We compare our method to existing procedures using measured Herschel/PACS and SPIRE PSFs and simulated JWST/MIRI PSFs. Significant gains up to two orders of magnitude are obtained with respect to the use of kernels computed assuming Gaussian or circularised PSFs. A software to compute these kernels is available at https://github.com/aboucaud/pypher

  15. Novel RF and microwave components employing ferroelectric and solid-state tunable capacitors for multi-functional wireless communication systems

    NASA Astrophysics Data System (ADS)

    Tombak, Ali

    The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.

  16. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  17. Tunable vertical cavity surface emitting lasers for use in the near infrared biological window

    NASA Astrophysics Data System (ADS)

    Kitsmiller, Vincent J.; Dummer, Matthew; Johnson, Klein; O'Sullivan, Thomas D.

    2018-02-01

    We present a near-infrared tunable vertical cavity surface emitting laser (VCSEL) based upon a unique electrothermally tunable microelectromechanical systems (MEMS) topside mirror designed for tissue imaging and sensing. At room temperature, the laser is tunable from 769-782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in frequency domain diffuse optical spectroscopy by measuring the optical properties of a tissue-simulating phantom over the tunable range. These results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.

  18. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.

    PubMed

    Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R

    2010-04-01

    Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  19. Bubble inductors: Pneumatic tuning of a stretchable inductor

    NASA Astrophysics Data System (ADS)

    Lazarus, Nathan; Bedair, Sarah S.

    2018-05-01

    From adaptive matching networks in power systems to channel selectable RF filters and circuitry, tunable inductors are fundamental components for circuits requiring reconfigurability. Here we demonstrate a new continuously tunable inductor based on physically stretching the inductor traces themselves. Liquid-metal-based stretchable conductors are wrapped around a pneumatic bubble actuator, allowing the inductor to be collapsed or expanded by application of pressure. In vacuum the bubble collapses, bringing the loop area to nearly zero, while positive pressure brings a dramatic increase in area and loop inductance. Using this approach, the inductor demonstrated in this work was able to achieve a tuning ratio of 2.6 with 1-2 second response time. With conductors available that can stretch by hundreds of percent, this technique is promising for very large tuning ratios in continuously tunable inductors.

  20. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao

    2017-02-01

    By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

  1. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenbo; Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8; Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra.more » Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.« less

  2. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  3. Investigation of active regions at high resolution by balloon flights of the Solar Optical Universal Polarimeter (SOUP)

    NASA Technical Reports Server (NTRS)

    Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.

    1989-01-01

    SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.

  4. Investigation of active regions at high resolution by balloon flights of the Solar Optical Universal Polarimeter (SOUP)

    NASA Astrophysics Data System (ADS)

    Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.

    SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.

  5. Optical filter based on Fabry-Perot structure using a suspension of goethite nanoparticles as electro-optic material

    NASA Astrophysics Data System (ADS)

    Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne

    2018-02-01

    We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.

  6. Post-focus Instrumentation Of The NST

    NASA Astrophysics Data System (ADS)

    Cao, Wenda; Gorceix, N.; Andic, A.; Ahn, K.; Coulter, R.; Goode, P.

    2009-05-01

    The NST (New Solar Telescope), 1.6 m clear aperture, off-axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on-line in the middle of the next decade. The NST will be outfitted with state-of-the-art post-focus instrumentation, which currently include Adaptive Optics system (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), Real-time Image Reconstruction System (RIRS), and Fast Imaging Solar Spectrograph (FISS). A 308 sub-aperture (349-actuator Deformable Mirror) AO system will enable diffraction limited observations over the NST's principal operating wavelengths from 0.4 µm through 1.7 µm. IRIM and VIM are Fabry-Perot based narrow-band tunable filter, which provide high resolution two-dimensional spectroscopic and polarimetric imaging in the near infrared and visible respectively. Using a 32-node parallel computing system, RIRS is capable of performing real-time image reconstruction with one image every minute. FISS is a collaboration between NJIT and Seoul National University to focus on chromosphere dynamics. This instruments would be installed this Summer as a part of the NST commissioning and the implementation of Nysmyth focus instrumentation. Key tasks including optical design, hardware/software integration and subsequent setup/testing on the NST, will be presented in this poster. First light images from the NST will be shown.

  7. A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Meng, Zhao; Liang, Ruisheng; Chen, Shijie; Ding, Li; Wang, Faqiang; Liu, Hongzhan; Meng, Hongyun; Wei, Zhongchao

    2018-05-01

    Dynamically tunable plasmonic multi-functional is particularly desirable for various nanotechnological applications. In this paper, graphene nano-sheet pair arrays separated by a substrate, which can act as a dynamically tunable plasmonic band stop filter with transmission at resonance wavelength lower than 1%, a high sensitivity refractive index sensor with sensitivity up to 4879 nm/RIU, figure of merit of 40.66 and a two circuit optical switch with the modulation depth up to 0.998, are proposed and numerically investigated. These excellent optical performances are calculated by using FDTD numerical modeling and theoretical deduction. Simulation results show that a slight variation of chemical potential of the graphene nano-sheet can achieve significant resonance wavelength shifts. In additional, the resonance wavelength and transmission of this plasmonic device can be tuned easily by two voltages owing to the simple patterned graphene. These studies may have great potential in fabrication of multi-functional and dynamically tunable optoelectronic integrated devices.

  8. Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature.

    PubMed

    Ummy, M A; Madamopoulos, N; Razani, M; Hossain, A; Dorsinville, R

    2012-10-08

    We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.

  9. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    PubMed

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, S.; Buurma, C.; Bergeson, J. D.; Kim, Tae Sung; Kubby, J.; Gupta, N.

    2014-05-01

    Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared (LWIR) bands to detect, identify and map complex chemical agents based on their rotational and vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or Fourier transform spectrometers to separate the incoming light into spectral bands. At present, these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems (MEMS)-based components opens the door for producing low-cost, reliable optical systems. We present here our work on developing a miniaturized IR imaging spectrometer by coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator (SOI) wafers using bulk micromachining technology. The fixed membrane is a standard silicon membrane, fabricated using back etching processes. The movable membrane is implemented as an X-beam structure to improve mechanical stability. The geometries of the distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are determined by modeling the spectral performance of the FPFs as a function of DBR surface roughness and membrane curvature. These fabrication non-idealities are then mitigated by developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials, respectively, and are deposited using an electron beam process. Simulations are presented showing the impact of these changes and non-idealities in both a device and systems level.

  11. Thin Film Multilayer Conductor/Ferroelectric Tunable Microwave Components for Communication Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.

    1997-01-01

    High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and higher losses. For STO/LAO multilayer structures having STO film of similar quality we have observed that interdigital capacitor configurations allow for higher tunabilities and lower losses than parallel plate configurations, but required higher dc voltage. Results on the use of these geometries in working microwave components such as filters and stabilizing resonators for local oscillators (LO) will be discussed.

  12. Tunable Optical Filters Based on Different Configurations with Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Yin, Xiang-Bao; Liu, Yong-Jun; Zhang, Ling-Li; Ma, Ji; Sun, Wei-Min

    2015-07-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 61107059, 61308052 and 61077047, the Fundamental Research Funds for the Central Universities, and the 111 Project of the Harbin Engineering University under Grant No B13015.

  13. Tunable high-channel-count bandstop graphene plasmonic filters based on plasmon induced transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengren; Long, Yang; Ma, Pengyu; Li, Hongqiang

    2017-11-01

    A high-channel-count bandstop graphene plasmonic filter based on ultracompact plasmonic structure is proposed in this paper. It consists of graphene waveguide side-coupled with a series of graphene filtering units. The study shows that the waveguide-resonator system performs a multiple plasmon induced transparency (PIT) phenomenon. By carefully adjusting the Fermi level of the filtering units, any two adjacent transmitted dips which belong to different PIT units can produce coherent coupling superposition enhancement. This property prevents the attenuation of the high-frequency transmission dips of multiple PIT and leads to an excellent bandstop filter with multiple channels. Specifically, the bandwidth and modulation depth of the filters can be flexibly adjusted by tuning the Fermi energy of the graphene waveguide. This ultracompact plasmonic structure contributes to the achievement of frequency division multiplexing systems for optical computing and communications in highly integrated optical circuits.

  14. On-chip broadband spectral filtering using planar double high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2015-02-01

    We propose a broadband free-space on-chip spectrometer based on an array of integrated narrowband filters consisting of Fabry-Perot resonators formed by two high-contrast grating (HCG) based reflectors separated by a low-index thin layer with a fixed cavity thickness. Using numerical simulations, broadband tunability of resonance wavelengths was achieved only by changing the in-plane grating parameters such as period or duty cycle of HCGs while the substrate geometry was kept fixed. Experimentally, the HCG reflectors were fabricated on silicon on insulator (SOI) substrates and high reflectivity was measured, fabrication process for the proposed double HCG-based narrowband filter array was developed. The filtering function that can be spanned over a wide range of wavelengths was measured.

  15. Imaging of gaseous oxygen through DFB laser illumination

    NASA Astrophysics Data System (ADS)

    Cocola, L.; Fedel, M.; Tondello, G.; Poletto, L.

    2016-05-01

    A Tunable Diode Laser Absorption Spectroscopy setup with Wavelength Modulation has been used together with a synchronous sampling imaging sensor to obtain two-dimensional transmission-mode images of oxygen content. Modulated laser light from a 760nm DFB source has been used to illuminate a scene from the back while image frames were acquired with a high dynamic range camera. Thanks to synchronous timing between the imaging device and laser light modulation, the traditional lock-in approach used in Wavelength Modulation Spectroscopy was replaced by image processing techniques, and many scanning periods were averaged together to allow resolution of small intensity variation over the already weak absorption signals from oxygen absorption band. After proper binning and filtering, the time-domain waveform obtained from each pixel in a set of frames representing the wavelength scan was used as the single detector signal in a traditional TDLAS-WMS setup, and so processed through a software defined digital lock-in demodulation and a second harmonic signal fitting routine. In this way the WMS artifacts of a gas absorption feature were obtained from each pixel together with intensity normalization parameter, allowing a reconstruction of oxygen distribution in a two-dimensional scene regardless from broadband transmitted intensity. As a first demonstration of the effectiveness of this setup, oxygen absorption images of similar containers filled with either oxygen or nitrogen were acquired and processed.

  16. Diffuse reflectance imaging: a tool for guided biopsy

    NASA Astrophysics Data System (ADS)

    Jayanthi, Jayaraj L.; Subhash, Narayanan; Manju, Stephen; Nisha, Unni G.; Beena, Valappil T.

    2012-01-01

    Accurate diagnosis of premalignant or malignant oral lesions depends on the quality of the biopsy, adequate clinical information and correct interpretation of the biopsy results. The major clinical challenge is to precisely locate the biopsy site in a clinically suspicious lesion. Dips due to oxygenated hemoglobin absorption have been noticed at 545 and 575 nm in the diffusely reflected white light spectra of oral mucosa and the intensity ratio R545/R575 has been found suited for early detection of oral pre-cancers. A multi-spectral diffuse reflectance (DR) imaging system has been developed consisting of an electron multiplying charge coupled device (EMCCD) camera and a liquid crystal tunable filter for guiding the clinician to an optimal biopsy site. Towards this DR images were recorded from 27 patients with potentially malignant lesions on their tongue (dorsal, lateral and ventral sides) and from 44 healthy controls at 545 and 575 nm with the DR imaging system. False colored ratio image R545/R575 of the lesion provides a visual discerning capability that helps in locating the most malignant site for biopsy. Histopathological report of guided biopsy showed that out of the 27 patients 16 were cancers, 9 pre-cancers and 2 lichen planus. In this clinical trial DR imaging has correctly guided 25 biopsy sites, yielding a sensitivity of 93% and a specificity of 98%, thereby establishing the potential of DR imaging as a tool for guided biopsy.

  17. Excitation-scanning hyperspectral imaging as a means to discriminate various tissues types

    NASA Astrophysics Data System (ADS)

    Deal, Joshua; Favreau, Peter F.; Lopez, Carmen; Lall, Malvika; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Little is currently known about the fluorescence excitation spectra of disparate tissues and how these spectra change with pathological state. Current imaging diagnostic techniques have limited capacity to investigate fluorescence excitation spectral characteristics. This study utilized excitation-scanning hyperspectral imaging to perform a comprehensive assessment of fluorescence spectral signatures of various tissues. Immediately following tissue harvest, a custom inverted microscope (TE-2000, Nikon Instruments) with Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) were used to acquire hyperspectral image data from each sample. Scans utilized excitation wavelengths from 340 nm to 550 nm in 5 nm increments. Hyperspectral images were analyzed with custom Matlab scripts including linear spectral unmixing (LSU), principal component analysis (PCA), and Gaussian mixture modeling (GMM). Spectra were examined for potential characteristic features such as consistent intensity peaks at specific wavelengths or intensity ratios among significant wavelengths. The resultant spectral features were conserved among tissues of similar molecular composition. Additionally, excitation spectra appear to be a mixture of pure endmembers with commonalities across tissues of varied molecular composition, potentially identifiable through GMM. These results suggest the presence of common autofluorescent molecules in most tissues and that excitationscanning hyperspectral imaging may serve as an approach for characterizing tissue composition as well as pathologic state. Future work will test the feasibility of excitation-scanning hyperspectral imaging as a contrast mode for discriminating normal and pathological tissues.

  18. Electronically controlled spoof localized surface plasmons on the corrugated ring with a shorting pin

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhou, Yong Jin

    2018-07-01

    We have demonstrated that spoof localized surface plasmons (LSPs) can be controlled by loading a shorting pin into the corrugated ring resonator in the microwave and terahertz (THz) frequencies. Electronical switchability and tunability of spoof LSPs have been achieved by mounting Schottky barrier diodes and varactor diodes across the slit around the shorting pin in the ground plane. An electronically tunable band-pass filter has been demostrated in the microwave frequencies. Such electronically controlled spoof LSPs devices can find more applications for highly integrated plasmonic circuits in microwave and THz frequencies.

  19. Weakly-tunable transmon qubits in a multi-qubit architecture

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jared; Bronn, Nicholas; Corcoles, Antonio; Brink, Markus; Keefe, George; Takita, Maika; Hutchings, M.; Plourde, B. L. T.; Gambetta, Jay; Chow, Jerry

    Quantum error-correction employing a 2D lattice of qubits requires a strong coupling between adjacent qubits and consistently high gate fidelity among them. In such a system, all-microwave cross-resonance gates offer simplicity of setup and operation. However, the relative frequencies of adjacent qubits must be carefully arranged in order to optimize gate rates and eliminate unwanted couplings. We discuss the incorporation of weakly-flux-tunable transmon qubits into such an architecture. Using DC tuning through filtered flux-bias lines, we adjust qubit frequencies while minimizing the effects of flux noise on decoherence.

  20. Deconvolution of noisy transient signals: a Kalman filtering application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.V.; Zicker, J.E.

    The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.

  1. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    DTIC Science & Technology

    1994-05-01

    for an ideal AOTF, at 833 and 838 nm using a TeO2 crystal ............................ 33 Figure 3.12. Frequency characteristics of Equation (3.43...multiple channels in an AOTF requires the presence of multiple RF frequencies to establish the complex grating. Since the crystal used in the AOTF ( TeO2 ) is...in germano- silicate glass . This index modulation, Bragg grating, acts as an optical band rejection filter for those wavelengths that meet the Bragg

  2. Ultra-wideband microwave photonic filter with a high Q-factor using a semiconductor optical amplifier.

    PubMed

    Chen, Han

    2017-04-01

    An ultra-wideband microwave photonic filter (MPF) with a high quality (Q)-factor based on the birefringence effects in a semiconductor optical amplifier (SOA) is presented, and the theoretical fundamentals of the design are explained. The proposed MPF along orthogonal polarization in an active loop operates at up to a Ku-band and provides a tunable free spectral range from 15.44 to 19.44 GHz by controlling the SOA injection current. A prototype of the equivalent second-order infinite impulse response filter with a Q-factor over 6300 and a rejection ration exceeding 41 dB is experimentally demonstrated.

  3. Active liquid-crystal deflector and lens with Fresnel structure

    NASA Astrophysics Data System (ADS)

    Shibuya, Giichi; Yamano, Shohei; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-02-01

    A new type of tunable Fresnel deflector and lens composed of liquid crystal was developed. Combined structure of multiple interdigitated electrodes and the high-resistivity (HR) layer implements the saw-tooth distribution of electrical potential with only the planar surfaces of the transparent substrates. According to the numerical calculation and design, experimental devices were manufactured with the liquid crystal (LC) material sealed into the sandwiched flat glass plates of 0.7 mm thickness with rubbed alignment layers set to an anti-parallel configuration. Fabricated beam deflector with no moving parts shows the maximum tilt angle of +/-1.3 deg which can apply for optical image stabilizer (OIS) of micro camera. We also discussed and verified their lens characteristics to be extended more advanced applications. Transparent interdigitated electrodes were concentrically aligned on the lens aperture with the insulator gaps under their boundary area. The diameter of the lens aperture was 30 mm and the total number of Fresnel zone was 100. Phase retardation of the beam wavefront irradiated from the LC lens device can be evaluated by polarizing microscope images with a monochromatic filter. Radial positions of each observed fringe are plotted and fitted with 2nd degree polynomial approximation. The number of appeared fringes is over 600 in whole lens aperture area and the correlation coefficients of all approximations are over 0.993 that seems enough ideal optical wavefront. The obtained maximum lens powers from the approximations are about +/-4 m-1 which was satisfied both convex and concave lens characteristics; and their practical use for the tunable lens grade eyeglasses became more prospective.

  4. Comparison of two structured illumination techniques based on different 3D illumination patterns

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  5. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.

    PubMed

    Pawlowski, Michal E; Shrestha, Sebina; Park, Jesung; Applegate, Brian E; Oghalai, John S; Tkaczyk, Tomasz S

    2015-06-01

    We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.

  6. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber.

    PubMed

    Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi

    2011-12-19

    A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.

  7. Frequency tunable near-infrared metamaterials based on VO2 phase transition.

    PubMed

    Dicken, Matthew J; Aydin, Koray; Pryce, Imogen M; Sweatlock, Luke A; Boyd, Elizabeth M; Walavalkar, Sameer; Ma, James; Atwater, Harry A

    2009-09-28

    Engineering metamaterials with tunable resonances from mid-infrared to near-infrared wavelengths could have far-reaching consequences for chip based optical devices, active filters, modulators, and sensors. Utilizing the metal-insulator phase transition in vanadium oxide (VO(2)), we demonstrate frequency-tunable metamaterials in the near-IR range, from 1.5 - 5 microns. Arrays of Ag split ring resonators (SRRs) are patterned with e-beam lithography onto planar VO(2) and etched via reactive ion etching to yield Ag/VO(2) hybrid SRRs. FTIR reflection data and FDTD simulation results show the resonant peak position red shifts upon heating above the phase transition temperature. We also show that, by including coupling elements in the design of these hybrid Ag/VO(2) bi-layer structures, we can achieve resonant peak position tuning of up to 110 nm.

  8. Freely Tunable Broadband Polarization Rotator for Terahertz Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping

    2014-12-28

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.

  9. Visible hyperspectral imaging evaluating the cutaneous response to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Ilias, Michail A.; Häggblad, Erik; Anderson, Chris; Salerud, E. Göran

    2007-02-01

    In vivo diagnostics of skin diseases as well as understanding of the skin biology constitute a field demanding characterization of physiological and anatomical parameters. Biomedical optics has been successfully used, to qualitatively and quantitatively estimate the microcirculatory conditions of superficial skin. Capillaroscopy, laser Doppler techniques and spectroscopy, all elucidate different aspects of microcirculation, e.g. capillary anatomy and distribution, tissue perfusion and hemoglobin oxygenation. We demonstrate the use of a diffuse reflectance hyperspectral imaging system for spatial and temporal characterization of tissue oxygenation, important to skin viability. The system comprises: light source, liquid crystal tunable filter, camera objective, CCD camera, and the decomposition of the spectral signature into relative amounts of oxy- and deoxygenized hemoglobin as well as melanin in every pixel resulting in tissue chromophore images. To validate the system, we used a phototesting model, creating a graded inflammatory response of a known geometry, in order to evaluate the ability to register spatially resolved reflectance spectra. The obtained results demonstrate the possibility to describe the UV inflammatory response by calculating the change in tissue oxygen level, intimately connected to a tissue's metabolism. Preliminary results on the estimation of melanin content are also presented.

  10. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  11. Imaging Spectrophotometry of the Jet/ISM Interaction in IC5063

    NASA Technical Reports Server (NTRS)

    Cecil, G.; Schuft, B.; Morse, J.; Bland-Hawthorn, J.

    2004-01-01

    IC5063 is a somewhat dusty z=0.0110 S0 galaxy with a Seyfert 2 nucleus. It has a triple radio source that spans 3 arcsec, mostly blueshifted H I absorption that spans 700 km/s, and ionization cones that extend for more than 2 arcmins. We obtained fully sampled [O III]\\lambda5007 grids at 0."9 and 70 km/s FWHM resolution using the Rutgers Fabry-Perot system on the Blanco 4m telescope. Complementary long-slit spectra using the RC spectrograph on the Blanco, and Taurus Tunable Filter spectral images in H\\alpha and [N II]\\lambda6583, were also obtained to assess gaseous ionization conditions. We present the results of our analysis, and correlate spectral structures to those visible in archival WFPC2 images. We find that, in the region near the radio triple, gaseous ionization and line velocity width is tightly correlated, in excellent quantitative agreement with the high-velocity shock regime in the diagnostic emission-line ratio diagrams of Dopita & Sutherland. We separate kinematically gas in normal disk rotation that is illuminated by the AGN in the ionization cones from that agitated mechanically by the jet, and assess the energy input from both processes.

  12. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  13. Tunable X-ray speckle-based phase-contrast and dark-field imaging using the unified modulated pattern analysis approach

    NASA Astrophysics Data System (ADS)

    Zdora, M.-C.; Thibault, P.; Deyhle, H.; Vila-Comamala, J.; Rau, C.; Zanette, I.

    2018-05-01

    X-ray phase-contrast and dark-field imaging provides valuable, complementary information about the specimen under study. Among the multimodal X-ray imaging methods, X-ray grating interferometry and speckle-based imaging have drawn particular attention, which, however, in their common implementations incur certain limitations that can restrict their range of applications. Recently, the unified modulated pattern analysis (UMPA) approach was proposed to overcome these limitations and combine grating- and speckle-based imaging in a single approach. Here, we demonstrate the multimodal imaging capabilities of UMPA and highlight its tunable character regarding spatial resolution, signal sensitivity and scan time by using different reconstruction parameters.

  14. SWIR hyperspectral imaging detector for surface residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick

    2013-05-01

    ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.

  15. Classification of Shiga toxin-producing escherichia coli (STEC) serotypes with hyperspectral microscope imagery

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Windham, William R.; Ladely, Scott R.; Gurram, Prudhvi; Kwon, Heesung; Yoon, Seung-Chul; Lawrence, Kurt C.; Narang, Neelam; Cray, William C.

    2012-05-01

    Non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) strains such as O26, O45, O103, O111, O121 and O145 are recognized as serious outbreak to cause human illness due to their toxicity. A conventional microbiological method for cell counting is laborious and needs long time for the results. Since optical detection method is promising for realtime, in-situ foodborne pathogen detection, acousto-optical tunable filters (AOTF)-based hyperspectral microscopic imaging (HMI) method has been developed for identifying pathogenic bacteria because of its capability to differentiate both spatial and spectral characteristics of each bacterial cell from microcolony samples. Using the AOTF-based HMI method, 89 contiguous spectral images could be acquired within approximately 30 seconds with 250 ms exposure time. From this study, we have successfully developed the protocol for live-cell immobilization on glass slides to acquire quality spectral images from STEC bacterial cells using the modified dry method. Among the contiguous spectral imagery between 450 and 800 nm, the intensity of spectral images at 458, 498, 522, 546, 570, 586, 670 and 690 nm were distinctive for STEC bacteria. With two different classification algorithms, Support Vector Machine (SVM) and Sparse Kernel-based Ensemble Learning (SKEL), a STEC serotype O45 could be classified with 92% detection accuracy.

  16. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  17. THz-wave parametric source and its imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-08-01

    Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  18. A practical approach to spectral calibration of short wavelength infrared hyper-spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.

  19. Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor

    NASA Astrophysics Data System (ADS)

    Qinwen, XUE; Xiaohua, WANG; Chenglin, LIU; Youwen, LIU

    2018-03-01

    The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2) N /GaAs/(SiO2/Si) N /air is far higher than in asymmetric structure of air/(Si/SiO2) N /GaAs/(Si/SiO2) N /air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.

  20. MEMS-tunable dielectric metasurface lens.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraji-Dana, MohammadSadegh; Faraon, Andrei

    2018-02-23

    Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.

Top