Air-gun signature modelling considering the influence of mechanical structure factors
NASA Astrophysics Data System (ADS)
Li, Guofa; Liu, Zhao; Wang, Jianhua; Cao, Mingqiang
2014-04-01
In marine seismic prospecting, as the air-gun array is usually composed of different types of air-guns, the signature modelling of different air-guns is particularly important to the array design. Different types of air-guns have different mechanical structures, which directly or indirectly affect the signatures. In order to simulate the influence of the mechanical structure, five parameters—the throttling constant, throttling power law exponent, mass release efficiency, fluid viscosity and heat transfer coefficient—are used in signature modelling. Through minimizing the energy relative error between the simulated and the measured signatures by the simulated annealing method, the five optimal parameters can be estimated. The method is tested in a field experiment, and the consistency between the simulated and the measured signatures is improved with the optimal parameters.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... shots; this means that one vessel discharges airguns when the other vessel is recharging. Outside the... and one mini source vessel) would be used during the proposed survey. The sources would be arrays of... [mu]Pa (rms). The mini source vessel would contain one array with eight 40 in\\3\\ airguns for a total...
Madsen, P T; Johnson, M; Miller, P J O; Aguilar Soto, N; Lynch, J; Tyack, P
2006-10-01
The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.
The behavioural response of migrating humpback whales to a full seismic airgun array.
Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Slade, Robert; Paton, David; Cato, Douglas H
2017-12-20
Despite concerns on the effects of noise from seismic survey airguns on marine organisms, there remains uncertainty as to the biological significance of any response. This study quantifies and interprets the response of migrating humpback whales ( Megaptera novaeangliae ) to a 3130 in 3 (51.3l) commercial airgun array. We compare the behavioural responses to active trials (array operational; n = 34 whale groups), with responses to control trials (source vessel towing the array while silent; n = 33) and baseline studies of normal behaviour in the absence of the vessel ( n = 85). No abnormal behaviours were recorded during the trials. However, in response to the active seismic array and the controls , the whales displayed changes in behaviour. Changes in respiration rate were of a similar magnitude to changes in baseline groups being joined by other animals suggesting any change group energetics was within their behavioural repertoire. However, the reduced progression southwards in response to the active treatments, for some cohorts, was below typical migratory speeds. This response was more likely to occur within 4 km from the array at received levels over 135 dB re 1 µPa 2 s. © 2017 The Author(s).
R/V EWING seismic source array calibrations: 2003
NASA Astrophysics Data System (ADS)
Diebold, J.; Webb, S.; Tolstoy, M.; Rawson, M.; Holmes, C.; Bohnenstiehl, D.; Chapp, E.
2003-12-01
In the Northern Gulf of Mexico, May, 2003, an NSF-funded effort was carried out to obtain calibrated measurements of the various airgun arrays deployed by R/V EWING during its seismic surveys. The motivations for this were several: to ground-truth the modeling upon which safety radii for marine mammal mitigation are established; to obtain broadband digitized signals which will accurately define the full spectral content of airgun signatures; to investigate the effects of seafloor interactions and their contribution to the acoustic noise levels from seismic sources. For this purpose, a digital, remotely telemetering spar buoy was designed and assembled; affording interactive control over the choice of two hydrophone channels, four fixed gain settings and four digitizing rates [6,250 - 50,000 Hz.] Three deployments were planned: a deep-water site, suitable for comparison of actual signals with modeled results; a shallow-water [25 - 50m] site where the effects of bottom interaction would be strongest; and a continental-slope site, which represents the favored habitat of many cetacean species. Methodology was developed which enabled the sequential discharge of four subarrays of 6, 10, 12 and 20 airguns. A separate run was made with two "GI" airguns, the favored high resolution survey source. An Incidental Harassment Authorization and a Biological Opinion, including an Incidental Take Statement were issued for the project by National Marine Fisheries, and a suite of marine mammal observation and mitigation procedures was followed. The deep and shallow water sites were occupied, and some 440 airgun signals were recorded. The slope site work was cancelled due to weather too poor for accurate marine mammal observation, but calibration was subsequently carried out with an exploration industry source vessel in a similar environment. Preliminary results indicate that the mitigation modeling is accurate, though somewhat conservative; that the radiated energy from airgun arrays, known to be strongest at very low frequencies, continues to diminish as frequencies increase up to 25 kHz, and that interactions with the seafloor, while complex, are understandable.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... the spare airgun in case one of the other airguns fail. The Langseth will distribute the array across... [email protected] . We are not responsible for email comments sent to addresses other than the one... from the U.S. National Science Foundation (Foundation), plans to conduct three research studies on the...
Galindo-Romero, Marta; Lippert, Tristan; Gavrilov, Alexander
2015-12-01
This paper presents an empirical linear equation to predict peak pressure level of anthropogenic impulsive signals based on its correlation with the sound exposure level. The regression coefficients are shown to be weakly dependent on the environmental characteristics but governed by the source type and parameters. The equation can be applied to values of the sound exposure level predicted with a numerical model, which provides a significant improvement in the prediction of the peak pressure level. Part I presents the analysis for airgun arrays signals, and Part II considers the application of the empirical equation to offshore impact piling noise.
Goold, J C; Fish, P J
1998-04-01
Acoustic emissions from a 2120 cubic in air-gun array were recorded through a towed hydrophone assembly during an oil industry 2-D seismic survey off the West Wales Coast of the British Isles. Recorded seismic pulses were sampled, calibrated, and analyzed post-survey to investigate power levels of the pulses in the band 200 Hz-22 kHz at 750-m, 1-km, 2.2-km, and 8-km range from source. At 750-m range from source, seismic pulse power at the 200-Hz end of the spectrum was 140 dB re: 1 microPa2/Hz, and at the 20-kHz end of the spectrum seismic pulse power was 90 dB re: 1 microPa2/Hz. Although the background noise levels of the seismic recordings were far in excess of ambient, due to the proximity of engine, propeller, and flow sources of the ship towing the hydrophone, seismic power dominated the entire recorded bandwidth of 200 Hz-22 kHz at ranges of up to 2 km from the air-gun source. Even at 8-km range seismic power was still clearly in excess of the high background noise levels up to 8 kHz. Acoustic observations of common dolphins during preceding seismic surveys suggest that these animals avoided the immediate vicinity of the air-gun array while firing was in progress, i.e., localized disturbance occurred during seismic surveying. Although a general pattern of localized disturbance is suggested, one specific observation revealed that common dolphins were able to tolerate the seismic pulses at 1-km range from the air-gun array. Given the high broadband seismic pulse power levels across the entire recorded bandwidth, and known auditory thresholds for several dolphin species, we consider such seismic emissions to be clearly audible to dolphins across a bandwidth of tens on kilohertz, and at least out to 8-km range.
NASA Astrophysics Data System (ADS)
Thangraj, J. S.; Quiros, D.; Pulliam, J.
2017-12-01
The Gulf of Mexico (GoM) is a relative small oceanic basin that formed by rifting between the continental blocks of North America and Yucatan in the Middle to Late Jurassic. Following the breakup, seafloor spreading continued until the Early Cretaceous. Since then, subsidence and sedimentation have shaped the GoM margin that we see today. To better understand the opening of the GoM, a long-offset (307 km) seismic refraction line was acquired in 2010. The transect was located on the northwest GoM margin, and consisted of several types of instruments. This mixed-mode array combined 31 ocean bottom seismographs (OBS), 412 high-frequency instruments (4.5 Hz geophones with RefTek 125A "Texan" digitizers) and 12 broadband stations. The R/V Iron Cat provided the airgun source used in the refraction experiment. The airgun generated 2028 shots in a period of 2.5 days which were recorded by the entire array. The airgun-generated seismic energy was clearly visible on the OBS recordings, however its amplitude was too low to be discerned on most of the onshore stations. In fact, this energy was only visible on Texan stations 1-50 (station 1 is located at the coast), extending 18 km inland, limiting the extend of the velocity model that can be obtained. Here, we apply seismic interferometry techniques to the 2.5 days of continuous data recorded by the Texan array with the goal of extending the spatial range for which the airgun-generated seismic energy can be observed. Preliminary results show that by treating the 2.5 days of continuously recorded airgun data as ambient noise, and applying time-domain cross-correlation, we can observe energy propagating 50 to 70 km inland with apparent velocities of 1800 - 2200 ms-1. These velocities agree with the compressional seismic velocity for the top 5 km of sediments under the GoM obtained from the OBS records, suggesting that we are observing compressional energy in the virtual source gathers (VSG). We also observe arrivals in the VSG that exhibit dispersive behavior, which we interpret to be Rayleigh waves. Current efforts are focused on extending the spatial range of the airgun-generated seismic energy further inland (> 70 km) by creating more VSG, to obtain a body wave velocity model along the transect. Similarly, we are inverting the Rayleigh waves in the VSG to obtain a shear wave velocity model.
NASA Astrophysics Data System (ADS)
Khodabandeloo, Babak; Landrø, Martin
2017-04-01
Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.
Marine mammal audibility of selected shallow-water survey sources.
MacGillivray, Alexander O; Racca, Roberto; Li, Zizheng
2014-01-01
Most attention about the acoustic effects of marine survey sound sources on marine mammals has focused on airgun arrays, with other common sources receiving less scrutiny. Sound levels above hearing threshold (sensation levels) were modeled for six marine mammal species and seven different survey sources in shallow water. The model indicated that odontocetes were most likely to hear sounds from mid-frequency sources (fishery, communication, and hydrographic systems), mysticetes from low-frequency sources (sub-bottom profiler and airguns), and pinnipeds from both mid- and low-frequency sources. High-frequency sources (side-scan and multibeam) generated the lowest estimated sensation levels for all marine mammal species groups.
1986 Great Lakes Seismic refraction survey (GLIMPCE): Line A - refraction mode
Morel-a-l'Huissier, Patrick; Karl, John H.; Tréhu, Anne M.; Hajnal, Zoltan; Mereu, Robert F.; Meyer, Robert P.; Sexton, John L.; Ervin, C. Patrick; Green, Alan G.; Hutchinson, Deborah
1990-01-01
In the fall of 1986, the Geological Survey of Canada (GSC), the United States Geological Survey (USGS), two Canadian universities -- University of Western Ontario and University of Saskatchewan, and four American universities -- Northern Illinois University, Southern Illinois University, University of Wisconsin-Madison and University of Wisconsin-Oshkosh participated in a major deep seismic experiment in Lake Superior under the GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) umbrella. This Open-File Report presents the seismic sections for line A, which was shot specifically for refraction recording. The main target for study by this line was the Mid-Continent Rift System. All recording stations, 31 in total (26 land stations and 5 OBSs), recorded energy from shots fired every two minutes (333 m spacing) by a tuned airgun array towed by a contracted ship along line A in Lake Superior. These data are the densest such data ever recorded in the continental North America over such distances. It is also unique since coincident seismic reflection and refraction are available.
NASA Astrophysics Data System (ADS)
Tyack, P. L.; Johnson, M. P.; Madsen, P. T.; Miller, P. J.; Lynch, J.
2006-05-01
There has been considerable debate about how to regulate behavioral disruption in marine mammals. The U.S. Marine Mammal Protection Act prohibits "taking" marine mammals, including harassment, which is defined as injury or disruption of behavioral patterns. A 2005 report by the National Academy of Sciences focuses on the need to analyze acoustic impacts on marine mammal behavior in terms of biological significance. The report develops a model for predicting population consequences of acoustic impacts. One of the key data gaps involves methods to estimate the impact of disruption on an animal's ability to complete life functions critical for growth, survival, and reproduction. One of the few areas where theory and data are available involves foraging energetics. Patrick Miller in the next talk and I will discuss an example study designed to evaluate the impact of exposure to seismic survey on the foraging energetics of sperm whales. As petroleum exploration moves offshore to deep water, there is increasing overlap between seismic exploration and deep diving toothed whales such as the sperm whale which is listed by the US as an endangered species. With support from the US Minerals Management Service and the Industry Research Funding Coalition, we tagged sperm whales with tags that can record sound, orientation, acceleration, temperature and depth. Eight whales tagged in the Gulf of Mexico during 2002-2003 were subjects in 5 controlled experiments involving exposure to sounds of an airgun array. One critical component of evaluating effects involves quantifying exposure at the animal. While the on-axis signature of airgun arrays has been well quantified, there are few broadband calibrated measurements in the water column displaced horizontally away from the downward-directed beam. The acoustic recording tags provide direct data on sounds as received at the animals. Due to multipath propagation, multiple sound pulses were recorded on the tagged whales for each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1μPa (pp) [111-147 dB re. 1μPa (rms) & 100-135 dB re. 1μPa2s]. The acoustic energy produced by airguns centers in the 50-250 Hz band, with spectral levels about 40 dB lower at 1 kHz for the on-axis signature. However, some arrivals recorded near the surface in 2002 had energy predominantly above 500Hz. A surface duct in the 2002 sound speed profile had a cutoff frequency calculated at 250 Hz. Poor propagation below this cutoff and efficient propagation above it helps to explain this effect. Our empirical measurements demonstrate that airguns expose animals to significant sound energy above 500Hz, which increases concern about the potential impact on toothed whales with poor low frequency hearing. The measurements are consistent with ray trace and parabolic equation propagation models, which can predict the relative timing of the multipath arrivals. The results indicate that on-axis source levels and simple spreading assumptions alone cannot predict airgun pulse propagation and the extent of exposure zones.
Evaluating the impact of seismic prospecting on artisanal shrimp fisheries
NASA Astrophysics Data System (ADS)
Andriguetto-Filho, José M.; Ostrensky, Antonio; Pie, Marcio R.; Silva, Ubiratã A.; Boeger, Walter A.
2005-09-01
The constant need to discover new hydrocarbon deposits is causing the use of air-guns to become a very widespread method of seismic prospecting. However, there is still disagreement regarding their impact on the marine environment. This uncertainty is particularly severe in the case of shellfish, which account for a substantial share of commercial fisheries and seafood trade in many parts of the world. In this paper we report on the first study to explicitly assess the impact of seismic prospecting on shrimp resources. We measured bottom trawl yields of a nonselective commercial shrimp fishery comprising the Southern white shrimp, Litopenaeus schmitti, the Southern brown shrimp, Farfantepenaeus subtilis, and the Atlantic Seabob, Xyphopenaeus kroyeri (Decapoda: Penaeidae), before and after the use of an array of four synchronized air-guns, each with 635 in 3 of total capacity, 2.000 psi, and peak pressure of 196 dB (re 1 μPa at 1 m). Our results did not detect significant deleterious impact of seismic prospecting on the studied species, suggesting that shrimp stocks are resilient to the disturbance by air-guns under our experimental conditions.
NASA Astrophysics Data System (ADS)
Yandan, H.; Jun, L.; Jin, X.; Tianyun, W.
2017-12-01
Geological disasters occur with the stress changes of subsurface medium. Since the stress changes slowly in the deep earth where only seismic wave can reach, monitoring the changes with repeatable seismic sources, ambient seismic noise and artificial sources has become a hot topic in seismology. The Fujian Earthquake Agency successfully constructed the Air-gun artificial source system and carried out over 6000 shots in six reservoirs. The correlation coefficient of signals can reach up to 0.99. Besides an excellent source, high recognition ability of seismic wave changes is required. It is common to use time delay estimation method based on cross-correlation to recognize the velocity changes. We investigate the accuracy of time delay detection of Air-gun source signals. Suppose that the medium does not change in a short time, we changed the explosion conditions of the air-gun array and recognized the subtle changes of signals by the time delay estimation method: (1) we changed the excitation depth from 8m to 30m, and found that the arriving time of bubble pulses advanced nearly 90ms. The results are quite consistent with the records of the OBS on the bottom of reservoir; (2) we changed the firing pressure from 800Psi to 2000Psi, and found that the bubble pulses were quite different but now we don't have any suitable numerical model to fit the changes; (3) we changed the excitation position of the air-gun, and divided the changed distance between the Air-gun and the near-shore seismograph by the corresponding changed travelling time. Then we got a velocity of 1.5km/s, which equals to the sound speed in water; (4) we controlled the microsecond of explosion moment from 0ms to 9ms, and counted the time delays of waveforms. Results are quite consistent with the theoretical value; (5) we changed the explosion mode, and quantitatively recognized the 0.1ms changes of the signal travel time. Our experiments show that the method is of high precision that can recognize the microsecond changes of the waves. Next step, we are planning to establish a fixed Air-gun signal transmitting station in Fujian, China.
The Green Canyon Event as Recorded by the Atlantis OBS Node Survey
NASA Astrophysics Data System (ADS)
Dellinger, J. A.; Ehlers, J.; Clarke, R.
2006-12-01
On 10 February, 2006, a magnitude 5.2 earthquake occurred 260~km South of New Orleans, Louisiana, in the Green Canyon area of the United States Gulf of Mexico. Fortuitously, at the time of the earthquake an array of nearly 500 ocean-bottom-seismic nodes happened to be recording about 40~km SouthEast of the epicenter. These nodes were part of an ongoing oil-exploration 3D-seismic survey ("Atlantis patch 2"), and were designed to record oil-exploration air-gun seismic signals (with a dominant frequency of about 15~Hz), not low-frequency earthquake signals (1~Hz). The survey's own air guns, located about 7~km to the SouthEast of the array at the time of the event, were also repeatedly firing, generating large amounts of "noise" (at least for the purposes of analyzing the earthquake signal). Not surprisingly, when the data are plotted at their original sample rate they are dominated by the Atlantis survey's air-gun signal. When low passed with an upper cutoff of 2~Hz, however, the air-gun signals essentially vanish and underlying natural signals are clearly revealed. In land-seismic exploration dense 3D arrays of single geophones are used to characterize unwanted surface-wave energy. Beam forming the dense array allows the directions and phase velocities of wavefronts propagating across the array to be identified and localized so that receiver arrays can be designed that best attenuate the surface-wave noise. The 400-meter spacing of the Atlantis node array was designed to be optimally sparse for reflection-seismic processing. At 1~Hz, however, a 400-meter spacing becomes "dense" and we were able to use the same toolkit of programs originally developed for analyzing surface waves in land-seismic data to analyze the earthquake waves. The analysis reveals a complex and protracted series of arrivals spanning nearly 20~minutes of time. The expected sequence of earthquake arrivals from the North-NorthWest are followed by weaker sequences of arrivals of unknown origin from first the SouthEast and then from the East. It is hoped that these data can be used to help constrain the location, depth, and mechanism of the Green Canyon event. The authors wish to thank BP and BHPB for their permission to present this work, Fairfield for their enthusiasm in preserving the data, and CGG, WesternGeco, and Fugro for their cooperation in identifying other sources of man-made signals in the data.
Dunn, Robert A; Hernandez, Olga
2009-09-01
Low frequency northeastern Pacific blue whale calls were recorded near the northern East Pacific Rise (9 degrees N latitude) on 25 ocean-bottom-mounted hydrophones and three-component seismometers during a 5-day period (November 22-26, 1997). Call types A, B, C, and D were identified; the most common pattern being approximately 130-135 s repetitions of the AB sequence that, for any individual whale, persisted for hours. Up to eight individual blue whales were recorded near enough to the instruments to determine their locations and were tracked call-by-call using the B components of the calls and a Bayesian inversion procedure. For four of these eight whales, the entire call sequences and swim tracks were determined for 20-26-h periods; the other whales were tracked for much shorter periods. The eight whales moved into the area during a period of airgun activity conducted by the academic seismic ship R/V Maurice Ewing. The authors examined the whales' locations and call characteristics with respect to the periods of airgun activity. Although the data do not permit a thorough investigation of behavioral responses, no correlation in vocalization or movement with airgun activity was observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
..., the R/V Marcus G. Langseth (Langseth) and a seismic airgun array to collect seismic reflection and... possible, depending on logistics and weather. The proposed seismic survey will collect seismic reflection... Shillington, Spahr Webb, and Mladen Nedimovic, all of L-DEO. The vessel will be self-contained, and the crew...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
...). In most cases, the avoidance radii for delphinids appear to be small, on the order of one km or [email protected] . NMFS is not responsible for email comments sent to addresses other than the one... use one source vessel, the R/V Pelican (Pelican), or similar vessel, and a seismic airgun array to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... day public comment period. L-DEO plans to use one source vessel, the R/V Marcus G. Langseth (Langseth... (km) 1,511.9 nautical miles [nmi]) of transect lines (including turns) in the study area. The seismic... involve one source vessel, the Langseth. The Langseth will deploy an array of 36 airguns as an energy...
Wood, W.T.; Hart, P.E.; Hutchinson, D.R.; Dutta, N.; Snyder, F.; Coffin, R.B.; Gettrust, J.F.
2008-01-01
To determine the impact of seeps and focused flow on the occurrence of shallow gas hydrates, several seafloor mounds in the Atwater Valley lease area of the Gulf of Mexico were surveyed with a wide range of seismic frequencies. Seismic data were acquired with a deep-towed, Helmholz resonator source (220-820 Hz); a high-resolution, Generator-Injector air-gun (30-300 Hz); and an industrial air-gun array (10-130 Hz). Each showed a significantly different response in this weakly reflective, highly faulted area. Seismic modeling and observations of reversed-polarity reflections and small scale diffractions are consistent with a model of methane transport dominated regionally by diffusion but punctuated by intense upward advection responsible for the bathymetric mounds, as well as likely advection along pervasive filamentous fractures away from the mounds.
NASA Astrophysics Data System (ADS)
Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral
2010-05-01
During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.
Multichannel seismic-reflection data collected in 1980 in the eastern Chukchi Sea
Grantz, Arthur; Mann, Dennis M.; May, Steven D.
1986-01-01
The U.S. Geological Survey (USGS) collected approximately 2,652 km of 24-channel seismic-reflection data in early September, 1980, over the continental shelf in the eastern Chukchi Sea (Fig. 1). The profiles were collected on the USGS Research Vessel S.P. Lee. The seismic energy source consisted of a tuned array of five airguns with a total volume of 1213 cubic inches of air compressed to approximately 1900 psi. The recording system consisted of a 24-channel, 2400 meter long streamer with a group interval of 100 m, and a GUS (Global Universal Science) model 4200 digital recording instrument. Shots were fired every 50 meters. Navigational control for the survey was provided by a Magnavox integrated navigation system using transit satellites and doppler-sonar augmented by Loran C (Rho-Rho). A 2-millisecond sampling rate was used in the field; the data were later desampled to 4-milliseconds during the demultiplexing process. 8 seconds data length was recorded. Processing was done at the USGS Pacific Marine Geology Multichannel Processing Center in Menlo Park, California, in the sequence: editing-demultiplexing, velocity analysis, CDP stacking, deconvolution-filtering, and plotting on an electrostatic plotter. Plate 1 is a trackline chart showing shotpoint navigation.
Brocher, Thomas M.; Parsons, Tom; Creager, Ken C.; Crosson, Robert S.; Symons, Neill P.; Spence, George D.; Zelt, Barry C.; Hammer, Philip T.C.; Hyndman, Roy D.; Mosher, David C.; Tréhu, Anne M.; Miller, Kate C.; ten Brink, Uri S.; Fisher, Michael A.; Pratt, Thomas L.; Alvarez, Marcos G.; Beaudoin, Bruce C.; Louden, Keith E.; Weaver, Craig S.
1999-01-01
This report describes the acquisition and processing of deep-crustal wide-angle seismic reflection and refraction data obtained in the vicinity of Puget Lowland, the Strait of Juan de Fuca, and Georgia Strait, western Washington and southwestern British Columbia, in March 1998 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As part of a larger initiative to better understand lateral variations in crustal structure along the Cascadia margin, SHIPS participants acquired 1000 km of deep-crustal multichannel seismic-reflection profiles and 1300 km of wideangle airgun shot lines in this region using the R/V Thompson and R/V Tully. The Tully was used to record airgun shots fired by the Thompson in two different geometries: (1) expanding spread profiles (ESPs) and (2) constant offset profiles (COPs). Prior to this reflection survey, we deployed 257 Reftek and 15 ocean-bottom seismic recorders to record the airgun signals at far offsets. All data were recorded digitally on large-capacity hard disks. Although most of these stations only recorded the vertical component of motion, 95 of these seismographs recorded signals from an oriented 3-component seismometer. By recording signals generated by the Thompson's marine air gun array, operated in two differing geometries having a total volume of 110 and 79 liters (6730 and 4838 cu. in.), respectively, the arrays of wide-angle recorders were designed to (1) image the crustal structure, particularly in the vicinity of crustal faults and Cenozoic sedimentary basins, (2) determine the geometry of the Moho, and (3) image the subducting Gorda and Juan de Fuca plates. Nearly 33,300 air gun shots were recorded along several seismic lines. In this report, we illustrate the expanding spread profiles acquired using the Thompson and Tully, describe the land and ocean-bottom recording of the air gun signals, discuss the processing of the land recorder data into common receiver gathers, and illustrate the processed wide-angle seismic data collected using the Refteks and ocean-bottom seismometers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but SHIPS appears to have successfully obtained useful data from almost all the stations deployed to record the airgun shots. Several interesting arrivals were observed: including refractions from the sedimentary basin fill in several basins, refractions from basement rocks forming the upper crust, Pg, refractions from the upper mantle, Pn, as well as reflections from within the crust and from the top of the upper mantle, PmP. We separately archived more than 30 local earthquakes recorded by the Reftek array during our deployment.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... airguns, variable pump airguns, CO 2 airguns, and airsoft guns (duty rate ranges from duty-free to 3.9... include: Liquid crystal and laser optical sights and mounts; gun cases and holsters with outer surface of...; pistols, rifles and other guns which eject missiles by release of compressed air or gas, or by release of...
Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean.
Nieukirk, Sharon L; Stafford, Kathleen M; Mellinger, David K; Dziak, Robert P; Fox, Christopher G
2004-04-01
Beginning in February 1999, an array of six autonomous hydrophones was moored near the Mid-Atlantic Ridge (35 degrees N-15 degrees N, 50 degrees W-33 degrees W). Two years of data were reviewed for whale vocalizations by visually examining spectrograms. Four distinct sounds were detected that are believed to be of biological origin: (1) a two-part low-frequency moan at roughly 18 Hz lasting 25 s which has previously been attributed to blue whales (Balaenoptera musculus); (2) series of short pulses approximately 18 s apart centered at 22 Hz, which are likely produced by fin whales (B. physalus); (3) series of short, pulsive sounds at 30 Hz and above and approximately 1 s apart that resemble sounds attributed to minke whales (B. acutorostrata); and (4) downswept, pulsive sounds above 30 Hz that are likely from baleen whales. Vocalizations were detected most often in the winter, and blue- and fin whale sounds were detected most often on the northern hydrophones. Sounds from seismic airguns were recorded frequently, particularly during summer, from locations over 3000 km from this array. Whales were detected by these hydrophones despite its location in a very remote part of the Atlantic Ocean that has traditionally been difficult to survey.
Effects of Exposure to the Sound from Seismic Airguns on Pallid Sturgeon and Paddlefish
Gross, Jackson A.; Carlson, Thomas J.; Skalski, John; Young, John V.; Hawkins, Anthony D.; Zeddies, David
2016-01-01
This study examined the effects of exposure to a single acoustic pulse from a seismic airgun array on caged endangered pallid sturgeon (Scaphirhynchus albus) and on paddlefish (Polyodon spathula) in Lake Sakakawea (North Dakota, USA). The experiment was designed to detect the onset of physiological responses including minor to mortal injuries. Experimental fish were held in cages as close as 1 to 3 m from the guns where peak negative sound pressure levels (Peak- SPL) reached 231 dB re 1 μPa (205 dB re 1 μPa2·s sound exposure level [SEL]). Additional cages were placed at greater distances in an attempt to develop a dose-response relationship. Treatment and control fish were then monitored for seven days, euthanized, and necropsied to determine injuries. Necropsy results indicated that the probability of delayed mortality associated with pulse pressure following the seven day monitoring period was the same for exposed and control fish of both species. Exposure to a single pulse from a small air gun array (10,160 cm3) was not lethal for pallid sturgeon and paddlefish. However, the risks from exposure to multiple sounds and to sound exposure levels that exceed those reported here remain to be examined. PMID:27505029
Effects of Exposure to the Sound from Seismic Airguns on Pallid Sturgeon and Paddlefish.
Popper, Arthur N; Gross, Jackson A; Carlson, Thomas J; Skalski, John; Young, John V; Hawkins, Anthony D; Zeddies, David
2016-01-01
This study examined the effects of exposure to a single acoustic pulse from a seismic airgun array on caged endangered pallid sturgeon (Scaphirhynchus albus) and on paddlefish (Polyodon spathula) in Lake Sakakawea (North Dakota, USA). The experiment was designed to detect the onset of physiological responses including minor to mortal injuries. Experimental fish were held in cages as close as 1 to 3 m from the guns where peak negative sound pressure levels (Peak- SPL) reached 231 dB re 1 μPa (205 dB re 1 μPa2·s sound exposure level [SEL]). Additional cages were placed at greater distances in an attempt to develop a dose-response relationship. Treatment and control fish were then monitored for seven days, euthanized, and necropsied to determine injuries. Necropsy results indicated that the probability of delayed mortality associated with pulse pressure following the seven day monitoring period was the same for exposed and control fish of both species. Exposure to a single pulse from a small air gun array (10,160 cm3) was not lethal for pallid sturgeon and paddlefish. However, the risks from exposure to multiple sounds and to sound exposure levels that exceed those reported here remain to be examined.
Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999-2009.
Nieukirk, Sharon L; Mellinger, David K; Moore, Sue E; Klinck, Karolin; Dziak, Robert P; Goslin, Jean
2012-02-01
Between 1999 and 2009, autonomous hydrophones were deployed to monitor seismic activity from 16° N to 50° N along the Mid-Atlantic Ridge. These data were examined for airgun sounds produced during offshore surveys for oil and gas deposits, as well as the 20 Hz pulse sounds from fin whales, which may be masked by airgun noise. An automatic detection algorithm was used to identify airgun sound patterns, and fin whale calling levels were summarized via long-term spectral analysis. Both airgun and fin whale sounds were recorded at all sites. Fin whale calling rates were higher at sites north of 32° N, increased during the late summer and fall months at all sites, and peaked during the winter months, a time when airgun noise was often prevalent. Seismic survey vessels were acoustically located off the coasts of three major areas: Newfoundland, northeast Brazil, and Senegal and Mauritania in West Africa. In some cases, airgun sounds were recorded almost 4000 km from the survey vessel in areas that are likely occupied by fin whales, and at some locations airgun sounds were recorded more than 80% days/month for more than 12 consecutive months. © 2012 Acoustical Society of America
Subcaliber discarding sabot airgun projectiles.
Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta
2014-03-01
Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E < 7.5 J). While the velocity of the discarded Sussex Sabo core projectile was very close to the velocity of a diabolo-type reference projectile (RWS Meisterkugel), energy density was up to 60 % higher. To conclude, this work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.
NASA Astrophysics Data System (ADS)
Nishizawa, A.; Kaneda, K.; Oikawa, M.
2012-12-01
The Kyushu-Palau Ridge (KPR) is a 2600 km long bathymetric high extending north-south at the center of the Philippine Sea plate. The origin of the KPR is regarded as a remnant of the proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc that was separated by backarc spreading of the Shikoku and Parece Vela Basins in the late Eocene. The extensive seismic explorations were implemented to grasp the spatial distribution of the arc crust of the KPR in 2004-2008 under the Japanese Continental Shelf Survey Project. We carried out 27 seismic reflection and refraction profiles across the ridge between 13 and 30 N and one along the ridge in the northernmost part. We deployed ocean bottom seismographs (OBSs) as a receiver at an average interval of 5 km along each line. A tuned airgun array with a volume of 8,040 cubic inches (132 liters) or a non-tuned airgun array with a volume of 6,000 cubic inches (98 liters) was shot at an interval of 200 m (90 sec) for the wide-angle seismic profiles. Multichannel reflection data using 480 ch. or 240 ch. hydrophone streamer were also collected on the coincident lines. We obtained P-wave velocity models using tomographic inversion, forward modeling with two-dimensional ray tracing and comparison with synthetic seismograms. The maximum crustal thickness for each profile across the KPR varies from 8 to 23 km among the seismic lines. The KPR crusts are roughly thicker in the north than those in the south and are always thicker than the neighboring backarc basin oceanic crusts of the West Philippine Basin to the west and of the Shikoku and Parece Vela Basins to the east. The thick crust is mainly attributed to the lower crust with P-wave velocity of 6.8-7.2 km/s. Pn velocities just beneath the KPR are less than 8 km/s, often accompanying with rather high Vp of 7.2 km/s at the base of the crust. Reflection signals observed in far offsets along several lines suggest some reflectors exist at the depths 23-40 km beneath the KPR. The crustal structure of the eastern transition from the KPR to the backarc basins of the Shikoku or Parece Vela Basins is characterized by a thinner curst and slightly higher Pn velocity compared with those of a typical oceanic basin, which may relate to the rifting, breakup and early separation of the proto-island arc. On the other hand, the crustal models of the western edge of the KPR show large variations among the seismic lines. This is because the tectonic settings of the western side are different from north to south along the KPR, such as the Daito Ridges as paleo-island arcs and intra-arc basins in the north, and the West Philippine Basin as a backarc basin and the CBF Rift as the spreading center of the West Philippine Basin in the south.
NASA Astrophysics Data System (ADS)
Miller, P. J.; Tyack, P. L.; Johnson, M. P.; Madsen, P. T.; King, R.
2006-05-01
There is considerable uncertainty about the ways in which marine mammals might react to noise, the biological significance of reactions, and the effectiveness of planning and real-time mitigation techniques. A planning tool commonly used to assess environmental risk of acoustic activities uses simulations to predict acoustic exposures received by animals, and translates exposure to response using a dose-response function to yield an estimate of the undesired impact on a population. Recent advances show promise to convert this planning tool into a real-time mitigation tool, using Bayesian statistical methods. In this approach, being developed for use by the British Navy, the environmental risk simulation is updated continuously during field operations. The distribution of exposure, set initially based on animal density, is updated in real-time using animal sensing data or environmental data known to correlate with the absence or presence of marine mammals. This conditional probability of animal presence should therefore be more accurate than prior probabilities used during planning, which enables a more accurate and quantitative assessment of both the impact of activities and reduction of impact via mitigation decisions. Two key areas of uncertainty in addition to animal presence/absence are 1.) how biologically-relevant behaviours are affected by exposure to noise, and 2.) whether animals avoid loud noise sources, which is the basis of ramp-up as a mitigation tool. With support from MMS and industry partners, we assessed foraging behaviour and avoidance movements of 8 tagged sperm whales in the Gulf of Mexico during experimental exposure to airguns. The whale that was approached most closely prolonged a surface resting bout hours longer than typical, but resumed foraging immediately after the airguns ceased, suggesting avoidance of deep diving necessary for foraging near active airguns. Behavioral indices of foraging rate (echolocation buzzes produced during prey capture) and locomotion (from pitching movements generated by active swimming) of the 7 remaining exposed whales were compared to sham exposure and post-exposure control periods in 13 unexposed whales. Pitching movements were 6% lower during exposure (P=0.014) with all 7 whales reducing pitching movements. Buzz rates were 19% lower during the exposure condition, but this difference was not statistically significant (P=0.141). The substantial change in mean buzz rate from this small sample motivated a Bayesian analysis, which determined that a model of reduced buzz rate had roughly 3x more posterior support than no effect. Despite the likely impact of airguns on foraging, no avoidance by tagged sperm whales was observed during gradual ramp-up at distances of 7-13km, or full array exposures at 1-13km, calling into question the effectiveness of ramp-up. These results demonstrate that response data can be collected at measured exposure levels, and should motivate additional studies of the effects of airguns on foraging, particularly in waters without such a long history of seismic exploration as the Gulf of Mexico.
Numerical simulation of seismic wave propagation from land-excited large volume air-gun source
NASA Astrophysics Data System (ADS)
Cao, W.; Zhang, W.
2017-12-01
The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of the characteristics of land-excited large volume air-gun can help to better use of the air-gun source.
Quantum Cascade Laser Tuning by Digital Micromirror Array-controlled External Cavity
2014-01-01
P. Vujkovic-Cvijin, B. Gregor, A. C. Samuels, E. S. Roese, Quantum cascade laser tuning by digital micromirror array-controlled external cavity...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Quantum cascade laser tuning by digital micromirror array-controlled...dimensional digital micromirror array (DMA) is described. The laser is tuned by modulating the reflectivity of DMA micromirror pixels under computer
Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg
2015-01-01
Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.
Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg
2015-01-01
Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849
Two-dimensional seismic velocity models of southern Taiwan from TAIGER transects
NASA Astrophysics Data System (ADS)
McIntosh, K. D.; Kuochen, H.; Van Avendonk, H. J.; Lavier, L. L.; Wu, F. T.; Okaya, D. A.
2013-12-01
We use a broad combination of wide-angle seismic data sets to develop high-resolution crustal-scale, two-dimensional, velocity models across southern Taiwan and the adjacent Huatung Basin. The data were recorded primarily during the TAIGER project and include records of thousands of marine airgun shots, several land explosive sources, and ~90 Earthquakes. Both airgun sources and earthquake data were recorded by dense land arrays, and ocean bottom seismographs (OBS) recorded airgun sources east of Taiwan. This combination of data sets enables us to develop a high-resolution upper- to mid-crustal model defined by marine and explosive sources, while also constraining the full crustal structure - with depths approaching 50 km - by using the earthquake and explosive sources. These data and the resulting models are particularly important for understanding the development of arc-continent collision in Taiwan. McIntosh et al. (2013) have shown that highly extended continental crust of the northeastern South China Sea rifted margin is underthrust at the Manila trench southwest of Taiwan but then is structurally underplated to the accretionary prism. This process of basement accretion is confirmed in the southern Central Range of Taiwan where basement outcrops can be directly linked to high seismic velocities measured in the accretionary prism well south of the continental shelf, even south of Taiwan. These observations indicate that the southern Central Range begins to grow well before there is any direct interaction between the North Luzon arc and the Eurasian continent. Our transects provide information on how the accreted mass behaves as it approaches the continental shelf and on deformation of the arc and forearc as this occurs. We suggest that arc-continent collision in Taiwan actually develops as arc-prism-continent collision.
Milroy, C M; Clark, J C; Carter, N; Rutty, G; Rooney, N
1998-01-01
AIMS: To describe characteristics of a series of people accidentally and deliberately killed by air powered weapons. METHODS: Five cases of fatal airgun injury were identified by forensic pathologists and histopathologists. The circumstances surrounding the case, radiological examination, and pathological findings are described. The weapon characteristics are also reported. RESULTS: Three of the victims were adult men, one was a 16 year old boy, and one an eight year old child. Four of the airguns were .22 air rifles, the other a .177 air rifle. Two committed suicide, one person shooting himself in the head, the other in the chest. In both cases the guns were fired at contact range. Three of the cases were classified as accidents: in two the pellet penetrated into the head and in one the chest. CONCLUSIONS: One person each year dies from an air powered weapon injury in the United Kingdom. In addition there is considerable morbidity from airgun injuries. Fatalities and injuries are most commonly accidents, but deliberately inflicted injuries occur. Airguns are dangerous weapons when inappropriately handled and should not be considered as toys. Children should not play with airguns unsupervised. Images PMID:9797730
NASA Astrophysics Data System (ADS)
Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.
2004-12-01
The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California. At various times or positions along the ship's track, the predicted mean and maximum sound level in the water column are contoured. By reconstructing the possible positions of the whales during the survey, based on the time of their stranding and reasonable swim velocities, we constrain the sound levels that they may have been subjected to for a series of scenarios. It is hoped that this work will facilitate a better understanding of acoustic propagation during future airgun experiments in similar environments.
New seismic images of the crust across the Rivera Plate and Jalisco Block (Mexico)
NASA Astrophysics Data System (ADS)
Cordoba, Diego; Núñez-Cornú, Francisco Javier; Bartolomé, Rafael; José Dañobeitia, Juan; Bandy, William Lee; Núñez, Diana; Prada, Manel; Escudero-Ayala, Christian; Espíndola, Juan Manuel; Zamora, Araceli; Gómez, Adán; Ortiz, Modesto; Tsujal Working Group
2015-04-01
During the spring and summer of 2014, we achieved an extensive offshore geophysical experiment at West Coast of México entitled "Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment (TSUJAL)". The project is the result of continuous scientific collaboration between institutions in Mexico and Spain, whose main objective is to study the lithospheric structure at the collision zone between Rivera, North America Plates and the Jalisco Block, and identifying submarine structures which can potentially be tsunamigenic sources The active phase of this project carried out in February and March of 2014, we acquired around 5200 km of Multichannel Seismic Reflection (MCS) together with multibeam bathymetry and potential fields (gravity and magnetism) data. Moreover, a wide angle experiment was performed, deploying 16 OBS in 32 locations in Jalisco and Nayarit offshore regions, also recorded on a terrestrial network of 100 portable seismic stations in 240 locations across 5 seismic profiles of 200-300 km in length combined with the Seismological Network of the State of Jalisco (SisVOc). In addition, 8 land seismic stations were installed in Marías Islands and Isabel Island. These instruments registered, in continuous mode, the airgun shots generated by airgun array of 5800 ci, shooting every 120 s. The UK vessel RRS James Cook participated in this project as a part of the exchange program between Spanish and English scientific vessels, she was responsible of marine seismic experiment (MCS & WA) using a 6 km length streamer and a high capacity airgun array. Furthermore, the ARM Holzinger and RV El Puma participated in this project and were provided by the Mexican Navy and UNAM, respectively. The second phase of this project was achieved in June 2014, where 100 short period seismic stations were installed along a 200 km seismic profile from La Caldera de la Primavera (Guadalajara) to Barra de Navidad (Jalisco coast).These instruments registered 3 borehole explosions of 1000 kg specially made for this project, in the northern, central and southern parts of this profile. These new data provide a dense sampling of tectonic plates, W Mexico, and give new seismic constraints on the deformation along and across the subduction zone, accretionary wedge size, at contact between Rivera and North American Plates and, in the transition zone between oceanic and continental crust.
Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project
NASA Astrophysics Data System (ADS)
Becel, A.; Mireille, L.; Hussni, S.; Dessa, J. X.; Schenini, L.; Sachpazi, M.; Vitard, C.
2016-12-01
The southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here, we will present the preliminary results of the newly acquired high-quality, high-resolution and deep-penetration data and we will provide a comparison of the two datasets collected with different acquisition parameters.
Seismic survey probes urban earthquake hazards in Pacific Northwest
Fisher, M.A.; Brocher, T.M.; Hyndman, R.D.; Trehu, A.M.; Weaver, C.S.; Creager, K.C.; Crosson, R.S.; Parsons, T.; Cooper, A. K.; Mosher, D.; Spence, G.; Zelt, B.C.; Hammer, P.T.; Childs, J. R.; Cochrane, G.R.; Chopra, S.; Walia, R.
1999-01-01
A multidisciplinary seismic survey earlier this year in the Pacific Northwest is expected to reveal much new information about the earthquake threat to U.S. and Canadian urban areas there. A disastrous earthquake is a very real possibility in the region. The survey, known as the Seismic Hazards Investigation in Puget Sound (SHIPS), engendered close cooperation among geologists, biologists, environmental groups, and government agencies. It also succeeded in striking a fine balance between the need to prepare for a great earthquake and the requirement to protect a coveted marine environment while operating a large airgun array.
Effects of Airgun Sounds on Bowhead Whale Calling Rates: Evidence for Two Behavioral Thresholds
Blackwell, Susanna B.; Nations, Christopher S.; McDonald, Trent L.; Thode, Aaron M.; Mathias, Delphine; Kim, Katherine H.; Greene, Charles R.; Macrander, A. Michael
2015-01-01
In proximity to seismic operations, bowhead whales (Balaena mysticetus) decrease their calling rates. Here, we investigate the transition from normal calling behavior to decreased calling and identify two threshold levels of received sound from airgun pulses at which calling behavior changes. Data were collected in August–October 2007–2010, during the westward autumn migration in the Alaskan Beaufort Sea. Up to 40 directional acoustic recorders (DASARs) were deployed at five sites offshore of the Alaskan North Slope. Using triangulation, whale calls localized within 2 km of each DASAR were identified and tallied every 10 minutes each season, so that the detected call rate could be interpreted as the actual call production rate. Moreover, airgun pulses were identified on each DASAR, analyzed, and a cumulative sound exposure level was computed for each 10-min period each season (CSEL10-min). A Poisson regression model was used to examine the relationship between the received CSEL10-min from airguns and the number of detected bowhead calls. Calling rates increased as soon as airgun pulses were detectable, compared to calling rates in the absence of airgun pulses. After the initial increase, calling rates leveled off at a received CSEL10-min of ~94 dB re 1 μPa2-s (the lower threshold). In contrast, once CSEL10-min exceeded ~127 dB re 1 μPa2-s (the upper threshold), whale calling rates began decreasing, and when CSEL10-min values were above ~160 dB re 1 μPa2-s, the whales were virtually silent. PMID:26039218
Effects of airgun sounds on bowhead whale calling rates: evidence for two behavioral thresholds.
Blackwell, Susanna B; Nations, Christopher S; McDonald, Trent L; Thode, Aaron M; Mathias, Delphine; Kim, Katherine H; Greene, Charles R; Macrander, A Michael
2015-01-01
In proximity to seismic operations, bowhead whales (Balaena mysticetus) decrease their calling rates. Here, we investigate the transition from normal calling behavior to decreased calling and identify two threshold levels of received sound from airgun pulses at which calling behavior changes. Data were collected in August-October 2007-2010, during the westward autumn migration in the Alaskan Beaufort Sea. Up to 40 directional acoustic recorders (DASARs) were deployed at five sites offshore of the Alaskan North Slope. Using triangulation, whale calls localized within 2 km of each DASAR were identified and tallied every 10 minutes each season, so that the detected call rate could be interpreted as the actual call production rate. Moreover, airgun pulses were identified on each DASAR, analyzed, and a cumulative sound exposure level was computed for each 10-min period each season (CSEL10-min). A Poisson regression model was used to examine the relationship between the received CSEL10-min from airguns and the number of detected bowhead calls. Calling rates increased as soon as airgun pulses were detectable, compared to calling rates in the absence of airgun pulses. After the initial increase, calling rates leveled off at a received CSEL10-min of ~94 dB re 1 μPa2-s (the lower threshold). In contrast, once CSEL10-min exceeded ~127 dB re 1 μPa2-s (the upper threshold), whale calling rates began decreasing, and when CSEL10-min values were above ~160 dB re 1 μPa2-s, the whales were virtually silent.
Detecting Moho Boundary under Taiwan with Wide-angle Data by Ray-tracing Method - The TAIGER Project
NASA Astrophysics Data System (ADS)
Kuo, Y. N.; Wang, C.; Okaya, D. A.
2009-12-01
Taiwan is located at the converging boundary of the Eurasian plate and the Philippine Sea plate, and is one of the most rapidly uplifting orogeny in the world. The geological structure is relatively complicated. There exist several models of tectonic collisions from the thin-skinned thrust, the lithospheric collision, to uplifting by buoyancy. The shape of Moho should be a key factor to evaluate these models. In this study, we try to detect the Moho beneath Taiwan using the newly collected wide-angle data from the Taiwan Integrated Geodynamic Research (TAIGER) project. The results could be of help to set up some constrains for the Taiwan tectonics. The TAIGER project is a collaboration between America and Taiwan. The land stations collected two parts of data (land and marine) generated by active sources. The land part was carried out in 2008/2~3, which created 6 kinds of data from explosion sources including: 1) 3 E-W wide-angle reflections of Texans arrays; 2) 2 N-S seismometer arrays; 3) the seismic networks of Central Weather Bureau(CWB) and Institute of Earth Science(IES) over the island; 4) a short array of RT130; 5) 2 short period OBS arrays in the Taiwan Strait; 6) 2 temporary seismic arrays in Fujan, mainland China. The marine part was carried out in 2009/4~6, which provided 4 kinds of data from air-gun sources including: 1) 4 wide-angle refractions of E-W RT130 arrays; 2) 2 N-S seismometer arrays; 3) the CWB network; 4) the broad band array in Taiwan for Seismology(BATS). In this study, we focus on analyzing the wide-angle data, which contain land explosion data, onshore-offshore data, OBS data and mainland data, especially concentrate on the line in the southern Taiwan (Transect T4). We make a summary of the TAIGER project and show several plots of real data and arrivals. A 2D E-W velocity model was constructed from the mainland side to the ocean side about 600 km long using the ray-tracing method with layer-striping technique. The preliminary results are: 1) the distribution of Moho depth is basically getting deeper from the west to the east, but becoming shallower rapidly in the area of Coast Range; 2) the crust thickens to the range of 40 km in the mountain area; 3) the Moho depth is shallower than 30 km in the Peikang High and deeper than 32 km at the coast line of Fujan, no crust bulge in the Taiwan Strait; 4) the structures derived from PmP phase and Pn phase from land explosions and onshore-offshore air-gun shots are highly consistent.
50 CFR 218.70 - Specified activity and specified geographical region.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Swimmer Detection Sonar (SD): (A) SD1—an average of 38 hours per year. (B) [Reserved] (viii) Airguns (AG): (A) AG—an average of 5 airgun uses per year. (B) [Reserved] (ix) Synthetic Aperture Sonar (SAS): (A...
NASA Astrophysics Data System (ADS)
Nakanishi, A.; Shimomura, N.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Kashiwase, K.; Fujimori, H.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.
2011-12-01
In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In order to reduce a great deal of damage to coastal area from both strong ground motion and tsunami generation, it is necessary to understand rupture synchronization and segmentation of the Nankai megathrust earthquake. For a precise estimate of the rupture area of the Nankai megathrust event, it is important to know the geometry of the subducting Philippine Sea plate and deep subduction structure along the Nankai Trough. To obtain the deep subduction structure of the coseismic rupture area of the Nankai earthquake in 1946 off Shikoku area, the large-scale high-resolution wide-angle seismic study was conducted in 2009 and 2010. In this study, 201 and 200 ocean bottom seismographs were deployed off the Shikoku Island and the Kii channel respectively. A tuned airgun system (7800 cu. in.) shot every 200m along 13 profiles. Airgun shots were also recorded along an onshore seismic profile (prepared by ERI, univ. of Tokyo and NIED) prolonged from the offshore profile off the Kii Peninsula. Long-term observation was conducted for ~9 months by 21 OBSs off the Shikoku area and 20 OBSs off the Kii channel.This research is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Structural images of the overriding plate indicate the old accreted sediments (the Cretaceous-Tertiary accretionary prism) with the velocity greater than 6km/s extend seaward from off the Shikoku to the Hyuga-nada. Moreover, the young accreted sediments become relatively thinner eastward from off the cape Ashizuri to Muroto. These structural variations might be related to the different rupture pattern of the Nankai event. Structural image of the deep low frequency earthquakes and tremors is shown by using the airgun shots recorded at onshore Hi-net (NIED, Japan) data located along prolongation of the offshore seismic profiles.
NASA Astrophysics Data System (ADS)
Rathnayaka, S.; Gao, H.
2017-12-01
The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.
Hydroacoustic Signals Recorded by the International Monitoring System
NASA Astrophysics Data System (ADS)
Blackman, D.; de Groot-Hedlin, C.; Orcutt, J.; Harben, P.
2002-12-01
Networks of hydrophones, such as the hydroacoustic part of the International Monitoring System (IMS), and hydrophone arrays, such as the U.S. Navy operates, record many types of signals, some of which travel thousands of kilometers in the oceanic sound channel. Abyssal earthquakes generate many such individual events and occasionally occur in swarms. Here we focus on signals generated by other types of sources, illustrating their character with recent data, mostly from the Indian Ocean. Shipping generates signals in the 5-40 Hz band. Large airgun arrays can generate T-waves that travel across an ocean basin if the near-source seafloor has appropriate depth/slope. Airgun array shots from our 2001 experiment were located with an accuracy of 25-40 km at 700-1000 km ranges, using data from a Diego Garcia tripartite sensor station. Shots at greater range (up to 4800 km) were recorded at multiple stations but their higher background noise levels in the 5-30 Hz band resulted in location errors of ~100 km. Imploding glass spheres shattered within the sound channel produce a very impulsive arrival, even after propagating 4400 km. Recordings of the sphere signal have energy concentrated in the band above 40 Hz. Natural sources such as undersea volcanic eruptions and marine mammals also produce signals that are clearly evident in hydrophone recordings. For whales, the frequency range is 20~120Hz and specific patterns of vocalization characterize different species. Volcanic eruptions typically produce intense swarms of acoustic activity that last days-weeks and the source area can migrate tens of kms during the period. The utility of these types of hydroacoustic sources for research and/or monitoring purposes depends on the accuracy with which recordings can be used to locate and quantitatively characterize the source. Oceanic weather, both local and regional, affect background noise levels in key frequency bands at the recording stations. Databases used in forward modeling of propagation and acoustic losses can be sparse in remote regions. Our Indian Ocean results suggest that when bathymetric coverage is poor, predictions for 8 Hz propagation/loss match observations better than those for propagation of 30 Hz signals over 1000-km distances.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
.... These behavioral reactions are often shown as: Changing durations of surfacing and dives, number of... show no overt reactions to airgun pulses at distances beyond a few kilometers, even though the airgun... migrating bowhead whales show reactions, including avoidance, that sometimes extend to greater distances...
Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias
2017-03-15
We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35 dB) and narrow linewidth (<150 pm) over a tuning range of 25 nm.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... airgun would serve as a spare in case of failure of one of the other airguns. The LANGSETH would... other than the one provided here. Comments sent via email to [email protected] , including all.... All Personal Identifying Information (for example, name, address, etc.) voluntarily submitted by the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... issue an IHA. The notice initiated a 30 day public comment period. SIO plans to use one source vessel..., depending on logistics and weather. The survey will involve one source vessel, the Melville. For the seismic... will be acquired using two GI airguns shot simultaneously. Simultaneous shots from both airguns will...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... airgun will serve as a spare and will be turned on in case of failure of one of the other airguns. During... derived TTS information for odontocetes from studies on the bottlenose dolphin and beluga. For the one... send to addresses other than the one provided here. Comments sent via e-mail, including all attachments...
NASA Astrophysics Data System (ADS)
Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.
2014-12-01
Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to reveal.
Effects of tones associated with drilling activities on bowhead whale calling rates
Nations, Christopher S.; Thode, Aaron M.; Kauffman, Mandy E.; Conrad, Alexander S.; Norman, Robert G.; Kim, Katherine H.
2017-01-01
During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus), northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs) deployed on the seafloor over ~7 weeks in Aug–Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A “tone index” was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the “dose” of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort. PMID:29161308
Effects of tones associated with drilling activities on bowhead whale calling rates.
Blackwell, Susanna B; Nations, Christopher S; Thode, Aaron M; Kauffman, Mandy E; Conrad, Alexander S; Norman, Robert G; Kim, Katherine H
2017-01-01
During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus), northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs) deployed on the seafloor over ~7 weeks in Aug-Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A "tone index" was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the "dose" of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort.
Cao, J R; Lee, Po-Tsung; Choi, Sang-Jun; O'Brien, John D; Dapkus, P Daniel
2002-01-01
Lithographic tuning of operating wavelengths in a photonic crystal laser array is demonstrated. The photonic crystal lattice constant is varied by 2 nm between elements of the array, and a wavelength spacing of approximately 4 nm is achieved.
Guan, Shane; Vignola, Joseph; Judge, John; Turo, Diego
2015-12-01
Offshore oil and gas exploration using seismic airguns generates intense underwater pulses that could cause marine mammal hearing impairment and/or behavioral disturbances. However, few studies have investigated the resulting multipath propagation and reverberation from airgun pulses. This research uses continuous acoustic recordings collected in the Arctic during a low-level open-water shallow marine seismic survey, to measure noise levels between airgun pulses. Two methods were used to quantify noise levels during these inter-pulse intervals. The first, based on calculating the root-mean-square sound pressure level in various sub-intervals, is referred to as the increment computation method, and the second, which employs the Hilbert transform to calculate instantaneous acoustic amplitudes, is referred to as the Hilbert transform method. Analyses using both methods yield similar results, showing that the inter-pulse sound field exceeds ambient noise levels by as much as 9 dB during relatively quiet conditions. Inter-pulse noise levels are also related to the source distance, probably due to the higher reverberant conditions of the very shallow water environment. These methods can be used to quantify acoustic environment impacts from anthropogenic transient noises (e.g., seismic pulses, impact pile driving, and sonar pings) and to address potential acoustic masking affecting marine mammals.
Transient Gene Expression in Maize, Rice, and Wheat Cells Using an Airgun Apparatus 1
Oard, James H.; Paige, David F.; Simmonds, John A.; Gradziel, Thomas M.
1990-01-01
An airgun apparatus has been constructed for transient gene expression studies of monocots. This device utilizes compressed air from a commercial airgun to propel macroprojectile and DNA-coated tungsten particles. The β-glucuronidase (GUS) reporter gene was used to monitor transient expression in three distinct cell types of maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum). The highest level of GUS activity in cultured maize cells was observed when distance between stopping plate and target cells was adjusted to 4.3 centimeters. Efficiency of transformation was estimated to be 4.4 × 10−3. In a partial vacuum of 700 millimeters Hg, velocity of macroprojectile was measured at 520 meters per second with a 6% reduction in velocity at atmospheric pressure. A polyethylene film placed in the breech before firing contributed to a 12% increase in muzzle velocity. A 700 millimeters Hg level of vacuum was necessary for maximum number of transfornants. GUS expression was also detected in wheat leaf base tissue of microdissected shoot apices. High levels of transient gene expression were also observed in hard, compact embryogenic callus of rice. These results show that the airgun apparatus is a convenient, safe, and low-cost device for rapid transient gene expression studies in cereals. Images Figure 7 Figure 8 Figure 9 PMID:16667278
["Piggyback" shot: ballistic parameters of two simultaneously discharged airgun pellets].
Frank, Matthias; Schönekess, Holger C; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta
2014-01-01
Green and Good reported an uncommon case of homicide committed with an air rifle in 1982 (Am. J. Forensic Med. Pathol. 3: 361-365). The fatal wound was unusual in that two airgun pellets were loaded in so-called "piggyback" fashion into a single shot air rifle. Lack of further information on the ballistic characteristics of two airgun pellets as opposed to one conventionally loaded projectile led to this investigation. The mean kinetic energy (E) of the two pellets discharged in "piggyback" fashion was E = 3.6 J and E = 3.4 J, respectively. In comparison, average kinetic energy values of E = 12.5 J were calculated for conventionally discharged single diabolo pellets. Test shots into ballistic soap confirmed the findings of a single entrance wound as reported by Green and Good. While the ballistic background of pellets discharged in "piggyback" fashion could be clarified, the reason behind this mode of shooting remains unclear.
[Reconstruction of an air-gun injury track in the neck region--a case report].
Woźniak, Krzysztof; Nowaczek-Dziocha, Elzbieta; Moskała, Artur; Urbanik, Andrzej; Pohl, Jerzy
2009-01-01
The authors present a case of an air-gun injury of the neck region with a foreign body left in situ. The DICOM files obtained during clinical CT examination (including computed tomography angiography) gave the opportunity for three-dimensional reconstructions of the location of the pellet, neighboring blood vessels and the bullet track--essential for a successful analysis of a possible version according to the testimonies related to the critical event.
Keith, Graeme A; Rodgers, Christopher T; Hess, Aaron T; Snyder, Carl J; Vaughan, J Thomas; Robson, Matthew D
2015-06-01
Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric actuators, power monitoring equipment and control software. The reproducibility and performance of the system were tested and the power responses of the coil elements were profiled. An automated optimization method was devised and evaluated. The time required to tune an eight-element pTx cardiac RF array was reduced from a mean of 30 min to less than 10 min with the use of this system. Piezoelectric actuators are an attractive means of tuning RF coil arrays to yield more efficient B1 transmission into the subject. An automated mechanism for tuning these elements provides a practical solution for cardiac imaging at UHF, bringing this technology closer to clinical use. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froemyr, E.; Berteussen, K.A.; Jahren, L.
Small scale seismic surveys have the potential of providing low-cost high resolution subsurface images of limited targets. Crucial to the success of this method is to understand the character and level of ambient noise. Based on this understanding appropriate source strength and receiver fold can be determined in order to obtain the necessary signal to noise ratio at target depth. Saga Petroleum a.s. and Read Well Services A/S performed a test off-shore Norway using geophones on the seabed. The receivers consisted of two small geophone arrays separated by 1 km. A 3 km line was host symmetrically above the receivermore » arrays. The line was shot in a non-continuous fashion by moving from one position to the next with 5 repetitive shots fired at each shot position. A small airgun array was used. A large proportion of the noise exhibits clear spatial coherence. The most significant noise sources are the receiver vessel and the shooting boat. Spectral and spatial analysis reveals that additional sources of noise are present including subsurface sources. The target reflector was top reservoir at approximately 2.1 sec. two-way time. With 4 geophones in each array and repetitive shooting, top reservoir is visible but weak. The area is in general complex but the authors may infer that reduce vessel noise coupled with increased source strength can provide a high resolution subsurface image revealing details not seen on the standard marine seismic section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ljungblad, D.K.; Wuersig, B.; Swartz, S.L.
1985-10-01
The response of bowhead whales to active geophysical vessels was observed during the course of 4 field experiments conducted in the Alaskan Beaufort Sea, September 1984. Conspicuous short-term behavioral changes were observed when active vessels approached to within 10km of bowheads, with the strongest responses occurring when whales were within 5km of active vessels. Behavioral responses included shorter surfacing and dive times, fewer blows per surfacing, and longer blow intervals. Total avoidance responses occured at vessel distances of 1.25km, 7.2km, 3.5km and 3.5km with associated measured sound levels from the seismic airgun arrays of 152dB, 164dB, 178dB and 163dB, respectively.
NASA Astrophysics Data System (ADS)
Nikitin, Alexander P.; Bulsara, Adi R.; Stocks, Nigel G.
2017-03-01
Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea, we describe an array of magnetic sensors where each individual sensor can self-tune to an optimal operating regime. The self-tuning gives the array its "biomimetic" features. We show that the overall performance of the array can, as expected, be improved by increasing the number of sensors but, however, coupling between sensors reduces the overall performance even though the individual sensors in the system could see an improvement. We quantify the similarity of this phenomenon to the Ringelmann effect that was formulated 103 years ago to account for productivity losses in human and animal groups. We propose a global feedback scheme that can be used to greatly mitigate the performance degradation that would, normally, stem from the Ringelmann effect.
An Agile Beam Transmit Array Using Coupled Oscillator Phase Control
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme
1993-01-01
A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its neighbors. Using this array, we have been able to verify the theoretical predictions concerning the effect of this phase on both the locking range and ensemble frequency of the array. However, the scan range achieved fell somewhat short of the theoretical value because of the amplitude variation of the oscillator outputs with tuning.
Porosity, Fracturing and Alteration of Young Oceanic Crust: New Seismic Analyses at Borehole 504B
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.
2017-12-01
DSDP/ODP borehole 504B, drilled 2111 m into 6.9 Ma oceanic crust, provides in-situ core and logging measurements of the lithology, fracturing and porosity of crust originally formed at the Costa Rica Rift and its subsequent alteration by hydrothermal fluids. A recent active seismic survey over the borehole and surrounding area reveals wider spatial variations in velocity that can be related to this porosity and fracturing. Over 10,000 airgun shots were fired in a 30 x 30 km grid over the borehole region, using both high-frequency and low-frequency airgun arrays. The shots were recorded on a 4.5 km-long streamer and 24 ocean-bottom seismographs, each equipped with a three-component geophone and an hydrophone. A vertical hydrophone array recorded the downgoing source wavelet, and underway gravity, magnetic field and multibeam bathymetry data were also recorded. This combined dataset enables the most comprehensive geophysical analysis of this area of crust to date, while the ground-truthing provided by 504B enables us to address the questions of what do the seismic oceanic crustal layers represent and what controls their characteristics as the crust ages? Wide-angle seismic modelling with a Monte Carlo based uncertainty analysis reveals new 2D and 3D Vp and Vs models of the area, which show relatively homogeneous crust around borehole 504B, and place the seismic layer 2B/2C, and seismic layer 2/3 boundaries coincident with fracturing and alteration fronts rather than the lithological boundaries between lavas and dykes, and dykes and gabbros, respectively. Analysis of Poisson's ratio, seismic anisotropy and particle motions reveal patterns in fracturing and porosity across the survey area, and locate possible fossilised hydrothermal circulation cells. These cells appear to have influenced the porosity of the crust through alteration and mineralisation processes, with faults inherited from initial crustal accretion influencing basement topographic highs and providing conduits for mineralising fluids to flow. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
Efficient receiver tuning using differential evolution strategies
NASA Astrophysics Data System (ADS)
Wheeler, Caleb H.; Toland, Trevor G.
2016-08-01
Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.
Realization of integral 3-dimensional image using fabricated tunable liquid lens array
NASA Astrophysics Data System (ADS)
Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub
2015-03-01
Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.
Recent Advances in Subsurface Imaging and Monitoring with Active Sources in China
NASA Astrophysics Data System (ADS)
Wang, B.; Chen, Y.; Wang, W.; Yang, W.
2017-12-01
Imaging high-resolution crustal structures and monitoring their temporal changes with active sources is essential to our understanding of regional tectonics and seismic hazards. In the past decades, great efforts has been made in China to looking for an ideal artificial seismic source to study continental crustal structures. After a mountain of field experiments, we developed permanent and portable seismic airgun sources for inland seismotectonic studies. Here we introduce several applications of using airgun source to imaging local crustal structures and monitoring velocity changes associated with natural and anthropogenic loadings. During Oct. 10th-20th, 2015, we carried out a crustal structure exploration experiment by firing portable airgun source along the Yangtze River in Anhui Province of eastern China. About 5000 shots were fired along 300km long section of the river. More than 2000 portable short period seismometers or geophones were deployed during the experiment. About 3000 of 5000 shots were fired at 20 fixed sites roughly evenly distributed along the river, and the rest shots were fired in the walkway. Seismic signal radiated by airgun source can be tracked to 350km. 2D/3D near surface and crustal velocity structure along the Yangtze River and adjacent region were inverted from airgun seismic records. Inverted velocity show well consistence with previous images and geological structure. The high resolution structural image provides a better understanding on regional geologic features and distribution of mineral resources. In the past five years, three Fixed Aigun Signal Transmitting Stations (FASTS) were built in western China. Those FASTS generate seismic signals with high repeatability, which can be tracked to the distance 1300 km. The highly reproducible signals are used to monitor the subtle subsurface changes. Observed diurnal and semi-diurnal velocity changes 10-4 are supposed to be results of barometrical and tidal loading. Suspicious velocity changes prior to several moderate earthquakes are detected around. Seismic velocity measured around the Hutubi underground gas storage show clear correlation with the gas pressure. Those results shed some light on the short term evolution of the shallow to low crust, which may boost our understanding the mechanism of local seismic hazards.
Balancing Mitigation Against Impact: A Case Study From the 2005 Chicxulub Seismic Survey
NASA Astrophysics Data System (ADS)
Barton, P.; Diebold, J.; Gulick, S.
2006-05-01
In early 2005 the R/V Maurice Ewing conducted a large-scale deep seismic reflection-refraction survey offshore Yucatan, Mexico, to investigate the internal structure of the Chicxulub impact crater, centred on the coastline. Shots from a tuned 20 airgun, 6970 cu in array were recorded on a 6 km streamer and 25 ocean bottom seismometers (OBS). The water is exceptionally shallow to large distances offshore, reaching 30 m about 60 km from the land, making it unattractive to the larger marine mammals, although there are small populations of Atlantic and spotted dolphins living in the area, as well as several turtle breeding and feeding grounds on the Yucatan peninsula. In the light of calibrated tests of the Ewing's array (Tolstoy et al., 2004, Geophysical Research Letters 31, L14310), a 180 dB safety radius of 3.5 km around the gun array was adopted. An energetic campaign was organised by environmentalists opposing the work. In addition to the usual precautions of visual and listening watches by independent observers, gradual ramp-ups of the gun arrays, and power-downs or shut-downs for sightings, constraints were also placed to limit the survey to daylight hours and weather conditions not exceeding Beaufort 4. The operations were subject to several on-board inspections by the Mexican environmental authorities, causing logistical difficulties. Although less than 1% of the total working time was lost to shutdowns due to actual observation of dolphins or turtles, approximately 60% of the cruise time was taken up in precautionary inactivity. A diver in the water 3.5 km from the profiling ship reported that the sound in the water was barely noticeable, leading us to examine the actual sound levels recorded by both the 6 km streamer and the OBS hydrophones. The datasets are highly self-consistent, and give the same pattern of decay with distance past about 2 km offset, but with different overall levels: this may be due to geometry or calibration differences under investigation. Both datasets indicate significantly lower levels than reported by Tolstoy et al. (2004). There was no evidence of environmental damage created by this survey. It can be concluded that the mitigation measures were extremely successful, but there is also a concern that the overhead cost of the environmental protection made this one of the most costly academic surveys ever undertaken, and that not all of this protection was necessary. In particular, the predicted 180 dB safety radius appeared to be overly conservative, even though based on calibrated measurements in very similar physical circumstances, and we suggest that these differences were a result of local seismic velocity structure in the water column and/or shallow seabed, which resulted in different partitioning of the energy. These results suggest that real time monitoring of hydrophone array data may provide a method of determining the safety radius dynamically, in response to local conditions.
Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.
Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui
2013-11-07
We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.
NASA Astrophysics Data System (ADS)
Pan, Lining; Xie, Hongkang; Cheng, Xiaohong; Zhao, Chenbo; Feng, Hongmei; Cao, Derang; Wang, Jianbo; Liu, Qingfang
2018-07-01
Periodic micro-stripes arrays with stripe domains structures upon continuous permalloy (Py) film were fabricated by sputtering, photolithography and ion beam etching technology. These samples display in-plane magnetic anisotropy, and stripe domains structure is observed by the magnetic force microscopy (MFM) in the area of the micro-stripes. The periodic micro-stripes show an effective impact on static and dynamic magnetic properties of Py continuous film. In the case of dynamic magnetic properties, the resonance frequency fr of these samples can be tuned by periodic micro-stripes arrays. Compared to continuous film with resonance frequency fr of 0.64 GHz, the fr of composite structures can be tuned by the separation gap of periodic micro-stripes arrays from 0.8 GHz to 2.3 GHz at zero-field. At the same time, the fr could be also tuned by rotating the samples within the plane. This attributes to the competition of shape anisotropy induced by micro-stripes and the dynamic anisotropy originating by stripe domains structure.
Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging
2016-02-13
switchable array, RF magnetic field, NQR , MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance ( NQR ) techniques. REF [1] and [6] explain the differences between NMR and NQR . What NMR and NQR ...of resonance NQR frequency of 28.1MHz. The matching and tuning is explain in detail in the next section of this paper. Rectangle Surface Coil
NASA Astrophysics Data System (ADS)
Zimina, S. V.
2015-06-01
We present the results of statistical analysis of an adaptive antenna array tuned using the least-mean-square error algorithm with quadratic constraint on the useful-signal amplification with allowance for the weight-coefficient fluctuations. Using the perturbation theory, the expressions for the correlation function and power of the output signal of the adaptive antenna array, as well as the formula for the weight-vector covariance matrix are obtained in the first approximation. The fluctuations are shown to lead to the signal distortions at the antenna-array output. The weight-coefficient fluctuations result in the appearance of additional terms in the statistical characteristics of the antenna array. It is also shown that the weight-vector fluctuations are isotropic, i.e., identical in all directions of the weight-coefficient space.
An optimal tuning strategy for tidal turbines
2016-01-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870
An optimal tuning strategy for tidal turbines
NASA Astrophysics Data System (ADS)
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
An optimal tuning strategy for tidal turbines.
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
Multiple wavelength tunable surface-emitting laser arrays
NASA Astrophysics Data System (ADS)
Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei
1991-06-01
Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.
NASA Astrophysics Data System (ADS)
Hino, R.; Kinoshita, M.; Araki, E.; Byrne, T. B.; McNeill, L. C.; Saffer, D. M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.
2009-12-01
A series of scientific drilling expeditions is in operation in the Nankai Trough to reveal the faulting mechanism of the magathrust earthquakes, through clarifying composition, fine structure, mechanical behavior, and environmental variables of the seismogenic faults. In the studied area, extensive seismic surveys for site characterization have been made to image detailed geometry of the fault complex in the accretionary prism as well as Vp distribution around the faults. Although these previous surveys provided invaluable information for understanding seismotectonic processes in this subduction zone, more complete knowledge is needed to be acquired to predict dynamic behavior of the faults, such as geometrical irregularities in short wavelength, Vs and seismic attenuation which are sensitive to fluid distribution in and around fault zones. It is expected that estimation of these parameters would be improved considerably by a seismic exploration using a vertical array of seismographs installed in a deep borehole (VSP: vertical seismic profiling). In July 2009, we made a VSP at one of the drilling sites located just above the rupture area of the 1994 Tonankai Earthquake (M 8.1), during the IODP Exp.319. The well site of our VSP was made by the riser drilling of D/V Chikyu. The seismic array, lowered from Chikyu into the hole, was composed of a three-component accelerometer and vertical separation of the array elements was 15.12 m. The VSP was composed of offset VSP and zero-offset VSP. In the offset VSP, a tuned airgun array towed by R/V Kairei was shot along one straight line (walk-away VSP) and another circular line (walk-around VSP) and seismic signals were recorded by an array consisting of 16 elements installed from 907 to 1,135 m in depth from seafloor. The object of the walk-away VSP is to obtain fine image of the faults using reflection arrivals with less attenuation. It is also expected to obtain spatial variation of Vs from arrival time tomography of refracted S waves. For this purpose, we preferred extraordinarily longer (~ 30 km) offset shooting than usual industrial VSPs. Shot spacing was 60 m along the same line as the previous 3D reflection and OBS wide angle surveys. The radius of circle of the walk-around VSP was 3.5 km to detect azimuthal anisotropy of downgoing P and S waves, correlated to stress state around the site. In zero-offset VSP, shots just above the hole were recorded by the 8 element array moving from 0 to 1,135 mbsf along the hole so that seismic structure with comparable vertical resolution as core-log information would be obtained. In the records of the walk-away VSP, clear first arrivals as well as several evident later arrivals were clearly identified. The later phases contain the reflection from the megasplay fault and the refracted S wave through the accretional prism, on both of which we have significant interest. The walk-around VSP also provided us with high S/N records but detailed data reduction, such as velocity analysis using vertical array, are required to derive anisotropic nature of the formation around the hole.
NASA Astrophysics Data System (ADS)
Lee, Sungkyu
2001-08-01
Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.
Ultrasound guided removal of an airgun pellet from a patient's right cheek.
Grammatopoulos, E; Murtadha, L; Nair, P; Holmes, S; Makdissi, J
2008-12-01
This case report describes the use of real-time intraoperative ultrasonography to guide the removal of an airgun pellet embedded in the right cheek of a 20-year-old man. This patient had previously undergone two unsuccessful surgical attempts to have this pellet removed via blind exploration. Through the use of ultrasonography, the pellet's positional relationship throughout the procedure was accurately defined with respect to important soft and hard anatomical structures, as well as to the surgical instruments used, enabling its very efficient removal. This technique is safe, easy, cost effective and accurate, and thus minimizes post-operative morbidity and the risk of surgical complications.
Tsujal Project: New Geophysical Studies about Rivera PLATE and Jalisco Block (MEXICO)
NASA Astrophysics Data System (ADS)
Barba, D. C., Sr.; Nunez-Cornu, F. J.; Danobeitia, J.; Bartolome, R.; Bandy, W. L.; Escudero, C. R.; Cameselle, A. L.; Espindola de Castro, J. M., Sr.; Prada, M.; Nunez, D.; Zamora Camacho, A.; Gomez, A.; Ortiz, M.
2014-12-01
During spring and summer of 2014, it has been carried out the first geophysical fieldwork of the project entitled "Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment (TSUJAL)". This is project is the result of a wide scientific collaboration between institutions of Mexico and Spain with the main aim of studying the lithospheric structure in Rivera and North American Plates convergence regions and Jalisco Block, and, also, identifying submarine structures that could be tsunamigenic sources. The first phase of this project was carried out in February and March of 2014. More than 5200 km of Multichannel Seismic Reflection (MCS) data were acquired, together with multibeam and parametric soundings and potential fields (gravity and magnetism) data. Wide Angle profiling were recorded deploying 16 OBS in 32 locations, offshore Jalisco and Nayarit regions Onshore, a network of 100 short period seismic portable stations were deployed in 240 locations along 5 seismic lines of 200-300 km length that worked combined with Seismological Network of Jalisco State (SisVOc). In addition, 8 land seismic stations were installed in Marías Islands and Isabel Island. These instruments registered, in continuous mode, the source energy was generated by big airgun array of 5800 ci, shooting every 120 s. The British vessel RRS James Cook, which participated in this project as a part of the exchange program between Spanish and English scientific vessels, was responsible of carrying out the MCS profiles and the deployment of OBS. For them, it was used a 6 km length digital streamer and airgun array of high capacity. Moreover, the ARM Holzinger and RV El Puma participated in this project and were provided by the Mexican Navy and UNAM, respectively. The second phase of this project was carried out in June 2014. 100 short period seismic stations were installed along one seismic profile from La Caldera de la Primavera (Guadalajara) to Barra de Navidad (Jalisco coast), covering 200 km distance. The new data acquired during TSUJAL project provide a dense sampling of studied plates and give new seismic images about continental deformation along and across the subduction zone, accretionary wedge size, about contact between Rivera and North American Plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yong, E-mail: liyong@pdsu.edu.cn; Song, Xiao Yan; Song, Yue Li
2016-02-15
Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic propertiesmore » of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.« less
Recent Developments in the Analysis of Couple Oscillator Arrays
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2000-01-01
This presentation considers linear arrays of coupled oscillators. Our purpose in coupling oscillators together is to achieve high radiated power through the spatial power combining which results when the oscillators are injection locked to each other. York, et. al. have shown that, left to themselves, the ensemble of injection locked oscillators oscillate at the average of the tuning frequencies of all the oscillators. Coupling these arrays achieves high radiated power through coherent spatial power combining. The coupled oscillators are usually designed to produce constant aperture phase. Oscillators are injection locked to each other or to a master oscillator to produce coherent radiation. Oscillators do not necessarily oscillate at their tuning frequency.
Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation
Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...
2016-12-20
In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less
Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays
2010-02-28
Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam
Borehole induction coil transmitter
Holladay, Gale; Wilt, Michael J.
2002-01-01
A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in
2015-08-10
Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict themore » variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.« less
Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L
2018-02-07
Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.
Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1997-01-01
This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.
Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array
Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong
2015-01-01
Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625
NASA Astrophysics Data System (ADS)
Aidi, Chafik; Klingelhoefer, F.; Yelles-Chaouche, A.; Beslier, M.; Bracene, R.; Philippe, S.; Djellit, H.; Galve, A.; Bounif, A.; Schenini, L.; Sage, F.; Charvis, P.
2013-12-01
During the Algerian-French SPIRAL cruise (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) conducted onboard R/V Atalante (September-October 2009), one deep reflection and wide-angle seismic profile with total length of 140 km was acquired on the Algerian margin, offshore Greater Kabylia. 40 ocean bottom seismometers (OBS) were deployed on the profile, located perpendicular to the margin and it was additionally extended on land using 26 seismological stations. A 8350 in3 tuned air-gun array consisting of 10 Bolt air-guns was used to generate deep frequency shots to allow for a good penetration. A coincident multi-channel seismic profile was acquired using a 3040 in3 seismic source and a 4.5 km 360 channel digital seismic streamer. Underway geophysical measurements included gravimetric and magnetic data. The combined profile with a total length of about 260 km, crosses from north to south the Algero-Provençal basin, the central Algerian margin and onshore the crystalline basement of the Kabylides bloc up to the southward limit of the internal zones. We present results concerning the sedimentary and crustal structures in the study area using tomographic inversion, forward and gravimetric modelling. Modelling of the wide-angle and multi-channel seismic data reveals that the thickness of the sedimentary cover along the profile varies from several hundreds of metres onland in Tiziouzou basin (R. Bracéne 2001), to ~4 km at the foot of the margin and then decreasing northward to less than 3 km. The Messinian evaporitic units have been modelled by a high velocity layer, representing a velocity inversion with underlying pre-Messinian Miocene sedimentary layers. Progressive thinning of the continental crust towards the North is observed, with thicknesses decreasing from ~20 km at the foot of the margin to 4-5 km in the deep basin. Seismic velocities range between 6.2 and 6.6 km/s in the continental domain and 5.2 - 6.8 km/s in the deep basin. The uppermost crust of the deep margin is characterised by low velocities of only 4.5-5.0 km/s probably due to fracturing during the thinning of the crust. The transition between continental crust and crust of oceanic origin is located about 60 km from the coast. Its extension is very narrow (< 20 km) with a possibility of it being absent in this region. The crust underlying the basin at the foot of the continental slope is characterised by a thickness of only 3-5 km which is about 2 km thinner than normal oceanic crust. Seismic velocities however indicate that the crust is of oceanic origin and does not represent exhumed and partly serpentinised mantle material, although the presence of small amounts of mantle material in an otherwise igneous crust cannot be ruled out. Similar thin oceanic crust has been imaged in other Mediterranean Basins, such as the Liguro-Provençal basin (Gailler et al., 2009).
Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik
2014-11-17
The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.
Seismic Reflection Imaging of Detachment Faulting at 13°N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Falder, M.; Reston, T. J.; Peirce, C.; Simão, N.; MacLeod, C. J.; Searle, R. C.
2016-12-01
The observation of domal corrugated surfaces at slow spreading ridges less than two decades ago, has dramatically challenged our understanding of seafloor spreading. These `oceanic core complexes' are believed to be caused by large-scale detachment faults which accommodate plate separation during periods when melt supply is low or absent entirely. Despite increasing recognition of their importance, the mechanics of, and interactions between, detachment faults at OCCs is not well understood. In Jan-Feb 2016, seismic reflection and refraction data were acquired across the 13N OCCs. The twelve-airgun array seismic source was recorded by a 3000m-long streamer, with shots fired with the full array at either 20 s intervals, or with half the array in a "flip flop" fashion every 10 s. A shorter firing rate results in significantly less spatial aliasing and enhances the performance of the F-K domain filtering. Here we present preliminary seismic reflection images of the 13N region. The currently active 13° 20'N detachment fault is imaged continuing downwards from the smooth fault plane exposed at the seabed. Away from the fault, and between the two OCCs in the area, fewer subsurface structures are observed, which may either represent an actual lack of sharp acoustic contrasts or be as a result of the challenging imaging conditions. Acoustic energy scattered by rough bathymetry both within and out of plane of section is the main challenge of seismic reflection imaging in this area and various strategies are being investigated for its attenuation, including prediction based on high-resolution bathymetry acquired.
Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin
2015-03-24
A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.
Tuned Chamber Core Panel Acoustic Test Results
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Allen, Albert R.
2016-01-01
This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.
Ball, M.M.; Soderberg, N.K.
1989-01-01
In August 1979, the U.S. Geological Survey (USGS) aboard the M/V SEISMIC EXPLORER of Seismic Explorations International (SEI), ran 17 lines (1,270 km) of multichannel, seismic-reflection profiles on the western Florida Shelf. The main features of the SEI system were (1) a digital recorder with an instantaneous-floating-point-gain constant of 24 dB, (2) a 64-channel hydrophone streamer, 3,200 m long, and (3) a 21-airgun array that had a total volume of 2,000 in and a pressure of 2,000 psi. Sampling interval was array to the center of the farthest phone group was 3,338 m and to the nearest phone group, 188 m. Shot points were 5O m apart to obtain a 32-fold stack. Navigation was by an integrated satellite/Loran/doppler-sonar system.The SEI data were processed by Geophysical Data Processing Center, Inc. of Houston, Texas. Processing procedures were standard with the following exceptions: (1) a deringing deconvolution that had a 128-ms operator length was done prior to stacking. (2) a time-variant predictive deconvolution that had a filter operator length of 100 ms and automatic picking of the second zero-crossing was applied after stacking to further suppress multiple energy. (3) Velocity analyses were performed every 3 km, using a technique that included the determination and consideration of both the amount and direction of apparent dip. (4) Automatic gain ranging using a 750-ms window was applied pre- and post-stack. ( 5) Lines affected by sea floor's angle of slope were deconvolved again before stacking and time-variant filter parameters were adjusted to follow the sea-floor geometry.The data taken with the 3,200-m streamer and 2,000 in3 airgun array, aboard M/V SEISMIC EXPLORER (Arabic numerals) are vastly superior to those obtained by R/V GYRE using a much smaller streamer and source (Roman numerals). The former consistently show coherent primary events from within the units underlying the Mesozoic section on the western Florida Shelf, while the latter tend to do so only in the inshore area where pre-Mesozoic basement occurs at depths of less than 2 km. The R/V GYRE data were open filed previously (Ball and others, 1987). A synthesis of both sets of data is included in Ball and others (1988).Reflectors correlate to the full 8-s duration of recording time. A number of lines were restarted due to equipment failure; no areas were omitted, however, shotpoints overlap. The original records may be seen at the USGS branch of Atlantic marine geology offices in Woods Hole, Mass. Copies of the multichannel data may be purchased only from the National Geophysical Data Center, NOAA, Code E64, 325 Broadway, Boulder, CO 80303 (tel. 303/497-6345).
Investigating a Quadrant Surface Coil Array for NQR Remote Sensing
2014-10-23
UNCLASSIFIED 1 Abstract—this paper is on the design and fabrication of a surface coil array in a quadrant layout for NQR (Nuclear Quadrupole...coupling and SNR (Signal-to-Noise Ratio) at standoff distances perpendicular from each coil. Index Terms— Nuclear Quadrupole Resonance, NQR ...Coil Array, probe, Nuclear Magnetic Resonance, tuning, decoupling, RLC, mutual coupling, RLC I. INTRODUCTION N Nuclear quadrupole resonance ( NQR
Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei
2017-03-20
A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300 MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
Teilmann, Jonas; Hermannsen, Line; Galatius, Anders; Sveegaard, Signe; Balle, Jeppe Dalgaard; Dietz, Rune; Nabe-Nielsen, Jacob
2018-01-01
Knowledge about the impact of anthropogenic disturbances on the behavioural responses of cetaceans is constrained by lack of data on fine-scale movements of individuals. We equipped five free-ranging harbour porpoises (Phocoena phocoena) with high-resolution location and dive loggers and exposed them to a single 10 inch3 underwater airgun producing high-intensity noise pulses (2–3 s intervals) for 1 min. All five porpoises responded to capture and tagging with longer, faster and more directed movements as well as with shorter, shallower, less wiggly dives immediately after release, with natural behaviour resumed in less than or equal to 24 h. When we exposed porpoises to airgun pulses at ranges of 420–690 m with noise level estimates of 135–147 dB re 1 µPa2s (sound exposure level), one individual displayed rapid and directed movements away from the exposure site and two individuals used shorter and shallower dives compared to natural behaviour immediately after exposure. Noise-induced movement typically lasted for less than or equal to 8 h with an additional 24 h recovery period until natural behaviour was resumed. The remaining individuals did not show any quantifiable responses to the noise exposure. Changes in natural behaviour following anthropogenic disturbances may reduce feeding opportunities, and evaluating potential population-level consequences should be a priority research area. PMID:29410789
Seismic Imaging Reveals Deep-Penetrating Fault Planes in the Wharton Basin Oceanic Mantle
NASA Astrophysics Data System (ADS)
Carton, H. D.; Singh, S. C.; Dyment, J.; Hananto, N. D.; Chauhan, A.
2011-12-01
We present images from a deep multi-channel seismic reflection survey acquired in 2006 over the oceanic lithosphere of the Wharton Basin offshore northern Sumatra, NW of Simeulue island. The main ~230-km long seismic profile is roughly parallel to the trench at ~32-66 km distance from the subduction front and crosses (at oblique angles to both flow line and isochron directions) an entire segment of 55-57 my-old fast-spread crust formed at the extinct Wharton spreading center, as well as two bounding ~N5°E trending fracture zones near its extremities; complementary data is provided by the oceanic portions of two margin-crossing profiles on either side shot during the same survey. This high-quality, 12-km streamer dataset acquired for deep reflection imaging (10000 cu in tuned airgun array and 15-m source and streamer depths) reveals the presence of mostly SE-dipping (20 to 40 degrees dip) events cutting across and extending below the oceanic Moho, down to a maximum depth below seafloor of ~37 km, at ~5 km spacing along the trench-parallel profile. Similar dipping mantle events are imaged on the oceanic portion of another long-offset profile acquired in 2009 offshore central Sumatra south of Pagai island, which will also be presented. Such events are unlikely to be imaging artefacts of the 2D acquisition, such as out-of-plane energy originating from sharp, buried basement reliefs trending obliquely to the profile. Due to their geometry, they do not seem to be associated with plate bending at the trench outer-rise, which has a relatively modest expression at the seafloor and within the incoming sedimentary section north of the Simeulue elbow. We propose that these deep-penetrating dipping reflectors are fossil fault planes formed due to compressive stresses at the beginning of the continent-continent collision between India and Eurasia, the early stages of which were responsible for the cessation of seafloor spreading at the Wharton ridge at ca 40 Ma.
NASA Astrophysics Data System (ADS)
Becel, A.
2016-12-01
In September-October 2014, the East North American Margin (ENAM) Community Seismic Experiment (CSE) acquired deep penetration multichannel seismic (MCS) reflection on a 500 km wide section of the Mid-Atlantic continental margin offshore North Carolina and Virginia. This margin formed after the Mesozoic breakup of supercontinent Pangea. One of the goals of this experiment is an improved understanding of events surrounding final stage of breakup including the relationship between the timing of rifting and the occurrence of offshore magmatism and early spreading history of this passive margin that remain poorly understood. Deep penetration MCS data were acquired with the 6600 cu.in. tuned airgun array and the 636 channel, 8-km-long streamer of the R/V Marcus Langseth. The source and the streamer were both towed at a depth of 9 m for deep imaging. Here we present initial results from MCS data along two offshore margin normal profiles (450-km long and 370-km-long, respectively), spanning from continental crust 50 km off the coast to mature oceanic crust and a 350-km-long MCS profile along the enigmatic Blake Spur Magnetic Anomaly (BSMA). Initial images reveal a major change in the basement roughness at the BSMA on both margin normal profiles. Landward of this anomaly, the basement is rough and more faulted whereas starting at the anomaly and seaward, the basement is very smooth and reflective. Clear Moho reflections are observed 2.5-3s (7.75-9.3 km assuming an average crustal velocity of 6.2 km/s) beneath the top of the basement on the seaward part of two margin normal profiles and on the margin parallel profile. Intracrustal reflections are also observed over both transitional and oceanic basement. A long-lived mantle thermal anomaly close to the ridge axis during the early opening of the Atlantic Ocean could explain the thicker than normal oceanic crust and smooth basement topography observed in the data.
Haley, Beth; Ireland, Darren; Childs, Jonathan R.
2010-01-01
According to the United Nations Convention on the Law of the Sea (UNCLOS), individual nations? sovereign rights extend to 200 nautical miles (n.mi.) (370 km) offshore or to a maritime boundary in an area called the continental shelf. These rights include jurisdiction over all resources in the water column and on and beneath the seabed. Article 76 of UNCLOS also establishes the criteria to determine areas beyond the 200 n.mi. (370 km) limit that could be defined as ?extended continental shelf,? where a nation could extend its sovereign rights over the seafloor and sub-seafloor (As used in UNCLOS, ?continental shelf? refers to a legally defined region of the sea floor rather than a morphological shallow-water area adjacent to continents commonly used by geologists and hydrographers.). This jurisdiction provided in Article 76 includes resources on and below the seafloor but not in the water column. The United States has been acquiring data to determine the outer limits of its extended continental shelf in the Arctic and has a vested interest in declaring and receiving international recognition of the reach of its extended continental shelf. The U.S. collaborated with Canada in 2008 and 2009 on extended continental shelf studies in the Arctic Ocean. The U.S. Coast Guard (USCG) Cutter Healy worked with the Canadian Coast Guard ship Louis S. St. Laurent to map the continental shelf beyond 200 n.mi. (370 km) in the Arctic. Each icebreaking vessel contributed different capabilities in order to collect data needed by both nations more efficiently in order to save money, avoid redundancy, and foster cooperation. Generally, the Healy collects bathymetric (sea-floor topography) data and the Louis S. St. Laurent collects seismic reflection profile data. The vessels work in concert when ice conditions are heavy, with one vessel breaking ice for the ship collecting data. The Canadian Environmental Assessments for these projects are available on line at http://www.ceaa.gc.ca/052/details-eng.cfm?pid=38185 (2008) and http://www.ceaa.gc.ca/052/details-eng.cfm?pid=46518 (2009). The U.S. Geological Survey (USGS) and Geological Survey of Canada (GSC) are undertaking a similar partnership again for 2010 in a limited area of U.S. waters during the period between ~10 and 16 August. The survey vessels will then proceed to international or Canadian waters where surveying will proceed until ~3 September, when the two icebreakers will separate to conduct independent work. The survey area of the joint work will be bounded approximately by 145? to 158? W longitude and 71? to 84? N latitude in water depths ranging from ~2,000 to 4,000 m (fig. 1). Ice conditions are expected to range from open water to 10/10 ice cover. The Louis S. St. Laurent will join accompanying vessel Healy in or near the survey area around 10 August to begin the joint survey work. As its energy source, the seismic system aboard Louis S. St. Laurent will employ a 3-airgun array consisting of three Sercel G-airguns. Two guns will have a discharge volume of 500 in3 and the third a discharge volume of 150 in3 for a total array discharge volume of 1,150 in3. The seismic survey will take place in water depths 2,000?4,000 m. This airgun array is identical to the system used in the 2008 and 2009 field programs by the Geological Survey of Canada. The USGS requested that the National Marine Fisheries Service (NMFS) issue an Incidental Harassment Authorization (IHA) to authorize the incidental, that is, not intentional, harassment of small numbers of cetaceans and seals should this occur during the seismic survey in U.S. waters. USGS is also consulting with the U.S. Fish and Wildlife Service (USFWS) regarding concerns about disturbance to walruses and polar bears. Through informal consultation with the Office of Protected Resources with the National Oceanic and Atmospheric Administration (NOAA), USGS proposes that no ESA-listed marine species?bowhead, fin, humpback or sperm whale?w
Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating
NASA Astrophysics Data System (ADS)
Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas
2018-04-01
An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.
Tuning temperature and size of hot spots and hot-spot arrays.
Saïdi, Elika; Babinet, Nicolas; Lalouat, Loïc; Lesueur, Jérôme; Aigouy, Lionel; Volz, Sébastian; Labéguerie-Egéa, Jessica; Mortier, Michel
2011-01-17
By using scanning thermal microscopy, it is shown that nanoscale constrictions in metallic microwires deposited on an oxidized silicon substrate can be tuned in terms of temperature and confinement size. High-resolution temperature maps indeed show that submicrometer hot spots and hot-spot arrays are obtained when the SiO(2) layer thickness decreases below 100 nm. When the SiO(2) thickness becomes larger, heat is less confined in the vicinity of the constrictions and laterally spreads all along the microwire. These results are in good agreement with numerical simulations, which provide dependences between silica-layer thickness and nanodot shape and temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Vandersypen, L. M. K.; Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Grating tuned unstable resonator laser cavity
Johnson, Larry C.
1982-01-01
An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.
Next generation miniature simultaneous multi-hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Gupta, Neelam
2014-03-01
The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.
Characteristic Analysis of Air-gun Source Wavelet based on the Vertical Cable Data
NASA Astrophysics Data System (ADS)
Xing, L.
2016-12-01
Air guns are important sources for marine seismic exploration. Far-field wavelets of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.
Widely tunable long-period waveguide grating couplers
NASA Astrophysics Data System (ADS)
Bai, Y.; Liu, Q.; Lor, K. P.; Chiang, K. S.
2006-12-01
We demonstrate experimentally two widely tunable optical couplers formed with parallel long-period polymer waveguide gratings. One of the couplers consists of two parallel gratings and shows a peak coupling efficiency of ~34%. The resonance wavelength of the coupler can be tuned thermally with a sensitivity of 4.7 nm/°C. The experimental results agree well with the coupled-mode analysis. The other coupler consists of an array of ten widely separated gratings. A peak coupling efficiency of ~11% is obtained between the two best matched gratings in the array and the resonance wavelength can be tuned thermally with a sensitivity of -3.8 nm/°C. These couplers have the potential to be further developed into practical broadband add/drop multiplexers and signal dividers.
Large format imaging arrays for the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Wollack, E. J.; Marraige, T.; Staggs, S.; Niemack, M.; Doriese, B.
2006-01-01
We describe progress in the fabrication, characterization, and production of detector arrays for the Atacama Cosmology Telescope (ACT). The completed ACT instrument is specified to image simultaneously at 145, 225, and 265 GHz using three 32x32 filled arrays of superconducting transition edge sensors (TES) read out with time-division-multiplexed SQUID amplifiers. We present details of the pixel design and testing including the optimization of the electrical parameters for multiplexed readout. Using geometric noise suppression and careful tuning of operation temperature and device bias resistance, the excess noise in the TES devices is balanced with detector speed for interfacing with the ACT optics. The design also accounts for practical tolerances such as transition temperature gradients and scatter that occur in the production of multiple wafers to populate fully the kilopixel cameras. We have developed an implanted absorber layer compatible with our silicon-on-insulator process that allows for tunable optical resistance with requisite on-wafer uniformity and wafer-to-wafer reproducibility. Arrays of 32 elements have been tested in the laboratory environment including electrical, optical, and multiplexed performance. Given this pixel design, optical tests and modeling are used to predict the performance of the filled array under anticipated viewing conditions. Integration of the filled array of pixels with a tuned backshort and dielectric plate in front of the array maximize absorption and the focal plane and suppress reflections. A mechanical design for the build of the full structure is completed and we report on progress toward the construction of a prototype array for first light on the ACT.
Two dimensional thermo-optic beam steering using a silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.
2016-03-01
Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.
A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response
NASA Technical Reports Server (NTRS)
Ferguson, Michael I.; MacDonald, Eric; Foor, David
2005-01-01
We report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The platform was developed and tested for the second generation JPL/Boeing Post-Resonator MEMS gyroscope. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). A software interface allows the user to configure, calibrate, and tune the bias voltages on the micro-gyro. The interface easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography.
Liusman, Cipto; Li, Shuzhou; Chen, Xiaodong; Wei, Wei; Zhang, Hua; Schatz, George C; Boey, Freddy; Mirkin, Chad A
2010-12-28
This paper describes a new strategy for synthesizing free-standing bimetallic nanorings and nanoring arrays based upon on-wire lithography and a galvanic replacement reaction. The strategy allows one to tune the diameter, length, and therefore aspect ratio of the nanorings. In addition, it can be used to produce arrays of nanorings in high yield with control over number and spacing. Spectroscopic studies and discrete dipole approximation calculations show that nanoring dimers exhibit greater surface enhanced Raman scattering than the analogous nanodisk dimers.
Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property
NASA Astrophysics Data System (ADS)
Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong
Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.
Topological interface modes in graphene multilayer arrays
NASA Astrophysics Data System (ADS)
Wang, Feng; Ke, Shaolin; Qin, Chengzhi; Wang, Bing; Long, Hua; Wang, Kai; Lu, Peixiang
2018-07-01
We investigate the topological interface modes of surface plasmon polaritons in a multilayer system composed of graphene waveguide arrays. The topological interface modes emerge when two topologically distinct graphene multilayer arrays are connected. In such multilayer system, the non-trivial topological interface modes and trivial modes coexist. By tuning the configuration of the graphene multilayer arrays, the associated non-trivial interface modes present robust against structural disorder. The total number of topological modes is related to that of graphene layers in a unit cell of the graphene multilayer array. The results provide a new paradigm for topologically protected plasmonics in the graphene multilayer arrays. The study suggests a promising approach to realize light transport and optical switching on a deep-subwavelength scale.
2-Dimensional beamsteering using dispersive deflectors and wavelength tuning.
Chan, Trevor; Myslivets, Evgeny; Ford, Joseph E
2008-09-15
We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3 degrees by 11 degrees output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.
Tuning Metamaterials by using Amorphous Magnetic Microwires
NASA Astrophysics Data System (ADS)
Lopez-Dominguez, Victor; Garcia, Miguel Angel; Marin, Pilar; Hernando, Antonio
Tuning the electromagnetic properties of metamaterials using external stimulus result appealing for both, fundamental and applied reasons. Little work has been developed in the tuning of the properties of a metamaterial by magnetic fields. The main reason relies on the fact that most magnetic materials tale off their response at the microwave band, or they are moderately active only at their Ferromagnetic Resonance, as it is the case of ferrites. These limitations can be overcome using Co-based Magnetic microwires with a quasi-zero magnetostriction that leads to a high permeability at microwave frequencies. The inclusion of magnetic microwires in a metamaterial type Split Ring Resonator array (SRR) allows tuning their electromagnetic properties with low magnetic fields. The results clearly show an effective tune of the S-coefficients up-to 8 dB using 100 microwires per SRR for DC fields between 0 and 20 Oe.
Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types.
Wassell, E J; Adams, J S; Bandler, S R; Betancourt-Martinez, G L; Chiao, M P; Chang, M P; Chervenak, J A; Datesman, A M; Eckart, M E; Ewin, A J; Finkbeiner, F M; Ha, J Y; Kelley, R; Kilbourne, C A; Miniussi, A R; Sakai, K; Porter, F; Sadleir, J E; Smith, S J; Wakeham, N A; Yoon, W
2017-06-01
We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (T c ) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.
Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types
Wassell, E. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chiao, M. P.; Chang, M. P.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Ha, J. Y.; Kelley, R.; Kilbourne, C. A.; Miniussi, A. R.; Sakai, K.; Porter, F.; Sadleir, J. E.; Smith, S. J.; Wakeham, N. A.; Yoon, W.
2017-01-01
We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency’s Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these “hybrid” arrays will be presented. PMID:28804229
Seismic Velocity and Its Temporal Variations of Hutubi Basin Revealed by Near Surface Trapped Waves
NASA Astrophysics Data System (ADS)
Ji, Z.; Wang, B.; Wang, H.; Wang, Q.; Su, J.
2017-12-01
Sedimentary basins amplify bypassing seismic waves, which may increase the seismic hazard in basin area. The study of basin structure and its temporal variation is of key importance in the assessment and mitigation of seismic hazard in basins. Recent investigations of seismic exploration have shown that basins may host a distinct wave train with strong energy. It is usually named as Trapped Wave or Whispering Gallery (WG) Phase. In this study, we image the velocity structure and monitor its temporal changes of Hutubi basin in Xinjiang, Northwestern China with trapped wave generated from an airgun source. Hutubi basin is located at mid-segment of the North Tianshan Mountain. Hutubi aigun signal transmitting station was constructed in May 2013. It is composed of six longlife airgun manufactured by BOLT. Prominent trapped waves with strong energy and low velocity are observed within 40km from the source. The airgun source radiates repeatable seismic signals for years. The trapped waves have relative low frequency 0.15s-4s and apparent low velocities of 200m/s to 1000m/s. In the temporal-frequency diagram, at least two groups of wave train can be identified. Based on the group velocity dispersion curves, we invert the S-wave velocity profile of Hutubi basin. The velocity structure is further verified with synthetic seismogram. Velocity variations and Rayleigh wave polarization changes are useful barometers of underground stress status. We observed that the consistent seasonal variations in velocity and polarization. According to the simulate results, we suggest that the variations may be related to the changes of groundwater level and the formation and disappearance of frozen soil.
Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator.
Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Coldren, L A; Bowers, J E
2011-10-24
We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB. © 2011 Optical Society of America
Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor
Wang, Rui; Tsow, Francis; Zhang, Xuezhi; Peng, Jhih-Hong; Forzani, Erica S.; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo; Tao, Nongjian
2009-01-01
A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of ∼2 pg/mm2 and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring. PMID:22346720
TOMO-ETNA Experiment -Etna volcano, Sicily, investigated with active and passive seismic methods
NASA Astrophysics Data System (ADS)
Luehr, Birger-G.; Ibanez, Jesus M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Patane, Domenico; Zieger, Toni; Cocina, Ornella; Zuccarello, Luciano; Koulakov, Ivan; Roessler, Dirk; Dahm, Torsten
2017-04-01
The TOMO-ETNA experiment, as part of the European Union project "MEDiterranean SUpersite Volcanoes (MED-SUV)", was devised to image the crustal structure beneath Etna by using state of the art passive and active seismic methods. Activities on-land and offshore are aiming to obtain new high-resolution seismic images to improve the knowledge of crustal structures existing beneath the Etna volcano and northeast Sicily up to the Aeolian Islands. In a first phase (June 15 - July 24, 2014) at Etna volcano and surrounding areas two removable seismic networks were installed composed by 80 Short Period and 20 Broadband stations, additionally to the existing network belonging to the "Istituto Nazionale di Geofisica e Vulcanologia" (INGV). So in total air-gun shots could be recorded by 168 stations onshore plus 27 ocean bottom instruments offshore in the Tyrrhenian and Ionian Seas. Offshore activities were performed by Spanish and Italian research vessels. In a second phase the broadband seismic network remained operative until October 28, 2014, as well as offshore surveys during November 19 -27, 2014. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel "Sarmiento de Gamboa" with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes could be recorded and will be analyzed. For resolving a volcanic structure the investigation of attenuation and scattering of seismic waves is important. In contrast to existing studies that are almost exclusively based on S-wave signals emitted by local earthquakes, here air-gun signals were investigated by applying a new methodology based on the coda energy ratio defined as the ratio between the energy of the direct P-wave and the energy in a later coda window. It is based on the assumption that scattering caused by heterogeneities removes energy from direct P-waves that constitutes the earliest possible arrival to any part later in the seismic wave train. As an independent proxy of the scattering strength along the ray path, we measure the peak delay time of a direct P-wave, which is well correlated with the coda energy ratio. As a result the distribution of heterogeneities around Etna could be visualized as the projection of the observation in directions of incident rays at the stations. Increased seismic scattering could be detected in the volcano and east of it. The strong heterogeneous zone towards the east coast of Sicily supports earlier observations, and is interpreted as a potential signature of the eastward sliding volcano flank. Beside the investigation of P-wave scattering the new seismic tomography software PARTOS (Passive Active Ray Tomography Software) has been developed based on a joint inversion of active and passive seismic sources. With PARTOS real data inversion has been carried out using three different subsets: i) active data; ii) passive data; and iii) joint dataset, permitting to obtain a new tomographic approach of that region.
Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Haifeng; Lu, Bingqiang; Wei, Shuiqiang; Bao, Mi; Wen, Yanxuan; Wang, Fan
2012-07-01
Large arrays of well-aligned Mn oxide nanowires were prepared by electrodeposition using anodic aluminum oxide templates. The sizes of nanowires were tuned by varying the electrotype solution involved and the MnO2 nanowires with 10 μm in length were obtained in a neutral KMnO4 bath for 1 h. MnO2 nanowire arrays grown on conductor substance save the tedious electrode-making process, and electrochemical characterization demonstrates that the MnO2 nanowire arrays electrode has good capacitive behavior. Due to the limited mass transportation in narrow spacing, the spacing effects between the neighbor nanowires have show great influence to the electrochemical performance.
Enhanced photovoltaic performance of an inclined nanowire array solar cell.
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2015-11-30
An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.
Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2001-01-01
A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications.
An, Zhe; He, Jing
2011-10-28
The electronic transfer (eT) at bio-interfaces has been achieved by orientating 2D inorganic slabs in a regular arrangement with the slab ab-planes vertical to the electrode substrate. The eT rate is effectively promoted by tuning the nano-micro scale structures of perpendicular LDH arrays. This journal is © The Royal Society of Chemistry 2011
Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin
2016-06-28
Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.
50 CFR 18.118 - What are the mitigation, monitoring, and reporting requirements?
Code of Federal Regulations, 2014 CFR
2014-10-01
... monitoring and research efforts will employ rigorous study designs and sampling protocols in order to provide... mitigation measures for offshore seismic surveys. Any offshore exploration activity expected to include the... 1 µPa. (ii) Ramp-up procedures. For all seismic surveys, including airgun testing, use the following...
50 CFR 18.118 - What are the mitigation, monitoring, and reporting requirements?
Code of Federal Regulations, 2013 CFR
2013-10-01
... monitoring and research efforts will employ rigorous study designs and sampling protocols in order to provide... mitigation measures for offshore seismic surveys. Any offshore exploration activity expected to include the... 1 µPa. (ii) Ramp-up procedures. For all seismic surveys, including airgun testing, use the following...
Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan
2015-04-20
Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less
Enhancing long-term memory with stimulation tunes visual attention in one trial.
Reinhart, Robert M G; Woodman, Geoffrey F
2015-01-13
Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.
2017-12-01
Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.
NASA Astrophysics Data System (ADS)
Tang, G.; Barton, P. J.; Dean, S. M.; Vermeesch, P. M.; Jusuf, M. D.; Henstock, T.; Djajadihardja, Y.; McNeill, L. C.; Permana, H.
2009-12-01
Oceanic subduction along the Sunda trench to the west of Sumatra (Indonesia) shows significant along-strike variations in seismicity. For example, the great M9.3 earthquake in 2004 occurred in the forearc basin north of Simeulue island, rupturing the fault predominantly towards the northwest, while the 2005 Nias earthquake nucleated near the Banyak islands, rupturing towards the southeast (Ammon et al., 2005; Ishii et al. 2005). The gap between these two active areas indicates segmentation of the subduction zone, but the cause of the segmentation remains enigmatic. To investigate the apparent barriers to rupture, two 3-D refraction surveys were conducted in 2008, one, the topic of this study, around Simeulue island and the other to the southeast of Nias island. Seismic data were collected using ocean bottom seismometers and a 12-airgun tuned array with a total capacity of 5420 cu. in., together with high resolution bathymetry data and gravity data. 174,515 traveltimes of first refracted arrivals were picked for the study area, and 128,138 of them were inverted for a model of minimum structure required by the data using the ‘FAST’ method (Zelt et.al, 1998). Resolution tests show that the model is resolvable mostly on a scale of >40 km horizontally. The final velocity model produced has two distinct features: i. the subducted oceanic plates (represented by 6 km/s contours) seem to be discontinuous along strike; ii. the subduction dip angle appears to be steeper in the southern part of the survey area than in the north. The geometric variation in the subducted plate appears to coincide with the segment boundary approximately across the centre of Simeulue island, and may perhaps associated with the segmentation of the seismicity noted from the earthquake record. More accurate velocity models will be developed by jointly inverting traveltimes of first and later arrivals as well as normal incidence data using the tomographic inversion program JIVE-3D (Hobro et.al, 2003). Some passive earthquake data may also be available for the inversion for this area. These new results will provide insights into along-strike variations in subsurface structure and/or physical properties within the Sumatra subduction zone, which maybe related to the observed segmentation.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Aslanian, D.; Sahabi, M.; Moulin, M.; Schnurle, P.; Berglar, K.; Biari, Y.; Feld, A.; Graindorge, D.; Corela, C.; Mehdi, K.; Zourarah, B.; Perrot, J.; Alves Ribeiro, J.; Reichert, C. J.
2011-12-01
The study of conjugate margins is important to test different hypotheses of rifting and initial opening of an ocean. In this scope, seven wide-angle seismic profiles were acquired on the Moroccan Atlantic margin (at the latitudes between 32° and 33° N) together with coincident deep frequency reflection seismic data during the MIRROR cruise in May and June 2011. The main seismic profile is conjugate to an existing wide-angle seismic profile off Nova Scotia (SMART 2). Further objectives of the cruise were to image ocean-continent transition zone, to detect and eventually quantify exhumed upper mantle material present in this zone and to determine the origin of the high amplitude West African Magnetic Anomaly, which is conjugate to the north American East Coast Magnetic Anomaly and can be linked to the opening of the Atlantic. Two of the newly acquired profiles are located perpendicular and five parallel to the Moroccan margin. The seismic profiles are between 130 and 260 km in length and between 28 and 13 ocean-bottom seismometers were deployed on each one. One profile was extended on land by 15 landstations in order to better image the zone of continental thinning. A 4.5 km digital streamer and a 7200 cu inch tuned airgun array were used for the acquisition of the seismic data. Additionally magnetic, bathymetric and high resolution seismic data were acquired in the study region. Preliminary results from tomographic inversion of the first arrivals from the ocean-bottom seismometer data image the zone of crustal thinning from about 25 km to 6 km in the basin along about 70 kilometers of the profiles which are located perpendicular to the margin. The oceanic crust can be divided into 2 regions, based on the lower crustal velocities. Upper mantle velocities are about 8.0 km/s. The coincident reflection seismic data show the fine basement and sedimentary structures including salt tectonics in the basin. The comparative study of the two conjugate profiles on the Moroccan and Nova Scotia margin will give new insights into the original opening of the Atlantic ocean. Further work on this data set will include forward modelling of the wide-angle seismic data, gravity and magnetic modelling.
NASA Astrophysics Data System (ADS)
Trehu, A. M.
2017-12-01
The 2014 event partially filled a well-recognized seismic gap that had not experienced a large earthquake since a pair of devastating M9 events in 1868 and 1877. The rupture sequence was marked by an unusually long and distinct precursory period that was well recorded by onshore seismic and geodetic instruments of the Integrated Plate Boundary Observatory Chile (IPOC). The pattern of foreshock activity, which defined a "classic" Mogi donut, is correlated with a circular residual gravity high that surrounds the patch of greatest slip during the main shock. Aftershocks generally propagated to the south and stopped in a region of relatively low pre-earthquake coupling. The remaining nearly 300-km long seismic gap is correlated with a distinct forearc residual gravity high. The correlation between the pre-, syn- and post-earthquake deformation patterns and the residual gravity anomalies indicates that crustal structure affects the distribution of seismic and aseismic deformation in response to plate convergence. Because the non-uniqueness inherent in modeling gravity data does not allow for a detailed geologic interpretation of the correlation between structure and slip, we conducted an ambitious seismic experiment using the R/V Marcus Langseth to acquire 5000 km of multichannel seismic seismic data using an 8-12.5-km long streamer and a 6600 cubic inch tuned air-gun array. The 45000 shots were also recorded on 70 ocean-bottom and 50 land-based seismometers. Shipboard analysis of the data indicates that the Moho of the Nazca plate is well imaged west of the trench, that deformation is distributed throughout the outer 10 km of the accretionary wedge as the rough topography of the Nazca plate is subducted, and that a reflection tentatively interpreted to be the plate boundary can be imaged continuously from the trench to the coast on at least one transect across the margin. Post-cruise data analysis is underway to process the MCS data using various techniques to determine along-strike continuity of plate boundary reflectivity and to use OBS and onshore large-aperture data to obtain high-resolution models of the crustal velocity structure of the subducting and overriding plates. The PICTURES Science Team incudes investigators in the US, Chile, Germany, France and the UK.
Multibeam Phased Array Antennas
NASA Technical Reports Server (NTRS)
Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien
2004-01-01
In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.
Nearly bound states in the radiation continuum in a circular array of dielectric rods
NASA Astrophysics Data System (ADS)
Bulgakov, Evgeny N.; Sadreev, Almas F.
2018-03-01
We consider E -polarized bound states in the radiation continuum (BICs) in circular periodical arrays of N infinitely long dielectric rods. We find that each true BIC which occurs in an infinite linear array has its counterpart in the circular array as a near-BIC with extremely large quality factor. We argue analytically as well as numerically that the quality factor of the symmetry-protected near-BICs diverges as eλ N, where λ is a material parameter dependent on the radius and the refraction index of the rods. By tuning of the radius of rods, we also find numerically non-symmetry-protected near-BICs. These near-BICs are localized with exponential accuracy outside the circular array, but fill the whole inner space of the array carrying orbital angular momentum.
A microlens array based on polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Xu, Miao; Zhou, Zuowei; Ren, Hongwen; Hee Lee, Seung; Wang, Qionghua
2013-02-01
Using UV light to expose a homogeneous cell containing liquid crystal (LC)/monomer mixture through a patterned photomask, we prepared a polymer network liquid crystal (PNLC) microlens array. In each microlens, the formed polymer network presents a central-symmetrical inhomogeneous morphology and LC exhibits a gradient refractive index distribution. By applying an external voltage to the cell, the gradient of the LC refractive index is changed. As a result, the focal length of the microlens can be tuned. Our PNLC microlens array has the advantages of low operating voltage, easy fabrication, and good stability. This kind of microlens array has potential applications in image processing, optical communications, and switchable 2D/3D displays.
Resonance spectra of diabolo optical antenna arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu; Simpkins, Blake
A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlatedmore » to the shift of the resonance wavelength.« less
Adaptive Injection-locking Oscillator Array for RF Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Daniel
2011-04-19
A highly parallel radio frequency receiver using an array of injection-locking oscillators for on-chip, rapid estimation of signal amplitudes and frequencies is considered. The oscillators are tuned to different natural frequencies, and variable gain amplifiers are used to provide negative feedback to adapt the locking band-width with the input signal to yield a combined measure of input signal amplitude and frequency detuning. To further this effort, an array of 16 two-stage differential ring oscillators and 16 Gilbert-cell mixers is designed for 40-400 MHz operation. The injection-locking oscillator array is assembled on a custom printed-circuit board. Control and calibration is achievedmore » by on-board microcontroller.« less
Miniature infrared hyperspectral imaging sensor for airborne applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl
2017-05-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame.
Infrared hyperspectral imaging miniaturized for UAV applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl
2017-02-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame.
Scalable Engineering of Quantum Optical Information Processing Architectures (SEQUOIA)
2016-12-13
arrays. Figure 4: An 8-channel fiber-coupled SNSPD array. 1.4 Post -fabrication-tunable linear optic fabrication We have analyzed the...performance of the programmable nanophotonic processor (PNP) that is dynamically tunable via post -fabrication active phase tuning to predict the scaling of...various device losses. PACS numbers: 42.50. Ex , 03.67.Dd, 03.67.Lx, 42.50.Dv I. INTRODUCTION Quantum key distribution (QKD) enables two distant authenticated
Automated Camera Array Fine Calibration
NASA Technical Reports Server (NTRS)
Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang
2008-01-01
Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.
Controllable underwater anisotropic oil-wetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yong, Jiale; Chen, Feng, E-mail: chenfeng@mail.xjtu.edu.cn; Yang, Qing
This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.
3D velocity imaging of Hikurangi subduction beneath the Wellington region, New Zealand
NASA Astrophysics Data System (ADS)
Wech, A.; Henrys, S. A.; Sutherland, R.; Seward, A. M.; Stern, T. A.; Sato, H.; Okaya, D. A.; Bassett, D.
2011-12-01
We present first results from the Seismic Array HiKurangi Experiment (SAHKE). This joint project involving institutions from New Zealand, Japan and the USA aims to investigate the subduction zone fault characteristics beneath the southernmost part of New Zealand's North Island. Situated above where the Pacific Plate is subducting beneath the Australian plate at a rate of ~42 mm/yr, the Wellington region provides a unique opportunity to investigate the frictional properties, geometry, and seismic potential of a shallow, locked megathrust fault. Here the coupled plate interface is 20-30 km deep beneath land and can be sampled with onshore-offshore data from 3 sides. An added interest to this project is that the elevated, oceanic, Hikurangi plateau has entered the subduction zone, east of Wellington, but it is still unclear how far the plateau has advanced westward into the subduction zone. SAHKE combines active and passive source data comprising 4 distinct data sets. 1) A dense temporary array of 50 seismometers with ~7 km spacing augmented 25 regional network instruments to record 49 local and 45 teleseismic earthquakes over a four month period. 2) These stations also recorded 69,000 offshore airgun shots from 17 lines crisscrossing two sides of the array. 3) An additional coast-to-coast transect of 50 stations cutting through the temporary array recorded ~2000 offshore shots on either side. 4) 1000 stations with 100m spacing along that same transect separately recorded 12 in-line, 500 kg onshore dynamite explosions. First inspection of the recent onshore shot gathers show excellent signal to noise and a band of three strong reflectors between 20 and 38 km at the western end of the profile. We combine shot and earthquake recordings to simultaneously invert ~750,000 first arrivals for velocity structure and hypocenters in the densely sampled volume. First results from 3D, Vp tomography and relocated hypocenters agree with previous studies and suggest the later weak signals are reflections from the top of the Pacific plate. Our improved velocity model provides a high-resolution geometry of the subducting plate to support interpretation of other phases identified in SAHKE shot gathers.
Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong
2016-01-01
Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting. PMID:26753764
NASA Astrophysics Data System (ADS)
Ip, Flora S.
Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons, the MR counter-rotating current coil is sufficient and demonstrated its simplicity over a phased array in this application.
Design of Complex BPF with Automatic Digital Tuning Circuit for Low-IF Receivers
NASA Astrophysics Data System (ADS)
Kondo, Hideaki; Sawada, Masaru; Murakami, Norio; Masui, Shoichi
This paper describes the architecture and implementations of an automatic digital tuning circuit for a complex bandpass filter (BPF) in a low-power and low-cost transceiver for applications such as personal authentication and wireless sensor network systems. The architectural design analysis demonstrates that an active RC filter in a low-IF architecture can be at least 47.7% smaller in area than a conventional gm-C filter; in addition, it features a simple implementation of an associated tuning circuit. The principle of simultaneous tuning of both the center frequency and bandwidth through calibration of a capacitor array is illustrated as based on an analysis of filter characteristics, and a scalable automatic digital tuning circuit with simple analog blocks and control logic having only 835 gates is introduced. The developed capacitor tuning technique can achieve a tuning error of less than ±3.5% and lower a peaking in the passband filter characteristics. An experimental complex BPF using 0.18µm CMOS technology can successfully reduce the tuning error from an initial value of -20% to less than ±2.5% after tuning. The filter block dimensions are 1.22mm × 1.01mm; and in measurement results of the developed complex BPF with the automatic digital tuning circuit, current consumption is 705µA and the image rejection ratio is 40.3dB. Complete evaluation of the BPF indicates that this technique can be applied to low-power, low-cost transceivers.
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.
Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.
Nine-channel wavelength tunable single mode laser array based on slots.
Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F
2013-04-22
A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.
Apertureless cantilever-free pen arrays for scanning photochemical printing.
Zhou, Yu; Xie, Zhuang; Brown, Keith A; Park, Daniel J; Zhou, Xiaozhu; Chen, Peng-Cheng; Hirtz, Michael; Lin, Qing-Yuan; Dravid, Vinayak P; Schatz, George C; Zheng, Zijian; Mirkin, Chad A
2015-02-25
A novel, apertureless, cantilever-free pen array can be used for dual scanning photochemical and molecular printing. Serial writing with light is enabled by combining self-focusing pyramidal pens with an opaque backing between pens. The elastomeric pens also afford force-tuned illumination and simultaneous delivery of materials and optical energy. These attributes make the technique a promising candidate for maskless high-resolution photopatterning and combinatorial chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiang; Lu, Yang; Lee, Jongho
2016-01-04
Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics formore » memory arrays.« less
MKID digital readout tuning with deep learning
NASA Astrophysics Data System (ADS)
Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.
2018-04-01
Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.
Development of Towed Marine Seismic Vibrator as an Alternative Seismic Source
NASA Astrophysics Data System (ADS)
Ozasa, H.; Mikada, H.; Murakami, F.; Jamali Hondori, E.; Takekawa, J.; Asakawa, E.; Sato, F.
2015-12-01
The principal issue with respect to marine impulsive sources to acquire seismic data is if the emission of acoustic energy inflicts harm on marine mammals or not, since the volume of the source signal being released into the marine environment could be so large compared to the sound range of the mammals. We propose a marine seismic vibrator as an alternative to the impulsive sources to mitigate a risk of the impact to the marine environment while satisfying the necessary conditions of seismic surveys. These conditions include the repeatability and the controllability of source signals both in amplitude and phase for high-quality measurements. We, therefore, designed a towed marine seismic vibrator (MSV) as a new type marine vibratory seismic source that employed the hydraulic servo system for the controllability condition in phase and in amplitude that assures the repeatability as well. After fabricating a downsized MSV that requires the power of 30 kVA at a depth of about 250 m in water, several sea trials were conducted to test the source characteristics of the downsized MSV in terms of amplitude, frequency, horizontal and vertical directivities of the generated field. The maximum sound level satisfied the designed specification in the frequencies ranging from 3 to 300 Hz almost omnidirectionally. After checking the source characteristics, we then conducted a trial seismic survey, using both the downsized MSV and an airgun of 480 cubic-inches for comparison, with a streamer cable of 2,000m long right above a cabled earthquake observatory in the Japan Sea. The result showed that the penetration of seismic signals generated by the downsized MSV was comparable to that by the airgun, although there was a slight difference in the signal-to-noise ratio. The MSV could become a versatile source that will not harm living marine mammals as an alternative to the existing impulsive seismic sources such as airgun.
Bailey, Norman G.; Aaron, John M.
1982-01-01
During June 1979, the U.S. Geological Survey (USGS) collected 4,032 km of single-channel seismic-reflection data from the Atlantic Continental Slope and Rise off New England. The work was conducted aboard R/V JAMES M. GILLISS (cruise GS-7903-3). The purpose of the cruise was to determine the characteristics of mass sediment movement on the Continental Slope, and to study and correlate the stratigraphy of the Jurassic and Cretaceous strata lying north and south of the New England seamount chain.Seismic instrumentation included 40-in3, 160-in3, and 500-in3 airguns; a Teledyne 800-joule minisparker system; a 3-5-kHz to 7-kHz, hull-mounted tunable transducer; and a 7-channel analog tape recorder.Navigation control during the cruise was provided by a Western Integrated Navigation System capable of integrating satellite, rho-rho Loran-C, hyperbolic Loran-C, gyro compass, and doppler speed-log position data. The prime navigation sensor was the rho-rho Loran-C automatically recorded at 20-second intervals and manually plotted every 15 minutes, backed up by hyperbolic Loran-C fixes automatically recorded every 5 minutes.Of the 4,032 km of data collected, 3,257 km of 3-5-kHz, minisparker and 40-in3 airgun were for the sediment-slump studand the other 775 km of 3-5-kHz, minis parker, 160-in3 air gun and 500-in3 airgun were for the deep stratigraphy study. Overall, the quality of the data is excellent with good resolution and penetration.The original data may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Copies of the data can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).
Lei, Ting; Poon, Andrew W
2013-01-28
We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.
2017-07-01
We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.
Imaging spectroscopy using embedded diffractive optical arrays
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford
2017-09-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame. This system spans the SWIR and MWIR bands with a single optical array and focal plane array.
Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.
2016-11-01
Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.
Extendable nickel complex tapes that reach NIR absorptions.
Audi, Hassib; Chen, Zhongrui; Charaf-Eddin, Azzam; D'Aléo, Anthony; Canard, Gabriel; Jacquemin, Denis; Siri, Olivier
2014-12-14
Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region.
Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.
Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E
2009-06-22
An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nylund, Gustav; Storm, Kristian; Torstensson, Henrik
2013-12-04
We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.
Preparing ZEUS-2 for Observing Run at the APEX Telescope
NASA Astrophysics Data System (ADS)
Dahlin, Patrick; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.
2017-01-01
ZEUS-2 is a direct detection grating spectrometer that was designed to maximize sensitivity for the detection of the far-infrared fine-structure lines from distant star forming galaxies as they are redshifted into the short submillimeter windows. ZEUS-2 employs two NIST TES bolometer arrays as its detector: one tuned to 400 μm and the other that consists of two sub-arrays, one tuned to 215 μm and the other tuned to 645 μm. Therefore, by placing bandpass filters directly above the detector ZEUS-2 can address four telluric windows (200 μm, 350 μm, 450 μm, and 650 μm) simultaneously on extended objects, and two windows (200 and 650 μm, or 350 and 450 μm) simultaneously on point sources. ZEUS-2 has now been deployed four times on the APEX telescope in Chile and demonstrated background limited performance both at 350 and 450 μm. As part of my NSF REU experience at Cornell in the summer of 2016, I helped with testing of ZEUS-2 in the lab and improving components for its use on the telescope. This poster will cover the principles of the ZEUS-2 instrument and some of the recent scientific results.
2016-03-31
The SiGe receiver has two stages of programmable RF filtering and one stage of IF filtering. Each filter can be tuned in center frequency and...distribution unlimited. transmit, with an IF to RF upconversion chain that is split to programmable phase shifters and VGAs at each output port. Figure 2...These are optimized to run on medium grade Field Programmable Gate Arrays (FPGAs), such as the Altera Arria 10, and represent a few of the many
A 0.7 V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size
NASA Astrophysics Data System (ADS)
Chen, Jun-Da; Zhang, Jie
2017-10-01
The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is -110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about -1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about -180.7 and -191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... Survey As part of the feasibility study for Shell's Alaskan prospects a survey is required to identify...): (1) Tolerance Numerous studies have shown that pulsed sounds from airguns are often readily detectable in the water at distances of many kilometers. Numerous studies have also shown that marine mammals...
Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.
NASA Astrophysics Data System (ADS)
Wason, H.; Herrmann, F. J.; Kumar, R.
2016-12-01
Current efforts towards dense shot (or receiver) sampling and full azimuthal coverage to produce high resolution images have led to the deployment of multiple source vessels (or streamers) across marine survey areas. Densely sampled marine seismic data acquisition, however, is expensive, and hence necessitates the adoption of sampling schemes that save acquisition costs and time. Compressed sensing is a sampling paradigm that aims to reconstruct a signal--that is sparse or compressible in some transform domain--from relatively fewer measurements than required by the Nyquist sampling criteria. Leveraging ideas from the field of compressed sensing, we show how marine seismic acquisition can be setup as a compressed sensing problem. A step ahead from multi-source seismic acquisition is simultaneous source acquisition--an emerging technology that is stimulating both geophysical research and commercial efforts--where multiple source arrays/vessels fire shots simultaneously resulting in better coverage in marine surveys. Following the design principles of compressed sensing, we propose a pragmatic simultaneous time-jittered time-compressed marine acquisition scheme where single or multiple source vessels sail across an ocean-bottom array firing airguns at jittered times and source locations, resulting in better spatial sampling and speedup acquisition. Our acquisition is low cost since our measurements are subsampled. Simultaneous source acquisition generates data with overlapping shot records, which need to be separated for further processing. We can significantly impact the reconstruction quality of conventional seismic data from jittered data and demonstrate successful recovery by sparsity promotion. In contrast to random (sub)sampling, acquisition via jittered (sub)sampling helps in controlling the maximum gap size, which is a practical requirement of wavefield reconstruction with localized sparsifying transforms. We illustrate our results with simulations of simultaneous time-jittered marine acquisition for 2D and 3D ocean-bottom cable survey.
Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400
Preliminary results of the Source China Sea passive source OBS array experiment
NASA Astrophysics Data System (ADS)
Yang, T.; Liu, C.; Pei, Y.; Xia, S.
2013-12-01
The Scarborough, or Huangyan, Seamount chain in South China Sea (SCS) represents an extreme case of the global mid-ocean ridge system where the magmatism continues for many million years after the cessation of spreading. To understand this unique process, the South China Sea Deep (SCSD) program funded an experiment deploying a passive source OBS array to image the lithospheric structure beneath the extinct ridge. In April 2012, 18 passive source OBSs, including 15 Guralp CMG-40T OBS and 3 I-4C OBS, were deployed around the Huangyan Island for one year. 11 OBSs were successfully recovered this April, and their data are being processed. Here we present some preliminary results from analyses of this dataset, including the general quality of three-component seismograms, characteristics of seafloor ambient noise spectra, determining the OBS orientation from the Rayleigh wave polarization, and the dispersion analysis of Rayleigh waves. We found that, for most stations, seismograms from teleseismic, regional and local events are generally good with the horizontal records being comparable with vertical component. The noise levels in these seafloor stations are much higher than land-based stations, especially in shorter periods, likely suggesting the direct and stronger impact from the tempestuous SCS. Applications of more sophisticated seismic techniques such as surface wave tomography, seismic anisotropy, receiver function and ambient noise cross-correlation are underway. In addition to the low recovery rate, there are other lessons learned from this experiment. For example, at least two stations have detectable timing problems; Airgun shots should have been used to constrain the timings and orientations in both deployment and recovery. It is still challenging and costly to carry out long-term passive source seismic observations in deep sea.
Ultrafast Pulse Generation in an Organic Nanoparticle-Array Laser.
Daskalakis, Konstantinos S; Väkeväinen, Aaro I; Martikainen, Jani-Petri; Hakala, Tommi K; Törmä, Päivi
2018-04-11
Nanoscale coherent light sources offer potentially ultrafast modulation speeds, which could be utilized for novel sensors and optical switches. Plasmonic periodic structures combined with organic gain materials have emerged as promising candidates for such nanolasers. Their plasmonic component provides high intensity and ultrafast nanoscale-confined electric fields, while organic gain materials offer fabrication flexibility and a low acquisition cost. Despite reports on lasing in plasmonic arrays, lasing dynamics in these structures have not been experimentally studied yet. Here we demonstrate, for the first time, an organic dye nanoparticle-array laser with more than a 100 GHz modulation bandwidth. We show that the lasing modulation speed can be tuned by the array parameters. Accelerated dynamics is observed for plasmonic lasing modes at the blue side of the dye emission.
Wettability control of micropore-array films by altering the surface nanostructures.
Chang, Chi-Jung; Hung, Shao-Tsu
2010-07-01
By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.
Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.
Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley
2016-03-07
Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.
Receptor arrays optimized for natural odor statistics.
Zwicker, David; Murugan, Arvind; Brenner, Michael P
2016-05-17
Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) Each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction, and it also suggests ways to improve artificial sensor arrays.
Magnetic and plasmonic properties in noncompensated Fe-Sn codoped In2O3 nanodot arrays
NASA Astrophysics Data System (ADS)
Wang, Ya-Nan; Jiang, Feng-Xian; Yan, Li-Juan; Xu, Xiao-Hong
2018-05-01
The noncompensated Fe-Sn codoped In2O3 nanodot arrays with the Sn concentration of 0.02, 0.05, 0.1, 0.15 and 0.2 were deposited on Al2O3 (0 0 0 1) substrates using laser molecular beam epitaxy with the aid of anodic aluminium oxide templates. The structural and compositional results reveal that the nanodot arrays show the single phase cubic In2O3 structure and Sn and Fe dopant ions substitute In3+ sites of the In2O3 lattice with a tetravalence (Sn4+) and a mixed-valence (Fe2+/Fe3+), respectively. All the nanodot arrays exhibit the obvious room temperature ferromagnetic behavior and the localized surface plasmon resonance (LSPR) band. Moreover, the ferromagnetism and the LSPR absorption peak can be tuned by the Sn concentration or sizes of nanodot arrays.
Superconducting micro-resonator arrays with ideal frequency spacing
NASA Astrophysics Data System (ADS)
Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.
2017-12-01
We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.
Predicting plasmonic coupling with Mie-Gans theory in silver nanoparticle arrays
NASA Astrophysics Data System (ADS)
Ranjan, M.
2013-09-01
Plasmonic coupling is observed in the self-aligned arrays of silver nanoparticles grown on ripple-patterned substrate. Large differences observed in the plasmon resonance wavelength, measured and calculated using Mie-Gans theory, predict that strong plasmonic coupling exists in the nanoparticles arrays. Even though plasmonic coupling exists both along and across the arrays, but it is found to be much stronger along the arrays due to shorter interparticle gap and particle elongation. This effect is responsible for observed optical anisotropy in such arrays. Measured red-shift even in the transverse plasmon resonance mode with the increasing nanoparticles aspect ratio in the arrays, deviate from the prediction of Mie-Gans theory. This essentially means that plasmonic coupling is dominating over the shape anisotropy. Plasmon resonance tuning is presented by varying the plasmonic coupling systematically with nanoparticles aspect ratio and ripple wavelength. Plasmon resonance red-shifts with the increasing aspect ratio along the ripple, and blue-shifts with the increasing ripple wavelength across the ripple. Therefore, reported bottom-up approach for fabricating large area-coupled nanoparticle arrays can be used for various field enhancement-based plasmonic applications.
Quantum transport in coupled resonators enclosed synthetic magnetic flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L., E-mail: jinliang@nankai.edu.cn
Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less
Moon, Chan Hong; Kim, Jung-Hwan; Zhao, Tiejun; Bae, Kyongtae Ty
2013-11-01
To develop quantitative dual-tuned (DT) (1) H/(23) Na MRI of human knee cartilage in vivo at 7 Tesla (T). A sensitive (23) Na transceiver array RF coil was developed at 7T. B1 fields generated by the transceiver array coil were characterized and corrected in the (23) Na images. Point spread function (PSF) of the (23) Na images was measured, and the signal decrease due to partial-volume-effect was compensated in [(23) Na] quantification of knee cartilage. SNR and [(23) Na] in anterior femoral cartilage were measured from seven healthy subjects. SNR of (23) Na image with the transceiver array coil was higher than that of birdcage coil. SNR in the cartilage at 2-mm isotropic resolution was 26.80 ± 3.69 (n = 7). B1 transmission and reception fields produced by the DT coil at 7T were similar to each other. Effective full-width-half-maximum of (23) Na image was ∼5 mm at 2-mm resolution. Mean [(23) Na] was 288.13 ± 29.50 mM (n = 7) in the anterior femoral cartilage of normal subjects. We developed a new high-sensitivity (23) Na RF coil for knee MRI at 7T. Our (1) H/(23) Na MRI allowed quantitative measurement of [(23) Na] in knee cartilage by measuring PSF and cartilage thickness from (23) Na and (1) H image, respectively. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan
2015-01-01
Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05544f
NASA Astrophysics Data System (ADS)
Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae
2014-07-01
Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00350k
Intensity dynamics in a waveguide array laser
NASA Astrophysics Data System (ADS)
Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.
2011-02-01
We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.
Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum.
Duckett, Jeffrey G; Pressel, Silvia; P'ng, Ken M Y; Renzaglia, Karen S
2009-01-01
The nineteenth century air-gun explanation for explosive spore discharge in Sphagnum has never been tested experimentally. Similarly, the function of the numerous stomata ubiquitous in the capsule walls has never been investigated. Both intact and pricked Sphagnum capsules, that were allowed to dry out, all dehisced over an 8-12 h period during which time the stomatal guard cells gradually collapsed and their potassium content, measured by X-ray microanalysis in a cryoscanning electron microscope, gradually increased. By contrast, guard cell potassium fell in water-stressed Arabidopsis. The pricking experiments demonstrate that the air-gun notion for explosive spore discharge in Sphagnum is inaccurate; differential shrinkage of the capsule walls causes popping off the rigid operculum. The absence of evidence for a potassium-regulating mechanism in the stomatal guard cells and their gradual collapse before spore discharge indicates that their sole role is facilitation of sporophyte desiccation that ultimately leads to capsule dehiscence. Our novel functional data on Sphagnum, when considered in relation to bryophyte phylogeny, suggest the possibility that stomata first appeared in land plants as structures that facilitated sporophyte drying out before spore discharge and only subsequently acquired their role in the regulation of gaseous exchange.
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...
2015-01-15
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.
2015-01-01
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290
Multicolor photonic crystal laser array
Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming
2015-04-28
A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
Lin, Wei; Zhang, Hao; Liu, Bo; Song, Binbin; Li, Yuetao; Yang, Chengkun; Liu, Yange
2015-01-01
A laser-assisted tuning method of whispering gallery modes (WGMs) in a cylindrical microresonator based on magnetic-fluids-infiltrated microstructured optical fibres (MFIMOFs, where MF and MOF respectively refer to magnetic fluid and microstructured optical fibre) is proposed, experimentally demonstrated and theoretically analysed in detail. The MFIMOF is prepared by infiltrating the air-hole array of the MOF using capillary action effect. A fibre-coupling system is set up for the proposed MFIMOF-based microresonator to acquire an extinction ratio up to 25 dB and a Q-factor as large as 4.0 × 104. For the MF-infiltrated MOF, the light propagating in the fibre core region would rapidly spread out and would be absorbed by the MF-rod array cladding to induce significant thermal effect. This has been exploited to achieve a WGM resonance wavelength sensitivity of 0.034 nm/mW, which is ~20 times higher than it counterpart without MF infiltration. The wavelength response of the resonance dips exhibit linear power dependence, and owing to such desirable merits as ease of fabrication, high sensitivity and laser-assisted tunability, the proposed optical tuning approach of WGMs in the MFIMOF would find promising applications in the areas of optical filtering, sensing, and signal processing, as well as future all-optical networking systems. PMID:26632445
NASA Astrophysics Data System (ADS)
Hu, Wenyuan; Dong, Faqin; Zhang, Jing; Liu, Mingxue; He, Huichao; Wu, Yadong; Yang, Dingming; Deng, Hongquan
2018-06-01
Special TiO2 arrays with exposed facets were prepared in different solvents by low- temperature solvothermal synthesis. The morphology, phase and photocatalytic performance influenced by the various solvent polarities were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra and electrochemical testing. The results show that differences of solvent polarity are the main force driving differences in array growth; therefore, anatase TiO2 arrays with different crystal facets can be synthesized by tuning solvent polarity. TiO2 arrays prepared in cyclohexane are the best at oxidizing methyl orange through photocatalysis, followed by arrays prepared in toluene and ethanol. Arrays prepared in toluene are the best at reducing Cr(VI) photocatalytically, followed by those prepared in cyclohexane and ethanol. These differences in photocatalytic power are due to the ratio among the different crystal facets that are exposed, which affects the migration behavior of the photogenerated electrons and holes. In addition, the probable growth mechanisms of self-assembled ordered TiO2 arrays in different solvents are described.
NASA Astrophysics Data System (ADS)
Zhang, Lifeng; He, Wenjie; Shen, Kechao; Liu, Yi; Guo, Shouwu
2018-04-01
Self-standing hierarchical mesoporous MgMoO4 nanosheet-arrays and nano-flowers have been built via the self-assembly of ultrathin mesoporous nanosheets. The arrays and flower nanostructures can be facilely controlled by tuning the surfactant dosage. The formation mechanism of such special nanostructures has also been proposed. The flower structure has larger surface area than the arrays, owing to the more mesoporous nature of the former. Additionally, the as-prepared MgMoO4 nanomaterials not doped by any other ion have important optical properties, that enable the generation of strong red light with excitation wavelengths of 369 and 534 nm and emission of bright green light under irradiation by blue light (423 and 451 nm), demonstrating their potential applications in blue phototherapy and fluorescence labeling.
Optical phased arrays with evanescently-coupled antennas
Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman
2015-03-24
An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).
Laser-phased-array beam steering based on crystal fiber
NASA Astrophysics Data System (ADS)
Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei
2011-06-01
Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.
Survey of Military Pyrotechnics
1991-05-24
ignition of pyrotechnics. Both diode and gas lasers are being evaluated to initiate combustion of compositions such as zirconium-potassium perchlorate...Research on and simulation of the combustion process is being conducted. An air-gun is described which is used to ground test the performance of flares...an acceptable level. Magnesium Powder - Magnesium is one of the most common fuels used in pyrotechnic compositions. Although it has a high combustion
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... to complete the abbreviated 2010 study. L-DEO plans to use one source vessel, the R/V Marcus G... will serve as a spare and will be turned on in case of failure of one of the other airguns. The... [email protected] . NMFS is not responsible for email comments sent to addresses other than the one...
Transceiver-Phased Arrays for Human Brain Studies at 7 T
2013-01-01
The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, Raul; Schatz, George
2014-03-01
The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.
RAID-2: Design and implementation of a large scale disk array controller
NASA Technical Reports Server (NTRS)
Katz, R. H.; Chen, P. M.; Drapeau, A. L.; Lee, E. K.; Lutz, K.; Miller, E. L.; Seshan, S.; Patterson, D. A.
1992-01-01
We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5 inch disk drives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19 inch racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. We review the design decisions, history, and lessons learned from this three year university implementation effort to construct a truly large scale system assembly.
MEMS based hair flow-sensors as model systems for acoustic perception studies
NASA Astrophysics Data System (ADS)
Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco
2006-02-01
Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com; Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501; Jans, Hilde
With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in watermore » experimentally.« less
Spatial variations in the nature of the oceanic plate in the northwestern Pacific margin
NASA Astrophysics Data System (ADS)
Fujie, G.; Kodaira, S.; Shirai, T.; Dannowski, A.; Thorwart, M.; Grevemeyer, I.; Morgan, J. P.; Miura, S.
2016-12-01
Subduction of the oceanic plate plays an important role in the various processes in subduction zones, including arc magmatism and generation of earthquakes. Thus the nature of the incoming plate, such as its relief, thermal state, lithology, and the water content, are considered to shape these subduction zone processes.In 2014 and 2015, to reveal the nature of the incoming plate in the ocean-ward area of the 2011 M9 Tohoku earthquake, we conducted wide-angle seismic surveys in the trench-outer rise region of the Japan Trench. We designed a 600 km long seismic survey line perpendicular to the trench axis and deployed 88 OBSs at intervals of 6 km and shot a tuned airgun array of R/V Kairei.We have applied a traveltime inversion to model the P-wave velocity (Vp) structure. The resulting Vp model shows that Vp within the oceanic crust and the topmost mantle decreases in the vicinity of the trench axis probably due to the plate bending. In addition, we observed low Vp at the top of the oceanic crust in the area of petit spot volcanos. The low Vp area may be related to magma intrusions because we observed several structural interfaces in the shallow area.We found two structural features that we did not anticipate. First, crustal thickness abruptly changes at around the center of our survey line ( 300-km east from the trench axis); crust thickness is 7-km in the west and 6-km in the east. Second, mantle Vp shows significant variations along the survey line, 7.5 km/s in the bend-fault area (western area), 8.0 km/s around the center, 8.5 km/s in the eastern area. Based on the shear wave splitting observed in our data set, we infer that high mantle Vp in the eastern area is related with the changes in the orientation of the mantle anisotropy. Since we do not see any remarkable topographic features indicating the off-ridge activities, we consider that these observed structural features are related with the activities near the ancient spreading ridge when the oceanic plate formed, indicating that the oceanic plate in the NW Pacific margin, the input to the northeastern Japanese island arc, is more complicated here than we previously thought.In this presentation, we will show an overview of the Vp model along the whole profile and detailed seismic structure beneath the petit-spot area derived by the P-to-S converted waves.
NASA Astrophysics Data System (ADS)
Yamashita, M.; Takahashi, N.; Kodaira, S.; Takizawa, K.; No, T.; Miura, S.; Kaneda, Y.
2008-12-01
Imaging of the arc-backarc transition zone is important in relation to the backarc opening process. Shikoku Basin locates between the Kyushu-Palau Ridge and the Izu-Ogasawara Arc, which is an important area to reveal the opening evolution of the backarc basins as a part of the growth process of the Philippine Sea. The Shikoku Basin was in the backarc rifting and spreading stage during about 30-15 Ma (e.g. Okino et al., 1994). High P-wave velocity lower crust is identified in arc-backarc transition zone by refraction survey using OBSs (Takahashi et al., 2007). Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection (MCS) survey using 12,000 cu.in. air gun and 5 km streamer with 204 ch hydrophones in the Izu-Ogasawara region since 2004. We extracted and mapped the crustal characteristics from poststack and prestack depth migrated profiles. According to obtained profiles, the deformation structure with share component is recognized in arc-backarc transition zone, which located eastern side of Shikoku Basin from Zenisu Ridge to about 500 km south. The maximum width of this deformation zone is about 100 km. The relative displacement of horizon is little; however, it is strongly deformed from upper crust beneath seafloor. This deformation zone indicates the post- rifting activity in east side of Shikoku Basin. On the other hand, some knolls are indicated along the en- echelon arrangement from Izu-Ogasawara arc. Ishizuka et al. (2003) reported post-rifting volcanism with Miocene age in en-echelon arrangement. A part of these knolls are estimated to penetrate at syn-rifting and/or post-rifting stage in backarc opening. By comparing the both side of arc-backarc transition zone, we elucidate syn- and post-rifting effect in Shikoku Basin. We also carried out high density MCS surveys in Shikoku Basin in order to IODP proposal site for reconstruction of magmatic processes since Oligocene in rear arc. In this survey, we use new tuned airgun array with total capacity of 7,800 cu. in. for high resolution imaging. Preliminary result shows that the proposed site is covered with thick sediments, and acoustic basement is seen at depth of 1.5-2 km (1.5-2 sec in two way traveltime) from sea bottom, a part of which is discontinuous. Many clear reflectors can be observed within sediments, some of which corresponding to those identified in previous MCS lines.
Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.
2015-09-01
We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.
NASA Astrophysics Data System (ADS)
Henrys, S. A.; Wech, A.; Sato, H.; Stern, T. A.; Okaya, D. A.; Iwasaki, T.; Savage, M. K.; Mochizuki, K.; Kurashimo, E.; Sutherland, R.
2013-12-01
We present a preliminary 3D Vp model from the Seismic Array HiKurangi Experiment (SAHKE). This joint project involving New Zealand, Japan, and US institutions aims to investigate the subduction zone fault characteristics beneath Wellington. Situated above where the Pacific Plate is subducting beneath the Australian plate at a rate of c. 42 mm/yr, the Wellington region provides a unique opportunity to investigate the frictional properties, geometry, and seismic potential of a shallow, locked megathrust fault. Here the coupled plate interface is 20-30 km deep beneath land and can be sampled with onshore/offshore data from 3 sides. We have published a 2D Vp model [Henrys et al., 2013] incorporating coast-to-coast onshore-offshore transect of 50 stations and utilising first arrivals from 2000 offshore MCS shots on either side. The transect velocity model also combined first arrivals from 800 stations with 100 m spacing recorded from 12 in-line, 500 kg onshore dynamite explosions. We have expanded the transect data to now include (i) first arrivals from the dense temporary array of 50 seismometers with c. 7 km spacing augmented with 25 regional network instruments to record 49 local and 45 teleseismic earthquakes over a four month period and (ii), 69,000 offshore airgun shots from 17 MCS lines crisscrossing two sides of the array. We combine all shot and earthquake recordings to simultaneously invert c. 750,000 first arrivals for velocity structure and hypocenters in the densely sampled volume. First results from 3D, Vp tomography and relocated hypocenters provide improved resolution over previous studies. Our improved velocity model provides a high-resolution geometry of the subducting plate to support interpretation of other phases identified in SAHKE shot gathers and local earthquakes. Henrys, S., A. Wech, R. Sutherland, T. Stern, M. Savage, H. Sato, K. Mochizuki, T. Iwasaki, D. Okaya, A. Seward, B. Tozer, J. Townend, E. Kurashimo, T. Iidaka, and T. Ishiyama (2013), SAHKE geophysical transect reveals crustal and subduction zone structure at the southern Hikurangi margin, New Zealand, Geochemistry, Geophysics, Geosystems.
Actively addressed single pixel full-colour plasmonic display
NASA Astrophysics Data System (ADS)
Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis
2017-05-01
Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video.
Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS
2015-01-01
We present metallic nanohole arrays fabricated on suspended membranes as an optofluidic substrate. Millimeter-sized suspended nanohole arrays were fabricated using nanoimprint lithography. We demonstrate refractive-index-based tuning of the optical spectra using a sucrose solution for the optimization of SERS signal intensity, leading to a Raman enhancement factor of 107. Furthermore, compared to dead-ended nanohole arrays, suspended nanohole arrays capable of flow-through detection increased the measured SERS signal intensity by 50 times. For directed transport of analytes, we present a novel methodology utilizing surface tension to generate spontaneous flow through the nanoholes with flow rates of 1 μL/min, obviating the need for external pumps or microfluidic interconnects. Using this method for SERS, we obtained a 50 times higher signal as compared to diffusion-limited transport and could detect 100 pM 4-mercaptopyridine. The suspended nanohole substrates presented herein possess a uniform and reproducible geometry and show the potential for improved analyte transport and SERS detection. PMID:25678744
Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.
Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I
2011-03-22
We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.
Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter
NASA Astrophysics Data System (ADS)
Wang, Xianjun; Meng, Hongyun; Liu, Shuai; Deng, Shuying; Jiao, Tao; Wei, Zhongchao; Wang, Faqiang; Tan, Chunhua; Huang, Xuguang
2018-04-01
In this paper, we numerically investigate the band-stop properties of single- or few-layers doped graphene ribbon arrays operating in the mid-infrared region by finite-difference time-domain method (FDTD). A perfect band-stop filter with extinction ratio (ER) ∼17 dB, 3 dB bandwidth ∼200 nm and the resonance notch located at 6.64 μm can be achieved. And desired working regions can be obtained by tuning the Fermi level (E f ) of the graphene ribbons and the geometrical parameters of the structure. Besides, by tuning the Fermi level of odd or even graphene ribbons with terminal gate voltage, we can achieve a dual-circuit switch with four states combinations of on-to-off. Furthermore, the multiple filter notches can be achieved by stacking few-layers structure, and the filter dips can be dynamically tuned to achieve the tunability and selective characteristics by tuning the Fermi-level of the graphene ribbons in the system. We believe that our proposal has the potential applications in selective filters and active plasmonic switching in the mid-infrared region.
Adaptive microlens array based on electrically charged polyvinyl chloride/dibutyl phthalate gel
NASA Astrophysics Data System (ADS)
Xu, Miao; Ren, Hongwen
2016-09-01
We prepared an adaptive microlens array (MLA) using a polyvinyl chloride/dibutyl phthalate gel and an indium-tin-oxide (ITO) glass substrate. The gel forms a membrane on the glass substrate and the ITO electrode has a ring array pattern. When the membrane is electrically charged by a DC voltage, the surface of the membrane above each circular electrode in the ring array can be deformed with a convex shape. As a result, the membrane functions as an MLA. By applying a voltage from 20 to ˜65 V to the electrode, the focal length of each microlens can be tuned from 300 to ˜160 μm. The dynamic response time can by reduced largely by changing the polarity of the DC voltage. Due to the advantages of optical isotropy, compact structure, and good stability, our MLA has potential applications in imaging, biometrics, and electronic displays.
Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier
2015-05-04
Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.
Wu, Jun
2018-03-01
The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.
NASA Astrophysics Data System (ADS)
Kang, Lu; Chen, Hui; Yang, Zhong-Jian; Yuan, Yongbo; Huang, Han; Yang, Bingchu; Gao, Yongli; Zhou, Conghua
2018-05-01
Straight silver nanowires were synthesized by accelerated oxidization and then aligned into ordered arrays by off-center spin-coating. Seesaw-like behavior was observed in the polarized transmission spectra of the arrays. With the increment of polarization angle (θP, defined as the angle between axis of nanowires and direction of electric field of light), transmission changed repeatedly with a period of 180°, but it moved to opposite directions between the two regions separated by supporting points locating at 494 nm. The behavior is ascribed to the competition between the extinction behaviors of the two modes of surface plasma polaritons on silver nanowires. One is the longitudinal mode which is excited by long wavelengths and tuned by function of cos2( θ p ) and the other is the transverse mode that is excited by short wavelengths and tuned by function of sin2( θ p ). Simulation was performed based on the finite-difference time domain method. The effect of the nanowire diameter and length (aspect ratio) on the position of the supporting point was studied. As nanowire width increased from 20 nm to 350 nm, the supporting point moved from 400 to 500 nm. While it changed slightly when the nanowire length increased from 3 μm to infinitely long (width fixed at 260 nm). In current study, the position of the supporting point is mainly determined by the nanowire width.
A fractional-N PLL with small ΔK vco wideband LC-VCO and current-matching CP for M-DTV systems
NASA Astrophysics Data System (ADS)
Gao, Haijun; Yan, Yuepeng; Du, Zhankun; Guo, Guiliang; Zeng, Longyue
2011-06-01
An Σ-Δ fractional-N frequency synthesiser with small K vco-variation wideband LC voltage controlled oscillator (LC-VCO) and current-matching charge pump (CP) for Mobile Digital television Systems is presented. To achieve small VCO-gain (K vco) variation, a parallel switched varactor array is proposed to the conventional wideband LC-VCO with switched capacitor array, the value of the switched varactor is pre-set and both arrays are controlled by the same switching code. Perfect current matching and good stability are obtained by the improved CP with an added bias branch circuit for low reference spur. The chip was fabricated in a Taiwan Semiconductor Manufacturing Company (TSMC) 0.25 µm complementary metal-oxide-semiconductor process and draws 12 mA from a 2.5 V supply voltage. The synthesiser covers a wide tuning range from 0.82 to 1.85 GHz with two integrated LC-VCOs, and each VCO achieves a K vco variation of less than 16% with a tuning range of more than 46%. The current mismatch of CP is as low as 1.2%. The measured close-in and out-of-band phase noise are -83.5 dBc/Hz@10 kHz and -127 dBc/Hz@1 MHz, respectively, the reference spur is -76.3 dBc.
Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering
Zheng, Peng; Cushing, Scott K.; Suri, Savan; Wu, Nianqiang
2015-01-01
The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized and propagating surface plasmons. In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the ‘gap’ defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930
2015-01-01
Large area arrays of magnetic, semiconducting, and insulating nanorings were created by coupling colloidal lithography with nanoscale electrodeposition. This versatile nanoscale fabrication process allows for the independent tuning of the spacing, diameter, and width of the nanorings with typical values of 1.0 μm, 750 nm, and 100 nm, respectively, and was used to form nanorings from a host of materials: Ni, Co, bimetallic Ni/Au, CdSe, and polydopamine. These nanoring arrays have potential applications in memory storage, optical materials, and biosensing. A modified version of this nanoscale electrodeposition process was also used to create arrays of split gold nanorings. The size of the split nanoring opening was controlled by the angle of photoresist exposure during the fabrication process and could be varied from 50% down to 10% of the ring circumference. The large area (cm2 scale) gold split nanoring array surfaces exhibited strong polarization-dependent plasmonic absorption bands for wavelengths from 1 to 5 μm. Plasmonic nanoscale split ring arrays are potentially useful as tunable dichroic materials throughout the infrared and near-infrared spectral regions. PMID:25553204
Patterned FePt nanostructures using ultrathin self-organized templates
NASA Astrophysics Data System (ADS)
Deng, Chen Hua; Zhang, Min; Wang, Fang; Xu, Xiao Hong
2018-02-01
Patterned magnetic thin films are both scientifically interesting and technologically useful. Ultrathin self-organized anodic aluminum oxide (AAO) template can be used to fabricate large area nanodot and antidot arrays. The magnetic properties of these nanostructures may be tuned by the morphology of the AAO template, which in turn can be controlled by synthetic parameters. In this work, ultrathin AAO templates were used as etching masks for the fabrication of both FePt nanodot and antidot arrays with high areal density. The perpendicular magnetic anisotropy of L10 FePt thin films are preserved in the nanostructures.
Hybrid III/V silicon photonic source with integrated 1D free-space beam steering.
Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Davenport, M L; Coldren, L A; Bowers, J E
2012-10-15
A chip-scale optical source with integrated beam steering is demonstrated. The chip was fabricated using the hybrid silicon platform and incorporates an on-chip laser, waveguide splitter, amplifiers, phase modulators, and surface gratings to comprise an optical phased array with beam steering across a 12° field of view in one axis. Tuning of the phased array is used to achieve 1.8°(steered axis)×0.6°(nonsteered axis) beam width with 7 dB background suppression for arbitrary beam direction within the field of view.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
.... SUPPLEMENTARY INFORMATION: Background Section 101(a)(5)(D) of the MMPA (16 U.S.C. 1371 (a)(5)(D)) directs the... output and the shape of the frequency spectrum for the single 40-in\\3\\ airgun; thus the predicted safety... under the U.S. Endangered Species Act of 1973 (ESA; 16 U.S.C. 1531 et seq.), including the north Pacific...
Management of asymptomatic intracardiac missiles using echocardiography.
Robison, R J; Brown, J W; Caldwell, R; Stone, K S; King, H
1988-09-01
A child sustained a low-velocity airgun pellet injury to the left ventricle. No cardiovascular compromise was produced. The foreign body was localized by two-dimensional echocardiography to the left ventricular chamber near the mitral valve, and subsequently removed through a left atriotomy incision. In asymptomatic patients, missiles clearly embedded within a chamber wall may be observed; all others should be removed. Two-dimensional echocardiography is recommended for localization.
Thode, Aaron M; Kim, Katherine H; Blackwell, Susanna B; Greene, Charles R; Nations, Christopher S; McDonald, Trent L; Macrander, A Michael
2012-05-01
An automated procedure has been developed for detecting and localizing frequency-modulated bowhead whale sounds in the presence of seismic airgun surveys. The procedure was applied to four years of data, collected from over 30 directional autonomous recording packages deployed over a 280 km span of continental shelf in the Alaskan Beaufort Sea. The procedure has six sequential stages that begin by extracting 25-element feature vectors from spectrograms of potential call candidates. Two cascaded neural networks then classify some feature vectors as bowhead calls, and the procedure then matches calls between recorders to triangulate locations. To train the networks, manual analysts flagged 219 471 bowhead call examples from 2008 and 2009. Manual analyses were also used to identify 1.17 million transient signals that were not whale calls. The network output thresholds were adjusted to reject 20% of whale calls in the training data. Validation runs using 2007 and 2010 data found that the procedure missed 30%-40% of manually detected calls. Furthermore, 20%-40% of the sounds flagged as calls are not present in the manual analyses; however, these extra detections incorporate legitimate whale calls overlooked by human analysts. Both manual and automated methods produce similar spatial and temporal call distributions.
Eskenasy, Diane M.
1980-01-01
The U.S. Geological Survey collected approximately 1,200 km each of airgun and minisparker single-channel seismic-reflection profiles during the R/V FAY cruise 023 in September 1976. The purpose of the 6-day cruise was to study the shallow sedimentary structure south and east of southern Massachusetts and to obtain magnetic and gravity data in these areas and in the vicinity of Great South Channel and Cape Ann. The survey was conducted by the U.S. Geological Survey as part of the Massachusetts Cooperative Marine Geologic Program.Seismic instruments used include a 1Teledyne 600-joule minisparker system and a 20-in3 airgun system. Navigational data during the cruise were obtained by the use of an Integrated Navigation System, which included the following subsystems:Teledyne Loran-C for both range-range and hyperbofic positions;Magnovox s'atellite receiver;Sperry Mark-29 gyrocompass; andHewlett-Packard 21 MX computer system with dual 9-track magnetic tape recording.The original records may be studied at the U.S. Geological Survey offices in Woods Hole, Mass. Copies of the records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder CO 80303- (303-497-6338).
Gedamke, Jason; Gales, Nick; Frydman, Sascha
2011-01-01
The potential for seismic airgun "shots" to cause acoustic trauma in marine mammals is poorly understood. There are just two empirical measurements of temporary threshold shift (TTS) onset levels from airgun-like sounds in odontocetes. Considering these limited data, a model was developed examining the impact of individual variability and uncertainty on risk assessment of baleen whale TTS from seismic surveys. In each of 100 simulations: 10000 "whales" are assigned TTS onset levels accounting for: inter-individual variation; uncertainty over the population's mean; and uncertainty over weighting of odontocete data to obtain baleen whale onset levels. Randomly distributed whales are exposed to one seismic survey passage with cumulative exposure level calculated. In the base scenario, 29% of whales (5th/95th percentiles of 10%/62%) approached to 1-1.2 km range were exposed to levels sufficient for TTS onset. By comparison, no whales are at risk outside 0.6 km when uncertainty and variability are not considered. Potentially "exposure altering" parameters (movement, avoidance, surfacing, and effective quiet) were also simulated. Until more research refines model inputs, the results suggest a reasonable likelihood that whales at a kilometer or more from seismic surveys could potentially be susceptible to TTS and demonstrate that the large impact uncertainty and variability can have on risk assessment.
The Project Serapis: High Resolution Seismic Imagingof The Campi Flegrei Caldera Structure
NASA Astrophysics Data System (ADS)
Zollo, A.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; Musacchio, G.; Serapis Group
During September 2001, an extended active seismic survey has been performed in the gulfs of Naples and Pozzuoli in the framework of the so called SERAPIS (SEismic Re- flection Acquisition Project for Imaging Structures). The project SERAPIS is aimed at the acquisition in the bays of Naples and Pozzuoli, on land and at the sea bottom (using sea bottom seismographs), of seismic signals emitted by a very dense network of airgun sources. The energization is performed through the syncronized implosion of bubbles produced by a battery of three to twelve, 16 liters airguns, mounted on the oceanographic vessel NADIR, owned by the french company IFREMER, which supported the project at no cost. The experiment has been designed to have 2D-3D acquisition lay-outs and its objective is the high resolution imaging of the main shal- low crustal discontinuities underneath the major neapolitan volcanic complexes. In particular some desired targets are the location and spatial definition of the magmatic feeding system of Campi Flegrei and the morphologic reconstruction of the interface separating the shallow volcano-alluvium sediments and the Mesozoic carbonates, re- cently detected and accurately imaged underneath Mt.Vesuvius volcano. A secondary but not less important objective is the denser re-sampling of areas in the Bay of Naples prospicient to Mt.Vesuvius, which have been investigated during the last marine sur- vey using the same vessel in 1997 (MareVes 97). Sixty, three-component stations have been installed on-land in the areas of Campi Flegrei, Mt.Vesuvius and on the islands of Ischia and Procida. In particular, the Mt.Vesuvius stations have been deployed along a 40 km long, SE-NW profile crossing the Campanian Plain toward the limestone out- crops. 72 sea bottom seismographs (OBS) have been installed in the gulfs of Naples and Pozzuoli by the University of Hamburg, with the logistic support of Geopro smbh and Geolab Italia. The OBS network geometry follows the main expected NE-SW and SE-NW structural trends and it has been designed to get 2D/3D images of the crustal structure at a regional scale. A denser 2D network of 35 OBSs has been deployed in the bay of Pozzuoli aimed at detecting and modeling reflected/converted waves from 1 the possible shallow to deep discontinuities beneath the Campi Flegrei caldera. The main target of this particular receiver lay-out is the detailed imaging of the magma chamber top, expected at 4-5 km depth, according to temperature measurements in wells and sparse seismic observations. About 5000 shots have been performed dur- ing the SERAPIS experiment, at an average spatial spacing of 125 m, for a total ship travel path of 620 km. All of the seismic lines have been re-sampled at least twice, using a staggered configuration, which results in a smaller source spacing (less than 65m). In the gulf of Pozzuoli the source array had a geometry of a 5x5 km grid, slightly shifted south with respect to the OBS array. Seismic signals produced by air- guns have been well detected up to 50-60 km distance and the whole Campi Flegrei, Ischia and Procida on-land networks have recorded high quality seismograms pro- duced by the gridded source array in the bay of Pozzuoli. Due to the extended and very dense source and receiver arrays used for SERAPIS, this campaign can provide an innovative contribution to the accurate reconstruction of the Campi Flegrei caldera structure and to the definition of its feeding system at depth. *SERAPIS group: Auger Emmanuel, Bernard Marie-Lise, Bobbio Antonella, Bonagura Mariateresa, Cantore Luciana, Convertito Vincenzo, D'Auria Luca, De Matteis Raffaella, Emolo Anto- nio, Festa Gaetano, Gasparini Paolo, Giberti Grazia, Herrero Andre, Improta Luigi, Lancieri Maria Flora, Nielsen Stefan, Nisii Vincenzo, Russo Guido, Satriano Clau- dio, Simini Mariella, Vassallo Maurizio, Bruno Pier Paolo, Buonocunto Ciro, Capello Marco, Del Pezzo Edoardo, Galluzzo Danilo, Gaudiosi Germana, Giuliana Alessio, Iannaccone Giovanni, La Rocca Mario, Saccorotti Gilberto, Cattaneo Marco, De Mar- tin Martina , Colasanti Gianfranco, Moretti Milena, Marcello Silvestri, Edoardo Gian- domenico, Raffaele Stefano, Graziano Boniolo, Maria Rosaria Tondi, Maistrello Mar- iano, Gomez Antonio, Piccareda Carlo, Paolo Di Bartolomeo, Marco Romanelli, So- phie Peyrat, Christophe Larroque, Claude Pambrun, Tony Monfret, Stephane Gaffet, Mark Noble, Sylvain Nguyen 2
2013-01-01
In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702
NASA Astrophysics Data System (ADS)
Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun
2017-11-01
2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.
Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays
NASA Astrophysics Data System (ADS)
Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.
2013-03-01
Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.
First Tests of Prototype SCUBA-2 Superconducting Bolometer Array
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike
2006-09-01
We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.
Orientation tuning of contrast masking caused by motion streaks.
Apthorp, Deborah; Cass, John; Alais, David
2010-08-01
We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.
The influence of surround suppression on adaptation effects in primary visual cortex
Wissig, Stephanie C.
2012-01-01
Adaptation, the prolonged presentation of stimuli, has been used to probe mechanisms of visual processing in physiological, imaging, and perceptual studies. Previous neurophysiological studies have measured adaptation effects by using stimuli tailored to evoke robust responses in individual neurons. This approach provides an incomplete view of how an adapter alters the representation of sensory stimuli by a population of neurons with diverse functional properties. We implanted microelectrode arrays in primary visual cortex (V1) of macaque monkeys and measured orientation tuning and contrast sensitivity in populations of neurons before and after prolonged adaptation. Whereas previous studies in V1 have reported that adaptation causes stimulus-specific suppression of responsivity and repulsive shifts in tuning preference, we have found that adaptation can also lead to response facilitation and shifts in tuning toward the adapter. To explain this range of effects, we have proposed and tested a simple model that employs stimulus-specific suppression in both the receptive field and the spatial surround. The predicted effects on tuning depend on the relative drive provided by the adapter to these two receptive field components. Our data reveal that adaptation can have a much richer repertoire of effects on neuronal responsivity and tuning than previously considered and suggest an intimate mechanistic relationship between spatial and temporal contextual effects. PMID:22423001
Zhou, Kun; Cheng, Qiang; Song, Jinlin; Lu, Lu; Jia, Zhihao; Li, Junwei
2018-01-01
We numerically investigate the broadband perfect infrared absorption by tuning epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances of multilayer indium tin oxide nanowires (ITO NWs). The monolayer ITO NWs array shows intensive absorption at ENZ and ENP wavelengths for p polarization, while only at the ENP wavelength for s polarization. Moreover, the ENP resonances are almost omnidirectional and the ENZ resonances are angularly dependent. Therefore, the absorption bandwidth is broader for p polarization than that for s polarization when polarized waves are incident obliquely. The ENZ resonances can be tuned by altering the doping concentration and volume filling factor of ITO NWs. However, the ENP resonances only can be tuned by changing the doping concentration of ITO NWs, and volume filling factor impacts little on the ENP resonances. Based on the strong absorption properties of each layer at their own ENP and ENZ resonances, the tuned absorption of the bilayer ITO NWs with the different doping concentrations can be broader and stronger. Furthermore, multilayer ITO NWs can achieve broadband perfect absorption by controlling the doping concentration, volume filling factor, and length of the NWs in each layer. This study has the potential to apply to applications requiring efficient absorption and energy conversion.
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-01-01
The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).
Experimental realization of a metamaterial detector focal plane array.
Shrekenhamer, David; Xu, Wangren; Venkatesh, Suresh; Schurig, David; Sonkusale, Sameer; Padilla, Willie J
2012-10-26
We present a metamaterial absorber detector array that enables room-temperature, narrow-band detection of gigahertz (GHz) radiation in the S band (2-4 GHz). The system is implemented in a commercial printed circuit board process and we characterize the detector sensitivity and angular dependence. A modified metamaterial absorber geometry allows for each unit cell to act as an isolated detector pixel and to collectively form a focal plane array . Each pixel can have a dedicated microwave receiver chain and functions together as a hybrid device tuned to maximize the efficiency of detected power. The demonstrated subwavelength pixel shows detected sensitivity of -77 dBm, corresponding to a radiation power density of 27 nW/m(2), with pixel to pixel coupling interference below -14 dB at 2.5 GHz.
Metallic stereostructured layer: An approach for broadband polarization state manipulation
NASA Astrophysics Data System (ADS)
Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu
2014-11-01
In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.
Thompson, Paul M.; Brookes, Kate L.; Graham, Isla M.; Barton, Tim R.; Needham, Keith; Bradbury, Gareth; Merchant, Nathan D.
2013-01-01
Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km2 study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5–10 km, at received peak-to-peak sound pressure levels of 165–172 dB re 1 µPa and sound exposure levels (SELs) of 145–151 dB re 1 µPa2 s−1. However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites. PMID:24089338
Fully parallel write/read in resistive synaptic array for accelerating on-chip learning
NASA Astrophysics Data System (ADS)
Gao, Ligang; Wang, I.-Ting; Chen, Pai-Yu; Vrudhula, Sarma; Seo, Jae-sun; Cao, Yu; Hou, Tuo-Hung; Yu, Shimeng
2015-11-01
A neuro-inspired computing paradigm beyond the von Neumann architecture is emerging and it generally takes advantage of massive parallelism and is aimed at complex tasks that involve intelligence and learning. The cross-point array architecture with synaptic devices has been proposed for on-chip implementation of the weighted sum and weight update in the learning algorithms. In this work, forming-free, silicon-process-compatible Ta/TaO x /TiO2/Ti synaptic devices are fabricated, in which >200 levels of conductance states could be continuously tuned by identical programming pulses. In order to demonstrate the advantages of parallelism of the cross-point array architecture, a novel fully parallel write scheme is designed and experimentally demonstrated in a small-scale crossbar array to accelerate the weight update in the training process, at a speed that is independent of the array size. Compared to the conventional row-by-row write scheme, it achieves >30× speed-up and >30× improvement in energy efficiency as projected in a large-scale array. If realistic synaptic device characteristics such as device variations are taken into an array-level simulation, the proposed array architecture is able to achieve ∼95% recognition accuracy of MNIST handwritten digits, which is close to the accuracy achieved by software using the ideal sparse coding algorithm.
Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4 μm.
Xie, Feng; Caneau, C; Leblanc, H; Ho, M-T; Zah, C
2015-09-01
We present a quantum cascade laser structure with an ultra-broad gain profile that covers the wavelength range from 6.5 to 10.4 μm. In a grating-tuned external cavity, we demonstrated continuous tuning from 1027 cm(-1) to 1492 cm(-1) with this broad gain laser chip. We also fabricated distributed feedback quantum cascade laser arrays with this active region design and varied grating periods. We demonstrated single wavelength lasing from 962 (10.4) to 1542 cm(-1) (6.5 μm). The frequency coverage (580 cm(-1)) is about 46% of center frequency.
Tuning Parameters in Heuristics by Using Design of Experiments Methods
NASA Technical Reports Server (NTRS)
Arin, Arif; Rabadi, Ghaith; Unal, Resit
2010-01-01
With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.
Yao, Lingmin; Pan, Zhongbin; Zhai, Jiwei; Chen, Haydn H D
2017-03-23
Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO 3 (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates. The details for controlling the dispersion of the nanorod array, the orientation and the aspect ratio are also discussed. It is found that the alkaline treatment of the TiO 2 (TO) nanorod array, rather than the completing transformation into sodium titanate, favors the transformation of the TO into the BT nanorod array, as well as protecting the glass-made substrate. The dispersity of the nanorod array can be controlled by the introduction of a glycol ether-deionized water mixed solvent and soluble salts. Moreover, the orientation of the nanorod arrays could be tuned by the ionic strength of the solution. This novel BT nanorod array was used as a filler in a nanocomposite capacitor, demonstrating that a large energy density (11.82 J cm -3 ) can be achieved even at a low applied electric field (3200 kV cm -1 ), which opens us a new application in nanocomposite capacitors.
Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires
NASA Astrophysics Data System (ADS)
Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.
2017-04-01
Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Manipulating Abrikosov vortices with soft magnetic stripes
Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...
2017-05-22
Here, tuning the polarization of a periodic array of magnetic stripes on top of a superconducting film allows control of Abrikosov vortex motion. Using direct magneto-optical imaging of the vortex patterns, we demonstrate that the proximity of the magnetic stripe ends to the edges of the superconducting film can strongly alter the vortex dynamics. We observe qualitatively different vortex behavior when the stripes overlap with the film edges. From the resulting unique magnetic flux patterns, we calculate the magnetic pinning strength of our stripe array and study effects of the modified edge barrier on vortex guidance and gating that resultmore » from different polarizations of the stripes .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Manipulating Abrikosov vortices with soft magnetic stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.
Here, tuning the polarization of a periodic array of magnetic stripes on top of a superconducting film allows control of Abrikosov vortex motion. Using direct magneto-optical imaging of the vortex patterns, we demonstrate that the proximity of the magnetic stripe ends to the edges of the superconducting film can strongly alter the vortex dynamics. We observe qualitatively different vortex behavior when the stripes overlap with the film edges. From the resulting unique magnetic flux patterns, we calculate the magnetic pinning strength of our stripe array and study effects of the modified edge barrier on vortex guidance and gating that resultmore » from different polarizations of the stripes .« less
Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings.
Idris, Nazirul A; Yoshizawa, Katsumi; Tomomatsu, Yasunori; Sudo, Makoto; Hajikano, Tadashi; Kubo, Ryogo; Zervas, Georgios; Tsuda, Hiroyuki
2016-01-11
We propose an ultra-broadband full-mesh wavelength router supporting the T- and O-bands using 3 stages of cascaded arrayed waveguide gratings (AWGs). The router architecture is based on a combination of waveband and channel routing by coarse and fine AWGs, respectively. We fabricated several T-band-specific silica-based AWGs and quantum dot semiconductor optical ampliers as part of the router, and demonstrated 10 Gbps data transmission for several wavelengths throughout a range of 7.4 THz. The power penalties were below 1 dB. Wavelength routing was also demonstrated, where tuning time within a 9.4-nm-wide waveband was below 400 ms.
GaAs laser diode pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Conant, L. C.; Reno, C. W.
1974-01-01
A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.
Adaptive and mobile ground sensor array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer
The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomousmore » deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.« less
Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.
Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang
2015-02-14
Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.
Self-assembled pit arrays as templates for the integration of Au nanocrystals in oxide surfaces.
Konstantinović, Z; Sandiumenge, F; Santiso, J; Balcells, Ll; Martínez, B
2013-02-07
We report on the fabrication of long-range ordered arrays of Au nanocrystals (sub-50 nm range) on top of manganite (La(2/3)Sr(1/3)MnO(3)) thin films achieving area densities around 2 × 10(10) gold nanocrystals per cm(2), well above the densities achievable by using conventional nanofabrication techniques. The gold-manganite interface exhibits excellent conduction properties. Long-range order is achieved by a guided self-assembling process of Au nanocrystals on self-organized pit-arrays acting as a template for the nucleation of gold nanocrystals. Self-organization of pits on the manganite film surface promoted by the underlying stepped SrTiO(3) substrate is achieved by a fine tuning of the growth kinetic pathway, taking advantage of the unusual misfit strain relaxation behaviour of manganite films.
Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties.
Sinha, Godhuli; Panda, Subhendu K; Datta, Anuja; Chavan, Padmakar G; Shinde, Deodatta R; More, Mahendra A; Joag, D S; Patra, Amitava
2011-06-01
Here, we report the synthesis of vertically aligned gallium sulfide (GaS) nanohorn arrays using simple vapor-liquid-solid (VLS) method. The morphologies of GaS nano and microstructures are tuned by controlling the temperature and position of the substrate with respect to the source material. A plausible mechanism for the controlled growth has been proposed. It is important to note that the turn-on field value of GaS nanohorns array is found to be the low turn-on field 4.2 V/μm having current density of 0.1 μA/cm(2). The striking feature of the field emission behavior of the GaS nanohorn arrays is that the average emission current remains nearly constant over long time without any degradation. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Hazari, A.; Jahangir, S.
2018-02-01
GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have unique properties and present the potential to realize useful devices. The active light-emitting region in the nanowire heterostructures are usually InGaN disks, whose composition can be varied to tune the emission wavelength. We have demonstrated light emitting diodes and edgeemitting diode lasers with power outputs 10mW with emission in the 600-1300nm wavelength range. These light sources are therefore useful for a variety of applications, including silicon photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are described.
Loss-induced super scattering and gain-induced absorption.
Feng, Simin
2016-01-25
Giant transmission and reflection of a finite bandwidth are demonstrated at the same wavelength when the electromagnetic wave is incident on a subwavelength array of parity-time (PT) symmetric dimers embedded in a metallic film. Remarkably, this phenomenon vanishes if the metallic substrate is lossless while keeping other parameters unchanged. Moreover super scattering can also occur when increasing the loss of the dimers while keeping the gain unchanged. When the metafilm is adjusted to the vicinity of an exceptional point, tuning either the substrate dissipation or the loss of the dimers can lead to supper scattering in stark contrast to what would be expected in conventional systems. In addition, increasing the gain of the dimers can increase the absorption near the exceptional point. These phenomena indicate that the PT-synthetic plasmonic metafilm can function as a thinfilm PT-plasmonic laser or absorber depending on the tuning parameter. One implication is that super radiation is possible from a cavity by tuning cavity dissipation or lossy element inside the cavity.
Actively addressed single pixel full-colour plasmonic display
Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis
2017-01-01
Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video. PMID:28488671
NASA Astrophysics Data System (ADS)
Yu, Sun; Niansong, Mei; Bo, Lu; Yumei, Huang; Zhiliang, Hong
2010-10-01
A fully integrated VCO and divider implemented in SMIC 0.13-μm RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of—113 dBc @ 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOMT) of the VCO is -192.6 dBc/Hz.
McGinnis, L. D.; Otis, R. M.
1979-01-01
Velocities were obtained from unreversed, refracted arrivals on analog records from a 48‐channel, 3.6-km hydrophone cable (3.89 km from the airgun array to the last hydrophone array). Approximately 200 records were analyzed along 1500 km of ship track on Georges Bank, northwest Atlantic Ocean, to obtain regional sediment velocity distribution to a depth of 1.4 km below sea level. This technique provides nearly continuous coverage of refraction velocities and vertical velocity gradients. Because of the length of the hydrophone cable and the vertical velocity gradients, the technique is applicable only to the Continental Shelf and the shallower parts of the Continental Slope in water depths less than 300 m. Sediment diagenesis, the influence of overburden pressure on compaction, lithology, density, and porosity are inferred from these data. Velocities of the sediment near the water‐sediment interface range from less than 1500 m/sec on the north edge of Georges Bank to 1830 m/sec for glacial deposits in the northcentral part of the bank. Velocity gradients in the upper 400 m range from 1.0km/sec/km(sec−1) on the south edge of the bank to 1.7sec−1 on the north. Minimum gradients of 0.8sec−1 were observed south of Nantucket Island. Velocities and velocity gradients are explained in relation to physical properties of the Cretaceous, Tertiary, and Pleistocene sediments. Isovelocity contours at 100-m/sec intervals are nearly horizontal in the upper 400 m. Isovelocity contours at greater depths show a greater difference from a mean depth because of the greater structural and lithological variation. Bottom densities inferred from the velocities range from 1.7 to 1.9g/cm3 and porosities range from 48 to 62 percent. The most significant factor controlling velocity distribution on Georges Bank is overburden pressure and resulting compaction. From the velocity data we conclude that Georges Bank has been partially overridden by a continental ice sheet.
Fabrication and analysis of microfiber array platform for optogenetics with cellular resolution
Chen, Jian-Hong; Chou, Ming-Yi; Pan, Chien-Yuan; Wang, Lon A.
2016-01-01
Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications. PMID:27895984
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
Blackburn, Bryan M; Wachsman, Eric D
2015-05-12
Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.
NASA Astrophysics Data System (ADS)
Li, Yue; Zuo, Hong-Fen; Guo, Yuan-Ru; Miao, Ting-Ting; Pan, Qing-Jiang
2016-05-01
With the assistance of sodium lignosulfonate, hierarchical nanoflake-array-flower nanostructure of ZnO has been fabricated by a facile precipitation method in mixed solvents. The sodium lignosulfonate amount used in our synthetic route is able to fine-tune ZnO morphology and an abundance of pores have been observed in the nanoflake-array-flower ZnO, which result in specific surface area reaching as high as 82.9 m2 · g-1. The synthesized ZnO exhibits superior photocatalytic activity even under low-power UV illumination (6 W). It is conjectured that both nanoflake-array structure and plenty of pores embedded in ZnO flakes may provide scaffold microenvironments to enhance photocatalytic activity. Additionally, this catalyst can be used repeatedly without a significant loss in photocatalytic activity. The low-cost, simple synthetic approach as well as high photocatalytic and recycling efficiency of our ZnO nanomaterials allows for application to treat wastewater containing organic pollutants in an effective way.
Time-resolved second-harmonic generation from gold nanoparticle arrays
NASA Astrophysics Data System (ADS)
Ferrara, D. W.; Tetz, K. A.; McMahon, M. D.; Haglund, R. F., Jr.
2007-09-01
We have studied the effects of planar inversion symmetry and particle-coupling of gold nanoparticle (NP) arrays by angle dependent second-harmonic generation (SHG). Time- and angle- resolved measurements were made using a mode-locked Ti:sapphire 800 nm laser onto gold NP arrays with plasmon resonance tuned to match the laser wavelength in order to produce maximum SHG signal. Finite-difference time domain simulations are used to model the near-field distributions for the various geometries and compared to experiment. The arrays were fabricated by focused ion-beam lithography and metal vapor deposition followed by standard lift-off protocols, producing NPs approximately 20nm high with various in-plane dimensions and interparticle gaps. Above a threshold fluence of ~ 7.3 × 10 -5 mJ/cm2 we find that the SHG scales with the third power of intensity, rather than the second, and atomic-force microscopy shows that the NPs have undergone a reshaping process leading to more nearly spherical shapes.
Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan
2015-01-28
Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ∼1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.
A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed
NASA Technical Reports Server (NTRS)
Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.
2017-01-01
A Ka-Band (26 gigahertz) 2 by 2 sub-array with square-shaped microstrip patch antenna elements having two truncated corners for circular polarization (CP) is presented. In addition, the layout for a new compact microstrip feed network for the sub-array is also presented. The compact feed network offers a footprint size reduction of near 60 percent over traditional sub-array at 26 gigahertz. Experimental data indicates that a truncation amount a equals 0.741 millimeters for an isolated patch element results in a return loss (S (sub II)) of minus 35 decibels at 26.3 gigahertz. Furthermore, the measured S (sub II) for the proof-of-concept sub-array with the above elements is better than minus 10.0 decibels at 27.7 gigahertz. However, the impedance match and the operating frequency can be fine-tuned to 26 gigahertz by adjusting the feed network dimensions. Lastly, good agreement is observed between the measured and simulated S (sub II) for the subarray for both right hand and left hand CP. The goal of this effort is utilize the above sub-array as a building block for a larger N by N element array, which would serve as a feed for a reflector antenna for satellite communications.
Technical Operations (TOPS) IV Task Order 0003: Responsive Interface for Transport Tuning (RITT)
2016-05-29
on the further development of artificial hair sensors (AHS) featuring a responsive carbon nanotube (CNT) array to serve as a piezoresistive element...under separate cover, as AFRL Interim Report AFRL-RX-WP-TR-2016-0071 dated 30 October 2015. 15. SUBJECT TERMS artificial hair sensor, carbon... Hair Sensors: Fabrication and Model Parameterization .......................... 4 3.1.1 Introduction
Plasmonic Enhanced Infrared Detection with a Dynamic Hyper-Spectral Tuning
2013-09-19
performance operation and use expensive optics for sensing color information in the infrared. The integration of metallic arrays with these detectors is...technology while significantly improving performance. surface plasmons, infrared detectors , quantum dots, multi-spectral sensing Unclassified...Research Laboratory (AFRL), Albuquerque NM, for theoretical and strategic support and University of New Mexico, NM for growth of the detector
Electronically Tuned Local Oscillators for the NOEMA Interferometer
NASA Astrophysics Data System (ADS)
Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice
2016-03-01
We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-06-08
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm(-1)) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing.
Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates
NASA Astrophysics Data System (ADS)
Sharac, N.; Sharma, H.; Veysi, M.; Sanderson, R. N.; Khine, M.; Capolino, F.; Ragan, R.
2016-03-01
Thermally responsive polymers present an interesting avenue for tuning the optical properties of nanomaterials on their surfaces by varying their periodicity and shape using facile processing methods. Gold bowtie nanoantenna arrays are fabricated using nanosphere lithography on prestressed polyolefin (PO), a thermoplastic polymer, and optical properties are investigated via a combination of spectroscopy and electromagnetic simulations to correlate shape evolution with optical response. Geometric features of bowtie nanoantennas evolve by annealing at temperatures between 105 °C and 135 °C by releasing the degree of prestress in PO. Due to the higher modulus of Au versus PO, compressive stress occurs on Au bowtie regions on PO, which leads to surface buckling at the two highest annealing temperatures; regions with a 5 nm gap between bowtie nanoantennas are observed and the average reduction is 75%. Reflectance spectroscopy and full-wave electromagnetic simulations both demonstrate the ability to tune the plasmon resonance wavelength with a window of approximately 90 nm in the range of annealing temperatures investigated. Surface-enhanced Raman scattering measurements demonstrate that maximum enhancement is observed as the excitation wavelength approaches the plasmon resonance of Au bowtie nanoantennas. Both the size and morphology tunability offered by PO allows for customizing optical response.
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-01-01
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634
Propagation of Exploration Seismic Sources in Shallow Water
NASA Astrophysics Data System (ADS)
Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.
2006-05-01
The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have given rise to seismic phases not normally seen in marine survey data acquired in deeper water. The associated partitioning of energy is likely to have caused the observed uncharacteristically rapid loss of energy with distance. It appears that in this case, the shallow-water marine mammal safety mitigation measures prescribed and followed were far more stringent than they needed to be. A new approach, wherein received levels detected by the towed 6-km multichannel hydrophone array may be used to modify safety radii has recently been proposed, based on these observations.
Chemical and biological sensing using tuning forks
Tao, Nongjian; Boussaad, Salah
2012-07-10
A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.
Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua
2018-02-04
Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2011-06-01
Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.
Acoustic tests of augmentor wing model
NASA Technical Reports Server (NTRS)
Goodykoontz, J. H.
1977-01-01
Acoustic and aerodynamic data were obtained for a full-scale section of an augmentor wing. Features of the design included a single-row, multielement nozzle array and acoustically tuned panels placed on the interior surfaces of the augmentor. When the data were extrapolated to a 91,000-kilogram aircraft, the calculated sideline perceived noise levels were approximately the same for either the takeoff or approach condition.
NASA Astrophysics Data System (ADS)
Wang, I.-Ting; Chang, Chih-Cheng; Chiu, Li-Wen; Chou, Teyuh; Hou, Tuo-Hung
2016-09-01
The implementation of highly anticipated hardware neural networks (HNNs) hinges largely on the successful development of a low-power, high-density, and reliable analog electronic synaptic array. In this study, we demonstrate a two-layer Ta/TaO x /TiO2/Ti cross-point synaptic array that emulates the high-density three-dimensional network architecture of human brains. Excellent uniformity and reproducibility among intralayer and interlayer cells were realized. Moreover, at least 50 analog synaptic weight states could be precisely controlled with minimal drifting during a cycling endurance test of 5000 training pulses at an operating voltage of 3 V. We also propose a new state-independent bipolar-pulse-training scheme to improve the linearity of weight updates. The improved linearity considerably enhances the fault tolerance of HNNs, thus improving the training accuracy.
A Simplified Theory of Coupled Oscillator Array Phase Control
NASA Technical Reports Server (NTRS)
Pogorzelski, R. J.; York, R. A.
1997-01-01
Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.
Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.
Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni
2018-03-15
In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.
High-throughput controllable generation of droplet arrays with low consumption
NASA Astrophysics Data System (ADS)
Lin, Yinyin; Wu, Zhongsheng; Gao, Yibo; Wu, Jinbo; Wen, Weijia
2018-06-01
We describe a controllable sliding method for fabricating millions of isolated femto- to nanoliter-sized droplets with defined volume, geometry and position and a speed of up to 375 kHz. In this work, without using a superhydrophobic or superoleophobic surface, arrays of droplets are instantly formed on the patterned substrate by sliding a strip of liquid, including water, low-surface-tension organic solvents and solution, along the substrate. To precisely control the volume of the droplets, we systemically investigate the effects of the size of the wettable pattern, the viscosity of the liquid and sliding speed, which were found to vary independently to tune the height and volume of the droplets. Through this method, we successfully fabricated an oriented single metal-organic framework crystal array with control over their XY positioning on the surface, as characterized by microscopy and X-ray diffraction (XRD) techniques.
An electrically tunable plenoptic camera using a liquid crystal microlens array.
Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng
2015-05-01
Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.
An electrically tunable plenoptic camera using a liquid crystal microlens array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yu; School of Automation, Huazhong University of Science and Technology, Wuhan 430074; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
2015-05-15
Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated withmore » an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.« less
Highly Reconfigurable Beamformer Stimulus Generator
NASA Astrophysics Data System (ADS)
Vaviļina, E.; Gaigals, G.
2018-02-01
The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.
An electrically tunable plenoptic camera using a liquid crystal microlens array
NASA Astrophysics Data System (ADS)
Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng
2015-05-01
Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.
Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves.
Bonjour, R; Burla, M; Abrecht, F C; Welschen, S; Hoessbacher, C; Heni, W; Gebrewold, S A; Baeuerle, B; Josten, A; Salamin, Y; Haffner, C; Johnston, P V; Elder, D L; Leuchtmann, P; Hillerkuss, D; Fedoryshyn, Y; Dalton, L R; Hafner, C; Leuthold, J
2016-10-31
In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.
NASA Astrophysics Data System (ADS)
Devasia, Sebin; Anila, E. I.
2018-04-01
Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.
Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region
Tréhu, Anne M.
1995-01-01
In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.
Coupled Oscillator Based Agile Beam Transmitters and Receivers: A Review of Work at JPL
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2006-01-01
This is a review of the work done at Caltech's Jet Propulsion Laboratory during the past decade on development of the coupled oscillator technology in phased array applications to spacecraft telecommunications. First, some historical background is provided to set the work in context. However, this is by no means intended to be a comprehensive review of all work in this area. Rather, the focus is on the JPL contribution with some mention of other work which provided either insight or motivation. In the mid 1990's, R. A. York, and collaborators proposed that an array of mutually injection locked electronic oscillators could provide appropriately phased signals to the radiating elements of an array antenna such that the radiated beam could be steered merely by tuning the end or perimeter oscillators of the array. York, et al. also proposed a receiving system based on such oscillator arrays in which the oscillators provide properly phased local oscillator signals to be mixed with the signals received by the array elements to remove the phase due to angle of arrival of the incident wave. These concepts were viewed as a promising simplification of the beam steering control system that could result in significant cost, mass, and prime power reduction and were therefore attractive for possible space application.
NASA Astrophysics Data System (ADS)
Yoo, Hana; Park, Soojin
2010-06-01
We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.
Yoo, Hana; Park, Soojin
2010-06-18
We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.
NASA Astrophysics Data System (ADS)
Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.
2016-07-01
Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.
Experiments on Adaptive Self-Tuning of Seismic Signal Detector Parameters
NASA Astrophysics Data System (ADS)
Knox, H. A.; Draelos, T.; Young, C. J.; Chael, E. P.; Peterson, M. G.; Lawry, B.; Phillips-Alonge, K. E.; Balch, R. S.; Ziegler, A.
2016-12-01
Scientific applications, including underground nuclear test monitoring and microseismic monitoring can benefit enormously from data-driven dynamic algorithms for tuning seismic and infrasound signal detection parameters since continuous streams are producing waveform archives on the order of 1TB per month. Tuning is a challenge because there are a large number of data processing parameters that interact in complex ways, and because the underlying populating of true signal detections is generally unknown. The largely manual process of identifying effective parameters, often performed only over a subset of stations over a short time period, is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. We present improvements to an Adaptive Self-Tuning algorithm for continuously adjusting detection parameters based on consistency with neighboring sensors. Results are shown for 1) data from a very dense network ( 120 stations, 10 km radius) deployed during 2008 on Erebus Volcano, Antarctica, and 2) data from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Performance is assessed in terms of missed detections and false detections relative to human analyst detections, simulated waveforms where ground-truth detections exist and visual inspection.
Si photonics technology for future optical interconnection
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Krishnamoorthy, Ashok V.
2011-12-01
Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.
Unscented Kalman Filter for Brain-Machine Interfaces
Li, Zheng; O'Doherty, Joseph E.; Hanson, Timothy L.; Lebedev, Mikhail A.; Henriquez, Craig S.; Nicolelis, Miguel A. L.
2009-01-01
Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation. PMID:19603074
NASA Astrophysics Data System (ADS)
Han, Rui; Zhang, A.-Man; Li, Shuai; Zong, Zhi
2018-04-01
Two-bubble interaction is the most fundamental problem in multi-bubbles dynamics, which is crucial in many practical applications involving air-gun arrays and underwater explosions. In this paper, we experimentally and numerically investigate coalescence, collapse, and rebound of non-buoyant bubble pairs below a rigid wall. Two oscillating vapor bubbles with similar size are generated simultaneously near a rigid wall in axisymmetric configuration using the underwater electric discharge method, and the physical process is captured by a high-speed camera. Numerical simulations are conducted based on potential flow theory coupled with the boundary integral method. Our numerical results show excellent agreement with the experimental data until the splashing of the jet impact sets in. With different ranges of γbw (the dimensionless distance between the rigid wall and the nearest bubble center), the interaction between the coalesced bubble and the rigid wall is divided into three types, i.e., "weak," "intermediate," and "strong." As γbw decreases, the contact point of the two axial jets migrates toward the wall. In "strong interaction" cases, only an upward jet towards the upper rigid wall forms and a secondary jet with a larger width appears at the base of the first jet. The collapsing coalesced bubble in a toroidal form splits into many smaller bubbles due to the instabilities and presents as bubble clouds during the rebounding phase, which may lead to a weakened pressure wave because the focusing energy associated with the collapsing bubble is disintegrated.
Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging
Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.
2012-01-01
The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123
NASA Astrophysics Data System (ADS)
Li, Wangchang; Liu, Qing; Wang, Liwei; Zhou, Zuzhi; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing; Qiao, Xiaojing; Che, Shenglei
2018-01-01
In this paper, we present a design, simulation and experimental measurement of a cross array metamaterial absorber (MMA) based on the flaked Carbonyl iron powder (CIP) filled rubber plate in the microwave regime. The metamaterial absorber is a layered structure consisting of multilayer periodic cross electric resonators, magnetic rubber plate and the ground metal plate. The MMA exhibits dual band absorbing property and the absorption can be tuned from 1˜8GHz in the same thickness depending on the dimension and position of the cross arrays. The obviously broadened absorbing band of the designed structure is a result of the synergistic effects of the electrical resonance of the cross arrays and intrinsic absorption of the magnetic layer. The polarization and oblique incident angle in TE and TM model are also investigated in detail to explore the absorbing mechanisms. The resonance current of the cross array can excite the enhanced local magnetic field and dielectric field which can promote the absorption. The measurement results are basically consistent with the simulations but the absorbing peaks move a little bit to higher frequency for the reason that the surface oxidation of the flaked CIP in the preparation process.
NASA Technical Reports Server (NTRS)
Gunapala, S.; Bandara, S.; Ivanov, A.
2003-01-01
GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.
O'Leary, John G; Hatsopoulos, Nicholas G
2006-09-01
Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys (Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.
NASA Astrophysics Data System (ADS)
Cho, Heesook; Choi, Sinho; Kim, Jin Young; Park, Soojin
2011-12-01
We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films.We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films. Electronic supplementary information (ESI) available: AFM images of Au nanorings prepared from a mixed solvent and characterization of PS-b-P2VP micellar films. See DOI: 10.1039/c1nr11075f
A 32-Channel Combined RF and B0 Shim Array for 3T Brain Imaging
Stockmann, Jason P.; Witzel, Thomas; Keil, Boris; Polimeni, Jonathan R.; Mareyam, Azma; LaPierre, Cristen; Setsompop, Kawin; Wald, Lawrence L.
2016-01-01
Purpose We add user-controllable direct currents (DC) to the individual elements of a 32-channel radio-frequency (RF) receive array to provide B0 shimming ability while preserving the array’s reception sensitivity and parallel imaging performance. Methods Shim performance using constrained DC current (±2.5A) is simulated for brain arrays ranging from 8 to 128 elements. A 32-channel 3-tesla brain array is realized using inductive chokes to bridge the tuning capacitors on each RF loop. The RF and B0 shimming performance is assessed in bench and imaging measurements. Results The addition of DC currents to the 32-channel RF array is achieved with minimal disruption of the RF performance and/or negative side effects such as conductor heating or mechanical torques. The shimming results agree well with simulations and show performance superior to third-order spherical harmonic (SH) shimming. Imaging tests show the ability to reduce the standard frontal lobe susceptibility-induced fields and improve echo planar imaging geometric distortion. The simulation of 64- and 128-channel brain arrays suggest that even further shimming improvement is possible (equivalent to up to 6th-order SH shim coils). Conclusion Including user-controlled shim currents on the loops of a conventional highly parallel brain array coil is feasible with modest current levels and produces improved B0 shimming performance over standard second-order SH shimming. PMID:25689977
Vehicle antenna for the mobile satellite experiment
NASA Technical Reports Server (NTRS)
Peng, Sheng Y.; Chung, H. H.; Leggiere, D.; Foy, W.; Schaffner, G.; Nelson, J.; Pagels, W.; Vayner, M.; Faller, H. L.; Messer, L.
1988-01-01
A low profile, low cost, printed circuit, electronically steered, right hand circularly polarized phase array antenna system has been developed for the Mobile Satellite Experiment (MSAT-X) Program. The success of this antenna is based upon the development of a crossed-slot element array and detailed trade-off analyses for both the phased array and pointing system design. The optimized system provides higher gain at low elevation angles (20 degrees above the horizon) and broader frequency coverage (approximately 8 1/2 percent bandwidth) than is possible with a patch array. Detailed analysis showed that optimum performance could be achieved with a 19 element array of a triangular lattice geometry of 3.9 inch element spacing. This configuration has the effect of minimizing grating lobes at large scan angles plus it improves the intersatellite isolation. The array has an aperture 20 inches in diameter and is 0.75 inch thick overall, exclusive of the RF and power connector. The pointing system employs a hybrid approach that operates with both an external rate sensor and an internal error signal as a means of fine tuning the beam acquisition and track. Steering the beam is done electronically via 18, 3-bit diode phase shifters. A nineteenth phase shifter is not required as the center element serves as a reference only. Measured patterns and gain show that the array meets the stipulated performance specifications everywhere except at some low elevation angles.
Optical Antenna Arrays on a Fiber Facet for In Situ Surface Enhanced Raman Scattering Detection
Smythe, Elizabeth J.; Dickey, Michael D.; Bao, Jiming; Whitesides, George M.
2009-01-01
This paper reports a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signal, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of ‘hot spots’ generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring ‘hot spots’ because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 × 105 to 5.1 × 105. PMID:19236032
Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise
NASA Astrophysics Data System (ADS)
Ziegler, Abra E.
The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was quantitatively evaluated during a variety of noise conditions and seismic detections were identified using AST and compared to ancillary injection data. During a period of CO2 injection in a nearby well to the monitoring array, 82% of seismic events were accurately detected, 13% of events were missed, and 5% of detections were determined to be false. Additionally, seismic risk was evaluated from the stress field and faulting regime at FWU to determine the likelihood of pressure perturbations to trigger slip on previously mapped faults. Faults oriented NW-SE were identified as requiring the smallest pore pressure changes to trigger slip and faults oriented N-S will also potentially be reactivated although this is less likely.
Experimental implementation of array-compressed parallel transmission at 7 tesla.
Yan, Xinqiang; Cao, Zhipeng; Grissom, William A
2016-06-01
To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Michielssen, Eric
2005-01-01
High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.
NASA Astrophysics Data System (ADS)
Hirabayashi, Katsuhiko
2005-03-01
Simple Pb_1-x La_x(Zr_y Ti_z)_1-x/4 O3 (PLZT) electrooptic ceramic photonic device arrays for surface-normal operation have been developed for application to polarization-controller arrays and Fabry-Pérot tunable filter arrays. These arrays are inserted in trenches cut across fiber arrays. Each element of the arrayed structure corresponds to one optical beam and takes the form of a cell. Each sidewall of the cell (width: 50-80 μm) is coated to form an electrode. The arrays have 16 elements at a pitch of 250 μm. The phase modulator has about 1 dB of loss and a half-wavelength voltage of 120 V. A cascade of two PLZT phase modulators (thickness: 300 μm), with each attached to a polyimide lambda/2 plate (thickness:15 μm), is capable of converting an arbitrary polarization to the transverse-electric (TE) or transverse-magnetic (TM) polarization. The response time is 1 μs. The Fabry-Pérot tunable filters have a thickness of 50 μm . The front and back surfaces of each cell are coated by 99%-reflective mirror. The free spectral range (FSR) of the filters is about 10 nm, tunable range is about 10 nm, loss is 2.2 dB, and finesse is 150. The tuning speed of these devices is high, taking only 1 μs.
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
Demonstration of 1024x1024 pixel dual-band QWIP focal plane array
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.
2010-04-01
QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.
Ultrasoft x-ray imaging system for the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Stutman, D.; Finkenthal, M.; Soukhanovskii, V.; May, M. J.; Moos, H. W.; Kaita, R.
1999-01-01
A spectrally resolved ultrasoft x-ray imaging system, consisting of arrays of high resolution (<2 Å) and throughput (⩾tens of kHz) miniature monochromators, and based on multilayer mirrors and absolute photodiodes, is being designed for the National Spherical Torus Experiment. Initially, three poloidal arrays of diodes filtered for C 1s-np emission will be implemented for fast tomographic imaging of the colder start-up plasmas. Later on, mirrors tuned to the C Lyα emission will be added in order to enable the arrays to "see" the periphery through the hot core and to study magnetohydrodynamic activity and impurity transport in this region. We also discuss possible core diagnostics, based on tomographic imaging of the Lyα emission from the plume of recombined, low Z impurity ions left by neutral beams or fueling pellets. The arrays can also be used for radiated power measurements and to map the distribution of high Z impurities injected for transport studies. The performance of the proposed system is illustrated with results from test channels on the CDX-U spherical torus at Princeton Plasma Physics Laboratory.
Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine.
Hu, Miao; Graves, Catherine E; Li, Can; Li, Yunning; Ge, Ning; Montgomery, Eric; Davila, Noraica; Jiang, Hao; Williams, R Stanley; Yang, J Joshua; Xia, Qiangfei; Strachan, John Paul
2018-03-01
Using memristor crossbar arrays to accelerate computations is a promising approach to efficiently implement algorithms in deep neural networks. Early demonstrations, however, are limited to simulations or small-scale problems primarily due to materials and device challenges that limit the size of the memristor crossbar arrays that can be reliably programmed to stable and analog values, which is the focus of the current work. High-precision analog tuning and control of memristor cells across a 128 × 64 array is demonstrated, and the resulting vector matrix multiplication (VMM) computing precision is evaluated. Single-layer neural network inference is performed in these arrays, and the performance compared to a digital approach is assessed. Memristor computing system used here reaches a VMM accuracy equivalent of 6 bits, and an 89.9% recognition accuracy is achieved for the 10k MNIST handwritten digit test set. Forecasts show that with integrated (on chip) and scaled memristors, a computational efficiency greater than 100 trillion operations per second per Watt is possible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling
Mukherjee, B.; Kaushik, N.; Tripathi, Ravi P. N.; Joseph, A. M.; Mohapatra, P. K.; Dhar, S.; Singh, B. P.; Kumar, G. V. Pavan; Simsek, E.; Lodha, S.
2017-01-01
Modulation of photoluminescence of atomically thin transition metal dichalcogenide two-dimensional materials is critical for their integration in optoelectronic and photonic device applications. By coupling with different plasmonic array geometries, we have shown that the photoluminescence intensity can be enhanced and quenched in comparison with pristine monolayer MoS2. The enhanced exciton emission intensity can be further tuned by varying the angle of polarized incident excitation. Through controlled variation of the structural parameters of the plasmonic array in our experiment, we demonstrate modulation of the photoluminescence intensity from nearly fourfold quenching to approximately threefold enhancement. Our data indicates that the plasmonic resonance couples to optical fields at both, excitation and emission bands, and increases the spontaneous emission rate in a double spacing plasmonic array structure as compared with an equal spacing array structure. Furthermore our experimental results are supported by numerical as well as full electromagnetic wave simulations. This study can facilitate the incorporation of plasmon-enhanced transition metal dichalcogenide structures in photodetector, sensor and light emitter applications. PMID:28134260
Construction of 3D Metallic Nanowire Arrays on Arbitrarily-Shaped Substrate.
NASA Astrophysics Data System (ADS)
Chen, Fei; Li, Jingning; Yu, Fangfang; Peng, Ru-Wen; Wang, Mu; Mu Wang Team
Formation of three-dimensional (3D) nanostructures is an important step of advanced manufacture for new concept devices with novel functionality. Despite of great achievements in fabricating nanostructures with state of the art lithography approaches, these nanostructures are normally limited on flat substrates. Up to now it remains challenging to build metallic nanostructures directly on a rough and bumpy surface. Here we demonstrate a unique approach to fabricate metallic nanowire arrays on an arbitrarily-shaped surface by electrodeposition, which is unknown before 2016. Counterintuitively here the growth direction of the nanowires is perpendicular to their longitudinal axis, and the specific geometry of nanowires can be achieved by introducing specially designed shaped substrate. The spatial separation and the width of the nanowires can be tuned by voltage, electrolyte concentration and temperature in electrodeposition. By taking cobalt nanowire array as an example, we demonstrate that head-to-head and tail-to-tail magnetic domain walls can be easily introduced and modulated in the nanowire arrays, which is enlightening to construct new devices such as domain wall racetrack memory. We acknowledge the foundation from MOST and NSF(China).
Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song
2015-11-07
In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.
Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.
Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong
2016-08-24
Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.
A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.
Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays
NASA Astrophysics Data System (ADS)
Kapaklis, Vassilios
2015-03-01
Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.
1988-01-01
An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.
Characterization of NbN films and tunnel junctions
NASA Technical Reports Server (NTRS)
Stern, J. A.; Leduc, H. G.
1991-01-01
Properties of NbN films and NbN/MgO/NbN tunnel junctions are discussed. NbN junctions are being developed for use in high-frequency, SIS quasiparticle mixers. To properly design mixer circuits, junction and film properties need to be characterized. The specific capacitance of NbN/MgO/NbN junctions has been measured as a function of the product of the normal-state resistance and the junction area (RnA), and it is found to vary by more than a factor of two (35-85 fF/sq microns) over the range of RnA measured (1000-50 ohm sq microns). This variation is important because the specific capacitance determines the RC speed of the tunnel junction at a given RnA value. The magnetic penetration depth of NbN films deposited under different conditions is also measured. The magnetic penetration depth affects the design of microstrip line used in RF tuning circuits. Control of the magnetic penetration depth is necessary to fabricate reproducible tuning circuits. Additionally, the critical current uniformity for arrays of 100 junctions has been measured. Junction uniformity will affect the design of focal-plane arrays of SIS mixers. Finally, the relevance of these measurements to the design of Josephson electronics is discussed.
NASA Astrophysics Data System (ADS)
Ziegler, A.; Balch, R. S.; Knox, H. A.; Van Wijk, J. W.; Draelos, T.; Peterson, M. G.
2016-12-01
We present results (e.g. seismic detections and STA/LTA detection parameters) from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Specifically, we evaluate data from a passive vertical monitoring array consisting of 16 levels of 3-component 15Hz geophones installed in the field and continuously recording since January 2014. This detection database is directly compared to ancillary data (i.e. wellbore pressure) to determine if there is any relationship between seismic observables and CO2 injection and pressure maintenance in the field. Of particular interest is detection of relatively low-amplitude signals constituting long-period long-duration (LPLD) events that may be associated with slow shear-slip analogous to low frequency tectonic tremor. While this category of seismic event provides great insight into dynamic behavior of the pressurized subsurface, it is inherently difficult to detect. To automatically detect seismic events using effective data processing parameters, an automated sensor tuning (AST) algorithm developed by Sandia National Laboratories is being utilized. AST exploits ideas from neuro-dynamic programming (reinforcement learning) to automatically self-tune and determine optimal detection parameter settings. AST adapts in near real-time to changing conditions and automatically self-tune a signal detector to identify (detect) only signals from events of interest, leading to a reduction in the number of missed legitimate event detections and the number of false event detections. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Additional support has been provided by site operator Chaparral Energy, L.L.C. and Schlumberger Carbon Services. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Kono, A.; Sato, T.; Shinohara, M.; Mochizuki, K.; Yamada, T.; Uehira, K.; Shimbo, T.; Machida, Y.; Hino, R.; Azuma, R.
2017-12-01
Off the Boso Peninsula, Japan, the Pacific plate (PAC) is subducting westward beneath the Honshu Island Arc (HIA) and the Philippine Sea plate (PHS), while the PHS is subducting northwestward under the HIA. Such tectonic interactions have caused various seismic events such as the Boso Slow Slip Events (SSEs). To better understand these seismic events, it is important to determine the structure under this region. In May 2017, we published 2D P-wave velocity structure under the survey area, and showed geometry of the upper surface of PHS (UPHS) and reflection intensity variation along it. From our result and previous studies, relatively strong reflection from the UPHS can be observed near the main slip area of Boso SSEs, and such reflective area may relate with the Boso SSEs. However, it is still insufficient to link both only from the 2D models and further work is needed to reveal spatial distribution of the strong reflection area. From July to August 2009, we conducted a marine seismic experiment using airgun as source off the east coast of the Boso Peninsula. Airgun was shot along the 4 survey lines, and 27 Ocean Bottom Seismometers (OBSs) were deployed in the survey area. In our presentation, we used 18 OBSs to determine 3D P-wave velocity structure. We estimated 3D velocity structure from airgun data recorded in the OBSs by using the FAST (Zelt and Barton, 1998). Next, we picked the reflection traveltimes likely reflected from the UPHS and applied them to the Traveltime mapping method (Fujie et al. 2006) to estimate spatial locations of the reflectors. As a result, reflections from the UPHS seem to concentrate near the main slip area of the Boso SSEs and an area where the serpentine seamount chain of the Izu-Bonin subduction zone is subducting. Acknowledgement The marine seismic experiment was conducted by R/V Hakuhou-maru of Japan Agency for Marine-Earth Science and Technology, and the OBSs were retrieved by Shincho-maru of Shin-Nihon-Kaiji co. Ltd. (Present, Fukada salvage co. Ltd.). We would like to thank captains and the crew of Hakuho-maru and Shincho-maru. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of japan, under its Observation and Research Program for Prediction of Earthquakes and Volcanic Eruptions, and from the Grants in Aid for Scientific Research (25287109).
Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less
A 15-MHz 1-3 Piezocomposite Concave Array Transducer for Ophthalmic Imaging.
Cha, Jung Hyui; Kang, Byungwoo; Jang, Jihun; Chang, Jin Ho
2015-11-01
Because of the spherical shape of the human eye, the anterior segments of the eye, particularly the cornea and the lens, create high levels of refraction and reflection of ultrasound which negatively affect the performance of linear and convex arrays. To minimize the ultrasound energy loss, a 15-MHz concave array transducer was designed, fabricated, and characterized; its footprint is able to mesh well with the shape of the cornea. The concave array has a curvature with a radius of 15 mm and 128 elements with a 1.44- pitch. Its elevational focus and view angle are 30 mm and 72.3°, respectively, thus allowing the imaging area to cover the retinal region of interest in the posterior segment. As an active layer, a 1-3 piezocomposite was designed and fabricated in response to the bidirectional (i.e., azimuthal and elevational) curvature of the concave array and the high coupling coefficient. From the performance evaluation, it was found that the completed concave array is able to provide a center frequency of 15.95 MHz and a -6-dB fractional bandwidth of 67.8% after electrical tuning has been conducted. The crosstalk level was measured to be less than -25 dB. It was verified that the concave array is robust to the refraction and reflection from the cornea through pulse-echo testing using a custom-made eye-mimicking phantom. Furthermore, images of both the wire-target phantom and the ex vivo porcine eye were acquired by the finished concave array, which was connected to a commercial ultrasound scanner equipped with a research package. The evaluation results demonstrated that the developed concave array transducer is a possible alternative to conventional arrays for effectively imaging the posterior segment of the eye.
Quartz tuning fork based sensor for detection of volatile organic compounds: towards breath analysis
NASA Astrophysics Data System (ADS)
Sampson, Abraham; Panchal, Suresh; Phadke, Apoorva; Kashyap, A.; Suman, Jilma; Unnikrishnan, G.; Datar, Suwarna
2018-04-01
Several volatile organic compounds (VOCs) are present in the exhaled human breath whose concentration can vary depending on the physiological changes occurring within a human being. These changes in the concentration or the occurrence of a particular VOC can be used as signature of a particular disease in a person. In the present work, a sensor has been developed to detect VOCs such as 1,4-dimethoxy-2,3-butanediol (BD), and cyclohexanone (CH), acetone, methanol and ethanol. Except for BD and CH, the rest of the VOCs are present in a healthy person in ppm levels. CH and BD have been reported to be present in the exhaled human breath of breast cancer patients in ppm levels and can be used to distinguish between a healthy person and a person with breast cancer. The selectivity of the sensor towards these two compounds in the presence of other VOCs commonly present in human breath like acetone, ethanol and methanol has been studied. The sensor has been developed using modified Quartz Tuning Forks (QTFs) with the intent of developing an array of such sensors identifying different VOCs present in a healthy human’s breath. Two differently modified QTFs have been used to detect 1 ppm of 1,4-dimethoxy-2,3-butanediol and 20 ppm of cyclohexanone. Linear Discriminants Analysis (LDA) has been used to classify seven different VOCs. For this purpose, features extracted from sensor responses -shift in resonant frequency, response time and recovery time of the sensors- have been used as features in the model. Differently modified array of QTFs along with the use of LDA can be a useful pathway towards development of a QTF based sensor array for human breath analysis.
Nouman, M Tayyab; Hwang, Ji Hyun; Faiyaz, Mohd; Lee, Kye-Jeong; Noh, Do-Young; Jang, Jae-Hyung
2018-05-14
Metasurfaces are two dimensional arrays of artificial subwavelength resonators, which can manipulate the amplitude and phase profile of incident electromagnetic fields. To date, limited progress has been achieved in realizing reconfigurable phase control of incident waves using metasurfaces. Here, an active metasurface is presented, whose resonance frequency can be tuned by employing insulator to metal transition in vanadium dioxide. By virtue of the phase jump accompanied by the resonance frequency tuning, the proposed metasurface acts as a phase shifter at THz frequency. It is further demonstrated that by appropriately tailoring the anisotropy of the metasurface, the observed phase shift can be used to switch the transmitted polarization from circular to approximately linear. This work thus shows potential for reconfigurable phase and polarization control at THz frequencies using vanadium dioxide based frequency tunable metasurfaces.
Electromagnetic energy coupling mechanism with matrix architecture control
NASA Technical Reports Server (NTRS)
Hughes, Eli (Inventor); Knowles, Gareth (Inventor)
2006-01-01
The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
2012-07-01
units made from the various sensors. This was because the different types of ME laminates have different electrical properties ( resistance and...DC resistance of a sensor (Rdc) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 338 19a. NAME OF...3.3.6. Electric -field tuning effect ..................................................................70 A.3.4. Dielectric loss noise reduction
Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.
2018-01-01
Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510
Challenging aspects of contemporary cochlear implant electrode array design.
Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg
2017-12-01
A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the advantages of both types: perimodiolar location in the basal turn extended to lateral wall location for higher turn locations.
A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos
2015-01-01
A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209
An implanted 8-channel array coil for high-resolution macaque MRI at 3T
Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.
2012-01-01
An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793
A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos
2016-01-01
A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.
Software for the First Station of the Long Wavelength Array
NASA Astrophysics Data System (ADS)
Dowell, J.; LWA Collaboration
2014-05-01
The first station of the Long Wavelength Array, LWA1, is currently operating at frequencies between 10 and 88 MHz in the Southwest United States. LWA1 consists of 256 cross-polarization dipole pairs spread over a 100 m aperture with five total-power outriggers up to ˜500 m from the center of the station. The raw voltages from the antennas are digitized and digitally combined to form four independent dual polarization beams, each with two tunings with up to 19.6 MHz of bandwidth. The telescope is designed to be a general-purpose instrument and supports a wide variety of science projects from the ionosphere to the cosmic dark ages. I will present the software behind this telescope and discuss the challenges associated with calibrating and maintaining an array of 261 dipoles. I will also discuss some of the challenges of handling the large data volume that LWA1 produces and how the LWA User Computing Facility helps address those problems.
Self-assembly of ordered graphene nanodot arrays
Camilli, Luca; Jørgensen, Jakob H.; Tersoff, Jerry; ...
2017-06-29
Our ability to fabricate nanoscale domains of uniform size in two-dimensional materials could potentially enable new applications in nanoelectronics and the development of innovative metamaterials. But, achieving even minimal control over the growth of two-dimensional lateral heterostructures at such extreme dimensions has proven exceptionally challenging. Here we show the spontaneous formation of ordered arrays of graphene nano-domains (dots), epitaxially embedded in a two-dimensional boron–carbon–nitrogen alloy. These dots exhibit a strikingly uniform size of 1.6 ± 0.2 nm and strong ordering, and the array periodicity can be tuned by adjusting the growth conditions. Furthemore, we explain this behaviour with a modelmore » incorporating dot-boundary energy, a moiré-modulated substrate interaction and a long-range repulsion between dots. This new two-dimensional material, which theory predicts to be an ordered composite of uniform-size semiconducting graphene quantum dots laterally integrated within a larger-bandgap matrix, holds promise for novel electronic and optoelectronic properties, with a variety of potential device applications.« less
Stripline feed for a microstrip array of patch elements with teardrop shaped probes
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1990-01-01
A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.
Ackerman, Paul J.; van de Lagemaat, Jao; Smalyukh, Ivan I.
2015-01-01
Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains that exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields. PMID:25607778
Tunable Nanowire Patterning Using Standing Surface Acoustic Waves
Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun
2014-01-01
Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330
Multiple Quantum Phase Transitions in a two-dimensional superconductor
NASA Astrophysics Data System (ADS)
Bergeal, Nicolas; Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Lesueur, J.; Budhani, R. C.; Rastogi, A.; Caprara, S.; Grilli, M.
2013-03-01
We studied the magnetic field driven Quantum Phase Transition (QPT) in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through finite size scaling analysis, we showed that it belongs to the (2 +1)D XY model universality class. The system can be described as a disordered array of superconducting islands coupled by a two dimensional electron gas (2DEG). Depending on the 2DEG conductance tuned by the gate voltage, the QPT is single (corresponding to the long range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). By retrieving the coherence length critical exponent ν, we showed that the QPT can be ``clean'' or ``dirty'' according to the Harris criteria, depending on whether the phase coherence length is smaller or larger than the island size. The overall behaviour is well described by a model of coupled superconducting puddles in the framework of the fermionic scenario of 2D superconducting QPT.
Temperature-Centric Evaluation of Sensor Transients
NASA Astrophysics Data System (ADS)
Ayhan, Tuba; Muezzinoglu, Kerem; Vergara, Alexander; Yalcin, Mustak
2011-09-01
Controllable sensing conditions provide the means for diversifying sensor response and achieving better selectivity. Modulating the sensing layer temperature of metal-oxide sensors is a popular method for multiplexing the limited number of sensing elements that can be employed in a practical array. Time limitations in many applications, however, cannot tolerate an ad-hoc, one-size-fits-all modulation pattern. When the response pattern is itself non-stationary, as in the transient phase, a temperature program also becomes infeasible. We consider the problem of determining and tuning into a fixed optimum temperature in a sensor array. For this purpose, we present an empirical analysis of the temperature's role on the performance of a metal-oxide gas sensor array in the identification of odorants along the response transient. We show that the optimal temperature in this sense depends heavily on the selection of (i) the set of candidate analytes, (ii) the time-window of the analysis, (iii) the feature extracted from the sensor response, and (iv) the computational identification method used.
Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao
2015-01-01
Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring. PMID:26324320
Jehl, Z; Rousset, J; Donsanti, F; Renou, G; Naghavi, N; Lincot, D
2010-10-01
The electrodeposition of ZnO nanorods on ZnO:Al films with different orientations is reported. The influence of the total charge exchanged during electrodeposition on the nanorod's geometry (length, diameter, aspect ratio and surface density) and the optical transmission properties of the nanorod arrays is studied on a [0001]-oriented ZnO:Al substrate. The nanorods are highly vertically oriented along the c axis, following the lattice matching with the substrate. The growth on a [1010] and [1120] ZnO:Al-oriented substrate with c axis parallel to the substrate leads to a systematic deviation angle of 55 degrees from the perpendicular direction. This finding has been explained by the occurrence of a minority orientation with the [1011] planes parallel to the surface, with a preferential growth on corresponding [0001] termination. Substrate crystalline orientation is thereby found to be a major parameter in finely tuning the orientation of the nanorod array. This new approach allows us to optimize the light scattering properties of the films.
Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography
NASA Astrophysics Data System (ADS)
Skehan, Connor; Ai, Bin; Larson, Steven R.; Stone, Keenan M.; Dennis, William M.; Zhao, Yiping
2018-03-01
Several plasmonic compound nanohole arrays (CNAs), such as triangular nanoholes and fan-like nanoholes with multiple nanotips and nanogaps, are designed by a simple and efficient shadow sphere lithography technique by tuning the sphere mask size, the deposition and azimuthal angles, substrate temperature T S , and the number of deposition steps N. Compared with conventional circular nanohole arrays, the CNAs show more hot spots and exhibit new transmission speaks. Systematic finite-difference time-domain calculations indicate that different resonance modes excited by the various shaped and sized nanoholes are responsible for the enhanced plasmonic performances of CNAs. Compared to the CNA samples with only one circular hole in the unit cell, the Raman scattering intensity of the CNA with multiple triangular nanoholes, nanogaps, and nanotips can be enhanced up to 5-fold. These CNAs, due to the strong resonance due to the multiple structural features, are promising applications as optical filters, plasmonic sensors, and surface-enhanced spectroscopies.
NASA Astrophysics Data System (ADS)
Chiong, Chau-Ching; Chiang, Po-Han; Hwang, Yuh-Jing; Huang, Yau-De
2016-07-01
ALMA covering 35-950 GHz is the largest existing telescope array in the world. Among the 10 receiver bands, Band-1, which covers 35-50 GHz, is the lowest. Due to its small dimension and its time-variant frequency-dependent gain characteristics, current solar filter located above the cryostat cannot be applied to Band-1 for solar observation. Here we thus adopt new strategies to fulfill the goals. Thanks to the flexible dc biasing scheme of the HEMT-based amplifier in Band-1 front-end, bias adjustment of the cryogenic low noise amplifier is investigated to accomplish solar observation without using solar filter. Large power handling range can be achieved by the de-tuning bias technique with little degradation in system performance.
Multilayer metal-oxide-metal nanopatterns via nanoimprint and strip-off for multispectral resonance
NASA Astrophysics Data System (ADS)
Jeon, Sohee; Sung, Sang-Keun; Jang, Eun-Hwan; Jeong, Junho; Surabhi, Srivathsava; Choi, Jun-Hyuk; Jeong, Jong-Ryul
2018-01-01
A fabrication technology for multispectral plasmonic resonators is presented on a basis of metal-insulator-metal (MIM) nanopattern arrays. Resonators comprised of MIM nanopatterns were fabricated using nanoimprint-based transfer and strip-off following MIM depositions. Two different kinds of configuration (web and hole) were developed for three and five layers of MIMs. The corresponding measured transmittance and reflectance spectroscopies were compared to their counterpart finite difference time domain (FDTD) simulation results. The results implied various plasmonic resonance couplings occurred at different locations around the metal structures, dependent on the layer and array configuration. By tuning the model geometry and simulation conditions, agreement between the experimental results and simulation was achieved. This work is believed to provide a viable fabrication method for multispectral resonance filters or sensors.
2008-06-01
reverse magnetron ” design (in which the polarity of the magnetron elements are reversed—such that the cathode constitutes the outer ring; the anode ...included as inset frames within Fig. 20. The dual nature of this figure (reporting both voltage and intensity vs. bias current) is useful in that it...tuned micro- magnetrons [60]-[61]. Conventional magnetrons (such as those used to generate microwaves) have physical dimensions which are excessively
1976-04-01
State Electron- Res. Lab., Eindhoven, Neth.) icw 16, no. 12, 1315-20, Dec. 1973 ATMOS-AN ELECTRICALLY REPROGRAMMABLE READ-ONLY MEMORY DEVICE. IEEE Trans...transistor is described that can be used nular and array geometry contacts by as an electrically reprogrammable read- the pr~nciple of superposition. It is...digital tuning techniques for FM and typical automobile systems can be readily television, and pocket pagers. Tn. implemented by COS1440S monolithic
Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F
2013-07-10
Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.
Newly patented process enables low-cost solution for increasing white light spectrum of LEDs
NASA Astrophysics Data System (ADS)
Spanard, Jan-Marie
2017-10-01
A newly patented process for completing the spectral light array emitted by LED bulbs provides a low-cost method for producing better human centered lighting (HCL). This process uses non-luminescent colorant filters, filling out the jagged LED spectral emission into a full, white light array. While LED bulbs have the distinct economic advantages of using less energy, producing less heat and lasting years longer than traditional incandescent bulbs, the persistent metameric failure of LED bulbs has resulted in slower, and sometimes reluctant, adoption of LED lighting by the residential, retail and architectural markets. Adding missing wavelengths to LED generated bulbs via colorant filters increases the aesthetic appeal of the light by decreasing current levels of metameric failure, reducing the `flatness', `harshness', and `dullness' of LED generated light reported by consumers. LED phosphor-converted light can be successfully tuned to "whiter" white light with selective color filtering using permanent, durable transparent pigments. These transparent pigments are selectively applied in combination with existing manufacturing technologies and utilized as a final color-tuning step in bulb design. The quantity of emitted light chosen for color filtering can be adjusted from 1% to 100% of emitted light, creating a custom balance of light quantity with light quality. This invention recognizes that "better light" is frequently chosen over "more light" in the consumer marketplace.
NASA Astrophysics Data System (ADS)
Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Yang, Xiaoping; Yao, Jianquan
2017-01-01
An all-solid waveguide array fiber (WAF) is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.
Fine-tunable plasma nano-machining for fabrication of 3D hollow nanostructures: SERS application
NASA Astrophysics Data System (ADS)
Mehrvar, L.; Hajihoseini, H.; Mahmoodi, H.; Tavassoli, S. H.; Fathipour, M.; Mohseni, S. M.
2017-08-01
Novel processing sequences for the fabrication of artificial nanostructures are in high demand for various applications. In this paper, we report on a fine-tunable nano-machining technique for the fabrication of 3D hollow nanostructures. This technique originates from redeposition effects occurring during Ar dry etching of nano-patterns. Different geometries of honeycomb, double ring, nanotube, cone and crescent arrays have been successfully fabricated from various metals such as Au, Ag, Pt and Ti. The geometrical parameters of the 3D hollow nanostructures can be straightforwardly controlled by tuning the discharge plasma pressure and power. The structure and morphology of nanostructures are probed using atomic force microscopy (AFM), scanning electron microscopy (SEM), optical emission spectroscopy (OES) and energy dispersive x-ray spectroscopy (EDS). Finally, a Ag nanotube array was assayed for application in surface enhanced Raman spectroscopy (SERS), resulting in an enhancement factor (EF) of 5.5 × 105, as an experimental validity proof consistent with the presented simulation framework. Furthermore, it was found that the theoretical EF value for the honeycomb array is in the order of 107, a hundred times greater than that found in nanotube array.
Development of digital sideband separating down-conversion for Yuan-Tseh Lee Array
NASA Astrophysics Data System (ADS)
Li, Chao-Te; Kubo, Derek; Cheng, Jen-Chieh; Kuroda, John; Srinivasan, Ranjani; Ho, Solomon; Guzzino, Kim; Chen, Ming-Tang
2016-07-01
This report presents a down-conversion method involving digital sideband separation for the Yuan-Tseh Lee Array (YTLA) to double the processing bandwidth. The receiver consists of a MMIC HEMT LNA front end operating at a wavelength of 3 mm, and sub-harmonic mixers that output signals at intermediate frequencies (IFs) of 2-18 GHz. The sideband separation scheme involves an analog 90° hybrid followed by two mixers that provide down-conversion of the IF signal to a pair of in-phase (I) and quadrature (Q) signals in baseband. The I and Q baseband signals are digitized using 5 Giga sample per second (Gsps) analog-to-digital converters (ADCs). A second hybrid is digitally implemented using field-programmable gate arrays (FPGAs) to produce two sidebands, each with a bandwidth of 1.6 GHz. The 2 x 1.6 GHz band can be tuned to cover any 3.6 GHz window within the aforementioned IF range of the array. Sideband rejection ratios (SRRs) above 20 dB can be obtained across the 3.6 GHz bandwidth by equalizing the power and delay between the I and Q baseband signals. Furthermore, SRRs above 30 dB can be achieved when calibration is applied.
Bailey, Norman G.; Aaron, John M.
1982-01-01
In September 1978, the U. S. Geological Survey (USGS) collected 5,029 km of single-channel seismic-reflection data from the Georges Bank area of the Atlantic Continental Shelf and Slope during the R/V COLUMBUS ISELIN cruise CI 7-78-2. The purpose of the cruise was to determine the location and frequency of mass sediment movement and other geologic hazards along the Continental Slope.Navigation of the COLUMBUS ISELIN was by LORAN-C; position fixes were automatically recorded at 5-minute intervals and manually plotted and recorded at 15-minute intervals. The navigation equipment included a Northstar 6000 LORAN receiver and a Texas Instruments Silent 700 tape and paper recorder.The seismic equipment consisted of a 40-in3 airgun, a 5-in3 airgun, a Teledyne 600-joule mnisparker, and ORE (Ocean Research Equipment Inc.) 3.5-kHz transducer. The seismic profiles obtained were recorded on paper by EPC (EPC Labs Inc.) recorders and on magnetic tape by a 7-channel analog tape recorder. Overall, the data quality is excellent, and penetration and resolution are good although in some areas, the underlying structure was obscured by rough topography.The original records may be viewed at the USGS office in Woods Hole, Massachusetts. Microfilm copies of the data may be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (Telephone: 303-497-6338).
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip
2016-01-01
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3. PMID:26875817
NASA Astrophysics Data System (ADS)
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip
2016-02-01
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S; Demokritou, Philip
2016-02-15
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm(3).
Bioengineered-inorganic nanosystems for nanophotonics and bio-nanotechnology
NASA Astrophysics Data System (ADS)
Leong, Kirsty; Zin, Melvin T.; Ma, Hong; Huang, Fei; Sarikaya, Mehmet; Jen, Alex K.
2008-08-01
Here we nanoengineered tunable quantum dot and cationic conjugated polymer nanoarrays based on surface plasmon enhanced fluorescence where we achieved a 15-fold and 25-fold increase in their emission intensities, respectively. These peptide mediated hybrid systems were fabricated by horizontally tuning the localized surface plasmon resonance of gold nanoarrays and laterally tuning the distance of the fluorophore from the metal surface. This approach permits a comprehensive control both laterally (i.e., lithographically defined gold nanoarrays) and vertically (i.e., QD/CCP-metal distance) of the collectively behaving QD-NP and CP-NP assemblies by way of biomolecular recognition. The highest photoluminescence was achieved when the quantum dots and cationic conjugated polymers were self-assembled at a distance of 16.00 nm and 18.50 nm from the metal surface, respectively. Specifically, we demonstrated the spectral tuning of plasmon resonant metal nanoarrays and the self-assembly of protein-functionalized QDs/CCPs in a step-wise fashion with a concomitant incremental increase in separation from the metal surface through biotin-streptavidin spacer units. These well-controlled self-assembled patterned arrays provide highly organized architectures for improving optoelectronic devices and/or increasing the sensitivity of bio-chemical sensors.
Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J
2017-03-09
As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.
Palermo, Vincenzo; Schwartz, Erik; Finlayson, Chris E; Liscio, Andrea; Otten, Matthijs B J; Trapani, Sara; Müllen, Klaus; Beljonne, David; Friend, Richard H; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo
2010-02-23
The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.
Mechanically tunable terahertz graphene plasmonics using soft metasurface
NASA Astrophysics Data System (ADS)
Wang, Li; Liu, Xin; Zang, Jianfeng
2016-12-01
This letter presents a new approach to continuously tune the resonances of graphene plasmons in terahertz soft metasurface. The continuous tunability of plasmon resonance is either unachievable in conventional plasmonic materials like noble metals or requires gate voltage regulation in graphene. Here we investigate a simplest form of terahertz metasurface, graphene nanoribbon arrays (GNRAs), and demonstrate the graphene plasmon resonance modes can be tailored by mechanical deformation of the elastomeric substrate using finite element method (FEM). By integrating the electric doping with substrate deformation, we have managed to tune the resonance wavelength from 13.7 to 50.6 μm. The 36.9 μm tuning range is nearly doubled compared with that by electric doping regulation only. Moreover, we observe the plasmon coupling effect in GNRAs on waved substrate and its evolution with substrate curvature. A new decoupling mechanism enabled by the out-of-plane separation of the adjacent ribbons is revealed. The out-of-plane setup of plasmonic components extends the fabrication of plasmonic devices into three-dimensional space, which simultaneously increases the nanoribbon density and decreases the coupling strength. Our findings provide an additional degree of freedom to design reconfigurable metasurfaces and metadevices.
NASA Astrophysics Data System (ADS)
Vermeesch, P. M.; Henstock, T. J.; Lange, D.; McNeill, L. C.; Barton, P. J.; Tang, G.; Bull, J. M.; Tilmann, F.; Dean, S. M.; Djajadihardja, Y.; Permana, H.
2009-04-01
In 2008 a 3D onshore-offshore controlled-source seismic experiment was carried out in an area of 300 km x 400 km, centered on the southern termination of the great Sumatra-Andaman 2005 earthquake rupture. In the first part of cruise SO198 on R/V Sonne ~10000 airgun shots were fired into an array of 47 Ocean Bottom Seismometers (OBSs). A further ~50000 shots were fired into an array of 10 long-deployment OBSs. All shots were recorded on ~15 seismometers on the islands and more than 20 seismometers along the coast of Sumatra. An initial velocity model has been derived from 70132 first-arrival traveltimes from 45 OBSs, using the First-Arrival Seismic Tomography (FAST) inversion code developed by Zelt and Barton (1998). Root Mean Square traveltime misfit reduces from 1311 ms in the 1D starting model to 81 ms after 20 non-linear iterations. Offsets range between 0 and 265 km, with rays penetrating up to 28 km depth in the final model, hereby imaging the top of the subducting oceanic plate and revealing its complex 3D topography. Ray coverage is still being extended by including first-arrival traveltime picks from the landstations on the coast of Sumatra and the islands and from the 10 long-term deployment OBSs that will be recovered in January. The robustness and resolution of the final 3D model is examined by exploring different starting models, different inversion parameters and by carrying out checkerboard tests and synthetic tests. The resulting crustal 3D velocity model will allow us to explore the nature and physical cause of the rupture barrier of the 2005 great earthquake. Comparison with a similar dataset and subsequent 3D velocity model acquired at the boundary between the 2004 and 2005 earthquakes will provide important insights into the segmentation of the Sumatra subduction zone and the dynamics of its great earthquakes. Zelt, C. A. and P. J. Barton (1998). Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faroe Basin. Journal of Geophysical Research 103: 7187-7210.
NASA Astrophysics Data System (ADS)
Guerra, Melania
Sound in the ocean originates from multiple mechanisms, both natural and anthropogenic. Collectively, underwater ambient noise accumulates valuable information about both its sources and the oceanic environment that propagates this noise. Characterizing the features of ambient noise source mechanisms is challenging, but essential, for properly describing an acoustic environment. Disturbances to a local acoustic environment may affect many aquatic species that have adapted to be heavily dependent on this particular sense for survival functions. In the case of marine mammals, which are federally protected, demand exists for understanding such potential impacts, which drives important scientific efforts that utilize passive acoustic monitoring (PAM) tools to inform regulatory decisions. This dissertation presents two independent studies that use PAM data to investigate the characteristics of source mechanisms that dominate ambient noise in two diverse shallow water environments. The study in Chapter 2 directly addresses the concern of how anthropogenic activities can degrade the effectiveness of PAM. In the Alaskan Beaufort Sea, an environment where ambient noise is normally dominated by natural causes, seismic surveys create impulsive sounds to map the composition of the bottom. By inspecting single-sensor PAM data, the spectral characteristics of seismic survey airgun reverberation are measured, and their contribution to the overall ambient noise is quantified. This work is relevant to multiple ongoing mitigation protocols that rely on PAM to acoustically detect marine mammal presence during industrial operations. Meanwhile, Chapter 3 demonstrates that by analyzing data from multiple PAM sensors, features embedded in both directional and omnidirectional ambient noise can be used to develop new time-synchronization processing techniques for aligning autonomous elements of an acoustic array, a tool commonly used in PAM for detecting and tracking marine mammals. Using the time-synchronization procedures shown here, arrays may be built out of stand-alone recorders that simplify the deployment logistics and can be arranged in multiple configurations. Given increasing economic pressures worldwide, anthropogenic activities in the ocean are only expected to expand, and their ambient noise contributions will continue to rise. These studies provide baseline knowledge and practical tools to help properly assess the impact of such source mechanisms in shallow-water acoustic environments.
Placer lag deposits in submarine channels in the Gulf of Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, M.R.; Huggett, Q.
1990-06-01
GLORIA surveys in the Gulf of Alaska during 1989 have revealed details of sediment transport systems that cross the Slope, Rise, and adjacent abyssal plain. Two systems dominate: channel-levee complexes that promote the construction of major fans, and large single channels with subdued overbank activities which terminate as extended sediment lobes that may coalesce to give sand plains. Both channel types originate from Upper Slope gulley zones developed on rapidly dumped shelf edge fans associated with major tidewater glaciers that during periods of climatic deterioration and lower sea levels extended across the narrow shelf to the top of the Slope.more » Thus, the sediment source for these channel systems consists of unsorted rapidly abandoned glacial debris. The nature of initial emplacement of unsorted sediments is significant because the Alaskan provenance area is rich in heavy or placer type minerals; particularly those with economic value such as gold and platinum. The reworking of these sediments along submarine channels that morphologically have strong similarities with subaerial systems makes placer prospecting a viable proposition. Surveys using GLORIA, 10 KHz, and 3.5 KHz profilers together with a 140 in.{sup 3} airgun array have allowed the identification of prospecting sites and provided the control for the development of predictive models for those processes that ensure heavy mineral concentration in the transport regimes identified for this margin. Importantly, because this margin is an active transform type, individual fans, sourcing as they do from restricted sites along this coastline, are short-lived such that even abandoned fans offer prospects for the surveyor.« less
Sources and levels of ambient ocean sound near the Antarctic Peninsula.
Dziak, Robert P; Bohnenstiehl, DelWayne R; Stafford, Kathleen M; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J; Lau, Tai-Kwan; Haxel, Joseph H; Mellinger, David K
2015-01-01
Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.
Sources and Levels of Ambient Ocean Sound near the Antarctic Peninsula
Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.
2015-01-01
Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean. PMID:25875205
A 1-MHz 2-D CMUT array for HIFU thermal ablation
NASA Astrophysics Data System (ADS)
Yoon, Hyo-Seon; Vaithilingam, Srikant; Park, Kwan Kyu; Nikoozadeh, Amin; Firouzi, Kamyar; Choe, Jung Woo; Watkins, Ronald D.; Oguz, Huseyin Kagan; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Pierre
2017-03-01
We developed a fully-populated 2-D capacitive micromachined ultrasonic transducer (CMUT) array for high intensity focused ultrasound (HIFU) treatment. The 2-D CMUT array, which consists of 20 × 20 square CMUT elements with an element-to-element pitch of 1 mm, was designed and fabricated using the thick-buried-oxide (BOX) fabrication process. It was then assembled on a custom interface board that can provide various array configurations depending on the desired applications. In this study, the interface board groups the CMUT array elements into eight channels, based on the phase delay from the element to the targeted focal point at a 20-mm distance from the array surface, which corresponds to an F-number of 1. An 8-channel phase generating system supplies continuous waves with eight different phases to the eight channels of the CMUT array through bias-tees and amplifiers. This array aperture, grouped into eight channels, gives a focusing gain of 6.09 according to field simulation using Field II. Assuming a peak-to-peak pressure of 1 MPa at the surface of the array, our custom temperature simulator predicts successful tissue ablation at the focus. During the measurements, each channel was tuned with a series inductor for an operational frequency of 1 MHz. With a CMUT DC bias of 100 V and a 1-MHz AC input voltage of 55 V, we achieved peak-to-peak output pressures of 173.9 kPa and 568.7 kPa at the array surface and at the focus, respectively. The focusing gain calculated from this measurement is 3.27, which is lower than the simulated gain of 6.09 because of the mutual radiation impedance among the CMUT cells. Further optimization of the operating condition of this array and design improvements for reducing the effect of mutual radiation impedance are currently on-going.
Bi-directional ROADM with one pair of NxN cyclic-AWGs for over N wavelength channels configuration
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Mu
2018-01-01
This paper presents a bidirectional optical add-drop multiplexer (BROADM) with permitting white spectral channels input in bidirectional configuration. The filter routing rule of array waveguide grating (AWG) is applied for the wavelength channels (WCs) that need to be added and dropped by using the corresponding tunable fiber Bragg gratings (FBGs). The other WCs pass through output by tuning FBG filter spectra away from the WCs. The bandwidth between two adjacent WCs of each pair of ports in AWG is wider than one channel spacing so that the filter spectra of FBG is tuned to free spectral range (FSR) region to realize the wavelength routing function without interfering other WCs. The WCs can be flexibly handled by installing the corresponding tunable FBG. Therefore, the proposed BROADM is more flexible and has higher transmission capacity in the optical network.
Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics
Varshney, Atul; Ghosh, Shankar; Bhattacharya, S.; Yethiraj, Anand
2012-01-01
Self organization of large-scale structures in nature - either coherent structures like crystals, or incoherent dynamic structures like clouds - is governed by long-range interactions. In many problems, hydrodynamics and electrostatics are the source of such long-range interactions. The tuning of electrostatic interactions has helped to elucidate when coherent crystalline structures or incoherent amorphous structures form in colloidal systems. However, there is little understanding of self organization in situations where both electrostatic and hydrodynamic interactions are present. We present a minimal two-component oil-in-oil model system where we can control the strength and lengthscale of the electrohydrodynamic interactions by tuning the amplitude and frequency of the imposed electric field. As a function of the hydrodynamic lengthscale, we observe a rich phenomenology of exotic structure and dynamics, from incoherent cloud-like structures and chaotic droplet dynamics, to polyhedral droplet phases, to coherent droplet arrays. PMID:23071902
Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Allen, Albert R.; Herlan, Jonathan W.; Rosenthal, Bruce N.
2015-01-01
Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future.
Driving a Superconductor to Insulator Transition with Random Gauge Fields.
Nguyen, H Q; Hollen, S M; Shainline, J; Xu, J M; Valles, J M
2016-11-30
Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance , indicative of a quantum phase transition. The critical disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.
Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging
NASA Astrophysics Data System (ADS)
Noroozian, Omid
Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be detected using a cryogenic amplifier and subsequent homodyne mixing at room temperature. In an array of MKIDs, all the resonators are coupled to a shared feedline and are tuned to slightly different frequencies. They can be read out simultaneously using a comb of frequencies generated and measured using digital techniques. This thesis documents an effort to demonstrate the basic operation of ˜ 256 pixel arrays of lumped-element MKIDs made from superconducting TiN x on silicon. The resonators are designed and simulated for optimum operation. Various properties of the resonators and arrays are measured and compared to theoretical expectations. A particularly exciting observation is the extremely high quality factors (˜ 3 x 107) of our TiNx resonators which is essential for ultra-high sensitivity. The arrays are tightly packed both in space and in frequency which is desirable for larger full-size arrays. However, this can cause a serious problem in terms of microwave crosstalk between neighboring pixels. We show that by properly designing the resonator geometry, crosstalk can be eliminated; this is supported by our measurement results. We also tackle the problem of excess frequency noise in MKIDs. Intrinsic noise in the form of an excess resonance frequency jitter exists in planar superconducting resonators that are made on dielectric substrates. We conclusively show that this noise is due to fluctuations of the resonator capacitance. In turn, the capacitance fluctuations are thought to be driven by two-level system (TLS) fluctuators in a thin layer on the surface of the device. With a modified resonator design we demonstrate with measurements that this noise can be substantially reduced. An optimized version of this resonator was designed for the multiwavelength submillimeter kinetic inductance camera (MUSIC) instrument for the Caltech Submillimeter Observatory.
Theoretical analysis of phase locking in an array of globally coupled lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vysotskii, D V; Elkin, N N; Napartovich, A P
2013-09-30
A model of an array of globally coupled fibre lasers, with the same fraction of the total output beam power injected into each laser, is considered. Phase self-locking of the laser array makes it possible to increase the brightness of the total output beam without any devices for controlling the phases of output beams, which significantly complicate the laser system. The spread of the laser optical lengths is several hundreds of wavelengths (or even more); within the theory of hollow cavities, this spread should lead to a fast decrease in the total power with an increase in the number ofmore » lasers. The presence of the active medium may reduce this drop to a great extent due to the self-tuning of the laser array radiation wavelength to a value providing a maximum gain for the array lasing mode. The optical length of each element is assumed to be random. The increase in the phase-locking efficiency due to the gain saturation is explained based on the probabilistic approach. An iterative procedure is developed to find the array output power in the presence of steady-state phase locking. Calculations for different values of small-signal gain and the output-power fraction spent on global coupling are performed. It is shown that, when this fraction amounts to ∼20 % – 30 %, phase locking of up to 20 fibre lasers can be implemented with an efficiency as high as 70 %. (control of laser radiation parameters)« less
NASA Astrophysics Data System (ADS)
Exley, R. J. K.; Westbrook, G. K.; Haacke, R. R.; Peacock, S.
2010-10-01
Azimuthal seismic anisotropy has been identified from the analysis of S-waves generated by P to S mode conversion in the Pleistocene sediments that form the northern headwall of the Storegga Slide, which were investigated with a seismic experiment employing a seabed array of ocean-bottom seismometers and a grid of airgun shots. The principal technique used to detect the anisotropy was azimuthal stacking of the radial and transverse horizontal geophone components, after the application of moveout, to show the variations in amplitude, phase and cumulative traveltime effects of S-waves, ultimately providing information that identified the `fast' and `slow' S-wave polarization orientations. Particle-motion analysis was used to corroborate the results and provide further information on the magnitudes of cumulative S-wave splitting. A 2-D ray-traced inversion of the traveltimes of pre-critical P and PS arrivals provided a velocity model from which the variation with depth of Vp, Vs and anisotropy could be compared with lithological and stratigraphic data from a borehole at the centre of the OBS array. Increased anisotropic response was observed to be coincident with high velocity units, which have high mica but low water content and are interpreted to be of glacial origin. The analysis of azimuthal seismic anisotropy shows clear evidence for horizontal transverse isotropy or an orthorhombic symmetry. The distribution in orientations of the fast plane of symmetry is broadly bimodal (E-W and NE-SW) across the OBS array. The E-W group showed correlation with the headwalls of old, buried slides and other faults visible within coherency attributes calculated from an accompanying 3-D seismic data set and with the strike of some of the headwalls of slides shown in multibeam bathymetry. However, the pattern of headwall fractures shown in the bathymetry is complicated and reticulate, and the NE-SW orientation is also well represented. We infer that the cause of the anisotropy is the presence of vertical to sub-vertical, fluid-filled fractures and micro-cracks, partially held open by high pore-fluid pressure. The fracture orientations are controlled primarily by the present-day gravitationally induced down-slope stress, which is mediated by the heterogeneous nature of sub-surface, causing local changes in the orientation of the principal stresses at the margins of incipient or failed slides. The fractures, if connected, are likely to increase vertical permeability within the sediment column significantly, and influence the distribution of gas hydrate within the strata.
Seasonal presence of cetaceans and ambient noise levels in polar waters of the North Atlantic.
Klinck, Holger; Nieukirk, Sharon L; Mellinger, David K; Klinck, Karolin; Matsumoto, Haruyoshi; Dziak, Robert P
2012-09-01
In 2009 two calibrated acoustic recorders were deployed in polar waters of the North Atlantic to study the seasonal occurrence of blue, fin, and sperm whales and to assess current ambient noise levels. Sounds from these cetaceans were recorded at both locations in most months of the year. During the summer months, seismic airguns associated with oil and gas exploration were audible for weeks at a time and dominated low frequency noise levels. Noise levels might further increase in the future as the receding sea ice enables extended human use of the area.
1-mJ Q-switched diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Carraro, Giovanni; Guandalini, Annalisa; Reali, Giancarlo; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2004-08-01
We report what is to our knowledge the first high repetition rate Q-switched Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at 806 nm. As much as 2.42 W of average power and up to 1.05 mJ of pulse energy were obtained with 6.1 W of absorbed pump power, with excellent beam quality (M2<1.2) and linear polarization.
Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors
2016-05-16
have investigated the surface plasmon enhancement of the GeSn p-i-n photodiode using gold metal nanostructures. We have conducted numerical...simulation of the plasmonic structure of 2D nano-hole array to tune the surface plasmon resonance into the absorption range of the GeSn active layer. Such a...diode can indeed be enhanced with the plasmonic structure on top. Within the time span of this project, we have completed one iteration of the process
Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla.
Shajan, G; Mirkes, Christian; Buckenmaier, Kai; Hoffmann, Jens; Pohmann, Rolf; Scheffler, Klaus
2016-02-01
A multinuclei imaging setup with the capability to acquire both sodium ((23) Na) and proton ((1) H) signals at 9.4 Tesla is presented. The main objective was to optimize coil performance at the (23) Na frequency while still having the ability to acquire satisfactory (1) H images. The setup consisted of a combination of three radio frequency (RF) coils arranged in three layers: the innermost layer was a 27-channel (23) Na receive helmet which was surrounded by a four-channel (23) Na transceiver array. The outer layer consisted of a four-channel (1) H dipole array for B0 shimming and anatomical localization. Transmit and receive performance of the (23) Na arrays was compared to a single-tuned (23) Na birdcage resonator. While the transmit efficiency of the (23) Na transceiver array was comparable to the birdcage, the (23) Na receive array provided substantial signal-to-noise ratio (SNR) gain near the surface and comparable SNR in the center. The utility of this customized setup was demonstrated by (23) Na images of excellent quality. High SNR, efficient transmit excitation and B0 shimming capability can be achieved for (23) Na MRI at 9.4T using novel coil combination. This RF configuration is easily adaptable to other multinuclei applications at ultra high field (≥ 7T). © 2015 Wiley Periodicals, Inc.
Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun
2011-01-01
Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414
Long streamer waveform tomography imaging of the Sanak Basin, Alaska subduction zone
NASA Astrophysics Data System (ADS)
Roche, Pierre-Henri; Delescluse, Matthias; Becel, Anne; Nedimovic, Mladen; Shillington, Donna; Webb, Spahr; Kuehn, Harold
2017-04-01
The Alaska subduction zone is prone to large megathrust earthquakes, including several large tsunamigenic events in the historical record (e.g. the 1964 Mw 9.2 and the 1946 Mw 8.6 earthquakes). Along the Alaska Peninsula trench, seismic coupling varies from fully locked to the east to weakly coupled to the West, with apparent aseismic slip in the Shumagin Gap and Unimak rupture zone. Overlapping the Shumagin gap and the Unimak area, the Sanak basin is a Miocene basin formed by a large-scale normal fault recently imaged by the ALEUT 2011 cruise and clearly rooting in the subduction interface at 30 km depth (Becel et al., submitted). Recent activity on this normal fault is detected at the seafloor of the Sanak Basin by a 5 m scarp in the multibeam bathymetry data. As this normal fault may be associated with faults involved in the 1946 tsunami earthquake, it is particularly important to try to decipher its history in the Sanak basin, where sediments record the fault activity. MCS data processing and interpretation shows evidence for the activity of the fault from Miocene to recent geological times. Very limited knowledge of the sedimentation rates and ages as well as complexities due to submarine landslides and channel depositions make it difficult to quantify the present day fault activity with respect to the Miocene fault activity. In addition, the mechanical behaviour of a normal splay fault system requires low to zero effective friction and probably involves fluids. High-resolution seismic velocity imaging can help with both the interpretation of complex sedimentary deposition and fluid detection. To obtain such a high resolution velocity field, we use two 45-km-long MCS profiles from the ALEUT 2011 cruise acquired with an 8-km-long streamer towed at 12 m depth to enhance low frequencies with shots fired from a large, tuned airgun array (6600 cu.in.). The two profiles extend from the shelf break to mid slope and encompass the normal splay fault emerging at 1 km water depth. At these depths, refracted arrivals are recorded on the second half of the streamer and a traveltime tomography inversion of the first refracted arrivals is possible. To quantify the uncertainties of the inversion results, starting from a smoothed RMS velocity model from the reflection data analysis, we perform a Monte-Carlo analysis using 360 randomly perturbed initial models and perturbed traveltime picks. We use the converging models as input for a Monte-Carlo analysis of acoustic frequency domain waveform tomography. We show that the model resolution is high in the faulted area ( 100m) and the uncertainty is low. We image a complex pattern of low velocities around and away from the fault corresponding to mass transport deposits and possible fluid flow through the fault, in agreement with low reflectivity of the multibeam data and the presence of pockmarks.
Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Li, Jiaqi; Verellen, Niels; Van Dorpe, Pol
2018-02-01
Dielectric nanoparticles with both strong electric and magnetic dipole (ED and MD) resonances offer unique opportunities for efficient manipulation of light-matter interactions. Here, based on numerical simulations, we show far-field diffractive coupling of the ED and MD modes in a periodic rectangular array. By using unequal periodicities in the orthogonal directions, each dipole mode is separately coupled and strongly tuned. With this method, the electric and magnetic response of the dielectric nanoparticles can be deliberately engineered to accomplish various optical functionalities. Remarkably, an ultra-sharp MD resonance with sub-10 nm linewidth is achieved with a large enhancement factor for the magnetic field intensity on the order of ˜103. Our results will find useful applications for the detection of chemical and biological molecules as well as the design of novel photonic metadevices.
Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.
Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan
2014-12-15
Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3 GB/s.
The facile fabrication of tunable plasmonic gold nanostructure arrays using microwave plasma
NASA Astrophysics Data System (ADS)
Hsu, Chuen-Yuan; Huang, Jing-Wen; Gwo, Shangjr; Lin, Kuan-Jiuh
2010-01-01
Fabrication of isolated noble metal nanoparticles embedded in transparent substrates is the fasting growing demand for innovative plasmonic technologies. Here we report a simple and effective methodology for the preparation of highly stable plasmonic nanoparticles embedded in a glass surface. Size-controllable (10-70 nm) Au nanoparticles were rapidly prepared when subjected to the home-microwave plasma. Accordingly, the optical extinction maximum of the localized surface plasmon resonance (LSPR) can be systematically tuned in the range 532-586 nm. We find that the plasmonic structures are exceedingly stable toward immersion in ethanol solvents and pass successfully the adhesive tape test, which makes our system highly promising for efficient transmission-LSPR nanosensors. Besides, the attractive features of substrate-bound plasmonic nanostructures include its low cost, versatility, robustness, reusability and a promising ability to make a multi-arrayed LSPR biochip.
Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun
2014-07-07
We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.
Improving MRI surface coil decoupling to reduce B1 distortion
NASA Astrophysics Data System (ADS)
Larson, Christian
As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
NASA Astrophysics Data System (ADS)
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung
2016-04-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.
Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.
2015-01-21
Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less
NASA Astrophysics Data System (ADS)
Wu, Sheldon S. Q.; Baker, Bradford W.; Rotter, Mark D.; Rubenchik, Alexander M.; Wiechec, Maxwell E.; Brown, Zachary M.; Beach, Raymond J.; Matthews, Manyalibo J.
2017-12-01
Localized heating of roughened steel surfaces using highly divergent laser light emitted from high-power laser diode arrays was experimentally demonstrated and compared with theoretical predictions. Polarization dependence was analyzed using Fresnel coefficients to understand the laser-induced temperature rise of HY-80 steel plates under 383- to 612-W laser irradiation. Laser-induced, transient temperature distributions were directly measured using bulk thermocouple probes and thermal imaging. Finite-element analysis yielded quantitative assessment of energy deposition and heat transport in HY-80 steel using absorptivity as a tuning parameter. The extracted absorptivity values ranged from 0.62 to 0.75 for S-polarized and 0.63 to 0.85 for P-polarized light, in agreement with partially oxidized iron surfaces. Microstructural analysis using electron backscatter diffraction revealed a heat affected zone for the highest temperature conditions (612 W, P-polarized) as evidence of rapid quenching and an austenite to martensite transformation. The efficient use of diode arrays for laser-assisted advanced manufacturing technologies, such as hybrid friction stir welding, is discussed.
Expected progress based on aluminium galium nitride Focal Plan Array for near and deep Ultraviolet
NASA Astrophysics Data System (ADS)
Reverchon, J.-L.; Robin, K.; Bansropun, S.; Gourdel, Y.; Robo, J.-A.; Truffer, J.-P.; Costard, E.; Brault, J.; Frayssinet, E.; Duboz, J.-Y.
The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet detection. A camera based on such a material presents an extremely low dark current at room temperature. It can compete with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays for low flux measurements. First, we will present results on focal plane array of 320 × 256 pixels with a pitch of 30 μm. The peak responsivity is tuned from 260 nm to 360 nm in different cameras. All these results are obtained in a standard SWIR supply chaine and with AlGaN Schottky diodes grown on sapphire. We will present here the first attempts to transfer the standard design Schottky photodiodes on from sapphire to silicon substrates. We will show the capability to remove the silicon substrate, to etch the window layer in order to extend the band width to lower wavelength and to maintain the AlGaN membrane integrity.
Pixel parallel localized driver design for a 128 x 256 pixel array 3D 1Gfps image sensor
NASA Astrophysics Data System (ADS)
Zhang, C.; Dao, V. T. S.; Etoh, T. G.; Charbon, E.
2017-02-01
In this paper, a 3D 1Gfps BSI image sensor is proposed, where 128 × 256 pixels are located in the top-tier chip and a 32 × 32 localized driver array in the bottom-tier chip. Pixels are designed with Multiple Collection Gates (MCG), which collects photons selectively with different collection gates being active at intervals of 1ns to achieve 1Gfps. For the drivers, a global PLL is designed, which consists of a ring oscillator with 6-stage current starved differential inverters, achieving a wide frequency tuning range from 40MHz to 360MHz (20ps rms jitter). The drivers are the replicas of the ring oscillator that operates within a PLL. Together with level shifters and XNOR gates, continuous 3.3V pulses are generated with desired pulse width, which is 1/12 of the PLL clock period. The driver array is activated by a START signal, which propagates through a highly balanced clock tree, to activate all the pixels at the same time with virtually negligible skew.
Enabling Desktop Nanofabrication with the Targeted Use of Soft Materials
NASA Astrophysics Data System (ADS)
Eichelsdoerfer, Daniel James
This thesis focuses on the application of soft materials to scanning probe-based molecular printing techniques, such as dip-pen nanolithography (DPN). The selective incorporation of soft materials in place of hard materials in traditional cantilever-based scanning probe lithography (SPL) systems not only enables the deposition of a broader range of materials, but also dramatically lowers the cost while simultaneously increasing the throughput of SPL. Chapter 1 introduces SPL and DPN, and highlights a few recent advances in using DPN to control surface chemical functionality at the nanoscale. In addition to introducing the material deposition capabilities of DPN, Chapter 1 introduces the development of the cantilever-free architecture, a relatively recent paradigm shift in high-throughput SPL. Furthermore, an in-depth synthetic methodology for making the most widely used cantilever-free tip arrays, consisting of elastomeric nanoscale pens adhered to an elastomeric backing layer on a glass slide, is included as an appendix. Chapter 2 discusses the synthesis of metal and metal oxide nanoparticles at specified locations by using DPN to deposit the precursors dispersed in a polymer matrix; after deposition, the precursors are annealed to form single nanoparticles. This work builds on previous soft material-based advances in DPN by utilizing the polymer as a "nanoreactor" to synthesize the desired nanoparticles, where the precursors can diffuse and coalesce into a single nanoparticle within each spot. The process of precursor aggregation and single nanoparticle formation is studied, and it is found that metal precursors follow one of three pathways based upon their reduction potential. Chapter 3 is the first of three chapters that highlights the power of soft materials in the cantilever-free architecture. In particular, Chapter 3 examines the role of the elastomeric backing layer as a compliant spring whose stiffness (as measured by the spring constant, k) can be tuned with a simple chemical change to the composition of the elastomer. In particular, the extent of cross-linking within the elastomer is found to dictate the k the backing layer, and arrays with spring constants tuned from 7 to 150 N/m are described. Furthermore, a simple geometric model is developed that explains the low variation of k within each cantilever-free array; this stands in contrast to arrays of cantilevers, which typically show large variations of k within an array. Chapter 4 addresses the problem of individual actuation in SPL by embedding resistive heaters directly beneath the elastomeric backing layer. This actuation scheme was chosen because the elastomer used in the cantilever-free tip arrays has extraordinary thermal expansion properties, and thorough exploration of their actuation behavior shows that the heater arrays are fast (> 100 microm/s) and powerful (> 4 microm) enough for actuation. After implementing several corrections for the tip height -- a problem that is intractable without the heaters, and has never been addressed before -- printing of alkanethiols onto Au is demonstrated with a 2D array of individually actuated probes. Chapter 5 examines the hypothesis that elastomeric tips can absorb solvent and be used to transport materials in the absence of environmental solvent. This is evaluated by first using tip arrays soaked in a nonpolar solvent to pattern a hydrophobic block copolymer that cannot be patterned by traditional DPN, and is subsequently explored for the case of water uptake into the pen arrays. Surprisingly, despite their poor water retention ability, the tip arrays can store enough water to pattern hydrophilic polymers in dry environments for over 2 hours. The dynamics of the solvent absorption are captured by a simple calculation that accounts for the dynamical behavior of water retention and the backing layer thickness, thereby allowing these results to be generalized to other solvents. This exploration of the subtle and dynamic role of absorbed solvent in cantilever-free pen arrays shows that proper pre-treatment of the arrays can be used to obviate the need for an environmental chamber in molecular printing. (Abstract shortened by UMI.)
Robb, James M.
1980-01-01
High-resolution seismic-reflection profiles were collected by the U.S. Geological Survey (USGS) aboard R/V COLUMBUS ISELIN, cruise 7807-1, from 18 August to 4 September 1978 over the Continental Slope of the Eastern United States between Wilmington and Hudson Canyons. These data were acquired as part of a study to determine potential geologic hazards to petroleum development of the Baltimore Canyon trough area. On this cruise, the Continental Slope between Lindenkohl and Carteret Canyons was surveyed along lines spaced one-half nautical mile apart to study the size and distribution of mass-wasting features as a guide to assess the importance of mass wasting processes on the Continental Slope. The seismic-reflection profiles were placed to complement other data gathered previously by the USGS.Track-line distances totaled 2,050 km of 40-in3 air-gun (with wave shaper) profiles, 2,100 km of 800-J sparker data, and 2,100 km of 3 .5-kHz data. The air-gun and sparker profiles are of high quality, but the 3.5-kHz system did not function well and achieved no subbottom penetration. The side-scan sonar system was operated along the uppermost Continental Slope to investigate its potential for use in this environment. Data were acquired over 22 km of ship's track.Navigation was by Loran-C (5-minute fix interval).The original records can be examined at the U.S. Geological Survey offices in Woods Hole, Massachusetts 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, Colorado 80303.
NASA Astrophysics Data System (ADS)
Breitzke, Monika; Bohlen, Thomas
2010-05-01
Modelling sound propagation in the ocean is an essential tool to assess the potential risk of air-gun shots on marine mammals. Based on a 2.5-D finite-difference code a full waveform modelling approach is presented, which determines both sound exposure levels of single shots and cumulative sound exposure levels of multiple shots fired along a seismic line. Band-limited point source approximations of compact air-gun clusters deployed by R/V Polarstern in polar regions are used as sound sources. Marine mammals are simulated as static receivers. Applications to deep and shallow water models including constant and depth-dependent sound velocity profiles of the Southern Ocean show dipole-like directivities in case of single shots and tubular cumulative sound exposure level fields beneath the seismic line in case of multiple shots. Compared to a semi-infinite model an incorporation of seafloor reflections enhances the seismically induced noise levels close to the sea surface. Refraction due to sound velocity gradients and sound channelling in near-surface ducts are evident, but affect only low to moderate levels. Hence, exposure zone radii derived for different hearing thresholds are almost independent of the sound velocity structure. With decreasing thresholds radii increase according to a spherical 20 log10 r law in case of single shots and according to a cylindrical 10 log10 r law in case of multiple shots. A doubling of the shot interval diminishes the cumulative sound exposure levels by -3 dB and halves the radii. The ocean bottom properties only slightly affect the radii in shallow waters, if the normal incidence reflection coefficient exceeds 0.2.
NASA Astrophysics Data System (ADS)
Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.
2016-12-01
The Currituck and Cape Fear Slide complexes, offshore of North Carolina, are two of the largest (>150 km3) submarine slope failure provinces on the U.S. Atlantic margin. Detailed stratigraphy of these slides and the surrounding regions is derived from a combination of high-resolution sparker multichannel seismic (MCS) data collected by the USGS in 2012, airgun MCS collected as part of the NSF GeoPRISMs Community Seismic Experiment in 2014 & legacy industry airgun MCS data collected in 1970s and 80s. Both the Currituck and Cape Fear Slide complexes are located in regions with high sediment input that resulted in the development of a broad, low gradient (<6°) margin with thick slope sediment accumulation since at least the Miocene. Bedding parallel failure planes highlight the influence of subsurface stratigraphy here. Differential compaction across buried scarps and other erosional surfaces found in proximity to many of the headwalls may have contributed to excess pore pressure in these zones, setting the stage for repeated failures. Within the Currituck Slide complex, there appear to be several buried mass transport deposits (MTDs) within both the Quaternary and Pliocene sections that may be related to buried scarps found beneath both the upper and lower headwalls. At the Cape Fear Slide, the Quaternary section upslope of a large salt diapir displays evidence of possible downslope creep folding within strata that downlap onto a possible buried failure plane. While submarine slope failure along this portion of the margin has long been linked with hydrate dissociation and/or salt tectonics, features that are pervasive along the margin, our new stratigraphic analyses suggest that antecedent margin physiography and sediment loading may be critical factors in determining the locations of large-scale slope failures.
Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation
NASA Astrophysics Data System (ADS)
Turco, E.; Gardonio, P.
2017-10-01
This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.
Guided wave phased array sensor tuning for improved defect detection and characterization
NASA Astrophysics Data System (ADS)
Philtron, Jason H.; Rose, Joseph L.
2014-03-01
Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.
Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies.
Davidoff, Candice; Neitz, Maureen; Neitz, Jay
2016-09-01
The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red-green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects.
RFI in the 0.5 to 10.8 GHz Band at the Allen Telescope Array
NASA Astrophysics Data System (ADS)
Backus, Peter R.; Kilsdonk, T. N.; Allen Telescope Array Team
2007-05-01
Thanks to funding from the Paul G. Allen Foundation (and other philanthropic supporters) for the technology development and first phase of construction, the first 42 elements of the Allen Telescope Array (ATA-42) are being commissioned for rapid surveys of the astrophysical and technological sky. Because of the innovative design of this array that will eventually include 350 elements, traditional radio astronomy and SETI are enabled simultaneously 24x7. The array has been designed to provide an optimal snapshot image of a very large field of view and simultaneously, 16 (dual polarization) phased beams within the field of view to be analyzed by a suite of backend processors. Four independent 100 MHz bands may be tuned anywhere within the instantaneous receiver bandwidth from 0.5 to 11.2 GHz. One key to the success of rapid surveys for astrophysical or technological signals is a quiet background. This poster presents the results of initial surveys with 6.1 meter dishes at high-spectral-resolution of the background spectrum from 0.5 to 10.8 GHz at the Hat Creek Radio Observatory, where the ATA is being constructed, and compares it with the background spectrum from 1.2-3 GHz at other observatories where SETI observations have been conducted within the past 11 years.
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.
Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N
2016-06-01
The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.
Park, Junghyun; Stump, Brian W.; Hayward, Chris; ...
2016-07-14
This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonablymore » variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. As a result, this suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.« less
Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior.
Buch-Månson, Nina; Spangenberg, Arnaud; Gomez, Laura Piedad Chia; Malval, Jean-Pierre; Soppera, Olivier; Martinez, Karen L
2017-08-23
Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.
NASA Astrophysics Data System (ADS)
Druart, Guillaume; Rommeluere, Sylvain; Viale, Thibault; Guerineau, Nicolas; Ribet-Mohamed, Isabelle; Crastes, Arnaud; Durand, Alain; Taboury, Jean
2014-05-01
Today, both military and civilian applications require miniaturized and cheap optical systems. One way to achieve this trend consists in decreasing the pixel pitch of focal plane arrays (FPA). In order to evaluate the performance of the overall optical systems, it is necessary to measure the modulation transfer function (MTF) of these pixels. However, small pixels lead to higher cut-off frequencies and therefore, original MTF measurements that are able to extract frequencies up to these high cut-off frequencies, are needed. In this paper, we will present a way to extract 1D MTF at high frequencies by projecting fringes on the FPA. The device uses a Lloyd mirror placed near and perpendicular to the focal plane array. Consequently, an interference pattern of fringes can be projected on the detector. By varying the angle of incidence of the light beam, we can tune the period of the interference fringes and, thus, explore a wide range of spatial frequencies, and mainly around the cut-off frequency of the pixel which is one of the most interesting area. Illustration of this method will be applied to a 640×480 microbolometer focal plane array with a pixel pitch of 17µm in the LWIR spectral region.
Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies
Davidoff, Candice; Neitz, Maureen; Neitz, Jay
2016-01-01
Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects. PMID:27622081
Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn
2016-05-28
The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The keymore » lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.« less
Park, Junghyun; Stump, Brian W; Hayward, Chris; Arrowsmith, Stephen J; Che, Il-Young; Drob, Douglas P
2016-07-01
This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonably variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. This suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.
Dimensions and Measurements of Debuncher Band 1 and 2 Waveguide-Coax Launchers (Final Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ding; /Fermilab
2000-02-15
This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 1 and 2) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1, 5, 8 and 12 are schematic drawings of launchers in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurementmore » results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a straight section of band 1 or 2 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 13, the original S11 of all launchers are below or around - 20 db over the full band 1 or 2. The other type of measurement is the one made after these launchers were installed onto the array including elbows and several type N feedthrough or connectors. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 10, 11 and 14 these 'final' S11s are around -15 db.« less
Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2000-01-01
Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the resulting far-zone radiation pattern is displayed as well.
Tunable, diode side-pumped Er: YAG laser
Hamilton, Charles E.; Furu, Laurence H.
1997-01-01
A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.
Tunable, diode side-pumped Er:YAG laser
Hamilton, C.E.; Furu, L.H.
1997-04-22
A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.
Development of orientation tuning in simple cells of primary visual cortex
Moore, Bartlett D.
2012-01-01
Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631
Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.
Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C
2016-06-28
In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.
NASA Astrophysics Data System (ADS)
Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan
2018-04-01
A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.
Magnetic assembly route to colloidal responsive photonic nanostructures.
He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong
2012-09-18
Responsive photonic structures can respond to external stimuli by transmitting optical signals. Because of their important technological applications such as color signage and displays, biological and chemical sensors, security devices, ink and paints, military camouflage, and various optoelectronic devices, researchers have focused on developing these functional materials. Conventionally, self-assembled colloidal crystals containing periodically arranged dielectric materials have served as the predominant starting frameworks. Stimulus-responsive materials are incorporated into the periodic structures either as the initial building blocks or as the surrounding matrix so that the photonic properties can be tuned. Although researchers have proposed various versions of responsive photonic structures, the low efficiency of fabrication through self-assembly, narrow tunability, slow responses to the external stimuli, incomplete reversibility, and the challenge of integrating them into existing photonic devices have limited their practical application. In this Account, we describe how magnetic fields can guide the assembly of superparamagnetic colloidal building blocks into periodically arranged particle arrays and how the photonic properties of the resulting structures can be reversibly tuned by manipulating the external magnetic fields. The application of the external magnetic field instantly induces a strong magnetic dipole-dipole interparticle attraction within the dispersion of superparamagnetic particles, which creates one-dimensional chains that each contains a string of particles. The balance between the magnetic attraction and the interparticle repulsions, such as the electrostatic force, defines the interparticle separation. By employing uniform superparamagnetic particles of appropriate sizes and surface charges, we can create one-dimensional periodicity, which leads to strong optical diffraction. Acting remotely over a large distance, magnetic forces drove the rapid formation of colloidal photonic arrays with a wide range of interparticle spacing. They also allowed instant tuning of the photonic properties because they manipulated the interparticle force balance, which changed the orientation of the colloidal assemblies or their periodicity. This magnetically responsive photonic system provides a new platform for chromatic applications: these colloidal particles assemble instantly into ordered arrays with widely, rapidly, and reversibly tunable structural colors, which can be easily and rapidly fixed in a curable polymer matrix. Based on these unique features, we demonstrated many applications of this system, such as structural color printing, the fabrication of anticounterfeiting devices, switchable signage, and field-responsive color displays. We also extended this idea to rapidly organize uniform nonmagnetic building blocks into photonic structures. Using a stable ferrofluid of highly charged magnetic nanoparticles, we created virtual magnetic moments inside the nonmagnetic particles. This "magnetic hole" strategy greatly broadens the scope of the magnetic assembly approach to the fabrication of tunable photonic structures from various dielectric materials.
Birznieks, I.; Vickery, R. M.; Holcombe, A. O.; Seizova-Cajic, T.
2016-01-01
Neurophysiological studies in primates have found that direction-sensitive neurons in the primary somatosensory cortex (SI) generally increase their response rate with increasing speed of object motion across the skin and show little evidence of speed tuning. We employed psychophysics to determine whether human perception of motion direction could be explained by features of such neurons and whether evidence can be found for a speed-tuned process. After adaptation to motion across the skin, a subsequently presented dynamic test stimulus yields an impression of motion in the opposite direction. We measured the strength of this tactile motion aftereffect (tMAE) induced with different combinations of adapting and test speeds. Distal-to-proximal or proximal-to-distal adapting motion was applied to participants' index fingers using a tactile array, after which participants reported the perceived direction of a bidirectional test stimulus. An intensive code for speed, like that observed in SI neurons, predicts greater adaptation (and a stronger tMAE) the faster the adapting speed, regardless of the test speed. In contrast, speed tuning of direction-sensitive neurons predicts the greatest tMAE when the adapting and test stimuli have matching speeds. We found that the strength of the tMAE increased monotonically with adapting speed, regardless of the test speed, showing no evidence of speed tuning. Our data are consistent with neurophysiological findings that suggest an intensive code for speed along the motion processing pathways comprising neurons sensitive both to speed and direction of motion. PMID:26823511
Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault
NASA Astrophysics Data System (ADS)
Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.
2012-12-01
New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.
NASA Astrophysics Data System (ADS)
Chauhan, A.; Rai, A.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.
2009-12-01
Passive seismic experiments to study seismicity require a long term deployment of ocean-bottom seismometers (OBSs). These instruments also record a large amount of non-seismogenic signals such as movement of large ships, air-gun shots, and marine mammal vocalizations. We report a bi-product of our passive seismic experiment (BBMOMAR) conducted around the Lucky-strike hydrothermal field of the slow-spreading mid-Atlantic ridge. Five multi-component ocean-bottom seismometers (recording two horizontal, one vertical and one pressure channel) were deployed during 2007-2008. During 13 months of deployment, abundant vocalizations of marine mammals have been recorded by all the five equipments. By analyzing the frequency content of data and their pattern of occurrence, we conclude that these low-frequency vocalizations (~20-40 Hz) typically corresponds to blue and fin-whales. These signals if not identified, could be mis-interpreted as underwater seismic/hydrothermal activity. Our data show an increase in the number of vocalizations recorded during the winter season relative to the summer. As part of the seismic monitoring of the Lucky-strike site, we anticipate to extend this study to the 2008-2009 and 2009-2010 periods, after the recovery and deployment of the array during the BATHYLUCK09 cruise. Long-term and continuous records of calls of marine mammals provide valuable information that could be used to identify the species, study their seasonal behaviour and their migration paths. Our study suggestes that passive experiments such as ocean-bottom seismometers deployed at key locations, could provide useful secondary infromation about oceanic species besides recording seismicity, which is otherwise not possible without harming or interfering with their activity.
Sources and levels of ambient ocean sound near the antarctic peninsula
Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; ...
2015-04-14
Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open,more » deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue ( Balaenoptera musculus) and fin ( B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.« less
NASA Astrophysics Data System (ADS)
Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.
2017-12-01
In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.
Assessment of arrays of in-stream tidal turbines in the Bay of Fundy.
Karsten, Richard; Swan, Amanda; Culina, Joel
2013-02-28
Theories of in-stream turbines are adapted to analyse the potential electricity generation and impact of turbine arrays deployed in Minas Passage, Bay of Fundy. Linear momentum actuator disc theory (LMADT) is combined with a theory that calculates the flux through the passage to determine both the turbine power and the impact of rows of turbine fences. For realistically small blockage ratios, the theory predicts that extracting 2000-2500 MW of turbine power will result in a reduction in the flow of less than 5 per cent. The theory also suggests that there is little reason to tune the turbines if the blockage ratio remains small. A turbine array model is derived that extends LMADT by using the velocity field from a numerical simulation of the flow through Minas Passage and modelling the turbine wakes. The model calculates the resulting speed of the flow through and around a turbine array, allowing for the sequential positioning of turbines in regions of strongest flow. The model estimates that over 2000 MW of power is possible with only a 2.5 per cent reduction in the flow. If turbines are restricted to depths less than 50 m, the potential power generation is reduced substantially, down to 300 MW. For large turbine arrays, the blockage ratios remain small and the turbines can produce maximum power with a drag coefficient equal to the Betz-limit value.
Creation of Frustrated Systems by d-dot Array
NASA Astrophysics Data System (ADS)
Masahiko, Machida
2004-03-01
When a square shape dot of High-Tc superconductor is embedded in s-wave superconducting matrix, half quantized vortices are spontaneously generated at the corners of the dot. This feature gives the magnetic interactions between neighboring dots in array systems composed of sevaral dots of High-Tc superconductor and allows us to make magnetic interaction systems. We propose that we can create interesting frustrated systems like the spin-ice by setting the dots in various manners. In order to demonstrate which types of frustrated systems are possible, we perform numerical simulations for the time-dependent Ginzburg-Landau equation describing dynamics of the superconducting order parameters with d-wave and s-wave symmetries. The simulations reveal that the proposed system has two parameters originated from the magnetic interaction between emerged half vortices. We tune the parameters and show various patterns of half vortices from the Ising to the ice model.
Mid-Infrared Tunable Resonant Cavity Enhanced Detectors
Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans
2008-01-01
Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824
Hao, Qi; Huang, Hao; Fan, Xingce; Yin, Yin; Wang, Jiawei; Li, Wan; Qiu, Teng; Ma, Libo; Chu, Paul K; Schmidt, Oliver G
2017-10-18
We report on design and fabrication of patterned plasmonic dimer arrays by using an ultrathin anodic aluminum oxide (AAO) membrane as a shadow mask. This strategy allows for controllable fabrication of plasmonic dimers where the location, size, and orientation of each particle in the dimer pairs can be independently tuned. Particularly, plasmonic dimers with ultrasmall nanogaps down to the sub-10 nm scale as well as a large dimer density up to 1.0 × 10 10 cm -2 are fabricated over a centimeter-sized area. The plasmonic dimers exhibit significant surface-enhanced Raman scattering (SERS) enhancement with a polarization-dependent behavior, which is well interpreted by finite-difference time-domain (FDTD) simulations. Our results reveal a facile approach for controllable fabrication of large-area dimer arrays, which is of fundamental interest for plasmon-based applications in surface-enhanced spectroscopy, biochemical sensing, and optoelectronics.
NASA Astrophysics Data System (ADS)
Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei
2015-08-01
A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Xianshun; Liu, Xinyu; Sun, Liqun
We develop the theory of all-dielectric absorbers based on temporal coupled mode theory (TCMT), with parameters extracted from eigenfrequency simulations. An infinite square array of cylindrical resonators embedded in air is investigated, and we find that it supports two eigenmodes of opposite symmetry that are each responsible for half of the total absorption. The even and odd eigenmodes are found to be the hybrid electric (EH111) and hybrid magnetic (HE111) waveguide modes of a dielectric wire of circular cross section, respectively. The geometry of the cylindrical array is shown to be useful for individual tuning of the radiative loss ratesmore » of the eigenmodes, thus permitting frequency degeneracy. Further, by specifying the resonators’ loss tangent, the material loss rate can be made to equal the radiative loss rate, thus achieving a state of degenerate critical coupling and perfect absorption. Our results are supported by S-parameter simulations, and agree well with waveguide theory.« less
Mechano-regulated surface for manipulating liquid droplets
NASA Astrophysics Data System (ADS)
Tang, Xin; Zhu, Pingan; Tian, Ye; Zhou, Xuechang; Kong, Tiantian; Wang, Liqiu
2017-04-01
The effective transfer of tiny liquid droplets is vital for a number of processes such as chemical and biological microassays. Inspired by the tarsi of meniscus-climbing insects, which can climb menisci by deforming the water/air interface, we developed a mechano-regulated surface consisting of a background mesh and a movable microfibre array with contrastive wettability. The adhesion of this mechano-regulated surface to liquid droplets can be reversibly switched through mechanical reconfiguration of the microfibre array. The adhesive force can be tuned by varying the number and surface chemistry of the microfibres. The in situ adhesion of the mechano-regulated surface can be used to manoeuvre micro-/nanolitre liquid droplets in a nearly loss-free manner. The mechano-regulated surface can be scaled up to handle multiple droplets in parallel. Our approach offers a miniaturized mechano-device with switchable adhesion for handling micro-/nanolitre droplets, either in air or in a fluid that is immiscible with the droplets.
Magnetic gates and guides for superconducting vortices
Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...
2017-04-04
Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less
Engineered spin-spin interactions on a 2D array of trapped ions
NASA Astrophysics Data System (ADS)
Britton, Joe; Sawyer, Brian; Bollinger, John
2013-05-01
We work with laser cooled 9Be+ ions confined in a Penning trap to simulate quantum magnetic interactions. The valence electron of each ion behaves as an ideal spin- 1 / 2 particle. We recently demonstrated a uniform anti-ferromagnetic Ising interaction on a naturally occurring two-dimensional (2D) triangular crystal of 100 < N < 350 ions. The Ising interaction is generated by a spin-dependent optical dipole force (ODF). For spins separated by distance d, we show that the range can be tuned according to (d / d 0)-a, for 0 < a < 3 . For different operating parameters we can also generate an infinite range ferromagnetic Ising interaction. We also use the ODF for spectroscopy and thermometry of the normal modes of the trapped ion array. A detailed understanding of the modes is important because they mediate the spin-spin interactions. This work is supported by NIST and the DARPA OLE program.
Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions
NASA Astrophysics Data System (ADS)
Ling, Bo; Zhao, Jun Liang; Sun, Xiao Wei; Tan, Swee Tiam; Kyaw, Aung Ko Ko; Divayana, Yoga; Dong, Zhi Li
2010-07-01
Wide-range color tuning from red to blue was achieved in phosphor-free p+-Si/p-CuAlO2/n-ZnO nanorod light-emitting diodes at room temperature. CuAlO2 films were deposited on p+-Si substrates by sputtering followed by annealing. ZnO nanorods were further grown on the annealed p+-Si/p-CuAlO2 substrates by vapor phase transport. The color of the p-CuAlO2/n-ZnO nanorod array heterojunction electroluminescence depended on the annealing temperature of the CuAlO2 film. With the increase of the annealing temperature from 900 to 1050 °C, the emission showed a blueshift under the same forward bias. The origin of the blueshift is related to the amount of Cu concentration diffused into ZnO.
Programmable and reversible plasmon mode engineering.
Yang, Ankun; Hryn, Alexander J; Bourgeois, Marc R; Lee, Won-Kyu; Hu, Jingtian; Schatz, George C; Odom, Teri W
2016-12-13
Plasmonic nanostructures with enhanced localized optical fields as well as narrow linewidths have driven advances in numerous applications. However, the active engineering of ultranarrow resonances across the visible regime-and within a single system-has not yet been demonstrated. This paper describes how aluminum nanoparticle arrays embedded in an elastomeric slab may exhibit high-quality resonances with linewidths as narrow as 3 nm at wavelengths not accessible by conventional plasmonic materials. We exploited stretching to improve and tune simultaneously the optical response of as-fabricated nanoparticle arrays by shifting the diffraction mode relative to single-particle dipolar or quadrupolar resonances. This dynamic modulation of particle-particle spacing enabled either dipolar or quadrupolar lattice modes to be selectively accessed and individually optimized. Programmable plasmon modes offer a robust way to achieve real-time tunable materials for plasmon-enhanced molecular sensing and plasmonic nanolasers and opens new possibilities for integrating with flexible electronics.
NASA Technical Reports Server (NTRS)
Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)
2014-01-01
A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.
Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-06-01
Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.
Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
NASA Technical Reports Server (NTRS)
Tulintseff, Ann N. (Inventor)
1995-01-01
An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.
Magnetic gates and guides for superconducting vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.
Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less
NASA Astrophysics Data System (ADS)
Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.
2018-05-01
Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.
Arrays of individually controlled ions suitable for two-dimensional quantum simulations
Mielenz, Manuel; Kalis, Henning; Wittemer, Matthias; Hakelberg, Frederick; Warring, Ulrich; Schmied, Roman; Blain, Matthew; Maunz, Peter; Moehring, David L.; Leibfried, Dietrich; Schaetz, Tobias
2016-01-01
A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 μm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Our work paves the way towards a quantum simulator of two-dimensional systems designed at will. PMID:27291425
MODE IDENTIFICATION OF AN ARCH DAM BY A DYNAMIC AIR-GUN TEST.
Liu, Hsi-Ping; Fedock, Joseph J.; Fletcher, Jon B.
1986-01-01
Thirteen natural frequencies of a concrete arch dam (Monticello Dam near Sacramento, California) have been identified by using a dynamic testing method which employs an air gun firing in the reservoir as the excitation source. These vibrations modes are determined from the peak responses in the Fourier amplitude spectra of the free-vibration data recorded at three crest locations using three-component geophones. Comparisons of the first five natural frequencies with results obtained by forced vibration tests using rotating mass shakers show good agreement. The next eight higher-frequency modes, not previously identified, are determined from data of the present tests.
Cavity design for high-frequency axion dark matter detectors
Stern, I.; Chisholm, A. A.; Hoskins, J.; ...
2015-12-30
In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.
Rapid and efficient hydrophilicity tuning of p53/mdm2 antagonists*
Srivastava, Stuti; Beck, Barbara; Wang, Wei; Czarna, Anna; Holak, Tad A.; Dömling, Alexander
2009-01-01
The protein-protein interaction of p53 and mdm2 is an important anticancer target. The interface, however, is very hydrophobic and naturally results in very hydrophobic antagonists. We used the Orru three component reaction (O-3CR) along with a rapid and efficient, recently discovered amidation reaction to dramatically improve the water solubility of our recently discovered low molecular weight p53/mdm2 antagonists. Arrays of amides were synthesized with improved hydrophilicity and retainment and/or improvement of p53/mdm2 inhibitory activity. PMID:19548636
Measuring the Kinetic and Mechanical Properties of Non-Processive Myosins using Optical Tweezers
Greenberg, Michael J.; Shuman, Henry; Ostap, E. Michael
2017-01-01
The myosin superfamily of molecular motors utilizes energy from ATP hydrolysis to generate force and motility along actin filaments in a diverse array of cellular processes. These motors are structurally, kinetically, and mechanically tuned to their specific molecular roles in the cell. Optical trapping techniques have played a central role in elucidating the mechanisms by which myosins generate force and in exposing the remarkable diversity of myosin functions. Here, we present thorough methods for measuring and analyzing interactions between actin and non-processive myosins using optical trapping techniques. PMID:27844441
Medium-power diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Lucca, Andrea; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro; dell'Acqua, Stefano
2003-05-01
We report what is to our knowledge the first Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at approximately 804 nm. As much as 2.4 W were obtained with 6.2 W of absorbed pump power, showing efficient operation (51% slope efficiency), excellent beam quality (M2=1.1), and weak thermal lensing. Small intracavity losses (<1%) were measured, indicating both reduced thermally induced aberrations and good optical quality of the laser crystal.
Wafer-scale aluminum nano-plasmonics
NASA Astrophysics Data System (ADS)
George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric
2014-09-01
The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.
Synchronization crossover of polariton condensates in weakly disordered lattices
NASA Astrophysics Data System (ADS)
Ohadi, H.; del Valle-Inclan Redondo, Y.; Ramsay, A. J.; Hatzopoulos, Z.; Liew, T. C. H.; Eastham, P. R.; Savvidis, P. G.; Baumberg, J. J.
2018-05-01
We demonstrate that the synchronization of a lattice of solid-state condensates when intersite tunneling is switched on depends strongly on the weak local disorder. This finding is vital for implementation of condensate arrays as computation devices. The condensates here are nonlinear bosonic fluids of exciton-polaritons trapped in a weakly disordered Bose-Hubbard potential, where the nearest-neighboring tunneling rate (Josephson coupling) can be dynamically tuned. The system can thus be tuned from a localized to a delocalized fluid as the number density or the Josephson coupling between nearest neighbors increases. The localized fluid is observed as a lattice of unsynchronized condensates emitting at different energies set by the disorder potential. In the delocalized phase, the condensates synchronize and long-range order appears, evidenced by narrowing of momentum and energy distributions, new diffraction peaks in momentum space, and spatial coherence between condensates. Our paper identifies similarities and differences of this nonequilibrium crossover to the traditional Bose-glass to superfluid transition in atomic condensates.
Yang, Siming; Liu, Peng; Yang, Mingda; Wang, Qiugu; Song, Jiming; Dong, Liang
2016-01-01
This paper reports a flexible and stretchable metamaterial-based “skin” or meta-skin with tunable frequency selective and cloaking effects in microwave frequency regime. The meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) embedded in a stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to significantly suppress scattering from the surface of the dielectric material along different directions. We studied frequency responses of multilayer meta-skins to stretching in a planar direction and to changing the spacing between neighboring layers in vertical direction. We also investigated scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free space. This meta-skin technology will benefit many electromagnetic applications, such as frequency tuning, shielding, and scattering suppression. PMID:26902969
Low-loss curved subwavelength grating waveguide based on index engineering
NASA Astrophysics Data System (ADS)
Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.
2016-03-01
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.
Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard
2014-02-10
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.
Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian
2016-06-17
Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays.
Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian
2016-01-01
Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays. PMID:27312072
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior.
Katlowitz, Kalman A; Picardo, Michel A; Long, Michael A
2018-05-21
A vast array of motor skills can be maintained throughout life. Do these behaviors require stability of individual neuron tuning or can the output of a given circuit remain constant despite fluctuations in single cells? This question is difficult to address due to the variability inherent in most motor actions studied in the laboratory. A notable exception, however, is the courtship song of the adult zebra finch, which is a learned, highly precise motor act mediated by orderly dynamics within premotor neurons of the forebrain. By longitudinally tracking the activity of excitatory projection neurons during singing using two-photon calcium imaging, we find that both the number and the precise timing of song-related spiking events remain nearly identical over the span of several weeks to months. These findings demonstrate that learned, complex behaviors can be stabilized by maintaining precise and invariant tuning at the level of single neurons. Copyright © 2018 Elsevier Inc. All rights reserved.
Yang, Xiong; He, Haibo
2018-05-26
In this paper, we develop a novel optimal control strategy for a class of uncertain nonlinear systems with unmatched interconnections. To begin with, we present a stabilizing feedback controller for the interconnected nonlinear systems by modifying an array of optimal control laws of auxiliary subsystems. We also prove that this feedback controller ensures a specified cost function to achieve optimality. Then, under the framework of adaptive critic designs, we use critic networks to solve the Hamilton-Jacobi-Bellman equations associated with auxiliary subsystem optimal control laws. The critic network weights are tuned through the gradient descent method combined with an additional stabilizing term. By using the newly established weight tuning rules, we no longer need the initial admissible control condition. In addition, we demonstrate that all signals in the closed-loop auxiliary subsystems are stable in the sense of uniform ultimate boundedness by using classic Lyapunov techniques. Finally, we provide an interconnected nonlinear plant to validate the present control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; Harvey, Steven P.; Ciesielski, Peter N.; Wheeler, Lance M.; Schulz, Philip; Lin, Lih Y.; Beard, Matthew C.; Luther, Joseph M.
2017-01-01
We developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (VOC’s) than thin-film perovskites. CsPbI3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small VOC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions at the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%. PMID:29098184
A single active nanoelectromechanical tuning fork front-end radio-frequency receiver
NASA Astrophysics Data System (ADS)
Bartsch, Sebastian T.; Rusu, A.; Ionescu, Adrian M.
2012-06-01
Nanoelectromechanical systems (NEMS) offer the potential to revolutionize fundamental methods employed for signal processing in today’s telecommunication systems, owing to their spectral purity and the prospect of integration with existing technology. In this work we present a novel, front-end receiver topology based on a single device silicon nanoelectromechanical mixer-filter. The operation is demonstrated by using the signal amplification in a field effect transistor (FET) merged into a tuning fork resonator. The combination of both a transistor and a mechanical element into a hybrid unit enables on-chip functionality and performance previously unachievable in silicon. Signal mixing, filtering and demodulation are experimentally demonstrated at very high frequencies ( > 100 MHz), maintaining a high quality factor of Q = 800 and stable operation at near ambient pressure (0.1 atm) and room temperature (T = 300 K). The results show that, ultimately miniaturized, silicon NEMS can be utilized to realize multi-band, single-chip receiver systems based on NEMS mixer-filter arrays with reduced system complexity and power consumption.
Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts
NASA Astrophysics Data System (ADS)
Zhang, Shuchen; Kang, Lixing; Wang, Xiao; Tong, Lianming; Yang, Liangwei; Wang, Zequn; Qi, Kuo; Deng, Shibin; Li, Qingwen; Bai, Xuedong; Ding, Feng; Zhang, Jin
2017-02-01
The semiconductor industry is increasingly of the view that Moore’s law—which predicts the biennial doubling of the number of transistors per microprocessor chip—is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions required to achieve the desired chiralities.
NASA Astrophysics Data System (ADS)
Wang, Yi-Ming; Chen, Chung-Hsien
2012-10-01
In industry, many applications of planar mechanisms such as slider-crank mechanisms have been found in thousands of devices. Typically due to the effect of inertia, these elastic links are subject to axial and transverse periodic forces. Vibrations of these mechanisms are the main source of noise and fatigue that lead to short useful life and failure. Hence, avoiding the occurrence of large amplitude vibration of such systems is of great importance. Recently, the use of specified materials, which are periodically embedded into structures, to satisfy designing requirement has been the subject of many interests. Therefore, the objective of this paper is to present analytical and numerical methodologies to study the dynamics of a slider-crank mechanism with an axially periodic array non-homogeneous coupler; the proposed passive system is introduced to reduce the region of parametric resonance of the mechanism. The Fourier-series based approach and Newtonian mechanics are employed in the analysis. An attention is given to the influence produced by the in-homogeneity of materials of the periodic array to the primary region of dynamic instability of the system. Result of present study indicates that under the same operational condition, the commensurability between the natural frequency of the mechanism and the excitation frequency can be weakened by varying the material properties of the periodic array. The in-homogeneity of materials of the periodic array can be treated as a tuning parameter of the natural frequency of the slider-crank mechanism. With proper choice of the material properties and thickness of the embedded laminas of the periodic array, the occurrence of parametric resonance can be suppressed such that the growth of small amplitude vibration into large motion regime is attenuated.
Design and Development of 256x256 Linear Mode Low-Noise Avalanche Photodiode Arrays
NASA Technical Reports Server (NTRS)
Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Chang, James
2011-01-01
A larger format photodiode array is always desirable for many LADAR imaging applications. However, as the array format increases, the laser power or the lens aperture has to increase to maintain the same flux per pixel thus increasing the size, weight and power of the imaging system. In order to avoid this negative impact, it is essential to improve the pixel sensitivity. The sensitivity of a short wavelength infrared linear-mode avalanche photodiode (APD) is a delicate balance of quantum efficiency, usable gain, excess noise factor, capacitance, and dark current of APD as well as the input equivalent noise of the amplifier. By using InA1As as a multiplication layer in an InP-based APD, the ionization coefficient ratio, k, is reduced from 0.40 (lnP) to 0.22, and the excess noise is reduced by about 50%. An additional improvement in excess noise of 25% was achieved by employing an impact-ionization-engineering structure with a k value of 0.15. Compared with the traditional InP structure, about 30% reduction in the noise-equivalent power with the following amplifier can be achieved. Spectrolab demonstrated 30-um mesa APD pixels with a dark current less than 10 nA and a capacitance of 60 fF at gain of 10. APD gain uninformity determines the usable gain of most pixels in an array, which is critical to focal plane array sensitivity. By fine tuning the material growth and device process, a break-down-voltage standard deviation of 0.1 V and gain of 30 on individual pixels were demonstrated in our 256x256 linear-mode APD arrays.
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Varaljay, N. C.; Alterovitz, S. A.; Miranda, F. A.; Mueller, C. M.; VanKeuls, F. W.; Kim, J.; Harshavardhan, K. S.
2002-01-01
The NASA Glenn Research Center is constructing a 616 element scanning phased array antenna using thin film Ba(sub x)Sr(sub 1-x)TiO(sub 3) based phase shifters. A critical milestone is the production of 616 identical phase shifters at 19 GHz with [asymptotically equal to]4 dB insertion loss and at least 337.5 deg phase shift with 3 percent bandwidth. It is well known that there is a direct relationship between dielectric tuning and loss due to the Kramers-Kronig relationship and that film crystallinity and strain, affected by the substrate template, play an important role. Ba(sub 0.50)Sr(sub 0.50)TiO (sub 3) films, nominally 400 nm thick, were deposited on 48 0.25 mm thick, 5 cm diameter LaAlO(sub 3) wafers. Although previous results suggested that Mn-doped films on MgO were intrinsically superior in terms of phase shift per unit loss, for this application phase shift per unit length was more important. The composition was selected as a compromise between tuning and loss for room temperature operation (e.g. crystallinity progressively degrades for Ba concentrations in excess of 30 percent). As a prelude to fabricating the array, it was necessary to process, screen, and inventory a large number of samples. Variable angle ellipsometry was used to characterize refractive index and film thickness across each wafer. Microstructural properties of the thin films were characterized using high resolution X-ray diffractometry. Finally, prototype phase shifters and resonators were patterned on each wafer and RE probed to measure tuning as a function of dc bias voltage as well as peak (0 field) permittivity and unloaded Q. The relationship among film quality and uniformity and performance is analyzed. This work presents the first statistically relevant study of film quality and microwave performance and represents a milestone towards commercialization of thin ferroelectric films for microwave applications.
Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.
2015-01-01
The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk; College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073; Hu, Zhirun
2014-11-15
This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of themore » screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.« less
Hu, Shan-Wen; Xu, Bi-Yi; Qiao, Shu; Zhao, Ge; Xu, Jing-Juan; Chen, Hong-Yuan; Xie, Fu-Wei
2016-04-01
In this work, we report a novel microfluidic gas collecting platform aiming at simultaneous sample extraction and multiplex mass spectrometry (MS) analysis. An alveolar-mimicking elastic polydimethylsiloxane (PDMS) structures was designed to move dynamically driven by external pressure. The movement was well tuned both by its amplitude and rhythm following the natural process of human respiration. By integrating the alveolar units into arrays and assembling them to gas channels, a cyclic contraction/expansion system for gas inhale and exhale was successfully constructed. Upon equipping this system with a droplet array on the alveolar array surface, we were able to get information of inhaled smoke in a new strategy. Here, with cigarette smoke as an example, analysis of accumulation for target molecules during passive smoking is taken. Relationships between the breathing times, distances away from smokers and inhaled content of nicotine are clarified. Further, by applying different types of extraction solvent droplets on different locations of the droplet array, simultaneous extraction of nicotine, formaldehyde and caproic acid in sidestream smoke (SS) are realized. Since the extract droplets are spatially separated, they can be directly analyzed by MS which is fast and can rid us of all complex sample separation and purification steps. Combining all these merits, this small, cheap and portable platform might find wide application in inhaled air pollutant analysis both in and outdoors. Copyright © 2015 Elsevier B.V. All rights reserved.
Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William
2012-01-01
Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336
Guo, Zhen; Li, Haiwen; Zhou, Lianqun; Zhao, Dongxu; Wu, Yihui; Zhang, Zhiqiang; Zhang, Wei; Li, Chuanyu; Yao, Jia
2015-01-27
A novel method of fabricating large-scale horizontally aligned ZnO microrod arrays with controlled orientation and periodic distribution via combing technology is introduced. Horizontally aligned ZnO microrod arrays with uniform orientation and periodic distribution can be realized based on the conventional bottom-up method prepared vertically aligned ZnO microrod matrix via the combing method. When the combing parameters are changed, the orientation of horizontally aligned ZnO microrod arrays can be adjusted (θ = 90° or 45°) in a plane and a misalignment angle of the microrods (0.3° to 2.3°) with low-growth density can be obtained. To explore the potential applications based on the vertically and horizontally aligned ZnO microrods on p-GaN layer, piezo-phototronic devices such as heterojunction LEDs are built. Electroluminescence (EL) emission patterns can be adjusted for the vertically and horizontally aligned ZnO microrods/p-GaN heterojunction LEDs by applying forward bias. Moreover, the emission color from UV-blue to yellow-green can be tuned by investigating the piezoelectric properties of the materials. The EL emission mechanisms of the LEDs are discussed in terms of band diagrams of the heterojunctions and carrier recombination processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays
2014-01-01
We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(N-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects. PMID:25137554
Ultra-low noise optical phase-locked loop
NASA Astrophysics Data System (ADS)
Ayotte, Simon; Babin, André; Costin, François
2014-03-01
The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.
Fine-grained, local maps and coarse, global representations support human spatial working memory.
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.
Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung
2016-01-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255
Crystallographic alignment of high-density gallium nitride nanowire arrays.
Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong
2004-08-01
Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.
High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications.
Wiggins, Graham C; Brown, Ryan; Lakshmanan, Karthik
2016-02-01
(23)Na RF coil design for brain and MSK applications presents a number of challenges, including poor coil loading for arrays of small coils and SNR penalties associated with providing (1)H capability with the same coil. The basics of RF coil design are described, as well as a review of historical approaches to dual tuning. There follows a review of published high performance coil designs for MSK and brain imaging. Several coil designs have been demonstrated at 7T and 3T which incorporate close-fitting receive arrays and in some cases design features which provide (1)H imaging with little penalty to (23)Na sensitivity. The "nested coplanar loop" approach is examined, in which small transmit-receive (1)H elements are placed within each (23)Na loop, presenting only a small perturbation to (23)Na performance and minimizing RF shielding issues. Other designs incorporating transmit-receive arrays for (23)Na and (1)H are discussed including a 9.4 T (23)Na/(1)H brain coil. Great gains in (23)Na SNR have been made with many of these designs, but simultaneously achieving high performance for 1H remains elusive. Copyright © 2015 John Wiley & Sons, Ltd.
Mohammad-Zamani, Mohammad Javad; Neshat, Mohammad; Moravvej-Farshi, Mohammad Kazem
2016-01-15
A new generation unbiased antennaless CW terahertz (THz) photomixer emitters array made of asymmetric metal-semiconductor-metal (MSM) gratings with a subwavelength pitch, operating in the optical near-field regime, is proposed. We take advantage of size effects in near-field optics and electrostatics to demonstrate the possibility of enhancing the THz power by 4 orders of magnitude, compared to a similar unbiased antennaless array of the same size that operates in the far-field regime. We show that, with the appropriate choice of grating parameters in such THz sources, the first plasmonic resonant cavity mode in the nanoslit between two adjacent MSMs can enhance the optical near-field absorption and, hence, the generation of photocarriers under the slit in the active medium. These photocarriers, on the other hand, are accelerated by the large built-in electric field sustained under the nanoslits by two dissimilar Schottky barriers to create the desired large THz power that is mainly radiated downward. The proposed structure can be tuned in a broadband frequency range of 0.1-3 THz, with output power increasing with frequency.
Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M
2012-01-11
We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society
Controlled sound field with a dual layer loudspeaker array
NASA Astrophysics Data System (ADS)
Shin, Mincheol; Fazi, Filippo M.; Nelson, Philip A.; Hirono, Fabio C.
2014-08-01
Controlled sound interference has been extensively investigated using a prototype dual layer loudspeaker array comprised of 16 loudspeakers. Results are presented for measures of array performance such as input signal power, directivity of sound radiation and accuracy of sound reproduction resulting from the application of conventional control methods such as minimization of error in mean squared pressure, maximization of energy difference and minimization of weighted pressure error and energy. Procedures for selecting the tuning parameters have also been introduced. With these conventional concepts aimed at the production of acoustically bright and dark zones, all the control methods used require a trade-off between radiation directivity and reproduction accuracy in the bright zone. An alternative solution is proposed which can achieve better performance based on the measures presented simultaneously by inserting a low priority zone named as the “gray” zone. This involves the weighted minimization of mean-squared errors in both bright and dark zones together with the gray zone in which the minimization error is given less importance. This results in the production of directional bright zone in which the accuracy of sound reproduction is maintained with less required input power. The results of simulations and experiments are shown to be in excellent agreement.
Implosion Source Development and Diego Garcia Reflections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P E; Boro, C
2001-06-01
Calibration of hydroacoustic stations for nuclear explosion monitoring is important for increasing monitoring capability and confidence from newly installed stations and from existing stations. Past work at Ascension Island has shown that ship-towed airguns can be effectively used for local calibrations such as sensor location, amplitude and phase response, and T-phase coupling in the case of T-phase stations. At regional and ocean-basin distances from a station, the calibration focus is on acoustic travel time, transmission loss, bathymetric shadowing, diffraction, and reflection as recorded at a particular station. Such station calibrations will lead to an overall network calibration that seeks tomore » maximize detection, location, and discrimination capability of events with acoustic signatures. Active-source calibration of hydroacoustic stations at regional and ocean-basin scales has not been attempted to date, but we have made significant headway addressing how such calibrations could be accomplished. We have developed an imploding sphere source that can be used instead of explosives on research and commercial vessels without restriction. The imploding sphere has been modeled using the Lawrence Livermore National Laboratory hydrodynamic code CALE and shown to agree with field data. The need for boosted energy in the monitoring band (2-100 Hz) has led us to develop a 5-sphere implosion device that was tested in the Pacific Ocean earlier this year. Boosting the energy in the monitoring band can be accomplished by a combination of increasing the implosion volume (i.e. the 5-sphere device) and imploding at shallower depths. Although active source calibrations will be necessary at particular locations and for particular objectives, the newly installed Diego Garcia station in the Indian Ocean has shown that earthquakes can be used to help understand regional blockages and the locations responsible for observed hydroacoustic reflections. We have analyzed several events with a back-azimuth from Diego Garcia between 100 and 140 degrees. The Diego Garcia records show a pronounced reflection that correlates in travel time and back-azimuth (calculated using the waveform cross-correlation of the tri-partite array elements to determine lag time across the array) with a reflector at the Saya de Malha Bank, on the Seychelles-Mauritius Plateau. We also show that to accurately predict blockage and reflection regions, it is essential to have detailed bathymetry in relatively small but critical areas.« less
NASA Astrophysics Data System (ADS)
Hirn, A.; Singh, S.; Charvis, P.; Géli, L.; Laigle, M.; Lépine, J.-C.; de Voogd, B.; Saatcilar, R.; Taymaz, T.; Ozalaybey, S.; Shimamura, H.; Selvi, O.; Karabulut, H.; Murai, Y.; Nishimura, Y.; Yamada, A.; Vigner, A.; Bazin, S.; Tan, O.; Yolsal, S.; Aktar, M.; Galvé, A.; Sapin, M.; Marthelot, J.-M.; Imren, C.; Ergin, M.; Tapirdamaz, C.; Koçaoglu, A.; Tarancioglu, A.; Diaz, J.; Verhille, J.; Auffret, Y.; Cetin, S.; Oçakoglu, N.; Karakoç, F.; Klien, E.; Ricolleau, A.; Selvigen, V.; Demirbag, E.; Hakyemez, Y.; Sarikawak, K.
SEISMARMARA is a Turkish-French survey carried out in July-October 2001 as a multi-method approach of seismic structure and activity of the Sea of Marmara. This is the segment of the North Anatolian Fault system that continues the one that produced the two destructive earthquakes in 1999 to the East, and is prone to future major earth- quakes as it has experienced in the past. Aims of the programme are to shed light on the regional tectonics and recent evolution at crustal scale, image faults by their structure and seismic activity, and provide a model and reference to improve loca- tion of earthquakes and focal mechanism studies. The programme bases on marine multichannel reflection seismics (MCS), ocean bottom seismometers (OBS) and land stations recording of wide-angle reflection-refraction from the same source, as well as recording of local earthquakes for tomography and stress/strain distribution. The French N/O Le Nadir acquired 4000 km of MCS profiles in the northern Sea of Mar- mara, using a 4.5 km long digital streamer with 360-channels and sources of 8100 cu. in., or 2900 cu. in., provided by a 12-airgun array in single-bubble mode. Navigation safety was provided by a vessel of the Turkish Coast Guards (Sahil Güvenlik), Leg 1 comprises 4 E-W lines and 30 cross-lines in the whole Marmara Trough, leg 2 has 1 been devoted to a very dense grid of lines in the Cinarcik basin and its margins, record- ing over 80 dip-lines at 0.6-0.9 km spacing At sea-bottom 38 OBS, with 3-component sensors and continuous recording over 1 to 2-month in order to also record natural earthquakes were deployed and collected by the Turkish ship MTA Sismik-1. On land the permanent array has been complemented by as many temporary stations, in par- ticular over 30 continuous recording 3-component 2 Hz stations. Refraction seismics from offshore to onshore was further implemented by short-duration deployments of vertical component lightweight instruments with short recording capacity. A teleseis- mic recording effort with temporary stations, tested in the previous year concentrated on a line through the NAF East of Izmit 2
Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François
2009-10-01
Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.
NASA Astrophysics Data System (ADS)
Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou
2018-03-01
It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up to 7KW. The wafer surface is coated with Yttrium oxide film which allows Silicon Etch chemistry. At Fab-8, we carried investigations in 14 nm FEOL critical etch process which has direct impact on yield, using SensorArray EtchTemp-SE wafer, we measured ESC temperature profile across multiple chambers, for both plasma on and plasma off, promising results achieved on chamber temperature signature identification, guideline for chamber to chamber matching improvement. Correlation between wafer mean temperature and determining criticality-process parameters of recess depth and CD is observed. Furthermore, detail zonal temperature/profile correlation is investigated to identify individual correlation in each chuck zone, and provided unique process knobs corresponding to each chunk. Meanwhile, passive ESC Chuck DOE was done to modulate wafer temperature at different zones, and Sensor Array wafer measurements verified temperature responding well with the ESC set point. Correlation R2 = 0.9979 for outer ring and R2 = 0.9981 for Mid Outer ring is observed, as shown in . Experiments planning to modulate edge zone ESC temperature to tune profile within-wafer uniformity and prove gain in edge yield enhancement and to improve edge yield is underway.
Miller, Brian S; Calderan, Susannah; Gillespie, Douglas; Weatherup, Graham; Leaper, Russell; Collins, Kym; Double, Michael C
2016-03-01
Directional frequency analysis and recording (DIFAR) sonobuoys can allow real-time acoustic localization of baleen whales for underwater tracking and remote sensing, but limited availability of hardware and software has prevented wider usage. These software limitations were addressed by developing a module in the open-source software PAMGuard. A case study is presented demonstrating that this software provides greater efficiency and accessibility than previous methods for detecting, localizing, and tracking Antarctic blue whales in real time. Additionally, this software can easily be extended to track other low and mid frequency sounds including those from other cetaceans, pinnipeds, icebergs, shipping, and seismic airguns.
Accurate ocean bottom seismometer positioning method inspired by multilateration technique
Benazzouz, Omar; Pinheiro, Luis M.; Matias, Luis M. A.; Afilhado, Alexandra; Herold, Daniel; Haines, Seth S.
2018-01-01
The positioning of ocean bottom seismometers (OBS) is a key step in the processing flow of OBS data, especially in the case of self popup types of OBS instruments. The use of first arrivals from airgun shots, rather than relying on the acoustic transponders mounted in the OBS, is becoming a trend and generally leads to more accurate positioning due to the statistics from a large number of shots. In this paper, a linearization of the OBS positioning problem via the multilateration technique is discussed. The discussed linear solution solves jointly for the average water layer velocity and the OBS position using only shot locations and first arrival times as input data.
Dimensions and Measurements of Debuncher Band 3 and 4 Waveguide-Coax Launchers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ding; /Fermilab
2000-09-13
This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 3 and 4) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1 and 5 are schematic drawings of launchers (pick-up) in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. Launchers for band 3 and 4 kickers were made by Penn-engineering Inc., therefor no schematic drawings are presented in thismore » note. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurement results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a launcher and a straight section of band 3 or 4 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 12, the original S11 of all launchers are below or around -20 db over the full band 3 or 4. The other type of measurement is the one made after these launchers were installed onto the array including several type N feedthrough or connectors, elbows, waveguide bends (kicker) and magic Ts (kicker) etc. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 8, 10, 11, 13 and 14 these 'final' S11s are around -15 db.« less
Design of a developmental dual fail operational redundant strapped down inertial measurement unit
NASA Technical Reports Server (NTRS)
Morrell, F. R.; Russell, J. G.
1980-01-01
An experimental redundant strap-down inertial measurement unit (RSDIMU) is being developed at NASA-Langley as a link to satisfy safety and reliability considerations in the integrated avionics concept. The unit consists of four two-degrees-of-freedom (TDOF) tuned-rotor gyros, and four TDOF pendulous accelerometers in a skewed and separable semi-octahedron array. The system will be used to examine failure detection and isolation techniques, redundancy management rules, and optimal threshold levels for various flight configurations. The major characteristics of the RSDIMU hardware and software design, and its use as a research tool are described.
Temperature-feedback direct laser reshaping of silicon nanostructures
NASA Astrophysics Data System (ADS)
Aouassa, M.; Mitsai, E.; Syubaev, S.; Pavlov, D.; Zhizhchenko, A.; Jadli, I.; Hassayoun, L.; Zograf, G.; Makarov, S.; Kuchmizhak, A.
2017-12-01
Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.
Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip
NASA Astrophysics Data System (ADS)
Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.
2014-07-01
We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.
Efficient forward second-harmonic generation from planar archimedean nanospirals
Davidson, II, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; ...
2015-05-01
Here, the enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength.
Theory of Arachnid Prey Localization
NASA Astrophysics Data System (ADS)
Stürzl, W.; Kempter, R.; van Hemmen, J. L.
2000-06-01
Sand scorpions and many other arachnids locate their prey through highly sensitive slit sensilla at the tips (tarsi) of their eight legs. This sensor array responds to vibrations with stimulus-locked action potentials encoding the target direction. We present a neuronal model to account for stimulus angle determination using a population of second-order neurons, each receiving excitatory input from one tarsus and inhibition from a triad opposite to it. The input opens a time window whose width determines a neuron's firing probability. Stochastic optimization is realized through tuning the balance between excitation and inhibition. The agreement with experiments on the sand scorpion is excellent.
Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.
Peled, Itay; Kaminsky, Ron; Kotler, Zvi
2015-06-01
In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%.
Reese, Chad E; Asher, Sanford A
2002-04-01
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.
Structure-property relationships in the extraordinary transmission of light through plasmonic films
NASA Astrophysics Data System (ADS)
Dimaio, Jeffrey R.
Significant research has been performed in recent years on the enhanced transmission of light in metal films containing periodic arrays of subwavelength holes. Standard aperture theory does not account for the noted enhancement which can be up to three orders of magnitude larger than predicted. A surface plasmon polariton (SPP) resonance accounts for the increased transmission as is well documented in the literature. The extraordinarily transparent (EOT) film has a transmission spectrum that is composed of peaks corresponding to different SPP modes. It has been found that through various techniques, the spectral position of these peaks can be controlled with great precision. Beginning with simple variations of structure, the spectrum is tuned. Methods include the formations of anisotropic arrays to break the degeneracy in the x and y directions, corresponding to the [1,0] and [0,1] SPP modes, respectively. To these structures, additional apertures can be added as a sublattice of sorts. Through these novel two dimensional crystal structures, individual SPP modes can be interrupted. The material properties of the metal films also contribute greatly. To that end, the use of composite metal films has been studied. The metals were varied within a skin depth to yield an effective dielectric constant that is a weighted average of the materials. Results show that peak position can be fined tuned with spectral shifts of just a few nanometers to over 50 nm. More so, the band diagram can be engineered with metal layering. The future use of plasmonic films is not limited to passive components only, but active components can also be constructed. When such control is obtained, the possibilities for the use of plasmonic films as modulators, pixels, and filters can also be envisioned. By making use of aperture geometry, we demonstrate control over the emission spectra with the polarization of the incident light. This is not limited to only a simple on/off technology, but color-switching arrays have also been fabricated. Devices that can modulate light by means of mechanical actuators have been modeled and the design of a nonlinear plasmonic film has been suggested.
A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.
Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai
2016-11-18
Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.
Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less
NASA Astrophysics Data System (ADS)
Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.
2016-11-01
Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.
Photon-assisted tunneling in an asymmetrically coupled triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao
The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less
Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; ...
2017-10-27
Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less
NASA Astrophysics Data System (ADS)
Chen, Kai; Duy Dao, Thang; Nagao, Tadaaki
2017-03-01
We fabricated large-area metallic (Al and Au) nanoantenna arrays on Si substrates using cost-effective colloidal lithography with different micrometer-sized polystyrene spheres. Variation of the sphere size leads to tunable plasmon resonances in the middle infrared (MIR) range. The enhanced near-fields allow us to detect the surface phonon polaritons in the natural SiO2 thin layers. We demonstrated further tuning capability of the resonances by employing dry etching of the Si substrates with the nanoantennas acting as the etching masks. The effective refractive index of the nanoantenna surroundings is efficiently decreased giving rise to blueshifts of the resonances. In addition, partial removal of the Si substrates elevates the nanoantennas from the high-refractive-index substrates making more enhanced near-fields accessible for molecular sensing applications as demonstrated here with surface-enhanced infrared absorption (SEIRA) spectroscopy for a thin polymer film. We also directly compared the plasmonic enhancement from the Al and Au nanoantenna arrays.
NASA Astrophysics Data System (ADS)
Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.
2015-12-01
Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.
Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati
2016-01-01
Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications. PMID:27000419
Networks for image acquisition, processing and display
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.
1990-01-01
The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.
Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation
Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua
2015-01-01
Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727
Optical spins and nano-antenna array for magnetic therapy.
Thammawongsa, N; Mitatha, S; Yupapin, P P
2013-09-01
Magnetic therapy is an alternative medicine practice involving the use of magnetic fields subjected to certain parts of the body and stimulates healing from a range of health problems. In this paper, an embedded nano-antenna system using the optical spins generated from a particular configuration of microrings (PANDA) is proposed. The orthogonal solitons pairs corresponding to the left-hand and right-hand optical solitons (photons) produced from dark-bright soliton conversion can be simultaneously detected within the system at the output ports. Two possible spin states which are assigned as angular momentum of either +ħ or -ħ will be absorbed by an object whenever this set of orthogonal solitons is imparted to the object. Magnetic moments could indeed arise from the intrinsic property of spins. By controlling some important parameters of the system such as soliton input power, coupling coefficients and sizes of rings, output signals from microring resonator system can be tuned and optimized to be used as magnetic therapy array.
Three dimensional measurement with an electrically tunable focused plenoptic camera
NASA Astrophysics Data System (ADS)
Lei, Yu; Tong, Qing; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2017-03-01
A liquid crystal microlens array (LCMLA) with an arrayed microhole pattern electrode based on nematic liquid crystal materials using a fabrication method including traditional UV-photolithography and wet etching is presented. Its focusing performance is measured under different voltage signals applied between the electrodes of the LCMLA. The experimental outcome shows that the focal length of the LCMLA can be tuned easily by only changing the root mean square value of the voltage signal applied. The developed LCMLA is further integrated with a main lens and an imaging sensor to construct a LCMLA-based focused plenoptic camera (LCFPC) prototype. The focused range of the LCFPC can be shifted electrically along the optical axis of the imaging system. The principles and methods for acquiring several key parameters such as three dimensional (3D) depth, positioning, and motion expression are given. The depth resolution is discussed in detail. Experiments are carried out to obtain the static and dynamic 3D information of objects chosen.
Three dimensional measurement with an electrically tunable focused plenoptic camera.
Lei, Yu; Tong, Qing; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2017-03-01
A liquid crystal microlens array (LCMLA) with an arrayed microhole pattern electrode based on nematic liquid crystal materials using a fabrication method including traditional UV-photolithography and wet etching is presented. Its focusing performance is measured under different voltage signals applied between the electrodes of the LCMLA. The experimental outcome shows that the focal length of the LCMLA can be tuned easily by only changing the root mean square value of the voltage signal applied. The developed LCMLA is further integrated with a main lens and an imaging sensor to construct a LCMLA-based focused plenoptic camera (LCFPC) prototype. The focused range of the LCFPC can be shifted electrically along the optical axis of the imaging system. The principles and methods for acquiring several key parameters such as three dimensional (3D) depth, positioning, and motion expression are given. The depth resolution is discussed in detail. Experiments are carried out to obtain the static and dynamic 3D information of objects chosen.
Arrays of individually controlled ions suitable for two-dimensional quantum simulations
Mielenz, Manuel; Kalis, Henning; Wittemer, Matthias; ...
2016-06-13
A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 μm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of themore » electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Lastly, our work paves the way towards a quantum simulator of two-dimensional systems designed at will.« less