Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.
Doris, Sean E; Pierre, Adrien; Street, Robert A
2018-04-01
In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single-transistor oscillators based on OECTs with dynamic time-varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system-level design of low-power OECT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L
2014-02-25
Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.
Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon
2014-05-21
We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.
Electrically Tunable Mid-Infrared Single-Mode High-Speed Semiconductor Laser
2010-11-01
effective and the net tunnel rate may decrease in spite of progressing carrier density buildup in the accumulation well. Enforcing the bias current at...In te ns ity , a .u . E, eV Regular ICL Figure 4 The dependence of the electroluminescence (EL) quantum energy on the bias voltage for a...spectral maximum energy increases linearly with the bias voltage. Since the dependence is measured in the sub-threshold pumping region, the linear
Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing.
Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni
2017-11-08
Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.
Top-gate organic depletion and inversion transistors with doped channel and injection contact
NASA Astrophysics Data System (ADS)
Liu, Xuhai; Kasemann, Daniel; Leo, Karl
2015-03-01
Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.
IGZO TFT-based circuit with tunable threshold voltage by laser annealing
NASA Astrophysics Data System (ADS)
Huang, Xiaoming; Yu, Guang; Wu, Chenfei
2017-11-01
In this work, a high-performance inverter based on amorphous indium-gallium-zinc oxide thin-film transistors (TFTs) has been fabricated, which consists of a driver TFT and a load TFT. The threshold voltage (Vth) of the load TFT can be tuned by applying an area-selective laser annealing. The transfer curve of the load TFT shows a parallel shift into the negative bias direction upon laser annealing. Based on x-ray photoelectron spectroscopy analyses, the negative Vth shift can be attributed to the increase of oxygen vacancy concentration within the device channel upon laser irradiation. Compared to the untreated inverter, the laser annealed inverter shows much improved switching characteristics, including a large output swing range which is close to full swing, as well as an enhanced output voltage gain. Furthermore, the dynamic performance of ring oscillator based on the laser-annealed inverter is improved.
On the Nonlinear Dynamics of a Tunable Shock Micro-switch
NASA Astrophysics Data System (ADS)
Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa
2016-12-01
A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.
NASA Astrophysics Data System (ADS)
Shian, Samuel; Kjeer, Peter; Clarke, David R.
2018-03-01
When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.
NASA Astrophysics Data System (ADS)
Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong
2018-03-01
We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.
NASA Astrophysics Data System (ADS)
Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.
2016-07-01
Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm-1). At a drain bias of 15 V, the current density reached 263 mA mm-1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.
High performance printed oxide field-effect transistors processed using photonic curing.
Garlapati, Suresh Kumar; Marques, Gabriel Cadilha; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Tahoori, Mehdi Baradaran; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-08
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In 2 O 3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
High performance printed oxide field-effect transistors processed using photonic curing
NASA Astrophysics Data System (ADS)
Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-01
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory
2015-08-11
A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.
NASA Astrophysics Data System (ADS)
Lin, Jia-De; Lin, Jyun-Wei; Lee, Chia-Rong
2018-02-01
Electrical tuning of photonic bandgap (PBG) of cholesteric liquid crystal (CLC) without deformation within the entire visible region at low voltages is not easy to achieve. This study demonstrates low-voltage-tunable PBG in full visible region with less deformation of the PBG based on smart materials of ferroelectric liquid crystal doped CLC (FLC-CLC) integrating with electrothermal film heaters. Experimental results show that the reflective color of the FLC-CLC can be low-voltage-tuned through entire visible region. The induced temperature change is induced by electrically heating the electrothermal film heaters at low voltages at near the smectic-CLC transition temperature. Coaxial electrospinning can be used to develop smart fibrous devices with FLC/CLC-core and polymer-shell which color is tunable in full visible region at low voltages.
NASA Astrophysics Data System (ADS)
Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson
2004-05-01
Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.
Correlation between tunability and anisotropy in magnetoelectric voltage tunable inductor (VTI).
Yan, Yongke; Geng, Liwei D; Zhang, Lujie; Gao, Xiangyu; Gollapudi, Sreenivasulu; Song, Hyun-Cheol; Dong, Shuxiang; Sanghadasa, Mohan; Ngo, Khai; Wang, Yu U; Priya, Shashank
2017-11-22
Electric field modulation of magnetic properties via magnetoelectric coupling in composite materials is of fundamental and technological importance for realizing tunable energy efficient electronics. Here we provide foundational analysis on magnetoelectric voltage tunable inductor (VTI) that exhibits extremely large inductance tunability of up to 1150% under moderate electric fields. This field dependence of inductance arises from the change of permeability, which correlates with the stress dependence of magnetic anisotropy. Through combination of analytical models that were validated by experimental results, comprehensive understanding of various anisotropies on the tunability of VTI is provided. Results indicate that inclusion of magnetic materials with low magnetocrystalline anisotropy is one of the most effective ways to achieve high VTI tunability. This study opens pathway towards design of tunable circuit components that exhibit field-dependent electronic behavior.
Tunable features of magnetoelectric transformers.
Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight
2009-06-01
We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5
A Microwave Tunable Bandpass Filter for Liquid Crystal Applications
NASA Astrophysics Data System (ADS)
Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan
2017-07-01
In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.
Method of preparing a tunable-focus liquid-crystal (LC) lens
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zhou, Zuowei; Ren, Hongwen
2018-02-01
A liquid crystal (LC) lens is prepared by controlling the alignment of a LC using a homogeneous polyimide (PI) layer and a homeotropic PI layer. The rubbed homogeneous PI layer has a concave surface and the homeotropic PI layer is flat. The LC sandwiched between the two PI layers obtains a hybrid alignment which has the largest gradient of refractive index (GRIN) distribution. The LC layer exhibits a lens character because of its convex shape. Since the effective refractive index of the LC is larger than that of the homogeneous PI, the LC lens can focus a light with the shortest focal length in the voltage-off state. By applying an external voltage, the LC molecules can be reoriented along the electric field. As a result, the focal length of the LC lens is reduced. The focal length of the LC lens can be tuned from 30 to 120 μm when the voltage is changed from 0 to 7 Vrms. This LC lens has the advantages of no threshold, low operating voltage, and simple fabrication.
Electrically tunable materials for microwave applications
NASA Astrophysics Data System (ADS)
Ahmed, Aftab; Goldthorpe, Irene A.; Khandani, Amir K.
2015-03-01
Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.
A tunable acoustic metamaterial with double-negativity driven by electromagnets
Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin
2016-01-01
With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196
Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation.
Guo, Changlei; Che, Kaijun; Cai, Zhiping; Liu, Shuai; Gu, Guoqiang; Chu, Chengxu; Zhang, Pan; Fu, Hongyan; Luo, Zhengqian; Xu, Huiying
2015-11-01
We experimentally demonstrate an ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation in a high-Q silica microsphere resonator. The threshold of the Brillouin microlaser is as low as 8 μW, which is close to the theoretical prediction. Moreover, the fifth-order Stokes line with a frequency shift up to 55 GHz is achieved with a coupled pump power of less than 0.6 mW. Benefiting from resonant wavelength shifts driven by thermal dynamics in the microsphere, we further realized tunable microwave signals with tuning ranges of 40 MHz at an 11 GHz band and 20 MHz at a 22 GHz band. To the best of our knowledge, it was the first attempt for tunable microwave source based on the whispering-gallery-mode Brillouin microlaser. Such a tunable microwave source from a cascaded Brillouin microlaser could find significant applications in aerospace, communication engineering, and metrology.
NASA Astrophysics Data System (ADS)
Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki
2012-11-01
This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.
Electrically tunable materials for microwave applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K.
2015-03-15
Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability aremore » important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.« less
Tunable liquid crystal photonic devices
NASA Astrophysics Data System (ADS)
Fan, Yun-Hsing
2005-07-01
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai
2013-05-13
Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.
NASA Astrophysics Data System (ADS)
Hokmabadi, Mohammad P.; Tareki, Abubaker; Rivera, Elmer; Kung, Patrick; Lindquist, Robert G.; Kim, Seongsin M.
2017-01-01
In this letter, we report the unique design, simulation and experimental verification of an electrically tunable THz metamaterial perfect absorber consisting of complementary split ring resonator (CSRR) arrays integrated with liquid crystal as the subwavelength spacer in between. We observe a shift in resonance frequency of about 5.0 GHz at 0.567 THz with a 5 V bias voltage at 1KHz between the CSRR and the metal backplane, while the absorbance and full width at half maximum bandwidth are maintained at 90% and 0.025 THz, respectively. Simulated absorption spectrum by using a uniaxial model of LC matches perfectly the experiment data and demonstrates that the effective refractive index of LC changes between 1.5 and 1.7 by sweeping a 1 kHz bias voltage from 0 V to 5 V. By matching simulation and experiment for different bias voltages, we also estimate the angle of LC molecules versus the bias voltage. Additionally, we study the created THz fields inside the spacer to gain a better insight of the characteristics of tunable response of this device. This structure and associated study can support the design of liquid crystal based tunable terahertz detectors and sensors for various applications.
Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.
Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika
2015-01-01
A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests.
Timing discriminator using leading-edge extrapolation
Gottschalk, Bernard
1983-01-01
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
NASA Astrophysics Data System (ADS)
Tanoi, Satoru; Endoh, Tetsuo
2012-04-01
A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.
Timing discriminator using leading-edge extrapolation
Gottschalk, B.
1981-07-30
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
NASA Astrophysics Data System (ADS)
Subramanyam, Guru; Cole, M. W.; Sun, Nian X.; Kalkur, Thottam S.; Sbrockey, Nick M.; Tompa, Gary S.; Guo, Xiaomei; Chen, Chonglin; Alpay, S. P.; Rossetti, G. A.; Dayal, Kaushik; Chen, Long-Qing; Schlom, Darrell G.
2013-11-01
There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.
Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik
2018-07-20
We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.
NASA Astrophysics Data System (ADS)
Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik
2018-07-01
We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.
NASA Astrophysics Data System (ADS)
Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.
2016-05-01
Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.
Mirrorless Optical Parametric Oscillation with Tunable Threshold in Cold Atoms.
Mei, Yefeng; Guo, Xianxin; Zhao, Luwei; Du, Shengwang
2017-10-13
We report the demonstration of a mirrorless optical parametric oscillator with a tunable threshold in laser-cooled atoms with four-wave mixing (FWM) using electromagnetically induced transparency. Driven by two classical laser beams, the generated Stokes and anti-Stokes fields counterpropagate and build up efficient intrinsic feedback through the nonlinear FWM process. This feedback does not involve any cavity or spatially distributed microstructures. We observe the transition of photon correlation properties from the biphoton quantum regime (below the threshold) to the oscillation regime (above the threshold). The pump threshold can be tuned by varying the operating parameters. We achieve the oscillation with a threshold as low as 15 μW.
Metal–insulator transition in a transition metal dichalcogenide: Dependence on metal contacts
NASA Astrophysics Data System (ADS)
Shimazu, Y.; Arai, K.; Iwabuchi, T.
2018-03-01
Transition metal dichalcogenides are promising layered materials for realizing novel nanoelectronic and nano-optoelectronic devices. Molybdenum disulfide (MoS2), a typical transition metal dichalcogenide, has been extensively investigated due to the presence of a sizable band gap, which enables the use of MoS2 as a channel material in field-effect transistors (FET). The gate-voltage-tunable metal–insulator transition and superconductivity using MoS2 have been demonstrated in previous studies. These interesting phenomena can be considered as quantum phase transitions in two-dimensional systems. In this study, we observed that the transport properties of thin MoS2 flakes in FET geometry significantly depend on metal contacts. On comparing Ti/Au with Al contacts, it was found that the threshold voltages for FET switching and metal–insulator transition were considerably lower for the device with Al contacts. This result indicated the significant influence of the Al contacts on the properties of MoS2 devices.
Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend
NASA Astrophysics Data System (ADS)
Reyes, R.; Cremona, M.; Teotonio, E. E. S.; Brito, H. F.; Malta, O. L.
2004-09-01
Light emission from organic electroluminescent diodes (OLEDs) in which mixed samarium and europium β-diketonate complexes, [Sm 0.7Eu 0.3(TTA) 3(TPPO) 2], was used as the emitting layer is described. The electroluminescence spectra exhibit narrow peaks arising from 4f-intraconfigurational transitions of the Sm 3+ and Eu 3+ ions and a broad emission band attributed to the electrophosphorescence of the TTA ligand. The intensity ratio of the peaks determined by the bias voltage applied to the OLED, together with the ligand electrophosphorescence, allows to obtain a voltage-tunable color light source.
NASA Astrophysics Data System (ADS)
Sosnowski, M.; Eager, G. S., Jr.
1983-06-01
Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.
Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.
Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana
2016-12-01
Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling and simulation of floating gate nanocrystal FET devices and circuits
NASA Astrophysics Data System (ADS)
Hasaneen, El-Sayed A. M.
The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to nanocrystal charge has a strong effect on the memory characteristics. Also, the programming operation of the memory cell has been investigated. The tunneling rate from quantum well channel to quantum dot (nanocrystal) gate is calculated. The calculations include various memory parameters, wavefunctions, and energies of quantum well channel and quantum dot gate. The use of floating gate nanocrystal memory as a transistor with a programmable threshold voltage has been demonstrated. The incorporation of FG-NCFETs to design programmable integrated circuit building blocks has been discussed. This includes the design of programmable current and voltage reference circuits. Finally, we demonstrated the design of tunable gain op-amp incorporating FG-NCFETs. Programmable integrated circuit building blocks can be used in intelligent analog and digital systems.
Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian
2016-10-12
Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.
NASA Technical Reports Server (NTRS)
Burns, Bradley M. (Inventor); Blalock, Norman N. (Inventor)
2011-01-01
A short circuit protection system includes an inductor, a switch, a voltage sensing circuit, and a controller. The switch and inductor are electrically coupled to be in series with one another. A voltage sensing circuit is coupled across the switch and the inductor. A controller, coupled to the voltage sensing circuit and the switch, opens the switch when a voltage at the output terminal of the inductor transitions from above a threshold voltage to below the threshold voltage. The controller closes the switch when the voltage at the output terminal of the inductor transitions from below the threshold voltage to above the threshold voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanyam, Guru, E-mail: gsubramanyam1@udayton.edu; Cole, M. W., E-mail: melanie.w.cole.civ@mail.mil; Sun, Nian X.
2013-11-21
There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstratedmore » in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.« less
High Quality Liquid Crystal Tunable Lenses and Optimization with Floating Electrodes
ERIC Educational Resources Information Center
Li, Liwei
2013-01-01
In addition to the display application, Liquid Crystals (LC) can be very useful in other applications such as beam steering, tunable lenses, etc. Electro-optical LC tunable lenses have been considered as an alternative to conventional glass lenses because of their ability to change their focal length with the application of a control voltage, as…
Synthesis of polymer nanostructures with conductance switching properties
Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh
2015-03-03
The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.
Design of multi-wavelength tunable filter based on Lithium Niobate
NASA Astrophysics Data System (ADS)
Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun
2018-05-01
A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.
NASA Astrophysics Data System (ADS)
Inoue, Shunya; Nishimura, Shun; Nakahama, Masanori; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio
2018-04-01
For use in wavelength division multiplexing (WDM) with high-speed wavelength routing functions, the fast wavelength switching of tunable lasers is a key function. A tunable MEMS vertical cavity surface emitting laser (VCSEL) is a good candidate as a light source for this purpose. The cantilever in MEMS VCSELs has a high mechanical resonance frequency thanks to its small size, but the switching time is limited by the ringing of the cantilever structure. In this paper, we analyzed the mechanical behavior of a cantilever MEMS mirror and demonstrated ringing-free operation with an engineered voltage signal. The applied voltage waveform was optimized in a two-step format and we experimentally obtained ringing free wavelength switching. We measured the transient response of the wavelength by inserting a tunable filter, exhibiting the settling time of less than 2.5 µs, which corresponds to a half period of the cantilever resonance frequency.
Corona-vacuum failure mechanism test facilities
NASA Technical Reports Server (NTRS)
Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.
1975-01-01
A nondestructive corona-vacuum test facility for testing high-voltage power system components has been developed using commercially available hardware. The facility simulates operating temperature and vacuum while monitoring coronal discharges with residual gases. Corona threshold voltages obtained from statorette tests with various gas-solid dielectric systems and comparison with calculated data support the following conclusions: (1) air gives the highest corona threshold voltage and helium the lowest, with argon and helium-xenon mixtures intermediate; (2) corona threshold voltage increases with gas pressure; (3) corona threshold voltage for an armature winding can be accurately calculated by using Paschen curves for a uniform field; and (4) Paschen curves for argon can be used to calculate the corona threshold voltage in He-Xe mixtures, for which Paschen curves are unavailable.-
NASA Astrophysics Data System (ADS)
Oh, Kyonghwan; Kwon, Oh-Kyong
2012-03-01
A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.
NASA Astrophysics Data System (ADS)
Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng
2013-09-01
A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.
NASA Astrophysics Data System (ADS)
Choi, Woo Young; Woo, Dong-Soo; Choi, Byung Yong; Lee, Jong Duk; Park, Byung-Gook
2004-04-01
We proposed a stable extraction algorithm for threshold voltage using transconductance change method by optimizing node interval. With the algorithm, noise-free gm2 (=dgm/dVGS) profiles can be extracted within one-percent error, which leads to more physically-meaningful threshold voltage calculation by the transconductance change method. The extracted threshold voltage predicts the gate-to-source voltage at which the surface potential is within kT/q of φs=2φf+VSB. Our algorithm makes the transconductance change method more practical by overcoming noise problem. This threshold voltage extraction algorithm yields the threshold roll-off behavior of nanoscale metal oxide semiconductor field effect transistor (MOSFETs) accurately and makes it possible to calculate the surface potential φs at any other point on the drain-to-source current (IDS) versus gate-to-source voltage (VGS) curve. It will provide us with a useful analysis tool in the field of device modeling, simulation and characterization.
2004-05-12
Structural Engineering, La Jolla, CA 92093 14. ABSTRACT Tunable optical filters based on a Fabry - Perot element are a critical component in many...wavelength based fiber optic sensor systems. This report compares the performance of two fiber-pigtailed tunable optical filters, the fiber Fabry - Perot (FFP...both filters suggests that they can operate at frequencies up to 20 kHz and possibly as high as 100 kHz. 15. SUBJECT TERMS Tunable Fabry - Perot filters
GIANT DIELECTRIC TUNABLE BEHAVIOR OF Pr-DOPED SrTiO3 AT LOW TEMPERATURE
NASA Astrophysics Data System (ADS)
Wei, T.; Song, Q. G.; Zhou, Q. J.; Li, Z. P.; Chen, Y. F.; Qi, X. L.; Guo, S. Q.; Liu, J.-M.
2012-03-01
Contrast with conventional dielectric tunable materials such as barium strontium titanate (BST), here, we report one new dielectric tunable behavior for Sr1-xPrxTiO3 system at low temperature. Giant dielectric tunability is confirmed in this system. More importantly, the efficient dielectric tunability can be realized just using small bias field. In addition, critical threshold electric field is also confirmed. This phenomenon may be related with the competition interaction of polar state with quantum fluctuations.
Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique
NASA Astrophysics Data System (ADS)
Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.
2016-04-01
We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.
Aghamohammadi, Mahdieh; Rödel, Reinhold; Zschieschang, Ute; Ocal, Carmen; Boschker, Hans; Weitz, R Thomas; Barrena, Esther; Klauk, Hagen
2015-10-21
The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.
NASA Astrophysics Data System (ADS)
Shin, Hee-Sun; Lee, Won-Kyu; Park, Sang-Guen; Kuk, Seung-Hee; Han, Min-Koo
2009-03-01
A new hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) pixel circuit for active-matrix organic light emission diodes (AM-OLEDs), which significantly compensates the OLED current degradation by memorizing the threshold voltage of driving TFT and suppresses the threshold voltage shift of a-Si:H TFTs by negative bias annealing, is proposed and fabricated. During the first half of each frame, the driving TFT of the proposed pixel circuit supplies current to the OLED, which is determined by modified data voltage in the compensation scheme. The proposed pixel circuit was able to compensate the threshold voltage shift of the driving TFT as well as the OLED. During the remaining half of each frame, the proposed pixel circuit induces the recovery of the threshold voltage degradation of a-Si:H TFTs owing to the negative bias annealing. The experimental results show that the proposed pixel circuit was able to successfully compensate for the OLED current degradation and suppress the threshold voltage degradation of the driving TFT.
NASA Astrophysics Data System (ADS)
Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.
2018-04-01
Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.
High voltage threshold for stable operation in a dc electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Masahiro, E-mail: masahiro@post.kek.jp; Nishimori, Nobuyuki, E-mail: n-nishim@tagen.tohoku.ac.jp
We report clear observation of a high voltage (HV) threshold for stable operation in a dc electron gun. The HV hold-off time without any discharge is longer than many hours for operation below the threshold, while it is roughly 10 min above the threshold. The HV threshold corresponds to the minimum voltage where discharge ceases. The threshold increases with the number of discharges during HV conditioning of the gun. Above the threshold, the amount of gas desorption per discharge increases linearly with the voltage difference from the threshold. The present experimental observations can be explained by an avalanche discharge modelmore » based on the interplay between electron stimulated desorption (ESD) from the anode surface and subsequent secondary electron emission from the cathode by the impact of ionic components of the ESD molecules or atoms.« less
Zoom system without moving element by using two liquid crystal lenses with spherical electrode
NASA Astrophysics Data System (ADS)
Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.
2017-08-01
A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.
Mid-infrared tunable metamaterials
Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott
2017-07-11
A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
Mid-infrared tunable metamaterials
Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul
2015-04-28
A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
Device for monitoring cell voltage
Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE
2012-08-21
A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.
Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.
Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A
2018-05-09
Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.
Plasma-Based Tunable High Frequency Power Limiter
NASA Astrophysics Data System (ADS)
Semnani, Abbas; Macheret, Sergey; Peroulis, Dimitrios
2016-09-01
Power limiters are often employed to protect sensitive receivers from being damaged or saturated by high-power incoming waves. Although wideband low-power limiters based on semiconductor technology are widely available, the options for high-power frequency-selective ones are very few. In this work, we study the application of a gas discharge tube (GDT) integrated in an evanescent-mode (EVA) cavity resonator as a plasma-based power limiter. Plasmas can inherently handle higher power in comparison with semiconductor diodes. Also, using a resonant structure provides the ability of having both lower threshold power and frequency-selective limiting, which are important if only a narrowband high-power signal is targeted. Higher input RF power results in stronger discharge in the GDT and consequently higher electron density which results in larger reflection. It is also possible to tune the threshold power by pre-ionizing the GDT with a DC bias voltage. As a proof of concept, a 2-GHz EVA resonator loaded by a 90-V GDT was fabricated and measured. With reasonable amount of insertion loss, the limiting threshold power was successfully tuned from 8.3 W to 590 mW when the external DC bias was varied from 0 to 80 V. The limiter performed well up to 100 W of maximum available input power.
Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz
NASA Technical Reports Server (NTRS)
Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.
2011-01-01
A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.
Tunable microlens arrays using polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Ren, Hongwen; Fan, Yun-Hsing; Gauza, Sebastian; Wu, Shin-Tson
2004-02-01
A tunable-focus microlens array based on polymer network liquid crystal (PNLC) is demonstrated. The PNLC was prepared using an ultraviolet (UV) light exposure through a patterned photomask. The photocurable monomer in each of the UV exposed spot forms an inhomogeneous centro-symmetrical polymer network which acts as a lens when a homogeneous electric field is applied to the cell. The focal length of the microlens arrays is tunable with the applied voltage.
Multiple wavelength tunable surface-emitting laser arrays
NASA Astrophysics Data System (ADS)
Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei
1991-06-01
Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.
Spike-Threshold Variability Originated from Separatrix-Crossing in Neuronal Dynamics
Wang, Longfei; Wang, Hengtong; Yu, Lianchun; Chen, Yong
2016-01-01
The threshold voltage for action potential generation is a key regulator of neuronal signal processing, yet the mechanism of its dynamic variation is still not well described. In this paper, we propose that threshold phenomena can be classified as parameter thresholds and state thresholds. Voltage thresholds which belong to the state threshold are determined by the ‘general separatrix’ in state space. We demonstrate that the separatrix generally exists in the state space of neuron models. The general form of separatrix was assumed as the function of both states and stimuli and the previously assumed threshold evolving equation versus time is naturally deduced from the separatrix. In terms of neuronal dynamics, the threshold voltage variation, which is affected by different stimuli, is determined by crossing the separatrix at different points in state space. We suggest that the separatrix-crossing mechanism in state space is the intrinsic dynamic mechanism for threshold voltages and post-stimulus threshold phenomena. These proposals are also systematically verified in example models, three of which have analytic separatrices and one is the classic Hodgkin-Huxley model. The separatrix-crossing framework provides an overview of the neuronal threshold and will facilitate understanding of the nature of threshold variability. PMID:27546614
Spike-Threshold Variability Originated from Separatrix-Crossing in Neuronal Dynamics.
Wang, Longfei; Wang, Hengtong; Yu, Lianchun; Chen, Yong
2016-08-22
The threshold voltage for action potential generation is a key regulator of neuronal signal processing, yet the mechanism of its dynamic variation is still not well described. In this paper, we propose that threshold phenomena can be classified as parameter thresholds and state thresholds. Voltage thresholds which belong to the state threshold are determined by the 'general separatrix' in state space. We demonstrate that the separatrix generally exists in the state space of neuron models. The general form of separatrix was assumed as the function of both states and stimuli and the previously assumed threshold evolving equation versus time is naturally deduced from the separatrix. In terms of neuronal dynamics, the threshold voltage variation, which is affected by different stimuli, is determined by crossing the separatrix at different points in state space. We suggest that the separatrix-crossing mechanism in state space is the intrinsic dynamic mechanism for threshold voltages and post-stimulus threshold phenomena. These proposals are also systematically verified in example models, three of which have analytic separatrices and one is the classic Hodgkin-Huxley model. The separatrix-crossing framework provides an overview of the neuronal threshold and will facilitate understanding of the nature of threshold variability.
NASA Technical Reports Server (NTRS)
Asenov, Asen
1998-01-01
A three-dimensional (3-D) "atomistic" simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 microns MOSFET's is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFET's. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFET's was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant position.
NASA Astrophysics Data System (ADS)
Takahashi, Hajime; Hanafusa, Yuki; Kimura, Yoshinari; Kitamura, Masatoshi
2018-03-01
Oxygen plasma treatment has been carried out to control the threshold voltage in organic thin-film transistors (TFTs) having a SiO2 gate dielectric prepared by rf sputtering. The threshold voltage linearly changed in the range of -3.7 to 3.1 V with the increase in plasma treatment time. Although the amount of change is smaller than that for organic TFTs having thermally grown SiO2, the tendency of the change was similar to that for thermally grown SiO2. To realize different plasma treatment times on the same substrate, a certain region on the SiO2 surface was selected using a shadow mask, and was treated with oxygen plasma. Using the process, organic TFTs with negative threshold voltages and those with positive threshold voltages were fabricated on the same substrate. As a result, enhancement/depletion inverters consisting of the organic TFTs operated at supply voltages of 5 to 15 V.
NASA Astrophysics Data System (ADS)
Imamoto, Takuya; Ma, Yitao; Muraguchi, Masakazu; Endoh, Tetsuo
2015-04-01
In this paper, DC and low-frequency noise (LFN) characteristics have been investigated with actual measurement data in both n- and p-type vertical MOSFETs (V-MOSFETs) for the first time. The V-MOSFETs which was fabricated on 300 mm bulk silicon wafer process have realized excellent DC performance and a significant reduction of flicker (1/f) noise. The measurement results show that the fabricated V-MOSFETs with 60 nm silicon pillar and 100 nm gate length achieve excellent steep sub-threshold swing (69 mV/decade for n-type and 66 mV/decade for p-type), good on-current (281 µA/µm for n-type 149 µA/µm for p-type), low off-leakage current (28.1 pA/µm for n-type and 79.6 pA/µm for p-type), and excellent on-off ratio (1 × 107 for n-type and 2 × 106 for p-type). In addition, it is demonstrated that our fabricated V-MOSFETs can control the threshold voltage (Vth) by changing the channel doping condition, which is the useful and low-cost technique as it has been widely used in the conventional bulk planar MOSFET. This result indicates that V-MOSFETs can control Vth more finely and flexibly by the combined the use of the doping technique with other techniques such as work function engineering of metal-gate. Moreover, it is also shown that V-MOSFETs can suppress 1/f noise (L\\text{gate}WS\\text{Id}/I\\text{d}2 of 10-13-10-11 µm2/Hz for n-type and 10-12-10-10 µm2/Hz for p-type) to one or two order lower level than previously reported nanowire type MOSFET, FinFET, Tri-Gate, and planar MOSFETs. The results have also proved that both DC and 1/f noise performances are independent from the bias voltage which is applied to substrate or well layer. Therefore, it is verified that V-MOSFETs can eliminate the effects from substrate or well layer, which always adversely affects the circuit performances due to this serial connection.
Voltage tunable two-color superlattice infrared photodetectors
NASA Astrophysics Data System (ADS)
Majumdar, Amlan; Choi, Kwong-Kit; Reno, John L.; Tsui, Daniel C.
2004-11-01
We present the design and fabrication of voltage tunable two-color superlattice infrared photodetectors (SLIPs), where the detection wavelength switches from the long-wavelength infrared (LWIR) range to the mid-wavelength infrared (MWIR) range upon reversing the polarity of applied bias. The photoactive region of these detectors contains multiple periods of two distinct short-period SLs that are designed for MWIR and LWIR detection. The voltage tunable operation is achieved by using two types of thick blocking barriers between adjacent SLs - undoped barriers on one side for low energy electrons and heavily-doped layers on the other side for high energy electrons. We grew two SLIP structures by molecular beam epitaxy. The first one consists of two AlGaAs/GaAs SLs with the detection range switching from the 7-11 μm band to the 4-7 μm range on reversing the bias polarity. The background-limited temperature is 55 and 80 K for LWIR and MWIR detection, respectively. The second structure comprises of strained InGaAs/GaAs/AlGaAs SLs and AlGaAs/GaAs SLs. The detection range of this SLIP changes from the 8-12 μm band to the 3-5 μm band on switching the bias polarity. The background-limited temperature is 70 and 110 K for LWIR and MWIR detection, respectively. This SLIP is the first ever voltage tunable MWIR/LWIR detector with performance comparable to those of one-color quantum-well infrared detectors designed for the respective wavelength ranges. We also demonstrate that the corrugated light coupling scheme, which enables normal-incidence absorption, is suitable for the two-color SLIPs. Since these SLIPs are two-terminal devices, they can be used with the corrugated geometry for the production of low-cost large-area two-color focal plane arrays.
Silicon graphene waveguide tunable broadband microwave photonics phase shifter.
Capmany, José; Domenech, David; Muñoz, Pascual
2014-04-07
We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Anyuan; Liu, Erfu; Long, Mingsheng
2016-05-30
We studied electrical transport properties including gate-tunable rectification inversion and polarity inversion, in atomically thin graphene/WSe{sub 2} heterojunctions. Such engrossing characteristics are attributed to the gate tunable mismatch of Fermi levels of graphene and WSe{sub 2}. Also, such atomically thin heterostructure shows excellent performances on photodetection. The responsivity of 66.2 mA W{sup −1} (without bias voltage) and 350 A W{sup −1} (with 1 V bias voltage) can be reached. What is more, the devices show great external quantum efficiency of 800%, high detectivity of 10{sup 13} cm Hz{sup 1/2}/W, and fast response time of 30 μs. Our study reveals that vertical stacking of 2D materials has great potentialmore » for multifunctional electronic and optoelectronic device applications in the future.« less
Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh
2015-04-01
Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.
Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...
2017-08-03
A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less
Thin-Film Ferroelectric Tunable Microwave Devices Being Developed
NASA Technical Reports Server (NTRS)
VanKeuls, Frederick W.
1999-01-01
Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.
Hafnium transistor process design for neural interfacing.
Parent, David W; Basham, Eric J
2009-01-01
A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.
Constant-current regulator improves tunnel diode threshold-detector performance
NASA Technical Reports Server (NTRS)
Cancro, C. A.
1965-01-01
Grounded-base transistor is placed in a tunnel diode threshold detector circuit, and a bias voltage is applied to the tunnel diode. This provides the threshold detector with maximum voltage output and overload protection.
Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri
2013-10-04
Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei
A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.
Low-Energy Tunable Self-Modulated Nanolasers (1.1 SHORT-TERM INNOVATIVE RESEARCH (STIR) PROGRAM)
2016-09-28
Optoelectronics: Low -Energy Tunable Self- Modulated Nanolasers (1.1 SHORT-TERM INNOVATIVE RESEARCH (STIR) PROGRAM) Our goal was to exploit Quantum...reviewed journals: Final Report: Optoelectronics: Low -Energy Tunable Self-Modulated Nanolasers (1.1 SHORT-TERM INNOVATIVE RESEARCH (STIR) PROGRAM...metal layer. By optimizing the thickness of the low index shield between the metal and semiconductor, the gain threshold of the laser can be
NASA Astrophysics Data System (ADS)
Yakunin, Alexander N.; Akchurin, Garif G.; Aban'shin, Nikolay P.; Gorfinkel, Boris I.
2014-03-01
The work is devoted to the development of a new direction in creating of broadband photo sensors which distinctive feature is the possibility of dynamic adjustment of operating frequency range. The author's results of study of red threshold control of classic photoelectric effect were the basis for the work implementation. This effect was predicted theoretically and observed experimentally during irradiation of nanoscale carbon structure of planar-edge type by stream of low-energy photons. The variation of the accelerating voltage within a small range allows you to change photoelectric threshold for carbon in a wide range - from UV to IR. This is the consequence of the localization of electrostatic field at tip of the blade planar structure and of changes in the conditions of non-equilibrium electrons tunneling from the boundary surface of the cathode into the vacuum. The generation of nonequilibrium electrons in the carbon film thickness of 20 nm has a high speed which provides high performance of photodetector. The features of the use of nanoscale carbon structure photocurrent registration as in the prethreshold regime, and in the mode of field emission existence are discussed. The results of simulation and experimental examination of photosensor samples are given. It is shown that the observed effect is a single-photon tunneling. This in combination with the possibility of highspeed dynamic tuning determines the good perspectives for creation of new devices working in the mode of select multiple operating spectral bands for the signal recording. The architecture of such devices is expected to be significantly simpler than the conventional ones, based on the use of tunable filters.
A tunable microstrip SQUID amplifier for the Axion Dark Matter eXperiment (ADMX)
NASA Astrophysics Data System (ADS)
O'Kelley, Sean; Hansen, Jorn; Weingarten, Elan; Mueck, Michael; Hilton, Gene; Clarke, John
2014-03-01
We describe a microstrip SQUID (Superconducting QUantum Interference Device) amplifier (MSA) used as the photon detector in the Axion Dark Matter eXperiment (ADMX). Cooled to 100 mK or lower, an optimized MSA approaches the quantum limit of detection. The axion dark matter is detected via Primakoff conversion to a microwave photon in a high-Q (~ 105) tunable microwave cavity, currently cooled to about 1.6 K, in the presence of a 7-tesla magnetic field. The MSA consists of a square loop of thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis in the current-voltage characteristic. The microstrip is a square Nb coil deposited over an intervening insulating layer. Since the photon frequency is determined by the unknown axion mass, the cavity and amplifier must be tunable over a broad frequency range. Tunability is achieved by terminating the microstrip with a GaAs varactor diode with a voltage-controlled capacitance that enables us to vary the resonance from nearly 1/2 to 1/4 of a wavelength. With the SQUID current-biased in the voltage state, we demonstrate a gain of typically 20 dB over nearly one octave, 415 MHz to 800 MHz. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, NSF grants PHY-1067242 and PHY-1306729, and the Livermore LDRD program.
Tunable electronic lens using a gradient polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Ren, Hongwen; Wu, Shin-Tson
2003-01-01
Tunable electronic lenses using gradient polymer network liquid crystal (PNLC) cells were demonstrated. By changing the photomask pattern, both positive and negative lenses were fabricated. The advantages of such a PNLC lens are low operation voltage, large aperture size, and simple electrode design. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC cells is considered.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu
2016-11-01
Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.
Tunable rejection filters with ultra-wideband using zeroth shear mode plate wave resonators
NASA Astrophysics Data System (ADS)
Kadota, Michio; Sannomiya, Toshio; Tanaka, Shuji
2017-07-01
This paper reports wide band rejection filters and tunable rejection filters using ultra-wideband zeroth shear mode (SH0) plate wave resonators. The frequency range covers the digital TV band in Japan that runs from 470 to 710 MHz. This range has been chosen to meet the TV white space cognitive radio requirements of rejection filters. Wide rejection bands were obtained using several resonators with different frequencies. Tunable rejection filters were demonstrated using Si diodes connected to the band rejection filters. Wide tunable ranges as high as 31% were measured by applying a DC voltage to the Si diodes.
Method and system for controlling a rotational speed of a rotor of a turbogenerator
Stahlhut, Ronnie Dean; Vuk, Carl Thomas
2008-12-30
A system and method controls a rotational speed of a rotor or shaft of a turbogenerator in accordance with a present voltage level on a direct current bus. A lower threshold and a higher threshold are established for a speed of a rotor or shaft of a turbogenerator. A speed sensor determines speed data or a speed signal for the rotor or shaft associated with a turbogenerator. A voltage regulator adjusts a voltage level associated with a direct current bus within a target voltage range if the speed data or speed signal indicates that the speed is above the higher threshold or below the lower threshold.
Lower-Order Compensation Chain Threshold-Reduction Technique for Multi-Stage Voltage Multipliers.
Dell' Anna, Francesco; Dong, Tao; Li, Ping; Wen, Yumei; Azadmehr, Mehdi; Casu, Mario; Berg, Yngvar
2018-04-17
This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.
Response of pMOS dosemeters on gamma-ray irradiation during its re-use.
Pejovic, Milic M; Pejovic, Momcilo M; Jaksic, Aleksandar B
2013-08-01
Response of pMOS dosemeters during two successive irradiations with gamma-ray irradiation to a dose of 35 Gy and annealing at room and elevated temperature has been studied. The response was followed on the basis of threshold voltage shift, determined from transfer characteristics, as a function of absorbed dose or annealing time. It was shown that the threshold voltage shifts during first and second irradiation for the gate bias during irradiation of 5 and 2.5 V insignificantly differ although complete fading was not achieved after the first cycle of annealing. In order to analyse the defects formed in oxide and at the interface during irradiation and annealing, which are responsible for threshold voltage shift, midgap and charge-pumping techniques were used. It was shown that during first irradiation and annealing a dominant influence to threshold voltage shift is made by fixed oxide traps, while at the beginning of the second annealing cycle, threshold voltage shift is a consequence of both fixed oxide traps and slow switching traps.
Tunable optical assembly with vibration dampening
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2009-01-01
An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.
NASA Astrophysics Data System (ADS)
Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto
2018-04-01
Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.
Toward blue emission in ZnO based LED
NASA Astrophysics Data System (ADS)
Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria
2012-03-01
The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.
Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme.
Jenkins, A S; Lebrun, R; Grimaldi, E; Tsunegi, S; Bortolotti, P; Kubota, H; Yakushiji, K; Fukushima, A; de Loubens, G; Klein, O; Yuasa, S; Cros, V
2016-04-01
It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, Subhash
2000-01-01
In this paper, we investigate various aspects of the polysilicon gate influence on the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFET's with ultrathin gate oxides. The study is done by using an efficient statistical three-dimensional (3-D) "atomistic" simulation technique described else-where. MOSFET's with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveal that even in devices with a single crystal gate the gate depletion and the random dopants in it are responsible for a substantial fraction of the threshold voltage fluctuations when the gate oxide is scaled-in the range of 1-2 nm. Simulation experiments have been used in order to separate the enhancement in the threshold voltage fluctuations due to an effective increase in the oxide thickness associated with the gate depletion from the direct influence of the random dopants in the gate depletion layer. The results of the experiments show that the both factors contribute to the enhancement of the threshold voltage fluctuations, but the effective increase in the oxide-thickness has a dominant effect in the investigated range of devices. Simulations illustrating the effect or the polysilicon grain boundaries on the threshold voltage variation are also presented.
NASA Astrophysics Data System (ADS)
Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao
2018-04-01
In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.
Double Sided-Design of Electrodes Driving Tunable Dielectrophoretic Miniature Lens.
Almoallem, Yousuf; Jiang, Hongrui
2017-10-01
We demonstrate the design methodology, geometrical analysis, device fabrication, and testing of a double-sided design (DSD) of tunable-focus dielectrophoretic liquid miniature lenses. This design is intended to reduce the driving voltage for tuning the lens, utilizing a double-sided electrode design that enhances the electric field magnitude. Fabricated devices were tested and measurements on a goniometer showed changes of up to 14° in the contact angle when the dielectrophoretic force was applied under 25 V rms . Correspondingly, the back focal length of the liquid lens changed from 67.1 mm to 14.4 mm when the driving voltage was increased from zero to 25 V rms . The driving voltage was significantly lower than those previously reported with similar device dimensions using single-sided electrode designs. This design allows for a range of both positive and negative menisci dependent on the volume of the lens liquid initially dispensed.
Threshold voltage control in TmSiO/HfO2 high-k/metal gate MOSFETs
NASA Astrophysics Data System (ADS)
Dentoni Litta, E.; Hellström, P.-E.; Östling, M.
2015-06-01
High-k interfacial layers have been proposed as a way to extend the scalability of Hf-based high-k/metal gate CMOS technology, which is currently limited by strong degradations in threshold voltage control, channel mobility and device reliability when the chemical oxide (SiOx) interfacial layer is scaled below 0.4 nm. We have previously demonstrated that thulium silicate (TmSiO) is a promising candidate as a high-k interfacial layer, providing competitive advantages in terms of EOT scalability and channel mobility. In this work, the effect of the TmSiO interfacial layer on threshold voltage control is evaluated, showing that the TmSiO/HfO2 dielectric stack is compatible with threshold voltage control techniques commonly used with SiOx/HfO2 stacks. Specifically, we show that the flatband voltage can be set in the range -1 V to +0.5 V by the choice of gate metal and that the effective workfunction of the stack is properly controlled by the metal workfunction in a gate-last process flow. Compatibility with a gate-first approach is also demonstrated, showing that integration of La2O3 and Al2O3 capping layers can induce a flatband voltage shift of at least 150 mV. Finally, the effect of the annealing conditions on flatband voltage is investigated, finding that the duration of the final forming gas anneal can be used as a further process knob to tune the threshold voltage. The evaluation performed on MOS capacitors is confirmed by the fabrication of TmSiO/HfO2/TiN MOSFETs achieving near-symmetric threshold voltages at sub-nm EOT.
Design, Fabrication and Testing of Tunable RF Meta-atoms
2012-06-14
Simple cantilever beam with actuation pad covered with a thin dielectric layer for short circuit protection...Cantilever actuation simulated with CoventorWare ® to determine the biasing voltage necessary to draw the cantilevers to the actuation pads ...Capacitive tunable meta-atom fabricated on quartz substrate. The meta-atom had to be cut at the metal trace leading to the cantilever actuation pads
Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control
NASA Technical Reports Server (NTRS)
Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew
2015-01-01
The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.
Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex
NASA Astrophysics Data System (ADS)
Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.
2004-07-01
In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.
Electrically tunable all-dielectric optical metasurfaces based on liquid crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komar, Andrei; Fang, Zheng; Bohn, Justus
2017-02-13
We demonstrate electrical tuning of the spectral response of a Mie-resonant dielectric metasurface consisting of silicon nanodisks embedded into liquid crystals. We use the reorientation of nematic liquid crystals in a moderate applied electric field to alter the anisotropic permittivity tensor around the metasurface. By switching a control voltage ‘on’ and ‘off’ we induce a large spectral shift of the metasurface resonances, resulting in an absolute transmission modulation up to 75%. To the best of our knowledge, this is the first experimental demonstration of voltage control of a dielectric metasurface, paving the way for new types of electrically tunable metadevices,more » including dynamic displays and holograms.« less
Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators
Lin, Yan-You; Evans, Randall D.; Welch, Erin; Hsu, Bang-Ning; Madison, Andrew C.; Fair, Richard B.
2010-01-01
A low voltage, two-level-metal, and multi-layer insulator electrowetting-on-dielectric (EWD) platform is presented. Dispensing 300pl droplets from 140nl closed on-chip reservoirs was accomplished with as little as 11.4V solely through EWD forces, and the actuation threshold voltage was 7.2V with a 1Hz voltage switching rate between electrodes. EWD devices were fabricated with a multilayer insulator consisting of 135nm sputtered tantalum pentoxide (Ta2O5) and 180nm parylene C coated with 70nm of CYTOP. Furthermore, the minimum actuation threshold voltage followed a previously published scaling model for the threshold voltage, VT, which is proportional to (t/εr)1/2, where t and εr are the insulator thickness and dielectric constant respectively. Device threshold voltages are compared for several insulator thicknesses (200nm, 500nm, and 1µm), different dielectric materials (parylene C and tantalum pentoxide), and homogeneous versus heterogeneous compositions. Additionally, we used a two-level-metal fabrication process, which enables the fabrication of smaller and denser electrodes with high interconnect routing flexibility. We also have achieved low dispensing and actuation voltages for scaled devices with 30pl droplets. PMID:20953362
Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode
NASA Astrophysics Data System (ADS)
Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; Shojaei, S.
2017-04-01
Here, we study the negative differential resistance (NDR) of Dirac electrons in biased planar graphene superlattice (PGSL) and investigate the transport characteristics by adopted transfer matrix method within Landauer-Buttiker formalism. Our model device is based on one-dimensional Kronig-Penney type electrostatic potential in monolayer graphene deposited on a substrate, where the bias voltage is applied by two electrodes in the left and right. At Low bias voltages, we found that NDR appears due to breaking of minibands to Wannier-Stark ladders (WSLs). At the critical bias voltage, delocalization appeared by WS states leads to tunneling peak current in current-voltage (I-V) characteristics. With increasing bias voltage, crossing of rungs from various WSL results in multi-peak NDR. The results demonstrate that the structure parameters like barrier/well thickness and barrier height have remarkable effect on I-V characteristics of PGSL. In addition, Dirac gap enhances peak to valley (PVR) value due to suppressing Klein tunneling. Our results show that the tunable PVR in PGSL resonant tunneling diode can be achievable by structure parameters engineering. NDR at ultra-low bias voltages, such as 100 mV, with giant PVR of 20 is obtained. In our device, the multiple same NDR peaks with ultra-low bias voltage provide promising prospect for multi-valued memories and the low power nanoelectronic tunneling devices.
Wang, Huiliang; Wei, Peng; Li, Yaoxuan; Han, Jeff; Lee, Hye Ryoung; Naab, Benjamin D.; Liu, Nan; Wang, Chenggong; Adijanto, Eric; Tee, Benjamin C.-K.; Morishita, Satoshi; Li, Qiaochu; Gao, Yongli; Cui, Yi; Bao, Zhenan
2014-01-01
Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives processed via either solution coating or vacuum deposition. The threshold voltages of our polythiophene-sorted SWNT thin-film transistors can be tuned accurately and continuously over a wide range. Photoelectron spectroscopy measurements confirmed that the SWNT Fermi level shifted to the conduction band edge with increasing doping concentration. Using this doping approach, we proceeded to fabricate SWNT complementary inverters by inkjet printing of the dopants. We observed an unprecedented noise margin of 28 V at VDD = 80 V (70% of 1/2VDD) and a gain of 85. Additionally, robust SWNT complementary metal−oxide−semiconductor inverter (noise margin 72% of 1/2VDD) and logic gates with rail-to-rail output voltage swing and subnanowatt power consumption were fabricated onto a highly flexible substrate. PMID:24639537
Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT
NASA Astrophysics Data System (ADS)
Malik, Amit; Sharma, Chandan; Laishram, Robert; Bag, Rajesh Kumar; Rawal, Dipendra Singh; Vinayak, Seema; Sharma, Rajesh Kumar
2018-04-01
This article reports negative shift in the threshold-voltage in AlGaN/GaN high electron mobility transistor (HEMT) with application of reverse gate bias stress. The device is biased in strong pinch-off and low drain to source voltage condition for a fixed time duration (reverse gate bias stress), followed by measurement of transfer characteristics. Negative threshold voltage shift after application of reverse gate bias stress indicates the presence of more carriers in channel as compared to the unstressed condition. We propose the presence of AlGaN/GaN interface states to be the reason of negative threshold voltage shift, and developed a process to electrically characterize AlGaN/GaN interface states. We verified the results with Technology Computer Aided Design (TCAD) ATLAS simulation and got a good match with experimental measurements.
A low-threshold, high-efficiency microfluidic waveguide laser.
Vezenov, Dmitri V; Mayers, Brian T; Conroy, Richard S; Whitesides, George M; Snee, Preston T; Chan, Yinthai; Nocera, Daniel G; Bawendi, Moungi G
2005-06-29
This communication describes a long (1 cm), laser-pumped, liquid core-liquid cladding (L2) waveguide laser. This device provides a simple, high intensity, tunable light source for microfludic applications. Using a core solution of 2 mM rhodamine 640 perchlorate, optically pumped by a frequency-doubled Nd:YAG laser, we found that the threshold for lasing was as low as 22 muJ (16-ns pulse length) and had a slope efficiency up to 20%. The output wavelength was tunable over a 20-nm range by changing the ratio of solvent components (dimethyl sulfoxide and methanol) in the liquid core.
Gas composition sensing using carbon nanotube arrays
NASA Technical Reports Server (NTRS)
Li, Jing (Inventor); Meyyappan, Meyya (Inventor)
2008-01-01
A method and system for estimating one, two or more unknown components in a gas. A first array of spaced apart carbon nanotubes (''CNTs'') is connected to a variable pulse voltage source at a first end of at least one of the CNTs. A second end of the at least one CNT is provided with a relatively sharp tip and is located at a distance within a selected range of a constant voltage plate. A sequence of voltage pulses {V(t.sub.n)}.sub.n at times t=t.sub.n (n=1, . . . , N1; N1.gtoreq.3) is applied to the at least one CNT, and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of a curve I(t.sub.n) for current or a curve e(t.sub.n) for electric charge transported from the at least one CNT to the constant voltage plate. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas.
NASA Astrophysics Data System (ADS)
Jauregui, Luis A.; Kayyalha, Morteza; Kazakov, Aleksandr; Miotkowski, Ireneusz; Rokhinson, Leonid P.; Chen, Yong P.
2018-02-01
We report on the observation of gate-tunable proximity-induced superconductivity and multiple Andreev reflections (MARs) in a bulk-insulating BiSbTeSe2 topological insulator nanoribbon (TINR) Josephson junction with superconducting Nb contacts. We observe a gate-tunable critical current (IC) for gate voltages (Vg) above the charge neutrality point (VCNP), with IC as large as 430 nA. We also observe MAR peaks in the differential conductance (dI/dV) versus DC voltage (Vdc) across the junction corresponding to sub-harmonic peaks (at Vdc = Vn = 2ΔNb/en, where ΔNb is the superconducting gap of the Nb contacts and n is the sub-harmonic order). The sub-harmonic order, n, exhibits a Vg-dependence and reaches n = 13 for Vg = 40 V, indicating the high transparency of the Nb contacts to TINR. Our observations pave the way toward exploring the possibilities of using TINR in topologically protected devices that may host exotic physics such as Majorana fermions.
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure
NASA Astrophysics Data System (ADS)
Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng
2018-03-01
Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.
Wester, Jason C.
2013-01-01
Spike threshold filters incoming inputs and thus gates activity flow through neuronal networks. Threshold is variable, and in many types of neurons there is a relationship between the threshold voltage and the rate of rise of the membrane potential (dVm/dt) leading to the spike. In primary sensory cortex this relationship enhances the sensitivity of neurons to a particular stimulus feature. While Na+ channel inactivation may contribute to this relationship, recent evidence indicates that K+ currents located in the spike initiation zone are crucial. Here we used a simple Hodgkin-Huxley biophysical model to systematically investigate the role of K+ and Na+ current parameters (activation voltages and kinetics) in regulating spike threshold as a function of dVm/dt. Threshold was determined empirically and not estimated from the shape of the Vm prior to a spike. This allowed us to investigate intrinsic currents and values of gating variables at the precise voltage threshold. We found that Na+ inactivation is sufficient to produce the relationship provided it occurs at hyperpolarized voltages combined with slow kinetics. Alternatively, hyperpolarization of the K+ current activation voltage, even in the absence of Na+ inactivation, is also sufficient to produce the relationship. This hyperpolarized shift of K+ activation allows an outward current prior to spike initiation to antagonize the Na+ inward current such that it becomes self-sustaining at a more depolarized voltage. Our simulations demonstrate parameter constraints on Na+ inactivation and the biophysical mechanism by which an outward current regulates spike threshold as a function of dVm/dt. PMID:23344915
Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.
Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A
2017-10-20
Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.
Synthesis of Large-Size 1T' ReS2x Se2(1-x) Alloy Monolayer with Tunable Bandgap and Carrier Type.
Cui, Fangfang; Feng, Qingliang; Hong, Jinhua; Wang, Renyan; Bai, Yu; Li, Xiaobo; Liu, Dongyan; Zhou, Yu; Liang, Xing; He, Xuexia; Zhang, Zhongyue; Liu, Shengzhong; Lei, Zhibin; Liu, Zonghuai; Zhai, Tianyou; Xu, Hua
2017-12-01
Chemical vapor deposition growth of 1T' ReS 2 x Se 2(1- x ) alloy monolayers is reported for the first time. The composition and the corresponding bandgap of the alloy can be continuously tuned from ReSe 2 (1.32 eV) to ReS 2 (1.62 eV) by precisely controlling the growth conditions. Atomic-resolution scanning transmission electron microscopy reveals an interesting local atomic distribution in ReS 2 x Se 2(1- x ) alloy, where S and Se atoms are selectively occupied at different X sites in each Re-X 6 octahedral unit cell with perfect matching between their atomic radius and space size of each X site. This structure is much attractive as it can induce the generation of highly desired localized electronic states in the 2D surface. The carrier type, threshold voltage, and carrier mobility of the alloy-based field effect transistors can be systematically modulated by tuning the alloy composition. Especially, for the first time the fully tunable conductivity of ReS 2 x Se 2(1- x ) alloys from n-type to bipolar and p-type is realized. Owing to the 1T' structure of ReS 2 x Se 2(1- x ) alloys, they exhibit strong anisotropic optical, electrical, and photoelectric properties. The controllable growth of monolayer ReS 2 x Se 2(1- x ) alloy with tunable bandgaps and electrical properties as well as superior anisotropic feature provides the feasibility for designing multifunctional 2D optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New highly linear tunable transconductor circuits with low number of MOS transistors
NASA Astrophysics Data System (ADS)
Yucel, Firat; Yuce, Erkan
2016-08-01
In this article, two new highly linear tunable transconductor circuits are proposed. The transconductors employ only six MOS transistors operated in saturation region. The second transconductor is derived from the first one with a slight modification. Transconductance of both transconductors can be tuned by a control voltage. Both of the transconductors do not need any additional bias voltages and currents. Another important feature of the transconductors is their high input and output impedances for cascadability with other circuits. Besides, total harmonic distortions are less than 1.5% for both transconductors. A positive lossless grounded inductor simulator with a grounded capacitor is given as an application example of the transconductors. Simulation and experimental test results are included to show effectiveness of the proposed circuits.
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan
2016-10-03
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.
Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown
NASA Astrophysics Data System (ADS)
Trusov, K. K.
2017-08-01
Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, S.
2000-01-01
In this paper we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been performed using a 3-D implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantisation but also the lateral confinement effects related to current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides.
Gas Composition Sensing Using Carbon Nanotube Arrays
NASA Technical Reports Server (NTRS)
Li, Jing; Meyyappan, Meyya
2012-01-01
This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.
NASA Astrophysics Data System (ADS)
Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis
2016-01-01
Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, Subhash
1999-01-01
A detailed three-dimensional (3-D) statistical 'atomistic' simulation study of fluctuation-resistant sub-0.1-(micron)meter MOSFET architectures with epitaxial channels and delta doping is presented. The need for enhancing the fluctuation resistance of the sub-0.1-(micron)meter generation transistors is highlighted by presenting summarized results from atomistic simulations of a wide range of conventional devices with uniformly doped channel. According to our atomistic results, the doping concentration dependence of the random dopant-induced threshold voltage fluctuations in conventional devices is stronger than the analytically predicted fourth-root dependence. As a result of this, the scaling of such devices will be restricted by the "intrinsic" random dopant-induced fluctuations earlier than anticipated. Our atomistic simulations confirm that the introduction of a thin epitaxial layer in the MOSFET's channel can efficiently suppress the random dopant-induced threshold voltage fluctuations in sub-0.1-(micron)meter devices. For the first time, we observe an "anomalous" reduction in the threshold voltage fluctuations with an increase in the doping concentration behind the epitaxial channel, which we attribute to screening effects. Also, for the first time we study the effect of a delta-doping, positioned behind the epitaxial layer, on the intrinsic threshold voltage fluctuations. Above a certain thickness of epitaxial layer, we observe a pronounced anomalous decrease in the threshold voltage fluctuation with the increase of the delta doping. This phenomenon, which is also associated with screening, enhances the importance of the delta doping in the design of properly scaled fluctuation-resistant sub-0.1-(micron)meter MOSFET's. Index Terms-Doping, fluctuations, MOSFET, semiconductor device simulation, silicon devices, threshold.
NASA Astrophysics Data System (ADS)
Lin, Yu-Ta; Ker, Ming-Dou; Wang, Tzu-Ming
2011-03-01
A new on-panel readout circuit with threshold voltage compensation for capacitive sensor in low temperature polycrystalline silicon (poly-Si) thin-film transistor (LTPS-TFT) process has been proposed. In order to compensate the threshold voltage variation from LTPS process variation, the proposed readout circuit applies a novel compensation approach with switch capacitor technique. In addition, a 4-bit analog-to-digital converter (ADC) is added to identify different sensed capacitor values and further enhances the overall resolution of touch panel.
Smart lens: tunable liquid lens for laser tracking
NASA Astrophysics Data System (ADS)
Lin, Fan-Yi; Chu, Li-Yu; Juan, Yu-Shan; Pan, Sih-Ting; Fan, Shih-Kang
2007-05-01
A tracking system utilizing tunable liquid lens is proposed and demonstrated. Adapting the concept of EWOD (electrowetting-on-dielectric), the curvature of a droplet on a dielectric film can be controlled by varying the applied voltage. When utilizing the droplet as an optical lens, the focal length of this adaptive liquid lens can be adjusted as desired. Moreover, the light that passes through it can therefore be focused to different positions in space. In this paper, the tuning range of the curvature and focal length of the tunable liquid lens is investigated. Droplet transformation is observed and analyzed under a CCD camera. A tracking system combining the tunable liquid lens with a laser detection system is also proposed. With a feedback circuit that maximizing the returned signal by controlling the tunable lens, the laser beam can keep tracked on a distant reflected target while it is moving.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Kuan-Hsien; Chou, Wu-Ching, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw; Chang, Ting-Chang, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw
2014-10-21
This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of themore » surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast I{sub D}-V{sub G} and modulated peak/base pulse time I{sub D}-V{sub D} measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.« less
NASA Astrophysics Data System (ADS)
Chen, Yang
2018-03-01
A novel wideband photonic microwave phase shifter with 360-degree phase tunable range is proposed based on a single dual-polarization quadrature phase shift-keying (DP-QPSK) modulator. The two dual-parallel Mach-Zehnder modulators (DP-MZMs) in the DP-QPSK modulator are properly biased to serve as a carrier-suppressed single-sideband (CS-SSB) modulator and an optical phase shifter (OPS), respectively. The microwave signal is applied to the CS-SSB modulator, while a control direct-current (DC) voltage is applied to the OPS. The first-order optical sideband generated from the CS-SSB modulator and the phase tunable optical carrier from the OPS are combined and then detected in a photodetector, where a microwave signal is generated with its phase controlled by the DC voltage applied to the OPS. The proposed technique is theoretically analyzed and experimentally demonstrated. Microwave signals with a carrier frequency from 10 to 23 GHz are continuously phase shifted over 360-degree phase range. The proposed technique features very compact configuration, easy phase tuning and wide operation bandwidth.
Shuttle-promoted nano-mechanical current switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Taegeun, E-mail: tsong@ictp.it; Kiselev, Mikhail N.; Gorelik, Leonid Y.
2015-09-21
We investigate electron shuttling in three-terminal nanoelectromechanical device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limit cycles, and (iv) single limit cycle. In the presence of perpendicular magnetic field, the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instabilitymore » and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable active current switch and sensoring of small variations of magnetic field.« less
NASA Astrophysics Data System (ADS)
Samba, R.; Herrmann, T.; Zeck, G.
2015-02-01
Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.
Low Threshold Voltage Continuous Wave Vertical-Cavity Surface-Emitting Lasers
1993-04-26
Data are presented demonstrating a design and fabrication process for the realization of low- threshold , high-output vertical-cavity surface-emitting...layers), the low series resistance of the design results in a bias voltage on o 1.8 V at a threshold current of 1.9 mA for 10-micrometer-diam devices.... Vertical-cavity surface-emitting lasers.
Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold.
Lee, Chia-Rong; Lin, Jia-De; Huang, Bo-Yuang; Lin, Shih-Hung; Mo, Ting-Shan; Huang, Shuan-Yu; Kuo, Chie-Tong; Yeh, Hui-Chen
2011-01-31
This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.
The voltage threshold for arcing for solar cells in Leo - Flight and ground test results
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
1986-01-01
Ground and flight results of solar cell arcing in low earth orbit (LEO) conditions are compared and interpreted. It is shown that an apparent voltage threshold for arcing may be produced by a storage power law dependence of arc rate on voltage, combined with a limited observation time. The change in this apparent threshold with plasma density is a reflection of the density dependence of the arc rate. A nearly linear dependence of arc rate on density is inferred from the data. A real voltage threshold for arcing for 2 by 2 cm solar cells may exist however, independent of plasma density, near -230 V relative to the plasma. Here, arc rates may change by more than an order of magnitude for a change of only 30 V in array potential. For 5.9 by 5.9 solar cells, the voltage dependence of the arc rate is steeper, and the data are insufficient to indicate the existence of an arcing increased by an atomic oxygen plasma, as is found in LEO, and by arcing from the backs of welded-through substrates.
The voltage threshold for arcing for solar cells in LEO: Flight and ground test results
NASA Technical Reports Server (NTRS)
Ferguson, D. C.
1986-01-01
Ground and flight results of solar cell arcing in low Earth orbit (LEO) conditions are compared and interpreted. It is shown that an apparent voltage threshold for arcing may be produced by a strong power law dependence of arc rate on voltage, combined with a limited observation time. The change in this apparent threshold with plasma density is a reflection of the density dependence of the arc rate. A nearly linear dependence of arc rate on density is inferred from the data. A real voltage threshold for arcing for 2 by 2 cm solar cells may exist however, independent of plasma density, near -230 V relative to the plasma. Here, arc rates may change by more than an order of magnitude for a change of only 30 V in array potential. For 5.9 by 5.9 solar cells, the voltage dependence of the arc rate is steeper, and the data are insufficient to indicate the existence of an arcing increased by an atomic oxygen plasma, as is found in LEO, and by arcing from the backs of welded-through substrates.
Effect of ferroelectric BaTiO3 particles on the threshold voltage of a smectic A liquid crystal.
Imamaliyev, Abbas Rahim; Ramazanov, Mahammadali Ahmad; Humbatov, Shirkhan Arastun
2018-01-01
The influence of small ferroelectric BaTiO 3 particles on the planar-homeotropic transition threshold voltage in smectic A liquid crystals consisting of p -nitrophenyl p -decyloxybenzoate and 4-cyano-4'-pentylbiphenyl were studied by using capacitance-voltage ( C - V ) measurements. It was shown that the BaTiO 3 particles significantly reduce the threshold voltage. The obtained result is explained by two factors: an increase of dielectric anisotropy of the liquid crystals and the formation of a strong electric field near polarized particles of BaTiO 3 . It was shown that the role of the second factor is dominant. The explanations of some features observed in the C - V characteristics are given.
Morales-Vidal, Marta; Boj, Pedro G.; Villalvilla, José M.; Quintana, José A.; Yan, Qifan; Lin, Nai-Ti; Zhu, Xiaozhang; Ruangsupapichat, Nopporn; Casado, Juan; Tsuji, Hayato; Nakamura, Eiichi; Díaz-García, María A.
2015-01-01
Thin film organic lasers represent a new generation of inexpensive, mechanically flexible devices for spectroscopy, optical communications and sensing. For this purpose, it is desired to develop highly efficient, stable, wavelength-tunable and solution-processable organic laser materials. Here we report that carbon-bridged oligo(p-phenylenevinylene)s serve as optimal materials combining all these properties simultaneously at the level required for applications by demonstrating amplified spontaneous emission and distributed feedback laser devices. A series of six compounds, with the repeating unit from 1 to 6, doped into polystyrene films undergo amplified spontaneous emission from 385 to 585 nm with remarkably low threshold and high net gain coefficients, as well as high photostability. The fabricated lasers show narrow linewidth (<0.13 nm) single mode emission at very low thresholds (0.7 kW cm−2), long operational lifetimes (>105 pump pulses for oligomers with three to six repeating units) and wavelength tunability across the visible spectrum (408–591 nm). PMID:26416643
An adaptive liquid microlens driven by a ferrofluidic transducer
NASA Astrophysics Data System (ADS)
Xiao, Wenjia; Hardt, Steffen
2010-05-01
Ferrofluids behave superparamagnetically and can be manipulated by external magnetic fields, providing numerous applications in microfluidic systems. In this paper, an adaptive liquid microlens driven by a ferrofluidic actuator is presented. The microlens consists of a cylindrical well filled with a lens liquid connected to a microchannel containing a ferrofluid plug. When the ferrofluid plug is moved back and forth by an external magnetic field, the lens liquid is displaced, forming a liquid lens with an adaptive focus in the cylindrical well. The focal length of the lens can be changed from infinity to the scale of the radius of the cylindrical well, leading to a high optical power compared to conventional liquid lenses utilizing liquid crystals or electrowetting. The lens curvature is reversibly tunable without hysteresis when the ferrofluid plug moves with a speed below a specific threshold value. The lens can be acted on by a magnetic field of about 100 mT which can be generated by microcoils requiring much lower voltages than the electrowetting principle.
NASA Astrophysics Data System (ADS)
Ching-Lin Fan,; Hui-Lung Lai,; Jyu-Yu Chang,
2010-05-01
In this paper, we propose a novel pixel design and driving method for active-matrix organic light-emitting diode (AM-OLED) displays using low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs). The proposed threshold voltage compensation circuit, which comprised five transistors and two capacitors, has been verified to supply uniform output current by simulation work using the automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE) simulator. The driving scheme of this voltage programming method includes four periods: precharging, compensation, data input, and emission. The simulated results demonstrate excellent properties such as low error rate of OLED anode voltage variation (<1%) and high output current. The proposed pixel circuit shows high immunity to the threshold voltage deviation characteristics of both the driving poly-Si TFT and the OLED.
NASA Astrophysics Data System (ADS)
Ching-Lin Fan,; Yi-Yan Lin,; Jyu-Yu Chang,; Bo-Jhang Sun,; Yan-Wei Liu,
2010-06-01
This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (Δ VTH = ± 0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yi-Yan; Chang, Jyu-Yu; Sun, Bo-Jhang; Liu, Yan-Wei
2010-06-01
This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (ΔVTH = ±0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.
Compact near-IR and mid-IR cavity ring down spectroscopy device
NASA Technical Reports Server (NTRS)
Miller, J. Houston (Inventor)
2011-01-01
This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
Effect of ferroelectric BaTiO3 particles on the threshold voltage of a smectic A liquid crystal
Imamaliyev, Abbas Rahim; Ramazanov, Mahammadali Ahmad
2018-01-01
The influence of small ferroelectric BaTiO3 particles on the planar–homeotropic transition threshold voltage in smectic A liquid crystals consisting of p-nitrophenyl p-decyloxybenzoate and 4-cyano-4′-pentylbiphenyl were studied by using capacitance–voltage (C–V) measurements. It was shown that the BaTiO3 particles significantly reduce the threshold voltage. The obtained result is explained by two factors: an increase of dielectric anisotropy of the liquid crystals and the formation of a strong electric field near polarized particles of BaTiO3. It was shown that the role of the second factor is dominant. The explanations of some features observed in the C–V characteristics are given. PMID:29600143
Electrical leakage detection circuit
Wild, Arthur
2006-09-05
A method is provided for detecting electrical leakage between a power supply and a frame of a vehicle or machine. The disclosed method includes coupling a first capacitor between a frame and a first terminal of a power supply for a predetermined period of time. The current flowing between the frame and the first capacitor is limited to a predetermined current limit. It is determined whether the voltage across the first capacitor exceeds a threshold voltage. A first output signal is provided when the voltage across the capacitor exceeds the threshold voltage.
Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.
NASA Astrophysics Data System (ADS)
Xia, Yidong; Cheng, Jinbo; Pan, Bai; Wu, Di; Meng, Xiangkang; Liu, Zhiguo
2005-08-01
The impact of postannealing in electric field on the structure, tunability, and dielectric behavior of rf magnetron sputtering derived (Ba,Sr)TiO3 films has been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability remarkably and destroy the symmetry of capacitance-voltage characteristics of the films. The increased out-of-plane lattice constant and the appearance of the hysteresis loops in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature.
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; ...
2016-09-26
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a “pinched” p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. In conclusion, thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%–90% transition time, and withmore » efficiency of 3.2 μW/GHz.« less
Nonlinear tuning techniques of plasmonic nano-filters
NASA Astrophysics Data System (ADS)
Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.
2015-02-01
In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.
NASA Astrophysics Data System (ADS)
Tsao, Yu-Ching; Chang, Ting-Chang; Chen, Hua-Mao; Chen, Bo-Wei; Chiang, Hsiao-Cheng; Chen, Guan-Fu; Chien, Yu-Chieh; Tai, Ya-Hsiang; Hung, Yu-Ju; Huang, Shin-Ping; Yang, Chung-Yi; Chou, Wu-Ching
2017-01-01
This work demonstrates the generation of abnormal capacitance for amorphous indium-gallium-zinc oxide (a-InGaZnO4) thin-film transistors after being subjected to negative bias stress under ultraviolet light illumination stress (NBIS). At various operation frequencies, there are two-step tendencies in their capacitance-voltage curves. When gate bias is smaller than threshold voltage, the measured capacitance is dominated by interface defects. Conversely, the measured capacitance is dominated by oxygen vacancies when gate bias is larger than threshold voltage. The impact of these interface defects and oxygen vacancies on capacitance-voltage curves is verified by TCAD simulation software.
Zipping dielectric elastomer actuators: characterization, design and modeling
NASA Astrophysics Data System (ADS)
Maffli, L.; Rosset, S.; Shea, H. R.
2013-10-01
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
Multicomponent doped barium strontium titanate thin films for tunable microwave applications
NASA Astrophysics Data System (ADS)
Alema, Fikadu Legesse
In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST sources doped with Mg/Nb and Ce, respectively, was applied. The composition and the dielectric properties of the deposited film were correlated and the optimal concentration of dopants corresponding to high tunability and low dielectric loss was determined in a timely fashion.
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
NASA Astrophysics Data System (ADS)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu
2016-01-01
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.
Processing circuitry for single channel radiation detector
NASA Technical Reports Server (NTRS)
Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)
2009-01-01
Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.
NASA Astrophysics Data System (ADS)
Shchagin, A. V.; Shul'ga, N. F.; Trofymenko, S. V.; Nazhmudinov, R. M.; Kubankin, A. S.
2016-11-01
The possibility of measurement of electrons ionization loss in Si layer of smoothly tunable thickness is shown in the proof-of-principle experiment. The Si surface-barrier detector with the depleted layer thickness controlled by the value of high voltage power supply has been used. Ionization loss spectra for electrons emitted by radioactive source 207Bi are presented and discussed. Experimental results for the most probable ionization loss in the Landau spectral peak are compared with theoretical calculations. The possibility of research of evolution of electromagnetic field of ultra-relativistic particles traversing media interface with the use of detectors with smoothly tunable thickness is proposed.
Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei
2011-04-11
We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tengxing; Peng, Yujia; Jiang, Wei
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
Wang, Tengxing; Peng, Yujia; Jiang, Wei; ...
2016-10-31
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
Voltage switching of a VO{sub 2} memory metasurface using ionic gel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldflam, M. D.; Liu, M. K.; Chapler, B. C.
2014-07-28
We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO{sub 2}) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO{sub 2} layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO{sub 2} into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO{sub 2} based devices suggests that this voltage-induced switching originates primarilymore » from electrochemical effects related to oxygen migration across the electrolyte–VO{sub 2} interface.« less
Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells
NASA Astrophysics Data System (ADS)
He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan
2018-05-01
The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2 < 1.18.
NASA Astrophysics Data System (ADS)
Xie, Ze Tao; Ni, Feng Chao; Ma, Qi Chang; Tao, Jin; Li, Jian; Meng, Hongyun; Huang, Xu Guang
2018-07-01
Graphene metasurface has attracted a lot of attentions due to the unique tunability for exotic electromagnetic properties. In this work, we propose and numerically investigate a tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays. The variation of transmission at different substrate thickness and the coupled mode are analyzed. It is shown that the Rabi-like splitting can be achieved by the coupling between localized and delocalized graphene surface plasmon polaritons. Tunable coupling strength and positions with different gate-voltages have been discussed. The effect of relaxation time and oblique incidences to resonant responses are also investigated. Additionally, we find an optical analogue of a spring, where the spectral dip vibrates around its equilibrium position at a certain wavelength. Our study suggests that the proposed structure is potentially attractive for realization of tunable double-channel filter, optical switch, and variable optical attenuator based on the graphene metasurface.
Broadband Electric-Field Sensor Array Technology
2012-08-05
output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into
NASA Astrophysics Data System (ADS)
Kim, Jong Beom; Lee, Dong Ryeol
2018-04-01
We studied the effect of the addition of free hole- and electron-rich organic molecules to organic semiconductors (OSCs) in organic field effect transistors (OFETs) on the gate voltage-dependent mobility. The drain current versus gate voltage characteristics were quantitatively analyzed using an OFET mobility model of power law behavior based on hopping transport in an OSC. This analysis distinguished the threshold voltage shifts, depending on the materials and structures of the OFET device, and properly estimated the hopping transport of the charge carriers induced by the gate bias within the OSC from the power law exponent parameter. The addition of pentacene or C60 molecules to a one-monolayer pentacene-based OFET shifted the threshold voltages negatively or positively, respectively, due to the structural changes that occurred in the OFET device. On the other hand, the power law parameters revealed that the addition of charge carriers of the same or opposite polarity enhanced or hindered hopping transport, respectively. This study revealed the need for a quantitative analysis of the gate voltage-dependent mobility while distinguishing this effect from the threshold voltage effect in order to understand OSC hopping transport in OFETs.
NASA Astrophysics Data System (ADS)
Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.
2015-02-01
We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.
Koo, Ja Hoon; Jeong, Seongjin; Shim, Hyung Joon; Son, Donghee; Kim, Jaemin; Kim, Dong Chan; Choi, Suji; Hong, Jong-In; Kim, Dae-Hyeong
2017-10-24
With the rapid advances in wearable electronics, the research on carbon-based and/or organic materials and devices has become increasingly important, owing to their advantages in terms of cost, weight, and mechanical deformability. Here, we report an effective material and device design for an integrative wearable cardiac monitor based on carbon nanotube (CNT) electronics and voltage-dependent color-tunable organic light-emitting diodes (CTOLEDs). A p-MOS inverter based on four CNT transistors allows high amplification and thereby successful acquisition of the electrocardiogram (ECG) signals. In the CTOLEDs, an ultrathin exciton block layer of bis[2-(diphenylphosphino)phenyl]ether oxide is used to manipulate the balance of charges between two adjacent emission layers, bis[2-(4,6-difluorophenyl)pyridinato-C 2 ,N](picolinato)iridium(III) and bis(2-phenylquinolyl-N,C(2'))iridium(acetylacetonate), which thereby produces different colors with respect to applied voltages. The ultrathin nature of the fabricated devices supports extreme wearability and conformal integration of the sensor on human skin. The wearable CTOLEDs integrated with CNT electronics are used to display human ECG changes in real-time using tunable colors. These materials and device strategies provide opportunities for next generation wearable health indicators.
A Dynamical Threshold for Cardiac Delayed Afterdepolarization-Mediated Triggered Activity.
Liu, Michael B; Ko, Christopher Y; Song, Zhen; Garfinkel, Alan; Weiss, James N; Qu, Zhilin
2016-12-06
Ventricular myocytes are excitable cells whose voltage threshold for action potential (AP) excitation is ∼-60 mV at which I Na is activated to give rise to a fast upstroke. Therefore, for a short stimulus pulse to elicit an AP, a stronger stimulus is needed if the resting potential lies further away from the I Na threshold, such as in hypokalemia. However, for an AP elicited by a long duration stimulus or a diastolic spontaneous calcium release, we observed that the stimulus needed was lower in hypokalemia than in normokalemia in both computer simulations and experiments of rabbit ventricular myocytes. This observation provides insight into why hypokalemia promotes calcium-mediated triggered activity, despite the resting potential lying further away from the I Na threshold. To understand the underlying mechanisms, we performed bifurcation analyses and demonstrated that there is a dynamical threshold, resulting from a saddle-node bifurcation mainly determined by I K1 and I NCX . This threshold is close to the voltage at which I K1 is maximum, and lower than the I Na threshold. After exceeding this dynamical threshold, the membrane voltage will automatically depolarize above the I Na threshold due to the large negative slope of the I K1 -V curve. This dynamical threshold becomes much lower in hypokalemia, especially with respect to calcium, as predicted by our theory. Because of the saddle-node bifurcation, the system can automatically depolarize even in the absence of I Na to voltages higher than the I Ca,L threshold, allowing for triggered APs in single myocytes with complete I Na block. However, because I Na is important for AP propagation in tissue, blocking I Na can still suppress premature ventricular excitations in cardiac tissue caused by calcium-mediated triggered activity. This suppression is more effective in normokalemia than in hypokalemia due to the difference in dynamical thresholds. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.
2000-01-01
We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.
Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G
2010-10-01
We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.
NASA Astrophysics Data System (ADS)
Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.
2016-05-01
The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.
Optical spectral singularities as threshold resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2011-04-15
Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-01-01
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS2) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS2 and pentacene. The pentacene/MoS2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices. PMID:27829663
NASA Astrophysics Data System (ADS)
Shu, Chang; Chen, Qing-Guo; Mei, Jin-Shuo; Yin, Jing-Hua
2018-03-01
In this paper, we numerically demonstrated a dynamically tunable implementation of electromagnetically induced transparency (EIT) response with two coupling graphene-nanostrips in terahertz region. Compared to the metal-based structures or separated graphene structures, the Fermi energies of proposed two coupling graphene-nanostrips can be independently tuned by changing bias voltage between the metallic pads and substrate, the EIT window which appears from the near-field coupling between two resonators can be dynamically tuned without reoptimizing and refabricating the structures. As a result, the EIT window has a significant tunable capacity which can realize a higher frequency modulation depth and control the amplitude of transmission peak at a fixed frequency; moreover, the group delay of transmission peak at a fixed frequency with the amplitude of over 0.95 could be dynamically tuned. These results would exhibit potential applications in modulators and tunable slow light devices.
NASA Astrophysics Data System (ADS)
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-11-01
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS2) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS2 and pentacene. The pentacene/MoS2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-11-10
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.
Supratransmission in a metastable modular metastructure for tunable non-reciprocal wave transmission
NASA Astrophysics Data System (ADS)
Wu, Zhen; Wang, K. W.
2018-03-01
In this research, we numerically and analytically investigate the nonlinear energy transmission phenomenon in a metastable modular metastructure. Numerical studies on a 1D metastable chain provide clear evidence that when driving frequency is within the stopband of the periodic structure, there exists a threshold for the driving amplitude, above which sudden increase in the energy transmission can be observed. This onset of transmission is due to nonlinear instability and is known as supratransmission. We discover that due to spatial asymmetry of strategically configured constituents, such transmission thresholds are considerably different when structure is excited from different ends and this discrepancy creates a region of non-reciprocal energy transmission. We demonstrate that when the loss of stability is due to saddlenode bifurcation, the transmission threshold can be predicted analytically using a localized nonlinear-linear system model, and analyzed via combining harmonic balancing and transfer matrix methods. These investigations elucidate the rich and complex dynamics achievable by nonlinearity and metastabilities, and provide synthesize tools for tunable bandgaps and non-reciprocal wave transmissions.
Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger
2018-01-01
Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.
NASA Astrophysics Data System (ADS)
Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger
2018-01-01
Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.
Direct electronic probing of biological complexes formation
NASA Astrophysics Data System (ADS)
Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa
2014-10-01
Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.
NASA Astrophysics Data System (ADS)
Na, Jun-Seok; Kwon, Oh-Kyong
2014-01-01
We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.
Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo
2015-04-20
A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.
Nanocontainers made of Various Materials with Tunable Shape and Size
NASA Astrophysics Data System (ADS)
Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing
2013-07-01
Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications.
Third-harmonic generation in tunable nonlinear hyperbolic metamaterial
NASA Astrophysics Data System (ADS)
Wicharn, Surawut; Buranasiri, Prathan
2018-03-01
In this research, a third-harmonic generation (THG) in a tunable nonlinear hyperbolic metamaterial (TNHM) has been investigated numerically. The TNHM is consisted of periodically arranging of multilayered graphene layers system for controlled optical properties purpose, and ordinary nonlinear dielectric layer. The possibility of TNHM permittivity dispersion controlled by number of graphene layers and external bias voltage to graphene layers was satisfied, then the structure has created the nearly perfect phase-matching scheme based on epsilon-near-zero (ENZ) behavior of the nonlinear medium. Finally, the optimal designed TNHM structure with sufficient bias voltage have given the forwardand backward-direction TH pulses, which the backward-forward TH intensity ratio is closely unity. The THG conversion efficiencies have been maximized after increasing the pumping level to 800 MW/cm2 . From this study, the optimal designed TNHM can be applied as a bi-directional nonlinear frequency converters in nanophotonic systems.
Nanocontainers made of Various Materials with Tunable Shape and Size
Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing
2013-01-01
Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications. PMID:23867836
NASA Astrophysics Data System (ADS)
Wei, Maocai; Liu, Meifeng; Wang, Xiuzhang; Li, Meiya; Zhu, Yongdan; Zhao, Meng; Zhang, Feng; Xie, Shuai; Hu, Zhongqiang; Liu, Jun-Ming
2017-03-01
Epitaxial Bi0.9Eu0.1FeO3 (BEFO) thin films are deposited on Nb-doped SrTiO3 (NSTO) substrates by pulsed laser deposition to fabricate the Pt/BEFO/NSTO (001) heterostructures. These heterostructures possess bipolar resistive switching, where the resistances versus writing voltage exhibits a distinct hysteresis loop and a memristive behavior with good retention and anti-fatigue characteristics. The local resistive switching is confirmed by the conductive atomic force microscopy (C-AFM), suggesting the possibility to scale down the memory cell size. The observed memristive behavior could be attributed to the ferroelectric polarization effect, which modulates the height of potential barrier and width of depletion region at the BEFO/NSTO interface. The continuously tunable resistive switching behavior could be useful to achieve non-volatile, high-density, multilevel random access memory with low energy consumption.
Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng
2017-08-01
An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01 nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
NASA Astrophysics Data System (ADS)
Yu, Chia-Hua; Wu, Po-Chang; Lee, Wei
2017-10-01
This work demonstrates a simple approach for obtaining a well-aligned uniform lying helix (ULH) texture and a tri-bistable feature at ambient temperature in a typical 90°-twisted cell filled with a short-pitch cholesteric liquid crystal. This ULH texture is obtained at room temperature from initially field-induced helix-free homeotropic state by gradually decreasing the applied voltage. Depending on the way and rate of reducing the voltage, three stable states (i.e., Grandjean planar, focal conic, and ULH) are generated and switching between any two of them is realized. Moreover, the electrical operation of the cell in the ULH state enables the tunability in phase retardation via the deformation of the ULH. The observations made in this work may be useful for applications such as tunable phase modulators and energy-efficient photonic devices.
NASA Astrophysics Data System (ADS)
Li, Rui; Reyes, Pavel I.; Ragavendiran, Sowmya; Shen, H.; Lu, Yicheng
2015-08-01
A tunable surface acoustic wave (SAW) device is developed on a multilayer structure which consists of an n-type semiconductor ZnO layer and a Ni-doped piezoelectric ZnO layer deposited on a GaN/c-Al2O3 substrate. The unique acoustic dispersion relationship between ZnO and GaN generates the multi-mode SAW response in this structure, facilitating high frequency operation. A dc bias voltage is applied to a Ti/Au gate layer deposited on the path of SAW delay line to modulate the electrical conductivity for tuning the acoustic velocity. For devices operating at 1.25 GHz, a maximum SAW velocity change of 0.9% is achieved, equivalent to the frequency change of 11.2 MHz. This voltage-controlled frequency tuning device has potential applications in resettable sensors, adaptive signal processing, and secure wireless communication.
Low-voltage Driven Graphene Foam Thermoacoustic Speaker.
Fei, Wenwen; Zhou, Jianxin; Guo, Wanlin
2015-05-20
A low-voltage driven thermoacoustic speaker is fabricated based on three-dimensional graphene foams synthesized by a nickel-template assisted chemical vapor deposition method. The corresponding thermoacoustic performances are found to be related to its microstructure. Graphene foams exhibit low heat-leakage to substrates and feasible tunability in structures and thermoacoustic performances, having great promise for applications in flexible or ultrasonic acoustic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel
2016-01-14
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less
NASA Astrophysics Data System (ADS)
Ahn, Hyung-Woo; Seok Jeong, Doo; Cheong, Byung-ki; Lee, Hosuk; Lee, Hosun; Kim, Su-dong; Shin, Sang-Yeol; Kim, Donghwan; Lee, Suyoun
2013-07-01
We investigated the effect of nitrogen (N) doping on the threshold voltage of an ovonic threshold switching device using amorphous GeSe. Using the spectroscopic ellipsometry, we found that the addition of N brought about significant changes in electronic structure of GeSe, such as the density of localized states and the band gap energy. Besides, it was observed that the characteristics of OTS devices strongly depended on the doping of N, which could be attributed to those changes in electronic structure suggesting a method to modulate the threshold voltage of the device.
Low-threshold field emission in planar cathodes with nanocarbon materials
NASA Astrophysics Data System (ADS)
Zhigalov, V.; Petukhov, V.; Emelianov, A.; Timoshenkov, V.; Chaplygin, Yu.; Pavlov, A.; Shamanaev, A.
2016-12-01
Nanocarbon materials are of great interest as field emission cathodes due to their low threshold voltage. In this work current-voltage characteristics of nanocarbon electrodes were studied. Low-threshold emission was found in planar samples where field enhancement is negligible (<10). Electron work function values, calculated by Fowler-Nordheim theory, are anomalous low (<1 eV) and come into collision with directly measured work function values in fabricated planar samples (4.1-4.4 eV). Non-applicability of Fowler-Nordheim theory for the nanocarbon materials was confirmed. The reasons of low-threshold emission in nanocarbon materials are discussed.
NASA Astrophysics Data System (ADS)
Almoallem, Yousuf Dawood
Miniaturizing camera systems as required in many new compact devices places a severe restriction on the device size and power consumption. In modern life nowadays, a daily used compact devices like mobile phones and tablets must have some essential components such as single or multiple tiny cameras, as a component of micro-optical systems. In fact, for most of the current miniaturized cameras, optical power is varied based on the traditional situation where the distances between the lenses are mechanically varied relying on old-fashioned voice coil motors or equivalent mechanical drivers. Spatial and power consumption could be scaled down drastically with much faster response time when the revolutionary alternative liquid tunable microlens is utilized after acquiring a good understanding of microfluidics. The influence of interfacial tension as a key metric in controlling microfluidics systems (e.g. liquid microlens) has drawn considerable attention in biomedical, industrial, military fields over the past decade. Tunable microlenses overcome aforementioned concerns of miniaturizing optical systems and present a viable solution by tuning the focal length of lenses via, for example, variation in the lens curvature. Here, a novel tunable dielectrophoretic (DEP)-based tunable lens is presented. Out of many other mechanisms of tuning the lenses, the dielectric mechanism is especially promising since having the capability to achieve a faster response and overcome the electrolysis issue. Nonetheless, DEP usually requires high driving voltage levels. The proposed design is operating with a lowered voltage level and is based on a tunable dielectric liquid lens with a double-sided electrode design, unlike in the conventional scheme with a single-sided electrode design. The design methodology, geometrical analysis, device fabrication, simulation, and testing are demonstrated. Furthermore, the design, simulation, fabrication and characterization of a black-silicon (BSi) based iris is discussed. Reducing undesirable light stray reflections from surfaces is desired in many 3D optical elements, such as supporting optomechanical mounts, irises, optical filters, solar cells, and photolithography underlying layers. BSi (as antireflective nanostructures) provides a potential economic solution which is highly absorptive across the visible spectrum to replace many currently used yet expensive coating materials. Si nanowires (SiNW) were formed using a metal-assisted chemical (MAC) etching process to get a conformal antireflective property on the iris 3D structure including sharp tips and sidewalls. A significant reduction in undesirable light stray reflections was achieved as a result of successful implementation of the conformal antireflective surface on all facets of fabricated irises to eliminate undesirable light stray reflections.
SONOS Nonvolatile Memory Cell Programming Characteristics
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2010-01-01
Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory is gaining favor over conventional EEPROM FLASH memory technology. This paper characterizes the SONOS write operation using a nonquasi-static MOSFET model. This includes floating gate charge and voltage characteristics as well as tunneling current, voltage threshold and drain current characterization. The characterization of the SONOS memory cell predicted by the model closely agrees with experimental data obtained from actual SONOS memory cells. The tunnel current, drain current, threshold voltage and read drain current all closely agreed with empirical data.
Toward individually tunable compound eyes with transparent graphene electrode.
Shahini, Ali; Jin, Hai; Zhou, Zhixian; Zhao, Yang; Chen, Pai-Yen; Hua, Jing; Cheng, Mark Ming-Cheng
2017-06-08
We present tunable compound eyes made of ionic liquid lenses, of which both curvatures (R 1 and R 2 in the lensmaker's equation) can be individually changed using electrowetting on dielectric (EWOD) and applied pressure. Flexible graphene is used as a transparent electrode and is integrated on a flexible polydimethylsiloxane (PDMS)/parylene hybrid substrate. Graphene electrodes allow a large lens aperture diameter of between 2.4 mm and 2.74 mm. Spherical aberration analysis is performed using COMSOL to investigate the optical property of the lens under applied voltage and pressure. The final lens system shows a resolution of 645.1 line pair per millimeter. A prototype of a tunable lens array is proposed for the application of a compound eye.
Tunable surface plasmon devices
Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA
2011-08-30
A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.
Scaling properties of ballistic nano-transistors
2011-01-01
Recently, we have suggested a scale-invariant model for a nano-transistor. In agreement with experiments a close-to-linear thresh-old trace was found in the calculated ID - VD-traces separating the regimes of classically allowed transport and tunneling transport. In this conference contribution, the relevant physical quantities in our model and its range of applicability are discussed in more detail. Extending the temperature range of our studies it is shown that a close-to-linear thresh-old trace results at room temperatures as well. In qualitative agreement with the experiments the ID - VG-traces for small drain voltages show thermally activated transport below the threshold gate voltage. In contrast, at large drain voltages the gate-voltage dependence is weaker. As can be expected in our relatively simple model, the theoretical drain current is larger than the experimental one by a little less than a decade. PMID:21711899
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Cho, Seongeun; Kim, Hyeran; Seo, Soonjoo; Lee, Hyun Uk; Lee, Jouhahn; Ko, Hyungduk; Chang, Mincheol; Park, Byoungnam
2017-09-01
Electric field-induced charge trapping and exciton dissociation were demonstrated at a penatcene/grapheme quantum dot (GQD) interface using a bottom contact bi-layer field effect transistor (FET) as an electrical nano-probe. Large threshold voltage shift in a pentacene/GQD FET in the dark arises from field-induced carrier trapping in the GQD layer or GQD-induced trap states at the pentacene/GQD interface. As the gate electric field increases, hysteresis characterized by the threshold voltage shift depending on the direction of the gate voltage scan becomes stronger due to carrier trapping associated with the presence of a GQD layer. Upon illumination, exciton dissociation and gate electric field-induced charge trapping simultaneously contribute to increase the threshold voltage window, which can potentially be exploited for photoelectric memory and/or photovoltaic devices through interface engineering.
Sun, Yi-Lin; Xie, Dan; Xu, Jian-Long; Zhang, Cheng; Dai, Rui-Xuan; Li, Xian; Meng, Xiang-Jian; Zhu, Hong-Wei
2016-01-01
Double-gated field effect transistors have been fabricated using the SWCNT networks as channel layer and the organic ferroelectric P(VDF-TrFE) film spin-coated as top gate insulators. Standard photolithography process has been adopted to achieve the patterning of organic P(VDF-TrFE) films and top-gate electrodes, which is compatible with conventional CMOS process technology. An effective way for modulating the threshold voltage in the channel of P(VDF-TrFE) top-gate transistors under polarization has been reported. The introduction of functional P(VDF-TrFE) gate dielectric also provides us an alternative method to suppress the initial hysteresis of SWCNT networks and obtain a controllable ferroelectric hysteresis behavior. Applied bottom gate voltage has been found to be another effective way to highly control the threshold voltage of the networked SWCNTs based FETs by electrostatic doping effect. PMID:26980284
A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5
NASA Astrophysics Data System (ADS)
Lee, Suyoun; Jeong, Doo Seok; Jeong, Jeung-hyun; Zhe, Wu; Park, Young-Wook; Ahn, Hyung-Woo; Cheong, Byung-ki
2010-01-01
We investigated the temperature dependence of the threshold switching characteristics of a memory-type chalcogenide material, Ge2Sb2Te5. We found that the threshold voltage (Vth) decreased linearly with temperature, implying the existence of a critical conductivity of Ge2Sb2Te5 for its threshold switching. In addition, we investigated the effect of bias voltage and temperature on the delay time (tdel) of the threshold switching of Ge2Sb2Te5 and described the measured relationship by an analytic expression which we derived based on a physical model where thermally activated hopping is a dominant transport mechanism in the material.
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
High-wafer-yield, high-performance vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Li, Gabriel S.; Yuen, Wupen; Lim, Sui F.; Chang-Hasnain, Constance J.
1996-04-01
Vertical cavity surface emitting lasers (VCSELs) with very low threshold current and voltage of 340 (mu) A and 1.5 V is achieved. The molecular beam epitaxially grown wafers are grown with a highly accurate, low cost and versatile pre-growth calibration technique. One- hundred percent VCSEL wafer yield is obtained. Low threshold current is achieved with a native oxide confined structure with excellent current confinement. Single transverse mode with stable, predetermined polarization direction up to 18 times threshold is also achieved, due to stable index guiding provided by the structure. This is the highest value reported to data for VCSELs. We have established that p-contact annealing in these devices is crucial for low voltage operation, contrary to the general belief. Uniform doping in the mirrors also appears not to be inferior to complicated doping engineering. With these design rules, very low threshold voltage VCSELs are achieved with very simple growth and fabrication steps.
NASA Astrophysics Data System (ADS)
Pandey, Shivendra Kumar; Manivannan, Anbarasu
2017-07-01
Prefixing a weak electric field (incubation) might enhance the crystallization speed via pre-structural ordering and thereby achieving faster programming of phase change memory (PCM) devices. We employed a weak electric field, equivalent to a constant small voltage (that is incubation voltage, Vi of 0.3 V) to the applied voltage pulse, VA (main pulse) for a systematic understanding of voltage-dependent rapid threshold switching characteristics and crystallization (set) process of In3SbTe2 (IST) PCM devices. Our experimental results on incubation-assisted switching elucidate strikingly one order faster threshold switching, with an extremely small delay time, td of 300 ps, as compared with no incubation voltage (Vi = 0 V) for the same VA. Also, the voltage dependent characteristics of incubation-assisted switching dynamics confirm that the initiation of threshold switching occurs at a lower voltage of 0.82 times of VA. Furthermore, we demonstrate an incubation assisted ultrafast set process of IST device for a low VA of 1.7 V (˜18 % lesser compared to without incubation) within a short pulse-width of 1.5 ns (full width half maximum, FWHM). These findings of ultrafast switching, yet low power set process would immensely be helpful towards designing high speed PCM devices with low power operation.
Similarity between the response of memristive and memcapacitive circuits subjected to ramped voltage
NASA Astrophysics Data System (ADS)
Kanygin, Mikhail A.; Katkov, Mikhail V.; Pershin, Yuriy V.
2017-07-01
We report a similar feature in the response of resistor-memristor and capacitor-memcapacitor circuits with threshold-type memory devices driven by triangular waveform voltage. In both cases, the voltage across the memory device is stabilized during the switching of the memory device state. While in the memristive circuit this feature is observed when the applied voltage changes in one direction, the memcapacitive circuit with a ferroelectric memcapacitor demonstrates the voltage stabilization effect at both sweep directions. The discovered behavior of capacitor-memcapacitor circuit is also demonstrated experimentally. We anticipate that our observation can be used in the design of electronic circuits with emergent memory devices as well as in the identification and characterization of memory effects in threshold-type memory devices.
Variable-Threshold Threshold Elements,
A threshold element is a mathematical model of certain types of logic gates and of a biological neuron. Much work has been done on the subject of... threshold elements with fixed thresholds; this study concerns itself with elements in which the threshold may be varied, variable- threshold threshold ...elements. Physical realizations include resistor-transistor elements, in which the threshold is simply a voltage. Variation of the threshold causes the
Gate-tunable resonant tunneling in double bilayer graphene heterostructures.
Fallahazad, Babak; Lee, Kayoung; Kang, Sangwoo; Xue, Jiamin; Larentis, Stefano; Corbet, Christopher; Kim, Kyounghwan; Movva, Hema C P; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard F; Banerjee, Sanjay K; Tutuc, Emanuel
2015-01-14
We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.
Low-bias flat band-stop filter based on velocity modulated gaussian graphene superlattice
NASA Astrophysics Data System (ADS)
Sattari-Esfahlan, S. M.; Shojaei, S.
2018-05-01
Transport properties of biased planar Gaussian graphene superlattice (PGGSL) with Fermi velocity barrier is investigated by transfer matrix method (TMM). It is observed that enlargement of bias voltage over miniband width breaks the miniband to WSLs leads to suppressing resonant tunneling. Transmission spectrum shows flat wide stop-band property controllable by external bias voltage with stop-band width of near 200 meV. The simulations demonstrate that strong velocity barriers prevent tunneling of Dirac electrons leading to controllable enhancement of stop-band width. By increasing ratio of Fermi velocity in barriers to wells υc stop-band width increase. As wide transmission stop-band width (BWT) of filter is tunable from 40 meV to 340 meV is obtained by enhancing ratio of υc from 0.2 to 1.5, respectively. Proposed structure suggests easy tunable wide band-stop electronic filter with a modulated flat stop-band characteristic by height of electrostatic barrier and structural parameters. Robust sensitivity of band width to velocity barrier intensity in certain bias voltages and flat band feature of proposed filter may be opens novel venue in GSL based flat band low noise filters and velocity modulation devices.
Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field
NASA Astrophysics Data System (ADS)
Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.
2018-04-01
In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.
Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage
NASA Astrophysics Data System (ADS)
Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner
2017-10-01
Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.
Kim, Se-Um; Lee, Sin-Hyung; Lee, In-Ho; Lee, Bo-Yeon; Na, Jun-Hee; Lee, Sin-Doo
2018-05-14
A new concept of intensity-tunable structural coloration is proposed on the basis of a helical photonic crystal (HPC). The HPCs are constructed from a mixture of chiral reactive mesogens by spin-coating, followed by the photo-polymerization. A liquid crystal (LC) layer, being homogeneously aligned, is prepared on the HPCs to serve as a tunable waveplate. The electrical modulation of the phase retardation through the LC layer directly leads to the intensity-tunable Bragg reflection from the HPCs upon the incidence of the polarized light. The bandwidths of the structural colors are found to be well preserved regardless of the applied voltage. A prototype of a full color reflective-type display, incorporated with three primary color units, is demonstrated. Our concept of decoupling two mutually independent functions, the intensity modulation by the tunable waveplate and the color reflection by the HPCs provides a simple and powerful way of producing a full color reflective-type display which possesses high color purity, high optical efficiency, the cycling durability, and the design flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda
2015-04-15
The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u}more » is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manivannan, Anbarasu, E-mail: anbarasu@iiti.ac.in, E-mail: ranjith@iith.ac.in; Sahu, Smriti; Myana, Santosh Kumar
2014-12-15
Minimizing the dimensions of the electrode could directly impact the energy-efficient threshold switching and programming characteristics of phase change memory devices. A ∼12–15 nm AFM probe-tip was employed as one of the electrodes for a systematic study of threshold switching of as-deposited amorphous GeTe{sub 6} thin films. This configuration enables low power threshold switching with an extremely low steady state current in the on state of 6–8 nA. Analysis of over 48 different probe locations on the sample reveals a stable Ovonic threshold switching behavior at threshold voltage, V{sub TH} of 2.4 ± 0.5 V and the off state was retained below a holding voltage,more » V{sub H} of 0.6 ± 0.1 V. All these probe locations exhibit repeatable on-off transitions for more than 175 pulses at each location. Furthermore, by utilizing longer biasing voltages while scanning, a plausible nano-scale control over the phase change behavior from as-deposited amorphous to crystalline phase was studied.« less
NASA Astrophysics Data System (ADS)
Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.
Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli
2012-03-12
The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.
Relationship between left atrium catheter contact force and pacing threshold.
Barrio-López, Teresa; Ortiz, Mercedes; Castellanos, Eduardo; Lázaro, Carla; Salas, Jefferson; Madero, Sergio; Almendral, Jesús
2017-08-01
The purpose of this study is to analyze the relationship between contact force (CF) and pacing threshold in left atrium (LA). Six to ten LA sites were studied in 28 consecutive patients with atrial fibrillation undergoing pulmonary vein isolation. Median CF, bipolar and unipolar electrogram voltage, impedance, and bipolar and unipolar thresholds for consistent constant capture and for consistent intermittent capture were measured at each site. Pacing threshold measurements were performed at 188 LA sites. Both unipolar and bipolar pacing thresholds correlated significantly with median CF; however, unipolar pacing threshold correlated better (unipolar: Pearson R -0.45; p < 0.001; Spearman Rho -0.62; p < 0.001, bipolar: Pearson R -0.39; p < 0.001; Spearman Rho -0.52; p < 0.001). Consistent constant capture threshold had better correlation with median CF than consistent intermittent capture threshold for both unipolar and bipolar pacing (Pearson R -0.45; p < 0.001 and Spearman Rho -0.62; p < 0.001 vs. Pearson R -0.35; p < 0.001; Spearman Rho -0.52; p < 0.001). The best pacing threshold cutoff point to detect a good CF (>10 g) was 3.25 mA for unipolar pacing with 69% specificity and 73% sensitivity. Both increased to 80% specificity and 74% sensitivity for sites with normal bipolar voltage and a pacing threshold cutoff value of 2.85 mA. Pacing thresholds correlate with CF in human not previously ablated LA. Since the combination of a normal bipolar voltage and a unipolar pacing threshold <2.85 mA provide reasonable parameters of validity, pacing threshold could be of interest as a surrogate for CF in LA.
Khodaee, M; Banakermani, M; Baghban, H
2015-10-10
Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34 THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.
Effect of thermal insulation on the electrical characteristics of NbOx threshold switches
NASA Astrophysics Data System (ADS)
Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio
2018-02-01
Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.
Low-threshold, CW, all-solid-state Ti:Al2O3 laser
NASA Technical Reports Server (NTRS)
Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.
1991-01-01
A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.
Low-Voltage InGaZnO Thin Film Transistors with Small Sub-Threshold Swing.
Cheng, C H; Chou, K I; Hsu, H H
2015-02-01
We demonstrate a low-voltage driven, indium-gallium-zinc oxide thin-film transistor using high-κ LaAlO3 gate dielectric. A low VT of 0.42 V, very small sub-threshold swing of 68 mV/dec, field-effect mobility of 4.1 cm2/Ns and low operation voltage of 1.4 V were reached simultaneously in LaAlO3/IGZO TFT device. This low-power and small SS TFT has the potential for fast switching speed and low power applications.
Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface.
Chen, Zan Hui; Tao, Jin; Gu, Jia Hua; Li, Jian; Hu, Di; Tan, Qi Long; Zhang, Fengchun; Huang, Xu Guang
2016-12-12
We propose and numerically investigate a gate-controlled on-chip graphene metasurface consisting of a monolayer graphene sheet and silicon photonic crystal-like substrate, to achieve an electrically-tunable induced transparency. The operation mechanism of the induced transparency of the on-chip graphene metasurface is analyzed. The tunable optical properties with different gate-voltages and polarizations have been discussed. Additionally, the spectral feature of the on-chip graphene metasurface as a function of the refractive index of the local environment is also investigated. The result shows that the on-chip graphene metasurface as a refractive index sensor can achieve an overall figure of merit of 8.89 in infrared wavelength range. Our study suggests that the proposed structure is potentially attractive as optoelectronic modulators and refractive index sensors.
Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang
2012-10-01
We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.
Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa
2013-06-11
Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.
NASA Astrophysics Data System (ADS)
Tang, Lan-Feng; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Qian, Hui-Min; Zhou, Dong; Zhang, Rong; Zheng, You-Dou; Huang, Xiao-Ming
2015-08-01
The influence of white light illumination on the stability of an amorphous InGaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
NASA Astrophysics Data System (ADS)
Lisauskas, Alvydas; Ikamas, Kestutis; Massabeau, Sylvain; Bauer, Maris; ČibiraitÄ--, DovilÄ--; Matukas, Jonas; Mangeney, Juliette; Mittendorff, Martin; Winnerl, Stephan; Krozer, Viktor; Roskos, Hartmut G.
2018-05-01
We propose to exploit rectification in field-effect transistors as an electrically controllable higher-order nonlinear phenomenon for the convenient monitoring of the temporal characteristics of THz pulses, for example, by autocorrelation measurements. This option arises because of the existence of a gate-bias-controlled super-linear response at sub-threshold operation conditions when the devices are subjected to THz radiation. We present measurements for different antenna-coupled transistor-based THz detectors (TeraFETs) employing (i) AlGaN/GaN high-electron-mobility and (ii) silicon CMOS field-effect transistors and show that the super-linear behavior in the sub-threshold bias regime is a universal phenomenon to be expected if the amplitude of the high-frequency voltage oscillations exceeds the thermal voltage. The effect is also employed as a tool for the direct determination of the speed of the intrinsic TeraFET response which allows us to avoid limitations set by the read-out circuitry. In particular, we show that the build-up time of the intrinsic rectification signal of a patch-antenna-coupled CMOS detector changes from 20 ps in the deep sub-threshold voltage regime to below 12 ps in the vicinity of the threshold voltage.
Threshold-voltage modulated phase change heterojunction for application of high density memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang
2015-09-28
Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less
Traffic-driven epidemic spreading on scale-free networks with tunable degree distribution
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Wang, Bing-Hong
2016-04-01
We study the traffic-driven epidemic spreading on scale-free networks with tunable degree distribution. The heterogeneity of networks is controlled by the exponent γ of power-law degree distribution. It is found that the epidemic threshold is minimized at about γ=2.2. Moreover, we find that nodes with larger algorithmic betweenness are more likely to be infected. We expect our work to provide new insights in to the effect of network structures on traffic-driven epidemic spreading.
NASA Astrophysics Data System (ADS)
Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.
2016-06-01
Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.
Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M
2018-01-01
Objective A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue. PMID:27097901
Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M
2016-06-01
A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.
Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistor
NASA Technical Reports Server (NTRS)
Toshishige, Yamada; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The threshold voltages of a carbon-nanotube (CNT) field-effect transistor (FET) are studied. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, and this makes the device characteristics quite unique. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and inversion and accumulation threshold voltages (V(sub Ti), and V(sub Ta)) are derived. V(sub Ti) of the CNTFETs has a much stronger doping dependence than that of the metal-oxide- semiconductor FETs, while V(sub Ta) of both devices depends weakly on doping with the same functional form.
Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.
2014-01-01
Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010
Muir, Ryan D; Pogranichney, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J
2014-09-01
Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash
1999-01-01
A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.
Tam, A M W; Qi, G; Srivastava, A K; Wang, X Q; Fan, F; Chigrinov, V G; Kwok, H S
2014-06-10
In this paper, we present a novel design configuration of double DHFLC wave plate continuous tunable Lyot filter, which exhibits a rapid response time of 185 μs, while the high-contrast ratio between the passband and stop band is maintained throughout a wide tunable range. A DHFLC tunable filter with a high-contrast ratio is attractive for realizing high-speed optical processing devices, such as multispectral and hyperspectral imaging systems, real-time remote sensing, field sequential color display, and wavelength demultiplexing in the metro network. In this work, an experimental prototype for a single-stage DHFLC Lyot filter of this design has been fabricated using photoalignment technology. We have demonstrated that the filter has a continuous tunable range of 30 nm for a blue wavelength, 45 nm for a green wavelength, and more than 50 nm for a red wavelength when the applied voltage gradually increases from 0 to 8 V. Within this tunable range, the contrast ratio of the proposed double wave plate configuration is maintained above 20 with small deviation in the transmittance level. Simulation and experimental results showed the proposed double DHFLC wave plate configuration enhances the contrast ratio of the tunable filter and, thus, increases the tunable range of the filter when compared with the Lyot filter using a single DHFLC wave plate. Moreover, we have proposed a polarization insensitive configuration for which the efficiency of the existing prototype can theoretically be doubled by the use of polarization beam splitters.
Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter
NASA Astrophysics Data System (ADS)
Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun
2018-03-01
The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.
A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays
NASA Astrophysics Data System (ADS)
Wang, Wei; Meng, Zhao; Liang, Ruisheng; Chen, Shijie; Ding, Li; Wang, Faqiang; Liu, Hongzhan; Meng, Hongyun; Wei, Zhongchao
2018-05-01
Dynamically tunable plasmonic multi-functional is particularly desirable for various nanotechnological applications. In this paper, graphene nano-sheet pair arrays separated by a substrate, which can act as a dynamically tunable plasmonic band stop filter with transmission at resonance wavelength lower than 1%, a high sensitivity refractive index sensor with sensitivity up to 4879 nm/RIU, figure of merit of 40.66 and a two circuit optical switch with the modulation depth up to 0.998, are proposed and numerically investigated. These excellent optical performances are calculated by using FDTD numerical modeling and theoretical deduction. Simulation results show that a slight variation of chemical potential of the graphene nano-sheet can achieve significant resonance wavelength shifts. In additional, the resonance wavelength and transmission of this plasmonic device can be tuned easily by two voltages owing to the simple patterned graphene. These studies may have great potential in fabrication of multi-functional and dynamically tunable optoelectronic integrated devices.
Wavelength dependence of laser-induced retinal injury
NASA Astrophysics Data System (ADS)
Lund, David J.; Edsall, Peter; Stuck, Bruce E.
2005-04-01
The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.
Zhang, Yuxian; Zhao, Weidong; Wen, Jiahui; Li, Jinming; Yang, Zhou; Wang, Dong; Cao, Hui; Quan, Maohua
2017-05-21
A new type of electric- or thermal-responsive multilayer device composed of SiO 2 bilayer inverse opal (IOP) and chiral nematic liquid crystals (N*LCs) was developed. Bilayer IOP was fabricated by layer-by-layer assembly of polystyrene (PS) spheres with two different sizes and showed a reflectance in an extended range of the near-infrared region. Furthermore, the electrically or thermally tunable reflectance of the bilayer-IOP-N*LC device was investigated. The device exhibited the photonic bandgap (PBG) of the N*LC-IOP composite structure with the application of an electric field (voltage-on), while it presented the reflectance of N*LCs without an electric field (voltage-off) and the electrically-responsive behaviour could be reversibly switched. Besides, the device exhibited a gradient redshift of reflectance as temperature increased below the clearing point (T C ) while it showed the PBG of the N*LC-IOP composite structure when the temperature was above T C .
Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure
NASA Astrophysics Data System (ADS)
Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping
2014-09-01
GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.
A low-voltage fully balanced CMFF transconductor with improved linearity
NASA Astrophysics Data System (ADS)
Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.
2007-05-01
This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.
NASA Astrophysics Data System (ADS)
Shen, Jian Qi; Gu, Jing
2018-04-01
Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.
A Survey of Architectural Techniques for Near-Threshold Computing
Mittal, Sparsh
2015-12-28
Energy efficiency has now become the primary obstacle in scaling the performance of all classes of computing systems. In low-voltage computing and specifically, near-threshold voltage computing (NTC), which involves operating the transistor very close to and yet above its threshold voltage, holds the promise of providing many-fold improvement in energy efficiency. However, use of NTC also presents several challenges such as increased parametric variation, failure rate and performance loss etc. Our paper surveys several re- cent techniques which aim to offset these challenges for fully leveraging the potential of NTC. By classifying these techniques along several dimensions, we also highlightmore » their similarities and differences. Ultimately, we hope that this paper will provide insights into state-of-art NTC techniques to researchers and system-designers and inspire further research in this field.« less
A Survey of Architectural Techniques for Near-Threshold Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
Energy efficiency has now become the primary obstacle in scaling the performance of all classes of computing systems. In low-voltage computing and specifically, near-threshold voltage computing (NTC), which involves operating the transistor very close to and yet above its threshold voltage, holds the promise of providing many-fold improvement in energy efficiency. However, use of NTC also presents several challenges such as increased parametric variation, failure rate and performance loss etc. Our paper surveys several re- cent techniques which aim to offset these challenges for fully leveraging the potential of NTC. By classifying these techniques along several dimensions, we also highlightmore » their similarities and differences. Ultimately, we hope that this paper will provide insights into state-of-art NTC techniques to researchers and system-designers and inspire further research in this field.« less
Investigation of AlGaN/GaN HEMTs degradation with gate pulse stressing at cryogenic temperature
NASA Astrophysics Data System (ADS)
Wang, Ning; Wang, Hui; Lin, Xinpeng; Qi, Yongle; Duan, Tianli; Jiang, Lingli; Iervolino, Elina; Cheng, Kai; Yu, Hongyu
2017-09-01
Degradation on DC characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) after applying pulsed gate stress at cryogenic temperatures is presented in this paper. The nitrogen vacancy near to the AlGaN/GaN interface leads to threshold voltage of stress-free sample shifting positively at low temperature. The anomalous behavior of threshold voltage variation (decrease first and then increase) under gate stressing as compared to stress-free sample is observed when lowing temperature. This can be correlated with the pre-existing electron traps in SiNX layer or at SiNX/AlGaN interface which can be de-activated and the captured electrons inject back to channel with lowering temperature, which counterbalances the influence of nitrogen vacancy on threshold voltage shift.
Back-and-forth micromotion of aqueous droplets in a dc electric field.
Kurimura, Tomo; Ichikawa, Masatoshi; Takinoue, Masahiro; Yoshikawa, Kenichi
2013-10-01
Recently, it was reported that an aqueous droplet in an oil phase exhibited rhythmic back-and-forth motion under stationary dc voltage on the order of 100 V. Here, we demonstrate that the threshold voltage for inducing such oscillation is successfully decreased to the order of 10 V through downsizing of the experimental system. Notably, the threshold electric field tends to decrease with a nonlinear scaling relationship accompanied by the downsizing. We derive a simple theoretical model to interpret the system size dependence of the threshold voltage. This model equation suggests the unique effect of additional noise, which is qualitatively characterized as a coherent resonance by an actual experiment as a kind of coherent resonance. Our result would provide insight into the construction of micrometer-sized self-commutating motors and actuators in microfluidic and micromechanical devices.
NASA Astrophysics Data System (ADS)
Tripathi, Shweta
2016-10-01
In the present work, a two-dimensional (2D) analytical framework of triple material symmetrical gate stack (TMGS) DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS™ device simulator to affirm and formalize the proposed device structure.
NASA Astrophysics Data System (ADS)
Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.
2017-12-01
Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.
Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I
2016-07-26
Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.
Mixed-Halide Perovskites with Stabilized Bandgaps.
Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P
2017-11-08
One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj
2016-12-01
In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.
2016-10-01
The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.
Radiation tolerant back biased CMOS VLSI
NASA Technical Reports Server (NTRS)
Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)
2003-01-01
A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.
Roy, Sharani; Mujica, Vladimiro; Ratner, Mark A
2013-08-21
The scanning tunneling microscope (STM) is a fascinating tool used to perform chemical processes at the single-molecule level, including bond formation, bond breaking, and even chemical reactions. Hahn and Ho [J. Chem. Phys. 123, 214702 (2005)] performed controlled rotations and dissociations of single O2 molecules chemisorbed on the Ag(110) surface at precise bias voltages using STM. These threshold voltages were dependent on the direction of the bias voltage and the initial orientation of the chemisorbed molecule. They also observed an interesting voltage-direction-dependent and orientation-dependent pathway selectivity suggestive of mode-selective chemistry at molecular junctions, such that in one case the molecule underwent direct dissociation, whereas in the other case it underwent rotation-mediated dissociation. We present a detailed, first-principles-based theoretical study to investigate the mechanism of the tunneling-induced O2 dynamics, including the origin of the observed threshold voltages, the pathway dependence, and the rate of O2 dissociation. Results show a direct correspondence between the observed threshold voltage for a process and the activation energy for that process. The pathway selectivity arises from a competition between the voltage-modified barrier heights for rotation and dissociation, and the coupling strength of the tunneling electrons to the rotational and vibrational modes of the adsorbed molecule. Finally, we explore the "dipole" and "resonance" mechanisms of inelastic electron tunneling to elucidate the energy transfer between the tunneling electrons and chemisorbed O2.
Rådman, Lisa; Gunnarsson, Lars-Gunnar; Nilsagård, Ylva; Nilsson, Tohr
2016-12-01
Symptoms described in previous studies indicate that electrical injury can cause longstanding injuries to the neurosensory nerves. The aim of the present case series was to objectively assess the profile of neurosensory dysfunction in electricians in relation to high voltage or low voltage electrical injury and the "no-let-go phenomenon". Twenty-three Swedish male electricians exposed to electrical injury were studied by using a battery of clinical instruments, including quantitative sensory testing (QST). The clinical test followed a predetermined order of assessments: thermal perceptions thresholds, vibration perception thresholds, tactile gnosis (the Shape and Texture Identification test), manual dexterity (Purdue Pegboard Test), and grip strength. In addition, pain was studied by means of a questionnaire, and a colour chart was used for estimation of white fingers. The main findings in the present case series were reduced thermal perceptions thresholds, where half of the group showed abnormal values for warm thermal perception and/or cold thermal perception. Also, the tactile gnosis and manual dexterity were reduced. High voltage injury was associated with more reduced sensibility compared to those with low voltage. Neurosensory injury can be objectively assessed after an electrical injury by using QST with thermal perception thresholds. The findings are consistent with injuries to small nerve fibres. In the clinical setting thermal perception threshold is therefore recommended, in addition to tests of tactile gnosis and manual dexterity (Purdue Pegboard). Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Xiaofei; Xu, Jianping; Shi, Shaobo; Zhang, Xiaosong; Li, Lan; Yin, Shougen
2017-05-01
We report tunable electroluminescence (EL) from solution-processed ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs)/poly(9-vinlycarbazole) multilayer films. The EL spectra exhibit a red shift as the QD layer thickness increases. By analyzing the dependence of the applied voltage and the ZCIS/ZnS QD layer thickness on the EL spectra, the origin of the red shift is associated with the increased trap density of QDs that induces the injected electrons to be trapped in the deep donor level. The current conduction mechanism based on the current density-voltage curves at different voltage regions was discussed.
Voltage mode electronically tunable full-wave rectifier
NASA Astrophysics Data System (ADS)
Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan
2017-01-01
The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.
Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo
2013-11-18
We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.
NASA Astrophysics Data System (ADS)
Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin
2017-06-01
An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.
Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting
Mo, Jingke; Retterer, Scott T.; Cullen, David A.; ...
2016-06-13
Liquid/gas diffusion layers (LGDLs) play a crucial role in electrochemical energy technology and hydrogen production, and are expected to simultaneously transport electrons, heat, and reactants/products with minimum voltage, current, thermal, interfacial, and fluidic losses. In addition, carbon materials, which are typically used in proton exchange membrane fuel cells (PEMFCs), are unsuitable for PEM electrolyzer cells (PEMECs). In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm 2 weremore » as low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 μm of conventional LGDLs to 25 μm will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance.« less
NASA Astrophysics Data System (ADS)
Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-01
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
Vasić, Borislav; Zografopoulos, Dimitrios C; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-24
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
Widely tunable semiconductor lasers with three interferometric arms.
Su, Guan-Lin; Wu, Ming C
2017-09-04
We present a comprehensive study for a new three-branch widely tunable semiconductor laser based on a self-imaging, lossless multi-mode interference (MMI) coupler. We have developed a general theoretical framework that is applicable to all types of interferometric lasers. Our analysis showed that the three-branch laser offers high side-mode suppression ratios (SMSRs) while maintaining a wide tuning range and a low threshold modal gain of the lasing mode. We also present the design rules for tuning over the dense-wavelength division multiplexing grid over the C-band.
Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control.
Chen, Qiushu; Liu, Huajie; Lee, Wonsuk; Sun, Yuze; Zhu, Dan; Pei, Hao; Fan, Chunhai; Fan, Xudong
2013-09-07
We have applied self-assembled DNA tetrahedral nanostructures for the precise and tunable control of the gain in an optofluidic fluorescence resonance energy transfer (FRET) laser. By adjusting the ratio of the donor and the acceptor attached to the tetrahedral vertices, 3.8 times reduction in the lasing threshold and 28-fold enhancement in the lasing efficiency were demonstrated. This work takes advantage of the self-recognition and self-assembly capabilities of biomolecules with well-defined structures and addressability, enabling nano-engineering of the laser down to the molecular level.
Effect of gate bias sweep rate on the threshold voltage of in-plane gate nanowire transistor
NASA Astrophysics Data System (ADS)
Liu, H. X.; Li, J.; Tan, R. R.
2018-01-01
In2O3 nanowire electric-double-layer (EDL) transistors with in-plane gate gated by SiO2 solid-electrolyte are fabricated on transparent glass substrates. The gate voltage sweep rates can effectively modulate the threshold voltage (Vth) of nanowire device. Both depletion mode and enhancement mode are realized, and the Vth shift of the nanowire transistors is estimated to be 0.73V (without light). This phenomenon is due to increased adsorption of oxygen on the nanowire surface by the slower gate voltage sweep rates. Adsorbed oxygens capture electrons and cause a surface of nanowire channel was depleted. The operation voltage of transistor was 1.0 V, because the EDL gate dielectric can lead to high gate dielectric capacitance. These transparent in-plane gate nanowire transistors are promising for “see-through” nanoscale sensors.
Characteristics of edge breakdowns on Teflon samples
NASA Technical Reports Server (NTRS)
Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.
1980-01-01
The characteristics of electrical discharges induced on silverbacked Teflon samples irradiated by a monoenergetic electron beam have been studied under controlled laboratory conditions. Measurements of breakdown threshold voltages indicate a marked anisotropy in the electrical breakdown properties of Teflon: differences of up to 10 kV in breakdown threshold voltage are observed depending on the sample orientation. The material anisotropy can be utilized in spacecraft construction to reduce the magnitude of discharge currents.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liangyu
2015-01-01
This work reports a theoretical and experimental study of 4H-SiC JFET threshold voltage as a function of substrate body bias, device position on the wafer, and temperature from 25 C (298K) to 500 C (773K). Based on these results, an alternative approach to SPICE circuit simulation of body effect for SiC JFETs is proposed.
Lee, In-Kyu; Lee, Kwan Hyi; Lee, Seok; Cho, Won-Ju
2014-12-24
We used a microwave annealing process to fabricate a highly reliable biosensor using amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs), which usually experience threshold voltage instability. Compared with furnace-annealed a-IGZO TFTs, the microwave-annealed devices showed superior threshold voltage stability and performance, including a high field-effect mobility of 9.51 cm(2)/V·s, a low threshold voltage of 0.99 V, a good subthreshold slope of 135 mV/dec, and an outstanding on/off current ratio of 1.18 × 10(8). In conclusion, by using the microwave-annealed a-IGZO TFT as the transducer in an extended-gate ion-sensitive field-effect transistor biosensor, we developed a high-performance biosensor with excellent sensing properties in terms of pH sensitivity, reliability, and chemical stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Hung, Ting-Hsiang; Akyol, Fatih
2014-12-29
We report on the potential of high electron mobility transistors (HEMTs) consisting of high composition AlGaN channel and barrier layers for power switching applications. Detailed two-dimensional (2D) simulations show that threshold voltages in excess of 3 V can be achieved through the use of AlGaN channel layers. We also calculate the 2D electron gas mobility in AlGaN channel HEMTs and evaluate their power figures of merit as a function of device operating temperature and Al mole fraction in the channel. Our models show that power switching transistors with AlGaN channels would have comparable on-resistance to GaN-channel based transistors for the samemore » operation voltage. The modeling in this paper shows the potential of high composition AlGaN as a channel material for future high threshold enhancement mode transistors.« less
Takeishi, Shunsaku; Rant, Ulrich; Fujiwara, Tsuyoshi; Buchholz, Karin; Usuki, Tatsuya; Arinaga, Kenji; Takemoto, Kazuya; Yamaguchi, Yoshitaka; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki
2004-03-22
DNA oligo-nucleotides, localized at Au metal electrodes in aqueous solution, are found to be released when applying a negative bias voltage to the electrode. The release was confirmed by monitoring the intensity of the fluorescence of cyanine dyes (Cy3) linked to the 5' end of the DNA. The threshold voltage of the release changes depending on the kind of linker added to the DNA 3'-terminal. The amount of released DNA depends on the duration of the voltage pulse. Using this technique, we can retain DNA at Au electrodes or Au needles, and release the desired amount of DNA at a precise location in a target. The results suggest that DNA injection into living cells is possible with this method. (c) 2004 American Institute of Physics
On-chip tunable optofluidic dye laser
NASA Astrophysics Data System (ADS)
Cai, Zengyan; Shen, Zhenhua; Liu, Haigang; Yue, Huan; Zou, Yun; Chen, Xianfeng
2016-11-01
We demonstrate a chip-scale tunable optofluidic dye laser with Au-coated fibers as microcavity. The chip is fabricated by soft lithography. When the active region is pumped, a relatively low threshold of 6.7 μJ/mm2 is realized with multimode emission due to good confinement of the cavity mirrors, long active region, as well as total reflectivity. It is easy to tune the lasing emission wavelength by changing the solvent of laser dye. In addition, the various intensity ratios of multicolor lasing can be achieved by controlling flow rates of two fluid streams carried with different dye molecules. Furthermore, the convenience in fabrication and directional lasing emission outcoupled by the fiber make the tunable optofluidic dye laser a promising underlying coherent light source in the integrated optofluidic systems.
Dao, Toan Thanh; Sakai, Heisuke; Nguyen, Hai Thanh; Ohkubo, Kei; Fukuzumi, Shunichi; Murata, Hideyuki
2016-07-20
We present controllable and reliable complementary organic transistor circuits on a PET substrate using a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (Cytop). Cu was used for a source/drain electrode in both the p-channel and n-channel transistors. The threshold voltage of the transistors and the inverting voltage of the circuits were reversibly controlled over a wide range under a program voltage of less than 10 V and under UV light irradiation. At a program voltage of -2 V, the inverting voltage of the circuits was tuned to be at nearly half of the supply voltage of the circuit. Consequently, an excellent balance between the high and low noise margins (NM) was produced (64% of NMH and 68% of NML), resulting in maximum noise immunity. Furthermore, the programmed circuits showed high stability, such as a retention time of over 10(5) s for the inverter switching voltage. Our findings bring about a flexible, simple way to obtain robust, high-performance organic circuits using a controllable complementary transistor inverter.
Adhesive curing through low-voltage activation
Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.
2015-01-01
Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730
Plenoptic camera based on a liquid crystal microlens array
NASA Astrophysics Data System (ADS)
Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng
2015-09-01
A type of liquid crystal microlens array (LCMLA) with tunable focal length by the voltage signals applied between its top and bottom electrodes, is fabricated and then the common optical focusing characteristics are tested. The relationship between the focal length and the applied voltage signals is given. The LCMLA is integrated with an image sensor and further coupled with a main lens so as to construct a plenoptic camera. Several raw images at different voltage signals applied are acquired and contrasted through the LCMLA-based plenoptic camera constructed by us. Our experiments demonstrate that through utilizing a LCMLA in a plenoptic camera, the focused zone of the LCMLA-based plenoptic camera can be shifted effectively only by changing the voltage signals loaded between the electrodes of the LCMLA, which is equivalent to the extension of the depth of field.
High-power, continuous-wave, tunable mid-IR, higher-order vortex beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Aadhi, A.; Sharma, Varun; Samanta, G. K.
2018-05-01
We report on a novel experimental scheme to generate continuous-wave (cw), high power, and higher-order optical vortices tunable across mid-IR wavelength range. Using cw, two-crystal, singly resonant optical parametric oscillator (T-SRO) and pumping one of the crystals with Gaussian beam and the other crystal with optical vortices of orders, lp = 1 to 6, we have directly transferred the vortices at near-IR to the mid-IR wavelength range. The idler vortices of orders, li = 1 to 6, are tunable across 2276-3576 nm with a maximum output power of 6.8 W at order of, li = 1, for the pump power of 25 W corresponding to a near-IR vortex to mid-IR vortex conversion efficiency as high as 27.2%. Unlike the SROs generating optical vortices restricted to lower orders due to the elevated operation threshold with pump vortex orders, here, the coherent energy coupling between the resonant signals of the crystals of T-SRO facilitates the transfer of pump vortex of any order to the idler wavelength without stringent operation threshold condition. The generic experimental scheme can be used in any wavelength range across the electromagnetic spectrum and in all time scales from cw to ultrafast regime.
Hierarchical Approach to 'Atomistic' 3-D MOSFET Simulation
NASA Technical Reports Server (NTRS)
Asenov, Asen; Brown, Andrew R.; Davies, John H.; Saini, Subhash
1999-01-01
We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1 micron MOSFET's. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations.
Non-Uniform Bias Enhancement of a Varactor-Tuned FSS used with a Low Profile 2.4 GHz Dipole Antenna
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas M.; Miranda, Felix A.
2012-01-01
In this paper a low profile antenna using a nonuniformly biased varactor-tuned frequency selective surface (FSS) is presented. The tunable FSS avoids the use of vias and has a simplified DC bias network. The voltages to the DC bias ports can be varied independently allowing adjustment in the frequency response and enhanced radiation properties. The measured data demonstrate tunability from 2.15 GHz to 2.63 GHz with peak efficiencies that range from 50% to 90% and instantaneous bandwidths of 50 MHz to 280 MHz within the tuning range. The total antenna thickness is approximately lambda/45.
Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang
2013-01-01
Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm(2) order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials.
Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang
2013-01-01
Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm2 order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials. PMID:23903825
Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.
Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico
2014-11-12
Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.
Electrotunable nanoplasmonic liquid mirror
NASA Astrophysics Data System (ADS)
Montelongo, Yunuen; Sikdar, Debabrata; Ma, Ye; McIntosh, Alastair J. S.; Velleman, Leonora; Kucernak, Anthony R.; Edel, Joshua B.; Kornyshev, Alexei A.
2017-11-01
Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within +/-0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective `mirror' to a transmissive `window' and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.
Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruverman, Alexei; Tsymbal, Evgeny Y.; Eom, Chang-Beom
2017-05-03
This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis
2015-01-01
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays. PMID:26066375
Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.
2017-06-01
In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within ±0.2 nm.
Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.
2010-01-01
Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.
Ghalem, Areski; Ponchel, Freddy; Remiens, Denis; Legier, Jean-Francois; Lasri, Tuami
2013-05-01
A complete microwave characterization up to 67 GHz using specific coplanar waveguides was performed to determine the dielectric properties (permittivity, losses, and tunability) of sapphire/TiOx/Ba0.3Sr0.7TiO3 (BST) (111)-oriented thin films. To that end, BaxSr1-xTiO3 thin films were deposited by RF magnetron sputtering on sapphire (0001) substrate. To control the preferred (111) orientation, a TiOx buffer layer was deposited on sapphire. According to the detailed knowledge of the material properties, it has been possible to conceive, fabricate, and test interdigitated capacitors, the basic element for future microwave tunable applications. Retention of capacitive behavior up to 67 GHz and a tunability of 32% at 67 GHz at an applied voltage of 30 V (150 kV/cm) were observed. The Q-factor remains greater than 30 over the entire frequency band. The possibility of a complete characterization of the material for the realization of high-performance interdigitated capacitors opens the door to microwave device fabrication.
Discrimination of enclosed images by weighted storage in an optical associative memory
NASA Astrophysics Data System (ADS)
Duelli, M.; Cudney, R. S.; Günter, P.
1996-02-01
We present an all-optical associative memory that can distinguish objects that are enclosed by or strongly overlap other objects. This is done by appropriately weighting the exposure of the stored images during recording. The images to be recalled associatively are stored in a photorefractive LiNbO 3 crystal via angular multiplexing. Thresholding of the reconstructed reference beams during associative readout is achieved by using a saturable absorber with an intensity tunable threshold.
NASA Astrophysics Data System (ADS)
Borthakur, Tribeni; Sarma, Ranjit
2017-05-01
Top-contact Pentacene-based organic thin film transistors (OTFTs) with a thin layer of Vanadium Pent-oxide between Pentacene and Au layer are fabricated. Here we have found that the devices with V2O5/Au bi-layer source-drain electrode exhibit better field-effect mobility, high on-off ratio, low threshold voltage and low sub-threshold slope than the devices with Au only. The field-effect mobility, current on-off ratio, threshold voltage and sub-threshold slope of V2O5/Au bi-layer OTFT estimated from the device with 15 nm thick V2O5 layer is .77 cm2 v-1 s-1, 7.5×105, -2.9 V and .36 V/decade respectively.
NASA Astrophysics Data System (ADS)
Young, Darrin Jun
The proliferation of wireless services creates a pressing need for compact and low cost RF transceivers. Modern sub-micron technologies provide the active components needed for miniaturization but fail to deliver high quality passives needed in oscillators and filters. This dissertation demonstrates procedures for adding high quality inductors and tunable capacitors to a standard silicon integrated circuits. Several voltage-controlled oscillators operating in the low Giga-Hertz range demonstrate the suitability of these components for high performance RF building blocks. Two low-temperature processes are described to add inductors and capacitors to silicon ICs. A 3-D coil geometry is used for the inductors rather than the conventional planar spiral to substantially reduce substrate loss and hence improve the quality factor and self-resonant frequency. Measured Q-factors at 1 GHz are 30 for a 4.8 nH device, 16 for 8.2 nH and 13.8 nH inductors. Several enhancements are proposed that are expected to result in a further improvement of the achievable Q-factor. This research investigates the design and fabrication of silicon-based IC-compatible high-Q tunable capacitors and inductors. The goal of this investigation is to develop a monolithic low phase noise radio-frequency voltage-controlled oscillator using these high-performance passive components for wireless communication applications. Monolithic VCOs will help the miniaturization of current radio transceivers, which offers a potential solution to achieve a single hand-held wireless phone with multistandard capabilities. IC-compatible micromachining fabrication technologies have been developed to realize on-chip high-Q RF tunable capacitors and 3-D coil inductors. The capacitors achieve a nominal capacitance value of 2 pF and can be tuned over 15% with 3 V. A quality factor over 60 has been measured at 1 GHz. 3-D coil inductors obtain values of 4.8 nH, 8.2 nH and 13.8 nH. At 1 GHz a Q factor of 30 has been achieved for a 4.8 nH device and a Q of 16 for 8.2 nH and 13.8 nH inductors. A prototype RF voltage-controlled oscillator has been implemented employing the micromachined tunable capacitors and a 8.2 nH 3-D coil inductor. The active electronics, tunable capacitors and inductor are fabricated on separated silicon substrates and wire bonded to form the VCO. This hybrid approach is used to avoid the complexity of building the prototype oscillator. Both passive components are fabricated on silicon substrates and thus amenable to monolithic integration with standard IC process. The VCO achieves a -136 dBc/Hz phase noise at a 3 MHz offset frequency from the carrier, suitable for most wireless communication applications and is tunable from 855 MHz to 863 MHz with 3 V.
Electrical switching in cadmium boracite single crystals
NASA Technical Reports Server (NTRS)
Takahashi, T.; Yamada, O.
1981-01-01
Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.
Design of a Voltage Tunable Broadband Quantum Well Infrared Photodetector
2002-06-01
1 B. PROGRESS OF QWIPS ...converting some of the incident photons to an electric signal. A Quantum Well Infrared Photodetector ( QWIP ) consists of a stack of quantum wells...arsenide (GaAs ) and aluminum gallium arsenide ( AsGaAl xx −1 ) with different aluminum compositions allowed the fabrication of novel QWIP detectors
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi
2015-10-28
Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.
A theoretical approach to study the optical sensitivity of a MESFET
NASA Astrophysics Data System (ADS)
Dutta, Sutanu
2018-05-01
A theoretical model to study the optical sensitivity of a metal-semiconductor field effect transistor has been proposed for a relatively high drain field. An analytical expression of drain current of the device has been derived for a MESFET under optical illumination considering field dependent mobility of electrons across the channel. The variation of drain current with and without optical illumination has been studied with drain and gate voltages. The optical sensitivity of the drain current has been studied for different biasing conditions and gate lengths. In addition, the shift in threshold voltage of a MESFET under optical illumination is determined and optical sensitivity of the device in terms of its threshold voltage has been studied.
NASA Astrophysics Data System (ADS)
Cazimajou, T.; Legallais, M.; Mouis, M.; Ternon, C.; Salem, B.; Ghibaudo, G.
2018-05-01
We studied the current-voltage characteristics of percolating networks of silicon nanowires (nanonets), operated in back-gated transistor mode, for future use as gas or biosensors. These devices featured P-type field-effect characteristics. It was found that a Lambert W function-based compact model could be used for parameter extraction of electrical parameters such as apparent low field mobility, threshold voltage and subthreshold slope ideality factor. Their variation with channel length and nanowire density was related to the change of conduction regime from direct source/drain connection by parallel nanowires to percolating channels. Experimental results could be related in part to an influence of the threshold voltage dispersion of individual nanowires.
Addressable inverter matrix for process and device characterization
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Sayah, H. R.
1985-01-01
The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated in this study, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold voltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.
Properties of highly clustered networks
NASA Astrophysics Data System (ADS)
Newman, M. E.
2003-08-01
We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.
Precision Voltage Referencing Techniques in MOS Technology.
NASA Astrophysics Data System (ADS)
Song, Bang-Sup
With the increasing complexity of functions on a single MOS chip, precision analog cicuits implemented in the same technology are in great demand so as to be integrated together with digital circuits. The future development of MOS data acquisition systems will require precision on-chip MOS voltage references. This dissertation will probe two most promising configurations of on-chip voltage references both in NMOS and CMOS technologies. In NMOS, an ion-implantation effect on the temperature behavior of MOS devices is investigated to identify the fundamental limiting factors of a threshold voltage difference as an NMOS voltage source. For this kind of voltage reference, the temperature stability on the order of 20ppm/(DEGREES)C is achievable with a shallow single-threshold implant and a low-current, high-body bias operation. In CMOS, a monolithic prototype bandgap reference is designed, fabricated and tested which embodies a curvature compensation and exhibits a minimized sensitivity to the process parameter variation. Experimental results imply that an average temperature stability on the order of 10ppm/(DEGREES)C with a production spread of less than 10ppm/(DEGREES)C feasible over the commercial temperature range.
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Ho, Fat Duen
1999-01-01
The ferroelectric channel in a Metal-Ferroelectric-Semiconductor Field Effect Transistor (MFSFET) can partially change its polarization when the gate voltage near the polarization threshold voltage. This causes the MFSFET Drain current to change with repeated pulses of the same gate voltage near the polarization threshold voltage. A previously developed model [11, based on the Fermi-Dirac function, assumed that for a given gate voltage and channel polarization, a sin-le Drain current value would be generated. A study has been done to characterize the effects of partial polarization on the Drain current of a MFSFET. These effects have been described mathematically and these equations have been incorporated into a more comprehensive mathematical model of the MFSFET. The model takes into account the hysteresis nature of the MFSFET and the time dependent decay as well as the effects of partial polarization. This model defines the Drain current based on calculating the degree of polarization from previous gate pulses, the present Gate voltage, and the amount of time since the last Gate volta-e pulse.
NASA Astrophysics Data System (ADS)
Wong, Hon Fai; Ng, Sheung Mei; Cheng, Wang Fai; Liu, Yukuai; Chen, Xinxin; von Nordheim, Danny; Mak, Chee Leung; Dai, Jiyan; Ploss, Bernd; Leung, Chi Wah
2017-12-01
We investigated the tunability of the transport and magnetic properties in 7.5 nm La0.7Sr0.3MnO3 (LSMO) epitaxial films in a field effect geometry with the ferroelectric copolymer P(VDF-TrFE) as the gate insulator. Two different switching behaviors were observed upon application of gate voltages with either high or low magnitudes. The application of single voltage pulses of alternating polarity with an amplitude high enough to switch the remanent polarization of the ferroelectric copolymer led to a 15% change of the resistance of the LSMO channel at temperature 300 K (but less than 1% change at 20 K). A minimal shift of the peak in the resistance-temperature plot was observed, implying that the Curie temperature TC of the manganite layer is not changed. Alternatively, the application of a chain of low voltage pulses was found to shift TC by more than 16 K, and a change of the channel resistance by a 45% was obtained. We attribute this effect to the field-assisted injection and removal of oxygen vacancies in the LSMO layer, which can occur across the thickness of the oxide film. By controlling the oxygen migration, the low-field switching route offers a simple method for modulating the electric and magnetic properties of manganite films.
Feng, Guo-Hua; Liu, Jun-Hao
2013-02-01
This paper proposes a tunable-focus liquid lens implemented with a simple cylindrical container structure and liquid as the lens material. The cylindrical container was constructed using a Pb [Zr(0.52)Ti(0.48)]O(3) (PZT) ring transducer and a polydimethylsiloxane membrane that was attached to a flat side of the transducer. The free surface of the liquid in the cylindrical container can be driven as a static-like convex lens with different curvatures because the higher-order harmonic resonance of the PZT transducer was electrically controlled. Based on a capillary-force-dominant design, the activated liquid lens maintained surface curvature in an arbitrary orientation without a gravitational effect. Profiles of the liquid lenses were characterized with the driving voltages of the transducer ranging from 12 to 60 V peak-to-peak (Vpp) at a resonant frequency of 460 kHz. The temperature effects on the lenses caused by the continuous operation of the transducer were measured. Images showed the various curvatures of the lenses with a range of actuation voltages. A change in focal length of eight times (5.72 to 46.03 cm) was demonstrated within the 10 Vpp variation of the driving voltage. For the characterized liquid lenses, the distortion was less than 2%, and the modulation transfer function reached 63 line pairs per mm (lp/mm) using ZEMAX analysis.
Zhao, Shishun; Wang, Lei; Zhou, Ziyao; Li, Chunlei; Dong, Guohua; Zhang, Le; Peng, Bin; Min, Tai; Hu, Zhongqiang; Ma, Jing; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Yu, Pu; Nan, Ce-Wen; Liu, Ming
2018-05-29
Electric field (E-field) modulation of perpendicular magnetic anisotropy (PMA) switching, in an energy-efficient manner, is of great potential to realize magnetoelectric (ME) memories and other ME devices. Voltage control of the spin-reorientation transition (SRT) that allows the magnetic moment rotating between the out-of-plane and the in-plane direction is thereby crucial. In this work, a remarkable magnetic anisotropy field change up to 1572 Oe is achieved under a small operation voltage of 4 V through ionic liquid (IL) gating control of SRT in Au/[DEME] + [TFSI] - /Pt/(Co/Pt) 2 /Ta capacitor heterostructures at room temperature, corresponding to a large ME coefficient of 378 Oe V -1 . As revealed by both ferromagnetic resonance measurements and magnetic domain evolution observation, the magnetization can be switched stably and reversibly between the out-of-plane and in-plane directions via IL gating. The key mechanism, revealed by the first-principles calculation, is that the IL gating process influences the interfacial spin-orbital coupling as well as net Rashba magnetic field between the Co and Pt layers, resulting in the modulation of the SRT and in-plane/out-of-plane magnetization switching. This work demonstrates a unique IL-gated PMA with large ME tunability and paves a way toward IL gating spintronic/electronic devices such as voltage tunable PMA memories. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon
2016-06-09
We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Kaya, S.
2000-01-01
In this paper we use the Density Gradient (DG) simulation approach to study, in 3-D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs on a statistical scale. The random 2-D surfaces used to represent the interface are constructed using the standard assumptions for the auto-correlation function of the interface. The importance of the Quantum Mechanical effects when studying oxide thickness fluctuations are illustrated in several simulation examples.
Manipulating photoinduced voltage in metasurface with circularly polarized light.
Bai, Qiang
2015-02-23
Recently, the concept of metasurface has provided one an unprecedented opportunity and ability to control the light in the deep subwavelength scale. However, so far most efforts are devoted to exploiting the novel scattering properties and applications of metasurface in optics. Here, I theoretically and numerically demonstrate that longitudinal and transverse photoinduced voltages can be simultaneously realized in the proposed metasurface utilizing the magnetic resonance under the normal incidence of circularly polarized light, which may extend the concept and functionality of metasurface into the electronics and may provide a potential scheme to realize a nanoscale tunable voltage source through a nanophotonic roadmap. The signs of longitudinal and transverse photoin-duced voltages can be manipulated by tuning the resonant frequency and the handedness of circularly polarized light, respectively. Analytical formulae of photoinduced voltage are presented based on the theory of symmetry of field. This work may bridge nanophotonics and electronics, expands the capability of metasurface and has many potential applications.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J
2007-02-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz
Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.
2007-01-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412
Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G
2016-09-14
We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Ju, Honglyoul, E-mail: tesl@yonsei.ac.kr
2016-03-28
The characteristics of onset voltages and conduction channel temperatures in the metal-insulator transition (MIT) of vanadium dioxide (VO{sub 2}) devices are investigated as a function of dimensions and ambient temperature. The MIT onset voltage varies from 18 V to 199 V as the device length increases from 5 to 80 μm at a fixed width of 100 μm. The estimated temperature at local conduction channel increases from 110 to 370 °C, which is higher than the MIT temperature (67 °C) of VO{sub 2}. A simple Joule-heating model is employed to explain voltage-induced MIT as well as to estimate temperatures of conduction channel appearing after MIT inmore » various-sized devices. Our findings on VO{sub 2} can be applied to micro- to nano-size tunable heating devices, e.g., microscale scanning thermal cantilevers and gas sensors.« less
Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming
2018-05-01
To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method, memory media and apparatus for detection of grid disconnect
Ye, Zhihong [Clifton Park, NY; Du, Pengwei [Troy, NY
2008-09-23
A phase shift procedure for detecting a disconnect of a power grid from a feeder that is connected to a load and a distributed generator. The phase shift procedure compares a current phase shift of the output voltage of the distributed generator with a predetermined threshold and if greater, a command is issued for a disconnect of the distributed generator from the feeder. To extend the range of detection, the phase shift procedure is used when a power mismatch between the distributed generator and the load exceeds a threshold and either or both of an under/over frequency procedure and an under/over voltage procedure is used when any power mismatch does not exceed the threshold.
Tunable organic distributed feedback dye laser device excited through Förster mechanism
NASA Astrophysics Data System (ADS)
Tsutsumi, Naoto; Hinode, Taiki
2017-03-01
Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.
Tunable signal processing in synthetic MAP kinase cascades.
O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A
2011-01-07
The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Microwave photon generation in a doubly tunable superconducting resonator
NASA Astrophysics Data System (ADS)
Svensson, I.-M.; Pierre, M.; Simoen, M.; Wustmann, W.; Krantz, P.; Bengtsson, A.; Johansson, G.; Bylander, J.; Shumeiko, V.; Delsing, P.
2018-03-01
We have created a doubly tunable resonator, with the intention to simulate relativistic motion of the resonator boundaries in real space. Our device is a superconducting coplanar-waveguide microwave resonator, with fundamental resonant frequency ω 1 /(2π) ~ 5 GHz. Both of its ends are terminated to ground via dc-SQUIDs, which serve as magnetic-flux-controlled inductances. Applying a flux to either SQUID allows the tuning of ω 1 /(2π) by approximately 700 MHz. Using two separate on-chip magnetic-flux lines, we modulate the SQUIDs with two tones of equal frequency, close to 2ω 1. We observe photon generation, at ω 1, above a certain pump amplitude threshold. By varying the relative phase of the two pumps we are able to control this threshold, in good agreement with a theoretical model. At the same time, some of our observations deviate from the theoretical predictions, which we attribute to parasitic couplings resulting in current driving of the SQUIDs.
Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistors
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Biegel, Bryan (Technical Monitor)
2002-01-01
The threshold voltages of a carbon nanotube (CNT) field-effect transistor (FET) are derived and compared with those of the metal oxide-semiconductor (MOS) FETs. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, which is the CNT diameter direction, and this makes the CNTFET characteristics quite different from those in MOSFETs. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and it is shown that the familiar relations are still valid because of the macroscopic number of states available in the CNTs. This is in sharp contrast to the cases of quantum dots. Using these relations, we derive an inversion threshold voltage V(sub Ti) and an accumulation threshold voltage V(sub Ta) as a function of the Fermi level E(sub F) in the channel, where E(sub F) is a measure of channel doping. V(sub Ti) of the CNTFETs has a much stronger dependence than that of MOSFETs, while V(sub Ta)s of both CNTFETs and MOSFETs depend quite weakly on E(sub F) with the same functional form. This means the transition from normally-off mode to normally-on mode is much sharper in CNTFETs as the doping increases, and this property has to be taken into account in circuit design.
Luther, Vishal; Qureshi, Norman; Lim, Phang Boon; Koa-Wing, Michael; Jamil-Copley, Shahnaz; Ng, Fu Siong; Whinnett, Zachary; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa; Linton, Nick
2018-03-01
Postablation reentrant ATs depend upon conducting isthmuses bordered by scar. Bipolar voltage maps highlight scar as sites of low voltage, but the voltage amplitude of an electrogram depends upon the myocardial activation sequence. Furthermore, a voltage threshold that defines atrial scar is unknown. We used Ripple Mapping (RM) to test whether these isthmuses were anatomically fixed between different activation vectors and atrial rates. We studied post-AF ablation ATs where >1 rhythm was mapped. Multipolar catheters were used with CARTO Confidense for high-density mapping. RM visualized the pattern of activation, and the voltage threshold below which no activation was seen. Isthmuses were characterized at this threshold between maps for each patient. Ten patients were studied (Map 1 was AT1; Map 2: sinus 1/10, LA paced 2/10, AT2 with reverse CS activation 3/10; AT2 CL difference 50 ± 30 ms). Point density was similar between maps (Map 1: 2,589 ± 1,330; Map 2: 2,214 ± 1,384; P = 0.31). RM activation threshold was 0.16 ± 0.08 mV. Thirty-one isthmuses were identified in Map 1 (median 3 per map; width 27 ± 15 mm; 7 anterior; 6 roof; 8 mitral; 9 septal; 1 posterior). Importantly, 7 of 31 (23%) isthmuses were unexpectedly identified within regions without prior ablation. AT1 was treated following ablation of 11/31 (35%) isthmuses. Of the remaining 20 isthmuses, 14 of 16 isthmuses (88%) were consistent between the two maps (four were inadequately mapped). Wavefront collision caused variation in low voltage distribution in 2 of 16 (12%). The distribution of isthmuses and nonconducting tissue within the ablated left atrium, as defined by RM, appear concordant between rhythms. This could guide a substrate ablative approach. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hashemi, Adeleh; Bahari, Ali; Ghasemi, Shahram
2017-09-01
In this work, povidone/silica nanocomposite dielectric layers were deposited on the n-type Si (100) substrates for application in n-type silicon field-effect transistors (FET). Thermogravimetric analysis (TGA) indicated that strong chemical interactions between polymer and silica nanoparticles were created. In order to examine the effect of annealing temperatures on chemical interactions and nanostructure properties, annealing process was done at 423-513 K. Atomic force microscopy (AFM) images show the very smooth surfaces with very low surface roughness (0.038-0.088 nm). The Si2p and C1s core level photoemission spectra were deconvoluted to the chemical environments of Si and C atoms respectively. The obtained results of deconvoluted X-ray photoelectron spectroscopy (XPS) spectra revealed a high percentage of silanol hydrogen bonds in the sample which was not annealed. These bonds were inversed to stronger covalence bonds (siloxan bonds) at annealing temperature of 423 K. By further addition of temperature, siloxan bonds were shifted to lower binding energy of about 1 eV and their intensity were abated at annealing temperature of 513 K. The electrical characteristics were extracted from current-Voltage (I-V) and capacitance-voltage (C-V) measurements in metal-insulator-semiconductor (MIS) structure. The all n-type Si transistors showed very low threshold voltages (-0.24 to 1 V). The formation of the strongest cross-linking at nanostructure of dielectric film annealed at 423 K caused resulted in an un-trapped path for the transport of charge carriers yielding the lowest threshold voltage (0.08 V) and the highest electron mobility (45.01 cm2/V s) for its FET. By increasing the annealing temperature (473 and 513 K) on the nanocomposite dielectric films, the values of the average surface roughness, the capacitance and the FET threshold voltage increased and the value of FET electron field-effect mobility decreased.
Multi-tunable microelectromechanical system (MEMS) resonators
Stalford, Harold L [Norman, OK; Butler, Michael A [Andover, MA; Schubert, W Kent [Albuquerque, NM
2006-08-22
A method for tuning a vibratory device including a cantilevered resonator comprising the steps of increasing a voltage V.sub.0 supplied to the vibratory device to thereby increase the bandwidth of the vibratory device; and keeping the resonant frequency of the vibratory device at substantially that natural frequency of the cantilevered resonator, wherein the vibratory device comprises: a capacitor including a movable plate and a fixed plate spaced from each other, the movable plate being part of the cantilevered resonator; a voltage source connected to the capacitor for providing voltage V.sub.0 across the capacitor to produce an attractive force between movable plate and fixed plate; a circuit connecting the voltage source to the capacitor; and a load resistor in said circuit having a resistance R.sub.L satisfying the following equation: .mu..omega..times..times..lamda. ##EQU00001## where: .mu. is at least 10; .omega..sub.0 is the beam constant for the cantilevered resonator; c.sub.0 is the capacitance for the capacitor; and .lamda. is the voltage dependent coupling parameter for voltage V.sub.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk; Barquinha, P. M. C.
Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys.more » 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.« less
Bidirectional control system for energy flow in solar powered flywheel
NASA Technical Reports Server (NTRS)
Nola, Frank J. (Inventor)
1987-01-01
An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.
A CMOS matrix for extracting MOSFET parameters before and after irradiation
NASA Technical Reports Server (NTRS)
Blaes, B. R.; Buehler, M. G.; Lin, Y.-S.; Hicks, K. A.
1988-01-01
An addressable matrix of 16 n- and 16 p-MOSFETs was designed to extract the dc MOSFET parameters for all dc gate bias conditions before and after irradiation. The matrix contains four sets of MOSFETs, each with four different geometries that can be biased independently. Thus the worst-case bias scenarios can be determined. The MOSFET matrix was fabricated at a silicon foundry using a radiation-soft CMOS p-well LOCOS process. Co-60 irradiation results for the n-MOSFETs showed a threshold-voltage shift of -3 mV/krad(Si), whereas the p-MOSFETs showed a shift of 21 mV/krad(Si). The worst-case threshold-voltage shift occurred for the n-MOSFETs, with a gate bias of 5 V during the anneal. For the p-MOSFETs, biasing did not affect the shift in the threshold voltage. A parasitic MOSFET dominated the leakage of the n-MOSFET biased with 5 V on the gate during irradiation. Co-60 test results for other parameters are also presented.
Sam, Somarith; Lim, Sungjoon
2013-04-01
This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.
Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongjie; Dong, Lifang, E-mail: donglfhbu@163.com; Liu, Weibo
2014-07-15
Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals aremore » actually temporal integrations of those of transient sublattices.« less
NASA Astrophysics Data System (ADS)
Wang, Ruo Zheng; Wu, Sheng Li; Li, Xin Yu; Zhang, Jin Tao
2017-07-01
In this study, we set out to fabricate an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with SiNx/HfO2/SiNx (SHS) sandwiched dielectrics. The J-V and C-V of this SHS film were extracted by the Au/p-Si/SHS/Ti structure. At room temperature the a-IGZO with SHS dielectrics showed the following electrical properties: a threshold voltage of 2.9 V, a subthreshold slope of 0.35 V/decade, an on/off current ratio of 3.5 × 107, and a mobility of 12.8 cm2 V-1 s-1. Finally, we tested the influence of gate bias stress on the TFT, and the result showed that the threshold voltage shifted to a positive voltage when applying a positive gate voltage to the TFT.
Investigation of the novel attributes in double recessed gate SiC MESFETs at drain side
NASA Astrophysics Data System (ADS)
Orouji, Ali A.; Razavi, S. M.; Ebrahim Hosseini, Seyed; Amini Moghadam, Hamid
2011-11-01
In this paper, the potential impact of drain side-double recessed gate (DS-DRG) on silicon carbide (SiC)-based metal semiconductor field effect transistors (MESFETs) is studied. We investigate the device performance focusing on breakdown voltage, threshold voltage, drain current and dc output conductance with two-dimensional and two-carrier device simulation. Our simulation results demonstrate that the channel thickness under the gate in the drain side is an important factor in the breakdown voltage. Also, the positive shift in the threshold voltage for the DS-DRG structure is larger in comparison with that for the source side-double recessed gate (SS-DRG) SiC MESFET. The saturated drain current for the DS-DRG structure is larger compared to that for the SS-DRG structure. The maximum dc output conductance in the DS-DRG structure is smaller than that in the SS-DRG structure.
Choi, Sungjin; Lee, Junhyuk; Kim, Donghyoun; Oh, Seulki; Song, Wangyu; Choi, Seonjun; Choi, Eunsuk; Lee, Seung-Beck
2011-12-01
We report on the fabrication and capacitance-voltage characteristics of double layer nickel-silicide nanocrystals with Si3N4 interlayer tunnel barrier for nano-floating gate memory applications. Compared with devices using SiO2 interlayer, the use of Si3N4 interlayer separation reduced the average size (4 nm) and distribution (+/- 2.5 nm) of NiSi2 nanocrystal (NC) charge traps by more than 50% and giving a two fold increase in NC density to 2.3 x 10(12) cm(-2). The increased density and reduced NC size distribution resulted in a significantly decrease in the distribution of the device C-V characteristics. For each program voltage, the distribution of the shift in the threshold voltage was reduced by more than 50% on average to less than 0.7 V demonstrating possible multi-level-cell operation.
NASA Astrophysics Data System (ADS)
Ueda, Daiki; Takeuchi, Kiyoshi; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
Negative differential conductance in doped-silicon nanoscale devices with superconducting electrodes
NASA Astrophysics Data System (ADS)
Shapovalov, A.; Shaternik, V.; Suvorov, O.; Zhitlukhina, E.; Belogolovskii, M.
2018-02-01
We present a proof-of-concept nanoelectronics device with a negative differential conductance, an attractive from the applied viewpoint functionality. The device, characterized by the decreasing current with increasing voltage in a certain voltage region above a threshold bias of about several hundred millivolts, consists of two superconducting electrodes with an amorphous 10-nm-thick silicon interlayer doped by tungsten nano-inclusions. We show that small changes in the W content radically modify the shape of the trilayer current-voltage dependence and identify sudden conductance switching at a threshold voltage as an effect of Andreev fluctuators. The latter entities are two-level systems at the superconductor-doped silicon interface where a Cooper pair tunnels from a superconductor and occupies a pair of localized electronic states. We argue that in contrast to previously proposed devices, our samples permit very large-scale integration and are practically feasible.
NASA Astrophysics Data System (ADS)
Lee, Kin Kiong; Wang, Danna; Shinobu, Onoda; Ohshima, Takeshi
2018-04-01
Radiation-induced charge trapping and interface traps in n-channel ZnO thin film transistors are characterised as a function of total dose and irradiation bias following exposure to gamma-rays. Devices were irradiated up to ∼60 kGy(SiO?) and the electrical characteristic exhibits two distinct regimes. In the first regime, up to a total dose of 40 kGy(SiO?), the threshold voltage increases positively. However, in the second regime with irradiation greater than 40 kGy(SiO?), the threshold voltage moves in the opposite direction. This reversal of threshold voltage is attributed to the influence of the radiation-induced interface and oxide- charge, in which both have opposite polarity, on the electrical performance of the transistors. In the first regime, the generation of the oxide- charge is initially greater than the density of interface traps and caused a positive shift. In the second regime, when the total doses were greater than 40 kGy(SiO?), the radiation-induced interface traps are greater than the density of oxide- charge and caused the threshold voltage to switch direction. Further, the generated interface traps contributed to the degradation of the effective channel mobility, whereas the density of traps at the grain-boundaries did not increase significantly upon irradiation. Isothermal annealing of the devices at 363 K results in a reduction in the trap density and an improvement of the effective channel mobility to ∼90% of its pre-irradiation value.
Electrically tunable Dicke effect in a double-ring resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetin, A. E.; Muestecaplioglu, Oe. E.; Department of Physics, Koc University, Sariyer, Istanbul 34450
We study the finite-element method analysis of the Dicke effect using numerical simulations in an all-optical system of an optical waveguide side-coupled to two interacting ring resonators in a liquid crystal environment. The system is shown to exhibit all the signatures of the Dicke effect under active and reversible control by an applied voltage.
NASA Astrophysics Data System (ADS)
Wang, Ming-Tsong; Hsu, De-Cheng; Juan, Pi-Chun; Wang, Y. L.; Lee, Joseph Ya-min
2010-09-01
Metal-oxide-semiconductor capacitors and n-channel metal-oxide-semiconductor field-effect transistors with La2O3 gate dielectric were fabricated. The positive bias temperature instability was studied. The degradation of threshold voltage (ΔVT) showed an exponential dependence on the stress time in the temperature range from 25 to 75 °C. The degradation of subthreshold slope (ΔS) and gate leakage (IG) with stress voltage was also measured. The degradation of VT is attributed to the oxide trap charges Qot. The extracted activation energy of 0.2 eV is related to a degradation dominated by the release of atomic hydrogen in La2O3 thin films.
Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia
2018-02-01
We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.
Electronic circuit provides accurate sensing and control of dc voltage
NASA Technical Reports Server (NTRS)
Loftus, W. D.
1966-01-01
Electronic circuit used relay coil to sense and control dc voltage. The control relay is driven by a switching transistor that is biased to cutoff for all input up to slightly less than the threshold level.
Dynamically tunable extraordinary light absorption in monolayer graphene
NASA Astrophysics Data System (ADS)
Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis
2017-10-01
The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.
Volumetric HiLo microscopy employing an electrically tunable lens.
Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W
2016-06-27
Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chun; Zhang, Caihong, E-mail: chzhang@nju.edu.cn; Hu, Guoliang
2016-07-11
With the emergence and development of artificially structured electromagnetic materials, active terahertz (THz) metamaterial devices have attracted significant attention in recent years. Tunability of transmission is desirable for many applications. For example, short-range wireless THz communications and ultrafast THz interconnects require switches and modulators. However, the tunable range of transmission amplitude of existing THz metamaterial devices is not satisfactory. In this article, we experimentally demonstrate an electrically tunable superconducting niobium nitride metamaterial device and employ a hybrid coupling model to analyze its optical transmission characteristics. The maximum transmission coefficient at 0.507 THz is 0.98 and decreases to 0.19 when themore » applied voltage increases to 0.9 V. A relative transmittance change of 80.6% is observed, making this device an efficient narrowband THz switch. Additionally, the frequency of the peak is red shifted from 0.507 to 0.425 THz, which means that the device can be used to select the frequency. This study offers an alternative tuning method to existing optical, thermal, magnetic-field, and electric-field tuning, delivering a promising approach for designing active and miniaturized THz devices.« less
Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna
NASA Astrophysics Data System (ADS)
Qin, Yuwei; Xiong, Xiaoyan Y. Z.; Sha, Wei E. I.; Jiang, Li Jun
2018-04-01
The unique gate-voltage dependent optical properties of graphene make it a promising electrically-tunable plasmonic material. In this work, we proposed in situ control of the polarization of nanoantennas by combining plasmonic structures with an electrostatically tunable graphene monolayer. The tunable polarizer is designed based on an asymmetric cross nanoantenna comprising two orthogonal metallic dipoles sharing the same feed gap. Graphene monolayer is deposited on a Si/SiO2 substrate, and inserted beneath the nanoantenna. Our modelling demonstrates that as the chemical potential is incremented up to 1 eV by electrostatic doping, resonant wavelength for the longer graphene-loaded dipole is blue shifted for 500 nm (~10% of the resonance) in the mid-infrared range, whereas the shorter dipole experiences much smaller influences due to the unique wavelength-dependent optical properties of graphene. In this way, the relative field amplitude and phase between the two dipole nanoantennas are electrically adjusted, and the polarization state of the reflected wave can be electrically tuned from the circular into near-linear states with the axial ratio changing over 8 dB. Our study thus confirms the strong light-graphene interaction with metallic nanostructures, and illuminates promises for high-speed electrically controllable optoelectronic devices.
Electrically tunable soft solid lens inspired by reptile and bird accommodation.
Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico
2016-10-26
Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.
Upsets in Erased Floating Gate Cells With High-Energy Protons
Gerardin, S.; Bagatin, M.; Paccagnella, A.; ...
2017-01-01
We discuss upsets in erased floating gate cells, due to large threshold voltage shifts, using statistical distributions collected on a large number of memory cells. The spread in the neutral threshold voltage appears to be too low to quantitatively explain the experimental observations in terms of simple charge loss, at least in SLC devices. The possibility that memories exposed to high energy protons and heavy ions exhibit negative charge transfer between programmed and erased cells is investigated, although the analysis does not provide conclusive support to this hypothesis.
Analysis of the instability underlying electrostatic suppression of the Leidenfrost state
NASA Astrophysics Data System (ADS)
Shahriari, Arjang; Das, Soumik; Bahadur, Vaibhav; Bonnecaze, Roger T.
2017-03-01
A liquid droplet on a hot solid can generate enough vapor to prevent its contact on the surface and reduce the rate of heat transfer, the so-called Leidenfrost effect. We show theoretically and experimentally that for a sufficiently high electrostatic potential on the droplet, the formation of the vapor layer is suppressed. The interplay of the destabilizing electrostatic force and stabilizing capillary force and evaporation determines the minimum or threshold voltage to suppress the Leidenfrost effect. Linear stability theory accurately predicts threshold voltages for different size droplets and varying temperatures.
NASA Astrophysics Data System (ADS)
Amrani, Aumeur El; Es-saghiri, Abdeljabbar; Boufounas, El-Mahjoub; Lucas, Bruno
2018-06-01
The performance of a pentacene based organic thin film transistor (OTFT) with polymethylmethacrylate as a dielectric insulator and indium tin oxide based electrical gate is investigated. On the one hand, we showed that the threshold voltage increases with gate voltage, and on the other hand that it decreases with drain voltage. Thus, we noticed that the onset voltage shifts toward positive voltage values with the drain voltage increase. In addition, threshold-onset differential voltage (TODV) is proposed as an original approach to estimate an averaged carrier density in pentacene. Indeed, a value of about 4.5 × 1016 cm-3 is reached at relatively high gate voltage of -50 V; this value is in good agreement with that reported in literature with other technique measurements. However, at a low applied gate voltage, the averaged pentacene carrier density remains two orders of magnitude lower; it is of about 2.8 × 1014 cm-3 and remains similar to that obtained from space charge limited current approach for low applied bias voltage of about 2.2 × 1014 cm-3. Furthermore, high IOn/IOff and IOn/IOnset current ratios of 5 × 106 and 7.5 × 107 are reported for lower drain voltage, respectively. The investigated OTFTs also showed good electrical performance including carrier mobility increasing with gate voltage; mobility values of 4.5 × 10-2 cm2 V-1 s-1 and of 4.25 × 10-2 cm2 V-1 s-1 are reached for linear and saturation regimes, respectively. These results remain enough interesting since current modulation ratio exceeds a value of 107 that is a quite important requirement than high mobility for some particular logic gate applications.
NASA Technical Reports Server (NTRS)
Javadi, Hamid (Inventor)
2001-01-01
A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.
NASA Technical Reports Server (NTRS)
Javadi, Hamid (Inventor)
2002-01-01
A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.
Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong
2016-01-01
Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285
High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors.
Zhang, Jiawei; Yang, Jia; Li, Yunpeng; Wilson, Joshua; Ma, Xiaochen; Xin, Qian; Song, Aimin
2017-03-21
Oxide semiconductors are regarded as promising materials for large-area and/or flexible electronics. In this work, a ring oscillator based on n-type indium-gallium-zinc-oxide (IGZO) and p-type tin monoxide (SnO) is presented. The IGZO thin-film transistor (TFT) shows a linear mobility of 11.9 cm²/(V∙s) and a threshold voltage of 12.2 V. The SnO TFT exhibits a mobility of 0.51 cm²/(V∙s) and a threshold voltage of 20.1 V which is suitable for use with IGZO TFTs to form complementary circuits. At a supply voltage of 40 V, the complementary inverter shows a full output voltage swing and a gain of 24 with both TFTs having the same channel length/channel width ratio. The three-stage ring oscillator based on IGZO and SnO is able to operate at 2.63 kHz and the peak-to-peak oscillation amplitude reaches 36.1 V at a supply voltage of 40 V. The oxide-based complementary circuits, after further optimization of the operation voltage, may have wide applications in practical large-area flexible electronics.
High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors
Zhang, Jiawei; Yang, Jia; Li, Yunpeng; Wilson, Joshua; Ma, Xiaochen; Xin, Qian; Song, Aimin
2017-01-01
Oxide semiconductors are regarded as promising materials for large-area and/or flexible electronics. In this work, a ring oscillator based on n-type indium-gallium-zinc-oxide (IGZO) and p-type tin monoxide (SnO) is presented. The IGZO thin-film transistor (TFT) shows a linear mobility of 11.9 cm2/(V∙s) and a threshold voltage of 12.2 V. The SnO TFT exhibits a mobility of 0.51 cm2/(V∙s) and a threshold voltage of 20.1 V which is suitable for use with IGZO TFTs to form complementary circuits. At a supply voltage of 40 V, the complementary inverter shows a full output voltage swing and a gain of 24 with both TFTs having the same channel length/channel width ratio. The three-stage ring oscillator based on IGZO and SnO is able to operate at 2.63 kHz and the peak-to-peak oscillation amplitude reaches 36.1 V at a supply voltage of 40 V. The oxide-based complementary circuits, after further optimization of the operation voltage, may have wide applications in practical large-area flexible electronics. PMID:28772679
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-01-01
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-06-08
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.
Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.
Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng
2011-11-09
The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chiu-Chun; Ling, D. C.; Chi, C. C.
2014-11-03
We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1−x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27–102 cm{sup −1} with a bias voltage less than −1 V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse.more » Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.« less
NASA Astrophysics Data System (ADS)
He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei
2018-04-01
This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2 × 2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.
OBSAPS Data Acquisition System: Operator’s Manual and System Overview
2011-05-01
Explanation of Druck Voltage to Depth Conversion used during OBSAPS (April-May’11) 25 Druck Pressure sensor conversion from...for H-91, PA Voltage, PA Current and Sonobuoy and Druck pressure sensor analog inputs. 6. Software settable thresholds for H-91, PA Voltage, PA...17. Custom dry side box for Druck Pressure Sensor supply voltage and dropping resistor. 18. Battery 9-30VDC for supplying Druck power 19. Druck PTX
Measuring Input Thresholds on an Existing Board
NASA Technical Reports Server (NTRS)
Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.
2011-01-01
A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and temperatures to show that the interface had voltage margin under all worst case conditions. Gate input thresholds are normally measured at the manufacturer when the device is on a chip tester. A key function of this machine was duplicated on an existing flight board with no modifications to the nets to be tested, with the exception of changes in the FPGA program.
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Cho, Seongeun; Park, Byoungnam
2018-03-01
We report ultraviolet (UV)-induced optical gating in a Zn1-x Mg x O nanocrystal solid solution (NCSS) field effect transistor (FET) through a systematic study in which UV-induced charge transport properties are probed as a function of Mg composition. Change in the electrical properties of Zn1-x Mg x O NCSS associated with electronic traps is investigated by field effect-modulated current-voltage characteristic curves in the dark and under illumination. Under UV illumination, significant threshold voltage shift to a more negative value in an n-channel Zn1-x Mg x O NCSS FET is observed. Importantly, as the Mg composition increases, the effect of UV illumination on the threshold voltage shift is alleviated. We found that threshold voltage shift as a function of Mg composition in the dark and under illumination is due to difference in the deep trap density in the Zn1-x Mg x O NCSS. This is supported by Mg composition dependent photoluminescence intensity in the visible range and reduced FET mobility with Mg addition. The presence of the deep traps and the corresponding trap energy levels in the Zn1-x Mg x O NCSS are ensured by photoelectron spectroscopy in air.
Design and construction of a home-made and cheaper argon arc lamp
NASA Astrophysics Data System (ADS)
Sabaeian, Mohammad; Nazari-Tarkarani, Zeinab; Ebrahimzadeh, Azadeh
2018-05-01
The authors report on the design and construction of an argon arc lamp which provides noticeably a cheaper instrument for laser and medical applications. Cesium-doped tungsten and pure tungsten rods were used, respectively, for the lamp cathode and anode. To seal the glassy tube, a 50-50 Fe-Ni alloy was successfully used as a medium to attach the tungsten electrodes to the borosilicate glass tube. Starting voltage of the lamp versus the gas pressure, operation voltage-current diagram at various gas pressures, and lamp spectrum in the various pressures were measured. A comparison was made with krypton arc lamp. The lamp operation was satisfactory without any crack or fracture during lightening operation. The results showed that the lamp-lightening threshold voltage depends linearly on the pressure and arc length in such a way that there is an increase in the voltage by raising these two parameters. We have also observed that by increasing the argon pressure, there is a shifting in emission spectrum from the ultraviolet to the visible region. Comparison with krypton arc lamp indicated that argon lamp needs a higher threshold lightening voltage.
All-optical associative memory using photorefractive crystals and a saturable absorber
NASA Astrophysics Data System (ADS)
Duelli, Markus; Cudney, Roger S.; Keller, Claude; Guenter, Peter
1995-07-01
We report on the investigation of a new configuration of an all-optical associative memory. The images to be recalled associatively are stored in a LiNbO3 crystal via angular multiplexing. Thresholding of the reconstructed reference beams during associative readout is achieved by using a saturable absorber with an intensity-tunable threshold. We demonstrate associative readout and error correction for 10 strongly overlapping black-and-white images. Associative recall and full reconstruction is performed when only 1/500 of the image stored is entered.
Tunable architecture for aircraft fault detection
NASA Technical Reports Server (NTRS)
Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)
2012-01-01
A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.
Fernandez, Fernando R.; Malerba, Paola; White, John A.
2015-01-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971
Fernandez, Fernando R; Malerba, Paola; White, John A
2015-04-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.
Wang, Yi-Ting; Kim, Gil-Ho; Huang, C F; Lo, Shun-Tsung; Chen, Wei-Jen; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Chang, Y H; Liang, C-T; Dolan, B P
2012-10-10
We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.
Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.
Muñoz, Fabián; Fuentealba, Pablo
2012-01-01
Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.
A Novel Slicing Method for Thin Supercapacitors.
Sun, Hao; Fu, Xuemei; Xie, Songlin; Jiang, Yishu; Guan, Guozhen; Wang, Bingjie; Li, Houpu; Peng, Huisheng
2016-08-01
Thin and flexible supercapacitors with low cost and individual variation are fabricated by a new and efficient slicing method. Tunable output voltage and energy can be realized with a high specific capacitance of 248.8 F g(-1) or 150.8 F cm(-3) , which is well maintained before and after bending. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2008-12-01
attached DR1 to a tunable high glass transition temperatue (Tg) polymeric backbone prepared by ROMP. Figure 1. Standard and required poling...approximately 13-15 g of polymer. The remainder of the mixed polymer adhered to screw or barrel. Norbornyl-DR1 monomer (1). 5-norbornene-2- carboxylic acid
NASA Astrophysics Data System (ADS)
Zhang, Yuanbo
2009-03-01
We have successfully performed atomically-resolved scanning tunneling microscopy and spectroscopy (STS) on mechanically exfoliated graphene samples having tunable back-gates. We have discovered that the tunneling spectra of graphene flakes display an unexpected gap-like feature that is pinned to the Fermi level for different gate voltages, and which coexists with another depression in density-of-states that moves with gate voltage. Extensive tests and careful analysis show that the gap-feature is due to phonon-assisted inelastic tunneling, and the depression directly marks the location of the graphene Dirac point. Using tunneling spectroscopy as a new tool, we further probe the local energetic variations of the graphene charge neutral point (Dirac point) to map out spatial electron density inhomogeneities in graphene. Such measurements are two orders of magnitude higher in resolution than previous experiments, and they can be directly correlated with nanometer scale topographic features. Based on our observation of energy-dependent periodic electronic interference patterns, our measurements also reveal the nature of impurity scattering of Dirac fermions in graphene. These results are significant for understanding the sources of electron density inhomogeneity and electron scattering in graphene, and the microscopic causes of graphene electron mobility.
Micro-electro-mechanically switchable near infrared complementary metamaterial absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics
2014-05-19
We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less
Computer-aided design comparisons of monolithic and hybrid MEM-tunable VCSELs
NASA Astrophysics Data System (ADS)
Ochoa, Edward M.; Nelson, Thomas R., Jr.; Blum-Spahn, Olga; Lott, James A.
2003-07-01
We report and use our micro-electro-mechanically tunable vertical cavity surface emitting laser (MEM-TVCSEL) computer-aided design methodology to investigate the resonant frequency design space for monolithic and hybrid MEM-TVCSELs. For various initial optical air gap thickness, we examine the sensitivity of monolithic or hybrid MEM-TVCSEL resonant frequency by simulating zero, two, and four percent variations in III-V material growth thickness. As expected, as initial optical airgap increases, tuning range decreases due to less coupling between the active region and the tuning mirror. However, each design has different resonant frequency sensitivity to variations in III-V growth parameters. In particular, since the monolithic design is comprised of III-V material, the shift in all growth thicknesses significantly shifts the resonant frequency response. However, for hybrid MEMTVCSELs, less shift results, since the lower reflector is an Au mirror with reflectivity independent of III-V growth variations. Finally, since the hybrid design is comprised of a MUMPS polysilicon mechanical actuator, pull-in voltage remains independent of the initial optical airgap between the tuning reflector and the III-V material. Conversely, as the initial airgap increases in the monolithic design, the pull-in voltage significantly increases.
An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.
NASA Astrophysics Data System (ADS)
Huang, Weichuan; Liu, Yukuai; Luo, Zhen; Hou, Chuangming; Zhao, Wenbo; Yin, Yuewei; Li, Xiaoguang
2018-06-01
The ferroelectric domain reversal dynamics and the corresponding resistance switching as well as the memristive behaviors in epitaxial BiFeO3 (BFO, ~150 nm) based multiferroic heterojunctions were systematically investigated. The ferroelectric domain reversal dynamics could be described by the nucleation-limited-switching model with the Lorentzian distribution of logarithmic domain-switching times. By engineering the domain states, multi and even continuously tunable resistances states, i.e. memristive states, could be non-volatilely achieved. The resistance switching speed can be as fast as 30 ns in the BFO-based multiferroic heterojunctions with a write voltage of ~20 V. By reducing the thickness of BFO, the La0.6Sr0.4MnO3/BFO (~5 nm)/La0.6Sr0.4MnO3 multiferroic tunnel junction (MFTJ) shows an even a quicker switching speed (20 ns) with a much lower operation voltage (~4 V). Importantly, the MFTJ exhibits a tunable interfacial magnetoelectric coupling related to the ferroelectric domain switching dynamics. These findings enrich the potential applications of multiferroic BFO based devices in high-speed, low-power, and high-density memories as well as future neuromorphic computational architectures.
Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.
Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam
2014-04-24
A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene-based active slow surface plasmon polaritons
Lu, Hua; Zeng, Chao; Zhang, Qiming; Liu, Xueming; Hossain, Md Muntasir; Reineck, Philipp; Gu, Min
2015-01-01
Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of ~2.1 μm and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers. PMID:25676462
Thermally tunable-focus lenticular lens using liquid crystal.
Heo, Kyong Chan; Yu, Seung Hun; Kwon, Jin Hyuk; Gwag, Jin Seog
2013-12-10
A thermally tunable focusing lenticular liquid crystal (LC) lens array was fabricated using a polymer LC component, including a polarizer that produces linearly polarized light. The focal length in the proposed structure could be tuned by temperature-adjusted applied voltage to a transparent heater in a lenticular LC lens cell because it alters the birefringence of the LC and varies the difference in refractive index between the LC and the polymer. The results showed that the focal length of the E7 LC used varied continuously with temperature from 5.6 to 8.7 mm from 25°C to 54°C, respectively. The proposed lenticular LC lens has potential use in photonic devices such as biological imaging, phone cameras, and optical sensors.
MEMS tunable optical filter based on multi-ring resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dessalegn, Hailu, E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T., E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in
We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenabilitymore » as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.« less
Graphene based terahertz phase modulators
NASA Astrophysics Data System (ADS)
Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.
2018-07-01
Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.
Interfacial varactor characteristics of ferroelectric thin films on high-resistivity Si substrate
NASA Astrophysics Data System (ADS)
Lan, Wen-An; Wang, Tsan-Chun; Huang, Ling-Hui; Wu, Tai-Bor
2006-07-01
Ferroelectric Ba(Zr0.25Ti0.75)O3 (BZT) thin films were deposited on high-resistivity Si substrate without or with inserting a high-k buffer layer of Ta2O5. The varactor characteristics of the BZT capacitors in metal-oxide-semiconductor structure were studied. At low frequency (1MHz ), the capacitors exhibit a negatively tunable characteristic, i.e., [C(V)-C(0)]/C(0)<0, against dc bias V, but opposite tunable characteristics were found at microwave frequencies (>1GHz). The change of voltage-dependent characteristic is attributed to the effect of low-resistivity interface induced by charged defects formed from interfacial oxidation of Si in screening the microwave from penetrating into the bulk of Si.
Electro-optical tunable birefringent filter
Levinton, Fred M [Princeton, NJ
2012-01-31
An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erofeev, E. V., E-mail: erofeev@micran.ru; Fedin, I. V.; Kutkov, I. V.
High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping levelmore » makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.« less
1978-09-01
AWACS EMP Guidelines presents two different models to predict the damage pcwer of the dev-ce and the circuit damage EMP voltage ( VEMP ). Neither of...calculated as K P~ I V BD 6. The damage EMP voltage ( VEMP ) is calculated KZ EMP +IZ =D +BD VBD1F 7. The damage EMP voltage is calculated for collector
The gatemon: a transmon with a voltage-variable superconductor-semiconductor junction
NASA Astrophysics Data System (ADS)
Petersson, Karl
We have developed a superconducting transmon qubit with a semiconductor-based Josephson junction element. The junction is made from an InAs nanowire with in situ molecular beam epitaxy-grown superconducting Al contacts. This gate-controlled transmon, or gatemon, allows simple tuning of the qubit transition frequency using a gate voltage to vary the density of carriers in the semiconductor region. In the first generations of devices we have measured coherence times up to ~10 μs. These coherence times, combined with stable qubit operation, permit single qubit rotations with fidelities of ~99.5 % for all gates including voltage-controlled Z rotations. Towards multi-qubit operation we have also implemented a two qubit voltage-controlled cPhase gate. In contrast to flux-tuned transmons, voltage-tunable gatemons may simplify the task of scaling to multi-qubit circuits and enable new means of control for many qubit architectures. In collaboration with T.W. Larsen, L. Casparis, M.S. Olsen, F. Kuemmeth, T.S. Jespersen, P. Krogstrup, J. Nygard and C.M. Marcus. Research was supported by Microsoft Project Q, Danish National Research Foundation and a Marie Curie Fellowship.
High-intensity pulsed beam source with tunable operation mode
NASA Astrophysics Data System (ADS)
Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.
2017-05-01
The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.
Voltage control of ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming
2016-05-01
Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.
Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics
Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...
2017-02-03
Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less
NASA Astrophysics Data System (ADS)
Ding, Xingwei; Zhang, Hao; Ding, He; Zhang, Jianhua; Huang, Chuanxin; Shi, Weimin; Li, Jun; Jiang, Xueyin; Zhang, Zhilin
2014-12-01
We successfully integrated the high-performance oxide thin film transistors with novel IZO/IGZO dual-active-layers. The results showed that dual-active-layer (IZO/IGZO) TFTs, compared with single active layer IGZO TFTs and IZO TFTs, exhibited the excellent performances; specifically, a high field effect mobility of 14.4 cm2/Vs, a suitable threshold voltage of 0.8 V, a high on/off ratio of more than 107, a steep sub-threshold swing of 0.13 V/dec, and a substantially small threshold voltage shift of 0.51 V after temperature stress from 293 K to 353 K. In order to understand the superior performance, the density-of-states (DOS) were investigated based on the temperature-dependent transfer curves. The superior electric properties were attributed to the smaller DOS and higher carrier concentration. The proposed IZO/IGZO-TFT in this paper can be used as driving devices in the next-generation flat panel displays.
Stability study of solution-processed zinc tin oxide thin-film transistors
NASA Astrophysics Data System (ADS)
Zhang, Xue; Ndabakuranye, Jean Pierre; Kim, Dong Wook; Choi, Jong Sun; Park, Jaehoon
2015-11-01
In this study, the environmental dependence of the electrical stability of solution-processed n-channel zinc tin oxide (ZTO) thin-film transistors (TFTs) is reported. Under a prolonged negative gate bias stress, a negative shift in threshold voltage occurs in atmospheric air, whereas a negligible positive shift in threshold voltage occurs under vacuum. In the positive bias-stress experiments, a positive shift in threshold voltage was invariably observed both in atmospheric air and under vacuum. In this study, the negative gate-bias-stress-induced instability in atmospheric air is explained through an internal potential in the ZTO semiconductor, which can be generated owing to the interplay between H2O molecules and majority carrier electrons at the surface of the ZTO film. The positive bias-stress-induced instability is ascribed to electron-trapping phenomenon in and around the TFT channel region, which can be further augmented in the presence of air O2 molecules. These results suggest that the interaction between majority carriers and air molecules will have crucial implications for a reliable operation of solution-processed ZTO TFTs. [Figure not available: see fulltext.
Performance analysis and simulation of vertical gallium nitride nanowire transistors
NASA Astrophysics Data System (ADS)
Witzigmann, Bernd; Yu, Feng; Frank, Kristian; Strempel, Klaas; Fatahilah, Muhammad Fahlesa; Schumacher, Hans Werner; Wasisto, Hutomo Suryo; Römer, Friedhard; Waag, Andreas
2018-06-01
Gallium nitride (GaN) nanowire transistors are analyzed using hydrodynamic simulation. Both p-body and n-body devices are compared in terms of threshold voltage, saturation behavior and transconductance. The calculations are calibrated using experimental data. The threshold voltage can be tuned from enhancement to depletion mode with wire doping. Surface states cause a shift of threshold voltage and saturation current. The saturation current depends on the gate design, with a composite gate acting as field plate in the p-body device. He joined Bell Laboratories, Murray Hill, NJ, as a Technical Staff Member. In October 2001, he joined the Optical Access and Transport Division, Agere Systems, Alhambra, CA. In 2004, he was appointed an Assistant Professor at ETH Zurich,. Since 2008, at the University of Kassel, Kassel, Germany, and he has been a Professor the Head of the Computational Electronics and Photonics Group, and co-director of CINSaT since 2010. His research interests include computational optoelectronics, process and device design of semiconductor photonic devices, microwave components, and electromagnetics modeling for nanophotonics. Dr. Witzigmann is a senior member of the SPIE and IEEE.
Voltage-programmable liquid optical interface
NASA Astrophysics Data System (ADS)
Brown, C. V.; Wells, G. G.; Newton, M. I.; McHale, G.
2009-07-01
Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.
NASA Astrophysics Data System (ADS)
Hu, Nan; Chen, Dajing; Wang, Dong; Huang, Shicheng; Trase, Ian; Grover, Hannah M.; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi
2018-02-01
Kirigami, a modified form of origami which includes cutting, has been used to improve material stretchability and compliance. However, this technique is, so far, underexplored in patterning piezoelectric materials towards developing efficient and mechanically flexible thin-film energy generators. Motivated by existing kirigami-based applications, we introduce interdigitated cuts to polyvinylidene fluoride (PVDF) films to evaluate the effect on voltage generation and stretchability. Our results from theoretical analysis, numerical simulations, and experimental tests show that kirigami PVDF films exhibit an extended strain range while still maintaining significant voltage generation compared to films without cuts. Various cutting patterns are studied, and it is found that films with denser cuts have a larger voltage output. This kirigami design can enhance the properties of existing piezoelectric materials and help to integrate tunable PVDF generators into biomedical devices.
Novel optical switch with a reconfigurable dielectric liquid droplet.
Ren, Hongwen; Xu, Su; Ren, Daqiu; Wu, Shin-Tson
2011-01-31
We demonstrated a novel optical switch with a reconfigurable dielectric liquid droplet. The device consists of a clear liquid droplet (glycerol) surrounded by a black liquid (dye-doped liquid crystal). In the voltage-off state, the incident light passing through the clear liquid droplet is absorbed by the black liquid, resulting in a dark state. In the voltage-on state, the dome of the clear liquid droplet is uplifted by the dielectric force to form a light pipe which in turn transmits the incident light. Upon removing the voltage, the droplet recovers to its original shape and the switch is closed. We also demonstrated a red color light switch with ~10:1 contrast ratio and ~300 ms response time. Devices based on such an operation mechanism will find attractive applications in light shutter, tunable iris, variable optical attenuators, and displays.
Circuit design advances for ultra-low power sensing platforms
NASA Astrophysics Data System (ADS)
Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis
2010-04-01
This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.
Thacker, Louis H.
1990-01-01
An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.
Apparatus for Controlling Low Power Voltages in Space Based Processing Systems
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor)
2017-01-01
A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.
Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.
Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao
2016-08-10
Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.
Ocular hazards of Q-switched near-infrared lasers
NASA Astrophysics Data System (ADS)
Lund, David J.; Edsall, Peter R.; Stuck, Bruce E.
2003-06-01
The threshold for laser-induced retinal damage in the rhesus eye was determined for wavelengths between 900 nm and 1300 nm. The laser source was a tunable Optical Parametric Oscillator (OPO) pumped by the 3rd harmonic of a Nd:YAG laser. The laser pulse duration was 3.5 ns. The wavelength dependence of the injury threshold is consistent with the prediction of a model based on the transmission of the preretinal ocular media, absorption in the retinal pigment epithelium, and variation of irradiance diameter resulting from chromatic aberration of the eye optics for wavelengths shorter than 1150 nm but was less consistent for longer wavelengths. The threshold for 24-hour observation was slightly lower than the threshold for 1-hour observation. These data form a basis for reexamination of the currently defined MPEs for wavelengths longer than 1100 nm.
Anatomy of filamentary threshold switching in amorphous niobium oxide.
Li, Shuai; Liu, Xinjun; Nandi, Sanjoy Kumar; Elliman, Robert Glen
2018-06-25
The threshold switching behaviour of Pt/NbOx/TiN devices is investigated as a function device area and NbOx film thickness and shown to reveal important insight into the structure of the self-assembled switching region. The devices exhibit combined selector-memory (1S1R) behavior after an initial voltage-controlled forming process, but exhibit symmetric threshold switching when the RESET and SET currents are kept below a critical value. In this mode, the threshold and hold voltages are independent of the device area and film thickness but the threshold current (power), while independent of device area, decreases with increasing film thickness. These results are shown to be consistent with a structure in which the threshold switching volume is confined, both laterally and vertically, to the region between the residual memory filament and the TiN electrode, and where the memory filament has a core-shell structure comprising a metallic core and a semiconducting shell. The veracity of this structure is demonstrated by comparing experimental results with the predictions of a simple circuit model, and more detailed finite element simulations. These results provide further insight into the structure and operation of NbOx threshold switching devices that have application in emerging memory and neuromorphic computing fields. © 2018 IOP Publishing Ltd.
Nature of superconductor-insulator transition at LaAlO{sub 3}/SrTiO{sub 3} interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanta, N., E-mail: nmohanta@phy.iitkgp.ernet.in; Taraphder, A.; Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, W. B. 721302
2015-05-15
The two-dimensional electron liquid, at the interface between two band insulators LaAlO{sub 3} and SrTiO{sub 3}, exhibits novel, unconventional superconductivity below 200 mK. One of the remarkable properties of the two-dimensional superconductor is its fantastic tunability by external parameters such as gate-voltage or magnetic field. We study the superconductor to insulator transition induced by gate-voltage by employing a self-consistent, mean-field Bogoliubov-de Gennes treatment based on an effective model. We show that the non-monotonic behaviour of the superconductivity with respect to gate-voltage is intrinsically due to the Rashba spin-orbit coupling. With increasing gate-voltage both the electron concentration and Rashba spin-orbit splittingmore » increases. Elevated electron filling boosts superconductivity whereas enhanced spin-orbit splitting annihilates electron-pairing. The non-monotonicity is a result of this competition. The device application of the superconductor-insulator transition in this interface is discussed.« less
Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.
Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu
2016-12-12
We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.
Photocurrent Suppression of Transparent Organic Thin Film Transistors
NASA Astrophysics Data System (ADS)
Chuang, Chiao-Shun; Tsai, Shu-Ting; Lin, Yung-Sheng; Chen, Fang-Chung; Shieh, Hang-Ping D.
2007-12-01
Organic thin-film transistors (OTFTs) with high transmittance and low photosensitivity have been demonstrated. By using titanium dioxide nanoparticles as the additives in the polymer gate insulators, the level of device photoresponse has been reduced. The device shows simultaneously a high transparence and a minimal threshold voltage shift under white light illumination. It is inferred that the localized energy levels deep in the energy gap of pentacene behave as the recombination centers, enhancing substantially the recombination process in the conducting channel of the OTFTs. Therefore, the electron trapping is relieved and the shift of threshold voltage is reduced upon illumination.
NASA Astrophysics Data System (ADS)
Chen, R. M.; Diggins, Z. J.; Mahatme, N. N.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Zhang, H.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.
2017-08-01
The single-event sensitivity of bulk 40-nm sequential circuits is investigated as a function of temperature and supply voltage. An overall increase in SEU cross section versus temperature is observed at relatively high supply voltages. However, at low supply voltages, there is a threshold temperature beyond which the SEU cross section decreases with further increases in temperature. Single-event transient induced errors in flip-flops also increase versus temperature at relatively high supply voltages and are more sensitive to temperature variation than those caused by single-event upsets.
CNFET-based voltage rectifier circuit for biomedical implantable applications
NASA Astrophysics Data System (ADS)
Tu, Yonggen; Qian, Libo; Xia, Yinshui
2017-02-01
Carbon nanotube field effect transistor (CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency (VCE) and power conversion efficiency (PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated. It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits. Project supported by the National Natural Science Foundation of China (Nos. 61131001, 61404077, 61571248), the Science and Technology Fund of Zhejiang Province (No. 2015C31090), the Natural Science Foundation of Ningbo (No. 2014A610147), State Key Laboratory of ASIC & System (No. 2015KF006) and the K. C. Wong Magna Fund in Ningbo University.
Koplan, Bruce A; Gilligan, David M; Nguyen, Luc S; Lau, Theodore K; Thackeray, Lisa M; Berg, Kellie Chase
2008-11-01
An automatic capture (AC) algorithm adjusts ventricular pacing output to capture the ventricle while optimizing output to 0.5 V above threshold. AC maintains this output and confirms capture on a beat-to-beat basis in bipolar and unipolar pacing and sensing. To assess the AC algorithm and its impact on device longevity. Patients implanted with a pacemaker were randomized 1:1 to have the AC feature on or off for 12 months. Two threshold tests were conducted at each visit- automatic threshold and manual threshold. Average ventricular voltage output and projected device longevity were compared between AC on and off using nonparametric tests. Nine hundred ten patients were enrolled and underwent device implantation. Average ventricular voltage output was 1.6 V for the AC on arm (n = 444) and 3.1 V for the AC off arm (n = 446) (P < 0.001). Projected device longevity was 10.3 years for AC on and 8.9 years for AC off (P < 0.0001), or a 16% increase in longevity for AC on. The proportion of patients in whom there was a difference between automatic threshold and manual threshold of
GaN HEMTs with p-GaN gate: field- and time-dependent degradation
NASA Astrophysics Data System (ADS)
Meneghesso, G.; Meneghini, M.; Rossetto, I.; Canato, E.; Bartholomeus, J.; De Santi, C.; Trivellin, N.; Zanoni, E.
2017-02-01
GaN-HEMTs with p-GaN gate have recently demonstrated to be excellent normally-off devices for application in power conversion systems, thanks to the high and robust threshold voltage (VTH>1 V), the high breakdown voltage, and the low dynamic Ron increase. For this reason, studying the stability and reliability of these devices under high stress conditions is of high importance. This paper reports on our most recent results on the field- and time-dependent degradation of GaN-HEMTs with p-GaN gate submitted to stress with positive gate bias. Based on combined step-stress experiments, constant voltage stress and electroluminescence testing we demonstrated that: (i) when submitted to high/positive gate stress, the transistors may show a negative threshold voltage shift, that is ascribed to the injection of holes from the gate metal towards the p-GaN/AlGaN interface; (ii) in a step-stress experiment, the analyzed commercial devices fail at gate voltages higher than 9-10 V, due to the extremely high electric field over the p-GaN/AlGaN stack; (iii) constant voltage stress tests indicate that the failure is also time-dependent and Weibull distributed. The several processes that can explain the time-dependent failure are discussed in the following.
NASA Astrophysics Data System (ADS)
Tork, Hossam S.
This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving directions for phased array antennas, reducing phase error, improving figure of merit (FOM) and phase shifter tunability around center frequency, and also enables the integration of the phase shifters with the microwave circuits on one substrate, thus substantially reducing the size, mass, and cost of the antennas.
Resonant tunneling via a Ru-dye complex using a nanoparticle bridge junction.
Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya
2018-06-15
Nonlinear current-voltage (I-V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru-dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I-V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I-V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.
NASA Astrophysics Data System (ADS)
Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong
2011-03-01
In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Miteva, Tzenka; Nelles, Gabriele
2009-06-01
Although charging of insulators by atomic force microscopy (AFM) has found widespread interest, often with data storage or nanoxerography in mind, less attention has been paid to the charging mechanism and the nature of the charge. Here we present a systematic study on charging of amorphous polymer films by voltage pulses applied to conducting AFM probes. We find a quadratic space charge limited current law of Kelvin probe force microscopy and electrostatic force microscopy peak volumes in pulse height, offset by a threshold voltage, and a power law in pulse width of positive exponents smaller than one. We interpret the results by a charging mechanism of injection and surface near accumulation of aqueous ions stemming from field induced water adsorption, with threshold voltages linked to the water affinities of the polymers.
Resonant tunneling via a Ru–dye complex using a nanoparticle bridge junction
NASA Astrophysics Data System (ADS)
Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya
2018-06-01
Nonlinear current–voltage (I–V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru–dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I–V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I–V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.
Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban
2003-01-01
The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.
Lasing in robust cesium lead halide perovskite nanowires
Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong
2016-01-01
The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172
NASA Astrophysics Data System (ADS)
Sharath, S. U.; Joseph, M. J.; Vogel, S.; Hildebrandt, E.; Komissinskiy, P.; Kurian, J.; Schroeder, T.; Alff, L.
2016-10-01
We have investigated the material and electrical properties of tantalum oxide thin films (TaOx) with engineered oxygen contents grown by RF-plasma assisted molecular beam epitaxy. The optical bandgap and the density of the TaOx films change consistently with oxygen contents in the range of 3.63 to 4.66 eV and 12.4 to 9.0 g/cm3, respectively. When exposed to atmosphere, an oxidized Ta2O5-y surface layer forms with a maximal thickness of 1.2 nm depending on the initial oxygen deficiency of the film. X-ray photoelectron spectroscopy studies show that multiple sub-stoichiometric compositions occur in oxygen deficient TaOx thin films, where all valence states of Ta including metallic Ta are possible. Devices of the form Pt/Ta2O5-y/TaOx/TiN exhibit highly tunable forming voltages of 10.5 V to 1.5 V with decreasing oxygen contents in TaOx. While a stable bipolar resistive switching (BRS) occurs in all devices irrespective of oxygen content, unipolar switching was found to coexist with BRS only at higher oxygen contents, which transforms to a threshold switching behaviour in the devices grown under highest oxidation.
Hysteresis-Free Carbon Nanotube Field-Effect Transistors.
Park, Rebecca S; Hills, Gage; Sohn, Joon; Mitra, Subhasish; Shulaker, Max M; Wong, H-S Philip
2017-05-23
While carbon nanotube (CNT) field-effect transistors (CNFETs) promise high-performance and energy-efficient digital systems, large hysteresis degrades these potential CNFET benefits. As hysteresis is caused by traps surrounding the CNTs, previous works have shown that clean interfaces that are free of traps are important to minimize hysteresis. Our previous findings on the sources and physics of hysteresis in CNFETs enabled us to understand the influence of gate dielectric scaling on hysteresis. To begin with, we validate through simulations how scaling the gate dielectric thickness results in greater-than-expected benefits in reducing hysteresis. Leveraging this insight, we experimentally demonstrate reducing hysteresis to <0.5% of the gate-source voltage sweep range using a very large-scale integration compatible and solid-state technology, simply by fabricating CNFETs with a thin effective oxide thickness of 1.6 nm. However, even with negligible hysteresis, large subthreshold swing is still observed in the CNFETs with multiple CNTs per transistor. We show that the cause of large subthreshold swing is due to threshold voltage variation between individual CNTs. We also show that the source of this threshold voltage variation is not explained solely by variations in CNT diameters (as is often ascribed). Rather, other factors unrelated to the CNTs themselves (i.e., process variations, random fixed charges at interfaces) are a significant factor in CNT threshold voltage variations and thus need to be further improved.
NASA Astrophysics Data System (ADS)
Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T.
2017-12-01
We proposed that the disorder induced gap states (DIGS) can be responsible for the threshold voltage (Vth) instability in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. In order to verify this hypothesis, we performed the theoretical calculations of the capacitance voltage (C-V) curves for the Al2O3/AlGaN/GaN structures using the DIGS model and compared them with measured ones. We found that the experimental C-V curves with a complex hysteresis behavior varied with the maximum forward bias and the sweeping rate can be well reproduced theoretically by assuming a particular distribution in energy and space of the DIGS continuum near the Al2O3/AlGaN interface, i.e., a U-shaped energy density distribution and exponential depth decay from the interface into Al2O3 layer (up to 4 nm), as well as suitable DIGS capture cross sections (the order of magnitude of 10-15 cm2). Finally, we showed that the DIGS model can also explain the negative bias induced threshold voltage instability. We believe that these results should be critical for the successful development of the passivation techniques, which allows to minimize the Vth instability related effects.
Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo
Muñoz, Fabián; Fuentealba, Pablo
2012-01-01
Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567
Transistor biased amplifier minimizes diode discriminator threshold attenuation
NASA Technical Reports Server (NTRS)
Larsen, R. N.
1967-01-01
Transistor biased amplifier has a biased diode discriminator driven by a high impedance /several megohms/ current source, rather than a voltage source with several hundred ohms output impedance. This high impedance input arrangement makes the incremental impedance of the threshold diode negligible relative to the input impedance.
NASA Astrophysics Data System (ADS)
Watanabe, Takeshi; Tada, Keisuke; Yasuno, Satoshi; Oji, Hiroshi; Yoshimoto, Noriyuki; Hirosawa, Ichiro
2016-03-01
The effect of gate voltage on electric potential in a pentacene (PEN) layer was studied by hard X-ray photoelectron spectroscopy under a bias voltage. It was observed that applying a negative gate voltage substantially increases the width of a C 1s peak. This suggested that injected and accumulated carriers in an organic thin film transistor channel modified the potential depth profile in PEN. It was also observed that the C 1s kinetic energy tends to increase monotonically with threshold voltage.
Systems and methods for initializing a charging system
Ransom, Ray M.; Perisic, Milun; Kajouke, Lateef A.
2014-09-09
Systems and methods are provided for initiating a charging system. The method, for example, may include, but is not limited to, providing, by the charging system, an incrementally increasing voltage to a battery up to a first predetermined threshold while the energy conversion module has a zero-percent duty cycle, providing, by the charging system, an incrementally increasing voltage to the battery from an initial voltage level of the battery up to a peak voltage of a voltage source while the energy conversion module has a zero-percent duty cycle, and providing, by the charging system, an incrementally increasing voltage to the battery by incrementally increasing the duty cycle of the energy conversion module.
Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.
Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M
2016-08-10
Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.
Qian, Linyong; Zhang, Dawei; Dai, Bo; Wang, Qi; Huang, Yuanshen; Zhuang, Songlin
2015-07-13
A novel bandwidth-tunable notch filter is proposed based on the guided-mode resonance effect. The notch is created due to the superposition spectra response of two guided-mode resonant filters. The compact, bandwidth tuning capability is realized by taking advantage the effect of spectra-to-polarization sensitivity in one-dimensional classical guided-mode resonance filter, and using a liquid crystal polarization rotator for precise and simple polarization control. The operation principle and the design of the device are presented, and we demonstrate it experimentally. The central wavelength is fixed at 766.4 nm with a relatively symmetric profile. The full width at half maximum bandwidth could be tuned from 8.6 nm to 18.2 nm by controlling the applied voltage in electrically-driving polarization rotator.
NASA Astrophysics Data System (ADS)
Shin, Yong-Wook; Sung, Won Ju; Eknoyan, O.; Madsen, C. K.; Taylor, H. F.
2012-04-01
A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.
Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals
NASA Astrophysics Data System (ADS)
McPhail, Dennis; Straub, Martin; Gu, Min
2005-01-01
Electrically tunable three-dimensional photonic crystals with a tunable wavelength range of over 70nm of stop gaps between 3 and 4μm have been generated in a liquid crystal-polymer composite. The photonic crystals were fabricated by femtosecond-laser direct writing of void channels in an inverse woodpile configuration with 20 layers providing an extinction of infrared light transmission of 70% in the stacking direction. Stable structures could be manufactured up to a liquid crystal concentration of 24%. Applying a direct voltage of several hundred volts in the stacking direction of the photonic crystal changes the alignment of the liquid crystal directors and hence the average refractive index of the structure. This mechanism permits the direct tuning of the photonic stop gap.
Allen, Zachery W [Mandan, ND; Zevenbergen, Gary A [Arvada, CO
2012-04-03
A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.
Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers.
Wang, Ruijun; Malik, Aditya; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Roelkens, Gunther
2016-12-12
2.0x µm widely tunable external cavity lasers realized by combining a GaSb gain chip with a silicon photonics waveguide circuit for wavelength selection are demonstrated. Wavelength tuning over 58 nm from 2.01 to 2.07 µm is demonstrated. In the silicon photonic integrated circuit, laser feedback is realized by using a silicon Bragg grating and continuous tuning is realized by using two thermally tuned silicon microring resonators (MRRs) and a phase section. The uncooled laser has maximum output power of 7.5 mW and threshold current density of 0.8 kA/cm2. The effect of the coupling gap of the MRRs on tunable laser performance is experimentally assessed. A side mode suppression ratio better than 52 dB over the full tuning range and in the optimum operation point of more than 60 dB is achieved for the laser with weakly coupled MRRs.
Theory and simulation of multi-channel interference (MCI) widely tunable lasers.
Chen, Quanan; Lu, Qiaoyin; Guo, Weihua
2015-07-13
A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented.
NASA Astrophysics Data System (ADS)
Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin
2012-10-01
A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.
NASA Astrophysics Data System (ADS)
Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad
2018-05-01
Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.
Focus tunable device actuator based on ionic polymer metal composite
NASA Astrophysics Data System (ADS)
Zhang, Yi-Wei; Su, Guo-Dung J.
2015-09-01
IPMC (Ionic Polymer Metallic Composite) is a kind of electroactive polymer (EAP) which is used as an actuator because of its low driving voltage and small size. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied. In this paper, the complex IPMC fabrication such as Ag-IPMC be further developed in this paper. The comparison of response time and tip bending displacement of Pt-IPMC and Ag-IPMC will also be presented. We also use the optimized IPMC as the lens actuator integrated with curvilinear microlens array, and use the 3D printer to make a simple module and spring stable system. We also used modeling software, ANSYS Workbench, to confirm the effect of spring system. Finally, we successfully drive the lens system in 200μm stroke under 2.5V driving voltage within 1 seconds, and the resonant frequency is approximately 500 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chida, K.; Yamauchi, Y.; Arakawa, T.
2013-12-04
We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.
Detection of dilute sperm samples using photoacoustic flowmetry
NASA Astrophysics Data System (ADS)
Viator, J. A.; Sutovsky, P.; Weight, R. M.
2008-02-01
Detection of sperm cells in dilute samples may have application in forensic testing and diagnosis of male reproductive health. Due to the optically dense subcellular structures in sperm cells, irradiation by nanosecond laser pulses induces a photoacoustic response detectable using a custom flow cytometer. We determined the detection threshold of bull sperm using various concentrations, from 200 to 1,000,000 sperm cells per milliliter. Using a tunable laser system set to 450nm with a 5 ns pulse duration and 11-12 mJ/pulse, we obtained a detection threshold of 3 sperm cells. The flow rate was 4 ml/minute through the flow chamber. The acoustic sensor was a 100 μm PVDF film attached to the glass flow chamber. The acoustic signal was preamplified and sent to an oscilloscope. The threshold signal indicated a signal to noise ratio of approximately 6 to 1. Improved system design may decrease the threshold to single sperm cells.
Fu, Yongping; Zhu, Haiming; Stoumpos, Constantinos C; Ding, Qi; Wang, Jue; Kanatzidis, Mercouri G; Zhu, Xiaoyang; Jin, Song
2016-08-23
Lead halide perovskite nanowires (NWs) are emerging as a class of inexpensive semiconductors with broad bandgap tunability for optoelectronics, such as tunable NW lasers. Despite exciting progress, the current organic-inorganic hybrid perovskite NW lasers suffer from limited tunable wavelength range and poor material stability. Herein, we report facile solution growth of single-crystal NWs of inorganic perovskite CsPbX3 (X = Br, Cl) and their alloys [CsPb(Br,Cl)3] and a low-temperature vapor-phase halide exchange method to convert CsPbBr3 NWs into perovskite phase CsPb(Br,I)3 alloys and metastable CsPbI3 with well-preserved perovskite crystal lattice and NW morphology. These single crystalline NWs with smooth end facets and subwavelength dimensions are ideal Fabry-Perot cavities for NW lasers. Optically pumped tunable lasing across the entire visible spectrum (420-710 nm) is demonstrated at room temperature from these NWs with low lasing thresholds and high-quality factors. Such highly efficient lasing similar to what can be achieved with organic-inorganic hybrid perovskites indicates that organic cation is not essential for light emission application from these lead halide perovskite materials. Furthermore, the CsPbBr3 NW lasers show stable lasing emission with no measurable degradation after at least 8 h or 7.2 × 10(9) laser shots under continuous illumination, which are substantially more robust than their organic-inorganic counterparts. The Cs-based perovskites offer a stable material platform for tunable NW lasers and other nanoscale optoelectronic devices.
NASA Astrophysics Data System (ADS)
Lin, Jia-De; Lin, Hong-Lin; Lin, Hsin-Yu; Wei, Guan-Jhong; Lee, Chia-Rong
2017-02-01
The scientists in the field of liquid crystal (LC) have paid significant attention in the exploration of novel cholesteric LC (CLC) polymer template (simply called template) in recent years. The self-assembling nanostructural template with chirality can effectively overcome the limitation in the optical features of traditional CLCs, such as enhancement of reflectivity over 50%, multiple photonic bandgaps (PBGs), and changeable optical characteristics by flexibly replacing the refilling LC materials, and so on. This work fabricates two gradient-pitched CLC templates with two opposite handednesses, which are then merged as a spatially tunable and highly reflective CLC template sample. This sample can simultaneously reflect right- and left-circularly polarized lights and the tunable spectral range includes the entire visible region. By increasing the temperature of the template sample exceeding the clearing point of the refilling LC, the light scattering significantly decreases and the reflectance effectively increase to exceed 50% in the entire visible region. This device has a maximum reflectance over 85% and a wide-band spatial tunability in PBG between 400 nm and 800 nm which covers the entire visible region. Not only the sample can be employed as a wide-band spatially tunable filter, but also the system doping with two suitable laser dyes which emitted fluorescence can cover entire visible region can develop a low-threshold, mirror-less laser with a spatial tunability at spectral regions including blue to red region (from 484 nm to 634 nm) and simultaneous lasing emission of left- and right-circular polarizations.
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-01-01
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices’ performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves. PMID:27901088
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-11-30
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices' performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves.
NASA Astrophysics Data System (ADS)
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-11-01
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices’ performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves.
Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors
Léonard, François; Spataru, Catalin D.; Goldflam, Michael; ...
2017-04-04
The holy grail of photodetector technology is dynamic wavelength tunability. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. We employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We also reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at themore » contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. Furthermore, we show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one- and two-dimensional materials and devices.« less
Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Léonard, François; Spataru, Catalin D.; Goldflam, Michael
The holy grail of photodetector technology is dynamic wavelength tunability. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. We employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We also reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at themore » contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. Furthermore, we show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one- and two-dimensional materials and devices.« less
NASA Astrophysics Data System (ADS)
Fu, JiaHui; Raheem, Odai H.
2017-07-01
A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on liquid crystal technology is proposed. Rectangular patches are used as radiators for the opening sidewall of the waveguide and matched section part for a unit cell. The transition structure is added for enhancing the efficiency of HMSIW-LWA due to converting most input power to the leaky mode. The novel IMSL phase shifter is used for investigating the tunable dielectric characteristics of N-LC by applying an electric field to the LC cell, which is controlled by the orientation angle of the LC molecules. Theoretically, the orientation angle is derived and solved numerically with the accurate method. As a result, the HMSIW-LWA can be tuned up to ± 25° for a fixed frequency by tuning the nematic LC with applied voltage from 0 to 20 V. In addition, the realized gain changed from 6 to 9.4 dB for a fixed tuned frequency, and 46° steerable for rest main beams range of the HMSIW-LWA in both forward and backward directions.
Qiu, Dongri; Kim, Eun Kyu
2015-09-03
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
NASA Astrophysics Data System (ADS)
Qiu, Dongri; Kim, Eun Kyu
2015-09-01
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
Interfacial fields in organic field-effect transistors and sensors
NASA Astrophysics Data System (ADS)
Dawidczyk, Thomas J.
Organic electronics are currently being commercialized and present a viable alternative to conventional electronics. These organic materials offer the ability to chemically manipulate the molecule, allowing for more facile mass processing techniques, which in turn reduces the cost. One application where organic semiconductors (OSCs) are being investigated is sensors. This work evaluates an assortment of n- and p-channel semiconductors as organic field-effect transistor (OFET) sensors. The sensor responses to dinitrotoluene (DNT) vapor and solid along with trinitrotoluene (TNT) solid were studied. Different semiconductor materials give different magnitude and direction of electrical current response upon exposure to DNT. Additional OFET parameters---mobility and threshold voltage---further refine the response to the DNT with each OFET sensor requiring a certain gate voltage for an optimized response to the vapor. The pattern of responses has sufficient diversity to distinguish DNT from other vapors. To effectively use these OFET sensors in a circuit, the threshold voltage needs to be tuned for each transistor to increase the efficiency of the circuit and maximize the sensor response. The threshold voltage can be altered by embedding charges into the dielectric layer of the OFET. To study the quantity and energy of charges needed to alter the threshold voltage, charge carriers were injected into polystyrene (PS) and investigated with scanning Kelvin probe microscopy (SKPM) and thermally stimulated discharge current (TSDC). Lateral heterojunctions of pentacene/PS were scanned using SKPM, effectively observing polarization along a side view of a lateral nonvolatile organic field-effect transistor dielectric interface. TSDC was used to observe charge migration out of PS films and to estimate the trap energy level inside the PS, using the initial rise method. The process was further refined to create lateral heterojunctions that were actual working OFETs, consisting of a PS or poly (3-trifluoro)styrene (F-PS) gate dielectric and a pentacene OSC. The charge storage inside the dielectric was visualized with SKPM, correlated to a threshold voltage shift in the transistor operation, and related to bias stress as well. The SKPM method allows the dielectric/OSC interface of the OFET to be visualized without any alteration of the OFET. Furthermore, this technique allows for the observation of charge distribution between the two dielectric interfaces, PS and F-PS. The SKPM is used to visualize the charge from conventional gate biasing and also as a result of embedding charges deliberately into the dielectric to shift the threshold voltage. Conventional gate biasing shows considerable residual charge in the PS dielectric, which results in gate bias stress. Gate bias stress is one of the major hurdles left in the commercialization of OFETs. To prevent this bias stress, additives of different energy levels were inserted into the dielectric to limit the gate bias stress. Additionally, the dielectrics were pre-charged to try and prevent further bias stress. Neither pre-charging the dielectric or the addition of additive has been used in gate bias prevention, but both methods offer improved resistance to gate bias stress, and help to further refine the dielectric design.
Hot electron light emission in gallium arsenide/aluminium(x) gallium(1-x) arsenic heterostructures
NASA Astrophysics Data System (ADS)
Teke, Ali
In this thesis we have demonstrated the operation of a novel tunable wavelength surface light emitting device. The device is based on a p-GaAs, and n-Ga1- xAlxAs heterojunction containing an inversion layer on the p- side, and GaAs quantum wells on the n- side, and, is referred to as HELLISH-2 (Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure-Type 2). The devices utilise hot electron longitudinal transport and, therefore, light emission is independent of the polarity of the applied voltage. The wavelength of the emitted light can be tuned with the applied bias from GaAs band-to-band transition in the inversion layer to e1-hh1 transition in the quantum wells. In this work tunable means that the device can be operated at either single or multiple wavelength emission. The operation of the device requires only two diffused in point contacts. In this project four HELLISH-2 samples coded as ES1, ES2, ES6 and QT919 have been studied. First three samples were grown by MBE and the last one was grown by MOVPE techniques. ES1 was designed for single and double wavelength operation. ES2 was a control sample used to compare our results with previous work on HELLISH-2 and ES6 was designed for single, double and triple wavelength operation. Theoretical modelling of the device operation was carried out and compared with the experimental results. HELLISH-2 structure was optimised for low threshold and high efficiency operation as based on our model calculations. The last sample QT919 has been designed as an optimised device for single and double wavelength operation like ES1. HELLISH-2 has a number of advantages over the conventional light emitters, resulting in some possible applications, such as light logic gates and wavelength division multiplexing in optoelectronic.
NASA Astrophysics Data System (ADS)
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin; Li, Huiyan; Che, Yanqiu
2017-06-01
Spike-frequency adaptation (SFA) mediated by various adaptation currents, such as voltage-gated K+ current (IM), Ca2+-gated K+ current (IAHP), or Na+-activated K+ current (IKNa), exists in many types of neurons, which has been shown to effectively shape their information transmission properties on slow timescales. Here we use conductance-based models to investigate how the activation of three adaptation currents regulates the threshold voltage for action potential (AP) initiation during the course of SFA. It is observed that the spike threshold gets depolarized and the rate of membrane depolarization (dV/dt) preceding AP is reduced as adaptation currents reduce firing rate. It is indicated that the presence of inhibitory adaptation currents enables the neuron to generate a dynamic threshold inversely correlated with preceding dV/dt on slower timescales than fast dynamics of AP generation. By analyzing the interactions of ionic currents at subthreshold potentials, we find that the activation of adaptation currents increase the outward level of net membrane current prior to AP initiation, which antagonizes inward Na+ to result in a depolarized threshold and lower dV/dt from one AP to the next. Our simulations demonstrate that the threshold dynamics on slow timescales is a secondary effect caused by the activation of adaptation currents. These findings have provided a biophysical interpretation of the relationship between adaptation currents and spike threshold.
Suppression of threshold voltage variability in MOSFETs by adjustment of ion implantation parameters
NASA Astrophysics Data System (ADS)
Park, Jae Hyun; Chang, Tae-sig; Kim, Minsuk; Woo, Sola; Kim, Sangsig
2018-01-01
In this study, we investigate threshold voltage (VTH) variability of metal-oxide-semiconductor field-effect transistors induced by random dopant fluctuation (RDF). Our simulation work demonstrates not only the influence of the implantation parameters such as its dose, tilt angle, energy, and rotation angle on the RDF-induced VTH variability, but also the solution to reduce the effect of this variability. By adjusting the ion implantation parameters, the 3σ (VTH) is reduced from 43.8 mV to 28.9 mV. This 34% reduction is significant, considering that our technique is very cost effective and facilitates easy fabrication, increasing availability.
Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias
2014-12-21
We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.
Static Noise Margin Enhancement by Flex-Pass-Gate SRAM
NASA Astrophysics Data System (ADS)
O'Uchi, Shin-Ichi; Masahara, Meishoku; Sakamoto, Kunihiro; Endo, Kazuhiko; Liu, Yungxun; Matsukawa, Takashi; Sekigawa, Toshihiro; Koike, Hanpei; Suzuki, Eiichi
A Flex-Pass-Gate SRAM, i.e. a fin-type-field-effect-transistor- (FinFET-) based SRAM, is proposed to enhance noise margin during both read and write operations. In its cell, the flip-flop is composed of usual three-terminal- (3T-) FinFETs while pass gates are composed of four-terminal- (4T-) FinFETs. The 4T-FinFETs enable to adopt a dynamic threshold-voltage control in the pass gates. During a write operation, the threshold voltage of the pass gates is lowered to enhance the writing speed and stability. During the read operation, on the other hand, the threshold voltage is raised to enhance the static noise margin. An asymmetric-oxide 4T-FinFET is helpful to manage the leakage current through the pass gate. In this paper, a design strategy of the pass gate with an asymmetric gate oxide is considered, and a TCAD-based Monte Carlo simulation reveals that the Flex-Pass-Gate SRAM based on that design strategy is expected to be effective in half-pitch 32-nm technology for low-standby-power (LSTP) applications, even taking into account the variability in the device performance.
NASA Astrophysics Data System (ADS)
Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu
2012-02-01
We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.
Pseudo-diode based on protonic/electronic hybrid oxide transistor
NASA Astrophysics Data System (ADS)
Fu, Yang Ming; Liu, Yang Hui; Zhu, Li Qiang; Xiao, Hui; Song, An Ran
2018-01-01
Current rectification behavior has been proved to be essential in modern electronics. Here, a pseudo-diode is proposed based on protonic/electronic hybrid indium-gallium-zinc oxide electric-double-layer (EDL) transistor. The oxide EDL transistors are fabricated by using phosphorous silicate glass (PSG) based proton conducting electrolyte as gate dielectric. A diode operation mode is established on the transistor, originating from field configurable proton fluxes within the PSG electrolyte. Current rectification ratios have been modulated to values ranged between ˜4 and ˜50 000 with gate electrode biased at voltages ranged between -0.7 V and 0.1 V. Interestingly, the proposed pseudo-diode also exhibits field reconfigurable threshold voltages. When the gate is biased at -0.5 V and 0.3 V, threshold voltages are set to ˜-1.3 V and -0.55 V, respectively. The proposed pseudo-diode may find potential applications in brain-inspired platforms and low-power portable systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Hanson, D.L.; Menge, P.R.
SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, andmore » beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( {approx} 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models.« less
Design and Fabrication of Micro-Electro-Mechanical Structures for Tunable Micro-Optical Devices
2002-03-01
purposes. Figure 2.6 shows the resulting Voltage vs. displacement curve for a 150 µm × 150 µm piston micromirror with four 150 µm flexures, and a 2 µm...2-6 2.3.2 Piston Micromirrors . . . . . . . . . . . . . . . . . . 2-7 2.4 VCSEL Design...Schematic view of basic electrostatic piston micromirror [4]. . . . . 2-7 2.5. Deflection of a flexure beam with a single fixed end [22]. . . . . . . 2
Spin filtering by field-dependent resonant tunneling.
Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas
2010-02-19
We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.
NASA Astrophysics Data System (ADS)
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-09-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.
NASA Astrophysics Data System (ADS)
Chou, Kuan-Yu; Hsu, Nai-Wen; Su, Yi-Hsin; Chou, Chung-Tao; Chiu, Po-Yuan; Chuang, Yen; Li, Jiun-Yun
2018-02-01
We investigate DC characteristics of a two-dimensional electron gas (2DEG) in an undoped Si/SiGe heterostructure and its temperature dependence. An insulated-gate field-effect transistor was fabricated, and transfer characteristics were measured at 4 K-300 K. At low temperatures (T < 45 K), source electrons are injected into the buried 2DEG channel first and drain current increases with the gate voltage. By increasing the gate voltage further, the current saturates followed by a negative transconductance observed, which can be attributed to electron tunneling from the buried channel to the surface channel. Finally, the drain current is saturated again at large gate biases due to parallel conduction of buried and surface channels. By increasing the temperature, an abrupt increase in threshold voltage is observed at T ˜ 45 K and it is speculated that negatively charged impurities at the Al2O3/Si interface are responsible for the threshold voltage shift. At T > 45 K, the current saturation and negative transconductance disappear and the device acts as a normal transistor.
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-01-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430
NASA Astrophysics Data System (ADS)
Han, Chang-Wook; Han, Min-Koo; Choi, Nack-Bong; Kim, Chang-Dong; Kim, Ki-Yong; Chung, In-Jae
2007-07-01
Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) were fabricated on a flexible stainless-steel (SS) substrate. The stability of the a-Si:H TFT is a key issue for active matrix organic light-emitting diodes (AMOLEDs). The drain current decreases because of the threshold voltage shift (Δ VTH) during OLED driving. A negative voltage at a floated gate can be induced by a negative substrate bias through a capacitor between the substrate and the gate electrode without additional circuits. The negative voltage biased at the SS substrate can recover Δ VTH and reduced drain current of the driving TFT. The VTH of the TFT increased by 2.3 V under a gate bias of +15 V and a drain bias of +15 V at 65 °C applied for 3,500 s. The VTH decreased by -2.3 V and the drain current recovered 97% of its initial value under a substrate bias of -23 V at 65 °C applied for 3,500 s.
A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.
Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit
2014-01-01
Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.
Linear frequency tuning in an LC-resonant system using a C-V response controllable MEMS varactor
NASA Astrophysics Data System (ADS)
Han, Chang-Hoon; Yoon, Yong-Hoon; Ko, Seung-Deok; Seo, Min-Ho; Yoon, Jun-Bo
2017-12-01
This paper proposes a device level solution to achieve linear frequency tuning with respect to a tuning voltage ( V tune ) sweep in an inductor ( L)-capacitor ( C) resonant system. Since the linearity of the resonant frequency vs. tuning voltage ( f- V) relationship in an LC-resonant system is closely related to the C- V response characteristic of the varactor, we propose a C- V response tunable varactor to realize the linear frequency tuning. The proposed varactor was fabricated using microelectromechanical system (MEMS) surface micromachining. The fabricated MEMS varactor has the ability to dynamically change the C- V response characteristic according to a curve control voltage ( V curve- control ). When V curve- control was increased from zero to 9 V, the C- V response curve was changed from a linear to a concave form (i.e., the capacitance decreased quickly in the low tuning voltage region and slowly in the high tuning voltage region). This change in the C- V response characteristic resulted in a change in the f- V relationship, and we successfully demonstrated almost perfectly linear frequency tuning in the LC-resonant system, with a linearity factor of 99.95%.
Patterned Ferroelectric Films for Tunable Microwave Devices
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.
2008-01-01
Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC electric field, so that tunability is enhanced. It should even be possible to design the constriction to obtain a specific tuning-versus-voltage profile.
Sun, Mei; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.
2012-01-01
Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H2 at the cathode and oxidizing conditions and O2 at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (kNB) and NSB (kNSB) increased with applied voltage between 2V and 3.5 V (when the initial NB concentration was 100 µM, kNB=0.3 d−1 and kNSB=0.04 d−1at 2V; kNB=1.6 d−1 and kNSB=0.64 d−1at 3.5 V) but stopped increasing beyond the threshold of 3.5V. When initial NB concentration decreased from 100 to 5 µM, kNB and kNSB became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased kNB while slightly increased kNSB, but only to a limited extent (~factor of 3) for dissolved organic carbon content up to 100 mg/l. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation. PMID:22571797
Method and system for controlling a synchronous machine over full operating range
Walters, James E.; Gunawan, Fani S.; Xue, Yanhong
2002-01-01
System and method for controlling a synchronous machine are provided. The method allows for calculating a stator voltage index. The method further allows for relating the magnitude of the stator voltage index against a threshold voltage value. An offset signal is generated based on the results of the relating step. A respective state of operation of the machine is determined. The offset signal is processed based on the respective state of the machine.
Threshold Voltage Instability in A-Si:H TFTS and the Implications for Flexible Displays and Circuits
2008-12-01
and negative gate voltages with and without elevated drain voltages for FDC TFTs. Extending techniques used to localize hot electron degradation...in MOSFETs, experiments in our lab have localized the degradation of a-Si:H to the gate dielectric/a-Si:H channel interface [Shringarpure, et al...saturation, increased drain source current measured with the source and drain reversed indicates localization of ΔVth to the gate dielectric/amorphous
Solntseva, E I; Bukanova, J V; Ostrovskaya, R U; Gudasheva, T A; Voronina, T A; Skrebitsky, V G
1997-07-01
1. With the use of the two-microelectrode voltage-clamp method, three types of voltage-activated ionic currents were examined in isolated neurons of the snail Helix pomatia: high-threshold Ca2+ current (ICa), high-threshold Ca(2+)-dependent K+ current (IK(Ca)) and high-threshold K+ current independent of Ca2+ (IK(V)). 2. The effect of bath application of the nootropics piracetam and a novel piracetam peptide analog, ethyl ester of N-phenyl-acetyl-L-prolyl-glycine (GVS-111), on these three types of voltage-activated ionic currents was studied. 3. In more than half of the tested cells, ICa was resistant to both piracetam and GVS-111. In the rest of the cells, ICa decreased 19 +/- 7% with 2 mM of piracetam and 39 +/- 14% with 2 microM of GVS-111. 4. IK(V) in almost all cells tested was resistant to piracetam at concentrations up to 2 mM. However, IK(V) in two-thirds of the cells was sensitive to GVS-111, being suppressed 49 +/- 18% with 1 microM GVS-111. 5. IK(Ca) appeared to be the most sensitive current of those studied to both piracetam and GVS-111. Piracetam at 1 mM and GVS-111 at 0.1 microM decreased the amplitude of IK(Ca) in most of the cells examined by 49 +/- 19% and 69 +/- 24%, respectively. 6. The results suggest that piracetam and GVS-111 suppression of voltage-activated calcium and potassium currents of the neuronal membrane may regulate (both up and down) Ca2+ influx into neurons.
NASA Astrophysics Data System (ADS)
Hsu, M. K.; Chiu, S. Y.; Wu, C. H.; Guo, D. F.; Lour, W. S.
2008-12-01
Pseudomorphic Al0.22Ga0.78As/In0.16Ga0.84As/Al0.22Ga0.78As double heterojunction high electron mobility transistors (DH-HEMTs) fabricated with different gate-formation structures of a single-recess gate (SRG), a double-recess gate (DRG) and a field-plate gate (FPG) were comparatively investigated. FPG devices show the best breakdown characteristics among these devices due to great reduction in the peak electric field between the drain and gate electrodes. The measured gate-drain breakdown voltages defined at a 1 mA mm-1 reverse gate-drain current density were -15.3, -19.1 and -26.0 V for SRG, DRG and FPG devices, respectively. No significant differences in their room-temperature common-source current-voltage characteristics were observed. However, FPG devices exhibit threshold voltages being the least sensitive to temperature. Threshold voltages as a function of temperature indicate a threshold-voltage variation as low as -0.97 mV K-1 for FPG devices. According to the 2.4 GHz load-pull power measurement at VDS = 3.0 V and VGS = -0.5 V, the saturated output power (POUT), power gain (GP) and maximum power-added efficiency (PAE) were 10.3 dBm/13.2 dB/36.6%, 11.2 dBm/13.1 dB/39.7% and 13.06 dBm/12.8 dB/47.3%, respectively, for SRG, DRG and FPG devices with a pi-gate in class AB operation. When the FPG device is biased at a VDS of 10 V, the saturated power density is more than 600 mW mm-1.
Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J
2016-12-01
This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.
NASA Astrophysics Data System (ADS)
Scolari, Lara; Tanggaard Alkeskjold, Thomas; Riishede, Jesper; Bjarklev, Anders; Sparre Hermann, David; Anawati, Anawati; Dybendal Nielsen, Martin; Bassi, Paolo
2005-09-01
We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle.
NASA Astrophysics Data System (ADS)
Mookerjea, Saurabh A.
Over the past decade the microprocessor clock frequency has hit a plateau. The main reason for this has been the inability to follow constant electric field scaling, which requires the transistor supply voltage to be scaled down as the transistor dimensions are reduced. Scaling the supply voltage down reduces the dynamic power quadratically but increases the static leakage power exponentially due to non-scalability of threshold voltage of the transistor, which is required to maintain the same ON state performance. This limitation in supply voltage scaling is directly related to MOSFET's (Metal Oxide Semiconductor Field Effect Transistor) sub-threshold slope (SS) limitation of 60 mV/dec at room temperature. Thus novel device design/materials are required that would allow the transistor to switch with sub-threshold slopes steeper than 60 mV/dec at room temperature, thus facilitating supply voltage scaling. Recently, a new class of devices known as super-steep slope (SS<60 mV/dec) transistors are under intense research for its potential to replace the ubiquitous MOSFET. The focus of this dissertation is on the design, fabrication and characterization of band-to-band tunneling field effect transistor (TFET) which belongs to the family of steep slope transistors. TFET with a gate modulated zener tunnel junction at the source allows sub-kT/q (sub-60 mV/dec at room temperature) sub-threshold slope (SS) device operation over a certain gate bias range near the off-state. This allows TFET to achieve much higher I ON-IOFF ratio over a specified gate voltage swing compared to MOSFETs, thus enabling aggressive supply voltage scaling for low power logic operation without impacting its ON-OFF current ratio. This dissertation presents the operating principle of TFET, the material selection strategy and device design for TFET fabrication. This is followed by a novel 6T SRAM design which circumvents the issue of unidirectional conduction in TFET. The switching behavior of TFET is studied through mixed-mode numerical simulations. The significance of correct benchmarking methodology to estimate the effective drive current and capacitance in TFET is highlighted and compared with MOSFET. This is followed by the fabrication details of homo-junction TFET. Analysis of the electrical characteristics of homo-junction TFET gives key insight into its device operation and identifies the critical factors that impact its performance. In order to boost the ON current, the design and fabrication of hetero-junction TFET is also presented.
NASA Astrophysics Data System (ADS)
Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan
2011-06-01
Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.
Liquid crystal materials and tunable devices for optical communications
NASA Astrophysics Data System (ADS)
Du, Fang
In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC microdomains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing temperature effect and high birefringence LC, a polarization independent fiber-optical device is realized with over 30 dB attenuation, ˜12 V rms drive voltage and 11/28 milliseconds (rise/decay) response times. A polymer-stabilized twisted nematic LC (PS TNLC) is also proposed as a variable optical attenuator for optical communications. By using the polarization control system, the device is polarization independent. The polymer network in a PS TNLC not only results in a fast response time (0.9/9 milliseconds for rise/decay respectively), but also removes the backflow effect of TNLC which occurs in the high voltage regime. Another major achievement in this thesis is the first demonstration of an electrically tunable LC-infiltrated photonic crystal fiber (PCF). Two different LC PCF configurations are studied. For the first time, electrically tunable LC PCFs are demonstrated experimentally. The guiding mechanism and polarization properties are studied. Preliminary experimental results are also given for the thermo-optical properties of a LC filled air-core PCF. In conclusion, this dissertation has solved important issues related to PSLC and enables its applications as VOAs and light shutters in optical communications. Through experimental investigations of the LC filled PCFs, a new possibility of developing tunable micro-sized fiber devices is opened for optical communications as well.
Huang, Ling; Gao, Qinggang; Sun, Ling-Dong; Dong, Hao; Shi, Shuo; Cai, Tong; Liao, Qing; Yan, Chun-Hua
2018-05-21
Cesium lead halide (CsPbX 3 ) perovskite has emerged as a promising low-threshold multicolor laser material; however, realizing wavelength-tunable lasing output from a single CsPbX 3 nanostructure is still constrained by integrating different composition. Here, the direct synthesis of composition-graded CsPbBr x I 3- x nanowires (NWs) is reported through vapor-phase epitaxial growth on mica. The graded composition along the NW, with an increased Br/I from the center to the ends, comes from desynchronized deposition of cesium lead halides and temperature-controlled anion-exchange reaction. The graded composition results in varied bandgaps along the NW, which induce a blueshifted emission from the center to the ends. As an efficient gain media, the nanowire exerts position-dependent lasing performance, with a different color at the ends and center respectively above the threshold. Meanwhile, dual-color lasing with a wavelength separation of 35 nm is activated simultaneously at a site with an intermediate composition. This position-dependent dual-color lasing from a single nanowire makes these metal halide perovskites promising for applications in nanoscale optical devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam
2018-04-01
Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.
Instability of phosphorous doped SiO2 in 4H-SiC MOS capacitors at high temperatures
NASA Astrophysics Data System (ADS)
Idris, M. I.; Weng, M. H.; Chan, H.-K.; Murphy, A. E.; Clark, D. T.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.
2016-12-01
In this paper, the effect of inclusion of phosphorous (at a concentration below 1%) on the high temperature characteristics (up to 300 °C) of the SiO2/SiC interface is investigated. Capacitance-voltage measurements taken for a range of frequencies have been utilized to extract parameters including flatband voltage, threshold voltage, effective oxide charge, and interface state density. The variation of these parameters with temperature has been investigated for bias sweeps in opposing directions and a comparison made between phosphorous doped and as-grown oxides. At room temperature, the effective oxide charge for SiO2 may be reduced by the phosphorous termination of dangling bonds at the interface. However, at high temperatures, the effective charge in the phosphorous doped oxide remains unstable and effects such as flatband voltage shift and threshold voltage shift dominate the characteristics. The instability in these characteristics was found to result from the trapped charges in the oxide (±1012 cm-3) or near interface traps at the interface of the gate oxide and the semiconductor (1012-1013 cm-2 eV-1). Hence, the performance enhancements observed for phosphorous doped oxides are not realised in devices operated at elevated temperatures.
Over-voltage protection system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Song; Dong, Dong; Lai, Rixin
An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diodemore » indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.« less
Paradigm shift in lead design.
Irnich, W
1999-09-01
During the past 30 years there has been a tremendous development in electrode technology from bulky (90 mm2) to pin-sized (1.0 mm2) electrodes. Simultaneously, impedance has increased from 110 Ohms to >1 kOhms, which has been termed a "paradigm shift" in lead design. If current is responsible for stimulation, why is its impedance a key factor in saving energy? Further, what mechanism is behind this development based on experimental findings and what conclusion can be drawn from it to optimize electrode size? If it is assumed that there is always a layer of nonexcitable tissue between the electrode surface and excitable myocardium and that the electric field (potential gradient) produced by the electrode at this boundary is reaching threshold level, then a formula can be derived for the voltage threshold that completely describes the electrophysiology and electrophysics of a hemispherical electrode. Assuming that the mean chronic threshold for porous steroid-eluting electrodes is 0.6 V with 0.5-ms pulse duration, thickness of nonexcitable tissue can be estimated to be 1.5 mm. Taking into account this measure and the relationship between chronaxie and electrode area, voltage threshold, impedance, and energy as a function of surface area can be calculated. The lowest voltage for 0.5-ms pulse duration is reached with r(o) = 0.5 d, yielding a surface area of 4 mm2 and a voltage threshold of 0.62 V, an impedance of 1 kOhms, and an energy level of 197 nJ. It can be deduced from our findings that a further reduction of surface areas below 1.6 mm2 will not diminish energy threshold substantially, if pulse duration remains at 0.5 ms. Lowest energy is reached with t = chronaxie, yielding an energy level <100 nJ with surface areas < or =1.5 mm2. It is striking to see how well the theoretically derived results correspond to the experimental findings. It is also surprising that the hemispheric model so accurately approximates experimental results with differently shaped electrodes that it can be concluded that electrode shape seems to play a minor role in electrode efficiency. Further energy reduction can only be achieved by reducing the pulse duration to chronaxie. A real paradigm shift will occur only if the fundamentals of electrostimulation in combination with electrophysics are accepted by the pacing community.
Nonlinear dynamic model for magnetically-tunable Galfenol vibration absorbers
NASA Astrophysics Data System (ADS)
Scheidler, Justin J.; Dapino, Marcelo J.
2013-03-01
This paper presents a single degree of freedom model for the nonlinear vibration of a metal-matrix composite manufactured by ultrasonic additive manufacturing that contains seamlessly embedded magnetostrictive Galfenol alloys (FeGa). The model is valid under arbitrary stress and magnetic field. Changes in the composite's natural frequency are quantified to assess its performance as a semi-active vibration absorber. The effects of Galfenol volume fraction and location within the composite on natural frequency are quantified. The bandwidth over which the composite's natural frequency can be tuned with a bias magnetic field is studied for varying displacement excitation amplitudes. The natural frequency is tunable for all excitation amplitudes considered, but the maximum tunability occurs below an excitation amplitude threshold of 1 × 10-6 m for the composite geometry considered. Natural frequency shifts between 6% and 50% are found as the Galfenol volume fraction varies from 25% to 100% when Galfenol is located at the composite neutral axis. At a modest 25% Galfenol by volume, the model shows that up to 15% shifts in composite resonance are possible through magnetic bias field modulation if Galfenol is embedded away from the composite midplane. As the Galfenol volume fraction and distance between Galfenol and composite midplane are increased, linear and quadratic increases in tunability result, respectively.
Lasing in robust cesium lead halide perovskite nanowires
Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; ...
2016-02-09
The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored andmore » handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr 3 nanowires with an onset of 5 μJ cm -2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10 9 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.« less
Gate-tunable current partition in graphene-based topological zero lines
NASA Astrophysics Data System (ADS)
Wang, Ke; Ren, Yafei; Deng, Xinzhou; Yang, Shengyuan A.; Jung, Jeil; Qiao, Zhenhua
2017-06-01
We demonstrate new mechanisms for gate-tunable current partition at topological zero-line intersections in a graphene-based current splitter. Based on numerical calculations of the nonequilibrium Green's functions and Landauer-Büttiker formula, we show that the presence of a perpendicular magnetic field on the order of a few Teslas allows for carrier sign dependent current routing. In the zero-field limit the control on current routing and partition can be achieved within a range of 10-90 % of the total incoming current by tuning the carrier density at tilted intersections or by modifying the relative magnitude of the bulk band gaps via gate voltage. We discuss the implications of our findings in the design of topological zero-line networks where finite orbital magnetic moments are expected when the current partition is asymmetric.
On Both Spatial And Velocity Distribution Of Sputtered Particles In Magnetron Discharge
NASA Astrophysics Data System (ADS)
Vitelaru, C.; Pohoata, V.; Tiron, V.; Costin, C.; Popa, G.
2012-12-01
The kinetics of the sputtered atoms from the metallic target as well as the time-space distribution of the argon metastable atoms have been investigated for DC and high power pulse magnetron discharge by means of Tunable Diode - Laser Absorption Spectroscopy (TD-LAS) and Tunable Diode - Laser Induced Fluorescence (TD-LIF). The discharge was operated in argon (5-30 mTorr) with two different targets, tungsten and aluminum, for pulses of 1 to 20 μs, at frequencies of 0.2 to 1 kHz. Peak current intensity of ~100 A has been attained at cathode peak voltage of ~1 kV. The mean velocity distribution functions and particle fluxes of the sputtered metal atoms, in parallel and perpendicular direction to the target, have been obtained and compared for DC and pulse mode.
The Rated Voltage Determination of DC Building Power Supply System Considering Human Beings Safety
NASA Astrophysics Data System (ADS)
Wang, Zhicheng; Yu, Kansheng; Xie, Guoqiang; Zou, Jin
2018-01-01
Generally two-level voltages are adopted for DC building power supply system. From the point of view of human beings safety, only the lower level voltage which may be contacted barehanded is discussed in this paper based on the related safety thresholds of human beings current effect. For several voltage levels below 100V recommended by IEC, the body current and current density of human electric shock under device normal work condition, as well as effect of unidirectional single impulse currents of short durations are calculated and analyzed respectively. Finally, DC 60V is recommended as the lower level rating voltage through the comprehensive consideration of technical condition and cost of safety criteria.
Gradient polymer network liquid crystal with a large refractive index change.
Ren, Hongwen; Xu, Su; Wu, Shin-Tson
2012-11-19
A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.
Magnetically tunable 1D Coulomb drag: Theory
NASA Astrophysics Data System (ADS)
Tylan-Tyler, Anthony; Tang, Yuhe; Levy, Jeremy
In this work, we examine the Coulomb drag effect in 1D nanowires in close proximity, focusing on experimental parameters relevant to complex-oxide nanostructures. Previous work on this problem examined Coulomb drag through quantum point contacts, where effective capacitive coupling between the 2D leads of the system generates the drag voltage. In our case, the entire system is composed of 1D components and thus a more careful treatment of the Coulomb interactions is required. This more complex environment then leads to the ability to switch the drag voltage by an applied magnetic field without altering the current supplied to the drive system. We gratefully acknowledge financial support from ONR N00014-15-1-2847 and DOE DE-SC0014417.
Gatemon Benchmarking and Two-Qubit Operation
NASA Astrophysics Data System (ADS)
Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles
Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.
NASA Astrophysics Data System (ADS)
Akhmedova, A. M.
2018-04-01
The behavior of an electronic subsystem is investigated in the course of formation and development of a memory channel in solid solutions of the TlInTe2-TlYbTe2 system. An analysis of the current-voltage characteristics allows getting an insight into the reason for a sharp change in electrical conductance of the specimens under study during their transition from the high-resistance to high-conductance state and the reasons for the well known instability of threshold converters, which makes it possible to design devices with high threshold voltage stability.
Stable indium oxide thin-film transistors with fast threshold voltage recovery
NASA Astrophysics Data System (ADS)
Vygranenko, Yuriy; Wang, Kai; Nathan, Arokia
2007-12-01
Stable thin-film transistors (TFTs) with semiconducting indium oxide channel and silicon dioxide gate dielectric were fabricated by reactive ion beam assisted evaporation and plasma-enhanced chemical vapor deposition. The field-effect mobility is 3.3cm2/Vs, along with an on/off current ratio of 106, and subthreshold slope of 0.5V/decade. When subject to long-term gate bias stress, the TFTs show fast recovery of the threshold voltage (VT) when relaxed without annealing, suggesting that charge trapping at the interface and/or in the bulk gate dielectric to be the dominant mechanism underlying VT instability. Device performance and stability make indium oxide TFTs promising for display applications.
NASA Technical Reports Server (NTRS)
Kim, J. H.; Katz, J.; Lin, S. H.; Psaltis, D.
1989-01-01
A monolithic 10 x 10 two-dimensional array of 'optical neuron' optoelectronic threshold elements for neural network applications has been designed, fabricated, and tested. Overall array dimensions are 5 x 5 mm, while the individual neurons, composed of an LED that is driven by a double-heterojunction bipolar transistor, are 250 x 250 microns. The overall integrated structure exhibited semiconductor-controlled rectifier characteristics, with a breakover voltage of 75 V and a reverse-breakdown voltage of 60 V; this is attributable to the parasitic p-n-p transistor which exists as a result of the sharing of the same n-AlGaAs collector between the transistors and the LED.
Quantum Corrections to the 'Atomistic' MOSFET Simulations
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.
2000-01-01
We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.
Addressable inverter matrix for process and device characterization
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Sayah, H. R.
1985-01-01
The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold vltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.
Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng
2006-05-01
To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.
Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis
2013-12-13
This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.
Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.
2015-01-01
The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode. PMID:25814770
NASA Astrophysics Data System (ADS)
Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.
2014-09-01
The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode.
Advanced Initiation Systems Manufacturing Level 2 Milestone Completion Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, R; Schmidt, M
2009-10-01
Milestone Description - Advanced Initiation Systems Detonator Design and Prototype. Milestone Grading Criteria - Design new generation chip slapper detonator and manufacture a prototype using advanced manufacturing processes, such as all-dry chip metallization and solvent-less flyer coatings. The advanced processes have been developed for manufacturing detonators with high material compatibility and reliability to support future LEPs, e.g. the B61, and new weapons systems. Perform velocimetry measurements to determine slapper velocity as a function of flight distance. A prototype detonator assembly and stripline was designed for low-energy chip slappers. Pictures of the prototype detonator and stripline are shown. All-dry manufacturing processesmore » were used to address compatibility issues. KCP metallized the chips in a physical vapor deposition system through precision-aligned shadow masks. LLNL deposited a solvent-less polyimide flyer with a processes called SLIP, which stands for solvent-less vapor deposition followed by in-situ polymerization. LANL manufactured the high-surface-area (HSA) high explosive (HE) pellets. Test fires of two chip slapper designs, radius and bowtie, were performed at LLNL in the High Explosives Application Facility (HEAF). Test fires with HE were conducted to establish the threshold firing voltages. pictures of the chip slappers before and after test fires are shown. Velocimetry tests were then performed to obtain slapper velocities at or above the threshold firing voltages. Figure 5 shows the slapper velocity as a function of distance and time at the threshold voltage, for both radius and bowtie bridge designs. Both designs were successful at initiating the HE at low energy levels. Summary of Accomplishments are: (1) All-dry process for chip manufacture developed; (2) Solventless process for slapper materials developed; (3) High-surface area explosive pellets developed; (4) High performance chip slappers developed; (5) Low-energy chip slapper detonator designs; and (6) Low-voltage threshold chip slapper detonator demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Rui; Ni, Jun, E-mail: junni@mail.tsinghua.edu.cn; Collaborative Innovative Center of Quantum Matter, Beijing 100084
2015-12-28
We have investigated the magnetic properties of silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain by the first-principles calculations. We find that Cr and Fe doped silicenes show strain-tunable magnetism. (1) The magnetism of Cr and Fe doped silicenes exhibits sharp transitions from low spin states to high spin states by a small isotropic tensile strain. Specially for Fe doped silicene, a nearly nonmagnetic state changes to a high magnetic state by a small isotropic tensile strain. (2) The magnetic moments of Fe doped silicene also show a sharp jump to ∼2 μ{sub B} at amore » small threshold of the uniaxial strain, and the magnetic moments of Cr doped silicene increase gradually to ∼4 μ{sub B} with the increase of uniaxial strain. (3) The electronic and magnetic properties of Cr and Fe doped silicenes are sensitive to the magnitude and direction of the external strain. The highly tunable magnetism may be applied in the spintronic devices.« less
Controlled injection using a channel pinch in a plasma-channel-guided laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Liu, Jiaqi; Zhang, Zhijun; Liu, Jiansheng; Li, Wentao; Wang, Wentao; Yu, Changhai; Qi, Rong; Qin, Zhiyong; Fang, Ming; Wu, Ying; Feng, Ke; Ke, Lintong; Wang, Cheng; Li, Ruxin
2018-06-01
Plasma-channel-guided laser plasma accelerators make it possible to drive high-brilliance compact radiation sources and have high-energy physics applications. Achieving tunable internal injection of the electron beam (e beam) inside the plasma channel, which realizes a tunable radiation source, is a challenging method to extend such applications. In this paper, we propose the use of a channel pinch, which is designed as an initial reduction followed by an expansion of the channel radius along the plasma channel, to achieve internal controlled off-axis e beam injection in a channel-guided laser plasma accelerator. The off-axis injection is triggered by bubble deformation in the expansion region. The dynamics of the plasma wake is explored, and the trapping threshold is found to be reduced radially in the channel pinch. Simulation results show that the channel pinch not only triggers injection process localized at the pinch but also modulates the parameters of the e beam by adjusting its density profile, which can additionally accommodate a tunable radiation source via betatron oscillation.
Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4
NASA Astrophysics Data System (ADS)
Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.
2018-01-01
The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.
Khaydarov, J D; Andrews, J H; Singer, K D
1994-06-01
We report on experimental intracavity compression of generated pulses (down to one quarter of the pumppulse duration) in a widely tunable synchronously pumped picosecond optical parametric oscillator. This pulse compression takes place when the optical parametric oscillator is well above threshold and is due to the pronounced group-velocity mismatch of the pump and oscillating waves in the nonlinear crystal.
Tunnel magnetoresistance for coherent spin-flip processes on an interacting quantum dot.
Rudziński, W
2009-01-28
Spin-polarized electronic tunneling through a quantum dot coupled to ferromagnetic electrodes is investigated within a nonequilibrium Green function approach. An interplay between coherent intradot spin-flip transitions, tunneling processes and Coulomb correlations on the dot is studied for current-voltage characteristics of the tunneling junction in parallel and antiparallel magnetic configurations of the leads. It is found that due to the spin-flip processes electric current in the antiparallel configuration tends to the current characteristics in the parallel configuration, thus giving rise to suppression of the tunnel magnetoresistance (TMR) between the threshold bias voltages at which the dot energy level becomes active in tunneling. Also, the effect of a negative differential conductance in symmetrical junctions, splitting of the conductance peaks, significant modulation of TMR peaks around the threshold bias voltages as well as suppression of the diode-like behavior in asymmetrical junctions is discussed in the context of coherent intradot spin-flip transitions. It is also shown that TMR may be inverted at selected gate voltages, which qualitatively reproduces the TMR behavior predicted recently for temperatures in the Kondo regime, and observed experimentally beyond the Kondo regime for a semiconductor InAs quantum dot coupled to nickel electrodes.
An “ohmic-first” self-terminating gate-recess technique for normally-off Al2O3/GaN MOSFET
NASA Astrophysics Data System (ADS)
Wang, Hongyue; Wang, Jinyan; Li, Mengjun; He, Yandong; Wang, Maojun; Yu, Min; Wu, Wengang; Zhou, Yang; Dai, Gang
2018-04-01
In this article, an ohmic-first AlGaN/GaN self-terminating gate-recess etching technique was demonstrated where ohmic contact formation is ahead of gate-recess-etching/gate-dielectric-deposition (GRE/GDD) process. The ohmic contact exhibits few degradations after the self-terminating gate-recess process. Besides, when comparing with that using the conventional fabrication process, the fabricated device using the ohmic-first fabrication process shows a better gate dielectric quality in terms of more than 3 orders lower forward gate leakage current, more than twice higher reverse breakdown voltage as well as better stability. Based on this proposed technique, the normally-off Al2O3/GaN MOSFET exhibits a threshold voltage (V th) of ˜1.8 V, a maximum drain current of ˜328 mA/mm, a forward gate leakage current of ˜10-6 A/mm and an off-state breakdown voltage of 218 V at room temperature. Meanwhile, high temperature characteristics of the device was also evaluated and small variations (˜7.6%) of the threshold voltage was confirmed up to 300 °C.
NASA Astrophysics Data System (ADS)
Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong
2015-02-01
Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.
Ali, Mubarak; Ramirez, Patricio; Nguyen, Hung Quoc; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Ensinger, Wolfgang
2012-04-24
We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurable diode showing different rectifying behaviors by applying chemical and electrical signals. The remarkable characteristics of the new nanopore are the sharp response observed in the I-V curves, the improved tunability (with respect to previous designs of symmetric nanopores) which is achieved because of the direct external access to the nanostructure mouths, and the broad range of rectifying properties. The results concern both fundamental concepts useful for the understanding of transport processes in biological systems (ion channels) and applications relevant for tunable nanopore technology (information processing and drug controlled release).
Li, Yingsong; Li, Wenxing; Ye, Qiubo
2013-01-01
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.
Li, Yingsong; Li, Wenxing; Ye, Qiubo
2013-01-01
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733
NASA Astrophysics Data System (ADS)
Zhai, Jiwei; Yao, Xi; Xu, Zhengkui; Chen, Haydn
2006-08-01
Thin films of ferroelectric PbxSr1-xTiO3 (PST) with x =0.3-0.7 and graded composition were fabricated on LaNiO3 buffered Pt /Ti/SiO2/Si substrates by a sol-gel deposition method. The thin films crystallized into a single perovskite structure and exhibited highly (100) preferred orientation after postdeposition annealing at 650°C. The grain size of PST thin films systematically decreased with the increase of Sr content. Dielectric and ferroelectric properties were investigated as a function of temperature, frequency, and dc applied field. Pb0.6Sr0.4TiO3 films showed a dominant voltage dependence of dielectric constant with a high tunability in a temperature range of 25-230°C. The compositionally graded PST thin films with x =0.3-0.6 also showed the high tunability. The graded thin films exhibited a diffused phase transition accompanied by a diffused peak in the temperature variations of dielectric constants. This kind of thin films has a potential in a fabrication of a temperature stable tunable device.
A tunable electronic beam splitter realized with crossed graphene nanoribbons
NASA Astrophysics Data System (ADS)
Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel
2017-03-01
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.
NASA Astrophysics Data System (ADS)
Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Ismail, Razali
2018-05-01
The single electron transistor (SET) as a fast electronic device is a candidate for future nanoscale circuits because of its low energy consumption, small size and simplified circuit. It consists of source and drain electrodes with a quantum dot (QD) located between them. Moreover, it operates based on the Coulomb blockade (CB) effect. It occurs when the charging energy is greater than the thermal energy. Consequently, this condition limits SET operation at cryogenic temperatures. Hence, using QD arrays can overcome this temperature limitation in SET which can therefore work at room temperature but QD arrays increase the threshold voltage with is an undesirable effect. In this research, fullerene as a zero-dimensional material with unique properties such as quantum capacitance and high critical temperature has been selected for the material of the QDs. Moreover, the current of a fullerene QD array SET has been modeled and its threshold voltage is also compared with a silicon QD array SET. The results show that the threshold voltage of fullerene SET is lower than the silicon one. Furthermore, the comparison study shows that homogeneous linear QD arrays have a lower CB range and better operation than a ring QD array SET. Moreover, the effect of the number of QDs in a QD array SET is investigated. The result confirms that the number of QDs can directly affect the CB range. Moreover, the desired current can be achieved by controlling the applied gate voltage and island diameters in a QD array SET.
Keum, Dongil; Kim, Dong-Il; Suh, Byung-Chang
2016-01-01
Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3. PMID:27222577