Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1990-01-01
Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1989-01-01
Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
Electrical control of a solid-state flying qubit.
Yamamoto, Michihisa; Takada, Shintaro; Bäuerle, Christopher; Watanabe, Kenta; Wieck, Andreas D; Tarucha, Seigo
2012-03-18
Solid-state approaches to quantum information technology are attractive because they are scalable. The coherent transport of quantum information over large distances is a requirement for any practical quantum computer and has been demonstrated by coupling super-conducting qubits to photons. Single electrons have also been transferred between distant quantum dots in times shorter than their spin coherence time. However, until now, there have been no demonstrations of scalable 'flying qubit' architectures-systems in which it is possible to perform quantum operations on qubits while they are being coherently transferred-in solid-state systems. These architectures allow for control over qubit separation and for non-local entanglement, which makes them more amenable to integration and scaling than static qubit approaches. Here, we report the transport and manipulation of qubits over distances of 6 µm within 40 ps, in an Aharonov-Bohm ring connected to two-channel wires that have a tunable tunnel coupling between channels. The flying qubit state is defined by the presence of a travelling electron in either channel of the wire, and can be controlled without a magnetic field. Our device has shorter quantum gates (<1 µm), longer coherence lengths (∼86 µm at 70 mK) and higher operating frequencies (∼100 GHz) than other solid-state implementations of flying qubits.
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
NASA Astrophysics Data System (ADS)
Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus
2018-05-01
Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.
Industrial integration of high coherence tunable VECSEL in the NIR and MIR
NASA Astrophysics Data System (ADS)
Denet, Stéphane; Chomet, Baptiste; Lecocq, Vincent; Ferrières, Laurence; Myara, Mikhaël.; Cerutti, Laurent; Sagnes, Isabelle; Garnache, Arnaud
2016-03-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8- 1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency micro-chip, intracavity element free, patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high coherence with a low divergence diffraction limited TEM00 beam, class A dynamics with Relative Intensity Noise as low as -140dB/Hz and at shot noise level above 200MHz RF frequency (up to 160GHz), free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), linear polarization (50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence wavelength tunability performances and integration.
van Vugt, Lambert K; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh
2011-06-21
Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk.
van Vugt, Lambert K.; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh
2011-01-01
Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk. PMID:21628582
A dressed spin qubit in silicon
Laucht, Arne; Kalra, Rachpon; Simmons, Stephanie; ...
2016-10-17
Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties—a different and easily tunable level splitting, faster control and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and assess its potential as a quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, frequency modulation of the driving field or a simple detuning pulse. We measure coherence times of T* 2p = 2.4 ms andmore » T Hahn 2p = 9 ms, one order of magnitude longer than those of the undressed spin. Moreover, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.« less
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1991-01-01
Work in the stabilization of monolithic Nd:YAG lasers and the application of these lasers to nonlinear optical frequency conversion is discussed. The intrinsic stability of semiconductor diode laser pumped solid state lasers has facilitated a number of demonstration in external resonant cavity harmonic generation and stable optical parametric oscillation. Relative laser frequency stabilization of 0.3 Hz was achieved, and absolute stability of a few hundred hertz is anticipated. The challenge is now to reproduce this frequency stability in the output of tunable nonlinear optical devices. Theoretical and experimental work toward this goal are continuing.
NASA Astrophysics Data System (ADS)
Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud
2017-02-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.
NASA Technical Reports Server (NTRS)
Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)
1985-01-01
Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.
Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications
NASA Astrophysics Data System (ADS)
Henderson, Sammy W.; Hale, Charley P.
2017-08-01
We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.
Tunable Single-Frequency Near IR Lasers for DIAL Applications
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.
2000-01-01
Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.
[The design of all solid-state tunable pulsed Ti:sapphire laser system].
Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing
2013-05-01
This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.
Tunable ion-photon entanglement in an optical cavity.
Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R
2012-05-23
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.
NASA Technical Reports Server (NTRS)
Killinger, Dennis
1991-01-01
The development of eye-safe, solid-state Lidar systems is discussed, with an emphasis on Coherent Doppler Lidar for Atmospheric Wind Measurements. The following subject areas are covered: tunable Ho DIAL (Differential Absorption Lidar)/lidar atmospheric measurements; atmospheric turbulence measurements and detector arrays; diurnal measurements of C(sub n)(sup 2) for KSC lidar measurements; and development of single-frequency Ho laser/lidar.
Spins and photons: connecting quantum registers in diamond
NASA Astrophysics Data System (ADS)
Childress, Lily
2012-06-01
Long-lived electronic and nuclear spin states have made the nitrogen-vacancy (NV) defect in diamond a leading candidate for quantum information processing in the solid state. Multi-qubit quantum registers formed by single defects and nearby nuclear spins can currently be controlled and detected with high fidelity. Nevertheless, development of coherent connections between distant NVs remains an outstanding challenge. One advantage to working with solid-state defects is the opportunity to integrate them with microfabricated mechanical, electronic, or optical devices; in principle, such devices could mediate interactions between registers, turning them into nodes within a larger quantum network. In the last few months, several experiments have made key steps toward realizing a coherent quantum interface between individual NV centers using a mechanical quantum bus [1] or optical channels [2,3]. This talk will explore the current state of the art, and report on recent observation of two photon quantum interference between different gate-tunable defect centers [2]. These results pave the way towards measurement-based entanglement between remote NV centers and the realization of quantum networks with solid-state spins.[4pt] [1] Kolkowitz et al., Science 335, 1603 (2012)[2] Bernien et al., Phys. Rev. Lett. 108, 043604 (2012)[3] Sipahigil et al., http://lanl.arxiv.org/abs/1112.3975
Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions
Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.
2016-01-01
Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics. PMID:27102689
Phase coherence and Andreev reflection in topological insulator devices
Finck, A. D. K.; Kurter, C.; Hor, Y. S.; ...
2014-11-04
Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less
Lasers, their development, and applications at M.I.T. Lincoln Laboratory
NASA Technical Reports Server (NTRS)
Rediker, R. H.; Melngailis, I.; Mooradian, A.
1984-01-01
A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 micron wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO2 lasers for coherent infrared radar.
Demonstration of two-qubit algorithms with a superconducting quantum processor.
DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J
2009-07-09
Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.
Zadrozny, Joseph M.; Niklas, Jens; Poluektov, Oleg G.; ...
2015-12-02
Here, quantum information processing (QIP) could revolutionize areas ranging from chemical modeling to cryptography. One key figure of merit for the smallest unit for QIP, the qubit, is the coherence time ( T 2), which establishes the lifetime for the qubit. Transition metal complexes offer tremendous potential as tunable qubits, yet their development is hampered by the absence of synthetic design principles to achieve a long T 2. We harnessed molecular design to create a series of qubits, (Ph 4P) 2[V(C 8S 8) 3] (1), (Ph 4P) 2[V(β-C 3S 5) 3] (2), (Ph 4P) 2[V(α-C 3S 5) 3] (3), andmore » (Ph 4P) 2[V(C 3S 4O) 3] (4), with T 2s of 1–4 μs at 80 K in protiated and deuterated environments. Crucially, through chemical tuning of nuclear spin content in the vanadium(IV) environment we realized a T 2 of ~1 ms for the species ( d 20-Ph 4P) 2[V(C 8S 8) 3] in CS 2, a value that surpasses the coordination complex record by an order of magnitude. This value even eclipses some prominent solid-state qubits. Electrochemical and continuous wave electron paramagnetic resonance (EPR) data reveal variation in the electronic influence of the ligands on the metal ion across 1–4. However, pulsed measurements indicate that the most important influence on decoherence is nuclear spins in the protiated and deuterated solvents utilized herein. Our results illuminate a path forward in synthetic design principles, which should unite CS 2 solubility with nuclear spin free ligand fields to develop a new generation of molecular qubits.« less
Tunable far infrared laser spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, G.A.; Laughlin, K.B.; Cohen, R.C.
The state of the art in far infrared (FIR) spectroscopy is reviewed. The development of tunable, coherent FIR radiation sources is discussed. Applications of tunable FIR laser spectrometers for measurement of rotational spectra and dipole moments of molecular ions and free radicals, vibration-rotation-tunneling (VRT) spectra of weakly bound complexes, and vibration-rotation spectra of linear carbon clusters are presented. A detailed description of the Berkeley tunable FIR laser spectrometers is presented in the following article.
Holonomic Quantum Control with Continuous Variable Systems.
Albert, Victor V; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J; Mirrahimi, Mazyar; Devoret, Michel H; Jiang, Liang
2016-04-08
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.
Tunability of the circadian action of tetrachromatic solid-state light sources
NASA Astrophysics Data System (ADS)
Žukauskas, A.; Vaicekauskas, R.
2015-01-01
An approach to the optimization of the spectral power distribution of solid-state light sources with the tunable non-image forming photobiological effect on the human circadian rhythm is proposed. For tetrachromatic clusters of model narrow-band (direct-emission) light-emitting diodes (LEDs), the limiting tunability of the circadian action factor (CAF), which is the ratio of the circadian efficacy to luminous efficacy of radiation, was established as a function of constraining color fidelity and luminous efficacy of radiation. For constant correlated color temperatures (CCTs), the CAF of the LED clusters can be tuned above and below that of the corresponding blackbody radiators, whereas for variable CCT, the clusters can have circadian tunability covering that of a temperature-tunable blackbody radiator.
Solid-state coherent laser radar wind shear measuring systems
NASA Technical Reports Server (NTRS)
Huffaker, R. Milton
1992-01-01
Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Ian, Hou; Shi, Tao; Dong, Hui; Sun, Changpu
2010-07-01
Feshbach resonance is a resonance for two-atom scattering with two or more channels, in which a bound state is achieved in one channel. We show that this resonance phenomenon not only exists during the collisions of massive particles, but also emerges during the coherent transport of massless particles, that is, photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system (TLS). When the TLS is coupled to one array to form a bound state in this setup, the vanishing transmission appears to display the photonic Feshbach resonance. This process can be realized through various experimentally feasible solid state systems, such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line. The numerical simulation based on the finite-different time-domain (FDTD) method confirms our assumption about the physical implementation.
Technology Development of Miniaturized Far-Infrared Sources for Biomolecular Spectroscopy
NASA Technical Reports Server (NTRS)
Kono, Junichiro
2003-01-01
The objective of this project was to develop a purely solid-state based, thus miniaturized, far-infrared (FIR) (also known as terahertz (THz)) wave source using III-V semiconductor nanostructures for biomolecular detection and sensing. Many biomolecules, such as DNA and proteins, have distinct spectroscopic features in the FIR wavelength range as a result of vibration-rotation-tunneling motions and various inter- and intra-molecule collective motions. Spectroscopic characterization of such molecules requires narrow linewidth, sufficiently high power, tunable (in wavelength), and coherent FIR sources. Unfortunately, the FIR frequency is one of the least technologically developed ranges in the electromagnetic spectrum. Currently available FIR sources based on non-solid state technology are bulky, inefficient, and very often incoherent. In this project we investigated antimonide based compound semiconductor (ABCS) nanostructures as the active medium to generate FIR radiation. The final goal of this project was to demonstrate a semiconductor THz source integrated with a pumping diode laser module to achieve a compact system for biomolecular applications.
NASA Astrophysics Data System (ADS)
Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew
2017-02-01
Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.
Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement
NASA Astrophysics Data System (ADS)
Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor
2018-01-01
We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.
NASA Technical Reports Server (NTRS)
Allario, F.; Taylor, L. V.
1986-01-01
Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.
NASA Technical Reports Server (NTRS)
1990-01-01
The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.
Compact near-IR and mid-IR cavity ring down spectroscopy device
NASA Technical Reports Server (NTRS)
Miller, J. Houston (Inventor)
2011-01-01
This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
Quantum many-body dynamics of strongly interacting atom arrays
NASA Astrophysics Data System (ADS)
Bernien, Hannes; Keesling, Alexander; Levine, Harry; Schwartz, Sylvain; Omran, Ahmed; Anschuetz, Eric; Endres, Manuel; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail
2017-04-01
The coherent interaction between large numbers of particles gives rise to fascinating quantum many-body effects and lies at the center of quantum simulations and quantum information processing. The development of systems consisting of many, well-controlled particles with tunable interactions is an outstanding challenge. Here we present a new platform based on large, reconfigurable arrays of individually trapped atoms. Strong interactions between these atoms are enabled by exciting them to Rydberg states. This flexible approach allows access to vastly different regimes with interactions tunable over several orders of magnitude. We study the coherent many-body dynamics in varying array geometries and observe the formation of Rydberg crystals.
Coherent Control of Ground State NaK Molecules
NASA Astrophysics Data System (ADS)
Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin
2016-05-01
Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE
NASA Astrophysics Data System (ADS)
Shen, Jian Qi; Gu, Jing
2018-04-01
Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.
Design of a miniature solid state NIR spectrometer
NASA Astrophysics Data System (ADS)
Zhang, Hanyi; Wang, Xiaolu L.; Soos, Jolanta I.; Crisp, Joy A.
1995-06-01
For aerospace applications a miniature, solid-state near infrared (NIR) spectrometer based on an acousto-optic tunable filter (AOTF) has been developed and built at Brimrose Corp. of America. In this spectrometer a light emitting diode (LED) array as light source, a set of optical fibers as the lightwave transmission route, and a miniature AOTF as a tunable filter were adopted. This approach makes the spectrometer very compact, light-weight, rugged and reliable, with low operating power and long lifetime.
A Completely Solid-State Tunable Ti:Sapphire Laser System
NASA Technical Reports Server (NTRS)
Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.
1994-01-01
Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.
Coherent laser radar at 2 microns using solid-state lasers
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Suni, Paul J. M.; Hale, Charley P.; Hannon, Stephen M.; Magee, James R.; Bruns, Dale L.; Yuen, Eric H.
1993-01-01
Coherent laser radar systems using 2-micron Tm- and Tm, Ho-doped solid-state lasers are useful for the remote range-resolved measurement of atmospheric winds, aerosol backscatter, and DIAL measurements of atmospheric water vapor and CO2 concentrations. Recent measurements made with a 2-micron coherent laser radar system, advances in the laser technology, and atmospheric propagation effects on 2-micron coherent lidar performance are described.
Chirp optical coherence tomography of layered scattering media.
Haberland, U H; Blazek, V; Schmitt, H J
1998-07-01
A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.
Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays.
Zhang, Gufei; Samuely, Tomas; Du, Hongchu; Xu, Zheng; Liu, Liwang; Onufriienko, Oleksandr; May, Paul W; Vanacken, Johan; Szabó, Pavol; Kačmarčík, Jozef; Yuan, Haifeng; Samuely, Peter; Dunin-Borkowski, Rafal E; Hofkens, Johan; Moshchalkov, Victor V
2017-11-28
In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.
Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture
NASA Technical Reports Server (NTRS)
Dunkin, James A.
1991-01-01
Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.
Experimental realization of self-guided quantum coherence freezing
NASA Astrophysics Data System (ADS)
Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2017-12-01
Quantum coherence is the most essential characteristic of quantum physics, specifcially, when it is subject to the resource-theoretical framework, it is considered as the most fundamental resource for quantum techniques. Other quantum resources, e.g., entanglement, are all based on coherence. Therefore, it becomes urgently important to learn how to preserve coherence in quantum channels. The best preservation is coherence freezing, which has been studied recently. However, in these studies, the freezing condition is theoretically calculated, and there still lacks a practical way to achieve this freezing; in addition the channels are usually fixed, but actually, there are also degrees of freedom that can be used to adapt the channels to quantum states. Here we develop a self-guided quantum coherence freezing method, which can guide either the quantum channels (tunable-channel scheme with upgraded channels) or the initial state (fixed-channel scheme) to the coherence-freezing zone from any starting estimate. Specifically, in the fixed-channel scheme, the final-iterative quantum states all satisfy the previously calculated freezing condition. This coincidence demonstrates the validity of our method. Our work will be helpful for the better protection of quantum coherence.
Coherent optical excitations in superconducting qubit chain
NASA Astrophysics Data System (ADS)
Ian, Hou; Liu, Yu-Xi
2012-06-01
In the recent years, the theories of quantum optics have been borrowed to study the flows of electron pairs and their interactions with the circuit photon in the superconducting qubit circuits. These studies bring about new theories of quantum optics, such as the tunable electromagnetically induced transparency effect, peculiar to the Cooper pairs in circuits. In this talk, we focus on a special type of superconducting qubit circuits: superconducting qubit chain (SQC), which comprises dozens of qubits linearly placed along a stripline resonator. Since the dimensions of the qubits and the stripline have made their interactions inhomogeneous, the SQC cannot be diagonalized using the usual Dicke model. We present a new theoretical method, the deformation-projection method, for the exact diagonalization of the collective excitations of the qubits. This method allows us to predict that these excitations emulate the behaviors of Wannier and Frenckel excitons in the solid-state systems. The spontaneous emissions from the individual qubits in SQC are relayed to their neighbors, eventually arriving at a coherent emission, known as superradiance. We present a quantum relay model, which is crucial to quantum information processing, based on this finding.
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
NASA Astrophysics Data System (ADS)
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-05-01
Solid-solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid-solid transitions and microstructural evolutions in polycrystals.
Tunable solid-state lasers - An emerging technology for remote sensing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Allario, Frank
1988-01-01
The present development status and prospective (1990s) performance-improvement evaluation of tunable solid-state laser technology notes recent trends toward spectrum coverage over the 0.20-14.0 microns range, in addition to dramatic increases in efficiency, service life, and reliability. It is judged that the Ti:Al2O3 laser and the AgGaSe2 optical parametric oscillator pumped by a Ho:YAG laser could cover the near-IR and mid-IR regions of the spectrum. Laser diodes operating at 0.78 microns should provide an excellent pump for a Ho:YAG laser.
Kato, T; Shibauchi, T; Matsuda, Y; Thompson, J R; Krusin-Elbaum, L
2008-07-11
We present evidence for entangled solid vortex matter in a glassy state in a layered superconductor Bi2Sr2CaCu2O8+y containing randomly splayed linear defects. The interlayer phase coherence--probed by the Josephson plasma resonance--is enhanced at high temperatures, reflecting the recoupling of vortex liquid by the defects. At low temperatures in the vortex solid state, the interlayer coherence follows a boomerang-shaped reentrant temperature path with an unusual low-field decrease in coherence, indicative of meandering vortices. We uncover a distinct temperature scaling between in-plane and out-of-plane critical currents with opposing dependencies on field and time, consistent with the theoretically proposed "splayed-glass" state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg
Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokesmore » shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.« less
Mathematical modeling of a Ti:sapphire solid-state laser
NASA Technical Reports Server (NTRS)
Swetits, John J.
1987-01-01
The project initiated a study of a mathematical model of a tunable Ti:sapphire solid-state laser. A general mathematical model was developed for the purpose of identifying design parameters which will optimize the system, and serve as a useful predictor of the system's behavior.
Fatadin, Irshaad; Ives, David; Savory, Seb J
2013-04-22
The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.
Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System
NASA Astrophysics Data System (ADS)
Dory, C.; Fischer, K. A.; Müller, K.; Lagoudakis, K. G.; Sarmiento, T.; Rundquist, A.; Zhang, J. L.; Kelaita, Y.; Sapra, N. V.; Vučković, J.
Strongly coupled quantum-dot-photonic-crystal cavity systems provide a nonlinear ladder of hybridized light-matter states, which are a promising platform for non-classical light generation. The transmission of light through such systems enables light generation with tunable photon counting statistics. By detuning the frequencies of quantum emitter and cavity, we can tune the transmission of light to strongly enhance either single- or two-photon emission processes. However, these nanophotonic systems show a strongly dissipative nature and classical light obscures any quantum character of the emission. In this work, we utilize a self-homodyne interference technique combined with frequency-filtering to overcome this obstacle. This allows us to generate emission with a strong two-photon component in the multi-photon regime, where we measure a second-order coherence value of g (2) [ 0 ] = 1 . 490 +/- 0 . 034 . We propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes and support them by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system. Finally, we simulate a third-order coherence value of g (3) [ 0 ] = 0 . 872 +/- 0 . 021 . Army Research Office (ARO) (W911NF1310309), National Science Foundation (1503759), Stanford Graduate Fellowship.
Tunable Bragg filters with a phase transition material defect layer
Wang, Xi; Gong, Zilun; Dong, Kaichen; ...
2016-01-01
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Bragg filters with a phase transition material defect layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xi; Gong, Zilun; Dong, Kaichen
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd(3+):GaN
2017-04-01
by plasma-assisted molecular beam epitaxy in a modular Gen II reactor using liquid gallium, solid Nd, and a nitrogen plasma. The photoluminescence (PL...provide a tunable memory. To vary the applied field, we designed and grew a series of Nd-doped GaN p-i-n structures, strain- balanced superlattice...27 Fig. 23 Electric field vs. GaN well/ AlxGa(1-x)N barrier thickness for strain- balanced superlattice (SBSL) structures with
Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale, orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau–Zener–Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications. PMID:23360992
Designing Birefringent Filters For Solid-State Lasers
NASA Technical Reports Server (NTRS)
Monosmith, Bryan
1992-01-01
Mathematical model enables design of filter assembly of birefringent plates as integral part of resonator cavity of tunable solid-state laser. Proper design treats polarization eigenstate of entire resonator as function of wavelength. Program includes software modules for variety of optical elements including Pockels cell, laser rod, quarter- and half-wave plates, Faraday rotator, and polarizers.
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-01-01
Solid–solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid–solid transitions and microstructural evolutions in polycrystals. PMID:28504246
Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU
NASA Astrophysics Data System (ADS)
Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.
2018-01-01
There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.
Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation
NASA Technical Reports Server (NTRS)
Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.
1998-01-01
A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.
NASA Astrophysics Data System (ADS)
George, Russ
2005-03-01
Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.
Solid State Mobile Lidar for Ozone Atmospheric Profiling
NASA Technical Reports Server (NTRS)
De Young, Russell; Carrion, William; Pliutau, Denis; Ganoe, Rene
2014-01-01
A tunable Ce:LiCAF laser is pumped by a CLBO crystal pumped by a doubled Nd:YLF laser running at 1 kilohertz. The UV tunable Ce:LiCAF laser produces two UV pulses between 280 to 295 nanometers. These pulses are transmitted into the atmosphere to profile the concentration of ozone as a function of altitude.
A tunable mid-infrared laser source for remote sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
1991-01-01
Many remote sensing needs can be effectively addressed with a tunable laser source in the mid infrared. One potential laser source is an optical parametric oscillator and amplifier system pumped by a near infrared solid state laser. Advantages of such a system and progress made at NASA Langley Research Center to date on such a system are described.
1985-07-01
87 Trivalent Cerium Doped Crystals as Tunable Laser Systems: Two Bad Apples Douglas S. Hamilton...161 Theory of Fluorescence Quenching in Low-Field Chromium ... trivalent types of luminescent centers can be grown. Mostly high quantum efficiencies at room-temperature are observed. Pulsed room-temperature lasing
Exotic X-ray Sources from Intermediate Energy Electron Beams
NASA Astrophysics Data System (ADS)
Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.
2003-08-01
High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).
Solid-state-based laser system as a replacement for Ar+ lasers.
Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas
2016-09-15
We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.
All-Solid-State 2.45-to-2.78-THz Source
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seith; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Pearson, John C.; Goldsmith, Paul F.;
2011-01-01
Sources in the THz range are required in order for NASA to implement heterodyne instruments in this frequency range. The source that has been demonstrated here will be used for an instrument on the SOFIA platform as well as for upcoming astrophysics missions. There are currently no electronic sources in the 2 3- THz frequency range. An electronically tunable compact source in this frequency range is needed for lab spectroscopy as well as for compact space-deployable heterodyne receivers. This solution for obtaining useful power levels in the 2 3- THz range is based on utilizing power-combined multiplier stages. Utilizing power combining, the input power can be distributed between different multiplier chips and then recombined after the frequency multiplication. A continuous wave (CW) coherent source covering 2.48 2.75 THz, with greater than 10 percent instantaneous and tuning bandwidth, and having l 14 W of output power at room temperature, has been demonstrated. This source is based on a 91.8 101.8-GHz synthesizer followed by a power amplifier and three cascaded frequency triplers. It demonstrates that purely electronic solid-state sources can generate a useful amount of power in a region of the electromagnetic spectrum where lasers (solid-state or gas) were previously the only available coherent sources. The bandwidth, agility, and operability of this THz source has enabled wideband, high-resolution spectroscopic measurements of water, methanol, and carbon monoxide with a resolution and signal-to-noise ratio unmatched by other existing systems, providing new insight in the physics of these molecules. Further - more, the power and optical beam quality are high enough to observe the Lamb-dip effect in water. The source frequency has an absolute accuracy better than 1 part in 1012, and the spectrometer achieves sub-Doppler frequency resolution better than 1 part in 108. The harmonic purity is better than 25 dB. This source can serve as a local oscillator for a variety of heterodyne systems, and can be used as a method for precision control of more powerful but much less frequency-agile quantum mechanical terahertz sources.
NASA Technical Reports Server (NTRS)
Misra, Prabhakar; She, Yong-Bo; Zhu, Xin-Ming; King, Michael
1997-01-01
Combustion studies under both normal gravity and microgravity conditions depend a great deal on the availability and quality of the diagnostic systems used for such investigations. Microgravity phenomena are specially susceptible to even small perturbations and therefore non-intrusive diagnostic techniques are of paramount importance for successful understanding of reduced-gravity combustion phenomena. Several non-intrusive diagnostic techniques are available for probing and delineating normal as well as reduced gravity combustion processes, such as Rayleigh scattering, Raman scattering, Mie scattering, velocimetry, interferometric and Schlieren techniques, emission and laser-induced fluorescence (LIF) spectroscopy. Our approach is to use the LIF technique as a non-intrusive diagnostic tool for the study of combustion-associated free radicals and use the concomitant optogalvanic transitions to accomplish precise calibration of the laser wavelengths used for recording the excitation spectra of transient molecular species. In attempting to perform spectroscopic measurements on chemical intermediates, we have used conventional laser sources as well as new and novel platforms employing rare-earth doped solid-state lasers. Conventional (commercially available) sources of tunable UV laser radiation are extremely cumbersome and energy-consuming devices that are not very suitable for either in-space or in-flight (or microgravity drop tower) experiments. Traditional LIF sources of tunable UV laser radiation involve in addition to a pump laser (usually a Nd:YAG laser with an attached frequency-doubling stage), a tunable dye laser. In turn, the dye laser has to be provided with a dye circulation system and a subsequent stage for frequency-doubling of the dye laser radiation, together with a servo-tuning system (termed the 'Autotracker') to follow the wavelength changes and also an optical system (called the 'Frequency Separator') for separation of the emanating visible and UV beams. In contrast to this approach, we have devised an alternate arrangement for recording LIF excitation spectra of free radicals (following appropriate precursor fragmentation) that utilizes a tunable rare-earth doped solid state laser system with direct UV pumping. We have designed a compact and portable tunable UV laser system incorporating features necessary for both in-space and in-flight spectroscopy experiments. For the purpose of LIF excitation, we have developed an all-solid-state tunable UV laser that employs direct pumping of the solid-state UV-active medium employing UV harmonics from a Nd:YAG laser. An optical scheme with counterpropagating photolysis and excitation beams focused by suitable lenses into a reaction vacuum chamber was employed.
Development of solid tunable optics for ultra-miniature imaging systems
NASA Astrophysics Data System (ADS)
Yongchao, Zou
This thesis focuses on the optimal design, fabrication and testing of solid tunable optics and exploring their applications in miniature imaging systems. It starts with the numerical modelling of such lenses, followed by the optimum design method and alignment tolerance analysis. A miniature solid tunable lens driven by a piezo actuator is then developed. To solve the problem of limited maximum optical power and tuning range in conventional lens designs, a novel multi-element solid tunable lens is proposed and developed. Inspired by the Alvarez principle, a novel miniature solid tunable dual-focus lens, which is designed using freeform surfaces and driven by one micro-electro-mechanical-systems (MEMS) rotary actuator, is demonstrated. To explore the applications of these miniature solid tunable lenses, a miniature adjustable-focus endoscope and one compact adjustable-focus camera module are developed. The adjustable-focus capability of these two miniature imaging systems is fully proved by electrically focusing targets placed at different positions.
Refocused linewidths less than 10 Hz in 1H solid-state NMR.
Paruzzo, Federico M; Stevanato, Gabriele; Halse, Meghan E; Schlagnitweit, Judith; Mammoli, Daniele; Lesage, Anne; Emsley, Lyndon
2018-06-02
Coherence lifetimes in homonuclear dipolar decoupled 1 H solid-state NMR experiments are usually on the order of a few ms. We discover an oscillation that limits the lifetime of the coherences by recording spin-echo dephasing curves. We find that this oscillation can be removed by the application of a double spin-echo experiment, leading to coherence lifetimes of more than 45 ms in adamantane and more that 22 ms in β-AspAla, corresponding to refocused linewidths of less than 7 and 14 Hz respectively. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi
2018-02-01
Main restrictions of using laser light in digital holographic microscopy (DHM) are coherence induced noise and parasitic reflections in the experimental setup which limit resolution and measurement accuracy. We explored, if coherence properties of partial coherent light sources can be generated synthetically utilizing spectrally tunable lasers. The concept of the method is demonstrated by label-free quantitative phase imaging of living pancreatic tumor cells and utilizing an experimental configuration including a commercial microscope and a laser source with a broad tunable spectral range of more than 200 nm.
Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.
2005-06-28
Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.
Tunable, rare earth-doped solid state lasers
Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.
1980-01-01
Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.
Spatially resolved resonant tunneling on single atoms in silicon.
Voisin, B; Salfi, J; Bocquel, J; Rahman, R; Rogge, S
2015-04-22
The ability to control single dopants in solid-state devices has opened the way towards reliable quantum computation schemes. In this perspective it is essential to understand the impact of interfaces and electric fields, inherent to address coherent electronic manipulation, on the dopants atomic scale properties. This requires both fine energetic and spatial resolution of the energy spectrum and wave-function, respectively. Here we present an experiment fulfilling both conditions: we perform transport on single donors in silicon close to a vacuum interface using a scanning tunneling microscope (STM) in the single electron tunneling regime. The spatial degrees of freedom of the STM tip provide a versatility allowing a unique understanding of electrostatics. We obtain the absolute energy scale from the thermal broadening of the resonant peaks, allowing us to deduce the charging energies of the donors. Finally we use a rate equations model to derive the current in presence of an excited state, highlighting the benefits of the highly tunable vacuum tunnel rates which should be exploited in further experiments. This work provides a general framework to investigate dopant-based systems at the atomic scale.
High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel
2003-01-01
Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.
CO2-Doped Diamond: A Potential Solid-State CO2 Laser Material?
NASA Technical Reports Server (NTRS)
Tratt, D.
1994-01-01
This paper describes a novel concept for a solid-state CO subscript 2 laser medium which, by eschewing the gas-phase approach, may offer prospects for a compact, robust 9 - 11 (micro)m coherent source, coupled with the potentially superior frequency stability characteristics afforded by monolithic solid-state construction.
The 1.083 micron tunable CW semiconductor laser
NASA Technical Reports Server (NTRS)
Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng
1991-01-01
A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).
Preserving electron spin coherence in solids by optimal dynamical decoupling.
Du, Jiangfeng; Rong, Xing; Zhao, Nan; Wang, Ya; Yang, Jiahui; Liu, R B
2009-10-29
To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.
Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei
2012-08-27
A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.
Use of dimensionality to enhance tunable microwave dielectrics
NASA Astrophysics Data System (ADS)
Schlom, D. G.; Lee, Che-Hui; Haislmaier, R.; Vlahos, E.; Gopalan, V.; Birol, T.; Zhu, Y.; Kourkoutis, L. F.; Benedek, N.; Kim, Y.; Brock, J. D.; Muller, D. A.; Fennie, C. J.; Orloff, N. D.; Booth, J. C.; Goian, V.; Kamba, S.; Biegalski, M. D.; Bernhagen, M.; Uecker, R.; Xi, X. X.; Takeuchi, I.
2012-02-01
The miniaturization and integration of frequency-agile microwave circuits---tunable filters, resonators, phase shifters and more---with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at GHz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems, e.g., BaxSr1-xTiO3, have a paraelectric-to-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss---Srn+1TinO3n+1 phases---where in-plane crystallographic shear (SrO)2 faults provide an alternative to point defects for accommodating non-stoichiometry. In this talk we will establish both experimentally and theoretically the emergence of a ferroelectric and highly tunable ground state in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 40 GHz. With increasing n the (SrO)2 faults are separated further than the ferroelectric coherence length perpendicular to the in-plane polarization, enabling tunability with a figure of merit at room temperature that rivals all known tunable microwave dielectrics.
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
NASA Astrophysics Data System (ADS)
Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.
2017-07-01
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
NASA Astrophysics Data System (ADS)
MacLeod, Neil A.; Weidmann, Damien
2016-05-01
High sensitivity detection, identification and quantification of chemicals in a stand-off configuration is a highly sought after capability across the security and defense sector. Specific applications include assessing the presence of explosive related materials, poisonous or toxic chemical agents, and narcotics. Real world field deployment of an operational stand-off system is challenging due to stringent requirements: high detection sensitivity, stand-off ranges from centimeters to hundreds of meters, eye-safe invisible light, near real-time response and a wide chemical versatility encompassing both vapor and condensed phase chemicals. Additionally, field deployment requires a compact, rugged, power efficient, and cost-effective design. To address these demanding requirements, we have developed the concept of Active Coherent Laser Spectrometer (ACLaS), which can be also described as a middle infrared hyperspectral coherent lidar. Combined with robust spectral unmixing algorithms, inherited from retrievals of information from high-resolution spectral data generated by satellitebased spectrometers, ACLaS has been demonstrated to fulfil the above-mentioned needs. ACLaS prototypes have been so far developed using quantum cascade lasers (QCL) and interband cascade lasers (ICL) to exploit the fast frequency tuning capability of these solid state sources. Using distributed feedback (DFB) QCL, demonstration and performance analysis were carried out on narrow-band absorbing chemicals (N2O, H2O, H2O2, CH4, C2H2 and C2H6) at stand-off distances up to 50 m using realistic non cooperative targets such as wood, painted metal, and bricks. Using more widely tunable external cavity QCL, ACLaS has also been demonstrated on broadband absorbing chemicals (dichloroethane, HFC134a, ethylene glycol dinitrate and 4-nitroacetanilide solid) and on complex samples mixing narrow-band and broadband absorbers together in a realistic atmospheric background.
Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1993-01-01
During 10/31/92 - 3/31/93, the following summarizes our major accomplishments: (1) the self-mode-locked operation of the Cr:forsterite laser was achieved; (2) synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking; and (3) the pulses generated had a FWHW of 105 fs and were tunable between 1230 - 1270 nm.
Creation of an optically tunable, solid tissue phantom for use in cancer detection
NASA Astrophysics Data System (ADS)
Tucker, Matthew B.; Wallace, Catherine; Mantena, Sreekar; Cornwell, Neil; Ross, Weston; Odion, Ren; Vo-Dinh, Tuan; Codd, Patrick
2018-02-01
An optically tunable, solid tissue phantom was developed in order to aid in the verification and validation of non-destructive cancer detection technologies based on fluorescence spectroscopy. The solid tissue phantom contained agarose, hemoglobin, Intralipid, NADH, and FAD. The redox ratio of the solid phantoms were shown to be tunable; thus, indicating that these phantoms could be used to tailor specific optical conditions that mimic cancerous and healthy tissues. Therefore, this solid tissue phantom can serve as a suitable test bed to evaluate fluorescence spectroscopy based cancer detection devices.
Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation
Glownia, James H.; Sander, Robert K.
1985-01-01
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation
Glownia, J.H.; Sander, R.K.
1982-06-29
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael
2018-04-02
We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.
Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.; ...
2016-12-01
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
Emerging solid-state laser technology by lidar/DIAL remote sensing
NASA Technical Reports Server (NTRS)
Killinger, Dennis
1992-01-01
Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.
Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods
2014-12-04
in a polydimethylsiloxane film, the area with gold nanoparticles showed significant quenching effect under a UV light but appeared visually...Schematic depiction of the molecular state of PDI molecules mixing with GNP1 in the solution and solid states. Middle: Picture of a PDMS film containing a
Solid state laser technology - A NASA perspective
NASA Technical Reports Server (NTRS)
Allario, F.
1985-01-01
NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy
NASA Astrophysics Data System (ADS)
Insero, G.; Clivati, C.; D'Ambrosio, D.; Cancio Pastor, P.; Verde, M.; Schunemann, P. G.; Zondy, J.-J.; Inguscio, M.; Calonico, D.; Levi, F.; De Natale, P.; Santambrogio, G.; Borri, S.
2018-02-01
We report on a metrological-grade mid-IR source with a 10-14 short-term instability for high-precision spectroscopy. Our source is based on the combination of a quantum cascade laser and a coherent radiation obtained by difference-frequency generation in an orientation-patterned gallium phosphide (OP-GaP) crystal. The pump and signal lasers are locked to an optical frequency comb referenced to the primary frequency standard via an optical fiber link. We demonstrate the robustness of the apparatus by measuring a vibrational transition around 6 μm on a metastable state of CO molecuels with 11 digits of precision.
Qubit Architecture with High Coherence and Fast Tunable Coupling.
Chen, Yu; Neill, C; Roushan, P; Leung, N; Fang, M; Barends, R; Kelly, J; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Megrant, A; Mutus, J Y; O'Malley, P J J; Quintana, C M; Sank, D; Vainsencher, A; Wenner, J; White, T C; Geller, Michael R; Cleland, A N; Martinis, John M
2014-11-28
We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamical coupling by implementing a novel adiabatic controlled-z gate, with a speed approaching that of single-qubit gates. Integrating coherence and scalable control, the introduced qubit architecture provides a promising path towards large-scale quantum computation and simulation.
TOPICAL REVIEW: Quantum information storage using tunable flux qubits
NASA Astrophysics Data System (ADS)
Steffen, Matthias; Brito, Frederico; DiVincenzo, David; Farinelli, Matthew; Keefe, George; Ketchen, Mark; Kumar, Shwetank; Milliken, Frank; Rothwell, Mary Beth; Rozen, Jim; Koch, Roger H.
2010-02-01
We present details and results for a superconducting quantum bit (qubit) design in which a tunable flux qubit is coupled strongly to a transmission line. Quantum information storage in the transmission line is demonstrated with a dephasing time of T2~2.5 µs. However, energy lifetimes of the qubit are found to be short (~10 ns) and not consistent with predictions. Several design and material changes do not affect qubit coherence times. In order to determine the cause of these short coherence times, we fabricated standard flux qubits based on a design which was previously successfully used by others. Initial results show significantly improved coherence times, possibly implicating losses associated with the large size of our qubit.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2013-05-01
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
Highly coherent tunable mid-infrared frequency comb pumped by supercontinuum at 1 µm
NASA Astrophysics Data System (ADS)
Jin, Lei; Yamanaka, Masahito; Sonnenschein, Volker; Tomita, Hideki; Iguchi, Tetsuo; Sato, Atsushi; Oh-hara, Toshinari; Nishizawa, Norihiko
2017-01-01
We report a tunable mid-infrared frequency comb working at 184 MHz, which is based on difference frequency generation in a periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT) crystal pumped by high-power supercontinuum pulses. Supercontinuum pulses from two fibers with different dispersion properties were examined. With a photonic crystal fiber (PCF) having normal dispersion properties, a tunable wavelength range of 2.9-4.7 µm was achieved. With another PCF having zero dispersion at 1040 nm, a maximum power of 1.34 mW was observed at 3.9 µm. The high coherence of the pulses generated with this scheme was verified experimentally, and a fringe visibility of 0.90 was observed.
Quantum cascade lasers (QCL) for active hyperspectral imaging
NASA Astrophysics Data System (ADS)
Yang, Quankui; Fuchs, Frank; Wagner, Joachim
2014-04-01
There is an increasing demand for wavelength agile laser sources covering the mid-infrared (MIR, 3.5-12 µm) wavelength range, among others in active imaging. The MIR range comprises a particularly interesting part of the electromagnetic spectrum for active hyperspectral imaging applications, due to the fact that the characteristic `fingerprint' absorption spectra of many chemical compounds lie in that range. Conventional semiconductor diode laser technology runs out of steam at such long wavelengths. For many applications, MIR coherent light sources based on solid state lasers in combination with optical parametric oscillators are too complex and thus bulky and expensive. In contrast, quantum cascade lasers (QCLs) constitute a class of very compact and robust semiconductor-based lasers, which are able to cover the mentioned wavelength range using the same semiconductor material system. In this tutorial, a brief review will be given on the state-of-the-art of QCL technology. Special emphasis will be addressed on QCL variants with well-defined spectral properties and spectral tunability. As an example for the use of wavelength agile QCL for active hyperspectral imaging, stand-off detection of explosives based on imaging backscattering laser spectroscopy will be discussed.
Protecting a Diamond Quantum Memory by Charge State Control.
Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg
2017-10-11
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and V Si -centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.
Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point
NASA Astrophysics Data System (ADS)
Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng
2018-03-01
Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.
Coherent manipulation of a solid-state artificial atom with few photons.
Giesz, V; Somaschi, N; Hornecker, G; Grange, T; Reznychenko, B; De Santis, L; Demory, J; Gomez, C; Sagnes, I; Lemaître, A; Krebs, O; Lanzillotti-Kimura, N D; Lanco, L; Auffeves, A; Senellart, P
2016-06-17
In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.
Prototype laser-diode-pumped solid state laser transmitters
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.
1989-01-01
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.
Universal Stabilization of a Parametrically Coupled Qubit
NASA Astrophysics Data System (ADS)
Lu, Yao; Chakram, S.; Leung, N.; Earnest, N.; Naik, R. K.; Huang, Ziwen; Groszkowski, Peter; Kapit, Eliot; Koch, Jens; Schuster, David I.
2017-10-01
We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achieved with a tunable coupling design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasistatic tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single-photon exchange in 6 ns. Qubit coherence times exceeding 20 μ s are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon nonconserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Sun, Y. -E; Maxwell, T. J.
2011-06-27
We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
High Precision Wavelength Monitor for Tunable Laser Systems
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Childers, Brooks A. (Inventor)
2002-01-01
A solid-state apparatus for tracking the wavelength of a laser emission has a power splitter that divides the laser emission into at least three equal components. Differing phase shifts are detected and processed to track variations of the laser emission.
Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin
2017-11-10
High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.
Tunable Superconducting Qubits with Flux-Independent Coherence
NASA Astrophysics Data System (ADS)
Hutchings, M. D.; Hertzberg, J. B.; Liu, Y.; Bronn, N. T.; Keefe, G. A.; Brink, Markus; Chow, Jerry M.; Plourde, B. L. T.
2017-10-01
We study the impact of low-frequency magnetic flux noise upon superconducting transmon qubits with various levels of tunability. We find that qubits with weaker tunability exhibit dephasing that is less sensitive to flux noise. This insight is used to fabricate qubits where dephasing due to flux noise is suppressed below other dephasing sources, leading to flux-independent dephasing times T2*˜15 μ s over a tunable range of approximately 340 MHz. Such tunable qubits have the potential to create high-fidelity, fault-tolerant qubit gates and to fundamentally improve scalability for a quantum processor.
Optically Tunable Gratings Based on Coherent Population Oscillation.
Zhang, Xiao-Jun; Wang, Hai-Hua; Wang, Lei; Wu, Jin-Hui
2018-05-01
We theoretically study the optically tunable gratings based on a L-type atomic medium using coherent population oscillations from the angle of reflection and transmission of the probe field. Adopting a standing-wave driving field, the refractive index of the medium as well as the absorption are periodically modified. Consequently, the Bragg scattering causes the effective reflection. We show that different intensities of the control field lead to three types of reflection profile which actually correspond to different absorption/amplification features of the medium. We present a detailed analyses about the influence of amplification on the reflection profile as well. The coherent population oscillation is robust to the dephasing effect, and such induced gratings could have promising applications in nonlinear optics and all-optical information processing.
NASA Astrophysics Data System (ADS)
Fuchs, Gregory
2011-03-01
Nitrogen vacancy (NV) center spins in diamond have emerged as a promising solid-state system for quantum information processing and precision metrology at room temperature. Understanding and developing the built-in resources of this defect center for quantum logic and memory is critical to achieving these goals. In the first case, we use nanosecond duration microwave manipulation to study the electronic spin of single NV centers in their orbital excited-state (ES). We demonstrate ES Rabi oscillations and use multi-pulse resonant control to differentiate between phonon-induced dephasing, orbital relaxation, and coherent electron-nuclear interactions. A second resource, the nuclear spin of the intrinsic nitrogen atom, may be an ideal candidate for a quantum memory due to both the long coherence of nuclear spins and their deterministic presence. We investigate coherent swaps between the NV center electronic spin state and the nuclear spin state of nitrogen using Landau-Zener transitions performed outside the asymptotic regime. The swap gates are generated using lithographically fabricated waveguides that form a high-bandwidth, two-axis vector magnet on the diamond substrate. These experiments provide tools for coherently manipulating and storing quantum information in a scalable solid-state system at room temperature. We gratefully acknowledge support from AFOSR, ARO, and DARPA.
Controlled Quantum Operations of a Semiconductor Three-Qubit System
NASA Astrophysics Data System (ADS)
Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2018-02-01
In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
Coherent quantum dynamics of a superconducting flux qubit.
Chiorescu, I; Nakamura, Y; Harmans, C J P M; Mooij, J E
2003-03-21
We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving, it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing.
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Paa, Wolfgang; Triebel, Wolfgang
2004-09-01
An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.
Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D
2009-04-01
With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.
NASA Astrophysics Data System (ADS)
Hao, Yufei; Wang, Tianmiao; Xie, Zhexin; Sun, Wenguang; Liu, Zemin; Fang, Xi; Yang, Minxuan; Wen, Li
2018-02-01
This paper presents a soft actuator embedded with two types of eutectic alloys which enable sensing, tunable mechanical degrees of freedom (DOF), and variable stiffness properties. To modulate the stiffness of the actuator, we embedded a low melting point alloy (LMPA) in the bottom portion of the soft actuator. Different sections of the LMPA could be selectively melted by the Ni-Cr wires twined underneath. To acquire the curvature information, EGaIn (eutectic gallium indium) was infused into a microchannel surrounding the chambers of the soft actuator. Systematic experiments were performed to characterize the stiffness, tunable DOF, and sensing the bending curvature. We found that the average bending force and elasticity modulus could be increased about 35 and 4000 times, respectively, with the LMPA in a solid state. The entire LMPA could be melted from a solid to a liquid state within 12 s. In particular, up to six different motion patterns could be achieved under each pneumatic pressure of the soft actuator. Furthermore, the kinematics of the actuator under different motion patterns could be obtained by a mathematical model whose input was provided by the EGaIn sensor. For demonstration purposes, a two-fingered gripper was fabricated to grasp various objects by adjusting the DOF and mechanical stiffness.
Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate
Zhang, Yongping; Chen, Gang; Zhang, Chuanwei
2013-01-01
Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for various important phenomena, ranging from atomic fine structure to topological condensed matter physics. The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast and coherent modulation of the laser intensities. We show that the many-body interaction between atoms, together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC, which show pronounced peaks and damping around the quantum critical point. PMID:23727689
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor)
2013-01-01
The present invention provides frequency tunable solid-state radiation-generating devices, such as lasers and amplifiers, whose active medium has a size in at least one transverse dimension (e.g., its width) that is much smaller than the wavelength of radiation generated and/or amplified within the active medium. In such devices, a fraction of radiation travels as an evanescent propagating mode outside the active medium. It has been discovered that in such devices the radiation frequency can be tuned by the interaction of a tuning mechanism with the propagating evanescent mode.
Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping
NASA Technical Reports Server (NTRS)
Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar
1996-01-01
Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.
Tunable All-Solid-State Local Oscillators to 1900 GHz
NASA Technical Reports Server (NTRS)
Ward, John; Chattopadhyay, Goutam; Maestrini, Alain; Schlecht, Erich; Gill, John; Javadi, Hamid; Pukala, David; Maiwald, Frank; Mehdi, Imran
2004-01-01
We present a status report of an ongoing effort to develop robust tunable all-solid-state sources up to 1900 GHz for the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. GaAs based multi-chip power amplifier modules at W-band are used to drive cascaded chains of multipliers. We have demonstrated performance from chains comprised of four doublers up to 1600 GHz as well as from a x2x3x3 chain to 1900 GHz. Measured peak output power of 23 (micro)W at 1782 GHz and 2.6 (micro)W at 1900 GHz has been achieved when the multipliers are cooled to 120K. The 1900 GHz tripler was pumped with a four anode tripler that produces a peak of 4 mW at 630 GHz when cooled to 120 K. We believe that these sources can now be used to pump hot electron bolometer (HEB) heterodyne mixers.ter (HEB) heterodyne mixers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shenggang, E-mail: liusg@uestc.edu.cn; Hu, Min; Chen, Xiaoxing
2014-05-19
Although surface plasmon polaritons (SPPs) resonance in graphene can be tuned in the terahertz regime, transforming such SPPs into coherent terahertz radiation has not been achieved. Here, we propose a graphene-based coherent terahertz radiation source with greatly enhanced intensity. The radiation works at room temperature, it is tunable and can cover the whole terahertz regime. The radiation intensity generated with this method is 400 times stronger than that from SPPs at a conventional dielectric or semiconducting surface and is comparable to that from the most advanced photonics source such as a quantum cascade laser. The physical mechanism for this strongmore » radiation is presented. The phase diagrams defining the parameters range for the occurrence of radiation is also shown.« less
THz-wave parametric source and its imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-08-01
Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Ilahi, Bouraoui; Zribi, Jihene; Guillotte, Maxime; Arès, Richard; Aimez, Vincent; Morris, Denis
2016-01-01
We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode’s active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots’ height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging. PMID:28773633
Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon
NASA Astrophysics Data System (ADS)
Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.
2018-03-01
Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.
NASA Astrophysics Data System (ADS)
Petrova-Mayor, Anna; Wulfmeyer, Volker; Weibring, Petter
2008-04-01
An experimental optimization of the efficiency of a gain switched tunable Cr4+:YAG laser at 10 Hz is described. The thermal lensing during pulsed operation was measured. Optimal performance occurred at a crystal temperature of 34 °C and resulted in an output energy of ~7 mJ and a pulse duration of ~35 ns. Tunability in the range of 1350-1500 nm, spectral linewidth of ~200 GHz, and M2<4 are demonstrated. The main laser material parameters are estimated. Such a laser could be employed in a laboratory-based nonscanning lidar system if a narrowband birefringent filter is installed. The tunability will permit the improvement of the Cr4+:YAG transmitter for water-vapor differential absorption lidar if injection seeding is applied.
NASA Astrophysics Data System (ADS)
Li, Feng; Li, Hongren; Cui, Tianfang
2017-11-01
Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.
Tunable Solid State Lasers and Synthetic Nonlinear Materials
1987-09-23
marketed devices. Several auxilliary pieces of equipment were purchased for use with the FTIR spectrometer. i) The MMR refrigerator was bought in order... Kotler , and H. J. Shaw, Electron. Lett. observed with the offset-locked oscillators. Careful 16,280 (1980). thermal design will permit offset locking of
Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru
2013-02-25
We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.
Hidden Linear Quantum States in Proteins: Did Davydov Get the Sign Wrong?
NASA Astrophysics Data System (ADS)
Austin, Robert; Xie, Aihua; Redlich, Britta; van der Meer, Lex
A fair amount of time has been spent hunting down one prospective quantum mechanical model, namely the Davydov solition along the α-helix backbone of the protein. These experiments were challenging, we used a tunable ps mid-IR Free Electron Laser to try and observe the long-term (microsecond or greater) trapping of coherent excitation in proteins which had been proposed by a several theorists. These experiments were successful in the sense that we directly observed vibrational excited state population relaxation on the picsecond time scale, and transfer of coherent excitation into the incoherent themal bath: but we we did not see the trapping on the microsecond time scale of short (ps) coherent light pulses in the amide I band of a generic alpha-helix rich protein, myoglobin. However, we would like to revisit that experiment one more time in this paper to analyze and try to understand something puzzling that we did observe, in the context a possible unusual ``hidden'' quantum phenomena in proteins which probably is of no biological consequences, but bears re-examination.
Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium
NASA Astrophysics Data System (ADS)
Sigillito, Anthony James
Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a single-phonon T1 process. At lower frequencies or lower temperatures the qubit coherence times should substantially increase. Finally, we measure the electric field tunability of donors in germanium and find a four order-of-magnitude enhancement in the spin-orbit Stark shift and confirm that the donors should be tunable by at least 4 times the electron spin ensemble linewidth (in isotopically enriched material). Germanium should therefore also be more sensitive to electrically driven nuclear magnetic resonance. Based on these results germanium is a promising alternative to silicon for spin qubits.
Observation of Gate-Tunable Coherent Perfect Absorption of Terahertz Waves in Graphene
NASA Astrophysics Data System (ADS)
Kocabas, Coskun; Kakenov, Nurbek; Balci, Osman; Takan, Taylan; Ozkan, Vedat Ali; Altan, Hakan
We report experimental observation of electrically tunable coherent perfect absorption (CPA) of terahertz (THz) radiation in graphene. We develop a reflection-type tunable THz cavity formed by a large-area graphene layer, a metallic reflective electrode, and an electrolytic medium in between. Ionic gating in the THz cavity allows us to tune the Fermi energy of graphene up to 1 eV and to achieve a critical coupling condition at 2.8 THz with absorption of 100 %. With the enhanced THz absorption, we were able to measure the Fermi energy dependence of the transport scattering time of highly doped graphene. Furthermore, we demonstrate flexible active THz surfaces that yield large modulation in the THz reflectivity with low insertion losses. We anticipate that the gate-tunable CPA will lead to efficient active THz optoelectronics applications. This work was partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) Grant No. 114F379 and the European Research Council (ERC) Consolidator Grant ERC-682723 SmartGraphene. N.K. acknowledges the TUBITAK-BIDEB 2215.
Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.
Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I
2015-09-01
A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.
Tunable Porosities and Shapes of Fullerene-Like Spheres
Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred
2015-01-01
The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976
Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C
2017-03-15
Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.
Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1992-01-01
During 10/31/91 - 3/31/92, the following summarizes are major accomplishments: (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed; and (2) the simulation revealed several design parameters to be used for the construction of a femtosecond forsterite laser.
Entangling atomic spins with a Rydberg-dressed spin-flip blockade
Jau, Y. -Y.; Hankin, A. M.; Keating, T.; ...
2015-10-05
Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. In this paper, we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shiftsmore » of order 1 MHz in units of Planck’s constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. Finally, we employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity ≥81(2)%.« less
A solid state tunable laser for resonance measurements of atmospheric sodium
NASA Technical Reports Server (NTRS)
Philbrick, C. R.; Bufton, J. L.; Gardner, C. S.
1985-01-01
The measurement of wave dynamics in the upper mesosphere using a solid-state laser to excite the resonance fluorescence line of sodium is examined. Two Nd:YAG lasers are employed to produce the sodium resonance line. The method involves mixing the 1064 nm radiation with that from a second Nd:YAG operating at 1319 nm in a nonlinear infrared crystal to directly produce 589 nm radiation by sum frequency generation. The use of the transmitter to measure the sodium layer from the Space Shuttle Platform is proposed. A diagram of the laser transmitter is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
2011-06-27
We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady;
2010-01-01
Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2011-01-01
Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
Stabilization of photon collapse and revival dynamics by a non-Markovian phonon bath
NASA Astrophysics Data System (ADS)
Carmele, Alexander; Knorr, Andreas; Milde, Frank
2013-10-01
Solid state-based light emitters such as semiconductor quantum dots (QDs) have been demonstrated to be versatile candidates to study the fundamentals of light-matter interaction. In contrast to optics with isolated atomic systems, in the solid-state dissipative processes are induced by the inherent coupling to the environment and are typically perceived as a major obstacle toward stable performances in experiments and applications. In this theoretical model study we show that this is not necessarily the case. In fact, in certain parameter regimes, the memory of the solid-state environment can enhance coherent quantum optical effects. In particular, we demonstrate that the non-Markovian coupling to an incoherent phonon bath can exhibit a stabilizing effect on the coherent QD cavity-quantum electrodynamics by inhibiting irregular oscillations and allowing for regular collapse and revival patterns. For self-assembled GaAs/InAs QDs at low photon numbers we predict dynamics that deviate dramatically from the well-known atomic Jaynes-Cummings model. Even if the required sample parameters are not yet available in recent experimental achievements, we believe our proposal opens the way to a systematic and deliberate design of photon quantum effects via specifically engineered solid-state environments.
Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.
Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q
2017-07-12
A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.
Tunable, superconducting, surface-emitting teraherz source
Welp, Ulrich [Lisle, IL; Koshelev, Alexei E [Bolingbrook, IL; Gray, Kenneth E [Evanston, IL; Kwok, Wai-Kwong [Evanston, IL; Vlasko-Vlasov, Vitalii [Downers Grove, IL
2009-10-27
A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.
Tunable, superconducting, surface-emitting teraherz source
Welp, Ulrich; Koshelev, Alexei E.; Gray, Kenneth E.; Kwok, Wai-Kwong; Vlasko-Vlasov, Vitalii
2010-05-11
A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1992-01-01
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.
Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei
2014-01-01
Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs. PMID:24969065
Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.
2015-01-01
We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836
Effect of polarization on the evolution of electromagnetic hollow Gaussian Schell-model beam
NASA Astrophysics Data System (ADS)
Long, Xuewen; Lu, Keqing; Zhang, Yuhong; Guo, Jianbang; Li, Kehao
2011-02-01
Based on the theory of coherence, an analytical propagation formula for partially polarized and partially coherent hollow Gaussian Schell-model beams (HGSMBs) passing through a paraxial optical system is derived. Furthermore, we show that the degree of polarization of source may affect the evolution of HGSMBs and a tunable dark region may exist. For two special cases of fully coherent and partially coherent δxx = δyy, normalized intensity distributions are independent of the polarization of source.
Realization of reliable solid-state quantum memory for photonic polarization qubit.
Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can
2012-05-11
Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.
Analysis of measurements for solid state laser remote lidar system
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1995-01-01
The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.
Phase coherent transport in hybrid superconductor-topological insulator devices
NASA Astrophysics Data System (ADS)
Finck, Aaron
2015-03-01
Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.
Growth and characterization of tunable solid state lasers in the near infrared spectral region
NASA Technical Reports Server (NTRS)
Powell, Richard C.; Martin, Joel J.
1990-01-01
This research resulted in the publication of two major papers. The major results include the development of improved crystal growth techniques for rare earth-doped LiYF4 crystals and the determination of laser-pumped laser characteristics of Tm:Ho:Y3Al5O12 crystals.
NASA Astrophysics Data System (ADS)
Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun
2018-05-01
We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2006-01-01
In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.
Sensors research and technology
NASA Technical Reports Server (NTRS)
Cutts, James A.
1988-01-01
Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1992-01-01
Semiconductor-diode laser-pumped solid-state lasers have properties that are superior to other lasers for the applications of coherent communication and remote sensing. These properties include efficiency, reliability, stability, and capability to be scaled to higher powers. We have demonstrated that an optical phase-locked loop can be used to lock the frequency of two diode-pumped 1.06 micron Nd:YAG lasers to levels required for coherent communication. Monolithic nonplanar ring oscillators constructed from solid pieces of the laser material provide better than 10 kHz frequency stability over 0.1 sec intervals. We have used active feedback stabilization of the cavity length of these lasers to demonstrate 0.3 Hz frequency stabilization relative to a reference cavity. We have performed experiments and analysis to show that optical parametric oscillators (OPO's) reproduce the frequency stability of the pump laser in outputs that can be tuned to arbitrary wavelengths. Another measurement performed in this program has demonstrated the sub-shot-noise character of correlations of the fluctuations in the twin output of OPO's. Measurements of nonlinear optical coefficients by phase-matched second harmonic generation are helping to resolve inconsistency in these important parameters.
Generation, storage, and retrieval of nonclassical states of light using atomic ensembles
NASA Astrophysics Data System (ADS)
Eisaman, Matthew D.
This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.
Ma, Hengchang; Qin, Yanfang; Yang, Zenming; Yang, Manyi; Ma, Yucheng; Yin, Pei; Yang, Yuan; Wang, Tao; Lei, Ziqiang; Yao, Xiaoqiang
2018-04-25
Fluorescence-tunable materials are becoming increasingly attractive for their potential application in optics, electronics, and biomedical technology. Herein, a multi-color molecular pixel system is realized using simple copolymerization method. Bleeding both of complementary colors from blue and yellow fluorescence segments, reproduced a serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability, and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] (TPPA-DBO) has prominent selectivity to DNA over RNA inside cells.
Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G
2017-01-11
We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.
Katsuki, Hiroyuki; Ohmori, Kenji
2016-09-28
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2016-05-01
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhen; Yan, Lixin; Du, Yingchao
2016-05-05
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstreammore » magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.« less
Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser
NASA Astrophysics Data System (ADS)
Fukuoka, D.; Muro, K.; Noda, K.
2016-02-01
A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.
NASA Astrophysics Data System (ADS)
Basiev, Tasoltan T.; Fedorov, Vladimir V.; Karasik, Alexander Y.; Lin'kov, S. I.; Orlovskii, Yurii V.; Osiko, Vyacheslav V.; Panov, Vitaly A.; Prokhorov, Alexander M.; Vorob'ev, Ivan N.; Zverev, Peter G.
1996-11-01
Solid state (SS) tunable LiF:F2 color center laser with second and fourth harmonic generation for visible and ultra violet spectral ranges was developed for the laser induced fluorescence spectroscopy (LIFS). The construction and properties of excitation, registration and flame atomization systems for water solution diagnostic are discussed. The testing experiment with low iron concentrated water sample exhibits ultrahigh sensitivity which was estimated to be 0.05 ppb in our set-up. The SS LIFS spectrometer developed is usable to measure more than 42 metal elements in solution on the ppm, ppb level for various medical and biological applications.
Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot.
Fernandez, G; Volz, T; Desbuquois, R; Badolato, A; Imamoglu, A
2009-08-21
We report the observation of all-optically tunable Raman fluorescence from a single quantum dot. The Raman photons are produced in an optically driven Lambda system defined by subjecting the single electron charged quantum dot to a magnetic field in Voigt geometry. Detuning the driving laser from resonance, we tune the frequency of the Raman photons by about 2.5 GHz. The number of scattered photons and the linewidth of the Raman photons are investigated as a function of detuning. The study presented here could form the basis of a new technique for investigating spin-bath interactions in the solid state.
Aflatouni, Firooz; Hashemi, Hossein
2012-01-15
A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.
Trivalent cerium coped crystals as tunable laser systems: two bad apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, D.S.
1985-01-01
The 5d-4f transitions of trivalent doped crystals have broad emission bands with large oscillator strengths and near unity quantum efficiency. These characteristics make cerium systems strong candidates for tunable solid state lasers. However, two such cerium crystals will probably never lase. The first is Ce/sup 3 +/:YAG where a strong excited state absorption quenches the lasing transition. Our recent measurements have indicated that the excited state absorption terminates in the YAG conduction band with a peak cross section of 1.0 x 10/sup -17/ cm/sup 2/ at 700 nm. Some of the general features of impurity ion to band spectra aremore » discussed. The second system is Ce/sup 3 +/:CaF/sub 2/ where a uv pump induced photochromic center is produced following excitation of the cerium ions. The initial measurements of cerium related transient absorptions in Ce/sup 3 +/:YLF are also presented.« less
Mei, Guang-Quan; Zhang, Han-Yue; Liao, Wei-Qiang
2016-09-25
An organic-inorganic hybrid compound, [NH3(CH2)5NH3]SbCl5, exhibits a switchable second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states and tunable dielectric behaviors between high and low dielectric states, connected with the changes in the dynamics of 1,5-pentanediammonium cations during its centrosymmetric-to-noncentrosymmetric symmetry breaking phase transition at 365.4 K.
Analysis of Technology for Solid State Coherent Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1997-01-01
Over the past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for measurements of atmospheric winds and aerosol backscattering from a space-based platform. The work performed by the UAH personnel concentrated on design and analyses of solid state pulsed coherent lidar systems capable of measuring atmospheric winds from space, and design and perform laboratory experiments and measurements in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used by NASA to measure atmospheric processes and constituents. A lidar testbed system was designed and analyzed by considering the major space operational and environmental requirements, and its associated physical constraints. The lidar optical system includes a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. The testbed lidar optical train was designed and analyzed, and different design options for mounting and packaging the lidar subsystems and components and support structure were investigated. All the optical components are to be mounted in a stress-free and stable manner to allow easy integration and alignment, and long term stability. This lidar system is also intended to be used for evaluating the performance of various lidar subsystems and components that are to be integrated into a flight unit and for demonstrating the integrity of the signal processing algorithms by performing actual atmospheric measurements from a ground station.
1981-09-01
5320 radiation with 20 nsec pulse duration. The 12 molecules were introduced into the nozzle gas by placing small pellets of 12 crystals in the gas...ACKNOWLEDENTS We thank R. K. Chang and B. T. Chu for many helpful discussions and Sandia National Laboratories (Livermore) for the loan of the burner
Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.
González-Tudela, Alejandro; Porras, Diego
2013-02-22
Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.
2007-07-21
the spin coherent states P-representation", Conference on Quantum Computations and Many- Body Systems, February 2006, Key West, FL 9. B. N. Harmon...solid-state spin-based qubit systems was the focus of our project. Since decoherence is a complex many- body non-equilibrium process, and its...representation of the density matrix, see Sec. 3 below). This work prompted J. Taylor from the experimental group of C. Marcus and M. Lukin (funded by
Frequency stabilization of diode-laser-pumped solid state lasers
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.
Electrically tunable artificial gauge potential for polaritons
Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac
2017-01-01
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047
Coherent Population Trapping in a Superconducting Phase Qubit
NASA Astrophysics Data System (ADS)
Kelly, William R.; Dutton, Zachary; Ohki, Thomas A.; Schlafer, John; Mookerji, Bhaskar; Kline, Jeffery S.; Pappas, David P.
2010-03-01
The phenomenon of Coherent Population Trapping (CPT) of an atom (or solid state ``artificial atom''), and the associated effect of Electromagnetically Induced Transparency (EIT), are clear demonstrations of quantum interference due to coherence in multi-level quantum systems. We report observation of CPT in a superconducting phase qubit by simultaneously driving two coherent transitions in a λ-type configuration, utilizing the three lowest lying levels of a local minimum of the phase qubit. We observe ˜60% suppression of excited state population under conditions of two-photon resonance, where EIT and CPT are expected to occur. We present data and matching theoretical simulations showing the development of CPT in time. We also used the observed time dependence of the excited state population to characterize quantum dephasing times of the system, as predicted in [1]. [1] K.V. Murali, Z. Dutton, W.D. Oliver, D.S. Crankshaw, and T.P.Orlando, Phys. Rev. Lett. 93, 087003 (2004).
Fractals, Coherence and Brain Dynamics
NASA Astrophysics Data System (ADS)
Vitiello, Giuseppe
2010-11-01
I show that the self-similarity property of deterministic fractals provides a direct connection with the space of the entire analytical functions. Fractals are thus described in terms of coherent states in the Fock-Bargmann representation. Conversely, my discussion also provides insights on the geometrical properties of coherent states: it allows to recognize, in some specific sense, fractal properties of coherent states. In particular, the relation is exhibited between fractals and q-deformed coherent states. The connection with the squeezed coherent states is also displayed. In this connection, the non-commutative geometry arising from the fractal relation with squeezed coherent states is discussed and the fractal spectral properties are identified. I also briefly discuss the description of neuro-phenomenological data in terms of squeezed coherent states provided by the dissipative model of brain and consider the fact that laboratory observations have shown evidence that self-similarity characterizes the brain background activity. This suggests that a connection can be established between brain dynamics and the fractal self-similarity properties on the basis of the relation discussed in this report between fractals and squeezed coherent states. Finally, I do not consider in this paper the so-called random fractals, namely those fractals obtained by randomization processes introduced in their iterative generation. Since self-similarity is still a characterizing property in many of such random fractals, my conjecture is that also in such cases there must exist a connection with the coherent state algebraic structure. In condensed matter physics, in many cases the generation by the microscopic dynamics of some kind of coherent states is involved in the process of the emergence of mesoscopic/macroscopic patterns. The discussion presented in this paper suggests that also fractal generation may provide an example of emergence of global features, namely long range correlation at mesoscopic/macroscopic level, from microscopic local deformation processes. In view of the wide spectrum of application of both, fractal studies and coherent state physics, spanning from solid state physics to laser physics, quantum optics, complex dynamical systems and biological systems, the results presented in the present report may lead to interesting practical developments in many research sectors.
NASA Astrophysics Data System (ADS)
Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria
2017-08-01
Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.
NASA Astrophysics Data System (ADS)
Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.
2016-02-01
Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.
Generation of tunable radially polarized array beams by controllable coherence
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Jipeng; Zhu, Shijun; Li, Zhenhua
2017-05-01
In this paper, a new method for converting a single radial polarization beam into an arbitrary radially polarized array (RPA) beam such as a radial or rectangular symmetry array in the focal plane by modulating a periodic correlation structure is introduced. The realizability conditions for such source and the beam condition for radiation generated by such source are derived. It is illustrated that both the amplitude and the polarization are controllable by means of initial correlation structure and coherence parameter. Furthermore, by designing the source correlation structure, a tunable NUST-shaped RPA beam is demonstrated, which can find widespread applications in micro-nano engineering. Such a method for generation of arbitrary vector array beams is useful in beam shaping and optical tweezers.
Coherent Coupled Qubits for Quantum Annealing
NASA Astrophysics Data System (ADS)
Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.
2017-07-01
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.
Dielectric properties of Ba0.6Sr0.4TiO3-La(B0.5Ti0.5)O3 (B=Mg, Zn) ceramics.
Xu, Yebin; Liu, Ting; He, Yanyan; Yuan, Xiao
2009-11-01
Ba(0.6)Sr(0.4)TiO(3)-La(B(0.5)Ti(0.5))O(3) (B = Mg, Zn) ceramics were prepared by a solid-state reaction method, and their microwave dielectric characteristics and tunability were investigated. The ferroelectric-dielectric solid solutions with cubic perovskite structures were obtained for compositions of 10 to 60 mol% La(Mg(0.5)Ti(0.5))O(3) and 10 to 50 mol% La(Zn(0.5)Ti(0.5))O(3). With the increase of linear oxide dielectric content, the dielectric constant and tunability were decreased and Qf was increased. Ba(0.6)Sr(0.4)TiO(3)-La(Mg(0.5)Ti(0.5))O(3) has better dielectric properties than Ba(0.6)Sr(0.4)TiO(3)-La(Zn(0.5)Ti(0.5))O(3). 0.9Ba(0.6)Sr(0.4)TiO(3)-0.1La(Mg(0.5)Ti(0.5))O(3) has a dielectric constant epsilon = 338.2, Qf = 979 GHz and a tunability of was 3.7% at 100 kHz under 1.67 kV/mm. The Qf value of 0.5Ba(0.6)Sr(0.4)TiO(3)- 0.5La(Mg(0.5)Ti(0.5))O(3) reached 9367 GHz, but the tunable properties were lost.
Development of Novel Composite and Random Materials for Nonlinear Optics and Lasers
NASA Technical Reports Server (NTRS)
Noginov, Mikhail
2002-01-01
A qualitative model explaining sharp spectral peaks in emission of solid-state random laser materials with broad-band gain is proposed. The suggested mechanism of coherent emission relies on synchronization of phases in an ensemble of emitting centers, via time delays provided by a network of random scatterers, and amplification of spontaneous emission that supports the spontaneously organized coherent state. Laser-like emission from powders of solid-state luminophosphors, characterized by dramatic narrowing of the emission spectrum and shortening of emission pulses above the threshold, was first observed by Markushev et al. and further studied by a number of research groups. In particular, it has been shown that when the pumping energy significantly exceeds the threshold, one or several narrow emission lines can be observed in broad-band gain media with scatterers, such as films of ZnO nanoparticles, films of pi-conjugated polymers or infiltrated opals. The experimental features, commonly observed in various solid-state random laser materials characterized by different particle sizes, different values of the photon mean free path l*, different indexes of refraction, etc.. can be described as follows. (Liquid dye random lasers are not discussed here.)
Oxide-based platform for reconfigurable superconducting nanoelectronics.
Veazey, Joshua P; Cheng, Guanglei; Irvin, Patrick; Cen, Cheng; Bogorin, Daniela F; Bi, Feng; Huang, Mengchen; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom; Levy, Jeremy
2013-09-20
We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ~ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to 'write' gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 'canvas', opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.
Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul
2009-07-01
We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.
Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; ...
2015-10-16
Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO 2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests amore » novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.
Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO 2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests amore » novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less
Phase-Tuned Entangled State Generation between Distant Spin Qubits.
Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M
2017-07-07
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Phase-Tuned Entangled State Generation between Distant Spin Qubits
NASA Astrophysics Data System (ADS)
Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.
2017-07-01
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser
NASA Technical Reports Server (NTRS)
Prasad, C. R.; Lee, H. S.; Glesne, T. R.; Monosmith, B.; Schwemmer, G. K.
1991-01-01
Injection seeding is a method for achieving linewidths of less than 500 MHz in the output of broadband, tunable, solid state lasers. Dye lasers, CW and pulsed diode lasers, and other solid state lasers have been used as injection seeders. By optimizing the fundamental laser parameters of pump energy, Q-switched pulse build-up time, injection seed power and mode matching, one can achieve significant improvements in the spectral purity of the Q-switched output. These parameters are incorporated into a simple model for analyzing spectral purity and pulse build-up processes in a Q-switched, injection-seeded laser. Experiments to optimize the relevant parameters of an alexandrite laser show good agreement.
Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.
Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando
2015-04-17
We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.
Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays
NASA Astrophysics Data System (ADS)
Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando
2015-04-01
We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.
2010-08-22
tunable beam that will be used for the pump radiation in the femtosecond coherent anti-Stokes Raman scattering ( CARS ) measurements. This system has been...beam that will be used for the pump radiation in the femtosecond coherent anti-Stokes Raman scattering ( CARS ) measurements. This system has been... CARS ) spectroscopy. Fs CARS offers some significant potential advantages compared with nanosecond (ns) CARS , i.e., CARS as usually performed with ns
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
A tunable optofluidic circular liquid fiber
NASA Astrophysics Data System (ADS)
Li, Lei; Wu, Wei; Shi, Yang; Gong, Enze; Yang, Yi
2016-01-01
This paper presents a tunable optofluidic circular liquid fiber through the numerical simulation. Fiber is a significant optical device and has been widely applied on optical fiber communication. But the fiber based solid has limited tunability. Compared to solid fiber, the fiber based liquid material is relatively infrequent. Cause for the liquid optical device has more freedom tunable properties than solid counterpart, it has attracted more interest. The traditional optofluidic waveguide is designed like a sandwich in planar channel. This two-dimensional (2D) structure liquid waveguide will face huge transmission loss in the perpendicular direction of the flow streams. In this paper, a curving microchannel is designed inside the microchip to produce centrifugal effect. Two different liquids are injected into the chip by external pumps. In a particular situation, the core flow will be totally surrounded by the cladding flow. So the liquid can form an optical waveguide. Its structure is similar to an optical fiber which high refractive index (RI) liquid is core of the waveguide and the low RI liquid is cladding of the waveguide. Profit from the reconfigurability of liquid material, this liquid fiber has excellent tunability. The diameter of the core flow can be tuned in a wider range by changing the volume ratio of the flows through the finite element analysis. It is predictable that such a tunable liquid fiber may find wider applications in lab-on-a-chip systems and integrated optical devices.
Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengfei; Congreve, Daniel N.; Wilson, Mark W. B.
2015-11-23
Optical upconversion via sensitized triplet–triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities1,2,3. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. We demonstrate thatmore » colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.« less
Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengfei; Congreve, Daniel N.; Wilson, Mark W. B.
2015-11-23
Optical upconversion via sensitized triplet–triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities1, 2, 3. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. Wemore » demonstrate that colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.« less
Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Mengfei; Congreve, Daniel N.; Wilson, Mark W. B.; Jean, Joel; Geva, Nadav; Welborn, Matthew; van Voorhis, Troy; Bulović, Vladimir; Bawendi, Moungi G.; Baldo, Marc A.
2016-01-01
Optical upconversion via sensitized triplet-triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. We demonstrate that colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.
Coherent spin-exchange via a quantum mediator.
Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad
2017-01-01
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.
2017-09-01
Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.
Physics. Creating and probing electron whispering-gallery modes in graphene.
Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D; Rodriguez-Nieva, Joaquin F; Lewandowski, Cyprian; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S; Zhitenev, Nikolai B; Stroscio, Joseph A
2015-05-08
The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators. Copyright © 2015, American Association for the Advancement of Science.
Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1993-01-01
Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.
Coherent strong field interactions between a nanomagnet and a photonic cavity
NASA Astrophysics Data System (ADS)
Soykal, Oney Orhunc
Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.
Shaping complex microwave fields in reverberating media with binary tunable metasurfaces
Kaina, Nadège; Dupré, Matthieu; Lerosey, Geoffroy; Fink, Mathias
2014-01-01
In this article we propose to use electronically tunable metasurfaces as spatial microwave modulators. We demonstrate that like spatial light modulators, which have been recently proved to be ideal tools for controlling light propagation through multiple scattering media, spatial microwave modulators can efficiently shape in a passive way complex existing microwave fields in reverberating environments with a non-coherent energy feedback. Unlike in free space, we establish that a binary-only phase state tunable metasurface allows a very good control over the waves, owing to the random nature of the electromagnetic fields in these complex media. We prove in an everyday reverberating medium, that is, a typical office room, that a small spatial microwave modulator placed on the walls can passively increase the wireless transmission between two antennas by an order of magnitude, or on the contrary completely cancel it. Interestingly and contrary to free space, we show that this results in an isotropic shaped microwave field around the receiving antenna, which we attribute again to the reverberant nature of the propagation medium. We expect that spatial microwave modulators will be interesting tools for fundamental physics and will have applications in the field of wireless communications. PMID:25331498
New Diamond Color Center for Quantum Communication
NASA Astrophysics Data System (ADS)
Huang, Ding; Rose, Brendon; Tyryshkin, Alexei; Sangtawesin, Sorawis; Srinivasan, Srikanth; Twitchen, Daniel; Markham, Matthew; Edmonds, Andrew; Gali, Adam; Stacey, Alastair; Wang, Wuyi; D'Haenens-Johansson, Ulrika; Zaitsev, Alexandre; Lyon, Stephen; de Leon, Nathalie
2017-04-01
Color centers in diamond are attractive for quantum communication applications because of their long electron spin coherence times and efficient optical transitions. Previous demonstrations of color centers as solid-state spin qubits were primarily focused on centers that exhibit either long coherence times or highly efficient optical interfaces. Recently, we developed a method to stabilize the neutral charge state of silicon-vacancy center in diamond (SiV0) with high conversion efficiency. We observe spin relaxation times exceeding 1 minute and spin coherence times of 1 ms for SiV0 centers. Additionally, the SiV0 center also has > 90 % of its emission into its zero-phonon line and a narrow inhomogeneous optical linewidth. The combination of a long spin coherence time and efficient optical interface make the SiV0 center a promising candidate for applications in long distance quantum communication.
Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder
NASA Technical Reports Server (NTRS)
Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab
1992-01-01
The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.
Image routing via atomic spin coherence
Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue
2015-01-01
Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846
Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam
NASA Astrophysics Data System (ADS)
Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.
2018-04-01
We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.
Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru
2013-09-01
We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5 cm-1 in the Raman spectral region around 2850 cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850 cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.
Coherent properties of a tunable low-energy electron-matter-wave source
NASA Astrophysics Data System (ADS)
Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.
2018-01-01
A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.
Compact, High-Power, Fiber-Laser-Based Coherent Sources Tunable in the Mid-Infrared and THz Spectrum
2015-02-20
conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 μm. We have successfully developed... oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 µm. We have successfully developed tunable deep mid-IR systems in both...the advancement of nonlinear frequency conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid- IR) spectral
Nguyen, D.C.; Faulkner, G.E.
1990-08-14
A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.
Nguyen, Dinh C.; Faulkner, George E.
1990-01-01
A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.
Radiationless Transitions and Excited-State Absorption of Low-Field Chromium Complexes in Solids
1989-07-20
host-lattice modes and, in the case of the scandium compound with 5 % chromium concentration, of the a and tIg 2g localized modes. The local-mode...Radiationless transitions and excited-state Final report I/I/86-5/31/89 absorption of low-field chromium complexes 6. PERFORMING ORG. REPORT NUMBER ( 1 in...complexes, chromium ; tunable lasers, high pressure,-photoluminescence 4. 26, AMTVrAC? (Cbm e @CAP N Igemem’ a IdoMit’ by block nambew) The continuation of a
Telescope aperture optimization for spacebased coherent wind lidar
NASA Astrophysics Data System (ADS)
Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning
2015-08-01
Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.
NASA Astrophysics Data System (ADS)
Ranga Prabhath, Malaviarachchige Rabel
Owing to superior energy efficiency, Light Emitting Diode (OLED) technology has become considerably commercialised over the last decade. Innovations in this field have been spurred along by the discovery of new molecules with good stability and high emission intensity, followed through by intense engineering efforts. Emissive transition metal complexes are potent molecular emitters as a result of their high quantum efficiencies related to facile intersystem crossing (ISC) between excited-state manifolds (efficient spin orbit coupling (SOC)) and resultant efficient emission from the triplet state (phosphorescence). These also allow rational tuning of the emission wavelengths. Tuning of the ground and excited state energies, and thus emission wavelength of these complexes can be achieved by subtle structural changes in the organic ligands. Pyridyl-triazole ligands have started receiving increasing attention in recent years as strong field ligands that are relatively straightforward to synthesise. In this study we explore the emission tunability of a newly synthesised series of 5-subsituted-Pyridyl-1,2,3-triazole-based ligands and their Pt(II) complexes. Studies have shown, substitution at the triazole moiety is less effective in achieving emission tunability. Alternatively we carried out the substitution at the 5th position of the pyridine ring with a wide range of electronically diverse, donor-acceptor groups (-N(CH3)2, -H, -CHO, -CHC(CN)2). The target ligands were approached through the serial application of the Sonogashira carbon-carbon coupling and the Sharpless copper-catalyzed Huisgen’s 1,3-dipolarcycloaddition procedures. As a result, coarse tunability of excimer emission was observed in thin-films, generating blue-(486 nm), green-(541 nm), orange-(601 nm) and red-(625 nm) luminescence respectively. This “turned-on” substituent effect was accounted for metallophilic Pt—Pt interaction-induced aggregates in the solid state. Excited state calculations reveal that the solid state emission is associated with 1MMLCT transitions. Lifetime measurements revealed the existence of two decay processes: one being fluorescence and the other process, either phosphorescence or delayed fluorescence. Further a linear-relationship between the Hammett parameters of the substituents and emission wavelengths was established. This allows a reliable emission predictability for any given substituent of 5-substituted pyridyl-1,2,3-triazole platinum complexes. In conclusion, we show a new approach in achieving coarse emission tunability in pyridyl-1,2,3-triazole based platinum complexes via subtle changes in the molecular structure and the importance of metallophilic interactions in the process. During the second phase of the study, the scope was broadened to examine the effects of heterocyclic nitrogens in the ligand skeleton. Fifteen different combinations of azole-azine linked ligand systems were synthesized, by systematically increasing the number of nitrogens and changing the ring position of the nitrogens in the skeleton. Later, the homoleptic platinum complexes of the respective ligands were synthesised, and the photo-physical characteristics were studied. The above mentioned changes in the ligand structure resulted in a 264 nm emission tunability, in the thin films of the complexes. Theoretical studies on the complexes revealed that based on the structure of the ligand, different metallophilic stacking behaviours and different origins of emission (fluorescence and phosphorescence) can result, which in turn give rise to tunable emission wavelengths.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Deng, Fu-Guo
2013-10-01
Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.
Tunable random lasing behavior in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Yadav, Ashish; Zhong, Liubiao; Sun, Jun; Jiang, Lin; Cheng, Gary J.; Chi, Lifeng
2017-01-01
Random lasing is desired in plasmonics nanostructures through surface plasmon amplification. In this study, tunable random lasing behavior was observed in dye molecules attached with Au nanorods (NRs), Au nanoparticles (NPs) and Au@Ag nanorods (NRs) respectively. Our experimental investigations showed that all nanostructures i.e., Au@AgNRs, AuNRs & AuNPs have intensive tunable spectral effects. The random lasing has been observed at excitation wavelength 532 nm and varying pump powers. The best random lasing properties were noticed in Au@AgNRs structure, which exhibits broad absorption spectrum, sufficiently overlapping with that of dye Rhodamine B (RhB). Au@AgNRs significantly enhance the tunable spectral behavior through localized electromagnetic field and scattering. The random lasing in Au@AgNRs provides an efficient coherent feedback for random lasers.
Cr/sup 3 +/-doped colquiriite solid state laser material
Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.
1988-03-31
Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.
Cr.sup.3+ -doped colquiriite solid state laser material
Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.
1989-01-01
Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.
Intrinsic cavity QED and emergent quasinormal modes for a single photon
NASA Astrophysics Data System (ADS)
Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2009-06-01
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
Low-threshold, CW, all-solid-state Ti:Al2O3 laser
NASA Technical Reports Server (NTRS)
Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.
1991-01-01
A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.
1997-08-15
superconducting resonators that have been demonstrated use microstrip circuits of YBCO at 77 K and niobium at 4 K coupled to polycrystalline magnetic garnet... demagnetizing factor in plane along the direction of propagation, and Ny is the effective demagnetizing factor of the rf magnetization component normal to...Geiger-Mode Avalanche Photodiode Arrays for Imaging Laser Radar 31 6. ANALOG DEVICE TECHNOLOGY 35 6.1 Tunable Superconducting Resonators Using Ferrite
1994-12-08
communication 2. S. A. Kutovi, V. V. Laptev and S. Yu. Matsnev, " Lanthanum scandoborate as a new highly efficient active medium of solid state lasers," Sov. J...34Noncritical detection of tunable C02 laser radiation into green by upconversion in silver thio- gallate ," Applied Physics B53, 19 (1991). 3. N.-H
Turnable Blue-Green LIDAR Transmitter Demonstration: Injection Laser Technology
1990-08-30
5-1 5.2 Baseline Requirements ............................................. 5-1 5.3 Optical Parametric Oscillator Using Beta Barium Borate... optical parametric oscillators , and organic dye lasers. Tunable solid state lasers such as Ti: sapphire operate in the infrared and would have to be...The same is true of I frequency mixing schemes. Optical parametric oscillators (OPOs) are attractive because of their extremely wide potential tuning
Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field
NASA Astrophysics Data System (ADS)
Luthi, F.; Stavenga, T.; Enzing, O. W.; Bruno, A.; Dickel, C.; Langford, N. K.; Rol, M. A.; Jespersen, T. S.; Nygârd, J.; Krogstrup, P.; DiCarlo, L.
2018-03-01
We present an experimental study of flux- and gate-tunable nanowire transmons with state-of-the-art relaxation time allowing quantitative extraction of flux and charge noise coupling to the Josephson energy. We evidence coherence sweet spots for charge, tuned by voltage on a proximal side gate, where first order sensitivity to switching two-level systems and background 1 /f noise is minimized. Next, we investigate the evolution of a nanowire transmon in a parallel magnetic field up to 70 mT, the upper bound set by the closing of the induced gap. Several features observed in the field dependence of qubit energy relaxation and dephasing times are not fully understood. Using nanowires with a thinner, partially covering Al shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation and other applications.
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser
Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-01
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.
Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-30
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.
A spectrally tunable solid-state source for radiometric, photometric, and colorimetric applications
NASA Astrophysics Data System (ADS)
Fryc, Irena; Brown, Steven W.; Eppeldauer, George P.; Ohno, Yoshihiro
2004-10-01
A spectrally tunable light source using a large number of LEDs and an integrating sphere has been designed and being developed at NIST. The source is designed to have a capability of producing any spectral distributions mimicking various light sources in the visible region by feedback control of individual LEDs. The output spectral irradiance or radiance of the source will be calibrated by a reference instrument, and the source will be used as a spectroradiometric as well as photometric and colorimetric standard. The use of the tunable source mimicking spectra of display colors, for example, rather than a traditional incandescent standard lamp for calibration of colorimeters, can reduce the spectral mismatch errors of the colorimeter measuring displays significantly. A series of simulations have been conducted to predict the performance of the designed tunable source when used for calibration of colorimeters. The results indicate that the errors can be reduced by an order of magnitude compared with those when the colorimeters are calibrated against Illuminant A. Stray light errors of a spectroradiometer can also be effectively reduced by using the tunable source producing a blackbody spectrum at higher temperature (e.g., 9000 K). The source can also approximate various CIE daylight illuminants and common lamp spectral distributions for other photometric and colorimetric applications.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfurnik, D.; Jarmola, A.; Pham, L. M.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T 1 effects and DD microwave pulses are used to increase the transverse coherence time T 2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that themore » optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands.
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-10-15
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection.
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-01-01
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection. PMID:26469768
Fundamentals of metasurface lasers based on resonant dark states
NASA Astrophysics Data System (ADS)
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas; Soukoulis, Costas M.
2017-10-01
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. Here, we give a detailed discussion of the key functionality and benefits of this design, such as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. We examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.
Design and Operational Characteristics of the Shuttle Coherent Wind Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Spiers, Gary D.; Peters, Bruce R.; Li, Ye; Blackwell, Timothy S.; Geary, Joseph M.
1998-01-01
NOAA has identified the measurement of atmospheric wind velocities as one of the key unmet data sets for its next generation of sensing platforms. The merits of coherent lidars for the measurement of atmospheric winds from space platforms have been widely recognized; however, it is only recently that several key technologies have advanced to a point where a compact, high fidelity system could be created. Advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These new lasers can be integrated into efficient and compact optical systems creating new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for wind measurements. Over the past five years, the University of Alabama in Huntsville (UAH) has been working toward further advancing the solid state coherent lidar technology for the measurement of atmospheric winds from space. As part of this effort, UAH had established the design characteristics and defined the expected performance for three different proposed space-based instruments: a technology demonstrator, an operational prototype, and a 7-year lifetime operational instrument. SPARCLE is an ambitious project that is intended to evaluate the suitability of coherent lidar for wind measurements, demonstrate the maturity of the technology for space application, and provide a useable data set for model development and validation. This paper describes the SPARCLE instrument's major physical and environmental design constraints, optical and mechanical designs, and its operational characteristics.
Coherent diffractive imaging of solid state reactions in zinc oxide crystals
NASA Astrophysics Data System (ADS)
Leake, Steven J.; Harder, Ross; Robinson, Ian K.
2011-11-01
We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.
Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source.
Choma, Michael A; Hsu, Kevin; Izatt, Joseph A
2005-01-01
The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.
Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho
2015-01-01
Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952
Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B
2012-04-23
We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America
Zarkevich, N. A.; Johnson, D. D.
2015-08-14
We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yetmore » all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.« less
Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G
2016-01-27
Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin
Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less
Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; ...
2017-09-26
Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less
1THz synchronous tuning of two optical synthesizers
NASA Astrophysics Data System (ADS)
Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen
2016-04-01
Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.
High power CO2 coherent ladar haven't quit the stage of military affairs
NASA Astrophysics Data System (ADS)
Zhang, Heyong
2015-05-01
The invention of the laser in 1960 created the possibility of using a source of coherent light as a transmitter for a laser radar (ladar). Coherent ladar shares many of the basic features of more common microwave radars. However, it is the extremely short operating wavelength of lasers that introduces new military applications, especially in the area of missile identification, space target tracking, remote rang finding, camouflage discrimination and toxic agent detection. Therefore, the most popular application field such as laser imaging and ranging were focused on CO2 laser in the last few decades. But during the development of solid state and fiber laser, some people said that the CO2 laser will be disappeared and will be replaced by the solid and fiber laser in the field of military and industry. The coherent CO2 laser radar will have the same destiny in the field of military affairs. However, to my opinion, the high power CO2 laser will be the most important laser source for laser radar and countermeasure in the future.
Laser refrigeration of hydrothermal nanocrystals in physiological media.
Roder, Paden B; Smith, Bennett E; Zhou, Xuezhe; Crane, Matthew J; Pauzauskie, Peter J
2015-12-08
Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose-Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm(2). Heat is transported out of the crystal lattice (across the solid-liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb(3+) electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices.
Infrared heterodyne spectroscopy for astronomical purposes. [laser applications
NASA Technical Reports Server (NTRS)
Townes, C. H.
1978-01-01
Heterodyne infrared astronomy was carried out using CO2 lasers and some solid state tunable lasers. The best available detectors are mercury cadmium telluride photodiodes. Their quantum efficiencies reach values near 0.5 and in an overall system an effective quantum efficiency, taking into account optical losses and amplifier noise, of about 0.25 was demonstrated. Initial uses of 10 micron heterodyne spectroscopy were for the study of planetary molecular spectra.
Silicon-Chip-Based Optical Frequency Combs
2015-10-26
waveform generation, frequency metrology, and astronomical spectrograph calibration [2,3,4]. Traditionally, modelocked solid-state and fiber lasers have...different external-cavity diode lasers covering a total tuning range between 1450 nm and 1640 nm. Lensed fibers are used to couple into and out of the...cavity resonance of a Si3N4 microring resonator with a single-frequency tunable diode laser amplified by a ytterbium-doped fiber amplifier. We use a
Photodynamics and Physics behind Tunable Solid-State Lasers
1991-02-28
a fraction of the probe pulse with a beam - splitter - detector combination, is necessary to account for the pulse-tCKpulse energy fluctuation. To...was monitored with a beam splitter and a fast germanium photodiode Dj. The transmitted probe beam was analyzed by a 1/4-meter spectrometer and its...decision, unless so designated by other documentation. 12a. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited
Cooper pair splitter realized in a two-quantum-dot Y-junction.
Hofstetter, L; Csonka, S; Nygård, J; Schönenberger, C
2009-10-15
Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.
Promises and challenges in solid-state lighting
NASA Astrophysics Data System (ADS)
Schubert, Fred
2010-03-01
Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.
NASA Astrophysics Data System (ADS)
Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.
2017-12-01
Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.
Electrically tunable soft solid lens inspired by reptile and bird accommodation.
Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico
2016-10-26
Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.
Analysis of Measurements for Solid State Lidar Development
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1996-01-01
A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.
Phenomenological study of decoherence in solid-state spin qubits due to nuclear spin diffusion
NASA Astrophysics Data System (ADS)
Biercuk, Michael J.; Bluhm, Hendrik
2011-06-01
We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present calculations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω2 noise power spectrum associated with nuclear spin flips in the host material. Beginning with this validation, we address the effects of nuclear programming, high-frequency nuclear spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.
Tunable band gap in Bi(Fe1-xMnx)O3 films
NASA Astrophysics Data System (ADS)
Xu, X. S.; Ihlefeld, J. F.; Lee, J. H.; Ezekoye, O. K.; Vlahos, E.; Ramesh, R.; Gopalan, V.; Pan, X. Q.; Schlom, D. G.; Musfeldt, J. L.
2010-05-01
In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1-xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.
Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system.
Haldar, Ritesh; Rao, K Venkata; George, Subi J; Maji, Tapas Kumar
2012-05-07
Exciting assemblies: A metal-organic self-assembly of pyrenebutyric acid (PBA), 1,10-phenanthroline (o-phen), and Mg(II) shows solid-state fluorescence originating from a 1:1 PBA-o-phen exciplex. This exciplex fluorescence is sensitized by another residual PBA chromophore through an excited-state energy-transfer process. The solvent polarity modulates the self-assembly and the corresponding exciplex as well as the energy transfer, resulting in tunable emission of the hybrid (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase-insensitive storage of coherences by reversible mapping onto long-lived populations
NASA Astrophysics Data System (ADS)
Mieth, Simon; Genov, Genko T.; Yatsenko, Leonid P.; Vitanov, Nikolay V.; Halfmann, Thomas
2016-01-01
We theoretically develop and experimentally demonstrate a coherence population mapping (CPM) protocol to store atomic coherences in long-lived populations, enabling storage times far beyond the typically very short decoherence times of quantum systems. The amplitude and phase of an atomic coherence is written onto the populations of a three-state system by specifically designed sequences of radiation pulses from two coupling fields. As an important feature, the CPM sequences enable a retrieval efficiency, which is insensitive to the phase of the initial coherence. The information is preserved in every individual atom of the medium, enabling applications in purely homogeneously or inhomogeneously broadened ensembles even when stochastic phase jumps are the main source of decoherence. We experimentally confirm the theoretical predictions by applying CPM for storage of atomic coherences in a doped solid, reaching storage times in the regime of 1 min.
A compact high repetition rate CO2 coherent Doppler lidar
NASA Technical Reports Server (NTRS)
Alejandro, S.; Frelin, R.; Dix, B.; Mcnicholl, P.
1992-01-01
As part of its program to develop coherent heterodyne detection lidar technology for space, airborne, and ground based applications, the Optical Environment Division of the USAF's Phillips Laboratory developed a compact coherent CO2 TEA lidar system. Although originally conceived as a high altitude balloon borne system, the lidar is presently integrated into a trailer for ground based field measurements of aerosols and wind fields. In this role, it will also serve as a testbed for signal acquisition and processing development for planned future airborne and space based solid state lidar systems. The system has also found significance in new areas of interest to the Air Force such as cloud studies and coherent Differential Absorption Lidar (DIAL) systems.
Tunable infrared source employing Raman mixing
Byer, Robert L.; Herbst, Richard L.
1980-01-01
A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, suchmore » as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.« less
NASA Astrophysics Data System (ADS)
Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.
2009-03-01
On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.
External Cavity Coherent Transmitter Modules
1990-11-01
Lasers 141 Tunability Aspects of DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory...Linewidth Considerations for DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory
Fundamentals of metasurface lasers based on resonant dark states
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas; ...
2017-10-30
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, suchmore » as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.« less
Flexible coherent control of plasmonic spin-Hall effect.
Xiao, Shiyi; Zhong, Fan; Liu, Hui; Zhu, Shining; Li, Jensen
2015-09-29
The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities. Here by matching the geometric phases of the nano-slots on silver to specific superimpositions of the inward and outward surface plasmon profiles for the two spins, arbitrary spin-dependent orbitals can be generated in a slot-free region. Furthermore, motion pictures with a series of picture frames can be assembled and played by varying the linear polarization angle of incident light. This spin-enabled control of orbitals is potentially useful for tip-free near-field scanning microscopy, holographic data storage, tunable plasmonic tweezers, and integrated optical components.
NASA Technical Reports Server (NTRS)
Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker
1995-01-01
The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.
Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt
MacLellan, D. A.; Carroll, D. C.; Gray, R. J.; ...
2014-10-31
The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.
Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2016-01-01
This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.
NASA Astrophysics Data System (ADS)
Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.
2017-12-01
The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.
Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure
NASA Astrophysics Data System (ADS)
Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng
2018-03-01
Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.
Kessler, Terrance J; Bunkenburg, Joachim; Huang, Hu; Kozlov, Alexei; Meyerhofer, David D
2004-03-15
Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.
Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.
Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P
2006-07-21
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
NASA Astrophysics Data System (ADS)
Joers, James M.
The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.
Optimal design of tunable phononic bandgap plates under equibiaxial stretch
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.
2016-05-01
Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite element method. Following earlier studies by the authors, specialized GA algorithm, topology mapping, assessment and analysis techniques are employed to get feasible porous topologies of assumed thick PhP, efficiently.
Entanglement and Metrology with Singlet-Triplet Qubits
NASA Astrophysics Data System (ADS)
Shulman, Michael Dean
Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the nuclear magnetic field control, as well as new techniques for calibrated measurement of the density matrix in a singlet-triplet qubit to entangle two adjacent single-triplet qubits. We fully characterize the generated entangled states and prove that they are, indeed, entangled. This work opens new opportunities to use qubits as sensors for improved metrological capabilities, as well as for improved quantum information processing. The singlet-triplet qubit is unique in that it can be used to probe two fundamentally different noise baths, which are important for a large variety of solid state qubits. More specifically, this work establishes the singlet-triplet qubit as a viable candidate for the building block of a scalable quantum information processor.
A 1000 Hz Pulsed Solid-State Raman Laser for Coherent Lidar Measurement of Wake Vortices
NASA Technical Reports Server (NTRS)
Koch, Grady J.; Murray, James; Lytle, Carroll; Nguyen, Chi
1997-01-01
Included in the overview is a discussion of the 1.5 micron laser specifications, eye safety and cost, scan rates, pulselength, range capability issues, Raman beam cleanup, receiver layout, and the real-time processor and display.
Generation of tunable laser sidebands in the far-infrared region
NASA Technical Reports Server (NTRS)
Farhoomand, J.; Frerking, M. A.; Pickett, H. M.; Blake, G. A.
1985-01-01
In recent years, several techniques have been developed for the generation of tunable coherent radiation at submillimeter and far-infrared (FIR) wavelengths. The harmonic generation of conventional microwave sources has made it possible to produce spectrometers capable of continuous operation to above 1000 GHz. However, the sensitivity of such instruments drops rapidly with frequency. For this reason, a great deal of attention is given to laser-based methods, which could cover the entire FIR region. Tunable FIR radiation (approximately 100 nW) has been produced by mixing FIR molecular lasers and conventional microwave sources in both open and closed mixer mounts. The present investigation is concerned with improvements in this approach. These improvements provide approximately thirty times more output power than previous results.
Stretchable Random Lasers with Tunable Coherent Loops.
Sun, Tzu-Min; Wang, Cih-Su; Liao, Chi-Shiun; Lin, Shih-Yao; Perumal, Packiyaraj; Chiang, Chia-Wei; Chen, Yang-Fang
2015-12-22
Stretchability represents a key feature for the emerging world of realistic applications in areas, including wearable gadgets, health monitors, and robotic skins. Many optical and electronic technologies that can respond to large strain deformations have been developed. Laser plays a very important role in our daily life since it was discovered, which is highly desirable for the development of stretchable devices. Herein, stretchable random lasers with tunable coherent loops are designed, fabricated, and demonstrated. To illustrate our working principle, the stretchable random laser is made possible by transferring unique ZnO nanobrushes on top of polydimethylsiloxane (PDMS) elastomer substrate. Apart from the traditional gain material of ZnO nanorods, ZnO nanobrushes were used as optical gain materials so they can serve as scattering centers and provide the Fabry-Perot cavity to enhance laser action. The stretchable PDMS substrate gives the degree of freedom to mechanically tune the coherent loops of the random laser action by changing the density of ZnO nanobrushes. It is found that the number of laser modes increases with increasing external strain applied on the PDMS substrate due to the enhanced possibility for the formation of coherent loops. The device can be stretched by up to 30% strain and subjected to more than 100 cycles without loss in laser action. The result shows a major advance for the further development of man-made smart stretchable devices.
Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te
NASA Technical Reports Server (NTRS)
Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.
1997-01-01
Transition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.
Phase retrieval with tunable phase transfer function based on the transport of intensity equation
NASA Astrophysics Data System (ADS)
Martinez-Carranza, J.; Stepien, P.; Kozacki, T.
2017-06-01
Recovering phase information with Deterministic approaches as the Transport of Intensity Equation (TIE) has recently emerged as an alternative tool to the interferometric techniques because it is experimentally easy to implement and provides fast and accurate results. Moreover, the potential of employing partially coherent illumination (PCI) in such techniques allow obtaining high quality phase reconstructions providing that the estimation of the corresponding Phase Transfer Function (PTF) is carried out correctly. Hence, accurate estimation of the PTF requires that the physical properties of the optical system are well known. Typically, these parameters are assumed constant in all the set of measurements, which might not be optimal. In this work, we proposed the use of an amplitude Spatial Light Modulator (aSLM) for tuning the degree of coherence of the optical system. The aSLM will be placed at the Fourier plane of the optical system, and then, band pass filters will be displayed. This methodology will perform amplitude modulation of the propagated field and as a result, the state of coherence of the optical system can be modified. Theoretical and experimental results that validate our proposed technique will be shown.
Simulation of vibrational dephasing of I(2) in solid Kr using the semiclassical Liouville method.
Riga, Jeanne M; Fredj, Erick; Martens, Craig C
2006-02-14
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, I.; Portolan, S.; Auffeves, A.
2011-12-15
We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters' inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find that their coherence depends crucially on the shape of the distribution and not only on its width. Under certain conditions the coupling to the cavity protects the polaritonic states from inhomogeneous broadening, resulting in a longer storage time for a quantum memory based on emitter ensembles. When two different ensembles of emitters are coupled to the resonator, they support a peculiar collectivemore » dark state, which is also very attractive for the storage of quantum information.« less
Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan
2017-03-29
We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.
Improved color metrics in solid-state lighting via utilization of on-chip quantum dots
NASA Astrophysics Data System (ADS)
Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.
2017-02-01
While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.
Tunable porosities and shapes of fullerene-like spheres.
Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred
2015-04-13
The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with Cu(I) halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih -C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Electrically pumped graphene-based Landau-level laser
NASA Astrophysics Data System (ADS)
Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin
2018-03-01
Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.
Chip-to-chip entanglement of transmon qubits using engineered measurement fields
NASA Astrophysics Data System (ADS)
Dickel, C.; Wesdorp, J. J.; Langford, N. K.; Peiter, S.; Sagastizabal, R.; Bruno, A.; Criger, B.; Motzoi, F.; DiCarlo, L.
2018-02-01
While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon qubits on different cQED chips with 49 % concurrence and 73 % Bell-state fidelity. We engineer a half-parity measurement by successively reflecting a coherent microwave field off two nearly identical transmon-resonator systems. By ensuring the measured output field does not distinguish |01 > from |10 > , unentangled superposition states are probabilistically projected onto entangled states in the odd-parity subspace. We use in situ tunability and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled state of similar quality, by engineering the matching of outputs for the |00 > and |11 > states. The protocol is characterized over a range of measurement strengths using quantum state tomography showing good agreement with a comprehensive theoretical model.
Tunable recognition of the steroid α-face by adjacent π-electron density
Friščić, T.; Lancaster, R. W.; Fábián, L.; Karamertzanis, P. G.
2010-01-01
We report a previously unknown recognition motif between the α-face of the steroid hydrocarbon backbone and π-electron-rich aromatic substrates. Our study is based on a systematic and comparative analysis of the solid-state complexation of four steroids with 24 aromatic molecules. By using the solid state as a medium for complexation, we circumvent solubility and solvent competition problems that are inherent to the liquid phase. Characterization is performed using powder and single crystal X-ray diffraction, infrared solid-state spectroscopy and is complemented by a comprehensive cocrystal structure prediction methodology that surpasses earlier computational approaches in terms of realism and complexity. Our combined experimental and theoretical approach reveals that the α⋯π stacking is of electrostatic origin and is highly dependent on the steroid backbone’s unsaturated and conjugated character. We demonstrate that the α⋯π stacking interaction can drive the assembly of molecules, in particular progesterone, into solid-state complexes without the need for additional strong interactions. It results in a marked difference in the solid-state complexation propensities of different steroids with aromatic molecules, suggesting a strong dependence of the steroid-binding affinity and even physicochemical properties on the steroid’s A-ring structure. Hence, the hydrocarbon part of the steroid is a potentially important variable in structure-activity relationships for establishing the binding and signaling properties of steroids, and in the manufacture of pharmaceutical cocrystals. PMID:20624985
Coherent spin control of a nanocavity-enhanced qubit in diamond
Li, Luozhou; Lu, Ming; Schroder, Tim; ...
2015-01-28
A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less
Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering
NASA Astrophysics Data System (ADS)
Traverso, Andrew J.; Hokr, Brett; Yi, Zhenhuan; Yuan, Luqi; Yamaguchi, Shoichi; Scully, Marlan O.; Yakovlev, Vladislav V.
2018-02-01
In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν1 (A1) and ν3 (T2) vibrational levels using an infrared field tuned between 1400 and 1600 cm-1 and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed Mohammed Maim
This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.
Storing quantum information for 30 seconds in a nanoelectronic device.
Muhonen, Juha T; Dehollain, Juan P; Laucht, Arne; Hudson, Fay E; Kalra, Rachpon; Sekiguchi, Takeharu; Itoh, Kohei M; Jamieson, David N; McCallum, Jeffrey C; Dzurak, Andrew S; Morello, Andrea
2014-12-01
The spin of an electron or a nucleus in a semiconductor naturally implements the unit of quantum information--the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms, or charge and spin fluctuations arising from defects in oxides and interfaces. For materials such as silicon, enrichment of the spin-zero (28)Si isotope drastically reduces spin-bath decoherence. Experiments on bulk spin ensembles in (28)Si crystals have indeed demonstrated extraordinary coherence times. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here, we present the coherent operation of individual (31)P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered (28)Si substrate. The (31)P nuclear spin sets the new benchmark coherence time (>30 s with Carr-Purcell-Meiboom-Gill (CPMG) sequence) of any single qubit in the solid state and reaches >99.99% control fidelity. The electron spin CPMG coherence time exceeds 0.5 s, and detailed noise spectroscopy indicates that--contrary to widespread belief--it is not limited by the proximity to an interface. Instead, decoherence is probably dominated by thermal and magnetic noise external to the device, and is thus amenable to further improvement.
Quantum storage of a photonic polarization qubit in a solid.
Gündoğan, Mustafa; Ledingham, Patrick M; Almasi, Attaallah; Cristiani, Matteo; de Riedmatten, Hugues
2012-05-11
We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize the storage by using quantum state tomography, and find that the average conditional fidelity of the retrieved qubits exceeds 95% for a mean photon number μ=0.4. This is significantly higher than a classical benchmark, taking into account the poissonian statistics and finite memory efficiency, which proves that our crystal functions as a quantum storage device for polarization qubits. These results extend the storage capabilities of solid state quantum light matter interfaces to polarization encoding, which is widely used in quantum information science.
Tunable Solid State Lasers Based on Molecular Ions
1992-01-01
02215 July 15, 1988 to September 30, 1991. N’ o ~...... 1 C~~ I -- ,t,’**, "> I : tt : o0.’. * On leave from Institute of Physics, Copernicus ...Physics, N. Copernicus University, ments provided the ratio (Jo- 81)/10, where l0 is the 87-100 Toruo, Poland. probe beam intensity after passing through...luminescence, following t 30 ns long excitation pulse (308 nm On leave from Institute of Physics, N. Copernicus University, line, excimer laser
Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg
1995-01-01
A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.
Tunable optical coherence tomography in the infrared range using visible photons
NASA Astrophysics Data System (ADS)
Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.
2018-04-01
Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.
Motion and gravity effects in the precision of quantum clocks.
Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette
2015-05-19
We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions.
Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions
NASA Astrophysics Data System (ADS)
Deacon, R. S.; Wiedenmann, J.; Bocquillon, E.; Domínguez, F.; Klapwijk, T. M.; Leubner, P.; Brüne, C.; Hankiewicz, E. M.; Tarucha, S.; Ishibashi, K.; Buhmann, H.; Molenkamp, L. W.
2017-04-01
Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency fJ rather than conventional emission at fJ. Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency fJ/2 . The linewidths of emission lines indicate a coherence time of 0.3-4 ns for the fJ/2 line, much shorter than for the fJ line (3-4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.
Motion and gravity effects in the precision of quantum clocks
Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette
2015-01-01
We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions. PMID:25988238
Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source
NASA Astrophysics Data System (ADS)
Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.
2010-03-01
We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.
Voltage tunability of thermal conductivity in ferroelectric materials
Ihlefeld, Jon; Hopkins, Patrick Edward
2016-02-09
A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
Long range coherence in free electron lasers
NASA Technical Reports Server (NTRS)
Colson, W. B.
1984-01-01
The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.
Widely-Tunable Parametric Short-Wave Infrared Transmitter for CO2 Trace Detection (POSTPRINT)
2013-01-01
F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “ Coherent differential absorption lidar measurements of CO2... Doppler lidar system for wind sensing,” Appl. Opt. 46(11), 1953–1962 (2007). 1. Introduction Over the short-wave infrared (SWIR) spectrum, which is...fiber. References and links 1. M. Ebrahim-Zadeh, and I. T. Sorokina, eds., Mid-Infrared Coherent Sources and Applications (Springer, 2007). 2. C
1989-08-30
nm to produce blue light at 455 nm (Figure 1). A 20 Hz doubled Nd:YAG pump laser emitting up to 150 mJ at 532 nm 147 WA4-2 was used to resonantly...pumped by a diode laser, then in addition to the processes of Fig. 1, excited state absorption of the pump light from both 4I13,/z and 4I3112 may be...are visible and UV systems pumped at wavelengths that are available from semiconductor diode lasers and infrared emitting systems having high slope
Faithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Storage
NASA Astrophysics Data System (ADS)
Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe
2013-07-01
We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.
Faithful solid state optical memory with dynamically decoupled spin wave storage.
Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe
2013-07-12
We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.
Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds
NASA Astrophysics Data System (ADS)
Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu
2016-07-01
Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.
Dual-wavelength laser with topological charge
NASA Astrophysics Data System (ADS)
Yu, Haohai; Xu, Miaomiao; Zhao, Yongguang; Wang, Yicheng; Han, Shuo; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang
2013-09-01
We demonstrate the simultaneous oscillation of different photons with equal orbital angular momentum in solid-state lasers for the first time to our knowledge. Single tunable Hermite-Gaussian (HG0,n) (0 ≤ n ≤ 7) laser modes with dual wavelength were generated using an isotropic cavity. With a mode-converter, the corresponding Laguerre-Gaussian (LG0,n) laser modes were obtained. The oscillating laser modes have two types of photons at the wavelengths of 1077 and 1081 nm and equal orbital angular momentum of nħ per photon. These results identify the possibility of simultaneous oscillation of different photons with equal and controllable orbital angular momentum. It can be proposed that this laser should have promising applications in many fields based on its compact structure, tunable orbital angular momentum, and simultaneous oscillation of different photons with equal orbital angular momentum.
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less
Quantum decoherence dynamics of divacancy spins in silicon carbide.
Seo, Hosung; Falk, Abram L; Klimov, Paul V; Miao, Kevin C; Galli, Giulia; Awschalom, David D
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29 Si and 13 C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits
NASA Astrophysics Data System (ADS)
Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.
2018-04-01
Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.
On-chip tunable optofluidic dye laser
NASA Astrophysics Data System (ADS)
Cai, Zengyan; Shen, Zhenhua; Liu, Haigang; Yue, Huan; Zou, Yun; Chen, Xianfeng
2016-11-01
We demonstrate a chip-scale tunable optofluidic dye laser with Au-coated fibers as microcavity. The chip is fabricated by soft lithography. When the active region is pumped, a relatively low threshold of 6.7 μJ/mm2 is realized with multimode emission due to good confinement of the cavity mirrors, long active region, as well as total reflectivity. It is easy to tune the lasing emission wavelength by changing the solvent of laser dye. In addition, the various intensity ratios of multicolor lasing can be achieved by controlling flow rates of two fluid streams carried with different dye molecules. Furthermore, the convenience in fabrication and directional lasing emission outcoupled by the fiber make the tunable optofluidic dye laser a promising underlying coherent light source in the integrated optofluidic systems.
NASA Technical Reports Server (NTRS)
Day, T.; Farinas, A. D.; Byer, R. L.
1990-01-01
A type II 1.06-micron optical phase-locked loop (OPLL) for use in a coherent homodyne receiver is discussed. Diode-laser-pumped solid-state lasers are used for both the local oscillator and transmitter, because their phase noise is significantly lower than that of diode lasers. Closed-loop RMS phase noise of less than 12 mrad (0.69 deg) is achieved, and modulation-demodulation in bulk modulators at rates from 20 kHz to 20 MHz with less than 19 deg of modulation depth is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sow, P. L. T.; Mejri, S.; Tokunaga, S. K.
2014-06-30
We report the coherent phase-locking of a quantum cascade laser (QCL) at 10-μm to the secondary frequency standard of this spectral region, a CO{sub 2} laser stabilized on a saturated absorption line of OsO{sub 4}. The stability and accuracy of the standard are transferred to the QCL resulting in a line width of the order of 10 Hz, and leading to the narrowest QCL to date. The locked QCL is then used to perform absorption spectroscopy spanning 6 GHz of NH{sub 3} and methyltrioxorhenium, two species of interest for applications in precision measurements.
On the design of a postprocessor for a search for extraterrestrial intelligence /SETI/ system
NASA Technical Reports Server (NTRS)
Healy, T. J.; Seeger, C. L.; Stull, M. A.
1979-01-01
The design of an on-line postprocessor for a search for extraterrestrial intelligence (SETI) system is described. Signal processing tasks of the postprocessor include: (1) analysis of power level, phase coherence, and state of polarization of single-channel signals in a search for significant signals; (2) grouping or aggregation of adjacent channel data, time averaging of data; and (3) the detection of drifting and modulated signals. Control functions include multichannel spectrum analyzer frequency and clock control, system calibration and selfdiagnostic, control of data flow to and from short-term and long-term (archival) memories, and operation of detection subsystems, such as a visual display and a tunable receiver.
Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D
2017-12-01
The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250 ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.
Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P
2013-03-04
Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.
Flexible coherent control of plasmonic spin-Hall effect
Xiao, Shiyi; Zhong, Fan; Liu, Hui; Zhu, Shining; Li, Jensen
2015-01-01
The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities. Here by matching the geometric phases of the nano-slots on silver to specific superimpositions of the inward and outward surface plasmon profiles for the two spins, arbitrary spin-dependent orbitals can be generated in a slot-free region. Furthermore, motion pictures with a series of picture frames can be assembled and played by varying the linear polarization angle of incident light. This spin-enabled control of orbitals is potentially useful for tip-free near-field scanning microscopy, holographic data storage, tunable plasmonic tweezers, and integrated optical components. PMID:26415636
Thermo-optic devices on polymer platform
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Keil, Norbert
2016-03-01
Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.
Tunable cw Single-Frequency Source for Injection Seeding 2-micrometer Lasers
1990-06-01
Nd:glass Slab Asilomar, CA, January, 1989. Laser for X-ray Lithography ," presented at Lasers 11. R. L. Byer, "Solid State Lasers for Accelerator 89, New...Alumni Association (Stanford Club of M.K. Reed and R.L. Byer, "A Nd:glass Slab Connecticut), April, 1989. Laserfor X-ray Lithography ," to be...and R.L. Byer, "A Nd:Glass Slab asymmetric quantum wells," invited paper QWA1 Laser for Soft X-ray Lithography ", paper MB4, International Quantum
Tunable Magnetic Exchange Interactions in Manganese-Doped Inverted Core-Shell ZnSe-CdSe Nanocrystals
2009-01-01
exchange coupling even for a singlemagnetic dopant atom12,17. Whereas magnetically doped monocomponent nanocrystals are well established16, wavefunction...Solid State Commun. 114, 547–550 (2000). 13. Radovanovic, P. V. & Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic...D. R. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): Physical property dependence on dopant locale. J. Am. Chem. Soc
Ashbrook, Sharon E; Wimperis, Stephen
2009-11-21
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and (27)Al.
Tunable photonic cavities for in-situ spectroscopic trace gas detection
Bond, Tiziana; Cole, Garrett; Goddard, Lynford
2012-11-13
Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O.sub.2, CH.sub.4, CO.sub.x and NO.sub.x have been predicted to approximately span from 10.sup.ths to 10s of parts per million. Exemplary oxygen detection design and a process for 760 nm continuously tunable VCSELS is provided. This technology enables in-situ self-calibrating platforms with adaptive monitoring by exploiting Photonic FPGAs.
Theoretical Investigation of Tunable Goos-Hänchen Shifts in a Four-Level Quantum System
NASA Astrophysics Data System (ADS)
Jafarzadeh, Hossein; Payravi, Mohammad
2018-05-01
Goos-Hänchen (GH) shifts in the reflected and transmitted light have been discussed in a cavity with four-level quantum system. It is realized that the refraction index of intracavity medium can be negative by manipulating the external coherent laser fields. For the negative refraction index of intracavity medium, the GH shifts of reflected and transmitted light beams have been analyzed in a parametric condition. It is found that due to modulation of laser signals and relative phase between applied fields, large and tunable GH shifts in reflected and transmitted light beams can be obtained.
Ultrasonic control of terahertz radiation via lattice anharmonicity in LiNbO3
NASA Astrophysics Data System (ADS)
Poolman, R. H.; Ivanov, A. L.; Muljarov, E. A.
2011-06-01
We propose a tunable terahertz (THz) filter using the resonant acousto-optic (RAO) effect. We present a design based on a transverse optical (TO) phonon mediated interaction between a coherent acoustic wave and the THz field in LiNbO3. We predict a tunable range for the filter of up to 4 THz via the variation of the acoustic frequency between 0.1 and 1 GHz. The RAO effect in this case is due to cubic and quartic anharmonicities between TO phonons and the acoustic field. The effect of the interference between the anharmonicities is also discussed.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.
Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors
NASA Astrophysics Data System (ADS)
Silva, Carlos; Grégoire, Pascal; Thouin, Félix
In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang
2018-03-01
A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers
Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.
2015-01-01
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers.
Yao, B C; Rao, Y J; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W
2015-12-21
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.
Design of free patterns of nanocrystals with ad hoc features via templated dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aouassa, M.; Berbezier, I.; Favre, L.
Design of monodisperse ultra-small nanocrystals (NCs) into large scale patterns with ad hoc features is demonstrated. The process makes use of solid state dewetting of a thin film templated through alloy liquid metal ion source focused ion beam (LMIS-FIB) nanopatterning. The solid state dewetting initiated at the edges of the patterns controllably creates the ordering of NCs with ad hoc placement and periodicity. The NC size is tuned by varying the nominal thickness of the film while their position results from the association of film retraction from the edges of the lay out and Rayleigh-like instability. The use of ultra-highmore » resolution LMIS-FIB enables to produce monocrystalline NCs with size, periodicity, and placement tunable as well. It provides routes for the free design of nanostructures for generic applications in nanoelectronics.« less
Novel solid state lasers for Lidar applications at 2 μm
NASA Astrophysics Data System (ADS)
Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.
2005-09-01
A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.
Lif and Raman Spectroscopy in Undergraduate Labs Using Green Diode-Pumped Solid-State Lasers
NASA Astrophysics Data System (ADS)
Gray, Jeffrey A.
2015-06-01
Electronic spectroscopy of molecular iodine vapor has long been studied in undergraduate physical chemistry teaching laboratories, but the effectiveness of emission work has typically been limited by availability of instrumentation. This talk shows how to make inexpensive green diode-pumped solid-state (DPSS) lasers easily tunable for efficient, selective excitation of I2. Miniature fiber-optic spectrometers then enable rotationally resolved fluorescence spectroscopy up to v" = 42 near 900 nm with acquisition times of less than one minute. DPSS lasers are also versatile excitation sources for vibrational Raman spectroscopy, which is another common exercise that has been limited by lack of proper instrumentation in the teaching laboratory. This talk shows how to construct a simple accessory for commercial fluorimeters to record vibrational Raman spectra and depolarization ratios for CCl4 and C2Cl4 as part of a lab exercise featuring molecular symmetry.
NASA Astrophysics Data System (ADS)
Yuan, Li; Wang, Lejia; Garrigues, Alvar R.; Jiang, Li; Annadata, Harshini Venkata; Anguera Antonana, Marta; Barco, Enrique; Nijhuis, Christian A.
2018-04-01
Solid-state molecular tunnel junctions are often assumed to operate in the Landauer regime, which describes essentially activationless coherent tunnelling processes. In solution, on the other hand, charge transfer is described by Marcus theory, which accounts for thermally activated processes. In practice, however, thermally activated transport phenomena are frequently observed also in solid-state molecular junctions but remain poorly understood. Here, we show experimentally the transition from the Marcus to the inverted Marcus region in a solid-state molecular tunnel junction by means of intra-molecular orbital gating that can be tuned via the chemical structure of the molecule and applied bias. In the inverted Marcus region, charge transport is incoherent, yet virtually independent of temperature. Our experimental results fit well to a theoretical model that combines Landauer and Marcus theories and may have implications for the interpretation of temperature-dependent charge transport measurements in molecular junctions.
Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M
2017-10-12
Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.
Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence
NASA Astrophysics Data System (ADS)
Dorfman, Konstantin E.; Xu, Dazhi; Cao, Jianshu
2018-04-01
Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.
Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...
2015-08-06
Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less
A novel reconfigurable electromagnetically induced transparency based on S-PINs
NASA Astrophysics Data System (ADS)
Xue, Feng; Liu, Shao-Bin; Zhang, Hai-Feng; Wen, Yong-Diao; Kong, Xiang-Kun; Li, Hai-Ming
2018-02-01
In this paper, a tunable electromagnetically induced transparency (EIT) based on S-PINs is theoretically analyzed. Unit cell of the structure consists of a cutwire (CW), split ring resonator (SRR), and solid state plasma (SS plasma) patches which are composed of S-PIN array. The destructive interference between the CW and SRR results in a narrowband transparency window accompanied with strong phase dispersion. The proposed design can obtain a tunable EIT with different frequencies range from 12.8 GHz to 16.5 GHz in a simple method by switching these S-PINs on or off selectively. The related parameters of the S-PIN such as the size, carrier concentration, and volt-ampere characteristics have been studied theoretically. The interaction and coupling between two resonators are investigated in detail by the analysis of the current distribution and E-field strength as well. The research results provide an effective way to realize reconfigurable compact slow-light devices.
Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond
NASA Astrophysics Data System (ADS)
Johnson, S.; Dolan, P. R.; Grange, T.; Trichet, A. A. P.; Hornecker, G.; Chen, Y. C.; Weng, L.; Hughes, G. M.; Watt, A. A. R.; Auffèves, A.; Smith, J. M.
2015-12-01
We demonstrate the tunable enhancement of the zero phonon line of a single nitrogen-vacancy colour centre in diamond at cryogenic temperature. An open cavity fabricated using focused ion beam milling provides mode volumes as small as 1.24 μm3 (4.7 {λ }3) and quality factor Q≃ 3000. In situ tuning of the cavity resonance is achieved with piezoelectric actuators. At optimal coupling to a TEM00 cavity mode, the signal from individual zero phonon line transitions is enhanced by a factor of 6.25 and the overall emission rate of the NV- centre is increased by 40% compared with that measured from the same centre in the absence of cavity field confinement. This result represents a step forward in the realisation of efficient spin-photon interfaces and scalable quantum computing using optically addressable solid state spin qubits.
Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers
NASA Technical Reports Server (NTRS)
Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.
1986-01-01
The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.
Protein separation using an electrically tunable membrane
NASA Astrophysics Data System (ADS)
Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria
Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David
2007-01-01
Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.
2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion
NASA Astrophysics Data System (ADS)
Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning
2016-08-01
Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.
Tunable Soft X-Ray Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtele, Jonathan; Gandhi, Punut; Gu, X-W
A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less
Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.
Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A
2011-09-25
Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2016-06-01
Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.
Towards phase-coherent caloritronics in superconducting circuits
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Giazotto, Francesco
2017-10-01
The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.
Towards phase-coherent caloritronics in superconducting circuits.
Fornieri, Antonio; Giazotto, Francesco
2017-10-06
The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.
One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
NASA Astrophysics Data System (ADS)
Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li
2017-07-01
We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.
Advanced helium magnetometer for space applications
NASA Technical Reports Server (NTRS)
Slocum, Robert E.
1987-01-01
The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.
High-energy, 2µm laser transmitter for coherent wind LIDAR
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.
2017-11-01
A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.
Optical coherence of 166Er:7LiYF4 crystal below 1 K
NASA Astrophysics Data System (ADS)
Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S. L.; Kalachev, A. A.; Bushev, P. A.
2018-02-01
We explore optical coherence and spin dynamics of an isotopically purified 166Er:7LiYF4 crystal below 1 K and at weak magnetic fields < 0.3T. Crystals were grown in our lab and demonstrate narrow inhomogeneous optical broadening down to 16 MHz. Solid-state atomic ensembles with such narrow linewidths are very attractive for implementing of off-resonant Raman quantum memory and for the interfacing of superconducting quantum circuits and telecom C-band optical photons. Both applications require a low magnetic field of ∼10 mT. However, at conventional experimental temperatures T > 1.5 K, optical coherence of Er:LYF crystal attains ≃ 10 μ {{s}} time scale only at strong magnetic fields above 1.5 T. In the present work, we demonstrate that the deep freezing of Er:LYF crystal below 1 K results in the increase of optical coherence time to ≃ 100 μ {{s}} at weak fields.
Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma.
Kim, Da-Jin; Park, Jang-Soon; Kim, Cheol Ho; Hur, Jae; Kim, Choong-Ki; Cho, Young-Kyun; Ko, Jun-Bong; Park, Bonghyuk; Kim, Dongho; Choi, Yang-Kyu
2017-12-08
This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 10 4 and 10 5 S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.
Liquid-like cationic sub-lattice in copper selenide clusters
NASA Astrophysics Data System (ADS)
White, Sarah L.; Banerjee, Progna; Jain, Prashant K.
2017-02-01
Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.
Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.
Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter
2016-11-18
We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.
Quantum logic gates based on coherent electron transport in quantum wires.
Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S
2000-06-19
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Tian, He; Xie, Yujun; Kostelec, Andrew; Zhao, Huan; Cha, Judy J.; Tice, Jesse; Wang, Han
Modulatory input-dependent plasticity is a well-known type of hetero-synaptic response where the release of neuromodulators can alter the efficacy of neurotransmission in a nearby chemical synapse. Solid-state devices that can mimic such phenomenon are desirable for enhancing the functionality and reconfigurability of neuromorphic electronics. In this work, we demonstrated a tunable artificial synaptic device concept based on the properties of graphene and tin oxide that can mimic the modulatory input-dependent plasticity. By using graphene as the contact electrode, a third electrode terminal can be used to modulate the conductive filament formation in the vertical tin oxide based resistive memory device. The resulting synaptic characteristics of this device, in terms of the profile of synaptic weight change and the spike-timing-dependent-plasticity, is tunable with the bias at the modulating terminal. Furthermore, the synaptic response can be reconfigured between excitatory and inhibitory modes by this modulating bias. The operation mechanism of the device is studied with combined experimental and theoretical analysis. The device is attractive for application in neuromorphic electronics. This work is supported by ARO and NG-ION2 at USC.
Zero-dynamics principle for perfect quantum memory in linear networks
NASA Astrophysics Data System (ADS)
Yamamoto, Naoki; James, Matthew R.
2014-07-01
In this paper, we study a general linear networked system that contains a tunable memory subsystem; that is, it is decoupled from an optical field for state transportation during the storage process, while it couples to the field during the writing or reading process. The input is given by a single photon state or a coherent state in a pulsed light field. We then completely and explicitly characterize the condition required on the pulse shape achieving the perfect state transfer from the light field to the memory subsystem. The key idea to obtain this result is the use of zero-dynamics principle, which in our case means that, for perfect state transfer, the output field during the writing process must be a vacuum. A useful interpretation of the result in terms of the transfer function is also given. Moreover, a four-node network composed of atomic ensembles is studied as an example, demonstrating how the input field state is transferred to the memory subsystem and what the input pulse shape to be engineered for perfect memory looks like.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Wilson Prize article: From vacuum tubes to lasers and back again1
NASA Astrophysics Data System (ADS)
Madey, John M. J.
2014-07-01
The first demonstration of an optical-wavelength laser by Theodore Maiman in 1960 had a transformational impact on the paths that would be blazed to advance the state of the art of short wavelength coherent electron beam-based radiation sources. Free electron lasers (FELs) emerged from these efforts as the electron beam-based realization of the pioneering model of atom-based "optical masers" by Schawlow and Townes, but with far greater potential for tunable operation at high power and very short wavelengths. Further opportunities for yet greater capabilities may be inherent in our still growing understanding of the underlying physics. This article focuses on the FEL efforts in which the author was directly and personally involved.
Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.
2014-01-01
Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663
Gatemon Benchmarking and Two-Qubit Operation
NASA Astrophysics Data System (ADS)
Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles
Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.
Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping
Wolf, Mark; May, Brian M.; Cabana, Jordi
2017-03-21
By unlocking the full performance capabilities of battery materials we require a thorough understanding of the underlying electrochemical mechanisms at a variety of length scales. A broad arsenal of X-ray microscopy and mapping techniques is now available to probe these processes down to the nanoscale. The tunable nature of X-ray sources allows for the extraction of chemical states through spectromicroscopy. The addition of phase contrast imaging can retrieve the complex-valued refraction of the material, giving an even more nuanced chemical picture. Tomography and coherent Bragg diffraction imaging provide a reconstructed three-dimensional volume of the specimen, as well as internal strainmore » information from the latter. There have been many insights into battery materials achieved through the creative use of these, and similar, methods. Experiments performed while the battery is being actively cycled reveal behavior that differs significantly from what is observed at equilibrium and metastable conditions. Furthermore, there are planned improvements to X-ray source brightness and coherence will extend these techniques by alleviating the current trade-off in time, chemical, and spatial resolution.« less
Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Mark; May, Brian M.; Cabana, Jordi
By unlocking the full performance capabilities of battery materials we require a thorough understanding of the underlying electrochemical mechanisms at a variety of length scales. A broad arsenal of X-ray microscopy and mapping techniques is now available to probe these processes down to the nanoscale. The tunable nature of X-ray sources allows for the extraction of chemical states through spectromicroscopy. The addition of phase contrast imaging can retrieve the complex-valued refraction of the material, giving an even more nuanced chemical picture. Tomography and coherent Bragg diffraction imaging provide a reconstructed three-dimensional volume of the specimen, as well as internal strainmore » information from the latter. There have been many insights into battery materials achieved through the creative use of these, and similar, methods. Experiments performed while the battery is being actively cycled reveal behavior that differs significantly from what is observed at equilibrium and metastable conditions. Furthermore, there are planned improvements to X-ray source brightness and coherence will extend these techniques by alleviating the current trade-off in time, chemical, and spatial resolution.« less
Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons
NASA Astrophysics Data System (ADS)
Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka
2018-06-01
A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.
Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice
NASA Astrophysics Data System (ADS)
Lebrat, Martin; Grišins, Pjotrs; Husmann, Dominik; Häusler, Samuel; Corman, Laura; Giamarchi, Thierry; Brantut, Jean-Philippe; Esslinger, Tilman
2018-01-01
We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled, thin optical barriers on top of a ballistic conductor. Building an increasingly longer lattice, one site after another, we observe and characterize the emergence of a band insulating phase, demonstrating control over quantum-coherent transport. We explore the influence of atom-atom interactions and show that the insulating state persists as contact interactions are tuned from moderately to strongly attractive. Using bosonization and classical Monte Carlo simulations, we analyze such a model of interacting fermions and find good qualitative agreement with the data. The robustness of the insulating state supports the existence of a Luther-Emery liquid in the one-dimensional wire. Our work realizes a tunable, site-controlled lattice Fermi gas strongly coupled to reservoirs, which is an ideal test bed for nonequilibrium many-body physics.
Strongly Coupled Nanotube Electromechanical Resonators.
Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping
2016-09-14
Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.
Quantum spin dynamics with pairwise-tunable, long-range interactions
Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.
2016-01-01
We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin–spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom–atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom–atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models. PMID:27496329
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors.
Taupin, M; Khaymovich, I M; Meschke, M; Mel'nikov, A S; Pekola, J P
2016-03-16
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data.
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors
Taupin, M.; Khaymovich, I. M.; Meschke, M.; Mel'nikov, A. S.; Pekola, J. P.
2016-01-01
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data. PMID:26980225
NASA Astrophysics Data System (ADS)
Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.
2017-10-01
We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.
Tunable resonances due to vacancies in graphene nanoribbons
NASA Astrophysics Data System (ADS)
Bahamon, D. A.; Pereira, A. L. C.; Schulz, P. A.
2010-10-01
The coherent electron transport along zigzag and metallic armchair graphene nanoribbons in the presence of one or two vacancies is investigated. Having in mind atomic scale tunability of the conductance fingerprints, the primary focus is on the effect of the distance to the edges and intervacancies spacing. An involved interplay of vacancies sublattice location and nanoribbon edge termination, together with the spacing parameters lead to a wide conductance resonance line-shape modification. Turning on a magnetic field introduces a new length scale that unveils counterintuitive aspects of the interplay between purely geometric aspects of the system and the underlying atomic scale nature of graphene.
Atomic Bose-Hubbard Systems with Single-Particle Control
NASA Astrophysics Data System (ADS)
Preiss, Philipp Moritz
Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.
Design of a gap tunable flux qubit with FastHenry
NASA Astrophysics Data System (ADS)
Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo
2016-12-01
In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).
Non-Hermitian optics in atomic systems
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-04-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.
3D integrated superconducting qubits
NASA Astrophysics Data System (ADS)
Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.
2017-10-01
As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.
Energy and Information Transfer Via Coherent Exciton Wave Packets
NASA Astrophysics Data System (ADS)
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria which were then evaluated using first-principles, excited state analyses. It was found that efficient exciton transfer is indeed possible. When coupled to the previous quantum dot functionalizations, the notion that quantum dot materials could support partially coherent exciton wave packets was determined to be quite reasonable.
APPLICATION OF PULSE COMBUSTION TO SOLID AND HAZARDOUS WASTE INCINERATION
The paper discusses the application of pulse combustion to solid and hazardous waste incineration. otary kiln incinerator simulator was retrofitted with a frequency-tunable pulse combustor to enhance the efficiency of combustion. he pulse combustor excites pulsations in the kiln ...
Coherent manipulation of photons and electrons
NASA Astrophysics Data System (ADS)
Zhao, Lu
In modern physics, coherent manipulation of photons and electrons has been intensively studied, and may have important applications in classical and quantum information processing. In this dissertation, we consider some interesting schemes to realize photonic and electronic coherent manipulation. In order to coherently manipulate photons, electromagnetically induced transparency (EIT) systems have been widely adopted because the optical response of EIT systems can be controlled by the laser-induced atomic coherence. In the second chapter, we theoretically investigate image storage in hot-vapor EIT media. A so-called 4f system is adopted for imaging, and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of "light storage". We investigate how the stored diffraction pattern evolves under diffusion and discuss the essence of the stability of its dark spots. Our result indicates under appropriate conditions that an image can be reconstructed with high fidelity. The main reason for this procedure is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively. In the third chapter, we show theoretical evidence that EIT systems can function as optically addressed spatial light modulators with megahertz modulation rates. The transverse spatial properties of continuous-wave probe fields can be modulated rapidly using two-dimensional optical patterns. To exemplify our proposal, we study real-time generation and manipulation of Laguerre-Gaussian beams by means of phase or amplitude modulation using flat-top image-bearing pulse trains as coupling fields in low-cost hot-vapor EIT systems. In order to coherently manipulate electrons, we consider graphene systems, including single-layer graphene and bilayer graphene, which have recently attracted considerable attention. Due to the long coherence length and electrically tunable Fermi levels, electrons in graphene systems have some photon-like behaviors, and could be coherently manipulated. Therefore, in the fourth chapter, we theorize that at a sharp electrostatic step potential in graphene massless Dirac fermions can obtain Goos-Hanchen-like shifts under total internal reflection. Also, we study coherent propagation of the quasiparticles along a sharp graphene p-n-p waveguide, and derive novel dispersion relations for the guided modes. Consequently, coherent graphene-based devices, e.g., movable mirrors, buffers and memories, induced only by the electric field effects may be proposed. Finally, we theoretically investigate the coherent propagation of massive chiral fermions along a sharp bilayer graphene p-n-p waveguide, and indicate that the guided quasiparticles can be coherently slowed, stored and retrieved based on tunable electric field effects. Controlling group velocity in the bilayer graphene p-n-p waveguide is accomplished via interband tunneling through the p-n interfaces, and does not depend on the bandgap opening.
Double-Pulsed 2-micron Laser Transmitter for Multiple Lidar Applications
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong
2002-01-01
A high energy double-pulsed Ho:Tm:YLF 2-micron laser amplifier has been demonstrated. 600 mJ per pulse pair under Q-switch operation is achieved with the gain of 4.4. This solid-state laser source can be used as lidar transmitter for multiple lidar applications such as coherent wind and carbon dioxide measurements.
All-Union Conference on Laser Optics, 4th, Leningrad, USSR, January 13-18, 1984, Proceedings
NASA Astrophysics Data System (ADS)
Bukhenskii, M. F.
1984-08-01
The papers presented in this volume provide an overview of current theoretical and experimental research in laser optics. Topics discussed include electronically controlled tunable lasers, nonlinear phenomena in fiber-optic waveguides, holographic distributed-feedback dye lasers, and new developments in solid-state lasers. Papers are also presented on the generation of picosecond pulses through self-Q-switching in a distributed-feedback laser, temporal compression of light pulses during stimulated backscattering, and optimization of second harmonic generation in a multimode Nd:glass laser.
1975-12-31
V. Dronov and I. 3. Rez, Qptlki i Spaktroakofiia 24, 298 (1968). 12. Ya. 0. Dovgii, V. N. Korolyshin, E. G. Moroz , and V. V. Turkevich...Optiki i Spaktroakoplia 31, 307 (1971). 13. Ya. 0. Dovgii, N. I. Butsko, V. N. Kordyahin, and E. G. Moroz , Soviet Phyaics-Solid State 13, 995...Growth. 30, 177 (1975). l,li*^M—^>,,——M—>—-^-—"■——■—~~—"»——— - ~—^— __„«»„_ APPENDIX VA Nonlln««r OpCic.*i PropTties of 43m Crystals A
1994-04-25
Resonance Spectroscopy of Chromium-Doped Lanthanum Lutetium Gallium Garnet, M. H. Whitmore and D.J. Singel 8. 51V modulation of Mn5+ electron spin echoes in...Doped Lanthanum Lutetium Gallium Garnet Chapter 9 Characterization of Optical Centers in Mn.Ba3(VO4)2 178 by Spin-Echo EPR Spectroscopy I I ! I ii I i I I...previously unpublished EPR results on Cr:gehlenites (Chapter 6) and Cr:LLGG (lanthanum lutetium gallium garnet) (Chapter 8). The gehlenite spectra do
Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.
Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping
2017-02-08
Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.
Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T
2017-12-15
Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Feiyue; Yin, Hui; Xiang, Quanjun
2017-01-01
Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.
Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging.
John, Demis D; Burgner, Christopher B; Potsaid, Benjamin; Robertson, Martin E; Lee, Byung Kun; Choi, Woo Jhon; Cable, Alex E; Fujimoto, James G; Jayaraman, Vijaysekhar
2015-08-15
In this paper, we present a 1050 nm electrically-pumped micro-electro-mechanically-tunable vertical-cavity-surface-emitting-laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost & complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over 6 mm × 6 mm & 3 mm × 3 mm fields to show retinal vasculature and capillary structure near the fovea. These results demonstrate the feasibility of electrically pumped MEMS-VCSELs in ophthalmic instrumentation, the largest clinical application of OCT. In addition, we estimate that the 3 dB coherence length in air is 225 meters ± 51 meters, far greater than required for ophthalmic SS-OCT and suggestive of other distance ranging applications.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence
NASA Astrophysics Data System (ADS)
Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Realization of Quantum Maxwell’s Demon with Solid-State Spins*
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Chang, X.-Y.; Wang, F.; Hou, P.-Y.; Huang, Y.-Y.; Zhang, W.-G.; Ouyang, X.-L.; Huang, X.-Z.; Zhang, Z.-Y.; Wang, H.-Y.; He, L.; Duan, L.-M.
2018-04-01
Resolution of the century-long paradox on Maxwell's demon reveals a deep connection between information theory and thermodynamics. Although initially introduced as a thought experiment, Maxwell's demon can now be implemented in several physical systems, leading to intriguing test of information-thermodynamic relations. Here, we report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates. A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.
Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.
1984-01-01
Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Huang, L. G., E-mail: lingen.huang@hzdr.de
Here, we propose to exploit the low energy bandwidth, small wavelength, and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (resonant coherent X-ray diffraction). In this case, the scattering cross-section dramatically increases somore » that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution, and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation, e.g., hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating, and ultrafast ionization dynamics.« less
Solid-State Thyratron Replacement. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Ian
2017-12-12
Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was builtmore » in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.« less
Julius Edgar Lilienfeld Prize Talk: Quantum spintronics: abandoning perfection for new technologies
NASA Astrophysics Data System (ADS)
Awschalom, David D.
2015-03-01
There is a growing interest in exploiting the quantum properties of electronic and nuclear spins for the manipulation and storage of information in the solid state. Such schemes offer qualitatively new scientific and technological opportunities by leveraging elements of standard electronics to precisely control coherent interactions between electrons, nuclei, and electromagnetic fields. We provide an overview of the field, including a discussion of temporally- and spatially-resolved magneto-optical measurements designed for probing local moment dynamics in electrically and magnetically doped semiconductor nanostructures. These early studies provided a surprising proof-of-concept that quantum spin states can be created and controlled with high-speed optoelectronic techniques. However, as electronic structures approach the atomic scale, small amounts of disorder begin to have outsized negative effects. An intriguing solution to this conundrum is emerging from recent efforts to embrace semiconductor defects themselves as a route towards quantum machines. Individual defects in carbon-based materials possess an electronic spin state that can be employed as a solid state quantum bit at and above room temperature. Developments at the frontier of this field include gigahertz coherent control, nanofabricated spin arrays, nuclear spin quantum memories, and nanometer-scale sensing. We will describe advances towards quantum information processing driven by both physics and materials science to explore electronic, photonic, and magnetic control of spin. Work supported by the AFOSR, ARO, DARPA, NSF, and ONR.
Solar Pumped High Power Solid State Laser for Space Applications
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.
2004-01-01
Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.
Sculpting oscillators with light within a nonlinear quantum fluid
NASA Astrophysics Data System (ADS)
Tosi, G.; Christmann, G.; Berloff, N. G.; Tsotsis, P.; Gao, T.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.
2012-03-01
Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into quantum fluids, producing rich physical phenomena as well as proven potential for interferometric devices. However, direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid-state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room-temperature quantum states that exhibit superfluid behaviour. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualize the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially separated pump spots. Although oscillating at tunable THz frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid-state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton-condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.
Accessing the dark exciton spin in deterministic quantum-dot microlenses
NASA Astrophysics Data System (ADS)
Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan
2017-12-01
The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Ning; Shen, Jun; Xiao, Tengjiao
2015-10-15
The emission of Eu{sup 3+} doped Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors could be tunable by the site symmetry of the activators and the excitation wavelengths. - Highlights: • The emission of Eu{sup 3+} depends on site symmetry and excitation wavelengths. • The color of the samples was tunable by structure and excitation wavelength. • The effect of W and Eu content on the properties of the samples was investigated. - Abstract: A series of Eu{sup 3+} substituted double-perovskite Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors were prepared by solid state reactions. The phase, photoluminescence and energy transfer of the phosphorsmore » were investigated by X-ray diffraction (XRD), photoluminescence (PL) and luminescence decay respectively. It is found that the emission of the Eu{sup 3+} substituted double perovskites depends on both the site symmetry of the activators and the excitation wavelengths. Based on the decay analysis of Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} matrix and Eu{sup 3+} doped samples, the energy transfer efficiencies between the host and activators Eu{sup 3+} were investigated. The results of the emission tunable phosphors indicate their potential applications in LEDs.« less
Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J
2017-11-07
Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.
A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.
Albrecht, Boris; Farrera, Pau; Fernandez-Gonzalvo, Xavier; Cristiani, Matteo; de Riedmatten, Hugues
2014-02-27
Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.
Powerless tunable photonic crystal with bistable color and millisecond switching.
Chan, Chia-Tsung; Yeh, J Andrew
2011-07-04
This study demonstrated a tunable photonic crystal (PhC) with 70 nm-wide spectral tuning (535 nm to 605 nm) and 3 ms of response time. The tunable PhC is based on reciprocal capillary action of liquid in the nanoscale PhC voids. By wetting the porous silicon PhC with ethanol and water, the PhC can be bistably switched respectively between liquid-filled state (orange color) and vapor-filled state (yellow color). Owing to the energy barrier between the two wetting states, the tunable PhC can remain at either of the two states with no external power consumption.
Apparatus for generating coherent infrared energy of selected wavelength
Stevens, C.G.
A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.
NASA Astrophysics Data System (ADS)
Nanni, E. A.; Graves, W. S.; Moncton, D. E.
2018-01-01
We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.
Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques.
Kuehne, Alexander J C; Gather, Malte C
2016-11-09
Organic dyes have been used as gain medium for lasers since the 1960s, long before the advent of today's organic electronic devices. Organic gain materials are highly attractive for lasing due to their chemical tunability and large stimulated emission cross section. While the traditional dye laser has been largely replaced by solid-state lasers, a number of new and miniaturized organic lasers have emerged that hold great potential for lab-on-chip applications, biointegration, low-cost sensing and related areas, which benefit from the unique properties of organic gain materials. On the fundamental level, these include high exciton binding energy, low refractive index (compared to inorganic semiconductors), and ease of spectral and chemical tuning. On a technological level, mechanical flexibility and compatibility with simple processing techniques such as printing, roll-to-roll, self-assembly, and soft-lithography are most relevant. Here, the authors provide a comprehensive review of the developments in the field over the past decade, discussing recent advances in organic gain materials, which are today often based on solid-state organic semiconductors, as well as optical feedback structures, and device fabrication. Recent efforts toward continuous wave operation and electrical pumping of solid-state organic lasers are reviewed, and new device concepts and emerging applications are summarized.
Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault
2012-02-01
This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Reid, Alicia E.; Charpentier, Thibault
2013-01-01
This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λn(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. PMID:22197191
Li, Kai; Fan, Jian; Mi, Xiaoyun; Zhang, Yang; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun
2014-11-17
A series of NaCa13/18Mg5/18PO4(NCMPO):A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) phosphors have been prepared by the high-temperature solid-state reaction method. The X-ray diffraction (XRD) and Rietveld refinement, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), cathodoluminescence (CL), decay lifetimes, and PL quantum yields (QYs) were utilized to characterize the phosphors. The pure crystalline phase of as-prepared samples has been demonstrated via XRD measurement and Rietveld refinements. XPS reveals that the Eu(2+)/Tb(3+)/Mn(2+) can be efficiently doped into the crystal lattice. NCMPO:Eu(2+)/Tb(3+)/Mn(2+) phosphors can be effectively excited under UV radiation, which show tunable color from purple-blue to red including white emission based on energy transfer from Eu(2+) to Tb(3+)/Mn(2+) ions. Under low-voltage electron beam bombardment, the NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) display their, respectively, characteristic emissions with different colors, and the CL spectrum of NCMPO:0.04Tb(3+) has the comparable intensity to the ZnO:Zn commercial product. In addition, the calculated CIE coordinate of NCMPO:0.04Tb(3+) (0.252, 0.432) is more saturated than it (0.195, 0.417). These results reveal that NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) may be potential candidate phosphors for WLEDs and FEDs.
Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.
Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong
2014-01-29
Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes.
A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty
Huang, Shu-Wei; Yang, Jinghui; Yu, Mingbin; McGuyer, Bart H.; Kwong, Dim-Lee; Zelevinsky, Tanya; Wong, Chee Wei
2016-01-01
Optical frequency combs—coherent light sources that connect optical frequencies with microwave oscillations—have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb’s two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of 3.6mHz/τ. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10−16, heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography. PMID:27152341
On-demand generation of background-free single photons from a solid-state source
NASA Astrophysics Data System (ADS)
Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val
2018-02-01
True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.
Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.
Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter
2018-03-14
Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.
Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi
2015-05-01
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, E.; Huang, Y.; Chu, S.
We show that cyclic quantum evolution can be realized and the Aharonov-Anandan (AA) geometric phase can be determined for any spin-{ital j} system driven by periodic fields. Two methods are extended for the study of this problem: the generalized spin-coherent-state technique and the Floquet quasienergy approach. Using the former approach, we have developed a {ital generalized} Bloch-sphere model and presented a SU(2) Lie-group formulation of the AA geometric phase in the spin-coherent state. We show that the AA phase is equal to {ital j} times the solid angle enclosed by the trajectory traced out by the tip of a generalizedmore » Bloch vector. General analytic formulas are obtained for the Bloch vector trajectory and the AA geometric phase in terms of external physical parameters. In addition to these findings, we have also approached the same problem from an alternative but complementary point of view without recourse to the concept of coherent-state terminology. Here we first determine the Floquet quasienergy eigenvalues and eigenvectors for the spin-{ital j} system driven by periodic fields. This in turn allows the construction of the time-evolution propagator, the total wave function, and the AA geometric phase in a more general fashion.« less
NASA Astrophysics Data System (ADS)
Stay, Justin L.; Carr, Dustin; Ferguson, Steve; Haber, Todd; Jenkins, Robert; Mock, Joel
2017-02-01
Optical coherence tomography (OCT) has become a useful and common diagnostic tool within the field of ophthalmology. Although presently a commercial technology, research continues in improving image quality and applying the imaging method to other tissue types. Swept-wavelength lasers based upon fiber ring cavities containing fiber Fabry-Ṕerot tunable filters (FFP-TF), as an intracavity element, provide swept-source optical coherence tomography (SS-OCT) systems with a robust and scalable platform. The FFP-TF can be fabricated within a large range of operating wavelengths, free spectral ranges (FSR), and finesses. To date, FFP-TFs have been fabricated at operating wavelengths from 400 nm to 2.2 µm, FSRs as large as 45 THz, and finesses as high as 30 000. The results in this paper focus on presenting the capability of the FFP-TF as an intracavity element in producing swept-wavelength lasers sources and quantifying the trade off between coherence length and sweep range. We present results within a range of feasible operating conditions. Particular focus is given to the discovery of laser configurations that result in maximization of sweep range and/or power. A novel approach to the electronic drive of the PZT-based FFP-TF is also presented, which eliminates the need for the existence of a mechanical resonance of the optical device. This approach substantially increases the range of drive frequencies with which the filter can be driven and has a positive impact for both the short all-fiber laser cavity (presented in this paper) and long cavity FDML designs as well.
High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd
2007-01-01
A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.
NASA Technical Reports Server (NTRS)
Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)
1993-01-01
A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.
From dark to bright: novel daylighting applications in solid state lighting
NASA Astrophysics Data System (ADS)
Adler, Helmar G.
2011-10-01
The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.
DeRosa, Christopher A.; Kerr, Caroline; Fan, Ziyi; Kolpaczynska, Milena; Mathew, Alexander S.; Evans, Ruffin E.; Zhang, Guoqing; Fraser, Cassandra L.
2015-01-01
The dual-emissive properties of solid-state difluoroboron β-diketonate-poly(lactic acid) (BF2bdkPLA) materials have been utilized for biological oxygen sensing. In this work, BF2dbm(X)PLA materials were synthesized, where X = H, F, Cl, Br, and I. The effects of changing the halide substituent and PLA polymer chain length on the optical properties in dilute CH2Cl2 solutions and solid-state polymer films were studied. These luminescent materials show fluorescence, phosphorescence, and lifetime tunability on the basis of molecular weight, as well as lifetime modulation via the halide substituent. Short BF2dbm(Br)PLA (6.0 kDa) and both short and long BF2dbm(I)PLA polymers (6.0 or 20.3 kDa) have fluorescence and intense phosphorescence ideal for ratiometric oxygen sensing. The lighter halide-dye polymers with hydrogen, fluorine, and chlorine substitution have longer phosphorescence lifetimes and can be utilized as ultrasensitive oxygen sensors. Photostability was also analyzed for the polymer films. PMID:26480236
Photodissociation dynamics of H2O at 111.5 nm by a vacuum ultraviolet free electron laser
NASA Astrophysics Data System (ADS)
Wang, Heilong; Yu, Yong; Chang, Yao; Su, Shu; Yu, Shengrui; Li, Qinming; Tao, Kai; Ding, Hongli; Yang, Jaiyue; Wang, Guanglei; Che, Li; He, Zhigang; Chen, Zhichao; Wang, Xingan; Zhang, Weiqing; Dai, Dongxu; Wu, Guorong; Yuan, Kaijun; Yang, Xueming
2018-03-01
Photodissociation dynamics of H2O via the F ˜ state at 111.5 nm were investigated using the high resolution H-atom Rydberg "tagging" time-of-flight (TOF) technique, in combination with the tunable vacuum ultraviolet free electron laser at the Dalian Coherent Light Source. The product translational energy distributions and angular distributions in both parallel and perpendicular directions were derived from the recorded TOF spectra. Based on these distributions, the quantum state distributions and angular anisotropy parameters of OH (X) and OH (A) products have been determined. For the OH (A) + H channel, highly rotationally excited OH (A) products have been observed. These products are ascribed to a fast direct dissociation on the B ˜ 1A1 state surface after multi-step internal conversions from the initial excited F ˜ state to the B ˜ state. While for the OH (X) + H channel, very highly rotationally excited OH (X) products with moderate vibrational excitation are revealed and attributed to the dissociation via a nonadiabatic pathway through the well-known two conical intersections between the B ˜ -state and the X ˜ -state surfaces.
Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.
Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J
2009-12-01
In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.
Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode
NASA Astrophysics Data System (ADS)
Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.
2009-12-01
In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia
2018-02-01
We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.
Blue-green tunable color of Ce3+/Tb3+ coactivated NaBa3La3Si6O20 phosphor via energy transfer
Jia, Zhen; Xia, Mingjun
2016-01-01
A series of color tunable phosphors NaBa3La3Si6O20:Ce3+, Tb3+ were synthesized via the high-temperature solid-state method. NaBa3La3Si6O20 crystallizes in noncentrosymmetric space group Ama2 with the cell parameters of a = 14.9226(4) Å, b = 24.5215(5) Å and c = 5.6241(2) Å by the Rietveld refinement method. The Ce3+ ions doped NaBa3La3Si6O20 phosphors have a strong absorption band from 260 to 360 nm and show near ultraviolet emission light centered at 378 nm. The Ce3+ and Tb3+ ions coactivated phosphors exhibit color tunable emission light from deep blue to green by adjusting the concentration of the Tb3+ ions. An energy transfer of Ce3+ → Tb3+ investigated by the photoluminescence properties and lifetime decay, is demonstrated to be dipole–quadrupole interaction. These results indicate the NaBa3La3Si6O20:Ce3+, Tb3+ phosphors can be considered as potential candidates for blue-green components for white light emitting diodes. PMID:27628111
Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors
NASA Astrophysics Data System (ADS)
Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei
2018-02-01
A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.
Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV
NASA Astrophysics Data System (ADS)
Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano
2017-11-01
In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.
Zheng, Ruilin; Zhang, Qi; Yu, Kehan; Liu, Chunxiao; Ding, Jianyong; Lv, Peng; Wei, Wei
2017-10-15
A kind of Sn 2+ /Mn 2+ co-doped fluorphosphate (FP) glasses that served as single-component continuous tunable broadband emitting multi-chromatic phosphors are developed for the first time. Importantly, these FP glasses have high thermal conductivity (3.25-3.70 W/m·K) and good chemical stability in water (80°C). By combining with commercially available UV-LEDs directly, the emission colors can be tuned from blue/cold-white to warm-white/red through the energy transfer from Sn 2+ to Mn 2+ , and the broadband spectra covering the whole visible region from 380 nm to 760 nm. Notably, the FP glass can also serve as a white light phosphor by controlling the content of SnO/MnO, which has excellent optical properties. The CIE chromaticity coordinate, color rendering index, and quantum efficiency are (0.33, 0.29), 84, and 0.952, respectively. These new phosphors, possessing good optical and chemical properties, are promising for applications in solid-state lighting devices.
Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction
Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu
2016-01-01
Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport. PMID:27515115
Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.
Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul
2015-10-14
Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
NASA Astrophysics Data System (ADS)
Ning, Cun-Zheng; Dou, Letian; Yang, Peidong
2017-12-01
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.
Nonradiative relaxation and laser action in tunable solid state laser crystals
NASA Technical Reports Server (NTRS)
Petricevic, V.; Gayen, S. K.; Alfano, R. R.
1989-01-01
Room-temperature pulsed laser action was obtained in chromium-activated forsterite (Cr:Mg2SiO4) for both 532 and 1064 nm pumping. Free running laser emission in both cases is centered at 1235 nm and has a bandwidth of approximately 30 nm. Slope efficiency as high as 22 percent was measured. Using different sets of output mirrors and a single birefrigent plate as the intracavity wavelength selecting element tunability over the 1167 to 1268 nm spectral range was demonstrated. Continuous wave laser operation at room temperature was obtained for 1064 nm pumping from a CW Nd:YAG laser. The output power slope efficiency is 6.8 percent. The gain cross section is estimated to be 1.1 x 10 to the 19th sq cm. Spectroscopic studies suggest that the laser action is due to a center other than the trivalent chromium (Cr 3+), presumably the tetravalent chromium (Cr 4+) in a tetrahedrally coordinated site.
Biophotons, coherence and photocount statistics: A critical review
NASA Astrophysics Data System (ADS)
Cifra, Michal; Brouder, Christian; Nerudová, Michaela; Kučera, Ondřej
2015-08-01
Biological samples continuously emit ultra-weak photon emission (UPE, or "biophotons") which stems from electronic excited states generated chemically during oxidative metabolism and stress. Thus, UPE can potentially serve as a method for non-invasive diagnostics of oxidative processes or, if discovered, also of other processes capable of electron excitation. While the fundamental generating mechanisms of UPE are fairly elucidated together with their approximate ranges of intensities and spectra, statistical properties of UPE is still a highly challenging topic. Here we review claims about nontrivial statistical properties of UPE, such as coherence and squeezed states of light. After introduction to the necessary theory, we categorize the experimental works of all authors to those with solid, conventional interpretation and those with unconventional and even speculative interpretation. The conclusion of our review is twofold; while the phenomenon of UPE from biological systems can be considered experimentally well established, no reliable evidence for the coherence or nonclassicality of UPE was actually achieved up to now. Furthermore, we propose perspective avenues in the research of statistical properties of biological UPE.
Nonradiative relaxation in tunable solid state laser crystals
NASA Technical Reports Server (NTRS)
Gayen, S. K.; Wang, W. B.; Petricevic, V.; Alfano, R. R.
1986-01-01
The characteristics of nonradiative transitions between the 4T2 and 2E excited states of trivalent-chromium-ion-activated ruby (containing 0.04 percent Cr2O3 by weight) and alexandrite (containing 0.4 at. percent chromium ion) laser crystals were studied using the technique described by Gayen et al. (1985). In this technique, a 527-nm pulse excites the 4T2 band of the Cr(3+), and the subsequent population kinetics among excited states is monitored by an IR picosecond probe pulse as a function of pump-probe delay. In ruby, a resolution-limited sharp rise in the excited state population was followed by a long-lifetime decay, leading to an upper limit of 7 ps for the 4T2-state nonradiative lifetime. In alexandrite, a longer rise time was followed by a multicomponent decay. A theoretical model is proposed for explaining the induced absorption and the transition dynamics observed in these crystals.
SNR of swept SLEDs and swept lasers for OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Johnson, Bart C.; Atia, Walid; Flanders, Dale; Kuznetsov, Mark; Goldberg, Brian; Kemp, Nate; Whitney, Peter
2016-03-01
A back-to-back comparison of a tunable narrow-band SLED (TSLED) and a swept laser are made for OCT applications. Both are 1310 nm sources sweeping at 50 kHz over a 100 nm tuning range and have similar coherence lengths. The TSLED consists of a seed SOA and two amplification SOAs. The ASE is filtered twice by a tunable MEMS Fabry Perot in a polarization multiplexed double-pass arrangement on either side of the middle SOA. This allows very long coherence lengths to be achieved. A fundamental issue with a SLED is that the RIN is proportional to 1/Linewidth, meaning that the longer the coherence length, the higher the RIN. High RIN also leads to increased clock jitter. Most swept source SNR calculations assume that the noise is independent of the amplitude of the signal light: The higher the signal, the higher the SNR. We show that in the case of the TSLED, that the high signal RIN and clock jitter give rise to additional noises that scale with signal power. This leads to an SNR limit in the case of the TSLED: The higher the signal, the higher the noise, so the SNR reaches a limit. While the TSLED has respectable sensitivity, the SNR limit causes noise streaks in an image where the A-line has a high reflectivity point. The laser, which is shot noise limited, does not exhibit this effect. This is illustrated with SNR data and side-by-side images taken with the two sources.
Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.
2015-01-01
In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005
Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.
Pawlowski, Michal E; Shrestha, Sebina; Park, Jesung; Applegate, Brian E; Oghalai, John S; Tkaczyk, Tomasz S
2015-06-01
We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.
Laser-induced fluorescence spectroscopy of the secondary cataract
NASA Astrophysics Data System (ADS)
Maslov, N. A.; Larionov, P. M.; Rozhin, I. A.; Druzhinin, I. B.; Chernykh, V. V.
2016-06-01
Excitation-emission matrices of laser-induced fluorescence of lens capsule epithelium, the lens nucleus, and the lens capsule are investigated. A solid-state laser in combination with an optical parametric generator tunable in the range from 210 to 350 nm was used for excitation of fluorescence. The spectra of fluorescence of all three types of tissues exhibit typical features that are specific to them and drastically differ from one another. This effect can be used for intrasurgical control of presence of residual lens capsule epithelium cells in the capsular bag after surgical treatment of a cataract.
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
NASA Astrophysics Data System (ADS)
Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael
2015-09-01
During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.
MURI Center for Photonic Quantum Information Systems
2009-10-16
conversion; solid- state quantum gates based on quantum dots in semiconductors and on NV centers in diamond; quantum memories using optical storage...of our high-speed quantum cryptography systems, and also by continuing to work on quantum information encoding into transverse spatial modes. 14...make use of cavity QED effects for quantum information processing, the quantum dot needs to be addressed coherently . We have probed the QD-cavity
Nanni, E. A.; Graves, W. S.; Moncton, D. E.
2018-01-19
We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanni, E. A.; Graves, W. S.; Moncton, D. E.
We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less
Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin
2017-04-13
Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.
NASA Astrophysics Data System (ADS)
Morel, Eneas N.; Russo, Nélida A.; Torga, Jorge R.; Duchowicz, Ricardo
2016-01-01
We used an interferometric technique based on typical optical coherence tomography (OCT) schemes for measuring distances of industrial interest. The system employed as a light source a tunable erbium-doped fiber laser of ˜20-pm bandwidth with a tuning range between 1520 and 1570 nm. It has a sufficiently long coherence length to enable long depth range imaging. A set of fiber Bragg gratings was used as a self-calibration method, which has the advantage of being a passive system that requires no additional electronic devices. The proposed configuration and the coherence length of the laser enlarge the range of maximum distances that can be measured with the common OCT configuration, maintaining a good axial resolution. A measuring range slightly >17 cm was determined. The system performance was evaluated by studying the repeatability and axial resolution of the results when the same optical path difference was measured. Additionally, the thickness of a semitransparent medium was also measured.
Phase-tunable temperature amplifier
NASA Astrophysics Data System (ADS)
Paolucci, F.; Marchegiani, G.; Strambini, E.; Giazotto, F.
2017-06-01
Coherent caloritronics, the thermal counterpart of coherent electronics, has drawn growing attention since the discovery of heat interference in 2012. Thermal interferometers, diodes, transistors and nano-valves have been theoretically proposed and experimentally demonstrated by exploiting the quantum phase difference between two superconductors coupled through a Josephson junction. So far, the quantum-phase modulator has been realized in the form of a superconducting quantum interference device (SQUID) or a superconducting quantum interference proximity transistor (SQUIPT). Thence, an external magnetic field is necessary in order to manipulate the heat transport. Here, we theoretically propose the first on-chip fully thermal caloritronic device: the phase-tunable temperature amplifier (PTA). Taking advantage of a recently discovered thermoelectric effect in spin-split superconductors coupled to a spin-polarized system, we generate the magnetic flux controlling the transport through a temperature-biased SQUIPT by applying a temperature gradient. We simulate the behavior of the device and define a number of figures of merit in full analogy with voltage amplifiers. Notably, our architecture ensures almost infinite input thermal impedance, maximum gain of about 11 and efficiency reaching the 95%. This concept paves the way for applications in radiation sensing, thermal logics and quantum information.
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.
2005-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo; Ogawa, Yuichi; Minamide, Hiroaki; Ito, Hiromasa
2005-07-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO3 or MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave source with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni-directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a THz-wave parametric oscillator, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which are illegal, while one is an over-the-counter drug.
Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng
2018-03-12
The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.
Targ, R; Steakley, B C; Hawley, J G; Ames, L L; Forney, P; Swanson, D; Stone, R; Otto, R G; Zarifis, V; Brockman, P; Calloway, R S; Klein, S H; Robinson, P A
1996-12-20
The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO(2) system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, light-weight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s.
Phase-coherent engineering of electronic heat currents with a Josephson modulator
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
NASA Astrophysics Data System (ADS)
Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-08-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-01-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Noise-driven neuromorphic tuned amplifier.
Fanelli, Duccio; Ginelli, Francesco; Livi, Roberto; Zagli, Niccoló; Zankoc, Clement
2017-12-01
We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.
Organic Micro/Nanoscale Lasers.
Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng
2016-09-20
Micro/nanoscale lasers that can deliver intense coherent light signals at (sub)wavelength scale have recently captured broad research interest because of their potential applications ranging from on-chip information processing to high-throughput sensing. Organic molecular materials are a promising kind of ideal platform to construct high-performance microlasers, mainly because of their superiority in abundant excited-state processes with large active cross sections for high gain emissions and flexibly assembled structures for high-quality microcavities. In recent years, ever-increasing efforts have been dedicated to developing such organic microlasers toward low threshold, multicolor output, broadband tunability, and easy integration. Therefore, it is increasingly important to summarize this research field and give deep insight into the structure-property relationships of organic microlasers to accelerate the future development. In this Account, we will review the recent advances in organic miniaturized lasers, with an emphasis on tunable laser performances based on the tailorable microcavity structures and controlled excited-state gain processes of organic materials toward integrated photonic applications. Organic π-conjugated molecules with weak intermolecular interactions readily assemble into regular nanostructures that can serve as high-quality optical microcavities for the strong confinement of photons. On the basis of rational material design, a series of optical microcavities with different structures have been controllably synthesized. These microcavity nanostructures can be endowed with effective four-level dynamic gain processes, such as excited-state intramolecular charge transfer, excited-state intramolecular proton transfer, and excimer processes, that exhibit large dipole optical transitions for strongly active gain behaviors. By tailoring these excited-state processes with molecular/crystal engineering and external stimuli, people have effectively modulated the performances of organic micro/nanolasers. Furthermore, by means of controlled assembly and tunable laser performances, efficient outcoupling of microlasers has been successfully achieved in various organic hybrid microstructures, showing considerable potential for the integrated photonic applications. This Account starts by presenting an overview of the research evolution of organic microlasers in terms of microcavity resonators and energy-level gain. Then a series of strategies to tailor the microcavity structures and excited-state dynamics of organic nanomaterials for the modulation of lasing performances are highlighted. In the following part, we introduce the construction and advanced photonic functionalities of organic-microlaser-based hybrid structures and their applications in integrated nanophotonics. Finally, we provide our outlook on the current challenges as well as the future development of organic microlasers. It is anticipated that this Account will provide inspiration for the development of miniaturized lasers with desired performances by tailoring of excited-state processes and microcavity structures toward integrated photonic applications.
Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms
NASA Astrophysics Data System (ADS)
Legaie, Remy; Picken, Craig J.; Pritchard, Jonathan D.
2018-04-01
Quantum information processing using atomic qubits requires narrow linewidth lasers with long-term stability for high fidelity coherent manipulation of Rydberg states. In this paper, we report on the construction and characterization of three continuous-wave (CW) narrow linewidth lasers stabilized simultaneously to an ultra-high finesse Fabry-Perot cavity made of ultra-low expansion (ULE) glass, with a tunable offset-lock frequency. One laser operates at 852~nm while the two locked lasers at 1018~nm are frequency doubled to 509~nm for excitation of $^{133}$Cs atoms to Rydberg states. The optical beatnote at 509~nm is measured to be 260(5)~Hz. We present measurements of the offset between the atomic and cavity resonant frequencies using electromagnetically induced transparency (EIT) for high-resolution spectroscopy on a cold atom cloud. The long-term stability is determined from repeated spectra over a period of 20 days yielding a linear frequency drift of $\\sim1$~Hz/s.
Photon correlation in single-photon frequency upconversion.
Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping
2012-01-30
We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed
2008-01-01
NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.
Robust distant-entanglement generation using coherent multiphoton scattering
NASA Astrophysics Data System (ADS)
Chan, Ching-Kit; Sham, L. J.
2013-03-01
The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.
Compact and Rugged Transceiver for Coherent Doppler Wind Lidar Applications in Space
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Singh, Upendra N.; Trieu, Bo C.; Modlin, Ed A.; Petros, Mulugeta; Bai, Yingxin; Reithmaier, Karl;
2007-01-01
High-accuracy, vertical profiles of the horizontal vector wind in earth s atmosphere, with the global coverage of an orbiting sensor, are a highly desired measurement of NASA, NOAA, and many other agencies and countries. It is the consensus of NASA and NOAA that the most cost effective, lowest risk measurement method with the earliest achievable mission date is the hybrid Doppler lidar method which utilizes both coherent- and direct-detection Doppler lidars to obtain the desired profiles. NASA Langley Research Center (LaRC) has advanced the 2-micron pulsed solid-state laser greatly over the past 15 years and has recently demonstrated 1.2 J of pulse energy whereas the requirement for a 400-km hybrid Doppler lidar mission is only 0.25 J. The IIP project reported here is an effort to increase the ruggedness and to compactly package the LaRC state-of-the-art laser technology.
NASA Astrophysics Data System (ADS)
Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.
2017-02-01
White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.
NASA Astrophysics Data System (ADS)
Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.
2017-03-01
A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.
Ivić, Z; Lazarides, N; Tsironis, G P
2016-07-12
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.
Gündoğan, Mustafa; Ledingham, Patrick M; Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2015-06-12
We demonstrate the first solid-state spin-wave optical quantum memory with on-demand read-out. Using the full atomic frequency comb scheme in a Pr(3+):Y2SiO5 crystal, we store weak coherent pulses at the single-photon level with a signal-to-noise ratio >10. Narrow-band spectral filtering based on spectral hole burning in a second Pr(3+):Y2SiO5 crystal is used to filter out the excess noise created by control pulses to reach an unconditional noise level of (2.0±0.3)×10(-3) photons per pulse. We also report spin-wave storage of photonic time-bin qubits with conditional fidelities higher than achievable by a measure and prepare strategy, demonstrating that the spin-wave memory operates in the quantum regime. This makes our device the first demonstration of a quantum memory for time-bin qubits, with on-demand read-out of the stored quantum information. These results represent an important step for the use of solid-state quantum memories in scalable quantum networks.
NASA Astrophysics Data System (ADS)
Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.
2017-10-01
Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.
Substantially Enhancing Quantum Coherence of Electrons in Graphene via Electron-Plasmon Coupling.
Cheng, Guanghui; Qin, Wei; Lin, Meng-Hsien; Wei, Laiming; Fan, Xiaodong; Zhang, Huayang; Gwo, Shangjr; Zeng, Changgan; Hou, J G; Zhang, Zhenyu
2017-10-13
The interplays between different quasiparticles in solids lay the foundation for a wide spectrum of intriguing quantum effects, yet how the collective plasmon excitations affect the quantum transport of electrons remains largely unexplored. Here we provide the first demonstration that when the electron-plasmon coupling is introduced, the quantum coherence of electrons in graphene is substantially enhanced with the quantum coherence length almost tripled. We further develop a microscopic model to interpret the striking observations, emphasizing the vital role of the graphene plasmons in suppressing electron-electron dephasing. The novel and transformative concept of plasmon-enhanced quantum coherence sheds new insight into interquasiparticle interactions, and further extends a new dimension to exploit nontrivial quantum phenomena and devices in solid systems.
Temporal coherence of high-order harmonics generated at solid surfaces
NASA Astrophysics Data System (ADS)
Hemmers, D.; Behmke, M.; Karsch, S.; Keyling, J.; Major, Z.; Stelzmann, C.; Pretzler, G.
2014-07-01
We present interferometric measurements of the temporal coherence of high-order harmonics generated by reflection of a titanium sapphire laser off a solid surface. It is found that the coherence length of the harmonic emission is significantly reduced compared with the bandwidth limited case. To identify the responsible mechanism, the acquired data were analyzed by means of particle-in-cell simulations, whose results show good agreement between the calculated spectra and the measured coherence times. We show that the observed broadening can be understood consistently by the occurrence of a Doppler shift induced by the moving plasma surface, which is dented by the radiation pressure of the laser pulse. In this case, this Doppler effect would also lead to positive chirp of the emitted radiation.
Micro-optofluidic Lenses: A review
Nguyen, Nam-Trung
2010-01-01
This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field. PMID:20714369
All-optical coherent population trapping with defect spin ensembles in silicon carbide.
Zwier, Olger V; O'Shea, Danny; Onur, Alexander R; van der Wal, Caspar H
2015-06-05
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions. Because of the various polytypes of SiC, hundreds of unique divacancies exist, many with spin properties comparable to the nitrogen-vacancy center in diamond. If ensembles of such spins can be all-optically manipulated, they make compelling candidate systems for quantum-enhanced memory, communication, and sensing applications. We report here direct all-optical addressing of basal plane-oriented divacancy spins in 4H-SiC. By means of magneto-spectroscopy, we fully identify the spin triplet structure of both the ground and the excited state, and use this for tuning of transition dipole moments between particular spin levels. We also identify a role for relaxation via intersystem crossing. Building on these results, we demonstrate coherent population trapping -a key effect for quantum state transfer between spins and photons- for divacancy sub-ensembles along particular crystal axes. These results, combined with the flexibility of SiC polytypes and device processing, put SiC at the forefront of quantum information science in the solid state.
Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system
Zhou, Brian B.; Baksic, Alexandre; Ribeiro, Hugo; ...
2016-11-28
Adiabatic evolutions find widespread utility in applications to quantum state engineering1 , geometric quantum computation2 , and quantum simulation3 . Although offering desirable robustness to experimental imperfections, adiabatic techniques are susceptible to decoherence during their long operation time. A recent strategy termed ‘shortcuts to adiabaticity’ 4–10 (STA) aims to circumvent this trade-off by designing fast dynamics to reproduce the results of infinitely slow, adiabatic processes. Here, as a realization of this strategy, we implement ‘superadiabatic’ transitionless driving11 (SATD) to speed up stimulated Raman adiabatic passage1,12–15 (STIRAP) in a solid-state lambda (Λ) system. Utilizing optical transitions to a dissipative excited statemore » in the nitrogen vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the transfer and initialization of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state12–17.« less
Optical characterization in wide spectral range by a coherent spectrophotometer
NASA Astrophysics Data System (ADS)
Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.
2003-11-01
We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.
Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics
Varshney, Atul; Ghosh, Shankar; Bhattacharya, S.; Yethiraj, Anand
2012-01-01
Self organization of large-scale structures in nature - either coherent structures like crystals, or incoherent dynamic structures like clouds - is governed by long-range interactions. In many problems, hydrodynamics and electrostatics are the source of such long-range interactions. The tuning of electrostatic interactions has helped to elucidate when coherent crystalline structures or incoherent amorphous structures form in colloidal systems. However, there is little understanding of self organization in situations where both electrostatic and hydrodynamic interactions are present. We present a minimal two-component oil-in-oil model system where we can control the strength and lengthscale of the electrohydrodynamic interactions by tuning the amplitude and frequency of the imposed electric field. As a function of the hydrodynamic lengthscale, we observe a rich phenomenology of exotic structure and dynamics, from incoherent cloud-like structures and chaotic droplet dynamics, to polyhedral droplet phases, to coherent droplet arrays. PMID:23071902
Apparatus for generating coherent infrared energy of selected wavelength
Stevens, Charles G.
1985-01-01
A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).
Absolute calibration of Doppler coherence imaging velocity images
NASA Astrophysics Data System (ADS)
Samuell, C. M.; Allen, S. L.; Meyer, W. H.; Howard, J.
2017-08-01
A new technique has been developed for absolutely calibrating a Doppler Coherence Imaging Spectroscopy interferometer for measuring plasma ion and neutral velocities. An optical model of the interferometer is used to generate zero-velocity reference images for the plasma spectral line of interest from a calibration source some spectral distance away. Validation of this technique using a tunable diode laser demonstrated an accuracy better than 0.2 km/s over an extrapolation range of 3.5 nm; a two order of magnitude improvement over linear approaches. While a well-characterized and very stable interferometer is required, this technique opens up the possibility of calibrated velocity measurements in difficult viewing geometries and for complex spectral line-shapes.
Characteristics of light reflected from a dense ionization wave with a tunable velocity.
Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V
2009-11-20
An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.
NASA Astrophysics Data System (ADS)
Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.
2017-08-01
We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.
High-fidelity projective read-out of a solid-state spin quantum register.
Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald
2011-09-21
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved
Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis.
Haikal, Rana R; Wang, Xia; Hassan, Youssef S; Parida, Manas R; Murali, Banavoth; Mohammed, Omar F; Pellechia, Perry J; Fontecave, Marc; Alkordi, Mohamed H
2016-08-10
A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multitopic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity toward hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited-state lifetime of the covalently immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.
Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.
Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei
2018-02-05
A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.
Pillarisetti, Shameer; Maya, S; Sathianarayanan, S; Jayakumar, R
2017-11-01
Tunable pH and redox responsive polymer was prepared using γ-polyglutamic acid (γ-PGA) with linker 3-mercaptopropionic acid (3-MPA) (γ-PGA_SH) via oxidation to obtain redox responsive disulfide (γ-PGA_SS) backbone and adipic acid dihydrazide (ADH) (γ-PGA_SS_ADH) with hydrazide functional group for pH responsiveness. Further curcumin (Cur) was conjugated through hydrazone bond of the γ-PGA_SS_ADH via Schiff base reaction to obtain (γ-PGA_SS_ADH_Cur). The prepared systems were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Qq-TOF-MS/MS) and Solid state nuclear magnetic resonance (SS NMR) techniques. γ-PGA_SS_ADH_Cur formed self-assembled core shell nanoparticles (NPs) in existence of stabilized aqueous medium. γ-PGA_SS_ADH_Cur NPs maintained its stability in physiological condition. NPs tunable Cur release and cytotoxicity were observed for γ-PGA_SS_ADH_Cur NPs in both acidic and redox conditions mimicking the cancer microenvironment. γ-PGA_SS_ADH_Cur NPs uptake study showed via endocytosis mechanism resulted in the lysosomal entrapment of these NPs within the cell. γ-PGA_SS_ADH_Cur NPs exhibited a dual stimuli responsive drug delivery and can be used as a smart and potential drug delivery system in cancer microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.
Saint-Louis, Carl Jacky; Shavnore, Renée N; McClinton, Caleb D C; Wilson, Julie A; Magill, Lacey L; Brown, Breanna M; Lamb, Robert W; Webster, Charles Edwin; Schrock, Alan K; Huggins, Michael T
2017-12-13
Nine new polycyclic aromatic BN-1,2-azaborine analogues containing the N-BOH moiety were synthesized using a convenient two-step, one-pot procedure. Characterization of the prepared compounds show the luminescence wavelength and the quantum yields of the azaborines were tunable by controlling the power and location of the donor and acceptor substituents on the chromophore. UV-visible spectroscopy and density functional theory (DFT) computations revealed that the addition of electron-donating moieties to the isoindolinone hemisphere raised the energy of the HOMO, resulting in the reduction of the HOMO-LUMO gap. The addition of an electron-accepting moiety to the isoindolinone hemisphere and an electron-donating group to the boronic acid hemisphere decreased the HOMO-LUMO gap considerably, leading to emission properties from partial intramolecular charge transfer (ICT) states. The combined effect of an acceptor on the isoindolinone side and a donor on the boronic acid side (strong acceptor-π-donor) gave the most red-shifted absorption. The polycyclic aromatic BN-1,2-azaborines emitted strong fluorescence in solution and in the solid-state with the largest red-shifted emission at 640 nm and a Stokes shift of Δλ = 218 nm, or Δν = 8070 cm -1 .
VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids
NASA Astrophysics Data System (ADS)
Svensson, T.; Andersson, M.; Rippe, L.; Svanberg, S.; Andersson-Engels, S.; Johansson, J.; Folestad, S.
2008-02-01
We present a minimalistic and flexible single-beam instrumentation based on sensitive tunable diode laser absorption spectroscopy (TDLAS) and its use in structural analysis of highly scattering pharmaceutical solids. By utilising a vertical cavity surface emitting laser (VCSEL) for sensing of molecular oxygen dispersed in tablets, we address structural properties such as porosity. Experiments involve working with unknown path lengths, severe backscattering and diffuse light. These unusual experimental conditions has led to the use of the term gas in scattering media absorption spectroscopy (GASMAS). By employing fully digital wavelength modulation spectroscopy and coherent sampling, system sensitivity in ambient air experiments reaches the 10-7 range. Oxygen absorption exhibited by our tablets, being influenced by both sample porosity and scattering, was in the range 8×10-5 to 2×10-3, and corresponds to 2-50 mm of path length through ambient air (Leq). The day-to-day reproducibility was on average 1.8% (0.3 mm Leq), being limited by mechanical positioning. This is the first time sub-millimetre sensitivity is reached in GASMAS. We also demonstrate measurements on gas transport on a 1-s time scale. By employing pulsed illumination and time-correlated single-photon counting, we reveal that GASMAS exhibits excellent correlation with time-domain photon migration. In addition, we introduce an optical measure of porosity by relating oxygen absorption to average photon time-of-flight. Finally, the simplicity, robustness and low cost of this novel TDLAS instrumentation provide industrial potential.
Zhang, Pengfei; Wang, Li; Yang, Shize; Schott, Jennifer A.; Liu, Xiaofei; Mahurin, Shannon M.; Huang, Caili; Zhang, Yu; Fulvio, Pasquale F.; Chisholm, Matthew F.; Dai, Sheng
2017-01-01
Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic–organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4–10 nm), large pore volumes (up to 0.96 cm3 g−1) and high-surface areas exceeding 1,000 m2 g−1, based on a mechanochemical assembly between polyphenol-metal complexes and triblock co-polymers. Nickel nanoparticles (∼5.40 nm) confined in the cylindrical nanochannels show great thermal stability at 600 °C. Moreover, the nickel OMCs offer exceptional activity in the hydrogenation of bulky molecules (∼2 nm). PMID:28452357
Development of lasers optimized for pumping Ti:Al2O3 lasers
NASA Technical Reports Server (NTRS)
Rines, Glen A.; Schwarz, Richard A.
1994-01-01
Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).
Coherent control in bulk and nanostructure semiconductors
NASA Astrophysics Data System (ADS)
Sipe, John E.; van Driel, Henry M.
1998-04-01
Laser light has been used as a probe of atoms, molecules, and solids since the invention of the laser. The use of laser light in a more active role, to modify and process surfaces, and initiate chemical reactions, followed shortly thereafter. But usually it is the intensity and the directionality of the laser light that is employed, not necessarily its coherence, and not particularly the fact that it has a well-defined phase. 'Coherence control' can be broadly understood as the set of processes whereby light modifies matter in a way that is critically dependent on the incident light beams possessing well-defined phases. While in a laser matter is manipulated to produce light of the desired properties, in coherent control light is manipulated -- in particular, its phase and intensity is adjusted -- to produce a material response of the desired type. Of the various coherent control processes that are currently being investigated, some involve a transition in the material medium from an initial state to a final state by two or more possible processes. With each of these is associated a quantum mechanical amplitude, and hence the probability for the transition can show interference effects between the two amplitudes, just as in the familiar two-slit interference experiment the probability for the electron to be observed at a given position involves a probability that is the square of the sum of two amplitudes. In quantum interference control (QUIC), the relative phase of the two amplitudes is adjusted by adjusting the relative phase of two polarizations of a single beam, or the relative phase of two beams at different frequencies. It is this particular type of coherent control that is of interest in this communication.
NASA Astrophysics Data System (ADS)
Han, Jinkyu
Solid state white-emitting lighting devices based on LEDs outperform conventional light sources in terms of lifetime, durability, and luminous efficiency. Near UV-LEDs in combination with blue-, green-, and red-emitting phosphors show superior luminescence properties over the commercialized blue-emitting LED with yellow-emitting phosphors. However, phosphor development for near UV LEDs is a challenging problem and a vibrant area of research. In addition, using the proper synthesis technique is an important consideration in the development of phosphors. In this research, efficient blue-, green-yellow, red-emitting, and color tunable phosphors for near UV LEDs based white light are identified and prepared by various synthetic methods such as solid state reaction, sol-gel/Pechini, co-precipitation, hydrothermal, combustion and spray-pyrolysis. Blue-emittingLiCaPO4:Eu2+, Green/yellow-emitting (Ba,Sr)2SiO4:Eu2+, color tunable solid solutions of KSrPO4-(Ba,Ca)2SiO4:Eu 2+, and red-emitting (Ba,Sr,Ca)3MgSi2O 8:Eu2+,Mn2+ show excellent excitation profile in the near UV region, high quantum efficiency, and good thermal stability for use in solid state lighting applications. In addition, different synthesis methods are analyzed and compared, with the goal of obtaining ideal phosphors, which should have not only have high luminous output but also optimal particle size (˜150--400 nm) and spherical morphology. For Sr2SiO 4:Eu2+, the sol-gel method appears to be the best method. For Ba2SiO4:Eu2+, the co-precipitation method is be the best. Lastly, the fabrication of core/SiO2 shell particles alleviate surface defects and improve luminescence output and moisture stability of nano and micron sized phosphors. For nano-sized Y2O 3:Eu3+, Y2SiO5:Ce3+,Tb 3+, and (Ba,Sr)2SiO4, the luminescence emission intensity of the core/shell particles were significantly higher than that of bare cores. Additionally, the moisture stability is also improved by SiO 2 shells, the luminescence output of SiO2 coated green emitting Ca3SiO4Cl2:Eu2+ and blue emitting Ca2PO4Cl:Eu2+ phosphors is comparable to that of fresh phosphors although bare phosphors shows significant luminescence quenching after water exposure.
Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.
Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier
2018-04-17
The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational spectroscopy, to ascertain features about the constituent superatomic building blocks, such as the charge of the cluster cores, by analysis of bond distances from the SCXRD data. The combination of atomic precision and intercluster interactions in these SACs produces novel collective properties, including tunable electrical transport, crystalline thermal conductivity, and ferromagnetism. In addition, we have developed a synthetic strategy to insert redox-active guests into the superstructure of SACs via single-crystal-to-single-crystal intercalation. This intercalation process allows us to tune the optical and electrical transport properties of the superatomic crystal host. These properties are explored using a host of techniques, including Raman spectroscopy, SQUID magnetometry, electrical transport measurements, electronic absorption spectroscopy, differential scanning calorimetry, and frequency-domain thermoreflectance. Superatomic crystals have proven to be both robust and tunable, representing a new method of materials design and architecture. This Account demonstrates how precisely controlling the structure and properties of nanoscale building blocks is key in developing the next generation of functional materials; several examples are discussed and detailed herein.
Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm.
Zhang, Xinlu; Zhang, Su; Xiao, Nana; Cui, Jinhui; Zhao, Jiaqun; Li, Li
2014-03-10
We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.
NASA Astrophysics Data System (ADS)
Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli
2018-03-01
We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.
Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces
NASA Astrophysics Data System (ADS)
Lanzillotti-Kimura, Norberto D.; O'Brien, Kevin P.; Rho, Junsuk; Suchowski, Haim; Yin, Xiaobo; Zhang, Xiang
2018-06-01
Acoustic vibrations at the nanoscale (GHz-THz frequencies) and their interactions with electrons, photons, and other excitations are the heart of an emerging field in physics: nanophononics. The design of ultrahigh frequency acoustic-phonon transducers, with tunable frequency, and easy to integrate in complex systems is still an open and challenging problem for the development of acoustic nanoscopies and phonon lasers. Here we show how an optimized plasmonic metasurface can act as a high-frequency phonon transducer. We report pump-probe experiments in metasurfaces composed of an array of gold nanostructures, revealing that such arrays can act as efficient and tunable photon-phonon transducers, with a strong spectral dependence on the excitation rate and laser polarization. We anticipate our work to be the starting point for the engineering of phononic metasurfaces based on plasmonic nanostructures.
High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.
2010-01-01
A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.
Multimodal transmission property in a liquid-filled photonic crystal fiber
NASA Astrophysics Data System (ADS)
Lin, Wei; Miao, Yinping; Song, Binbin; Zhang, Hao; Liu, Bo; Liu, Yange; Yan, Donglin
2015-02-01
The multimode interference (MMI) effect in a liquid-filled photonic crystal fiber (PCF) has been experimentally demonstrated by fully infiltrating the air-hole cladding of a solid-core PCF with the refractive index (RI) matching liquid whose RI is close to the silica background. Due to the weak mode confinement capability of the cladding region, several high-order modes are excited to establish the multimode interference effect. The multimode interferometer shows a good temperature tunability of 12.30 nm/K, which makes it a good candidate for a highly tunable optical filtering as well as temperature sensing applications. Furthermore, this MMI effect would have great promise in various applications such as highly sensitive multi-parameter sensing, tunable optically filtering, and surface-enhanced Raman scattering.
Lupulescu, Adonis; Frydman, Lucio
2011-10-07
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics
Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee
2004-11-30
A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.
Lu, Zhijuan; Mao, Zhiyong; Chen, Jingjing; Wang, Dajian
2015-09-21
In this work, tunable emission from green to red and the inverse tuning from red to green in α-(Ca, Sr)2SiO4:Eu(2+) phosphors were demonstrated magically by varying the incorporation content of Eu(2+) and Sr(2+) ions, respectively. The tunable emission properties and the tuning mechanism of red-shift resulting from the Eu(2+) content as well as that of blue-shift induced by the Sr(2+) content were investigated in detail. As a result of fine-controlling the incorporation content of Eu(2+), the emission peak red-shifts from 541 nm to 640 nm. On the other hand, the emission peak inversely blue-shifts from 640 nm to 546 nm through fine-adjusting the incorporation content of Sr(2+). The excellent tuning characteristics for α-(Ca, Sr)2SiO4:Eu(2+) phosphors presented in this work exhibited their various application prospects in solid-state lighting combining with a blue chip or a near-UV chip.
Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices
NASA Astrophysics Data System (ADS)
Zhu, Jinyang; Bai, Xue; Bai, Jialin; Pan, Gencai; Zhu, Yongsheng; Zhai, Yue; Shao, He; Chen, Xu; Dong, Biao; Zhang, Hanzhuang; Song, Hongwei
2018-02-01
Carbon dots (CDs), one of the most significant classes of carbon-based nanophosphors, have attracted extensive attention in recent years. However, few attempts have been reported for realizing CDs with tunable emissions, especially for obtaining the red-light emissions with high photoluminescence quantum yields. Herein, we synthesized CDs with different chromatic blue, green and red emissions by facilely changing the reaction solvent during hydrothermal conditions. The photoluminescence quantum yields of 34%, 19% and 47% for the blue, green and red emissions, respectively, were achieved. Furthermore, the solid-state CD/PVA composite films were constructed through mixing the CDs with PVA polymer, in which the self-quenching of photoluminescence of CDs had been successfully avoided benefiting from the formation of hydrogen bonds between the CDs and PVA molecules. Finally, the warm white light emitting diode (WLED) was fabricated by integrating CD/PVA film on a UV-LED chip. The WLED exhibited the Commission International de l’Eclairage coordinates (CIE) of (0.38, 0.34), correlated color temperature of 3913 K and color rendering index of 91, respectively, which were comparable with the commercial WLEDs.
NASA Astrophysics Data System (ADS)
Ilev, Ilko K.; Kumagai, Hiroshi; Toyoda, Koichi
1997-01-01
We propose a simple, highly sensitive fiber-optic autocollimation method for refractive-index dispersion measurement of solid-state and liquid bulk optical materials using a double-pass fiber Raman laser with Littrow-prism-tuned emission. The optical fiber is a key element of the scheme and serves simultaneously as a point laser source for the test, as a highly sensitive point receiver (or spatial filter) of the autocollimation backreflectance signal and as a medium for nonlinear frequency conversion and generation of a broadband continuum spectrum. When the Raman medium is a graded-index multimode fiber with powerful pumping (over 100 kW) using the second harmonic of a Q-switched Nd:YAG laser (λp=532nm), we obtain widely tunable (0.54-1.01 μm) generation in both the visible and near-IR ranges. The results obtained in the refractive-index dispersion measurements are fitted to the Sellmeier dispersion equation and the standard deviation of the experimental data from the analytical curve does not exceed 5x10-5.
A Coherent VLSI Design Environment.
1986-03-31
Schema were a CMOS sorter and a TTL PC board for gathering statistics from a Multibus. Neither design was completed using Schema, but at least in the...technique for automatically adjusting signal delays in an MOS system has been developed. The Dynamic Delay Adjustment (DDA) technique provides...34Synchronization Reliability in CMOS Technology," IEEE J. of Solid - State Circuits, Vol. SC-20, No. 4, pp. 880-883, 1985. * [8] J. Hohl, W. Larsen and L. Schooley
Hiraguchi, Ryuji; Hazama, Hisanao; Masuda, Katsuyoshi; Awazu, Kunio
2015-01-01
Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix-assisted laser desorption/ionization (IR-MALDI). Especially in the 6-7 µm-band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O-H, C=O, and CH3. Additionally, atmospheric pressure (AP) IR-MALDI, which is applicable to liquid-state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP-IR-MALDI mass spectrometry of a peptide, angiotensin II, using a mid-IR tunable laser with a tunable wavelength range of 5.50-10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H](+) of the peptide are measured using a conventional solid matrix, α-cyano-4-hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3-aminoquinoline. Other than the O-H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP-IR-MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H](+) is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O-H bending vibration mode. Moreover, long-lasting and stable ion signals are obtained from the aqueous solution. AP-IR-MALDI using a 6-7 µm-band IR tunable laser and solvents as the matrix may provide a novel on-line interface between liquid chromatography and mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.