Widely tunable erbium-doped fiber laser based on multimode interference effect.
Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P
2010-01-18
A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.
Tunable fiber laser based on the refractive index characteristic of MMI effects
NASA Astrophysics Data System (ADS)
Ma, Lin; Qi, Yanhui; Kang, Zexin; Bai, Yunlong; Jian, Shuisheng
2014-04-01
A tunable erbium-doped all-fiber laser has been demonstrated. This tunable laser is based on a tunable fiber filter using the refractive index characteristics of multimode interference effects. A thinner no-core fiber with a diameter of 104 μm is used to fabricate the tunable fiber filter. The joint point of the thinner no-core fiber with SMF is a taper, which improves its sensitivity for refractive index changes. The filter exhibits a very sensitive response to the change of the environmental refractive index, which is about 1000 nm/RIU in the RI range from 1.418 to 1.427. The tunable fiber laser based on the filter achieved a tunability of 32 nm, with the wavelength tuned from 1532 nm to 1564 nm covering the full C-band. The 3 dB bandwidth of the tunable laser is less than 0.02 nm with the signal-to-noise ratio of about 40 dB.
Liu, X-L; Liu, H-N; Tan, P-H
2017-08-01
Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.
Green high-power tunable external-cavity GaN diode laser at 515 nm.
Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael
2016-09-15
A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers
Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.
2015-01-01
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers.
Yao, B C; Rao, Y J; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W
2015-12-21
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.
All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.
Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun
2016-04-04
An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications.
NASA Astrophysics Data System (ADS)
Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun
2018-05-01
We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.
A tunable erbium-doped fiber ring laser with power-equalized output
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Lin, Ming-Ching; Chi, Sien
2006-12-01
We propose and demonstrate a tunable erbium-based fiber ring laser with power-equalized output. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable laser oscillation. This proposed laser can obtain the flatter lasing wavelength in an effectively operating range of 1533.3 to 1574.6 nm without any other operating mechanism. Moreover, the performances of the output power, wavelength tuning range, and side-mode suppression ratio (SMSR) were studied.
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-06-08
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm(-1)) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing.
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-01-01
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634
Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells
NASA Astrophysics Data System (ADS)
He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan
2018-05-01
The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2 < 1.18.
Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)
2016-01-01
An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
Tunable vertical cavity surface emitting lasers for use in the near infrared biological window
NASA Astrophysics Data System (ADS)
Kitsmiller, Vincent J.; Dummer, Matthew; Johnson, Klein; O'Sullivan, Thomas D.
2018-02-01
We present a near-infrared tunable vertical cavity surface emitting laser (VCSEL) based upon a unique electrothermally tunable microelectromechanical systems (MEMS) topside mirror designed for tissue imaging and sensing. At room temperature, the laser is tunable from 769-782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in frequency domain diffuse optical spectroscopy by measuring the optical properties of a tissue-simulating phantom over the tunable range. These results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.
Tunable blue laser compensates for thermal expansion of the medium in holographic data storage.
Tanaka, Tomiji; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro
2007-09-01
A tunable laser optical source equipped with wavelength and mode-hop monitors was developed to compensate for thermal expansion of the medium in holographic data storage. The laser's tunable range is 402-409 nm, and supplying 90 mA of laser diode current provides an output power greater than 40 mW. The aberration of output light is less than 0.05 lambdarms. The temperature range within which the laser can compensate for thermal expansion of the medium is estimated based on the tunable range, which is +/-13.5 degrees C for glass substrates and +/-17.5 degrees C for amorphous polyolefin substrates.
A compact tunable polarized X-ray source based on laser-plasma helical undulators
Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.
2016-01-01
Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126
Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.
Xiao, Feng; Alameh, Kamal; Lee, Yong Tak
2009-12-07
A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.
Spectral and Radiometric Calibration Using Tunable Lasers
NASA Technical Reports Server (NTRS)
McCorkel, Joel (Inventor)
2017-01-01
A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.
[Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].
Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming
2009-08-01
The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.
NASA Astrophysics Data System (ADS)
Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter
2017-11-01
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.
NASA Astrophysics Data System (ADS)
Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong
2018-03-01
We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.
Tunable nanoblock lasers and stretching sensors.
Lu, T W; Wang, C; Hsiao, C F; Lee, P T
2016-09-22
Reconfigurable, reliable, and robust nanolasers with wavelengths tunable in the telecommunication bands are currently being sought after for use as flexible light sources in photonic integrated circuits. Here, we propose and demonstrate tunable nanolasers based on 1D nanoblocks embedded within stretchable polydimethylsiloxane. Our lasers show a large wavelength tunability of 7.65 nm per 1% elongation. Moreover, this tunability is reconfigurable and reliable under repeated stretching/relaxation tests. By applying excessive stretching, wide wavelength tuning over a range of 80 nm (spanning the S, C, and L telecommunication bands) is successfully demonstrated. Furthermore, as a stretching sensor, an enhanced wavelength response to elongation of 9.9 nm per % is obtained via the signal differential from two nanoblock lasers positioned perpendicular to each other. The minimum detectable elongation is as small as 0.056%. Nanoblock lasers can function as reliable tunable light sources in telecommunications and highly sensitive on-chip structural deformation sensors.
Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.
Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D
2006-03-15
We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu
2016-02-01
We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.
NASA Technical Reports Server (NTRS)
Freed, C.; Bielinski, J. W.; Lo, W.
1983-01-01
Quantum phase noise limited Lorentzian power spectral densities were achieved with tunable lead-salt diode lasers. Linewidths as narrow as 22 kHz were observed. A truly programmable infrared synthesizer was produced by frequency-offset-locking the tunable diode lasers to the combination of a stable CO2 (or CO) reference laser and a programmable microwave frequency synthesizer. Absolute frequency accuracy and reproducibility of about + or - 30 kHz (0.000001 kaysers) relative to the primary Cs frequency standard may now be obtained with this technique.
All-fiber tunable MMI fiber laser
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.
2009-05-01
We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.
Progress in Cherenkov femtosecond fiber lasers
Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry
2016-01-01
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037
Progress in Cherenkov femtosecond fiber lasers.
Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry
2016-01-20
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.
Tunable dual-wavelength fiber laser based on an MMI filter in a cascaded Sagnac loop interferometer
NASA Astrophysics Data System (ADS)
Ma, Lin; Kang, Zexin; Qi, Yanhui; Jian, Shuisheng
2014-04-01
A widely tunable dual-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop interferometer incorporating a multimode interference filter is proposed and experimentally demonstrated in this paper. The mode selection is implemented by using the cascaded Sagnac loop interferometer with two segments of polarization maintaining fibers, and the wavelength tuning was achieved by using the refractive index characteristic of multimode interference effects. The tunable dual-wavelength fiber laser has a wavelength tuning of about 40 nm with a signal-to-noise ratio of more than 50 dB.
NASA Technical Reports Server (NTRS)
Levine, J. S.; Guerra, M.; Javan, A.
1980-01-01
The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
NASA Astrophysics Data System (ADS)
Petrova-Mayor, Anna; Wulfmeyer, Volker; Weibring, Petter
2008-04-01
An experimental optimization of the efficiency of a gain switched tunable Cr4+:YAG laser at 10 Hz is described. The thermal lensing during pulsed operation was measured. Optimal performance occurred at a crystal temperature of 34 °C and resulted in an output energy of ~7 mJ and a pulse duration of ~35 ns. Tunability in the range of 1350-1500 nm, spectral linewidth of ~200 GHz, and M2<4 are demonstrated. The main laser material parameters are estimated. Such a laser could be employed in a laboratory-based nonscanning lidar system if a narrowband birefringent filter is installed. The tunability will permit the improvement of the Cr4+:YAG transmitter for water-vapor differential absorption lidar if injection seeding is applied.
Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity
NASA Astrophysics Data System (ADS)
Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.
2016-12-01
We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.
Blood oxygenation and flow measurements using a single 720-nm tunable V-cavity laser.
Feng, Yafei; Deng, Haoyu; Chen, Xin; He, Jian-Jun
2017-08-01
We propose and demonstrate a single-laser-based sensing method for measuring both blood oxygenation and microvascular blood flow. Based on the optimal wavelength range found from theoretical analysis on differential absorption based blood oxygenation measurement, we designed and fabricated a 720-nm-band wavelength tunable V-cavity laser. Without any grating or bandgap engineering, the laser has a wavelength tuning range of 14.1 nm. By using the laser emitting at 710.3 nm and 724.4 nm to measure the oxygenation and blood flow, we experimentally demonstrate the proposed method.
Tunable Laser Development for In-Flight Fiber Optic Based Structural Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen; Chan, Patrick
2013-01-01
Briefing based on tunable laser development for in flight fiber optic based structural health monitoring systems. The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles.
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.
Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo
2015-04-20
A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.
Electrically pumped graphene-based Landau-level laser
NASA Astrophysics Data System (ADS)
Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin
2018-03-01
Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.
Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian
2017-06-10
High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.
Tunable Single-Frequency Near IR Lasers for DIAL Applications
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.
2000-01-01
Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.
Widely tunable quantum cascade laser-based terahertz source.
Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng
2014-07-10
A compact, tunable, ultranarrowband terahertz source, Δν∼1 MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.
Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.
Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei
2018-02-09
Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin
2012-12-17
A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.
Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.
Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei
2012-08-27
A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang
2018-05-01
Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.
He, Xiaoying; Liu, Zhi-bo; Wang, D N
2012-06-15
We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers
NASA Astrophysics Data System (ADS)
Balaswamy, V.; Arun, S.; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V. R.
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here, a simple architecture for high power, fixed and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the Ytterbium band to the eye-safe 1.5micron region. We demonstrate pump-limited output powers of over 30W in fixed and continuously wavelength tunable configurations.
Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael
2018-04-02
We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.
NASA Astrophysics Data System (ADS)
He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei
2018-04-01
This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2 × 2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.
Electrically Tunable Nd:YAG waveguide laser based on Graphene
Ma, Linan; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng
2016-01-01
We demonstrate a tunable hybrid Graphene-Nd:YAG cladding waveguide laser exploiting the electro-optic and the Joule heating effects of Graphene. A cladding Nd:YAG waveguide was fabricated by the ion irradiation. The multi-layer graphene were transferred onto the waveguide surface as the saturable absorber to get the Q-switched pulsed laser oscillation in the waveguide. Composing with appropriate electrodes, graphene based capacitance and heater were formed on the surface of the Nd:YAG waveguide. Through electrical control of graphene, the state of the hybrid waveguide laser was turned on or off. And the laser operation of the hybrid waveguide was electrically tuned between the continuous wave laser and the nanosecond pulsed laser. PMID:27833114
Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen; Chan, Patrick
2014-01-01
The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.
All-fiber optical parametric oscillator for bio-medical imaging applications
NASA Astrophysics Data System (ADS)
Gottschall, Thomas; Meyer, Tobias; Jauregui, Cesar; Just, Florian; Eidam, Tino; Schmitt, Michael; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas
2017-02-01
Among other modern imaging techniques, stimulated Raman Scattering (SRS) requires an extremely quiet, widely wavelength tunable laser, which, up to now, is unheard of in fiber laser systems. We present a compact all-fiber laser system, which features an optical parametric oscillator (OPO) based on degenerate four-wave mixing (FWM) in an endlessly single-mode photonic-crystal fiber. We employ an all-fiber frequency and repetition rate tunable laser in order to enable wideband conversion in the linear OPO cavity arrangement, the signal and idler radiation can be tuned between 764 and 960 nm and 1164 and 1552 nm at 9.5 MHz. Thus, all biochemically relevant Raman shifts between 922 and 3322 cm-1 may be addressed in combination with a secondary output, which is tunable between 1024 and 1052 nm. This ultra-low noise output emits synchronized pulses with twice the repetition rate to enable SRS imaging. We measure the relative intensity noise of this output beam at 9.5 MHz to be between -145 and -148 dBc, which is low enough to enable high-speed SRS imaging with a good signal-to-noise ratio. The laser system is computer controlled to access a certain energy differences within one second. Combining FWM based conversion, with all-fiber Yb-based fiber lasers enables the construction of the first automated, turn-key and widely tunable fiber laser. This laser concept could be the missing piece to establish CRS imaging as a reliable guiding tool for clinical diagnostics and surgical guidance.
Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate.
Tan, Xiao-Mei; Chen, Hong-Jie; Cui, Hu; Lv, Yao-Kun; Zhao, Guan-Kai; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng
2017-07-10
We demonstrate a tunable and switchable dual-waveband 100 GHz high-repetition-rate (HRR) ultrafast fiber laser based on dissipative four-wave-mixing (DFWM) mode-locked technique. Each waveband maintains HRR operation. The DFWM effect was realized by combining a Fabry-Perot (F-P) filter and a piece of highly nonlinear fiber (HNLF). The tunable and switchable operations were achieved by nonlinear polarization rotation (NPR) technique. Through appropriately controlling the filtering effect induced by NPR, the laser could operate at two kinds of tunable regimes. One is that the spacing between these two wavebands could be tuned while keeping their center at 1559 nm. The other is that the central position of the entire dual-waveband is tunable while with the same separation between these two wavebands of 13.2 nm. Moreover, the laser could switch between these two wavebands. Correspondingly, the center of the single-waveband has a tuning range of 15.2 nm. This versatile ultrafast fiber laser may find applications in fields of optical frequency combs, high speed optical communications, where HRR pulses are necessary.
Prantil, Matthew A.; Cormier, Eric; Dawson, Jay W.; ...
2013-08-19
An 11 GHz fiber laser built on a modulated CW platform is described and characterized. This compact, vibrationinsensitive, fiber based system can be operated at wavelengths compatible with high energy fiber technology, is driven by an RF signal directly, and is tunable over a wide range of drive frequencies. The demonstration system when operated at 1040 nm is capable of 50 ns bursts of 575 micro-pulses produced at a macro-pulse rate of 83 kHz where the macro-pulse and micro-pulse energies are 1.8 μJ and 3.2 nJ respectively. Micro-pulse durations of 850 fs are demonstrated. Finally, we discuss extensions to shortermore » duration.« less
All-fibre ytterbium laser tunable within 45 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullina, S R; Babin, S A; Vlasov, A A
2007-12-31
A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)
NASA Technical Reports Server (NTRS)
Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)
1985-01-01
Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.
Hydrocarbon-Fueled Scramjet Research at Hypersonic Mach Numbers
2005-03-31
oxide O atomic oxygen 02 molecular oxygen OH hydroxyl radical ppm parts per million PD photodiode PLLF planar laser-induced fluorescence PMT...photomultiplier tube RAM random access memory RANS Reynolds-averaged Navier-Stokes RET rotational energy transfer TDLAS tunable diode laser absorption...here extend this knowledge base to flight at Mach 11.5. Griffiths (2004) used a tunable diode laser absorption spectroscopy ( TDLAS ) system to measure
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers.
Balaswamy, V; Arun, S; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V R
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth-doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here a simple architecture for high-power, fixed, and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the ytterbium band to the eye-safe 1.5 μm region. We demonstrate pump-limited output powers of over 30 W in fixed and continuously wavelength tunable configurations.
Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy
NASA Astrophysics Data System (ADS)
Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Xu, Kexin
2014-04-01
Wavelength-tunable laser spectroscopy in combination with a small-sized fiber-optic attenuated total reflection (ATR) sensor (fiber-based evanescent field analysis, FEFA) is reported for the continuous measurement of the glucose level. We propose a method of controlling and stabilizing the wavelength and power of laser emission and present a newly developed mid-infrared wavelength-tunable laser with a broad emission spectrum band of 9.19-9.77 μm (1024-1088 cm-1). The novel small-sized flow-through fiber-optic ATR sensor with long optical sensing length was used for glucose level determination. The experimental results indicate that the noise-equivalent concentration of this laser measurement system is as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. The sensitivity, which is three times that of conventional Fourier transform infrared spectrometer, was acquired because of the higher laser power and higher spectral resolution. The best prediction of the glucose concentration in phosphate buffered saline solution was achieved using the five-variable partial least-squares model, yielding a root-mean-square error of prediction as small as 3.5 mg/dL. The high sensitivity, multiple tunable wavelengths and small fiber-based sensor with long optical sensing length make glucose determination possible in blood or interstitial fluid in vivo.
[The design of all solid-state tunable pulsed Ti:sapphire laser system].
Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing
2013-05-01
This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.
NASA Astrophysics Data System (ADS)
Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong
2018-03-01
In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.
Robust interferometric frequency lock between cw lasers and optical frequency combs.
Benkler, Erik; Rohde, Felix; Telle, Harald R
2013-02-15
A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.
Watt-level single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm
NASA Astrophysics Data System (ADS)
Rota-Rodrigo, S.; Gouhier, B.; Laroche, M.; Zhao, J.; Canuel, B.; Bertoldi, A.; Bouyer, P.; Traynor, N.; Cadier, B.; Robin, T.; Santarelli, G.
2018-02-01
We have developed a Watt-level single-frequency tunable fiber laser in the 915-937 nm spectral window. The laser is based on a neodymium-doped fiber master oscillator power amplifier architecture, with two amplification stages using a 20 mW extended cavity diode laser as seed. The system output power is higher than 2 W from 921 to 933 nm, with a stability better than 1.4% and a low relative intensity noise.
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal
2015-02-01
Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature.
Ummy, M A; Madamopoulos, N; Joyo, A; Kouar, M; Dorsinville, R
2011-02-14
We propose and demonstrate a simple dual port tunable from the C- to the L-band multi-wavelength fiber laser based on a SOA designed for C-band operation and fiber loop mirrors. The laser incorporates a polarization maintaining fiber in one of the fiber loop mirrors and delivers multi-wavelength operation at 9 laser lines with a wavelength separation of ~2.8 nm at room temperature. We show that the number of lasing wavelengths increases with the increase of the bias current of the SOA. Wavelength tunability from the C to L-band is achieved by exploiting the gain compression of a SOA. Stable multi-wavelength operation is achieved at room temperature without temperature compensation techniques, with measured power and the wavelength stability within < ±0.5 dB and ±0.1 nm, respectively.
Tunable self-seeded multi-wavelength Brillouin-erbium fiber laser based on few-mode fiber filter
NASA Astrophysics Data System (ADS)
Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yun-shan; Liu, Chun-xiao
2017-11-01
A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser (BEFL) is proposed and demonstrated based on a few-mode fiber filter (FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber (FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber (SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 dB optical signal- to-noise ratio ( OSNR) is realized.
Nearly-octave wavelength tuning of a continuous wave fiber laser
Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan
2017-01-01
The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414
Theory and simulation of multi-channel interference (MCI) widely tunable lasers.
Chen, Quanan; Lu, Qiaoyin; Guo, Weihua
2015-07-13
A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented.
Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
Vijayraghavan, Karun; Jiang, Yifan; Jang, Min; Jiang, Aiting; Choutagunta, Karthik; Vizbaras, Augustinas; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2013-01-01
Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.
Tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer
NASA Astrophysics Data System (ADS)
Hernández-Arriaga, M. V.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Álvarez-Tamayo, R. I.; Santiago-Hernández, H.; Bello-Jiménez, M.; Kuzin, E. A.
2017-11-01
An experimental study of an all-fiber tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer is presented. A microfiber filter with length of 6 mm and diameter of 20 μm is used to achieve single laser wavelength tuning in a range of 19.4 nm and dual-wavelength laser operation at 1761.8 and 1793.4 nm with a channel spacing of 31.6 nm. The abrupt-tapered structure allows multi-modal interference at the air-cladding interface. The proposed in-fiber interferometer exhibits characteristics of low cost and simple fabrication, making it suitable for practical applications in wavelength filtering and wavelength selection in all-fiber lasers.
Solid-state-based laser system as a replacement for Ar+ lasers.
Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas
2016-09-15
We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.
NASA Astrophysics Data System (ADS)
Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.
1999-07-01
An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.
External cavity cascade diode lasers tunable from 3.05 to 3.25 μm
NASA Astrophysics Data System (ADS)
Wang, Meng; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Lu, Ming; Stein, Aaron; Belenky, Gregory
2018-01-01
The external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ˜25 meV of tuning range.
Chen, Xiao; Yan, Bin-bin; Song, Fei-jun; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal
2012-10-20
A digital micromirror device (DMD) is a kind of widely used spatial light modulator. We apply DMD as wavelength selector in tunable fiber lasers. Based on the two-dimensional diffraction theory, the diffraction of DMD and its effect on properties of fiber laser parameters are analyzed in detail. The theoretical results show that the diffraction efficiency is strongly dependent upon the angle of incident light and the pixel spacing of DMD. Compared with the other models of DMDs, the 0.55 in. DMD grating is an approximate blazed state in our configuration, which makes most of the diffracted radiation concentrated into one order. It is therefore a better choice to improve the stability and reliability of tunable fiber laser systems.
External cavity cascade diode lasers tunable from 3.05 to 3.25 μm
Wang, Meng; Hosoda, Takashi; Shterengas, Leon; ...
2017-09-14
Here, the external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ~25 meV of tuning range.
NASA Astrophysics Data System (ADS)
Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.
2017-11-01
A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P
2014-06-01
A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.
Widely tunable semiconductor lasers with three interferometric arms.
Su, Guan-Lin; Wu, Ming C
2017-09-04
We present a comprehensive study for a new three-branch widely tunable semiconductor laser based on a self-imaging, lossless multi-mode interference (MMI) coupler. We have developed a general theoretical framework that is applicable to all types of interferometric lasers. Our analysis showed that the three-branch laser offers high side-mode suppression ratios (SMSRs) while maintaining a wide tuning range and a low threshold modal gain of the lasing mode. We also present the design rules for tuning over the dense-wavelength division multiplexing grid over the C-band.
Tunable double-clad ytterbium-doped fiber laser based on a double-pass Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Meng, Yichang; Zhang, Shumin; Wang, Xinzhan; Du, Juan; Li, Hongfei; Hao, Yanping; Li, Xingliang
2012-03-01
We have demonstrated an adjustable double-clad Yb 3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.
Tunable all-fiber dissipative-soliton laser with a multimode interference filter.
Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan
2012-09-15
We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.
High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser.
Wu, Hanshuo; Wang, Peng; Song, Jiaxin; Ye, Jun; Xu, Jiangming; Li, Xiao; Zhou, Pu
2018-03-05
Random fiber laser, as a kind of novel fiber laser that utilizes random distributed feedback as well as Raman gain, has become a research focus owing to its advantages of wavelength flexibility, modeless property and output stability. Herein, a tunable optical parametric oscillator (OPO) enabled by a random fiber laser is reported for the first time. By exploiting a tunable random fiber laser to pump the OPO, the central wavelength of idler light can be continuously tuned from 3977.34 to 4059.65 nm with stable temporal average output power. The maximal output power achieved is 2.07 W. So far as we know, this is the first demonstration of a continuous-wave tunable OPO pumped by a tunable random fiber laser, which could not only provide a new approach for achieving tunable mid-infrared (MIR) emission, but also extend the application scenarios of random fiber lasers.
Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu
2017-10-30
We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.
NASA Astrophysics Data System (ADS)
Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.
Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.
Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping
2015-08-07
Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.
NASA Astrophysics Data System (ADS)
Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian
2014-03-01
We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.
Widely tunable Tm-doped mode-locked all-fiber laser
Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2016-01-01
We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others. PMID:27263655
A Completely Solid-State Tunable Ti:Sapphire Laser System
NASA Technical Reports Server (NTRS)
Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.
1994-01-01
Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.
Fu, Yongping; Zhu, Haiming; Stoumpos, Constantinos C; Ding, Qi; Wang, Jue; Kanatzidis, Mercouri G; Zhu, Xiaoyang; Jin, Song
2016-08-23
Lead halide perovskite nanowires (NWs) are emerging as a class of inexpensive semiconductors with broad bandgap tunability for optoelectronics, such as tunable NW lasers. Despite exciting progress, the current organic-inorganic hybrid perovskite NW lasers suffer from limited tunable wavelength range and poor material stability. Herein, we report facile solution growth of single-crystal NWs of inorganic perovskite CsPbX3 (X = Br, Cl) and their alloys [CsPb(Br,Cl)3] and a low-temperature vapor-phase halide exchange method to convert CsPbBr3 NWs into perovskite phase CsPb(Br,I)3 alloys and metastable CsPbI3 with well-preserved perovskite crystal lattice and NW morphology. These single crystalline NWs with smooth end facets and subwavelength dimensions are ideal Fabry-Perot cavities for NW lasers. Optically pumped tunable lasing across the entire visible spectrum (420-710 nm) is demonstrated at room temperature from these NWs with low lasing thresholds and high-quality factors. Such highly efficient lasing similar to what can be achieved with organic-inorganic hybrid perovskites indicates that organic cation is not essential for light emission application from these lead halide perovskite materials. Furthermore, the CsPbBr3 NW lasers show stable lasing emission with no measurable degradation after at least 8 h or 7.2 × 10(9) laser shots under continuous illumination, which are substantially more robust than their organic-inorganic counterparts. The Cs-based perovskites offer a stable material platform for tunable NW lasers and other nanoscale optoelectronic devices.
Aflatouni, Firooz; Hashemi, Hossein
2012-01-15
A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.
Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin
2017-12-10
A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.
Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.
2015-09-01
We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2006-01-01
In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.
NASA Astrophysics Data System (ADS)
Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee
2016-02-01
Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.
Picosecond 1064-nm fiber laser with tunable pulse width and low timing jitter
NASA Astrophysics Data System (ADS)
Tian, Wenyan; Zhang, Shukui
2018-02-01
We report an all-fiber, linearly polarized, 1.1-W, 1064-nm fiber laser based on a two-stage Ytterbium-doped fiber amplifier seeded by a gain-switched diode laser with tunable pulse width from 21 to 200 ps at repetition rates of 0.5-1.5 GHz. Timing jitter of our 1064-nm fiber laser was measured to be 0.60 ps over 10 Hz-40 MHz when the gain-switched diode laser was operated at a repetition rate of 0.5, 1, and 1.5 GHz. The fiber laser offers an excellent long term power stability of +/- 0.3% and wavelength stability of +/- 0.01 nm over 8 hours
KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel
NASA Technical Reports Server (NTRS)
Quagliaroli, T. M.; Laufer, G.; Hollo, S. D.; Krauss, R. H.; Whitehurst, R. B., III; Mcdaniel, J. C., Jr.
1992-01-01
Planar fluorescence images of OH in a continuous-flow, electrical-resistively heated, high enthalpy, hydrogen-air combustion tunnel, induced by a tunable KrF laser, were recorded. These images were compared to previously recorded fluorescence images induced by a doubled-dye laser under similar conditions. Images induced by the doubled-dye laser system demonstrated a severe distortion caused by absorption and fluorescence trapping. By contrast, images of the fluorescence induced by the tunable KrF laser retained the symmetry properties of the flow. Based on signal-to-noise ratio measurements the yield of the fluorescence induced by the doubled-dye laser is larger than the fluorescence yield induced by the KrF laser. The measurements in the present facility of OH fluorescence induced by the KrF laser were limited by the photon-statistical noise. Based 2 on this result, doubled-dye laser systems are recommended for OH imaging in small and OH lean (less than 10 exp 15/cu cm) facilities. KrF lasers should be selected otherwise.
Fatadin, Irshaad; Ives, David; Savory, Seb J
2013-04-22
The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.
Dorrer, C.; Consentino, A.; Cuffney, R.; ...
2017-10-18
Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, C.; Consentino, A.; Cuffney, R.
Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less
Generation of tunable laser sidebands in the far-infrared region
NASA Technical Reports Server (NTRS)
Farhoomand, J.; Frerking, M. A.; Pickett, H. M.; Blake, G. A.
1985-01-01
In recent years, several techniques have been developed for the generation of tunable coherent radiation at submillimeter and far-infrared (FIR) wavelengths. The harmonic generation of conventional microwave sources has made it possible to produce spectrometers capable of continuous operation to above 1000 GHz. However, the sensitivity of such instruments drops rapidly with frequency. For this reason, a great deal of attention is given to laser-based methods, which could cover the entire FIR region. Tunable FIR radiation (approximately 100 nW) has been produced by mixing FIR molecular lasers and conventional microwave sources in both open and closed mixer mounts. The present investigation is concerned with improvements in this approach. These improvements provide approximately thirty times more output power than previous results.
Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.
2015-02-01
We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.
Ishii, Katsunori; Saiki, Masayuki; Hazama, Hisanao; Awazu, Kunio
2010-01-01
Mid-infrared (MIR) laser with a specific wavelength can excite the corresponding biomolecular site to regulate chemical, thermal and mechanical interactions to biological molecules and tissues. In laser surgery and medicine, tunable MIR laser irradiation can realize the selective and less-invasive treatments and the special diagnosis by vibrational spectroscopic information. This paper showed a novel selective therapeutic technique for a laser angioplasty of atherosclerotic plaques and a laser dental surgery of a carious dentin using a MIR tunable nanosecond pulsed laser.
Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2014-02-01
We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.
Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2014-01-01
We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.
Water Vapor Sensors Go Sky-High to Assure Aircraft Safety
NASA Technical Reports Server (NTRS)
2006-01-01
JPL used a special tunable diode laser, which NASA scientists could tune to different wavelengths, like a radio being tuned to different frequencies, to accurately target specific molecules and detect small traces of gas. This tunable diode laser was designed to emit near-infrared light at wavelengths absorbed by the gas or gases being detected. The light energy being absorbed by the target gas is related to the molecules present. This is usually measured in parts per million or parts per billion. Multiple measurements are made every second, making the system quick to respond to variations in the target gas. NASA scientists developed this technology as part of the 1999 Mars Polar Lander mission to explore the possibility of life-giving elements on Mars. NASA has since used the tunable diode laser-based gas sensor on aircraft and on balloons to successfully study weather and climate, global warming, emissions from aircraft, and numerous other areas where chemical gas analysis is needed. SpectraSensors, Inc., was formed in 1999 as a spinoff company of JPL, to commercialize tunable diode laser-based analyzers for industrial gas-sensing applications (Spinoff 2000). Now, the San Dimas, California-based firm has come back to the market with a new product featuring the NASA-developed instrument for atmospheric monitoring. This instrument is now helping aircraft avoid hazardous weather conditions and enabling the National Weather Service to provide more accurate weather forecasts.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Narrow-linewidth tunable laser working at 633 nm suitable for industrial interferometry
NASA Astrophysics Data System (ADS)
Minh, Tuan Pham; Hucl, Václav; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Řeřucha, Šimon; Číp, Ondřej; Lazar, Josef
2015-05-01
Semiconductor lasers found a foothold in many fields of human activities, mainly thanks to its small size, low cost and high energy efficiency. Recent methods for accurate distance measurement in industrial practice use principles of laser interferometry, which are based on lasers operating in the visible spectrum. When the laser beam is visible the alignment of the industrial interferometer makes the measuring process easier. Traditional lasers for these purposes for many decades - HeNe gas laser - have superb coherence properties but small tunable range. On the other hand laser diodes are very useful lasers but only if the active layer of the semiconductor equips with a passive selective element that will increase the quality of their own resonator and also prevents the structure of its higher longitudinal modes. The main aim of the work is a design of the laser source based on a new commercial available laser diode with Distributed Bragg Reflector structure, butterfly package and fibre coupled output. The ultra-low noise injection current source, stable temperature controller and supply electronic equipment were developed with us and experimentally tested with this laser for the best performances required of the industrial interferometry field. The work also performs a setup for frequency noise properties investigation with an unbalanced fibre based Mach-Zehnder interferometer and 10 m long fibre spool inserted in the reference arm. The work presents the way to developing the narrow-linewidth operation the DBR laser with the wide tunable range up to more than 1 nm of the operation wavelength at the same time. Both capabilities predetermine this complex setup for the industrial interferometry application as they are the long distance surveying or absolute scale interferometry.
Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode.
Yeh, Chien-Hung; Shih, Fu Y; Wang, Chia H; Chow, Chi W; Chi, Sien
2008-01-07
We propose and experimentally demonstrate a continuous wave (CW) tunable-wavelength fiber laser using self-seeding Fabry-Perot laser diode (FP-LD) without optical amplifier inside gain cavity. By employing a tunable bandpass filter (TBF) and a fiber reflected mirror (FRM) within a gain cavity, the fiber laser can lase a single-longitudinal wavelength due to the self-seeding operation. The proposed tunable wavelength laser has a good performance of the output power (> -15 dBm) and optical side-mode suppression ratio (> 40 dB) in the wavelength tuning range of 1533.75 to 1560.95 nm. In addition, the output stabilities of the fiber laser are also investigated.
Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito
2015-03-16
We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.
Ummy, M A; Madamopoulos, N; Razani, M; Hossain, A; Dorsinville, R
2012-10-08
We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.
Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere
NASA Technical Reports Server (NTRS)
Podolske, James; Loewenstein, Max
1993-01-01
This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.
Co-extruded mechanically tunable multilayer elastomer laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra
2011-04-01
We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.
Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong
2010-03-15
We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.
Broadband tunable mid-IR Cr2+:CdSe lasers for medical applications
NASA Astrophysics Data System (ADS)
Tarabrin, Mikhail K.; Lasarev, Vladimir A.; Tomilov, Sergey M.; Karasik, Valery E.; Tuchin, Valery V.
2018-04-01
Currently, lasers are widely used for surgery, medical diagnostics and oncology research. Unfortunately, most of the used laser sources have a significant drawback - the lack of operating wavelength tuning possibility, which imposes significant limitations on the investigation of biological tissues spectral properties and searching for the optimal mode of their treatment. Comparison between different promising mid-IR sources was made. We report on development of mid-infrared (mid-IR) tunable lasers based on the Cr2+:CdSe single-crystals. These lasers operate in CW mode with the maximum output power of up to 2 W and possible tuning range from 2.2 to 3.6 μm.
NASA Technical Reports Server (NTRS)
Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)
2006-01-01
Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.
Thermal tuning On narrow linewidth fiber laser
NASA Astrophysics Data System (ADS)
Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei
2010-10-01
At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.
Bovington, Jock; Srinivasan, Sudharsanan; Bowers, John E
2014-08-11
This paper discusses circuit based and waveguide based athermalization schemes and provides some design examples of athermalized lasers utilizing fully integrated athermal components as an alternative to power hungry thermo-electric controllers (TECs), off-chip wavelength lockers or monitors with lookup tables for tunable lasers. This class of solutions is important for uncooled transmitters on silicon.
NASA Astrophysics Data System (ADS)
Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.
2018-02-01
We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.
Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements
Park, Nam Su; Chun, Soo Kyung; Han, Ga-Hee; Kim, Chang-Seok
2017-01-01
We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF) and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic–based wavelength-comb-swept laser (WCSL) can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k) linearity of R2 = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain. PMID:28362318
An integrated parity-time symmetric wavelength-tunable single-mode microring laser
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2017-01-01
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784
Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia
2017-11-10
A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318 MHz (∼2.57 pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33 pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.
An integrated parity-time symmetric wavelength-tunable single-mode microring laser.
Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping
2017-05-12
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.
140 W peak power laser system tunable in the LWIR.
Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric
2017-08-07
We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.
NASA Astrophysics Data System (ADS)
Basiev, Tasoltan T.; Fedorov, Vladimir V.; Karasik, Alexander Y.; Lin'kov, S. I.; Orlovskii, Yurii V.; Osiko, Vyacheslav V.; Panov, Vitaly A.; Prokhorov, Alexander M.; Vorob'ev, Ivan N.; Zverev, Peter G.
1996-11-01
Solid state (SS) tunable LiF:F2 color center laser with second and fourth harmonic generation for visible and ultra violet spectral ranges was developed for the laser induced fluorescence spectroscopy (LIFS). The construction and properties of excitation, registration and flame atomization systems for water solution diagnostic are discussed. The testing experiment with low iron concentrated water sample exhibits ultrahigh sensitivity which was estimated to be 0.05 ppb in our set-up. The SS LIFS spectrometer developed is usable to measure more than 42 metal elements in solution on the ppm, ppb level for various medical and biological applications.
Compact single mode tunable laser using a digital micromirror device.
Havermeyer, Frank; Ho, Lawrence; Moser, Christophe
2011-07-18
The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm(3) laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.
Tunable femtosecond laser based on the Nd3+:BaLaGa 3O 7 disordered crystal
NASA Astrophysics Data System (ADS)
Agnesi, A.; Pirzio, F.; Tartara, L.; Ugolotti, E.; Zhang, H.; Wang, J.; Yu, H.; Petrov, V.
2014-03-01
We demonstrate clear inhomogeneous linewidth broadening for the disordered laser crystal Nd:BaLaGa3O7 (Nd:BLG), which is very promising for the replacement of Nd:glass for ultrafast sources in multiwatt power applications. A Nd:BLG laser oscillator passively mode-locked and pumped by a Ti:sapphire laser generated pulses of 316-fs duration at 1060 nm, whose spectrum completely fills the fluorescence peak at such wavelength. More interestingly, sub-picosecond pulses were smoothly tunable in a 20-nm range, from 1070 to 1090 nm. The shortest pulses achieved were 290 fs long, centered at 1075 nm.
NASA Astrophysics Data System (ADS)
Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej
2015-03-01
Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.
Monitoring of rapid blood pH variations by CO detection in breath with tunable diode laser
NASA Astrophysics Data System (ADS)
Kouznetsov, Andrian I.; Stepanov, Eugene V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Diachenko, Alexander I.; Gurfinkel, Youri I.
1997-06-01
Detection of endogenous carbon monoxide content in breath with tunable diode lasers (TDL) was proposed for noninvasive monitoring of rapid blood pH variation. Applied approach is based on high sensitivity of the haemoglobin and myoglobin affinity for CO to blood pH value and an ability to detect rapidly small variations of CO content in expired air. Breath CO absorption in 4.7 micrometers spectral region was carefully measured using PbSSe tunable diode laser that can provide 1 ppb CO concentration sensitivity and 10 s time constant. Applied TDL gas analyzer was used to monitor expired air of studied persons in physiological tests including hyperventilation and physical load. Simultaneous blood tests were conducted to demonstrate correlation between blood and breath chemical parameters.
Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan
2017-11-01
The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.
NASA Astrophysics Data System (ADS)
Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel
2017-11-01
This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).
NASA Technical Reports Server (NTRS)
Harward, C. N.; Hoell, J. M., Jr.
1980-01-01
A tunable diode laser heterodyne radiometer was developed for ground-based measurements of atmospheric solar absorption spectra in the 8 to 12 microns spectral range. The performance and operating characteristics of this Tunable Infrared Heterodyne Radiometer (TIHR) are discussed along with atmospheric solar absorption spectra of HNO3, O3, CO2, and H2O in the 9 to 11 microns spectral region.
Broadly tunable thin-film intereference coatings: active thin films for telecom applications
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias
2003-06-01
Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.
NASA Astrophysics Data System (ADS)
Hakulinen, T.; Klein, J.
2016-03-01
Two-photon (2P) microscopy based on tunable Ti:sapphire lasers has become a widespread tool for 3D imaging with sub-cellular resolution in living tissues. In recent years multi-photon microscopy with simpler fixed-wavelength femtosecond oscillators using Yb-doped tungstenates as gain material has raised increasing interest in life-sciences, because these lasers offer one order of magnitude more average power than Ti:sapphire lasers in the wavelength range around 1040 nm: Two-photon (2P) excitation of mainly red or yellow fluorescent dyes and proteins (e.g. YFP, mFruit series) simultaneously has been proven with a single IR laser wavelength. A new approach is to extend the usability of existing tunable Titanium sapphire lasers by adding a fixed IR wavelength with an Yb femtosecond oscillator. By that means a multitude of applications for multimodal imaging and optogenetics can be supported. Furthermore fs Yb-lasers are available with a repetition rate of typically 10 MHz and an average power of typically 5 W resulting in pulse energy of typically 500 nJ, which is comparably high for fs-oscillators. This makes them an ideal tool for two-photon spinning disk laser scanning microscopy and holographic patterning for simultaneous photoactivation of large cell populations. With this work we demonstrate that economical, small-footprint Yb fixed-wavelength lasers can present an interesting add-on to tunable lasers that are commonly used in multiphoton microscopy. The Yb fs-lasers hereby offer higher power for imaging of red fluorescent dyes and proteins, are ideally enhancing existing Ti:sapphire lasers with more power in the IR, and are supporting pulse energy and power hungry applications such as spinning disk microscopy and holographic patterning.
Microwave tunable laser source: A stable, precision tunable heterodyne local oscillator
NASA Technical Reports Server (NTRS)
Sachse, G. W.
1980-01-01
The development and capabilities of a tunable laser source utilizing a wideband electro-optic modulator and a CO2 laser are described. The precision tunability and high stability of the device are demonstrated with examples of laboratory spectroscopy. Heterodyne measurements are also presented to demonstrate the performance of the laser source as a heterodyne local oscillator. With the use of five CO2 isotope lasers and the 8 to 18 GHz sideband offset tunability of the modulator, calculations indicate that 50 percent spectral coverage in the 9 to 12 micron region is achievable. The wavelength accuracy and stability of this laser source is limited by the CO2 laser and is more than adequate for the measurement of narrow Doppler-broadened line profiles. The room-temperature operating capability and the programmability of the microwave tunable laser source are attractive features for its in-the-field implementation. Although heterodyne measurements indicated some S/N degradation when using the device as a local oscillator, there does not appear to be any fundamental limitation to the heterodyne efficiency of this laser source. Through the use of a lower noise-figure traveling wave tube amplifier and optical matching of the output beam with the photomixer, a substantial increase in the heterodyne S/N is expected.
Programmable controlled mode-locked fiber laser using a digital micromirror device.
Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie
2017-05-15
A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.
Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers.
Lancaster, D G; Gross, S; Withford, M J; Monro, T M
2014-10-20
We report widely tunable (≈ 260 nm) Tm(3+) and Ho(3+) doped fluorozirconate (ZBLAN) glass waveguide extended cavity lasers with close to diffraction limited beam quality (M(2) ≈ 1.3). The waveguides are based on ultrafast laser inscribed depressed claddings. A Ti:sapphire laser pumped Tm(3+)-doped chip laser continuously tunes from 1725 nm to 1975 nm, and a Tm(3+)-sensitized Tm(3+):Ho(3+) chip laser displays tuning across both ions evidenced by a red enhanced tuning range of 1810 to 2053 nm. We also demonstrate a compact 790 nm diode laser pumped Tm(3+)-doped chip laser which tunes from 1750 nm to 1998 nm at a 14% incident slope efficiency, and a beam quality of M(2) ≈ 1.2 for a large mode-area waveguide with 70 µm core diameter.
Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.
2015-02-15
We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jetmore » exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.« less
Rapid calibrated high-resolution hyperspectral imaging using tunable laser source
NASA Astrophysics Data System (ADS)
Nguyen, Lam K.; Margalith, Eli
2009-05-01
We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.
Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi
2005-06-01
A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.
High-resolution 3D laser imaging based on tunable fiber array link
NASA Astrophysics Data System (ADS)
Zhao, Sisi; Ruan, Ningjuan; Yang, Song
2017-10-01
Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.
Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong
2016-01-01
This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475
Tunable far infrared laser spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, G.A.; Laughlin, K.B.; Cohen, R.C.
The state of the art in far infrared (FIR) spectroscopy is reviewed. The development of tunable, coherent FIR radiation sources is discussed. Applications of tunable FIR laser spectrometers for measurement of rotational spectra and dipole moments of molecular ions and free radicals, vibration-rotation-tunneling (VRT) spectra of weakly bound complexes, and vibration-rotation spectra of linear carbon clusters are presented. A detailed description of the Berkeley tunable FIR laser spectrometers is presented in the following article.
NASA Astrophysics Data System (ADS)
Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud
2017-02-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.
Integrated ultraviolet and tunable mid-infrared laser source for analyses of proteins
NASA Astrophysics Data System (ADS)
Hazama, Hisanao; Takatani, Yoshiaki; Awazu, Kunio
2007-02-01
Mass spectrometry using matrix-assisted laser desorption/ionization (MALDI) technique is one of the most widely used method to analyze proteins in biological research fields. However, it is difficult to analyze insoluble proteins which have important roles in researches on disease mechanisms or in developments of drugs by using ultraviolet (UV) lasers which have commonly been used for MALDI. Recently, a significant improvement in MALDI process of insoluble proteins using a combination of a UV nitrogen laser and a tunable mid-infrared (MIR) free electron laser (FEL) was reported. Since the FEL is a very large and expensive equipment, we have developed a tabletop laser source which can generate both UV and tunable MIR lasers. A tunable MIR laser (5.5-10 μm) was obtained by difference frequency generation (DFG) between a Nd:YAG and a tunable Cr:forsterite lasers using two AgGaS II crystals. The MIR laser can generate pulses with an energy of up to 1.4 mJ at a repetition rate of 10 Hz. A UV laser was obtained by third harmonic generation of a Nd:YAG laser splitted from that used for DFG. A time interval between the UV and the MIR laser pulses can be adjusted with a variable optical delay.
Tunable multimode-interference bandpass fiber filter.
Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P
2010-02-01
We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.
Improved Radial Velocity Precision with a Tunable Laser Calibrator
NASA Astrophysics Data System (ADS)
Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.
2010-01-01
We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.
Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan
2013-11-18
The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.
Nine-channel wavelength tunable single mode laser array based on slots.
Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F
2013-04-22
A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.
Spectral properties of all-active InP-based microring resonator devices
NASA Astrophysics Data System (ADS)
Kapsalis, A.; Alexandropoulos, D.; Mikroulis, S.; Simos, H.; Stamataki, I.; Syvridis, D.; Hamacher, M.; Troppenz, U.; Heidrich, H.
2006-02-01
Microring resonators are excellent candidates for very large scale photonic integration due to their compactness, and fabrication simplicity. Moreover a wide range of all-optical signal processing functions can be realized due to the resonance effect. Possible applications include filtering, add/drop of optical beams and power switching, as well as more complex procedures including multiplexing, wavelength conversion, and logic operations. All-active ring components based in InGaAsP/InP are possible candidates for laser sources, lossless filters, wavelength converters, etc. Our work is based on measurement, characterization and proposal of possible exploitation of such devices in a variety of applications. We investigate the spectral characteristics of multi-quantum well InGaAsP(λ=1.55μm)/InP microring structures of various ring diameters and different configurations including racetracks with one or two bus waveguides and MMI couplers. The latter configuration has recently exhibited the possibility to obtain tunable active filters as well as tunable laser sources based on all-active ring-bus-coupler structures. In the case of tunable lasers single mode operation has been achieved by obtaining sufficiently high side mode suppression ratio. The tuning capability is attributed to a coupled cavities effect, resembling the case of multi-section DBR lasers. However, in contrast to the latter, the fabrication of microring resonators is considered an easier task, due to a single step growth procedure, although further investigation must be carried out in order to achieve wide range tunability. Detailed mappings of achievable wavelengths are produced for a wide range of injection current values.
NASA Astrophysics Data System (ADS)
Pushkarsky, Michael; Webber, Michael; Patel, C. Kumar N.
2005-03-01
We provide a general technique for evaluating the performance of an optical sensor for the detection of chemical warfare agents (CWAs) in realistic environments and present data from a simulation model based on a field deployed discretely tunable 13CO2 laser photoacoustic spectrometer (L-PAS). Results of our calculations show the sensor performance in terms of usable sensor sensitivity as a function of probability of false positives (PFP). The false positives arise from the presence of many other gases in the ambient air that could be interferents. Using the L-PAS as it exists today, we can achieve a detection threshold of about 4 ppb for the CWAs while maintaining a PFP of less than 1:106. Our simulation permits us to vary a number of parameters in the model to provide guidance for performance improvement. We find that by using a larger density of laser lines (such as those obtained through the use of tunable semiconductor lasers), improving the detector noise and maintaining the accuracy of laser frequency determination, optical detection schemes can make possible CWA sensors having sub-ppb detection capability with <1:108 PFP. We also describe the results of a preliminary experiment that verifies the results of the simulation model. Finally, we discuss the use of continuously tunable quantum cascade lasers in L-PAS for CWA and TIC detection.
Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques
NASA Technical Reports Server (NTRS)
Reid, J.; Cassidy, D. T.; Menzies, R. T.
1982-01-01
Measurements of the linewidths of Pb-salt diode lasers operating in the 8- and 9-micron region are reported. The linewidths of the 9-micron lasers were determined by conventional heterodyne techniques, while for the 8-micron lasers a new technique based on a Fabry-Perot etalon was used. The new technique avoids the complexity and limited wavelength range of the heterodyne measurements and can be used for any tunable laser. The linewidths observed varied from 0.6 to more than 500-MHz FWHM. The linewidth was found to vary dramatically from device to device, to depend strongly on junction temperature and injection current, and to be correlated with vibrations caused by operation of a closed-cycle refrigerator.
NASA Astrophysics Data System (ADS)
Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi
2018-01-01
We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.
NASA Astrophysics Data System (ADS)
Krzempek, K.; Abramski, K. M.; Nikodem, M.
2017-09-01
A widely tunable, fully monolithic, mid-infrared difference frequency generation source and its application in the dispersion-spectroscopy-based laser trace gas detection of methane and ethane, near 2938 and 2998 cm-1, is presented. Utilizing a fiber pigtailed nonlinear crystal module radically simplified the optical setup, while maintaining a superb conversion efficiency of 20% W-1. Seeded directly from two laser diodes, the source delivered ~0.5 mW of tunable radiation, which was used in a chirped laser dispersion spectroscopy setup, enabling the highly sensitive detection of hydrocarbons.
10-Gb/s direct modulation of polymer-based tunable external cavity lasers.
Choi, Byung-Seok; Oh, Su Hwan; Kim, Ki Soo; Yoon, Ki-Hong; Kim, Hyun Soo; Park, Mi-Ran; Jeong, Jong Sool; Kwon, O-Kyun; Seo, Jun-Kyu; Lee, Hak-Kyu; Chung, Yun C
2012-08-27
We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively. We directly modulate this laser at 10 Gb/s and transmit the modulated signal over 20 km of standard single-mode fiber. The power penalty is measured to be <2.8 dB at the bit-error rate (BER) of 10(-10).
Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.
Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S
2015-05-15
We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.
Quantum cascade lasers: from tool to product.
Razeghi, M; Lu, Q Y; Bandyopadhyay, N; Zhou, W; Heydari, D; Bai, Y; Slivken, S
2015-04-06
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication.
Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel
2005-03-07
We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.
Design and Construction of Simple, Nitrogen-Laser-Pumped, Tunable Dye Lasers
ERIC Educational Resources Information Center
Hilborn, Robert C.
1978-01-01
The basic physical principles of dye lasers are discussed and used to analyze the design and operation of tunable dye lasers pumped by pulsed nitrogen lasers. Details of the design and construction of these dye lasers are presented. Some simple demonstration experiments are described. (BB)
Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.
Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis
2016-12-20
Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.
Thermo-optic devices on polymer platform
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Keil, Norbert
2016-03-01
Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
Liu, Shuo; Yan, Fengping; Feng, Ting; Wu, Beilei; Dong, Ze; Chang, Gee-Kung
2014-08-20
A kind of switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror is presented and experimentally demonstrated. By adjusting the polarization controllers (PCs), stable dual-wavelength operation is obtained at the 2 μm band. The optical signal-to-noise ratio (OSNR) is better than 56 dB. The wavelength tuning is performed by applying static strain into the fiber Bragg grating. A tuning range from 0 to 5.14 nm is achieved for the dual-wavelength spacing. By adjusting the PCs properly, the fiber laser can also operate in single-wavelength state with the OSNR for each wavelength more than 50 dB.
NASA Astrophysics Data System (ADS)
Gelmini, E.; Minoni, U.; Docchio, F.
1995-08-01
A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.
Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers.
Feng, T L; Zhao, S Z; Yang, K J; Li, G Q; Li, D C; Zhao, J; Qiao, W C; Hou, J; Yang, Y; He, J L; Zheng, L H; Wang, Q G; Xu, X D; Su, L B; Xu, J
2013-10-21
We have investigated the lasing characteristics of Tm:LSO crystal in three operation regimes: continuous wave (CW), wavelength tunable and passive Q-switching based on graphene. In CW regime, a maximum output power of 0.65 W at 2054.9 nm with a slope efficiency of 21% was achieved. With a quartz plate, a broad wavelength tunable range of 145 nm was obtained, corresponding to a FWHM of 100 nm. By using a graphene saturable absorber mirror, the passively Q-switched Tm:LSO laser produced pulses with duration of 7.8 μs at 2030.8 nm under a repetition rate of 7.6 kHz, corresponding to pulse energy of 14.0 μJ.
Rao, Gottipaty N; Karpf, Andreas
2010-09-10
A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.
40nm tunable multi-wavelength fiber laser
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin
2014-12-01
A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.
Diode pumped tunable lasers based on Tm:CaF2 and Tm:Ho:CaF2 ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Němec, Michal; Jelinková, Helena; Doroshenko, Maxim E.; Fedorov, Pavel P.; Osiko, Vyacheslav V.
2014-02-01
The Tm:CaF2 (4% of TmF3) and Tm:Ho:CaF2 (2% of TmF3, 0.3% of HoF3) ceramics, prepared using hot pressing, and hot formation technique had been used as an active medium of diode pumped mid-infrared tunable laser. A fibre (core diameter 400 μm, NA = 0.22) coupled laser diode (LIMO, HLU30F400-790) was used to longitudinal pumping. The laser diode was operating in the pulsed regime (6 ms pulse length, 10 Hz repetition rate). The duty-cycle 6% ensures a low thermal load even under the maximum diode pumping power amplitude 25W (ceramics samples were only air-cooled). The laser diode emission wavelength was 786 nm. The 80mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.85 - 2.15 μm, HT @ 0.78 μm) and a curved (r = 150mm) output coupler with a reflectivity of ˜ 98% @ 1.85 - 2.0 μm for Tm:CaF2 laser or ˜ 99.5% @ 2.0 - 2.15 μm for Ho:Tm:CaF2. Tuning of the laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle. Both samples offered broad and smooth tuning possibilities in mid-IR spectral range and the lasers were continuously tunable over ˜ 100 nm. The obtained Tm:CaF2 tunability ranged from 1892 to 1992nm (the maximum output energy 1.8mJ was reached at 1952nm for absorbed pumping energy 78 mJ). In case of Tm:Ho:CaF2 laser tunability from 2016 to 2111nm was reached (the maximum output energy 1.5mJ was reached at 2083nm for absorbed pumping energy 53 mJ). Both these material are good candidates for a future investigation of high energy, ultra-short, laser pulse generation.
Adaptive Tunable Laser Spectrometer for Space Applications
NASA Technical Reports Server (NTRS)
Flesch, Gregory; Keymeulen, Didier
2010-01-01
An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.
Wavelength tunability of laser based on Yb-doped YGAG ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡
2015-02-01
The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.
Dual-wavelength laser with topological charge
NASA Astrophysics Data System (ADS)
Yu, Haohai; Xu, Miaomiao; Zhao, Yongguang; Wang, Yicheng; Han, Shuo; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang
2013-09-01
We demonstrate the simultaneous oscillation of different photons with equal orbital angular momentum in solid-state lasers for the first time to our knowledge. Single tunable Hermite-Gaussian (HG0,n) (0 ≤ n ≤ 7) laser modes with dual wavelength were generated using an isotropic cavity. With a mode-converter, the corresponding Laguerre-Gaussian (LG0,n) laser modes were obtained. The oscillating laser modes have two types of photons at the wavelengths of 1077 and 1081 nm and equal orbital angular momentum of nħ per photon. These results identify the possibility of simultaneous oscillation of different photons with equal and controllable orbital angular momentum. It can be proposed that this laser should have promising applications in many fields based on its compact structure, tunable orbital angular momentum, and simultaneous oscillation of different photons with equal orbital angular momentum.
Bharathan, Gayathri; Woodward, Robert I; Ams, Martin; Hudson, Darren D; Jackson, Stuart D; Fuerbach, Alex
2017-11-27
We report the development of a widely tunable all-fiber mid-infrared laser system based on a mechanically robust fiber Bragg grating (FBG) which was inscribed through the polymer coating of a Ho 3+ -Pr 3+ co-doped double clad ZBLAN fluoride fiber by focusing femtosecond laser pulses into the core of the fiber without the use of a phase mask. By applying mechanical tension and compression to the FBG while pumping the fiber with an 1150 nm laser diode, a continuous wave (CW) all-fiber laser with a tuning range of 37 nm, centered at 2870 nm, was demonstrated with up to 0.29 W output power. These results pave the way for the realization of compact and robust mid-infrared fiber laser systems for real-world applications in spectroscopy and medicine.
Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.
Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M
2015-11-30
We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Shnyrev, S. L.
2018-02-01
This paper develops the new selective real-time method of 129I2, 129I127I, 127I2 and NO2 detection in gases. Measuring concentrations of molecular iodine is based on fluorescence exciting by the radiation of a tunable diode laser, operating in the red spectral region (632-637 nm), at two or three wavelengths corresponding to the centers of the absorption lines of 129I2, 129I127I and 127I2. Detection of NO2 is performed by measuring the intensity of the tunable diode laser radiation, which passed through the measuring cell. Measured simultaneously, boundary ratios of iodine molecule concentrations measured simultaneously are about 10-6. The sensitivity of nitrogen dioxide detection is 1016 cm-3.
A single-stage optical load-balanced switch for data centers.
Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying
2012-10-22
Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.
Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
NASA Astrophysics Data System (ADS)
Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim
2014-03-01
In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic analysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.
Anashkina, E A; Andrianov, A V; Yu Koptev, M; Muravyev, S V; Kim, A V
2014-05-15
Femtosecond pulses with broad tunability in the range of 2-3 μm are generated in a germanate-glass core silica-glass cladding fiber with a driving pulse at 2 μm produced by an all-fiber laser system consisting of an Er:fiber source at 1.6 μm, a Raman fiber shifter, and a Tm:fiber amplifier. We demonstrate optical pulses with a duration of the order of 100 fs that are the shortest ones reported in the 2.5-3 μm range obtained by fiber laser systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet
2014-05-15
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser
Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-01
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.
Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-30
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Shnyrev, S. L.; Sobolevsky, I. V.
2016-06-01
The letter reports on the development of a laser-induced fluorescence method for on-line selective measurement of 127I2, 129I2, 131I2, 129I127I, 127I131I, 129I131I isotopologue concentrations in gaseous media. The method is based on the excitation of molecular iodine isotopologues’ fluorescence by tunable diode laser (632-637 nm) radiation at three or four wavelengths corresponding to the 127I2, 131I2, 129I127I, 129I131I absorption line centers. Boundary relations for concentrations of simultaneously measured iodine isotopologues is about 10-5-10-6.
Computer Processing Of Tunable-Diode-Laser Spectra
NASA Technical Reports Server (NTRS)
May, Randy D.
1991-01-01
Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.
Wavelength tunable L Band polarization-locked vector soliton fiber laser based on SWCNT-SA and CFBG
NASA Astrophysics Data System (ADS)
Yan, Yaxi; Wang, Jiaqi; Wang, Liang; Cheng, Zhenzhou
2018-04-01
Wavelength tunable L-Band polarization-locked vector soliton fiber laser based on single-walled carbon nanotube saturable absorber (SWCNT-SA) and chirped fiber Bragg grating (CFBG) is presented for the first time. By inserting the SWCNT-SA into an all-fiber laser cavity, polarization-locked vector solitons (PLVS) are obtained. The CFBG glued on a plastic cantilever is used for wavelength tuning. By mechanically bending the cantilever, the center wavelength of the PLVS pulses can be continuously tuned from 1606.8 nm to 1614 nm, while the polarization-locked state is kept stable. The properties and dynamics of PLVSs are experimentally investigated and stable PLVS operation including high-order PLVSs is demonstrated. The pulse width and repetition rate are 7.06 ps and 11.9 MHz at a wavelength of 1611 nm, respectively. This work demonstrates the feasibility of using polarization-insensitive CFBG to realize wavelength tuning in PLVS fiber laser.
Cavity mode-width spectroscopy with widely tunable ultra narrow laser.
Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman
2013-12-02
We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.
Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T
2013-06-01
We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.
Ringing phenomenon based whispering-gallery-mode sensing
Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min
2016-01-01
Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift. PMID:26796871
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.
Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P; Xu, Chris
2018-05-01
Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz.
Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.
Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J
2013-06-17
We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.
Tunable multiwavelength fiber laser based on a θ-shaped microfiber filter
NASA Astrophysics Data System (ADS)
Li, Yue; Xu, Zhilin; Luo, Yiyang; Xiang, Yang; Yan, Zhijun; Liu, Deming; Sun, Qizhen
2018-06-01
We propose and experimentally demonstrate a flexibly tunable multiwavelength fiber ring laser based on a θ-shaped microfiber filter in conjunction with an erbium-doped fiber amplifier. The stable operation of the multiwavelength lasing is successfully achieved at room temperature, with the peak power fluctuation less than 0.519 dB. By micro-adjusting the cavity length of the filter, the channel spacing can be independently tuned within the gain range of the optical amplifier. We have achieved 0.084 nm-spacing 48 channel, 0.147 nm-spacing 25 channel, 0.190 nm-spacing 20 channel and 0.302 nm-spacing 15 channel lasing wavelengths at room temperature.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yang, Si-Gang; Wang, Xiao-Jian; Gou, Dou-Dou; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong
2014-01-01
We report the experimental demonstration of the optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber (PCF) with a zero group velocity dispersion (GVD) wavelength of 1062 nm pumped by a homemade tunable picosecond mode-locked ytterbium-doped fiber laser. A broad parametric gain band is obtained by pumping the PCF in the anomalous GVD regime with a relatively low power. Two separated narrow parametric gain bands are observed by pumping the PCF in the normal GVD regime. The peak of the parametric gain profile can be tuned from 927 to 1038 nm and from 1099 to 1228 nm. This widely tunable parametric gain band can be used for a broad band optical parametric amplifier, large span wavelength conversion or a tunable optical parametric oscillator.
Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams
van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...
2015-10-28
The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.
Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong
2009-09-14
A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.
Guided transmission for 10 micron tunable lasers
NASA Technical Reports Server (NTRS)
Yu, C.; Sabzali, A.; Yekrangian, A.
1986-01-01
Performance characteristics are reported for two types of IR tunable laser guided transmission, one of which incorporates a CO2 laser, metallic piping or fiber-optics, and a detector system, while the other employs a tunable diode laser, fiber-optics, and a detector system. While existing technology furnishes low loss, rugged, near-single mode piping, fiber-optics exhibits appreciably higher loss, and its multimode fibers are fragile and chemically unstable. Studies have accordingly concentrated on such relevant fiber parameters as loss, toxicity, hygroscopicity, refractive index, flexibility, and thermal behavior at low temperature.
Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech
2016-04-18
We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.
Esnal, I; Duran-Sampedro, G; Agarrabeitia, A R; Bañuelos, J; García-Moreno, I; Macías, M A; Peña-Cabrera, E; López-Arbeloa, I; de la Moya, S; Ortiz, M J
2015-03-28
Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin-BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520-680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260-350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.
Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu
2018-03-01
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
NASA Astrophysics Data System (ADS)
Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Ibarra-Escamilla, B.; Hernández-Arriaga, M. V.; Sánchez-de-la-Llave, D.; Kuzin, E. A.
2017-08-01
We propose an all-fiber Tm-doped fiber laser with a tunable and narrow laser line generated in a wavelength region of 2 µm. A single laser line with a linewidth below 0.05 nm, tunable in a wavelength range of 44.25 nm, is obtained. The laser linewidth and the discrete wavelength tuning range depend on the characteristics of the two fiber optical loop mirrors with high birefringence in the loop that forms the cavity. Dual-wavelength laser operation is also observed at tuning range limits with a wavelength separation of 47 nm. Alternate wavelength switching is also observed.
Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli
2012-03-12
The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.
Jiang, Zhi-Shen; Wang, Fei; Xing, Da-Wei; Xu, Ting; Yan, Jian-Hua; Cen, Ke-Fa
2012-11-01
The experimental method by using the tunable diode laser absorption spectroscopy combined with the model and algo- rithm was studied to reconstruct the two-dimensional distribution of gas concentration The feasibility of the reconstruction program was verified by numerical simulation A diagnostic system consisting of 24 lasers was built for the measurement of H2O in the methane/air premixed flame. The two-dimensional distribution of H2O concentration in the flame was reconstructed, showing that the reconstruction results reflect the real two-dimensional distribution of H2O concentration in the flame. This diagnostic scheme provides a promising solution for combustion control.
Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2018-01-01
We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.
NASA Technical Reports Server (NTRS)
Hess, R. V.; Seals, R. K.
1974-01-01
Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.
NASA Technical Reports Server (NTRS)
Zuev, V. E.; Andreev, Y. M.; Voevodin, V. G.; Gribenyukov, A. I.; Kapitanov, V. A.; Sosnin, A. V.; Stuchebrov, G. A.; Khmelnitskii, G. S.
1986-01-01
The results of field measurements of concentration of some gaseous components of the atmosphere along the paths, in Sofia, Bulgaria, using a gas analyzer based on the use of a CO2 laser radiation frequency-doubled with ZnGeP2 monocrystals are presented. The gas analyzer is a traditional long path absorption meter. Radiation from the tunable CO2 laser of low pressure and from an additional He-Ne laser is directed to a colliminating hundredfold Gregori telescope with a 300 mm diameter of the principal mirror. The dimensions of the mirrors of a retroreflector 500 x 500 mm and a receiving telescope allow one to totally intercept the beam passed through the atmospheric layer under study and back.
Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo
2011-04-01
In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.
NASA Astrophysics Data System (ADS)
Yao, Yuhong; Knox, Wayne H.
2014-02-01
We report a fiber based approach to broadly tunable femtosecond mid-IR source based on difference frequency mixing of the outputs from dual photonic crystal fibers (PCF) pumped by a femtosecond fiber laser, which is a custom-built Yb-doped fiber chirped pulse amplifier (CPA) delivering 1.35 W, 300 fs, 40 MHz pulses centered at 1035 nm. The CPA output is split into two arms to pump two different types of PCFs for generation of the spectrally separated pulses. The shorter wavelength pulses are generated in one PCF with its single zero dispersion wavelength (ZDW) at 1040 nm. Low normal dispersion around the pumping wavelength enables spectral broadening dominated by self-phase modulation (SPM), which extends from 970 to 1092 nm with up to 340 mW of average power. The longer wavelength pulses are generated in a second PCF which has two closely spaced ZDWs around the laser wavelength. Facilitated by its special dispersion profile, the laser wavelength is converted to the normal dispersion region of the fiber, leading to the generation of the narrow-band intense Stokes pulses with 1 to 1.25 nJ of pulse energy at a conversion efficiency of ~30% from the laser pulses. By difference mixing the outputs from both PCFs in a type-II AgGaS2 crystal, mid-IR pulses tunable from 4.2 to 9 μm are readily generated with its average power ranging from 135 - 640 μW, corresponding to 3 - 16 pJ of pulse energy which is comparable to the reported fiber based mid-IR sources enabled by the solitons self-frequency shift (for example, 3 - 10 μm with 10 pJ of maximum pulse energy in [10]). The reported approach provides a power-scalable route to the generation of broadly tunable femtosecond mid-IR pulses, which we believe to be a promising solution for developing compact, economic and high performance mid-IR sources.
Lewicki, Rafał; Doty, James H.; Curl, Robert F.; Tittel, Frank K.; Wysocki, Gerard
2009-01-01
A transportable prototype Faraday rotation spectroscopic system based on a tunable external cavity quantum cascade laser has been developed for ultrasensitive detection of nitric oxide (NO). A broadly tunable laser source allows targeting the optimum Q3/2(3/2) molecular transition at 1875.81 cm−1 of the NO fundamental band. For an active optical path of 44 cm and 1-s lock-in time constant minimum NO detection limits (1σ) of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. Laboratory performance evaluation and results of continuous, unattended monitoring of atmospheric NO concentration levels are reported. PMID:19625625
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy
Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P.; Xu, Chris
2018-01-01
Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz. PMID:29760989
Tunable orbital angular momentum mode filter based on optical geometric transformation.
Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2014-03-15
We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.
Rugged TDLAS system for High Energy Laser atmospheric propagation characterization
NASA Astrophysics Data System (ADS)
Perram, Glen; Rice, Christopher
2008-10-01
An active remote sensing instrument for the characterization of atmospheric absorption, scattering, and scintillation at several key high energy laser wavelengths is in development. The instrument is based on narrow band tunable diode lasers fiber coupled to a 12'' Ritchey-Chretien transmit telescope and a second receive telescope with visible or near infrared imager. For example, tunable diode lasers have been used to obtain absorption spectra in the laboratory for the Cs D2 lines near 852 nm and the oxygen X-b lines near 760 nm, key to the Diode Pumped Alkali Laser (DPAL) concept. Absorbencies of less than 0.5% are observable. Applications will be assessed including effects to HEL atmospheric propagation from molecular and aerosol absorption and scattering, Cn2 estimation from atmospheric turbulence, hazardous chemical emission detection, and laser communication interception from side scattering. The system will soon be deployed to a military laser test range to characterize path lengths of greater than 1 km.
Calibration of a tunable excimer laser using the optogalvanic effect
NASA Technical Reports Server (NTRS)
Abbitt, John D.
1991-01-01
A device for the calibration of a tunable excimer laser is currently under development. The laser provides UV radiation at three principal wavelengths, 193, 248, and 308 nm and is tunable over a range of 1 nm at each of these wavelengths. The laser is used as a non-intrusive optical probe to excite electronic transitions, and thereby induce fluorescence, of the principle molecules or atoms of interest in supersonic flowfields, both reacting and nonreacting. The fluorescence resulting from the excitation is observed with an intensified camera. Over the range of tunability at the three wavelengths are a number of transitions that can be observed. The intensity of the fluorescence depends in part on the local temperature and density. The nature of this thermodynamic dependence is variable among transitions; thus, identification of the transition under observation is required. The specific transition excited corresponds directly to the wavelength of the radiation. The present technique used for transition identification consists of scanning the laser across the range of tunability and observing the fluorescence resulting from various molecular transitions.
Parametric infrared tunable laser system
NASA Technical Reports Server (NTRS)
Garbuny, M.; Henningsen, T.; Sutter, J. R.
1980-01-01
A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.
NASA Astrophysics Data System (ADS)
Yan, Dexian; Wang, Yuye; Xu, Degang; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Mei, Jialin; Shi, Jia; Yao, Jianquan
2017-01-01
We presented a high power, widely tunable narrowband 2 μm dual-wavelength source employing intracavity optical parametric oscillator with potassium titanium oxide phosphate (KTP) crystal. Two identical KTP crystals were oriented oppositely in the OPO cavity to compensate the walk-off effect. The output average power of dual-wavelength 2 μm laser was up to 18.18 W at 10 kHz with the peak power of 165 kW. The two wavelengths can be tuned in the range of 2070.7 nm to 2191.1 nm for ordinary light while in the range of 2190.7 nm to 2065.9 nm for extraordinary light with the full width at half maximum (FWHM) about 0.8 nm. The pulse width of the tunable laser was as narrow as 11 ns. The beam quality factor M 2 was less than 4 during wavelength tuning.
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
Tunable THz polariton laser based on 1342 nm wavelength for enhanced terahertz wave extraction.
Lee, Andrew J; Spence, David J; Pask, Helen M
2017-07-15
We detail the operation of a THz laser source based on non-linear stimulated polariton scattering (SPS) in Mg:LiNbO3. This system utilizes a fundamental wavelength of 1342 nm to completely avoid the negative effect of free-carrier generation within high-resistivity silicon (Si) prisms used to extract THz radiation from the Mg:LiNbO3 crystal. THz power of up to 23.6 μW (62.3 μW when chopped at 50% duty cycle) was detected at 1.33 THz, and frequency tunability across the range 1.05-2.2 THz was achieved.
Method and apparatus for enhancing laser absorption sensitivity
NASA Technical Reports Server (NTRS)
Webster, Christopher R. (Inventor)
1987-01-01
A simple optomechanical method and apparatus is described for substantially reducing the amplitude of unwanted multiple interference fringes which often limit the sensitivities of tunable laser absorption spectrometers. An exterior cavity is defined by partially transmissible surfaces such as a laser exit plate, a detector input, etc. That cavity is spoiled by placing an oscillating plate in the laser beam. For tunable diode laser spectroscopy in the mid-infrared region, a Brewster-plate spoiler allows the harmonic detection of absorptances of less than 10 to the -5 in a single laser scan. Improved operation is achieved without subtraction techniques, without complex laser frequency modulation, and without distortion of the molecular lineshape signal. The technique is applicable to tunable lasers operating from UV to IR wavelengths and in spectrometers which employ either short or long pathlengths, including the use of retroreflectors or multipass cells.
2012-09-01
atmosphere”. Applied Physics B: Lasers and Optics, 82(1):133–140, 2006. 11. Barrass, S., Y. Grard, R.J. Holdsworth, and P.A. Martin . “Near-infrared tun...15. Brown, M. S., S. Williams, C. D. Lindstrom , and D. L. Barone. Progress in Applying Tunable Diode Laser Absorption Spectroscopy to Scramjet
A tunable mid-infrared laser source for remote sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
1991-01-01
Many remote sensing needs can be effectively addressed with a tunable laser source in the mid infrared. One potential laser source is an optical parametric oscillator and amplifier system pumped by a near infrared solid state laser. Advantages of such a system and progress made at NASA Langley Research Center to date on such a system are described.
Multilaser Herriott Cell for Planetary Tunable Laser Spectrometers
NASA Technical Reports Server (NTRS)
Tarsitano, Christopher G.; Webster, Christopher R.
2007-01-01
Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.
NASA Technical Reports Server (NTRS)
Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.
1998-01-01
The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.
A facetless regrowth-free single mode laser based on MMI couplers
NASA Astrophysics Data System (ADS)
Caro, Ludovic; Kelly, Niall P.; Dernaika, Mohamad; Shayesteh, Maryam; Morrissey, Padraic E.; Alexander, Justin K.; Peters, Frank H.
2017-09-01
This paper presents a facetless, tunable laser operating near 1575 nm, as well as a theoretical model predicting spectral features of the laser. The lasers were fabricated without regrowth or advanced lithography techniques, and are based on MMI couplers and etched facets. Coarse vernier tuning was achieved over a range of 25 nm, while fine, thermal tuning was also demonstrated over a range of 1.5 nm. SMSR values of 25 dB and higher were observed, with a measured laser linewidth of 600 kHz.
Laser-Based Detection Methods for Explosives
2007-09-01
4 2.1.1 Tunable Diode Laser Spectroscopy ( TDLAS ) ......................................................5 2.1.2...argon, (b) RDX on aluminum in ambient atmosphere, and (c) plain aluminum in ambient atmosphere. Carbon (C), hydrogen (H), nitrogen (N), and oxygen ...fluorescence emission from sensor particles on soil contaminated with TNT
Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng
2011-06-20
A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.
NASA Astrophysics Data System (ADS)
Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu
2017-12-01
We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703
Rugged, Tunable Extended-Cavity Diode Laser
NASA Technical Reports Server (NTRS)
Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade
2007-01-01
A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.
Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping
NASA Technical Reports Server (NTRS)
Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar
1996-01-01
Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.
NASA Astrophysics Data System (ADS)
Volz, Pierre; Brodwolf, Robert; Zoschke, Christian; Haag, Rainer; Schäfer-Korting, Monika; Alexiev, Ulrike
2018-05-01
We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.
Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.
Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K
2013-02-11
In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.
NASA Astrophysics Data System (ADS)
Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar
2017-04-01
This paper demonstrates the interrogation of a fiber Bragg grating with a flat-topped reflection spectrum centred on 1649.55 nm using only a single mode tunable 1651.93 nm semiconductor laser and a fiber ring resonator. The Bragg shift is accurately measured with the fiber-optic ring resonator that has a free spectral range (FSR) of 0.1008 GHz and a broadband photo-detector. Laser wavelength modulation and harmonic detection are used to transform the gentle edges of the flat-topped FBG spectrum into prominent leading and trailing peaks, either of which can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution of 0.9 pm. A Raspberry Pi-based low-cost embedded processor is used to measure the temperature-induced spectral shifts over the range 30˚C - 80˚C. The shift was linear with a temperature sensitivity of 12.8 pm/˚C. This technique does not use an optical spectrum analyzer at any stage of its design or operation. The laser does not need to be pre-characterized either. This technique can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments.
Wide range optofluidically tunable multimode interference fiber laser
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; LiKamWa, P.; May-Arrioja, D. A.
2014-08-01
An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range.
Widely tunable opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.
2012-03-01
We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.
Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, D J; Barty, C J; Betts, S M
2005-04-21
The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less
Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers
NASA Astrophysics Data System (ADS)
Brox, O.; Wenzel, H.; Della Case, P.; Tawfieq, M.; Sumpf, B.; Weyers, M.; Knigge, A.
2018-02-01
Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy
NASA Technical Reports Server (NTRS)
Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish
2016-01-01
This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.
2014-09-01
Squeezed light from injection- locked quantum well lasers ,” Phys. Rev. Lett., vol. 71, pp. 3951–3954, 1993. [30] A. E. Siegman , Lasers , 1st ed...AFRL-RY-WP-TP-2014-0297 TUNABLE OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS -POSTPRINT...OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS - POSTPRINT 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER
Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications
NASA Astrophysics Data System (ADS)
Henderson, Sammy W.; Hale, Charley P.
2017-08-01
We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.
NASA Astrophysics Data System (ADS)
Hirayama, Toru; Kozawa, Yuichi; Nakamura, Takahiro; Sato, Shunichi
2006-12-01
We demonstrated a generation of cylindrically symmetric, polarized laser beams with narrow linewidth and fine tunability. Since an LP11 mode beam in an optical fiber is a superposition of an HE21 (hybrid) mode beam and a TE01 or TM01 mode beam, firstly, a higher order transverse (TEM01 or TEM10) mode laser beam with narrow linewidth and fine tunability was generated from an external cavity diode laser (ECDL) in conjunction with a phase adjustment plate. Then the beam generated was passed in a two mode optical fiber. A doughnut shaped laser beam with the cylindrically symmetric polarization (a radially or azimuthally polarized beam) was obtained by properly adding stress-induced birefringence in the optical fiber.
Recent progress in InP/polymer-based devices for telecom and data center applications
NASA Astrophysics Data System (ADS)
Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert
2015-02-01
Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.
Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.
Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P
2014-02-10
We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.
NASA Technical Reports Server (NTRS)
Miller, M. D.
1980-01-01
Lead salt diode lasers are being used increasingly as tunable sources of monochromatic infrared radiation in a variety of spectroscopic systems. These devices are particularly useful, both in the laboratory and in the field, because of their high spectral brightness (compared to thermal sources) and wide spectral coverage (compared to line-tunable gas lasers). While the primary commercial application of these lasers has been for ultrahigh resolution laboratory spectroscopy, there are numerous systems applications, including laser absorbtion pollution monitors and laser heterodyne radiometers, for which diode lasers have great potential utility. Problem areas related to the wider use of these components are identified. Among these are total tuning range, mode control, and high fabrication cost. A fabrication technique which specifically addresses the problems of tuning range and cost, and which also has potential application for mode control, is reported.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
Single-frequency tunable laser for pumping cesium frequency standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravleva, O V; Ivanov, Andrei V; Leonovich, A I
2006-08-31
A single-frequency tunable laser for pumping the cesium frequency standard is studied. It is shown experimentally that the laser emits at a single frequency despite the fact that a few longitudinal modes of the external cavity fall within the reflection band of a fibre Bragg grating (FBG) written in the optical fibre. The laser wavelength can be tuned by varying the pump current of the laser, its temperature, and the FBG temperature. The laser linewidth does not exceed 2 MHz for 10 mW of output power. (lasers)
An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.
2008-07-01
hours. The detector signals are post-processed with a software lock-in amplifier to recover the WMS-1f and WMS-2f signals. The TDLAS sensor utilizes...Figure 6. Schematic of TDLAS sensor for temperature and water vapor concentration. Fiber Diode lasers Grating Fiber Detectors Demultiplexer Multiplexer...within the combustor. Tunable diode laser- based absorption spectroscopy ( TDLAS ) is used to measure water vapor concentration and static temperature near
DNA-based dye lasers: progress in this half a decade
NASA Astrophysics Data System (ADS)
Kawabe, Yutaka
2016-09-01
After the invention of DNA-surfactant films and the proposal of dye doping into them by Ogata, many applications were demonstrated. Among them tunable thin film laser is one of the most attractive functional devices. Development and progress in DNA based lasers after the first observation of amplified spontaneous emission (ASE) by us has been reviewed in a former paper published in 2011.1 In this proceeding, progresses in the subsequent half a decade are described.
Smart lens: tunable liquid lens for laser tracking
NASA Astrophysics Data System (ADS)
Lin, Fan-Yi; Chu, Li-Yu; Juan, Yu-Shan; Pan, Sih-Ting; Fan, Shih-Kang
2007-05-01
A tracking system utilizing tunable liquid lens is proposed and demonstrated. Adapting the concept of EWOD (electrowetting-on-dielectric), the curvature of a droplet on a dielectric film can be controlled by varying the applied voltage. When utilizing the droplet as an optical lens, the focal length of this adaptive liquid lens can be adjusted as desired. Moreover, the light that passes through it can therefore be focused to different positions in space. In this paper, the tuning range of the curvature and focal length of the tunable liquid lens is investigated. Droplet transformation is observed and analyzed under a CCD camera. A tracking system combining the tunable liquid lens with a laser detection system is also proposed. With a feedback circuit that maximizing the returned signal by controlling the tunable lens, the laser beam can keep tracked on a distant reflected target while it is moving.
Tunable graded rod laser assembly
NASA Technical Reports Server (NTRS)
AuYeung, John C. (Inventor)
1985-01-01
A tunable laser assembly including a pair of radially graded indexed optical segments aligned to focus the laser to form an external resonant cavity with an optical axis, the respective optical segments are retativity moveable along the optical axis and provide a variable et aion gap sufficient to permit variable tuning of the laser wavelength without altering the effective length of the resonant cavity. The gap also include a saturable absorbing material providing a passive mode-locking of the laser.
Lathdavong, Lemthong; Shao, Jie; Kluczynski, Pawel; Lundqvist, Stefan; Axner, Ove
2011-06-10
Detection of carbon monoxide (CO) in combustion gases by tunable diode laser spectrometry is often hampered by spectral interferences from H2O and CO2. A methodology for assessment of CO in hot, humid media using telecommunication distributed feedback lasers is presented. By addressing the R14 line at 6395.4 cm(-1), and by using a dual-species-fitting technique that incorporates the fitting of both a previously measured water background reference spectrum and a 2f-wavelength modulation lineshape function, percent-level concentrations of CO can be detected in media with tens of percent of water (c(H2O)≤40%) at T≤1000 °C with an accuracy of a few percent by the use of a single reference water spectrum for background correction.
NASA Astrophysics Data System (ADS)
Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan
2018-02-01
We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.
NASA Astrophysics Data System (ADS)
Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.
2017-12-01
Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
Infrared laser spectroscopic trace gas sensing
NASA Astrophysics Data System (ADS)
Sigrist, Markus
2016-04-01
Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short-lived species like nitrous acid (HONO) with a QCL-based QEPAS system where the small gas sampling volume and hence short gas residence time are of particular importance [3]. A true analysis of gas mixtures has been performed with a widely tunable DFG system in a medical application that could also be adapted to atmospheric species [4]. It is demonstrated that a laser-based narrowband system with broad tunability combined with an appropriate detection scheme is feasible for the chemical analysis of multi-component gas mixtures even with an a priori unknown composition. Most recent examples will further confirm the great potential of infrared laser-based devices for trace species sensing. References 1. D. Marinov and M.W. Sigrist: "Monitoring of road-traffic emission with mobile photoacoustic system", Photochem. and Photobiol. Sciences 2, 774-778 (2003) 2. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: "Broadly tunable mid-infrared VECSEL for multiple components hydrocarbons gas sensing", Appl. Phys. B 117, 935-939 (2014) 3. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106, 101109 (2015) 4. M. Gianella and M.W. Sigrist: "Chemical Analysis of Surgical Smoke by Infrared Laser Spectroscopy", Appl. Phys. B 109, 485-496 (2012)
Advanced Compton scattering light source R&D at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F; Anderson, S G; Anderson, G
2010-02-16
We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less
Tm:GGAG crystal for 2μm tunable diode-pumped laser
NASA Astrophysics Data System (ADS)
Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin
2016-04-01
The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.
NASA Astrophysics Data System (ADS)
Pu, Tao; Wang, Wei wei
2018-01-01
In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.
1980-11-01
finite aperture size 5. A. E. Siegman , "Unstable optical resonators for laser of the YAG rod, applications," Proc. IEEE 53, 217-287 (1965); "Unstable...Pumped LiNbO3 Tunable Source Radial Birefringent Element Computer Controlled Laser Attenuator Slab Configuration Laser Source 20. ABSTRACT (Continue on...have invented and demonstrated a computer controlled laser attenu- ator. .... Cont inued DD Il 7 1473 EDITION OF I NOV 01 IS OBSOLETE UNCLASSIFIEDAN
NASA Technical Reports Server (NTRS)
Glenar, D. A.
1981-01-01
A state of the art, tunable diode laser infrared heterodyne spectrometer was designed and constructed for ground based observations throughout the 8 to 12 micron atmospheric window. The instrument was optimized for use with presently available tunable diode lasers, and was designed as a flexible field system for use with large reflecting telescopes. The instrument was aligned and calibrated using laboratory and astronomical sources. Observations of SiO fundamental (v = 1-0) and hot band (v = 2-1) absorption features were made in sunspots near 8 microns using the spectrometer. The data permit an unambiguous determination of the temperature pressure relation in the upper layers of the umbral atmosphere, and support the sunspot model suggested by Stellmacher and Wiehr.
Wavelength dependence of laser-induced retinal injury
NASA Astrophysics Data System (ADS)
Lund, David J.; Edsall, Peter; Stuck, Bruce E.
2005-04-01
The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.
Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.
Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo
2011-12-05
We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.
Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.
Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping
2018-02-05
We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.
Solid State Mobile Lidar for Ozone Atmospheric Profiling
NASA Technical Reports Server (NTRS)
De Young, Russell; Carrion, William; Pliutau, Denis; Ganoe, Rene
2014-01-01
A tunable Ce:LiCAF laser is pumped by a CLBO crystal pumped by a doubled Nd:YLF laser running at 1 kilohertz. The UV tunable Ce:LiCAF laser produces two UV pulses between 280 to 295 nanometers. These pulses are transmitted into the atmosphere to profile the concentration of ozone as a function of altitude.
Tunable lasers for water vapor measurements and other lidar applications
NASA Technical Reports Server (NTRS)
Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.
1977-01-01
A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.
Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Yu, Haixia; Xu, Kexin
2013-01-01
Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77μm(1024~1088 cm−1) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo. PMID:24466493
High flux, narrow bandwidth compton light sources via extended laser-electron interactions
Barty, V P
2015-01-13
New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, A.E.; Kuznetsov, M.; Kaminow, I.P.
1989-12-01
Two-electrode DFB lasers show promise for combining high speed and frequency tunability for FDM-FSK networks. The authors have measured the FM and FSK response of such lasers up to modulation frequencies of {approximately} GHz. Using these lasers in a noncoherent detection system in which a fiber Fabry-Perot tunable optical filter converts an FSK signal into ASK format, the authors demonstrate 10{sup {minus}9} BER up to 1 Gbit/s. Nonuniform FM response and consequent tone broadening of the optical-filtering FSK spectra can lead to system power penalties due to optical-filtering effects. Thus, for a given FM response, they can project the behaviormore » of these lasers in FSK optical systems.« less
Schultz, Bernd-Joachim; Mohrmann, Hendrik; Lorenz-Fonfria, Victor A; Heberle, Joachim
2018-01-05
We have developed a spectrometer based on tunable quantum cascade lasers (QCLs) for recording time-resolved absorption spectra of proteins in the mid-infrared range. We illustrate its performance by recording time-resolved difference spectra of bacteriorhodopsin in the carboxylic range (1800-1700cm -1 ) and on the CO rebinding reaction of myoglobin (1960-1840cm -1 ), at a spectral resolution of 1cm -1 . The spectrometric setup covers the time range from 4ns to nearly a second with a response time of 10-15ns. Absorption changes as low as 1×10 -4 are detected in single-shot experiments at t>1μs, and of 5×10 -6 in kinetics obtained after averaging 100 shots. While previous time-resolved IR experiments have mostly been conducted on hydrated films of proteins, we demonstrate here that the brilliance of tunable quantum cascade lasers is superior to perform ns time-resolved experiments even in aqueous solution (H 2 O). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Shulagin, Yurii A.; D'yachenko, Alexander I.
1999-07-01
Middle IR tunable diode lasers were applied to studies of pulmonary excretion of endogenous carbon monoxide (CO). Variations of the CO content level in exhaled air of healthy nonsmokers were investigated for different environmental conditions with the applied laser technique. Correlation of the obtained data with atmospheric CO contamination and elevated oxygen content were studied as well as diurnal variations of the endogenous CO in exhalation was observed. Criteria for correct conditions of the endogenous CO detection in breath could be derive don this basis. Developed laser approach and methods were applied for the analysis of the excreted CO level in different diseases like bronchial asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, anemia and hepatitis. Laser based close-to-real-time monitoring of the endogenous CO elimination with breath in the course of different dynamic tests was demonstrated to be informative in studies of blood oxygen transport and pH variations in tissues for different challenges tests in human physiology.
NASA Technical Reports Server (NTRS)
Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.
1975-01-01
The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.
Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm.
Wei, Chen; Luo, Hongyu; Shi, Hongxia; Lyu, YanJia; Zhang, Han; Liu, Yong
2017-04-17
In this paper, we demonstrate a wavelength widely tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. The laser can be tuned over 170 nm (2699 nm~2869.9 nm) for various pump power levels, while maintaining stable μs-level single-pulse gain-switched operation with controllable output pulse duration at a selectable repetition rate. To the best of our knowledge, this is the first wavelength tunable gain-switched fiber laser in the 3 μm spectral region with the broadest tuning range (doubling the record tuning range) of the pulsed fiber lasers around 3 μm. Influences of pump energy and power on the output gain-switched laser performances are investigated in detail. This robust, simple, and versatile mid-infrared pulsed fiber laser source is highly suitable for many applications including laser surgery, material processing, sensing, spectroscopy, as well as serving as a practical seed source in master oscillator power amplifiers.
NASA Astrophysics Data System (ADS)
Moura, André L.; Carreño, Sandra J. M.; Pincheira, Pablo I. R.; Fabris, Zanine V.; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.
2016-06-01
Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the 4F3/2 → 4I11/2 transition of neodymium ions (Nd3+), was achieved by exciting the Nd3+ with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the 4F9/2, (4F7/2,4S3/2), (4F5/2,2H9/2), and 4F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission.
Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source
NASA Astrophysics Data System (ADS)
Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.
2010-03-01
We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.
Wavelength-Dependence on the Initiation of Iron-Based Photoactive Explosives
NASA Astrophysics Data System (ADS)
Brown, Kathryn; Myers, Thomas; Clarke, Steven
2017-06-01
Photoactive explosives show promise to be relatively insensitive to impact and friction compared to PETN and other detonator materials, but can be more easily initiated with laser light. Metal-ligand charge transfer (MLCT) complexes have been shown to have tunable explosive properties and absorption profiles, making them strong candidates for laser detonator material. Here, we discuss the synthesis and characterization of several iron-based MLCT complexes, as well as results from recent experiments on their sensitivity to initiation from different wavelengths of laser light.
Tunable fiber Bragg grating ring lasers using macro fiber composite actuators
NASA Astrophysics Data System (ADS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-10-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.
Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-01-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.
Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1993-01-01
During 10/31/92 - 3/31/93, the following summarizes our major accomplishments: (1) the self-mode-locked operation of the Cr:forsterite laser was achieved; (2) synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking; and (3) the pulses generated had a FWHW of 105 fs and were tunable between 1230 - 1270 nm.
Design of a photonic integrated based optical interrogator
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.
2017-02-01
Optical sensors based on Fiber Bragg Gratings (FBGs) are used in several applications and industries. In order for fiber optic sensors to compete with electrical sensors, several critical parameters of both the sensors and sensor interrogators need to be in place such as performance, cost, size, reliability relevant to the target application. Here we have developed a tunable laser based optical interrogator which delivers high performance (up to 8kHz sweep-rate and 120dB dynamic range) and precision (<100fm) by optimizing the laser calibration of a telecom tunable laser and incorporating optical periodic wavelength references (e.g. MZI) to correct and compensate for wavelength non-linearity and noise during operation. Scaling up optical sensing systems to deliver high level of performance over a large number of sensors is enabled by synchronizing multiple interrogators. Further improvements can be achieved by using photonic integrated circuit (PIC) technology which reduces the footprint, cost, and improves performance. There exists several PIC technology platforms (e.g. InP, Si, TriPlex) that could be used to develop different optical building blocks used in the interrogator. Such building blocks include the tunable laser, couplers, photodiodes, MZIs, etc. are available on the InP platform. Here we have demonstrated the operation of an interrogator using PIC technology to replace many of the discrete optical components. The design and chip manufacturing was carried out as part of an InP multi-project wafer (MPW) run under the EU PARADIGM project. A custom package supporting fiber arrays was designed and manufactured to demonstrate the PIC functionality in an optical interrogator.
Tunable Soft X-Ray Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtele, Jonathan; Gandhi, Punut; Gu, X-W
A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less
Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto
2018-06-04
In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.
Electrically tunable laser based on heliconical cholesteric (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter
2016-09-01
STUDENT CONTRIBUTION: Cholesteric liquid crystals (CLC) self-assemble into a periodic supramolecular helical structure with properties of a one-dimensional photonic crystal. The CLCs doped with a fluorescent dye and optical pump enable a distributed feedback cavity and lasing [1]. Although lasing was observed in range of wavelength from near UV to near IR, a practical method of tuning of emission wavelength from a dye-doped CLC without structural destruction of a helix is not demonstrated yet. In this work, we demonstrate an electrically tunable dye-doped CLC laser based on the so-called oblique helicoidal, or heliconical, CLC state [2,3]. In this state, the molecules twist around the helicoidal axis, making an angle smaller than 90 degrees with the axis. Molecular tilt makes the heliconical structure different from the regular CLC (in which the molecules are perpendicular to the axis) and enable electric tunability [2,3]. An electric field applied parallel to the heliconical axis changes the pitch but does not realign the axis. When the field increases, the pitch decreases. As a result, the selective reflection band and a lasing wavelength move towards shorter wavelength. Using heliconical CLC and two laser dyes DCM and LD688, we demonstrate effective tuning of the laser emission wavelength from 574 nm to 722 nm. With appropriate laser dyes, the spectrum can be extended from near UV to near IR. Efficient electric tuning in the broad spectral range and small size of the heliconical cholesteric lasers makes them potentially useful for optical and biomedical applications. [1] P. Palffy-Muhoay, W.Y. Cao, M. Moreira, B. Taheri, A. Munoz, Photonics and lasing in liquid crystal [2] J. Xiang, S.V. Shiyanovskii, C.T. Imrie, O.D. Lavrentovich, Electrooptic Response of Chiral Nematic Liquid Crystals with Oblique Helicoidal Director, Phys Rev Lett, 112 (2014) 217801. [3] J. Xiang, Y.N. Li, Q. Li, D.A. Paterson, J.M.D. Storey, C.T. Imrie, O.D. Lavrentovich, Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics, Adv Mater, 27 (2015) 3014-3018.
NASA Technical Reports Server (NTRS)
Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.
2001-01-01
A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.
NASA Astrophysics Data System (ADS)
Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang
2018-05-01
Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.
NASA Technical Reports Server (NTRS)
Misra, Prabhakar; She, Yong-Bo; Zhu, Xin-Ming; King, Michael
1997-01-01
Combustion studies under both normal gravity and microgravity conditions depend a great deal on the availability and quality of the diagnostic systems used for such investigations. Microgravity phenomena are specially susceptible to even small perturbations and therefore non-intrusive diagnostic techniques are of paramount importance for successful understanding of reduced-gravity combustion phenomena. Several non-intrusive diagnostic techniques are available for probing and delineating normal as well as reduced gravity combustion processes, such as Rayleigh scattering, Raman scattering, Mie scattering, velocimetry, interferometric and Schlieren techniques, emission and laser-induced fluorescence (LIF) spectroscopy. Our approach is to use the LIF technique as a non-intrusive diagnostic tool for the study of combustion-associated free radicals and use the concomitant optogalvanic transitions to accomplish precise calibration of the laser wavelengths used for recording the excitation spectra of transient molecular species. In attempting to perform spectroscopic measurements on chemical intermediates, we have used conventional laser sources as well as new and novel platforms employing rare-earth doped solid-state lasers. Conventional (commercially available) sources of tunable UV laser radiation are extremely cumbersome and energy-consuming devices that are not very suitable for either in-space or in-flight (or microgravity drop tower) experiments. Traditional LIF sources of tunable UV laser radiation involve in addition to a pump laser (usually a Nd:YAG laser with an attached frequency-doubling stage), a tunable dye laser. In turn, the dye laser has to be provided with a dye circulation system and a subsequent stage for frequency-doubling of the dye laser radiation, together with a servo-tuning system (termed the 'Autotracker') to follow the wavelength changes and also an optical system (called the 'Frequency Separator') for separation of the emanating visible and UV beams. In contrast to this approach, we have devised an alternate arrangement for recording LIF excitation spectra of free radicals (following appropriate precursor fragmentation) that utilizes a tunable rare-earth doped solid state laser system with direct UV pumping. We have designed a compact and portable tunable UV laser system incorporating features necessary for both in-space and in-flight spectroscopy experiments. For the purpose of LIF excitation, we have developed an all-solid-state tunable UV laser that employs direct pumping of the solid-state UV-active medium employing UV harmonics from a Nd:YAG laser. An optical scheme with counterpropagating photolysis and excitation beams focused by suitable lenses into a reaction vacuum chamber was employed.
Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.
Lai, W J; Shum, P; Binh, L
2004-11-15
We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.
Bassan, Paul; Weida, Miles J; Rowlette, Jeremy; Gardner, Peter
2014-08-21
Chemical imaging in the field of vibrational spectroscopy is developing into a promising tool to complement digital histopathology. Applications include screening of biopsy tissue via automated recognition of tissue/cell type and disease state based on the chemical information from the spectrum. For integration into clinical practice, data acquisition needs to be speeded up to implement a rack based system where specimens are rapidly imaged to compete with current visible scanners where 100's of slides can be scanned overnight. Current Fourier transform infrared (FTIR) imaging with focal plane array (FPA) detectors are currently the state-of-the-art instrumentation for infrared absorption chemical imaging, however recent development in broadly tunable lasers in the mid-IR range is considered the most promising potential candidate for next generation microscopes. In this paper we test a prototype quantum cascade laser (QCL) based spectral imaging microscope with a focus on discrete frequency chemical imaging. We demonstrate how a protein chemical image of the amide I band (1655 cm(-1)) of a 2 × 2.4 cm(2) breast tissue microarray (TMA) containing over 200 cores can be measured in 9 min. This result indicates that applications requiring chemical images from a few key wavelengths would be ideally served by laser-based microscopes.
Electrically tunable laser based on oblique heliconical cholesteric liquid crystal
Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Storey, John M. D.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter
2016-01-01
A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch p in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch p and thus the wavelength of lasing λ¯ can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with λ¯ spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLCOH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLCOH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography. PMID:27807135
Electrically tunable laser based on oblique heliconical cholesteric liquid crystal.
Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D; Palffy-Muhoray, Peter
2016-11-15
A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch [Formula: see text] in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch [Formula: see text] and thus the wavelength of lasing [Formula: see text] can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with [Formula: see text] spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLC OH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLC OH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography.
Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Paa, Wolfgang; Triebel, Wolfgang
2004-09-01
An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.
Koptev, M Yu; Anashkina, E A; Andrianov, A V; Dorofeev, V V; Kosolapov, A F; Muravyev, S V; Kim, A V
2015-09-01
A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.
Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.
Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi
2017-02-01
Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.
Tunable diode laser-pumped Tm,Ho:YLF laser operated in continuous-wave and Q-switched modes
NASA Technical Reports Server (NTRS)
Mcguckin, B. T.; Hemmati, H.; Menzies, R. T.
1992-01-01
Tunable continuous-wave and pulsed laser output was obtained from a Tm-sensitized Ho:YLiF4 crystal at subambient temperatures when longitudinally pumped with a diode laser array. A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to the absorbed pumped power have been achieved at a crystal temperature of 275 K. The emission spectrum was etalon tunable over a range of 16/cm centered at 2067 nm with fine tuning capability of the transition frequency with crystal temperature at measured rate of -0.03/cm/K. Output energies of 0.22 mJ per pulse and 22 ns pulse duration were recorded at Q-switch frequencies that correspond to an effective upper laser level lifetime of 6 ms, and a pulse energy extraction efficiency of 64 percent.
Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui
2006-09-15
A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.
Silicon-Chip-Based Optical Frequency Combs
2015-10-26
waveform generation, frequency metrology, and astronomical spectrograph calibration [2,3,4]. Traditionally, modelocked solid-state and fiber lasers have...different external-cavity diode lasers covering a total tuning range between 1450 nm and 1640 nm. Lensed fibers are used to couple into and out of the...cavity resonance of a Si3N4 microring resonator with a single-frequency tunable diode laser amplified by a ytterbium-doped fiber amplifier. We use a
[Application of mid-infrared wavelength tunable laser in glucose determination].
Yu, Song-Lin; Li, Da-Chao; Zhong, Hao; Sun, Chang-Yue; Xu, Ke-Xin
2013-04-01
The authors proposed a method of control and stabilization for laser emission wavelengths and power, and presented the mid-infrared wavelength tunable laser with broad emission spectrum band of 9.19-9.77 microm, half wave width of 4 cm(-1), spectral resolution of 2.7 x 10(4) and max power of 800 mW with fluctuation < 0.8% in the present paper. The tunable laser was employed as the light source in combination with ATR sensor for glucose measurement in PBS solution. In our experiments, absorbance at the five laser emission wavelengths, including 1 081, 1 076, 1 051, 1 041 and 1 037 cm(-1) in the 9R and 9P band of the laser emission spectrum, all correlates well with the glucose concentration (R2 > 0.99, SD < 0.0004, P < 0.000 1). Especially, the sensitivity of this laser spectroscopy system is about 4 times as high as that of traditional FTIR spectrometer.
NASA Astrophysics Data System (ADS)
Stepanov, E. V.; Milyaev, Varerii A.
2002-11-01
The application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air in biomedical diagnostics is discussed. The principle of operation and the design of a laser analyser for studying the composition of exhaled air are described. The results of detection of gaseous biomarkers in exhaled air, including clinical studies, which demonstrate the diagnostic possibilities of the method, are presented.
Fiber optic geophysical sensors
Homuth, Emil F.
1991-01-01
A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.
Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...
Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu
2013-01-01
In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal. An Yb3+:KBaGd(MoO4)3 crystal with dimensions of 50×40×9 mm3 was grown by the TSSG method from the K2Mo2O7 flux. The investigated spectral properties indicated that Yb3+:KBaGd(MoO4)3 crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb3+:KBaGd(MoO4)3 crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers. PMID:23349892
Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu
2013-01-01
In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb(3+)-doped KBaGd(MoO(4))(3) crystal. An Yb(3+):KBaGd(MoO(4))(3) crystal with dimensions of 50×40×9 mm(3) was grown by the TSSG method from the K(2)Mo(2)O(7) flux. The investigated spectral properties indicated that Yb(3+):KBaGd(MoO(4))(3) crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb(3+):KBaGd(MoO(4))(3) crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers.
Evaluation of OH laser-induced fluorescence techniques for supersonic combustion diagnostics
NASA Technical Reports Server (NTRS)
Quagliaroli, T. M.; Laufer, G.; Krauss, R. H.; Mcdaniel, J. C., Jr.
1992-01-01
The limitations on application of dye laser and narrowband tunable KrF excimer laser systems to planar OH fluorescence measurements in supersonic combustion test facilities are examined. Included in the analysis are effects of collisional quenching, beam absorption, fluorescence trapping, and signal strengths on achievable measurement accuracy using several excitation and detection options for either of the two laser systems. Dye-based laser systems are found to be the method of choice for imaging OH concentrations less than 10 exp 15 per cu cm, while the KrF based systems provide significant reduction in measurement ambiguity for concentrations in excess of 10 exp 15 per cu cm.
Tunable solid-state lasers - An emerging technology for remote sensing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Allario, Frank
1988-01-01
The present development status and prospective (1990s) performance-improvement evaluation of tunable solid-state laser technology notes recent trends toward spectrum coverage over the 0.20-14.0 microns range, in addition to dramatic increases in efficiency, service life, and reliability. It is judged that the Ti:Al2O3 laser and the AgGaSe2 optical parametric oscillator pumped by a Ho:YAG laser could cover the near-IR and mid-IR regions of the spectrum. Laser diodes operating at 0.78 microns should provide an excellent pump for a Ho:YAG laser.
Wavelength-tunable Q-switched Raman fiber laser
NASA Astrophysics Data System (ADS)
Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Wu, Jian; Zhou, Pu
2018-03-01
In this presentation, a wavelength-tunable Q-switched Raman fiber laser is presented for the first time, which has a backward pumped configuration, including a section of 3 km passive fiber, a homemade tunable pump source and a highly reflective fiber loop mirror. The output wavelength of the Raman fiber laser can be tuned continuously with ~44 nm range via adjusting the pump wavelength. By inserting an acoustic-optical modulator, the Q-value of the cavity can be switched between high and low level. As a result, pulsed output with a repetition rate of 500 kHz and duration time of 60-80 ns is achieved.
Monitoring of endogenous carbon monoxide dynamics in human breath by tunable diode laser
NASA Astrophysics Data System (ADS)
Stepanov, Eugene V.; Daraselia, Mikhail V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.
1996-01-01
High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Temporal variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation and sport loading were first studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.
Endogenous CO dynamics monitoring in breath by tunable diode laser
NASA Astrophysics Data System (ADS)
Kouznetsov, Andrian I.; Stepanov, Eugene V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.
1996-04-01
High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation as well as sport loading were studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.
Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.
Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T
2013-05-10
We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.
Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, Yu O; Lobintsov, A A; Shramenko, M V
2015-08-31
We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)
Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.
Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo
2009-02-10
Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.
GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.
2017-02-01
GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Mumma, M. J.
1980-01-01
A diode laser based IR heterodyne spectrometer for laboratory and field use was developed for high efficiency operation between 7.5 and 8.5 microns. The local oscillator is a PbSSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed cycle cooler. The laser output frequency is controlled and stabilized using a high precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. Single laser modes are selected by a grating placed in the local oscillator beam. The system employs reflecting optics throughout to minimize losses from internal reflection and absorption, and to eliminate chromatic effects. Spectral analysis of the diode laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the infrared spectral regions over which useful heterodyne operation can be achieved. System performance has been studied by making heterodyne measurements of etalon fringes and several Freon 13 (CF3Cl) absorption lines against a laboratory blackbody source. Preliminary field tests have also been performed using the Sun as a source.
New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator
NASA Astrophysics Data System (ADS)
Helmcke, J.; Snyder, J. J.; Morinaga, A.; Mensing, F.; Gläser, M.
1987-06-01
A new dye laser spectrometer utilizing a non-tunable reference resonator is described. The resonator consists of two Zerodur mirrors optically contacted to a Zerodur spacer. Frequency scanning of the laser is provided by acoustooptic modulation. Residual drifts of the resonator frequency — measured on line — are compensated automatically by corresponding corrections of the modulation frequency. The stability during several hours and the resettability of the dye laser frequency are±2.5 kHz and±10 kHz, respectively.
Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude
NASA Astrophysics Data System (ADS)
Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian
2018-01-01
We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.
Fiber optic geophysical sensors
Homuth, E.F.
1991-03-19
A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.
Compact, High-Power, Fiber-Laser-Based Coherent Sources Tunable in the Mid-Infrared and THz Spectrum
2015-02-20
conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 μm. We have successfully developed... oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 µm. We have successfully developed tunable deep mid-IR systems in both...the advancement of nonlinear frequency conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid- IR) spectral
NASA Astrophysics Data System (ADS)
Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong
2018-02-01
Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.
1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers.
Emami, Siamak Dawazdah; Dashtabi, Mahdi Mozdoor; Lee, Hui Jing; Arabanian, Atoosa Sadat; Rashid, Hairul Azhar Abdul
2017-10-06
This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.
Random lasing from dye-doped negative liquid crystals using ZnO nanoparticles as tunable scatters
NASA Astrophysics Data System (ADS)
Li, Long-Wu; Shang, Zhen-Zhen; Deng, Luogen
2016-09-01
This work demonstrates the realization of a lasing in scattering media, which contains dispersive solution of ZnO nanoparticles (NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals (LCs) that was injected into a cell. The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased. The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs. Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources, optical communication, and liquid crystal laser displays. Project supported by the Doctoral Science Research Start-up Funding of Guizhou Normal University, China (Grant No. 11904-0514162) and the National Natural Science Foundation of China (Grant No. 11474021).
On-chip tunable optofluidic dye laser
NASA Astrophysics Data System (ADS)
Cai, Zengyan; Shen, Zhenhua; Liu, Haigang; Yue, Huan; Zou, Yun; Chen, Xianfeng
2016-11-01
We demonstrate a chip-scale tunable optofluidic dye laser with Au-coated fibers as microcavity. The chip is fabricated by soft lithography. When the active region is pumped, a relatively low threshold of 6.7 μJ/mm2 is realized with multimode emission due to good confinement of the cavity mirrors, long active region, as well as total reflectivity. It is easy to tune the lasing emission wavelength by changing the solvent of laser dye. In addition, the various intensity ratios of multicolor lasing can be achieved by controlling flow rates of two fluid streams carried with different dye molecules. Furthermore, the convenience in fabrication and directional lasing emission outcoupled by the fiber make the tunable optofluidic dye laser a promising underlying coherent light source in the integrated optofluidic systems.
Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser
During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...
Electrically Tunable Terahertz Quantum-Cascade Lasers
NASA Technical Reports Server (NTRS)
Gunapala, Sarath; Soidel, Alexander; Mansour, Kamjou
2006-01-01
Improved quantum-cascade lasers (QCLs) are being developed as electrically tunable sources of radiation in the far infrared spectral region, especially in the frequency range of 2 to 5 THz. The structures of QCLs and the processes used to fabricate them have much in common with those of multiple- quantum-well infrared photodetectors.
This project involves the real-time measurement of air quality using open-path IR spectroscopy. A prototype open-path tunable laser absorption spectroscopy instrument was designed, built, and successfully operated for several hundred hours between October and December 2000. The...
Interferometric ring lasers and optical devices
Hohimer, J.P.; Craft, D.C.
1995-03-14
Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shand, M.L.; Walling, J.C.
1982-11-01
Emerald is a new broadly wavelength-tunable vibronic laser material with stimulated emission in the red to infrared due to /sup 4/T/sub 2/..-->../sup 4/A transitions of Cr/sup 3 +/. Emerald has gain from 12 050 cm/sup -1/ to 14 000 cm/sup -1/ with high gain from about 12 300 cm/sup -1/ to 13 700 cm/sup -1/. An emerald laser oscillator has been achieved, but has high losses.
All-fiber, ultra-wideband tunable laser at 2 μm.
Li, Z; Alam, S U; Jung, Y; Heidt, A M; Richardson, D J
2013-11-15
We report a direct diode-pumped all-fiber tunable laser source at 2 μm with a tuning range of more than 250 nm. A 3 dB power flatness of 200 nm with a maximum output power of 30 mW at 1930 nm was achieved. The laser has a high optical signal-to-noise ratio (OSNR) of more than 40 dB across the whole tuning range.
Interferometric ring lasers and optical devices
Hohimer, John P.; Craft, David C.
1995-01-01
Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.
Two kinds of novel tunable Thulium-doped fiber laser
NASA Astrophysics Data System (ADS)
Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong
2014-11-01
Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.
NASA Astrophysics Data System (ADS)
Ter-Mikirtychev, V. V.
1995-09-01
Simultaneous photostability and thermostability of a room-temperature LiF:F2+ * tunable color-center laser, with an operating range over 830-1060 nm, pumped by second-harmonic radiation of a YAG:Nd3+ laser with a 532-nm wavelength has been achieved. The main lasing characteristics of the obtained LiF:F2+* laser have been measured. Twenty-five percent real efficiency in a nonselective resonator cavity and 15% real efficiency in a selective resonator cavity have been obtained. The stable LiF:F2 +* laser operates at a 1-100-Hz pulse-repetition rate with a 15-ns pulse duration, a 1-1.5-cm-1 narrow-band oscillation bandwidth, and divergency of better than 6 \\times 10-4. Doubling the fundamental frequencies of F2+ * oscillation made it possible to obtain stable blue-green tunable radiation over the 415-530-nm range.
Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers.
Wang, Ruijun; Malik, Aditya; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Roelkens, Gunther
2016-12-12
2.0x µm widely tunable external cavity lasers realized by combining a GaSb gain chip with a silicon photonics waveguide circuit for wavelength selection are demonstrated. Wavelength tuning over 58 nm from 2.01 to 2.07 µm is demonstrated. In the silicon photonic integrated circuit, laser feedback is realized by using a silicon Bragg grating and continuous tuning is realized by using two thermally tuned silicon microring resonators (MRRs) and a phase section. The uncooled laser has maximum output power of 7.5 mW and threshold current density of 0.8 kA/cm2. The effect of the coupling gap of the MRRs on tunable laser performance is experimentally assessed. A side mode suppression ratio better than 52 dB over the full tuning range and in the optimum operation point of more than 60 dB is achieved for the laser with weakly coupled MRRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Zeng, Yong Quan; Liang, Guozhen
2015-09-14
We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.
SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications
NASA Astrophysics Data System (ADS)
Soni, Abhishek Kumar; Rai, Vineet Kumar
2016-08-01
The Er3+-Yb3+ codoped strontium molybdate (SrMoO4) phosphors have been synthesized via chemical co-precipitation method by adding ammonium hydroxide as a base reagent. The phase, crystal structure and formation of spindle-like particles present in the prepared phosphors have been recognized by using the X-ray powder diffraction (XRPD) and Field emission scanning electron microscopy (FE-SEM) techniques. The Fourier transform infrared (FTIR) spectroscopy of the developed phosphors has been analyzed to mark the different functional groups present in synthesized phosphors. The multicolour upconversion emissions observed upon excitation with 980 nm and 808 nm laser diode have been explained on the basis of dopants ions concentration, pump power dependence, energy level structure and decay curve analysis. The colour co-ordinate study confirmed that the codoped phosphor emits non-tunable green colour when excited with the 980 nm laser diode, whereas it shows the colour tunability from yellow to green region upon excitation with the 808 nm laser diode. The applicability of non-tunable green colour emission has been demonstrated in the security ink and latent finger print detection. This shows the utility of the developed phosphors in the photonic and forensic applications.
Industrial integration of high coherence tunable VECSEL in the NIR and MIR
NASA Astrophysics Data System (ADS)
Denet, Stéphane; Chomet, Baptiste; Lecocq, Vincent; Ferrières, Laurence; Myara, Mikhaël.; Cerutti, Laurent; Sagnes, Isabelle; Garnache, Arnaud
2016-03-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8- 1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency micro-chip, intracavity element free, patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high coherence with a low divergence diffraction limited TEM00 beam, class A dynamics with Relative Intensity Noise as low as -140dB/Hz and at shot noise level above 200MHz RF frequency (up to 160GHz), free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), linear polarization (50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence wavelength tunability performances and integration.
Tunable diode-laser heterodyne spectrometer for remote observations near 8 microns
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Buhl, D.; Mumma, M. J.
1982-01-01
A diode-laser-based, ultrahigh resolution IR heterodyne spectrometer for laboratory and field use has been developed for operation between 7.5 and 8.5 microns. The local oscillator is a PbSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed-cycle cooler. The laser output frequency is controlled and stabilized using a high-precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. The system largely employs reflecting optics to minimize losses from internal reflection and absorption and to eliminate chromatic effects. Spectral analysis of the diode-laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the IR spectral regions over which useful heterodyne operation can be achieved. Observations have been made of atmospheric N2O, O3, and CH4 between 1170 and 1200/cm, using both a single-frequency swept IF channel and a 64-channel RF spectral line receiver with a total IF coverage of 1600 MHz.
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-01-15
A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.
NASA Astrophysics Data System (ADS)
Inoue, Shunya; Nishimura, Shun; Nakahama, Masanori; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio
2018-04-01
For use in wavelength division multiplexing (WDM) with high-speed wavelength routing functions, the fast wavelength switching of tunable lasers is a key function. A tunable MEMS vertical cavity surface emitting laser (VCSEL) is a good candidate as a light source for this purpose. The cantilever in MEMS VCSELs has a high mechanical resonance frequency thanks to its small size, but the switching time is limited by the ringing of the cantilever structure. In this paper, we analyzed the mechanical behavior of a cantilever MEMS mirror and demonstrated ringing-free operation with an engineered voltage signal. The applied voltage waveform was optimized in a two-step format and we experimentally obtained ringing free wavelength switching. We measured the transient response of the wavelength by inserting a tunable filter, exhibiting the settling time of less than 2.5 µs, which corresponds to a half period of the cantilever resonance frequency.
NASA Technical Reports Server (NTRS)
1990-01-01
The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.
Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals.
Yadav, Ashish; Danesh, Mohammad; Zhong, Liubiao; Cheng, Gary J; Jiang, Lin; Chi, Lifeng
2016-04-22
We demonstrated three-dimensional PMMA-based photonic crystal (3D-PC) nanostructures attached to Au nanoparticles (AuNPs), which undergo self-organization into super lattice planes and enhance the fluorescence properties. This new structure exhibited interesting tunable spectral, peak broadening plasmonic behavior because of strong plasmonic interaction at high laser powers. The presented work provides an important tool to improve the efficiency of dye laser applications.
Widely tunable opto-electronic oscillator based on a dual frequency laser
NASA Astrophysics Data System (ADS)
Maxin, J.; Saleh, K.; Pillet, G.; Morvan, L.; Llopis, O.; Dolfi, D.
2013-03-01
We present the stabilization of the beatnote of an Er,Yb:glass Dual Frequency Laser at 1.53 μm with optical fiber delay lines. Instead of standard optoelectronics oscillators, this architecture does not need RF filter and offers a wide tunability from 2.5 to 5.5 GHz. Thank to a fine analysis of the laser RIN to phase noise conversion in the photodiodes, the expected RF-amplifiers noise limit is reached with a phase noise power spectral density of -25 dBc/Hz at 10 Hz (respectively -110 dBc/Hz at 10 kHz) from the carrier over the whole tuning range. Implementation of a double fiber coil architecture improves the oscillator spectral purity: the phase noise reaches a level of -35 dBc/Hz at 10 Hz (respectively -112 dBc/Hz respectively 10 kHz) from the carrier.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
A cladding-pumped, tunable holmium doped fiber laser.
Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian
2013-11-18
We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.
NASA Astrophysics Data System (ADS)
Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.
2008-12-01
We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the advantages of the two systems proposed.
Ultra-widely tunable long-period holey-fiber grating by the use of mechanical pressure.
Ceballos-Herrera, D E; Torres-Gómez, I; Martínez-Ríos, A; Anzueto-Sánchez, G; Alvarez-Chávez, J A; Selvas-Aguilar, R; Sánchez-Mondragón, J J
2007-01-20
We report an ultra-widely tunable long-period holey-fiber grating, which combines the wide-range single-mode behavior and transverse strain sensitivity of the holey fibers with the advantages of mechanically induced long-period fiber gratings. We obtain a versatile widely tunable long-period holey-fiber grating with attractive transmission spectral characteristics for optical communications, fiber-based amplifiers, and lasers. The mechanically induced long-period holey-fiber grating shows a continuous tuning range over 500 nm, more than 12 dB depth notches with less than 0.75 dB out-of-band losses, and bandwidth control from 10 to 40 nm.
Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J
2016-05-16
A high power, frequency-tunable THz source based on intracavity stimulated polariton scattering (SPS) in RbTiOPO4 (RTP) is demonstrated for the first time. Frequency tunable THz output was obtained from 3.10 to 4.15 THz, with a gap at 3.17 to 3.49 THz, arising from the 104 cm-1 A1 mode in RTP. A maximum average output power of 16.2 µW was detected at 3.8 THz. This is the highest average output power ever reported for an intracavity polariton laser.
Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser
NASA Astrophysics Data System (ADS)
Fukuoka, D.; Muro, K.; Noda, K.
2016-02-01
A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.
5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther
2018-02-01
In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.
Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Liu, Dongfeng; Wang, Chinhua
2010-01-01
We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.
Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing
2016-07-11
We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.
NASA Astrophysics Data System (ADS)
Klinger, Antje; Krapf, Lisa; Orzekowsky-Schroeder, Regina; Koop, Norbert; Vogel, Alfred; Hüttmann, Gereon
2015-11-01
Ultra-broadband excitation with ultrashort pulses may enable simultaneous excitation of multiple endogenous fluorophores in vital tissue. Imaging living gut mucosa by autofluorescence 2-photon microscopy with more than 150 nm broad excitation at an 800-nm central wavelength from a sub-10 fs titanium-sapphire (Ti:sapphire) laser with a dielectric mirror based prechirp was compared to the excitation with 220 fs pulses of a tunable Ti:sapphire laser at 730 and 800 nm wavelengths. Excitation efficiency, image quality, and photochemical damage were evaluated. At similar excitation fluxes, the same image brightness was achieved with both lasers. As expected, with ultra-broadband pulses, fluorescence from NAD(P)H, flavines, and lipoproteins was observed simultaneously. However, nonlinear photodamage apparent as hyperfluorescence with functional and structural alterations of the tissue occurred earlier when the laser power was adjusted to the same image brightness. After only a few minutes, the immigration of polymorphonuclear leucocytes into the epithelium and degranulation of these cells, a sign of inflammation, was observed. Photodamage is promoted by the higher peak irradiances and/or by nonoptimal excitation of autofluorescence at the longer wavelength. We conclude that excitation with a tunable narrow bandwidth laser is preferable to ultra-broadband excitation for autofluorescence-based 2-photon microscopy, unless the spectral phase can be controlled to optimize excitation conditions.
NASA Astrophysics Data System (ADS)
Ciaffoni, L.; Hancock, G.; Hurst, P. L.; Kingston, M.; Langley, C. E.; Peverall, R.; Ritchie, G. A. D.; Whittaker, K. E.
2013-02-01
In this paper we report the characterization of a novel, widely tunable, diode laser source operating over the full telecom L-band (1563-1613 nm), namely the digital supermode distributed Bragg reflector (DS-DBR) laser, and its application to multi-wavelength gas sensing via absorption strategies. The spectroscopic performance of the laser has been assessed by investigating the ro-vibrational spectrum of CO2, and wavelength modulation spectroscopy was accomplished for proof-of-principle sensitive measurements in discrete spectral regions.
Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun
2011-08-01
We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.
Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength
NASA Astrophysics Data System (ADS)
Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun
2016-01-01
We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.
NASA Astrophysics Data System (ADS)
Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun
2018-07-01
In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.
Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Shumate, M. S.
1971-01-01
The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.
Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure
NASA Astrophysics Data System (ADS)
Ji, Hongyu; Zhang, Bo; Wang, Guocui; Wang, Wei; Shen, Jingling
2018-04-01
We propose a photo-excited tunable multi-frequency metamaterial (MM) switch that can be used in the terahertz region. This metamaterial switch is composed of a polyimide substrate and a hybrid metal-semiconductor square split-ring resonator (SRR) with two gaps, with various semiconductors placed in critical regions of the metallic resonator. By changing the incident pump power, we were able to tune the conductivity of the diverse semiconductors filling the gaps of the SRR, and by using an external exciting beam, we were able to modulate the resonant absorption properties of the composite metamaterial structure. We demonstrated the tunable multi-frequency metamaterial switch by irradiating the composite metamaterial structure with a pump laser. In addition, we proposed a tunable metamaterial switch based on a circular metallic split-ring resonator.
A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.
Li, Jin-Jin; Zhu, Ka-Di
2010-05-21
We have theoretically demonstrated the large enhancement of the optical Kerr effect in a scheme of a nanomechanical resonator coupled to a quantum dot and shown that this phenomenon can be used to realize a fast optical Kerr switch by turning the control field on or off. Due to the vibration of the nanoresonator, as we pump on the strong control beam, the optical spectrum shows that the magnitude of this optical Kerr effect is proportional to the intensity of the control field. In this case, a fast and tunable optical Kerr switch can be implemented easily by an intensity-adjustable laser. Based on this tunable optical Kerr switch, we also provide a detection method to measure the frequency of the nanomechanical resonator in this coupled system.
Kroesen, Sebastian; Horn, Wolfgang; Imbrock, Jörg; Denz, Cornelia
2014-09-22
optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro-optic coefficients of r(13) = 7.59 pm V(-1) and r(33) = 23.21 pm V(-1) are demonstrated.
Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Jiahui; Sokolov, Alexei V.; Benabid, F.
2010-03-15
We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist.
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Abshire, James B.; Stephen, Mark A.; Chen, Jeffrey R.; Wu, Stewart; Gonzalez, Brayler; Han, Lawrence; Numata, Kenji; Allan, Graham R.; Hasselbrack, William;
2015-01-01
Over the past 20 years, NASA Goddard has successfully developed space-based lidar for remote sensing studies of the Earth and planets. The lidar in all missions to date have used diode pumped Nd:YAG laser transmitters. Recently we have been concentrating work on developing integrated path differential absorption (IPDA) lidar to measure greenhouse gases, with the goal of measurements from space. Due to the absorption spectrum of CO2 a fiber-based master oscillator power amplifier (MOPA) laser with a tunable seed source is an attractive laser choice. Fiber-based lasers offer a number of potential advantages for space, but since they are relatively new, challenges exist in developing them. In order to reduce risks for new missions using fiber-based lasers, we developed a 30- month plan to mature the technology of a candidate laser transmitter for space-based CO2 measurements to TRL-6. This work is also intended to reduce development time and costs and increase confidence in future mission success.
Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1993-01-01
Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.
Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation
NASA Technical Reports Server (NTRS)
Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.
1998-01-01
A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.
1985-07-01
87 Trivalent Cerium Doped Crystals as Tunable Laser Systems: Two Bad Apples Douglas S. Hamilton...161 Theory of Fluorescence Quenching in Low-Field Chromium ... trivalent types of luminescent centers can be grown. Mostly high quantum efficiencies at room-temperature are observed. Pulsed room-temperature lasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, R.; Marchenko, D.; Mandon, J.
We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.
Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution
NASA Astrophysics Data System (ADS)
Guo, Bo; Yao, Yong
2016-08-01
We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (˜1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.
Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser.
Feng, T; Yang, K; Zhao, S; Zhao, J; Qiao, W; Li, T; Zheng, L; Xu, J
2014-09-20
A broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 (Tm:LSO) laser is presented for the first time, to our best knowledge. The emission wavelength was tuned in a broad spectral region over 111 nm ranging from 1959 to 2070 nm. A shortest pulse duration of 345 ns with beam quality of M(2)≤1.65 was obtained at pulse repetition frequency (PRF) of 1 kHz, corresponding to a maximum single pulse energy of 0.26 mJ and peak power of 0.75 kW. The experimental results indicated that Tm:LSO crystal has outstanding potential for obtaining broadly wavelength tunable and low-PRF laser pulses at 2 μm.
NASA Technical Reports Server (NTRS)
Wilkerson, Thomas D.
1993-01-01
The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.
Nanotube mode locked, wavelength-tunable, conventional and dissipative solitons fiber laser
NASA Astrophysics Data System (ADS)
Yun, Ling; Zhao, Wei
2018-01-01
We report the generation of widely wavelength tunable conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped fiber laser passively mode-locked by nanotube saturable absorber. The tuning ranges of CSs and DSs are ∼15 and ∼25 nm, respectively. In anomalous dispersion regime, the output CS exhibits symmetrical spectral sidebands with transform-limited pulse duration of ∼1.1 ps. In the contrastive case of normal dispersion regime, the DS has rectangular spectrum profile and large frequency chirp, which presents pulse duration of ∼13.5 ps, and can be compressed to ∼0.4 ps external to the cavity. This fiber laser can provide two distinct types of tunable soliton sources, which is attractive for practical applications in telecommunications.
Morales-Vidal, Marta; Boj, Pedro G.; Villalvilla, José M.; Quintana, José A.; Yan, Qifan; Lin, Nai-Ti; Zhu, Xiaozhang; Ruangsupapichat, Nopporn; Casado, Juan; Tsuji, Hayato; Nakamura, Eiichi; Díaz-García, María A.
2015-01-01
Thin film organic lasers represent a new generation of inexpensive, mechanically flexible devices for spectroscopy, optical communications and sensing. For this purpose, it is desired to develop highly efficient, stable, wavelength-tunable and solution-processable organic laser materials. Here we report that carbon-bridged oligo(p-phenylenevinylene)s serve as optimal materials combining all these properties simultaneously at the level required for applications by demonstrating amplified spontaneous emission and distributed feedback laser devices. A series of six compounds, with the repeating unit from 1 to 6, doped into polystyrene films undergo amplified spontaneous emission from 385 to 585 nm with remarkably low threshold and high net gain coefficients, as well as high photostability. The fabricated lasers show narrow linewidth (<0.13 nm) single mode emission at very low thresholds (0.7 kW cm−2), long operational lifetimes (>105 pump pulses for oligomers with three to six repeating units) and wavelength tunability across the visible spectrum (408–591 nm). PMID:26416643
NASA Astrophysics Data System (ADS)
Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an
2018-06-01
In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
IGZO TFT-based circuit with tunable threshold voltage by laser annealing
NASA Astrophysics Data System (ADS)
Huang, Xiaoming; Yu, Guang; Wu, Chenfei
2017-11-01
In this work, a high-performance inverter based on amorphous indium-gallium-zinc oxide thin-film transistors (TFTs) has been fabricated, which consists of a driver TFT and a load TFT. The threshold voltage (Vth) of the load TFT can be tuned by applying an area-selective laser annealing. The transfer curve of the load TFT shows a parallel shift into the negative bias direction upon laser annealing. Based on x-ray photoelectron spectroscopy analyses, the negative Vth shift can be attributed to the increase of oxygen vacancy concentration within the device channel upon laser irradiation. Compared to the untreated inverter, the laser annealed inverter shows much improved switching characteristics, including a large output swing range which is close to full swing, as well as an enhanced output voltage gain. Furthermore, the dynamic performance of ring oscillator based on the laser-annealed inverter is improved.
NASA Astrophysics Data System (ADS)
Bykov, A. A.; Kutuza, I. B.; Zinin, P. V.; Machikhin, A. S.; Troyan, I. A.; Bulatov, K. M.; Batshev, V. I.; Mantrova, Y. V.; Gaponov, M. I.; Prakapenka, V. B.; Sharma, S. K.
2018-01-01
Recently it has been shown that it is possible to measure the two-dimensional distribution of the surface temperature of microscopic specimens. The main component of the system is a tandem imaging acousto-optical tunable filter synchronized with a video camera. In this report, we demonstrate that combining the laser heating system with a tandem imaging acousto-optical tunable filter allows measurement of the temperature distribution under laser heating of the platinum plates as well as a visualization of the infrared laser beam, that is widely used for laser heating in diamond anvil cells.
Research on a high-precision calibration method for tunable lasers
NASA Astrophysics Data System (ADS)
Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai
2018-03-01
Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.
Comparison of tunable lasers based on diode pumped Tm-doped crystals
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Koranda, Petr; Černý, Pavel; Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek; Urata, Yoshiharu; Higuchi, Mikio
2008-12-01
We report on continuously tunable operation of a diode pumped lasers based on Tm-doped materials, emitting in the 1.8 - 2.μ1 m spectral band. In our study we compare results obtained with three various single crystals doped by Tm3+ ions: Yttrium Aluminum perovskite YAP (YAlO3), Gadolinium orthovanadate GdVO4, and Yttrium Lithium Fluoride YLF (YLiF4). Following samples were available: the 3mm long a-cut crystal rod of Tm:YAP with 4% at. Tm/Y (diameter 3 mm); the 8mm long b-cut crystal rod of Tm:YLF with 3.5% at. Tm/Y (diameter 3 mm); the 2.7mm long a-cut crystal block of Tm:GdVO4 with 2% at. Tm/Gd (crystal face 5×3 mm). For active medium pumping, the laser diode radiation was used. Because the tested samples differs significantly in absorption spectra, two fibre-coupled (core diameter 400 µm) temperature-tuned laser diodes were used: first operating at wavelength 793nm was used for Tm:YAP and Tm:YLF; the second operating at wavelength 802nm was used for Tm:GdVO4. In both cases, the continuous power up to 20W was available for pumping. The diode radiation was focused into the active crystal by two achromatic doublet lenses with the focal length f = 75 mm. The measured radius of pumping beam focus inside the crystal was 260 µm. The longitudinally diode pumped crystals were tested in linear, 80mm long, hemispherical laser cavity. The curved (radius 150mm) output coupler reflectivity was ~ 97 % in range from 1.8 up to 2.1 μm. The pumping flat mirror had maximal reflectivity in this range and it had high transmission around 0.8 μm. A 1.5mm thick birefringent plate made from quartz (Lyot filter) inserted under a Brewster's angle was used as a tuning element. This plate was placed inside the resonator between the crystal and the output coupler. Using Tm:YAP crystal, the maximal output power of 2.8W in this set-up was obtained. The laser could be tuned from 1865nm up to 2036nm with a maximum at 1985 nm. Laser based on Tm:YLF crystal was tunable from 1835nm up to 2010nm with a maximum at 1928 nm (3.0W was reached). Using the Tm:GdVO4 tunable operation with greater that 1W output at 1920nm and 130nm tuning range (1842-1972 nm) was demonstrated. The overall reached tuning range of over 200nm covers many important atmospheric absorption lines and contains also the local absorption peak of liquid water, making them attractive for applications such as high resolution spectroscopy, atmospheric remote sensing, laser radar, and laser microsurgery.
Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO2.
Christensen, Lance E; Brunner, Benjamin; Truong, Kasey N; Mielke, Randall E; Webster, Christopher R; Coleman, Max
2007-12-15
Sulfur isotope measurements offer comprehensive information on the origin and history of natural materials. Tunable laser spectroscopy is a powerful analytical technique for isotope analysis that has proven itself readily adaptable for in situ terrestrial and planetary measurements. Measurements of delta(34)S in SO2 were made using tunable laser spectroscopy of combusted gas samples from six sulfur-bearing solids with delta(34)S ranging from -34 to +22 per thousand (also measured with mass spectrometry). Standard deviation between laser and mass spectrometer measurements was 3.7 per thousand for sample sizes of 200 +/- 75 nmol SO(2). Although SO(2)(g) decreased 9% over 15 min upon entrainment in the analysis cell from wall uptake, observed fractionation was insignificant (+0.2 +/- 0.6 per thousand). We also describe a strong, distinct (33)SO(2) rovibrational transition in the same spectral region, which may enable simultaneous delta(34)S and Delta(33)S measurements.
Laser detection of CO2 concentration in human breath at various diseases
NASA Astrophysics Data System (ADS)
Ageev, Boris G.; Nikiforova, Olga Y.
2015-12-01
Absorption spectra of human breath in 10 μm region were recorded by the use of intracavity laser photo-acoustic gas analyzer based on tunable waveguide CO2 laser. Healthy persons and patients with various diseases were studied. For determination of CO2 concentration in exhalation samples gas analyzer was calibrated by reference gaseous mixture CO2-N2. It was obtained that CO2 concentration values in human breath of healthy persons are greater than that of patients with various diseases.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai
2017-12-01
In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.
Utilizing Near-IR Tunable Laser Absorption Spectroscopy to Study Detonation and Combustion Systems
2014-03-27
debris, such as soot . Velocity curves for the other equivalence ratios studied in this experiment are shown in Appendix A. Some of these curves show a...James R. Gord. “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor ”. Applied Optics, 44...Davidson, and R.K. Hanson. “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7µm”. Applied
NASA Astrophysics Data System (ADS)
Shi, Guang; Wang, Wen; Zhang, Fumin
2018-03-01
The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.
Tunable lasers and their application in analytical chemistry
NASA Technical Reports Server (NTRS)
Steinfeld, J. I.
1975-01-01
The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen; Zhao, Dengji
2012-12-01
Noninvasive measurement of blood glucose concentration (BGC) has become a research hotspot. BGC measurement based on photoacoustic spectroscopy (PAS) was employed to detect the photoacoustic (PA) signal of blood glucose due to the advantages of avoiding the disturbance of optical scattering. In this paper, a set of custom-built BGC measurement system based on tunable optical parametric oscillator (OPO) pulsed laser and ultrasonic transducer was established to test the PA response effect of the glucose solution. In the experiments, we successfully acquired the time resolved PA signals of distilled water and glucose aqueous solution, and the PA peak-to-peak values(PPV) were gotten under the condition of excitated pulsed laser with changed wavelength from 1340nm to 2200nm by increasing interval of 10nm, the optimal characteristic wavelengths of distilled water and glucose solution were determined. Finally, to get the concentration prediction error, we used the linear fitting of ordinary least square (OLS) algorithm to fit the PPV of 1510nm, and we got the predicted concentration error was about 0.69mmol/L via the fitted linear equation. So, this system and scheme have some values in the research of noninvasive BGC measurement.
Design challenges of a tunable laser interrogator for geo-stationary communication satellites
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus
2017-09-01
Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across <20 sensors connected to two separate optical channels. In order to achieve the required temperature specifications of +/-0.5°C across a temperature range of -20°C to +65°C using femtosecond inscribed FBGs (fs-FBG), a polarization switch is used to mitigate for the polarization dependent frequency shift (PDFS) induced from fs-FBG which could be in the order of < 20 pm causing < 2°C error in the measurement. Also special transducers were designed to isolate the strain from the FBGs to reduce any strain influence on the FBG temperature measurements while ensuring high thermal conductivity. In this paper we demonstrate the operation of an optical FBG interrogator as part of a hybrid sensor bus (HSB) engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.
United States Air Force Summer Faculty Research Program. Management Report. Volume 2
1988-12-01
Weapons Laboratory 64 Realization of Sublayer Relative Dr. Lane Clark Shielding Order in Electromagnetic Topology 65 Diode Laser Probe of Vibrational Dr...34Tunable Diode Laser Measurements of Air-Broadened Linewidths in the v6 Band of H202," AppI. Opt. 25, 1844 (1986). 18. M. A. H. Smith, G. A. Harvey, G...Varghese and R. K. Hanson, "Tunable Diode Laser Measurements of Spectral Parameters of HCN at Room Temperature," J. Quant. Spectrosc. Radiat. Transfer 31
Lu, Feng; Belkin, Mikhail A
2011-10-10
We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.
NASA Astrophysics Data System (ADS)
Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro
1999-08-01
An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.
Radiationless Transitions and Excited-State Absorption in Tunable Laser Materials
1992-09-01
chromium - doped halide elpasolites K2 NaGaF 6 , K2 NaScF6 and Cs2NaYCl 6 , and on the laser-active TI0 (l) color center in KCI. Luminescence lifetime...Non-radiative transitions, transition metals, chromium , ¶SLWmER o E tunable lasers, high pressure, luminescence, color centers ൙. SECURITY O...quenching and excited-state absorption are major loss mechanisms. Low-crystal-field chromium complexes in ordered perovskites of cubic elpasolite structure
Tunable quantum interference in a 3D integrated circuit.
Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J
2015-04-27
Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.
Tilt-tuned etalon locking for tunable laser stabilization.
Gibson, Bradley M; McCall, Benjamin J
2015-06-15
Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4 cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.
A low-threshold, high-efficiency microfluidic waveguide laser.
Vezenov, Dmitri V; Mayers, Brian T; Conroy, Richard S; Whitesides, George M; Snee, Preston T; Chan, Yinthai; Nocera, Daniel G; Bawendi, Moungi G
2005-06-29
This communication describes a long (1 cm), laser-pumped, liquid core-liquid cladding (L2) waveguide laser. This device provides a simple, high intensity, tunable light source for microfludic applications. Using a core solution of 2 mM rhodamine 640 perchlorate, optically pumped by a frequency-doubled Nd:YAG laser, we found that the threshold for lasing was as low as 22 muJ (16-ns pulse length) and had a slope efficiency up to 20%. The output wavelength was tunable over a 20-nm range by changing the ratio of solvent components (dimethyl sulfoxide and methanol) in the liquid core.
NASA Technical Reports Server (NTRS)
Webster, C. R.
1985-01-01
A simple method is described for substantially reducing the amplitude of interference fringes that limit the sensitivities of tunable-laser high-resolution absorption spectrometers. A lead-salt diode laser operating in the 7-micron region is used with a single Brewster-plate spoiler to reduce the fringe amplitude by a factor of 30 and also to allow the detection of absorptances 0.001 percent in a single laser scan without subtraction techniques, without complex frequency modulation, and without distortion of the molecular line-shape signals. Application to multipass-cell spectrometers is described.
Multiple-wavelength tunable laser
NASA Technical Reports Server (NTRS)
Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)
2010-01-01
A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.
Microprocessor-controlled laser tracker for atmospheric sensing
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Webster, C. R.; Menzies, R. T.
1985-01-01
An optical tracking system comprising a visible HeNe laser, an imaging detector, and a microprocessor-controlled mirror, has been designed to track a moving retroreflector located up to 500 m away from an atmospheric instrument and simultaneously direct spectrally tunable infrared laser radiation to the retroreflector for double-ended, long-path absorption measurements of atmospheric species. The tracker has been tested during the recent flight of a balloon-borne tunable diode laser absorption spectrometer which monitors the concentrations of stratospheric species within a volume defined by a 0.14-m-diameter retroreflector lowered 500 m below the instrument gondola.
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1992-01-01
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.
NASA Technical Reports Server (NTRS)
Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George
2013-01-01
A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.
Flexible random lasers with tunable lasing emissions.
Lee, Ya-Ju; Chou, Chun-Yang; Yang, Zu-Po; Nguyen, Thi Bich Hanh; Yao, Yung-Chi; Yeh, Ting-Wei; Tsai, Meng-Tsan; Kuo, Hao-Chun
2018-04-19
In this study, we experimentally demonstrated a flexible random laser fabricated on a polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions. More importantly, it was found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ∼15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate. Such observation is highly repeatable and reversible, and this validates that we can control the lasing wavelength by simply bending the flexible substrate decorated with the Ag NPRs. The scattering spectrum of the Ag NPRs was obtained using a dark-field microscope to understand the mechanism for the dependence of the wavelength shift on the exerted bending strains. As a result, we believe that the experimental demonstration of tunable lasing emissions based on the revealed structure is expected to open up a new application field of random lasers.
NASA Astrophysics Data System (ADS)
Griffel, Giora; Chen, Howard Z.; Grave, Ilan; Yariv, Amnon
1991-04-01
The operation of a novel multisection structure comprised of laterally coupled gain-guided semiconductor lasers is demonstrated. It is shown that tunable single longitudinal mode operation can be achieved with a high degree of frequency selectivity. The device has a tuning range of 14.5 nm, the widest observed to date in a monolithic device.
Lasing in robust cesium lead halide perovskite nanowires
Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong
2016-01-01
The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172
Stürzl, Ninette; Lebedkin, Sergei; Klumpp, Stefanie; Hennrich, Frank; Kappes, Manfred M
2013-05-07
We describe a micro-Raman setup allowing for efficient resonance Raman spectroscopy (RRS), i.e., mapping of Raman spectra as a function of tunable laser excitation wavelength. The instrument employs angle-tunable bandpass optical filters which are integrated into software-controlled Raman and laser cleanup filter devices. These automatically follow the excitation laser wavelength and combine tunability with high bandpass transmission as well as high off-band blocking of light. Whereas the spectral intervals which can be simultaneously acquired are bandpass limited to ~350 cm(-1), they can be tuned across the spectrum of interest to access all characteristic Raman features. As an illustration of performance, we present Raman mapping of single-walled carbon nanotubes (SWNTs): (i) in a small volume of water-surfactant dispersion as well as (ii) after deposition onto a substrate. A significant improvement in the acquisition time (and efficiency) is demonstrated compared to previous RRS implementations. These results may help to establish (micro) Raman spectral mapping as a routine tool for characterization of SWNTs as well as other materials with a pronounced resonance Raman response in the visible-near-infrared spectral region.
Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain
2012-02-27
We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.
Huang, Yizhong; Luo, Zhengqian; Li, Yingyue; Zhong, Min; Xu, Bin; Che, Kaijun; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian
2014-10-20
We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.
A wavelength-tunable fiber laser using a novel filter based on a compound interference effect
NASA Astrophysics Data System (ADS)
Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao
2015-01-01
A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2 × 2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.
Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering
NASA Astrophysics Data System (ADS)
Rochette, Martin; Sun, Kai; Hernández-Cordero, Juan; Chen, Lawrence R.
2008-06-01
We experimentally demonstrate the operation of a laser based on self-phase modulation followed by offset spectral filtering. This laser has three operation modes: a continuous-wave mode, a self-pulsating mode where the laser self ignites and produces pulses, and a pulse-buffering mode where no new pulse is formed from spontaneous emission noise but only pulses already propagating or pulses injected in the laser cavity can be sustained. In the self-pulsating and pulse-buffering modes, the laser is multi-wavelength and continuously tunable over the entire gain band of the amplifiers. The output pulse width is quasi transform-limited with respect to the spectral-width of the filters used in the cavity. Overall, this device provides a simple alternative to pulsed laser source and also represents a promising approach for signal buffering.
Nd:AlN polycrystalline ceramics: A candidate media for tunable, high energy, near IR lasers
NASA Astrophysics Data System (ADS)
Wieg, A. T.; Grossnickle, M. J.; Kodera, Y.; Gabor, N. M.; Garay, J. E.
2016-09-01
We present processing and characterization of Nd-doped aluminum nitride (Nd:AlN) polycrystalline ceramics. We compare ceramics with significant segregation of Nd to those exhibiting minimal segregation. Spatially resolved photoluminescence maps reveal a strong correlation between homogeneous Nd doping and spatially homogeneous light emission. The spectroscopically resolved light emission lines show excellent agreement with the expected Nd electronic transitions. Notably, the lines are significantly broadened, producing near IR emission (˜1077 nm) with a remarkable ˜100 nm bandwidth at room temperature. We attribute the broadened lines to a combination of effects: multiple Nd-sites, anisotropy of AlN and phonon broadening. These broadened, overlapping lines in a media with excellent thermal conductivity have potential for Nd-based, tunable lasers with high average power.
Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces
NASA Astrophysics Data System (ADS)
Lanzillotti-Kimura, Norberto D.; O'Brien, Kevin P.; Rho, Junsuk; Suchowski, Haim; Yin, Xiaobo; Zhang, Xiang
2018-06-01
Acoustic vibrations at the nanoscale (GHz-THz frequencies) and their interactions with electrons, photons, and other excitations are the heart of an emerging field in physics: nanophononics. The design of ultrahigh frequency acoustic-phonon transducers, with tunable frequency, and easy to integrate in complex systems is still an open and challenging problem for the development of acoustic nanoscopies and phonon lasers. Here we show how an optimized plasmonic metasurface can act as a high-frequency phonon transducer. We report pump-probe experiments in metasurfaces composed of an array of gold nanostructures, revealing that such arrays can act as efficient and tunable photon-phonon transducers, with a strong spectral dependence on the excitation rate and laser polarization. We anticipate our work to be the starting point for the engineering of phononic metasurfaces based on plasmonic nanostructures.
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed Mohammed Maim
This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.
Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm.
Zhang, Xinlu; Zhang, Su; Xiao, Nana; Cui, Jinhui; Zhao, Jiaqun; Li, Li
2014-03-10
We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.
The 1.083 micron tunable CW semiconductor laser
NASA Technical Reports Server (NTRS)
Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng
1991-01-01
A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).
Spectroscopic and laser characterization of emerald. Final report, April 1983-April 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, S.T.; Chai, B.H.
1986-08-01
The spectroscopic characteristics and laser properties of emerald were investigated. The laser measurements showed that the emerald-laser tuning range was 720-842 nm and exhibited a high gain and high efficiency in the 760-790 nm range. Under a crystal growth development program, the laser loss was reduced from 11%/cm to 0.4%/cm. The limiting factor in the laser efficiency is the excited-state absorption (ESA). The ESA was measured by two methods: a laser-pumped single-pass gain method, which is generally applicable to all tunable laser materials, and a laser-pumped laser method. A 76% laser quantum yield was obtained in high-optical-quality emerald. The maximummore » yield is estimated to be 83%, based on the ESA measurements.« less
Tunable mode and line selection by injection in a TEA CO2 laser
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Flamant, P. H.; Kavaya, M. J.; Kuiper, E. N.
1984-01-01
Tunable mode selection by injection in pulsed CO2 lasers is examined, and both analytical and numerical models are used to compute the required injection power for a variety of experimental cases. These are treated in two categories: mode selection at a desired frequency displacement from the center frequency of a transition line in a dispersive cavity and mode (and line) selection at the center frequency of a selected transition line in a nondispersive cavity. The results point out the potential flexibility of pulsed injection in providing wavelength tunable high-energy single-frequency pulses.
NASA Astrophysics Data System (ADS)
Li, Shenping; Chan, K. T.
1999-05-01
A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.
Zhang, Z X; Xu, Z W; Zhang, L
2012-11-19
We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
1THz synchronous tuning of two optical synthesizers
NASA Astrophysics Data System (ADS)
Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen
2016-04-01
Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.
Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.
Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng
2012-04-23
An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. © 2012 Optical Society of America
Zang, Jie; Cong, Zhenhua; Chen, Xiaohan; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Lu, Jianren; Wu, Dong; Fu, Qiang; Jiang, Shiqi; Zhang, Shaojun
2016-04-04
This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.
NASA Astrophysics Data System (ADS)
Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui
2015-10-01
In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.
Standoff analysis of laser-produced plasmas using laser-induced fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.
We report the use of laser-induced fluorescence (LIF) of laser ablation plumes for standoff applications. The standoff analysis of Al species, as major and minor species in samples, is performed in a nanosecond laser-produced plasma created at a distance ~10 m. The LIF analysis is performed by resonantly exciting an Al transition at 394.4 nm using a continuous wave (cw) tunable laser and by collecting the direct-line fluorescence signal at 396.15 nm. The spectral resolution of LIF is obtained by scanning the cw tunable LIF laser across the selected Al transition. Our results highlight that LIF provides enhanced signal intensity,more » emission persistence, and spectral resolution when compared to thermally-excited emission, and these are crucial considerations for using laser-produced plasma for standoff isotopic analysis.« less
High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2013-06-01
A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.
Zhang, Zhen; Yan, Lixin; Du, Yingchao; ...
2017-05-01
We propose a method based on the slice energy spread modulation to generate strong subpicosecond density bunching in high-intensity relativistic electron beams. A laser pulse with periodic intensity envelope is used to modulate the slice energy spread of the electron beam, which can then be converted into density modulation after a dispersive section. It is found that the double-horn slice energy distribution of the electron beam induced by the laser modulation is very effective to increase the density bunching. Since the modulation is performed on a relativistic electron beam, the process does not suffer from strong space charge force ormore » coupling between phase spaces, so that it is straightforward to preserve the beam quality for terahertz (THz) radiation and other applications. We show in both theory and simulations that the tunable radiation from the beam can cover the frequency range of 1 - 10 THz with high power and narrow-band spectra.« less
Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy.
Werle, P W; Mazzinghi, P; D'Amato, F; De Rosa, M; Maurer, K; Slemr, F
2004-07-01
Gas analyzers based on tunable diode-laser spectroscopy (TDLS) provide high sensitivity, fast response and highly specific in situ measurements of several atmospheric trace gases simultaneously. Under optimum conditions even a shot noise limited performance can be obtained. For field applications outside the laboratory practical limitations are important. At ambient mixing ratios below a few parts-per-billion spectrometers become more and more sensitive towards noise, interference, drift effects and background changes associated with low level signals. It is the purpose of this review to address some of the problems which are encountered at these low levels and to describe a signal processing strategy for trace gas monitoring and a concept for in situ system calibration applicable for tunable diode-laser spectroscopy. To meet the requirement of quality assurance for field measurements and monitoring applications, procedures to check the linearity according to International Standard Organization regulations are described and some measurements of calibration functions are presented and discussed.
Near-infrared tunable laser diode spectroscopy: an easy way for gas sensing
NASA Astrophysics Data System (ADS)
Larive, Marc; Henriot, V.
1997-05-01
A gas sensor using optical spectrometry and dedicated to a specific gas is studied. It should be able to operate out of laboratories with a very long life and a low maintenance requirement. It is based on TLDS (tunable laser diode spectroscopy) and uses a standard Perot-Fabry laser diode already developed for telecommunications. The mode selection is realized by a passband filter and the wavelength tuning is performed via the diode temperature or its injection current. A PIN photodiode is used for detection, however a rough photoacoustic solution is intended for the future. Absorptions as low as 3.10-3 are detected with this rough system and a limit detection of 10-3 is available with a signal to noise ratio of unity. Experiments have shown that this system is strongly selective for the specified gas (currently the methane). A simulation has been performed which very well fits the experiment and allows us to extrapolate the performances of the system for other gases.
NASA Technical Reports Server (NTRS)
Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker
1995-01-01
The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.
Towards a continuous glucose monitoring system using tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Haase, Katharina; Müller, Niklas; Petrich, Wolfgang
2018-02-01
We present a reagent-free approach for long-term continuous glucose monitoring (cgm) of liquid samples using midinfrared absorption spectroscopy. This method could constitute an alternative to enzymatic glucose sensors in order to manage the widespread disease of Diabetes. In order to acquire spectra of the liquid specimen, we use a spectrally tunable external-cavity (EC-) quantum cascade laser (QCL) as radiation source in combination with a fiber-based in vitro sensor setup. Hereby we achieve a glucose sensitivity in pure glucose solutions of 3 mg/dL (RMSEP). Furthermore, the spectral tunability of the EC-QCL enables us to discriminate glucose from other molecules. We exemplify this by detecting glucose among other saccharides with an accuracy of 8 mg/dL (within other monosaccharides, RMSEVC) and 14 mg/dL (within other mono- and disaccharides, RMSECV). Moreover, we demonstrate a characterization of the significance of each wavenumber for an accurate prediction of glucose among other saccharides using an evolutionary algorithm. We show, that by picking 10 distinct wavenumbers we can achieve comparable accuracies to the use of a complete spectrum.
Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses
NASA Astrophysics Data System (ADS)
Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.
2018-03-01
Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.
NASA Astrophysics Data System (ADS)
Liu, Xiaoyan; Kitamura, Kenji; Yu, Qiuming; Xu, Jiajie; Osada, Minoru; Takahiro, Nagata; Li, Jiangyu; Cao, Guozhong
2013-10-01
This work describes novel surface-enhanced Raman scattering (SERS) substrates based on ferroelectric periodically poled LiNbO3 templates. The templates comprise silver nanoparticles (AgNPs), the size and position of which are tailored by ferroelectric lithography. The substrate has uniform and large sampling areas that show SERS effective with excellent signal reproducibility, for which the fabrication protocol is advantageous in its simplicity. We demonstrate ferroelectric-based SERS substrates with particle sizes ranging from 30 to 70 nm and present tunable SERS effect from Raman active 4-mercaptopyridine molecules attached to AgNPs when excited by a laser source at 514 nm.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi
2018-02-01
Main restrictions of using laser light in digital holographic microscopy (DHM) are coherence induced noise and parasitic reflections in the experimental setup which limit resolution and measurement accuracy. We explored, if coherence properties of partial coherent light sources can be generated synthetically utilizing spectrally tunable lasers. The concept of the method is demonstrated by label-free quantitative phase imaging of living pancreatic tumor cells and utilizing an experimental configuration including a commercial microscope and a laser source with a broad tunable spectral range of more than 200 nm.
Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns
NASA Technical Reports Server (NTRS)
May, R. D.; Molina, L. T.; Webster, C. R.
1988-01-01
A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.
Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control.
Chen, Qiushu; Liu, Huajie; Lee, Wonsuk; Sun, Yuze; Zhu, Dan; Pei, Hao; Fan, Chunhai; Fan, Xudong
2013-09-07
We have applied self-assembled DNA tetrahedral nanostructures for the precise and tunable control of the gain in an optofluidic fluorescence resonance energy transfer (FRET) laser. By adjusting the ratio of the donor and the acceptor attached to the tetrahedral vertices, 3.8 times reduction in the lasing threshold and 28-fold enhancement in the lasing efficiency were demonstrated. This work takes advantage of the self-recognition and self-assembly capabilities of biomolecules with well-defined structures and addressability, enabling nano-engineering of the laser down to the molecular level.
Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Glenar, David A.; Jennings, Donald E.; Nadler, Shacher
1990-01-01
A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.
NASA Astrophysics Data System (ADS)
Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan
2018-03-01
A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.
Resonance energy transfer process in nanogap-based dual-color random lasing
NASA Astrophysics Data System (ADS)
Shi, Xiaoyu; Tong, Junhua; Liu, Dahe; Wang, Zhaona
2017-04-01
The resonance energy transfer (RET) process between Rhodamine 6G and oxazine in the nanogap-based random systems is systematically studied by revealing the variations and fluctuations of RET coefficients with pump power density. Three working regions stable fluorescence, dynamic laser, and stable laser are thus demonstrated in the dual-color random systems. The stable RET coefficients in fluorescence and lasing regions are generally different and greatly dependent on the donor concentration and the donor-acceptor ratio. These results may provide a way to reveal the energy distribution regulars in the random system and to design the tunable multi-color coherent random lasers for colorful imaging.
"Application of Tunable Diode Laser Spectrometry to Isotopic Studies for Exobiology"
NASA Technical Reports Server (NTRS)
Sauke, Todd B.
1999-01-01
Computer-controlled electrically-activated valves for rapid gas-handling have been incorporated into the Stable Isotope Laser Spectrometer (SILS) which now permits rapid filling and evacuating of the sample and reference gas cells, Experimental protocols have been developed to take advantage of the fast gas handling capabilities of the instrument and to achieve increased accuracy which results from reduced instrumental drift during rapid isotopic ratio measurements. Using these protocols' accuracies of 0.5 del (0.05%) have been achieved in measurements of 13C/12C in carbon dioxide. Using the small stable isotope laser spectrometer developed in a related PIDDP project of the Co-I, protocols for acquisition of rapid sequential calibration spectra were developed which resulted in 0.5 del accuracy also being achieved in this less complex instrument. An initial version of software for automatic characterization of tunable diode lasers has been developed and diodes have been characterized in order to establish their spectral output properties. A new state-of-the-art high operating temperature (200 K) mid infrared diode laser was purchased (through NASA procurement) and characterized. A thermo-electrically cooled mid infrared tunable diode laser system for use with high temperature operation lasers was developed. In addition to isotopic ratio measurements of carbon and oxygen, measurements of a third biologically important element (15N/14N in N2O gas) have been achieved to a preliminary accuracy of about 0.2%. Transfer of the basic SILS technology to the commercial sector is proceeding under an unfunded Space Act Agreement between NASA and SpiraMed, a medical diagnostic instrument company. Two patents have been issued. Foreign patents based on these two US patents have been applied for and are expected to be issued. A preliminary design was developed for a thermo-electrically cooled SILS instruments for application to planetary space flight exploration missions.
THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating.
Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J
2017-02-20
An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.
Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.
2011-01-01
We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.
Optical and Acoustic Device Applications of Ferroelastic Crystals
NASA Astrophysics Data System (ADS)
Meeks, Steven Wayne
This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.
Mode-locking evolution in ring fiber lasers with tunable repetition rate.
Korobko, D A; Fotiadi, A A; Zolotovskii, I O
2017-09-04
We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.
Widely tunable chaotic fiber laser for WDM-PON detection
NASA Astrophysics Data System (ADS)
Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian
2014-05-01
A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.
NASA Technical Reports Server (NTRS)
Megie, G.; Menzies, R. T.
1979-01-01
The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.
Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting
NASA Astrophysics Data System (ADS)
Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David
2013-05-01
Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).
Diode-pumped Tunable 3 Micron Laser Sources
2000-02-21
DoD Ballistic Missile Defense Organization U.S. Army Space and Missile Defense Command SBIR Phase I Final Report AC Materials, Inc. 2721 Forsyth...pumped tunable 3 micron laser sources 6. AUTHORISI Arlete Cassanho, Hans Jenssen 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AC Materials, Inc...impurities in the final crystal, starting materials for the crystal growth were prepared at AC Materials from optical grade barium fluoride and
Ultra-broadband tunable (0.67-2.57 µm) optical vortex parametric oscillator
NASA Astrophysics Data System (ADS)
Araki, Shungo; Suzuki, Kensuke; Nishida, Shigeki; Mamuti, Roukuya; Miyamoto, Katsuhiko; Omatsu, Takashige
2017-10-01
We demonstrate an ultra-broadband (>2-octave band) tunable optical vortex laser comprising an optical-vortex-pumped optical parametric oscillator by employing a nanosecond pulse (˜10 ns) green laser and cascaded non-critical phase-matching LiB3O5 crystals (45 mm long each). With this system, an optical vortex output was produced over an extremely wide wavelength range of 0.67-2.57 µm.
Experimental validation of tunable features in laser-induced plasma resonators
NASA Astrophysics Data System (ADS)
Colón Quiñones, Roberto A.; Cappelli, Mark A.
2017-08-01
Measurements are presented which examine the use of gaseous plasma elements as highly-tunable resonators. The resonator considered here is a laser-induced plasma kernel generated by focusing the fundamental output from a Q-switched Nd:YAG laser through a lens and into a gas at constant pressure. The near-ellipsoidal plasma element interacts with incoming microwave radiation through excitation of low-order, electric-dipole resonances similar to those seen in metallic spheres. The tunability of these elements stems from the dispersive nature of plasmas arising from their variable electron density, electron momentum transfer collision frequency, and the concomitant e↵ect of these properties on the excited surface plasmon resonance. Experiments were carried out in the Ku band of the microwave spectrum to characterize the scattering properties of these resonators for di↵erent values of electron density. The experimental results are compared with results from theoretical approximations and finite element method electromagnetic simulations. The described tunable resonators have the potential to be used as the building blocks in a new class of all-plasma metamaterials with fully three-dimensional structural flexibility.
Lasing in robust cesium lead halide perovskite nanowires
Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; ...
2016-02-09
The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored andmore » handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr 3 nanowires with an onset of 5 μJ cm -2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10 9 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.« less
NASA Astrophysics Data System (ADS)
Frish, M. B.; Morency, J. R.; Laderer, M. C.; Wainner, R. T.; Parameswaran, K. R.; Kessler, W. J.; Druy, M. A.
2010-04-01
This paper reports the development and initial testing of a field-portable sensor for monitoring hydrogen peroxide (H2O2) and water (H2O) vapor concentrations during building decontamination after accidental or purposeful exposure to hazardous biological materials. During decontamination, a sterilization system fills ambient air with water and peroxide vapor to near-saturation. The peroxide concentration typically exceeds several hundred ppm for tens of minutes, and subsequently diminishes below 1 ppm. The H2O2/ H2O sensor is an adaptation of a portable gas-sensing platform based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. By capitalizing on its spectral resolution, the TDLAS analyzer isolates H2O2 and H2O spectral lines to measure both vapors using a single laser source. It offers a combination of sensitivity, specificity, fast response, dynamic range, linearity, ease of operation and calibration, ruggedness, and portability not available in alternative H2O2 detectors. The H2O2 range is approximately 0- 5,000 ppm. The autonomous and rugged instrument provides real-time data. It has been tested in a closed-loop liquid/vapor equilibrium apparatus and by comparison against electrochemical sensors.
Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation
Glownia, James H.; Sander, Robert K.
1985-01-01
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation
Glownia, J.H.; Sander, R.K.
1982-06-29
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
NASA Astrophysics Data System (ADS)
Ko, Seunghwan; Lee, Junsu; Koo, Joonhoi; Lee, Ju Han
2018-03-01
We experimentally demonstrate a simple and stable all-polarization maintaining fiber (PMF) nonlinear amplifying loop mirror (NALM)-based burst pulse fiber laser with a pulse number tuning capability, which can readily generate bursts of linearly-polarized femtosecond pulses at 1030 nm. The laser was based on an NALM that was operated to produce burst-mode, dissipative soliton pulses at a wavelength of 1030 nm, and these were then compressed into 400 fs Gaussian pulses using a grating pair-based compressor. The laser was constructed with the figure-eight configuration incorporating ytterbium-doped fiber as gain medium. It was shown that the number of burst pulses was readily tunable through the adjustment of the pump power. Further, the output-pulse characteristics were quantitatively investigated and the laser stability was checked by observing the temporal characteristic variation of the output pulses for one hour.
NASA Technical Reports Server (NTRS)
Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.
1995-01-01
We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.
Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te
NASA Technical Reports Server (NTRS)
Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.
1997-01-01
Transition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.
Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa
2015-06-01
In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell experiments with controlled the temperature were performed to validate the sensing strategy. Here the Wavelength Modulation Spectroscopy (WMS) strategy was usually used to measure lower gas concentration for high noise immunity to the non-absorption transmission losses. The great agreement 2f signal with the calibrated concentration is within the uncertainty at different temperatures by using simple digital signal processing such as multiple averages, wavelet analysis and so on. The denoise processing has a great advantage in application and implementation over other noise suppression techniques. The result provided a good basis for trace ammonia escape detection based on tunable diode laser absorption spectroscopy.
NASA Astrophysics Data System (ADS)
Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.
2017-02-01
White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
Room-temperature Q-switched Tm:BaY2F8 laser pumped by CW diode laser
NASA Astrophysics Data System (ADS)
Coluccelli, Nicola; Galzerano, Gianluca; Laporta, Paolo; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro
2006-02-01
We report on the realization of CW diode-pumped Tm:BaY2F8 Q-switched laser at 1.93 µm. Active Q-switching was obtained by means of an intracavity Pockels cell. A functional characterization of the laser performance is presented with particular attention to output energy, pulse duration, pulse stability, and wavelength tunability. Pulses with time duration as short as 170 ns were demonstrated at the minimum repetition rate of 5 Hz with an energy of 3.2 mJ (corresponding to a peak power of 19 kW). A wavelength tunability range from 1905 nm to 1990 nm has been observed.
Tunable dispersion compensation of quantum cascade laser frequency combs.
Hillbrand, Johannes; Jouy, Pierre; Beck, Mattias; Faist, Jérôme
2018-04-15
Compensating for group velocity dispersion is an important challenge to achieve stable midinfrared quantum cascade laser (QCL) frequency combs with large spectral coverage. We present a tunable dispersion compensation scheme consisting of a planar mirror placed behind the back facet of the QCL. Dispersion can be either enhanced or decreased depending on the position of the mirror. We demonstrate that the fraction of the comb regime in the dynamic range of the laser increases considerably when the dispersion induced by the Gires-Tournois interferometer compensates the intrinsic dispersion of the laser. Furthermore, it is possible to tune to the offset frequency of the comb with the Gires-Tournois interferometer while the repetition frequency is almost unaffected.
A frequency doubled pressure-tunable oscillator-amplifier dye laser system
NASA Technical Reports Server (NTRS)
Moriarty, A.; Heaps, W.; Davis, D. D.
1976-01-01
A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.
Mobile SO2 and NO2 DIAL Lidar system for enforcement use
NASA Astrophysics Data System (ADS)
Cunningham, David L.; Pence, William H.; Moody, Stephen E.
1994-06-01
A self-contained mobile differential absorption lidar (DIAL) system intended for measuring SO2 and NO2 concentrations from stationary combustion sources has been completed for enforcement use. The system uses tunable Ti:sapphire laser technology, with nonlinear conversion to the blue and UV absorption wavelengths. Separate tunable laser oscillators at slightly offset wavelengths are pumped on alternate pulses of a 20 Hz doubled Nd:YAG pump laser; the outputs are amplified in a common amplifier, doubled or tripled, and transmitted toward a target region via a two-mirror beam director. Scattered atmospheric returns are collected in a 0.27-m-diameter telescope, detected with a filtered photomultiplier, and digitized and stored for analysis. Extensive software-based control and display windows are provided for operator interaction with the system. The DIAL system is built into a small motor coach. Gasoline- powered electrical generation, laser cooling, and air conditioning services are present. Separate computers are provided for simultaneous data collection and data analysis activities, with shared data base access. A laser printer supplies hardcopy output. The system includes the capability for automatic data collection at a series of scanner angles, and computer processing to present results in a variety of formats. Plumes from coal-fired and mixed-fuel-fired combusters have been examined for NO2 and SO2 content. Noise levels of a few parts per million are reached with averaging times of less than one minute.
Cr/sup 3 +/-doped colquiriite solid state laser material
Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.
1988-03-31
Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.
Cr.sup.3+ -doped colquiriite solid state laser material
Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.
1989-01-01
Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.
NASA Technical Reports Server (NTRS)
Javan, A.
1979-01-01
A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-01-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
NASA Astrophysics Data System (ADS)
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-03-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.
High Precision Wavelength Monitor for Tunable Laser Systems
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Childers, Brooks A. (Inventor)
2002-01-01
A solid-state apparatus for tracking the wavelength of a laser emission has a power splitter that divides the laser emission into at least three equal components. Differing phase shifts are detected and processed to track variations of the laser emission.
NASA Astrophysics Data System (ADS)
Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning
2018-05-01
In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.
Tunable high-power blue external cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun
2017-09-01
A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.
Cai, Tingdong; Gao, Guangzhen; Liu, Ying
2013-11-10
Tunable diode laser absorption measurements of pressure and H2O concentration in the headspace of vials using a distributed-feedback (DFB) diode laser near 1.4 μm are reported. A H2O line located near 7161.41 cm(-1) is selected based on its strong absorption strength and isolation from interference of neighboring transitions. Direct absorption spectra of H2O are obtained for the measurement path as well as the reference path by scanning the laser wavelength. The pressure and H2O vapor concentration in the headspace of a vial are inferred from a differential absorption signal, which is the difference between the measured and the referenced absorbance spectra. This sensor is calibration-free and no purge gas is needed. The demonstrated capability would enable measurements of pressure and H2O concentration in the headspace of vials within 2.21% and 2.86%, respectively. A precision of 1.02 Torr and 390 ppm is found for the pressure and H2O concentration, respectively. A set of measurements for commercial freeze-dried products are also performed to illustrate the usefulness of this sensor.
Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.
Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf
2005-12-01
Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.
Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable Co:MgF2 laser
NASA Technical Reports Server (NTRS)
Menyuk, Norman; Killinger, Dennis K.
1987-01-01
A differential-absorption lidar system has been developed which uses a continuously tunable (1.5-2.3 micron) cobalt-doped magnesium fluoride laser as the radiation source. Preliminary atmospheric measurements of water vapor, HCl, and CH4 have been made with this system, including both path-averaged and ranged-resolved DIAL measurements at ranges up to 6 and 3 km, respectively.
A Compact Frequency Agile Mid-Infrared Airborne Lidar
2006-10-01
et al. demonstrated a PPLN OPO pumped by a tunable ytterbium - doped fiber laser [11]. The system delivers a tunable mid-infrared output with a peak...shared component with it. OPO Resonator Mirrors Pump Laser Signal => , =0 ..rt.«^.._S„.5lfc>..J Idler Nonlinear Optical Crystal (a) Pump...signal- to-noise ratio (Figure 31). Tuning was accomplished by rotating the crystal. The theoretical analysis of up-conversion in LiNbC>3 crystal
Widely tunable 1.94-μm Tm:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Galzerano, Gianluca; Cornacchia, Francesco; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro; Laporta, Paolo
2005-04-01
A novel BaY2F8 crystal doped with thulium ions is grown and extensively investigated. Owing to the large number of vibronic levels and to a favorable electron-phonon coupling, extremely wide absorption and emission bands around 1.9 μm are observed. A room-temperature Tm:BaY2F8 laser tunable over a 210-nm interval, from 1849 to 2059 nm, is demonstrated.
Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul
2009-07-01
We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.
Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio
2016-01-01
The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813
Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.
2017-06-01
In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within ±0.2 nm.
NASA Astrophysics Data System (ADS)
Kuznetsov, M.; Stone, J.; Stulz, L. W.
1991-11-01
We report measurements of intensity as a function of both time and frequency for frequency modulation and switching of a tunable semiconductor laser. Because of the uncertainty principle limitations, the measured time-frequency signal can have a complex structure and does not show the simple-minded picture of a laser spectrum whose center frequency varies in time. The observations are explained by a theory of the time-dependent spectral measurements, well known in the field of speech analysis. We discuss implications for channel switching speed and channel interference in switched, frequency-multiplexed optical networks.
Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser.
Hurtado, Antonio; Mee, Jesse; Nami, Mohsen; Henning, Ian D; Adams, Michael J; Lester, Luke F
2013-05-06
Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310 nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.
NASA Astrophysics Data System (ADS)
Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Rao, Han; Zhang, Sasa; Liu, Yang; Zverev, Petr G.; Konyushkin, Vasily A.; Zhang, Xingyu
2016-02-01
High-repetition-rate tunable LiF:\\text{F}2- color center lasers pumped by quasi-continuous-wave diode-side-pumped acousto-optically Q-switched Nd:YAG laser are demonstrated. Littrow-grating and Littman-grating tuning schemes are studied respectively. In the Littrow-grating scheme, the tuning range was 1085 nm to 1275 nm, and the maximal average output power was 275 mW. In the Littman-grating scheme, the tuning range was 1105.5 nm to 1215.5 nm, and the maximal average output power was 135 mW.
Optical characterization in wide spectral range by a coherent spectrophotometer
NASA Astrophysics Data System (ADS)
Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.
2003-11-01
We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.
Fiber laser refractometer based on tunable bandpass filter tailored FBG reflection
NASA Astrophysics Data System (ADS)
Zhao, Junfa; Wang, Juan; Zhang, Cheng; Xu, Wei; Sun, Xiaodong; Bai, Hua; Chen, Liying
2018-02-01
A fiber laser refractometer based on single-mode-no-core-single-mode (SNS) structure cascaded with a FBG is proposed and experimentally demonstrated. The output wavelength of the fiber laser keeps constant because the oscillating wavelength is only determined by the central wavelength of the FBG which is insensitive to the surrounding refractive index (SRI). However, the output power is sensitive to the SRI because the intracavity loss of the fiber laser varies with the SRI. A cost-effective power detection refractometer with reflective operation can be realized through measuring the variation of the fiber laser's output power. The refractometer has a sensitivity of 195.52 dB/RIU and 365.52 dB/RIU in the RI range of 1.3330-1.3687 and 1.3687-1.4135, respectively. Moreover, the refractometer can also be used for temperature measurement through discriminating the output wavelength of the fiber laser.
Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming
2014-01-01
A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371
Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Juan; Ding, Junya; Liu, Ningwu; Yang, Guangxiang; Li, Jingsong
2018-02-01
A laser spectroscopy system based on a broadband tunable external cavity quantum cascade laser (ECQCL) and a mini quartz crystal tuning fork (QCTF) detector was developed for standoff detection of volatile organic compounds (VOCs). The self-established spectral analysis model based on multiple algorithms for quantitative and qualitative analysis of VOC components (i.e. ethanol and acetone) was detailedly investigated in both closed cell and open path configurations. A good agreement was obtained between the experimentally observed spectra and the standard reference spectra. For open path detection of VOCs, the sensor system was demonstrated at a distance of 30 m. The preliminary laboratory results show that standoff detection of VOCs at a distance of over 100 m is very promising.
Wilson Prize article: From vacuum tubes to lasers and back again1
NASA Astrophysics Data System (ADS)
Madey, John M. J.
2014-07-01
The first demonstration of an optical-wavelength laser by Theodore Maiman in 1960 had a transformational impact on the paths that would be blazed to advance the state of the art of short wavelength coherent electron beam-based radiation sources. Free electron lasers (FELs) emerged from these efforts as the electron beam-based realization of the pioneering model of atom-based "optical masers" by Schawlow and Townes, but with far greater potential for tunable operation at high power and very short wavelengths. Further opportunities for yet greater capabilities may be inherent in our still growing understanding of the underlying physics. This article focuses on the FEL efforts in which the author was directly and personally involved.
Laser spectrometer for CO2 clumped isotope analysis
NASA Astrophysics Data System (ADS)
Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof
2017-04-01
Carbon dioxide clumped isotope thermometry has proven to be a reliable method for biogeochemical and atmospheric research. We present a new laser spectroscopic instrument for doubly-substituted isotopologues analysis. In contrast to a conventional isotope ratio mass spectrometry (IRMS), tunable laser direct absorption spectroscopy (TLDAS) has the advantage of isotopologue-specific determination free of isobaric interferences. Tunable infrared laser based spectrometer for clumped isotope analysis is being developed in collaboration between Heidelberg University, Germany, and LERMA-IPSL, CNRS, France. The instrument employs two continuous intraband cascade lasers (ICL) tuned at 4439 and 4329 nm. The spectral windows covered by the lasers contain absorption lines of the six most abundant CO2 isotopologues, including the two doubly substituted species 16O13C18O and 16O13C17O, and all singly substituted isotopologues with 13C, 18O and 17O. A Herriott-type multi-pass cell provides two different absorption pathlengths to compensate the abundance difference between singly- and doubly-substituted isotopologues. We have reached the sub-permill precision required for clumped isotope measurements within the integration time of several seconds. The test version of the instrument demonstrates a performance comparable to state of the art IRMS. We highlight the following features of the instrument that are strong advantages compared to conventional mass spectrometry: measurement cycle in the minute range, simplified sample preparation routine, table-top layout with a potential for in-situ applications.
Bellum, John Curtis; Winstone, Trevor; Lamaignere, Laurent; ...
2016-08-25
We designed an optical coating based on TiO 2/SiO 2 layer pairs for broad bandwidth high reflection (BBHR) at 45-deg angle of incidence (AOI), P polarization of femtosecond (fs) laser pulses of 900-nm center wavelength, and produced the coatings in Sandia’s large optics coater by reactive, ion-assisted e-beam evaporation. This paper reports on laser-induced damage threshold (LIDT) tests of these coatings. The broad HR bands of BBHR coatings pose challenges to LIDT tests. An ideal test would be in a vacuum environment appropriate to a high energy, fs-pulse, petawatt-class laser, with pulses identical to its fs pulses. Short of thismore » would be tests over portions of the HR band using nanosecond or sub-picosecond pulses produced by tunable lasers. Such tests could, e.g., sample 10-nm-wide wavelength intervals with center wavelengths tunable over the broad HR band. Alternatively, the coating’s HR band could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to the coating absorbing moisture under ambient conditions. In conclusion, we had LIDT tests performed on the BBHR coatings at selected AOIs to gain insight into their laser damage properties and analyze how the results of the different LIDT tests compare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellum, John Curtis; Winstone, Trevor; Lamaignere, Laurent
We designed an optical coating based on TiO 2/SiO 2 layer pairs for broad bandwidth high reflection (BBHR) at 45-deg angle of incidence (AOI), P polarization of femtosecond (fs) laser pulses of 900-nm center wavelength, and produced the coatings in Sandia’s large optics coater by reactive, ion-assisted e-beam evaporation. This paper reports on laser-induced damage threshold (LIDT) tests of these coatings. The broad HR bands of BBHR coatings pose challenges to LIDT tests. An ideal test would be in a vacuum environment appropriate to a high energy, fs-pulse, petawatt-class laser, with pulses identical to its fs pulses. Short of thismore » would be tests over portions of the HR band using nanosecond or sub-picosecond pulses produced by tunable lasers. Such tests could, e.g., sample 10-nm-wide wavelength intervals with center wavelengths tunable over the broad HR band. Alternatively, the coating’s HR band could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to the coating absorbing moisture under ambient conditions. In conclusion, we had LIDT tests performed on the BBHR coatings at selected AOIs to gain insight into their laser damage properties and analyze how the results of the different LIDT tests compare.« less
OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA
Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...
Determining the oxygen isotope composition of evapotranspiration with eddy covariance
USDA-ARS?s Scientific Manuscript database
The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C P; Hartemann, F V
2004-09-21
The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, MeV, flash radiography of dense, energetic systems (NIF, JASPER), precision, photo-nuclear absorption spectroscopy (DNT, PAT), non-destructive, resonant nuclear fluorescent imaging of special nuclear materials (NAI, DHS), dynamic, micro-crack failure analysis (aerospace industry, SSP) etc. Concepts are presented for new Thomson-Radiated Extreme X-ray (T-REX) sources at LLNL. These leverage LLNL's world-leading expertise in high-intensity lasers, high average power lasers, diffractive optics, Thomson-based x-ray source development, and advanced photoguns to produce tunable, quasi-monochromatic radiation from 50-keV to several MeV. Above {approx}100 keV, T-REX would be unique in the world with respect to BOTH peak x-ray brilliance AND average x-ray brilliance. This capability would naturally compliment the x-ray capability of large-scale, synchrotron facilities currently within the DoE complex by significantly extending the x-ray energy range over which, tunable, high-brightness applications could be pursued. It would do so at a small fraction of the cost of the purely, accelerator-based facilities. It is anticipated that T-REX could provide new opportunities for interaction of LLNL with the DoE Office of Science, DARPA, DHS etc. and would place LLNL clearly at the forefront of laser-based, x-ray generation world-wide.« less
NASA Astrophysics Data System (ADS)
Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.
2018-05-01
Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.
Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej
2016-09-06
The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm.
Tunable Solid State Lasers Based on Molecular Ions
1992-01-01
02215 July 15, 1988 to September 30, 1991. N’ o ~...... 1 C~~ I -- ,t,’**, "> I : tt : o0.’. * On leave from Institute of Physics, Copernicus ...Physics, N. Copernicus University, ments provided the ratio (Jo- 81)/10, where l0 is the 87-100 Toruo, Poland. probe beam intensity after passing through...luminescence, following t 30 ns long excitation pulse (308 nm On leave from Institute of Physics, N. Copernicus University, line, excimer laser
Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen
2011-02-01
We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.
Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K
2009-10-26
A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.
NASA Astrophysics Data System (ADS)
Butschek, Lorenz; Hugger, Stefan; Jarvis, Jan; Haertelt, Marko; Merten, André; Schwarzenberg, Markus; Grahmann, Jan; Stothard, David; Warden, Matthew; Carson, Christopher; Macarthur, John; Fuchs, Frank; Ostendorf, Ralf; Wagner, Joachim
2018-01-01
We report on mid-IR spectroscopic measurements performed with rapidly tunable external cavity quantum cascade lasers (EC-QCLs). Fast wavelength tuning in the external cavity is realized by a microoptoelectromechanical systems (MOEMS) grating oscillating at a resonance frequency of about 1 kHz with a deflection amplitude of up to 10 deg. The entire spectral range of the broadband QCL can therefore be covered in just 500 μs, paving the way for real-time spectroscopy in the mid-IR region. In addition to its use in spectroscopic measurements conducted in backscattering and transmission geometry, the MOEMS-based laser source is characterized regarding pulse intensity noise, wavelength reproducibility, and spectral resolution.
TULIPs: tunable, light-controlled interacting protein tags for cell biology.
Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael
2012-03-04
Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
NASA Astrophysics Data System (ADS)
Broslavets, Y. Y.; Fomitchev, A. A.
1996-11-01
We report on investigation of mode-locked regime in tunable Cr4+:YAG laser. Our experiments have been performed using Nd:YAG laser for pumping Cr4+:Y3Al5O12 laser. We have obtained mode-locked generation of tunable radiation in the range from 1,350 to 1,550 nm. There was a generation with pulse duration in ps range and repetition rate of 320 MHz. Using a 0.5 percent transmitting output mirror, as high as 305 mW of useful output power at 1.5 micrometers was obtained from the laser with 5.5 W of absorbed pump power. The laser has threshold for mode-locked regime near 7 W for synchronous mode locking and 5 W for active mode locking. We have analyzed the laser system with Kerr lens feedback in the phase trajectory of five-dimensional space. The computer simulation have shown the presence of asymptotically stable stationary point in behavior of temporal Gaussian beam similar spatial mode structure in the resonators, when the temporal mode does not change passing through all dispersion element in laser. Our calculations show that the sign of dispersion is very important for formation of phase portrait in our laser system. In conclusion, we have demonstrated Cr4+:YAG laser operation in mode-locked regime on the edge of stability region. The analysis of the solutions in our model reveals that chaotic instabilities can be reached through increasing of non-linear interaction temporal and spatial Gaussian beam. The characteristics of this laser systems can provide the source of laser radiation for diagnostics and therapy.