DOE R&D Accomplishments Database
Schrock, R. R.
1989-01-01
Research continued on the chemistry and preparation of bimetallic cyclopentadienyl complexes containing up to two tungsten or one tungsten and a cobalt, rhodium, or ruthenium. The general method for preparation and analysis of polyenes is also discussed. (CBS)
Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie
2008-09-14
PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.
NASA Astrophysics Data System (ADS)
Nave, Maryana I.; Kornev, Konstantin G.
2017-03-01
Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.
Synthesis and Characterization of Paramagnetic Tungsten Imido Complexes Bearing α-Diimine Ligands.
Tanahashi, Hiromasa; Ikeda, Hideaki; Tsurugi, Hayato; Mashima, Kazushi
2016-02-15
Tungsten imido complexes bearing a redox-active ligand, such as N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene (L1), N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (L2), and 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (L3), were prepared by salt-free reduction of W(═NC6H3-2,6-(i)Pr2)Cl4 (1) using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) followed by addition of the corresponding redox-active ligands. In the initial stage, reaction of W(═NC6H3-2,6-(i)Pr2)Cl4 with MBTCD afforded a tetranuclear W(V) imido cluster, [W(═NC6H3-2,6-(i)Pr2)Cl3]4 (2), which served as a unique precursor for introducing redox-active ligands to the tungsten center to give the corresponding mononuclear complexes with a general formula of W(═NC6H3-2,6-(i)Pr2)Cl3(L) (3, L = L1; 4, L = L2; and 6, L = L3). X-ray analyses of complexes 3 and 6 revealed a neutral coordination mode of L1 and L3 to the tungsten in solid state, while the electron paramagnetic resonance (EPR) spectra of 3 and 4 clarified that a radical was predominantly located on the tungsten center supported by neutral L1 or L2, and the EPR spectra of complex 6 indicated that a radical was delocalized over both the tungsten center and the monoanionic redox-active ligand L3.
Phosphinosilylenes as a novel ligand system for heterobimetallic complexes.
Breit, Nora C; Eisenhut, Carsten; Inoue, Shigeyoshi
2016-04-25
A dihydrophosphinosilylene iron complex [LSi{Fe(CO)4}PH2] has been prepared and utilized in the synthesis of novel heterobimetallic complexes. The phosphine moiety in this phosphinosilylene complex allows coordination towards tungsten leading to the iron-tungsten heterobimetallic complex [LSi{Fe(CO)4}PH2{W(CO)5}]. In contrast, the reaction of [LSi{Fe(CO)4}PH2] with ethylenebis(triphenylphosphine)platinum(0) results in the formation of the iron-platinum heterobimetallic complex [LSi{Fe(CO)4}PH{PtH(PPh3)2}] via oxidative addition.
Tungsten Speciation and Solubility in Munitions-Impacted Soils.
Bostick, Benjamín C; Sun, Jing; Landis, Joshua D; Clausen, Jay L
2018-02-06
Considerable questions persist regarding tungsten geochemistry in natural systems, including which forms of tungsten are found in soils and how adsorption regulates dissolved tungsten concentrations. In this study, we examine tungsten speciation and solubility in a series of soils at firing ranges in which tungsten rounds were used. The metallic, mineral, and adsorbed forms of tungsten were characterized using X-ray absorption spectroscopy and X-ray microprobe, and desorption isotherms for tungsten in these soils were used to characterize its solid-solution partitioning behavior. Data revealed the complete and rapid oxidation of tungsten metal to hexavalent tungsten(VI) and the prevalence of adsorbed polymeric tungstates in the soils rather than discrete mineral phases. These polymeric complexes were only weakly retained in the soils, and porewaters in equilibrium with contaminated soils had 850 mg L -1 tungsten, considerably in excess of predicted solubility. We attribute the high solubility and limited adsorption of tungsten to the formation of polyoxometalates such as W 12 SiO 40 4- , an α-Keggin cluster, in soil solutions. Although more research is needed to confirm which of such polyoxometalates are present in soils, their formation may not only increase the solubility of tungsten but also facilitate its transport and influence its toxicity.
New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals
NASA Astrophysics Data System (ADS)
Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie
2017-11-01
Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.
Tungsten hydride complex as a template in organic inorganic hybrid materials
NASA Astrophysics Data System (ADS)
Montinho, Isilda; Boev, Victor; Fonseca, António M.; Silva, Carlos J. R.; Neves, Isabel C.
2003-03-01
A tungsten hydride complex, [WH 2( η2-OOCCH 3)(Ph 2PCH 2CH 2PPh 2) 2][BPh 4], was dispersed in a hybrid matrix synthesized by a sol-gel process. The host matrix of the so-called ureasil is a network of silica to which oligopolyoxyethylene chains [POE, (OCH 2CH 2) n] are grafted by means of urea cross-links. The free complex and sol-gel materials were characterized by thermal analysis (DSC) and spectroscopic methods (FT-IR and UV/Vis). The data gathered indicate that the tungsten(IV) complex is immobilized in the host matrix, and it exhibits structural properties different from those of the free form. These differences could arise either from distortions caused by steric effects imposed by the structure of hybrid matrix or by interactions with the matrix.
Hydrogen permeation properties of plasma-sprayed tungsten*1
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.
1994-09-01
Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.
NASA Astrophysics Data System (ADS)
Jin, Peng; Wei, Donghui; Wen, Yiqiang; Luo, Mengfei; Wang, Xiangyu; Tang, Mingsheng
2011-04-01
Tungsten peroxo complexes have been widely used in olefin epoxidation, alcohol oxidation, Baeyer-Villiger oxidation and other oxidation reactions, however, there is still not a unanimous viewpoint for the active structure of mononuclear tungsten peroxo complex by now. In this paper, the catalysis of mononuclear tungsten peroxo complexes 0- 5 with or without acidic ligands for the green oxidation of cyclohexene to adipic acid in the absence of organic solvent and phase-transfer catalyst has been researched in experiment. Then we have suggested two possible kinds of active structures of mononuclear tungsten peroxo complexes including peroxo ring ( nA, n = 0-1) and hydroperoxo ( nB, n = 0-1) structures, which have been investigated using density functional theory (DFT). Moreover, the calculations on self-cycle mechanisms involving the two types of active structures of tungsten peroxo complexes with and without oxalic acid ligand have also been carried out at the B3LYP/[LANL2DZ/6-31G(d, p)] level. The highest energy barrier are 26.17 kcal/mol ( 0A, peroxo ring structure without oxalic acid ligand), 23.91 kcal/mol ( 1A, peroxo ring structure with oxalic acid ligand), 18.19 kcal/mol ( 0B, hydroperoxo structure without oxalic acid ligand) and 13.10 kcal/mol ( 1B, hydroperoxo structure with oxalic acid ligand) in the four potential energy profiles, respectively. The results indicate that both the energy barriers of active structure self-cycle processes with oxalic acid ligands are lower than those without oxalic acid ligands, so the active structures with oxalic acid ligands should be easier to recycle, which is in good agreement with our experimental results. However, due to the higher energy of product than that of the reactant, the energy profile of the self-cycle process of 1B shows that the recycle of 1B could not occur at all in theory. Moreover, the crystal data of peroxo ring structure with oxalic acid ligand could be found in some experimental references. Thus, the viewpoint that the peroxo ring active structure should be the real active structure has been proved in this paper.
Townsend, Erik M.; Schrock, Richard R.; Hoveyda, Amir H.
2012-01-01
Molybdenum or tungsten MAP complexes that contain OHIPT as the aryloxide (hexaisopropylterphenoxide) are effective catalysts for homocoupling of simple (E)-1,3-dienes to give (E,Z,E)-trienes in high yield and with high Z selectivities. A vinylalkylidene MAP species was shown to have the expected syn structure in an X-ray study. MAP catalysts that contain OHMT (hexamethylterphenoxide) are relatively inefficient. PMID:22734508
NASA Astrophysics Data System (ADS)
Rodríguez Ripoll, Manel; Totolin, Vladimir; Gabler, Christoph; Bernardi, Johannes; Minami, Ichiro
2018-01-01
The present work shows a novel method for generating in-situ low friction tribofilms containing tungsten disulphide in lubricated contacts using diallyl disulphide as sulphur precursor. The approach relies on the tribo-chemical interaction between the diallyl disulphide and a surface containing embedded sub-micrometer tungsten carbide particles. The results show that upon sliding contact between diallyl disulphide and the tungsten-containing surface, the coefficient of friction drops to values below 0.05 after an induction period. The reason for the reduction in friction is due to tribo-chemical reactions that leads to the in-situ formation of a complex tribofilm that contains iron and tungsten components. X-ray photoelectron spectroscopy analyses indicate the presence of tungsten disulphide at the contact interface, thus justifying the low coefficient of friction achieved during the sliding experiments. It was proven that the low friction tribofilms can only be formed by the coexistence of tungsten and sulphur species, thus highlighting the synergy between diallyl disulphide and the tungsten-containing surface. The concept of functionalizing surfaces to react with specific additives opens up a wide range of possibilities, which allows tuning on-site surfaces to target additive interactions.
A Heterobimetallic W-Ni Complex Containing a Redox-Active W[SNS]2 Metalloligand.
Rosenkoetter, Kyle E; Ziller, Joseph W; Heyduk, Alan F
2016-07-05
The tungsten complex W[SNS]2 ([SNS]H3 = bis(2-mercapto-4-methylphenyl)amine) was bound to a Ni(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] fragment to form the new heterobimetallic complex W[SNS]2Ni(dppe). Characterization of the complex by single-crystal X-ray diffraction revealed the presence of a short W-Ni bond, which renders the complex diamagnetic despite formal tungsten(V) and nickel(I) oxidation states. The W[SNS]2 unit acts as a redox-active metalloligand in the bimetallic complex, which displays four one-electron redox processes by cyclic voltammetry. In the presence of the organic acid 4-cyanoanilinium tetrafluoroborate, W[SNS]2Ni(dppe) catalyzes the electrochemical reduction of protons to hydrogen coincident with the first reduction of the complex.
Is the tungsten(IV) complex (NEt4)2[WO(mnt)2] a functional analogue of acetylene hydratase?
Schreyer, Matthias
2017-01-01
The tungsten(IV) complex (Et4N)2[W(O)(mnt)2] (1; mnt = maleonitriledithiolate) was proposed (Sarkar et al., J. Am. Chem. Soc. 1997, 119, 4315) to be a functional analogue of the active center of the enzyme acetylene hydratase from Pelobacter acetylenicus, which hydrates acetylene (ethyne; 2) to acetaldehyde (ethanal; 3). In the absence of a satisfactory mechanistic proposal for the hydration reaction, we considered the possibility of a metal–vinylidene type activation mode, as it is well established for ruthenium-based alkyne hydration catalysts with anti-Markovnikov regioselectivity. To validate the hypothesis, the regioselectivity of tungsten-catalyzed alkyne hydration of a terminal, higher alkyne had to be determined. However, complex 1 was not a competent catalyst for the hydration of 1-octyne under the conditions tested. Furthermore, we could not observe the earlier reported hydration activity of complex 1 towards acetylene. A critical assessment of, and a possible explanation for the earlier reported results are offered. The title question is answered with "no". PMID:29181113
Maity, Niladri; Barman, Samir; Callens, Emmanuel; ...
2015-11-30
The well-defined single-site silica-supported tungsten complex [(Si–O–)W(Me) 5], 1, is an excellent precatalyst for alkane metathesis. The unique structure of 1 allows the synthesis of unprecedented tungsten hydrido methyl surface complexes via a controlled hydrogenolysis. Specifically, in the presence of molecular hydrogen, 1 is quickly transformed at -78 °C into a partially alkylated tungsten hydride, 4, as characterized by 1H solid-state NMR and IR spectroscopies. Species 4, upon warming to 150 °C, displays the highest catalytic activity for propane metathesis yet reported. DFT calculations using model systems support the formation of [(Si–O–)WH 3(Me) 2], as the predominant species at -78more » °C following several elementary steps of hydrogen addition (by σ-bond metathesis or α-hydrogen transfer). Rearrangement of 4 occuring between -78 °C and room temperature leads to the formation of an unique methylidene tungsten hydride [(Si–O–)WH 3(CH 2)], as determined by solid-state 1H and 13C NMR spectroscopies and supported by DFT. Thus for the first time, a coordination sphere that incorporates both carbene and hydride functionalities has been observed.« less
Wang, Chuan; Yamamoto, Hisashi
2014-01-29
A simple, efficient, and environmentally friendly asymmetric epoxidation of primary, secondary, tertiary allylic, and homoallylic alcohols has been accomplished. This process was promoted by a tungsten-bishydroxamic acid complex at room temperature with the use of aqueous 30% H2O2 as oxidant, yielding the products in 84-98% ee.
First principles study of intrinsic defects in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying
2010-11-01
The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.
Deposition of tungsten metal by an immersion process
Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.; ...
2017-03-23
A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.
A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less
NASA Technical Reports Server (NTRS)
Plummer, E. W.; Bell, A. E.
1972-01-01
Total energy distributions of field emitted electrons from the tungsten (110) and (100) planes as a function of coverage by hydrogen and deuterium have been recorded utilizing a spherical deflection energy analyzer. The elastic tunneling resonance spectrum gives a plot of the 'local density of states' in the adsorbate. The inelastic tunneling spectrum reveals those discrete excitation energies available in the adsorbate-substrate complex. These spectroscopic data have been used to infer the chemical nature of the binding states which have been observed in the flash desorption spectrum of hydrogen from tungsten.
Separation of Molybdenum from Acidic High-Phosphorus Tungsten Solution by Solvent Extraction
NASA Astrophysics Data System (ADS)
Li, Yongli; Zhao, Zhongwei
2017-10-01
A solvent-extraction process for deep separation of molybdenum from an acidic high-phosphate tungsten solution was developed using tributyl phosphate (TBP) as the extractant and hydrogen peroxide (H2O2) as a complexing agent. The common aqueous complexes of tungsten and molybdenum (PMoxW12-xO40 3-, x = 0-12) are depolymerized to {PO4[Mo(O)2(O-O)]4}3- and {PO4[W(O)2(O-O)]4}3- by H2O2. The former can be preferentially extracted by TBP. The extractant concentration, phase contact time, H2O2 dosage, and H2SO4 concentration were optimized. By employing 80% by volume TBP, O:A = 1:1, 1.0 mol/L H2SO4, 1.0 mol/L H3PO4, a contact time of 2 min, and a molar ratio of H2O2/(W + Mo) equal to 1.5, 60.2% molybdenum was extracted in a single stage, while limiting tungsten co-extraction to 3.2%. An extraction isotherm indicated that the raffinate could be reduced to <0.1 g/L Mo in six stages of continuous counter-current extraction.
Powder Injection Molding for mass production of He-cooled divertor parts
NASA Astrophysics Data System (ADS)
Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.
2011-10-01
A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.
Study of ion-irradiated tungsten in deuterium plasma
NASA Astrophysics Data System (ADS)
Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.
2013-07-01
Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.
Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics
Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter
2015-09-09
The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less
Tenderholt, Adam L.; Szilagyi, Robert K.; Holm, Richard H.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.
2009-01-01
Molybdenum- or tungsten-containing enzymes catalyze oxygen atom transfer reactions involved in carbon, sulfur, or nitrogen metabolism. It has been observed that reduction potentials and oxygen atom transfer rates are different for W relative to Mo enzymes and the isostructural Mo/W complexes. Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations on [MoVO(bdt)2]− and [WVO(bdt)2]−, where bdt = benzene-1,2-dithiolate(2−), have been used to determine that the energies of the half-filled redox-active orbital, and thus the reduction potentials and M=O bond strengths, are different for these complexes due to relativistic effects in the W sites. PMID:17720249
Eagle, A A; Tiekink, E R; George, G N; Young, C G
2001-08-27
The complexes TpWO2X react with sulfiding agents such as B2S3 or P4S10 to give the oxothio- and bis(thio)tungsten(VI) complexes TpWOSX (X = Cl(-)) and TpWS2X [X = Cl(-), S2PPh2(-); Tp = hydrotris(3,5-dimethylpyrazol-1-yl)borate]. The reaction of TpWS2Cl with (i) PPh3 in pyridine and (ii) dimethyl sulfoxide affords TpWOSCl in good overall yield. The chloro complexes undergo metathesis with alkali metal salts to yield species of the type TpWOSX and TpWS2X [X = OPh(-), SPh(-), SePh(-), (-)-mentholate]. The diamagnetic complexes exhibit NMR spectra indicative of C(1) (TpWOSX) or C(s) (TpWS2X) symmetry and IR spectra consistent with terminal oxo and thio ligation (nu(W=O), 940-925 cm(-1); nu(W=S) or nu(WS2), 495-475 cm(-1)). Crystals of (R,S)-TpWOS[(-)-mentholate] are monoclinic, space group P2(1), with a = 11.983(2) A, b = 18.100(3) A, c = 13.859(3) A, beta = 91.60(2) degrees, V = 3004.6(8) A(3), and Z = 4. Crystals of TpWS2(OPh)-CH2Cl2 are orthorhombic, space group Pbca, with a = 16.961(4) A, b = 33.098(7) A, c = 9.555(2) A, V = 5364(2) A(3), and Z = 8. The mononuclear, distorted-octahedral tungsten centers are coordinated by a tridentate Tp ligand, an alkoxy or aryloxy ligand, and two terminal chalcogenide ligands. The average W=O and W=S distances are 1.726(7) and 2.125(2) A, respectively, and the O=W=S and S=W=S angles 102.9(3) and 102.9(1) degrees, respectively. The tungsten and sulfur X-ray absorption spectra of TpWOSCl and TpWS2Cl are consistent with the presence of terminal pi-bonded thio ligands in both complexes. The thio complexes generally undergo a reversible one-electron reduction at potentials significantly more positive than their oxo analogues. The chemical, spectroscopic, and electrochemical properties of the complexes are heavily influenced by the presence of W=S pi frontier orbitals.
Chen, Ping; Zhang, Linxing; Xue, Zi-Ling; Wu, Yun-Dong; Zhang, Xinhao
2017-06-19
The reactions of early-transition-metal complexes with H 2 O have been investigated. An understanding of these elementary steps promotes the design of precursors for the preparation of metal oxide materials or supported heterogeneous catalysts. Density functional theory (DFT) calculations have been conducted to investigate two elementary steps of the reactions between tungsten alkylidyne complexes and H 2 O, i.e., the addition of H 2 O to the W≡C bond and ligand hydrolysis. Four tungsten alkylidyne complexes, W(≡CSiMe 3 )(CH 2 SiMe 3 ) 3 (A-1), W(≡CSiMe 3 )(CH 2 t Bu) 3 (B-1), W(≡C t Bu)(CH 2 t Bu) 3 (C-1), and W(≡C t Bu)(O t Bu) 3 (D-1), have been compared. The DFT studies provide an energy profile of the two competing pathways. An additional H 2 O molecule can serve as a proton shuttle, accelerating the H 2 O addition reaction. The effect of atoms at the α and β positions has also been examined. Because the lone-pair electrons of an O atom at the α position can interact with the orbital of the proton, the barrier of the ligand-hydrolysis reaction for D-1 is dramatically reduced. Both the electronic and steric effects of the silyl group at the β position lower the barriers of both the H 2 O addition and ligand-hydrolysis reactions. These new mechanistic findings may lead to the further development of metal complex precursors.
Fabrication of tungsten wire reinforced nickel-base alloy composites
NASA Technical Reports Server (NTRS)
Brentnall, W. D.; Toth, I. J.
1974-01-01
Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.
NASA Astrophysics Data System (ADS)
Salerno, Marco
2010-09-01
Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K3[Fe(CN)6] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO3 form.
Salerno, Marco
2010-09-01
Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K(3)[Fe(CN)(6)] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO(3) form.
DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.
2017-05-01
Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less
He bubble growth and interaction in W nano-tendrils
NASA Astrophysics Data System (ADS)
Smirnov, R. D.; Krasheninnikov, S. I.
2015-11-01
Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.
Recent advances in the development of alkyne metathesis catalysts
Wu, Xian
2011-01-01
Summary The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review. PMID:21286398
Reinheimer, Eric W; Olejniczak, Iwona; Łapiński, Andrzej; Swietlik, Roman; Jeannin, Olivier; Fourmigué, Marc
2010-11-01
Four different cation radical salts are obtained upon electrocrystallization of [Cp(2)W(dmit)] (dmit = 1,3-dithiole-2-thione-4,5-dithiolato) in the presence of the BF(4)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions. In these formally d(1) cations, the WS(2)C(2) metallacycle is folded along the S···S hinge to different extents in the four salts, an illustration of the noninnocent character of the dithiolate ligand. Structural characteristics and the charge distribution on atoms, for neutral and ionized complexes with various folding angles, were calculated using DFT methods, together with the normal vibrational modes and theoretical Raman spectra. Raman spectra of neutral complex [Cp(2)W(dmit)] and its salts formed with BF(4)(-), AsF(6)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions were measured using the red excitation (λ = 632.8 nm). A correlation between the folding angle of the metallacycle and the Raman spectroscopic properties is analyzed. The bands attributed to the C═C and C-S stretching modes shift toward higher and lower frequencies by about 0.3-0.4 cm(-1) deg(-1), respectively. The solid state structural and magnetic properties of the three salts are analyzed and compared with those of the corresponding molybdenum complexes. Temperature dependence of the magnetic susceptibility shows the presence of one-dimensional antiferromagnetic interactions in the BF(4)(-), PF(6)(-), and [Au(CN)(2)](-) salts, while an antiferromagnetic ground state is identified in the Br(-) salt below T(Néel) = 7 K. Interactions are systematically weaker in the tungsten salts than in the isostructural molybdenum analogs, a consequence of the decreased spin density on the dithiolene ligand in the tungsten complexes.
NASA Astrophysics Data System (ADS)
Kelley, Karen Corzine
At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative measurements compared best with Bertini and were within a factor of two to three of CEM2k+GEM2.
NASA Astrophysics Data System (ADS)
Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.
2016-02-01
Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.
High-temperature brazing for reliable tungsten CFC joints
NASA Astrophysics Data System (ADS)
Koppitz, Th; Pintsuk, G.; Reisgen, U.; Remmel, J.; Hirai, T.; Sievering, R.; Rojas, Y.; Casalegno, V.
2007-03-01
The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential.
Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.
Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T
2008-09-15
Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with the reported levels at the 95% confidence level.
NASA Astrophysics Data System (ADS)
Wang, Fang; Yang, Hongmei; Yang, Zuoyin; Zhang, Jingchang; Cao, Weiliang
2007-01-01
Complete geometry optimizations were carried out by HF and DFT methods to study the molecular structure of binuclear transition-metal compounds (Cp(CO) 3W(μ-PPh 2)W(CO) 5) (I) and (Cp(CO) 2W(μ-PPh 2)W(CO) 5) (II). A comparison of the experimental data and calculated structural parameters demonstrates that the most accurate geometry parameters are predicted by the MPW1PW91/LANL2DZ among the three DFT methods. Topological properties of molecular charge distributions were analyzed with the theory of atoms in molecules. (3, -1) critical points, namely bond critical point, were found between the two tungsten atoms, and between W1 and C10 in complex II, which confirms the existence of the metal-metal bond and a semi-bridging CO between the two tungsten atoms. The result provided a theoretical guidance of detailed study on the binuclear phosphido-bridged complex containing transition metal-metal bond, which could be useful in the further study of the heterobimetallic phosphido-bridged complexes.
NASA Astrophysics Data System (ADS)
Yu, Zhangfa; Chen, Maohong; Zhao, Haijie
2015-05-01
The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.
Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders
NASA Astrophysics Data System (ADS)
Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU
2018-01-01
Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.
Nanostructured Thin Films Obtained from Fischer Aminocarbene Complexes
Lazo-Jiménez, Rosa E.; Ortega-Alfaro, M. Carmen; López-Cortés, José G.; Alvarez-Toledano, Cecilio; Chávez-Carvayar, José Á.; Ignés-Mullol, Jordi; González-Torres, Maykel; Carreón-Castro, Pilar
2016-01-01
The synthesis of four amphiphilic organometallic complexes with the general formula RC = M(CO)5NH(CH2)15CH3, where R is a ferrocenyl 2(a-b) or a phenyl 4(a-b) group as a donor moiety and a Fischer carbene of chromium (0) or tungsten (0) as an acceptor group, are reported. These four push-pull systems formed Langmuir (L) monolayers at the air-water interface, which were characterized by isotherms of surface pressure versus molecular area and compression/expansion cycles (hysteresis curves); Brewster angle microscopic images were also obtained. By using the Langmuir–Blodgett (LB) method, molecular monolayers were transferred onto glass substrates forming Z-type multilayers. LB films were characterized through ultraviolet-visible spectroscopy, atomic force microscopy and X-ray diffraction techniques. Results indicated that films obtained from 2b complex [(Ferrocenyl)(hexadecylamine)methylidene] pentacarbonyl tungsten (0) are the most stable and homogeneous; due to their properties, these materials may be incorporated into organic electronic devices. PMID:28773289
Erickson, R.L.; Marsh, S.P.
1971-01-01
Detailed geologic and geochemical studies of the four 7 1/2-minute quadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun during the 1969 summer field season. The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals. Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks , base-metal and barite deposits in Paleozoic sedimentary rocks, and copper molydbenum in granodiorite plutons of Cretaceous age occur in the Edna Mountain area. None of these deposits have been of much economic significance, although tungsten was mined from the hot-spring deposits during World War II.
Hasenaka, Yuki; Okamura, Taka-aki; Tatsumi, Miki; Inazumi, Naoya; Onitsuka, Kiyotaka
2014-11-07
Molybdenum(IV, VI) and tungsten(IV, VI) complexes, (Et4N)2[M(IV)O{1,2-S2-3,6-(RCONH)2C6H2}2] and (Et4N)2[M(VI)O2{1,2-S2-3,6-(RCONH)2C6H2}2] (M = Mo, W; R = (4-(t)BuC6H4)3C), with bulky hydrophobic dithiolate ligands containing NH···S hydrogen bonds were synthesized. These complexes are soluble in nonpolar solvents like toluene, which allows the detection of unsymmetrical coordination structures and elusive intermolecular interactions in solution. The (1)H NMR spectra of the complexes in toluene-d8 revealed an unsymmetrical coordination structure, and proximity of the counterions to the anion moiety was suggested at low temperatures. The oxygen-atom-transfer reaction between the molybdenum(IV) complex and Me3NO in toluene was considerably accelerated in nonpolar solvents, and this increase was attributed to the favorable access of the substrate to the active center in the hydrophobic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu; Hammond, Karl D.
We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes ofmore » helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.« less
NASA Astrophysics Data System (ADS)
Bazel, Yaroslav; Lešková, Martina; Rečlo, Michal; Šandrejová, Jana; Simon, András; Fizer, Maksym; Sidey, Vasyl
2018-05-01
Structure, spectrophotometric and protolytic properties of the styryl dye 2-[4-(dimethylamino)styryl]-1-ethylquinolinium iodide (R) as well as its complex with tungsten were studied. The selective protonation of dimethylamino group was confirmed by density functional theory investigation through the computation of Fukui function, NPA partial atomic charges, and NICS(0) aromaticity indexes. The TD-DFT study explains the experimental change of color by excluding the dimethylamino group from HOMO orbital upon protonation. The acid dissociation constant, the optimum wavelength and the molar absorptivity of R were found to be: 3.02, 501 nm and 4.0 × 104 L mol-1 cm-1, respectively. The protolytic properties of the reagent were found to change significantly in the presence of tungsten(VI). Analysis of bond critical points between the anions and Quinaldine Red cation gives the selectivity raw HWO4- > MoO4-> H2VO4- > ReO4- > ClO4-, that perfectly match with the experimental data. Based on this observation, a non-extractive sequential-injection spectrophotometric method for the determination of tungsten was developed. The absorbance of the colored extracts obeys Beer's law up to 55.2 mg L-1 of W at 520 nm wavelength. The limit of detection calculated from a blank test (n = 10) based on 3 s was 0.96 mg L-1. The developed method was applied for the determination of tungsten in model samples.
Reactions of technetium hexafluoride with nitric acid, nitrosyl fluoride, and nitryl fluoride
NASA Technical Reports Server (NTRS)
Holloway, J. H.; Selig, H.
1970-01-01
Stoichiometry of technetium hexafluoride reactions is studied. Magnetic properties and infrared spectra of reaction products are studied and compared with those of analogous complexes of the hexafluorides of tungsten, rhenium, and osmium.
Gomez-Mingot, Maria; Porcher, Jean-Philippe; Todorova, Tanya K; Fogeron, Thibault; Mellot-Draznieks, Caroline; Li, Yun; Fontecave, Marc
2015-10-29
Bis(dithiolene)tungsten complexes, W(VI)O2 (L = dithiolene)2 and W(IV)O (L = dithiolene)2, which mimic the active site of formate dehydrogenases, have been characterized by cyclic voltammetry and controlled potential electrolysis in acetonitrile. They are shown to be able to catalyze the electroreduction of protons into hydrogen in acidic organic media, with good Faradaic yields (75-95%) and good activity (rate constants of 100 s(-1)), with relatively high overpotentials (700 mV). They also catalyze proton reduction into hydrogen upon visible light irradiation, in combination with [Ru(bipyridine)3](2+) as a photosensitizer and ascorbic acid as a sacrificial electron donor. On the basis of detailed DFT calculations, a reaction mechanism is proposed in which the starting W(VI)O2 (L = dithiolene)2 complex acts as a precatalyst and hydrogen is further formed from a key reduced W-hydroxo-hydride intermediate.
The behavior of small helium clusters near free surfaces in tungsten
NASA Astrophysics Data System (ADS)
Barashev, A. V.; Xu, H.; Stoller, R. E.
2014-11-01
The results of a computational study of helium-vacancy clusters in tungsten are reported. A recently developed atomistic kinetic Monte Carlo method employing empirical interatomic potentials was used to investigate the behavior of clusters composed of three interstitial-helium atoms near {1 1 1}, {1 1 0} and {1 0 0} free surfaces. Multiple configurations were examined and the local energy landscape was characterized to determine cluster mobility and the potential for interactions with the surface. The clusters were found to be highly mobile if far from the surface, but were attracted and bound to the surface when within a distance of a few lattice parameters. When near the surface, the clusters were transformed into an immobile configuration due to the creation of a Frenkel pair; the vacancy was incorporated into what became a He3-vacancy complex. The corresponding interstitial migrated to and became an adatom on the free surface. This process can contribute to He retention, and may be responsible for the observed deterioration of the plasma-exposed tungsten surfaces.
First-principles study of stability of helium-vacancy complexes below tungsten surfaces
NASA Astrophysics Data System (ADS)
Yang, L.; Bergstrom, Z. J.; Wirth, B. D.
2018-05-01
Density function theory calculations have been performed to study the stability of small helium-vacancy (He-V) complexes near tungsten (W) surfaces of different orientations. The results show that the stability of vacancies and He-V complexes near W surfaces depends on surface orientation. However, as the depth below the surface increased beyond about 0.65-0.8 nm, the stability of He-V complexes is similar to the bulk. The formation energies of single vacancies and di-vacancies at depths less than 0.2 nm below the W(110) surface are higher than for W(100) or W(111) surfaces, but have lower energies at depths between 0.2 and 0.65 nm. The formation energies of He-V complexes below W surfaces are sensitive to the geometric orientation of the He and vacancy, especially below the W(111) surface. Within about 0.2 nm of the top layer of the three W surfaces, neither a vacancy nor a di-vacancy can trap He. Because of the lower formation energy of He-V complexes and higher He binding energy to vacancies below the W(110) surface, the He desorption from the W(110) surface is less likely to occur than from the W(100) and W(111) surfaces. Our results provide fundamental insight into the differences in surface morphology changes observed in single W crystals with different surface orientations under He plasma exposure.
Ancillary ligand effects upon dithiolene redox noninnocence in tungsten bis(dithiolene) complexes.
Yan, Yong; Keating, Christopher; Chandrasekaran, Perumalreddy; Jayarathne, Upul; Mague, Joel T; DeBeer, Serena; Lancaster, Kyle M; Sproules, Stephen; Rubtsov, Igor V; Donahue, James P
2013-06-03
An expanded set of compounds of the type [W(S2C2Me2)2L1L2](n) (n = 0: L1 = L2 = CO, 1; L1 = L2 = CN(t)Bu, 2; L1 = CO, L2 = carbene, 3; L1 = CO, L2 = phosphine, 4; L1 = L2 = phosphine, 5. n = 2-: L1 = L2 = CN(-), [6](2-)) has been synthesized and characterized. Despite isoelectronic formulations, the compound set reveals gradations in the dithiolene ligand redox level as revealed by intraligand bond lengths, υ(CCchelate), and rising edge energies in the sulfur K-edge X-ray absorption spectra (XAS). Differences among the terminal series members, 1 and [6](2-), are comparable to differences seen in homoleptic dithiolene complexes related by full electron transfer to/from a dithiolene-based MO. The key feature governing these differences is the favorable energy of the CO π* orbitals, which are suitably positioned to overlap with tungsten d orbitals and exert an oxidizing effect on both metal and dithiolene ligand via π-backbonding. The CN(-) π* orbitals are too high in energy to mix effectively with tungsten and thus leave the filled dithiolene π* orbitals unperturbed. This work shows how, and the degree to which, the redox level of a noninnocent ligand can be modulated by the choice of ancillary ligands(s).
Trends in tungsten coil atomic spectrometry
NASA Astrophysics Data System (ADS)
Donati, George L.
Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective methods for trace metal determinations in several different samples, representing an important asset in today's analytical chemistry.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin
2015-09-01
Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.
Reduction of N2 by supported tungsten clusters gives a model of the process by nitrogenase
Murakami, Junichi; Yamaguchi, Wataru
2012-01-01
Metalloenzymes catalyze difficult chemical reactions under mild conditions. Mimicking their functions is a challenging task and it has been investigated using homogeneous systems containing metal complexes. The nitrogenase that converts N2 to NH3 under mild conditions is one of such enzymes. Efforts to realize the biological function have continued for more than four decades, which has resulted in several reports of reduction of N2, ligated to metal complexes in solutions, to NH3 by protonation under mild conditions. Here, we show that seemingly distinct supported small tungsten clusters in a dry environment reduce N2 under mild conditions like the nitrogenase. N2 is reduced to NH3 via N2H4 by addition of neutral H atoms, which agrees with the mechanism recently proposed for the N2 reduction on the active site of nitrogenase. The process on the supported clusters gives a model of the biological N2 reduction. PMID:22586517
Culka, Martin; Huwiler, Simona G; Boll, Matthias; Ullmann, G Matthias
2017-10-18
Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH - ] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.
High heat flux properties of pure tungsten and plasma sprayed tungsten coatings
NASA Astrophysics Data System (ADS)
Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.
2004-08-01
High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.
AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.
2012-11-01
AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.
Wannakao, Sippakorn; Artrith, Nongnuch; Limtrakul, Jumras; Kolpak, Alexie M
2015-08-24
The design of catalysts for CO2 reduction is challenging because of the fundamental relationships between the binding energies of the reaction intermediates. Metal carbides have shown promise for transcending these relationships and enabling low-cost alternatives. Herein, we show that directional bonding arising from the mixed covalent/metallic character plays a critical role in governing the surface chemistry. This behavior can be described by consideration of individual d-band components. We use this model to predict efficient catalysts based on tungsten carbide with a sub-monolayer of iron adatoms. Our approach can be used to predict site-preference and binding-energy trends for complex catalyst surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis
Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.
2015-01-01
The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207
Barluenga, José; Martínez, Silvia; Suárez-Sobrino, Angel L; Tomás, Miguel
2002-05-29
Pentafulvenes are regioselectively cyclopropanated with group 6 Fischer carbene complexes leading to the homofulvene ring with complete endo selectivity. The homofulvene adducts undergo in turn a further cyclopropanation with ethyl diazoacetate or cyclopentannulation with a Fischer alkenyl carbene complex to provide substituted cyclopentanones after ozonolysis of the exocyclic carbon=carbon double bond. Fischer alkynyl carbene complexes also produce the corresponding alkynyl homofulvenes, albeit the exo stereoisomer is in this case exclusively or preferentially formed. Under moderate CO pressure, tungsten alkynyl carbene complexes cycloadd to pentafulvenes in a [4 + 3] fashion, giving rise to bicyclo[3.2.1]octadien-2-ones.
Mineral resource of the month: tungsten
Shedd, Kim B.
2012-01-01
The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.
Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal
NASA Astrophysics Data System (ADS)
Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.
2015-12-01
Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.
Redox polymer electrodes for advanced batteries
Gregg, Brian A.; Taylor, A. Michael
1998-01-01
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.
Redox polymer electrodes for advanced batteries
Gregg, B.A.; Taylor, A.M.
1998-11-24
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.
Tungsten wire and tubing joined by nickel brazing
NASA Technical Reports Server (NTRS)
1965-01-01
Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.
Divertor tungsten tile melting and its effect on core plasma performance
NASA Astrophysics Data System (ADS)
Lipschultz, B.; Coenen, J. W.; Barnard, H. S.; Howard, N. T.; Reinke, M. L.; Whyte, D. G.; Wright, G. M.
2012-12-01
For the 2007 and 2008 run campaigns, Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 g of tungsten was lost from the tile over ˜100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented.
Space power thermal management materials and fabrication technologies for commerical use
NASA Astrophysics Data System (ADS)
Rosenfeld, John H.; Anderson, William G.; Horner-Richardson, Kevin; Hartenstine, John R.; Keller, Robert F.; Beals, James T.
1995-01-01
This paper describes three materials technologies, developed for space nuclear power thermal management, with exciting and varied applications in other fields. Six dual-use applications are presented. The three basic technologies are described: (1) Refractory-metal/ceramic layered composites can be made into thin, rigid, vacuum tight shells. These shells can be tailored for excellent impact resistance and/or excellent corrision/erosion properties. Dual use applications range from micrometeroid shield radiators for spacecraft to erosion resistant waste-stream heat recovery for corrosive exhaust. (2.) Porous metal technology was initially developed to produce wicks for liquid metal heat pipes. This technology is being developed in several new directions. Porous metal heat exchangers feature extraordinarily high specific surface ratios and have absorbed heat fluxes in excess of 100 MW/m2. Porous metal structures are highly compliant, so the technology has been expanded to produce a compliant interface for the attachment of materials with widely different coefficients of thermal expansion such as low expansion carbon-carbon to high expansion metals. (3.) The paper also describes a process, developed for space nuclear power (thermionics), which achieves 100% dense tungsten by plasma spraying. This could have major application in the reprocessing of spent nuclear fuel or other pyrochemical processes, where it would replace gun-drilled tungsten-molybdenum tubes with pure tungsten tubes of smaller diameter, longer, and thiner walled. The process could produce pure tungsten components in complex shapes for arcjet thrusters and other electric propulsion devices.
NASA Astrophysics Data System (ADS)
Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak
2018-05-01
Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.
Global Tungsten Demand and Supply Forecast
NASA Astrophysics Data System (ADS)
Dvořáček, Jaroslav; Sousedíková, Radmila; Vrátný, Tomáš; Jureková, Zdenka
2017-03-01
An estimate of the world tungsten demand and supply until 2018 has been made. The figures were obtained by extrapolating from past trends of tungsten production from1905, and its demand from 1964. In addition, estimate suggestions of major production and investment companies were taken into account with regard to implementations of new projects for mining of tungsten or possible termination of its standing extraction. It can be assumed that tungsten supply will match demand by 2018. This suggestion is conditioned by successful implementation of new tungsten extraction projects, and full application of tungsten recycling methods.
High strength uranium-tungsten alloys
Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.
1991-01-01
Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.
High strength uranium-tungsten alloy process
Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.
1990-01-01
Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.
Tungsten foil laminate for structural divertor applications - Joining of tungsten foils
NASA Astrophysics Data System (ADS)
Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou
2013-05-01
This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.
NASA Astrophysics Data System (ADS)
Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.
2015-09-01
Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.
Persistence of tungsten oxide particle/fiber mixtures in artificial human lung fluids
2010-01-01
Background During the manufacture of tungsten metal for non-sag wire, tungsten oxide powders are produced as intermediates and can be in the form of tungsten trioxide (WO3) or tungsten blue oxides (TBOs). TBOs contain fiber-shaped tungsten sub-oxide particles of respirable or thoracic size. The aim of this research was to investigate whether fiber-containing TBOs had prolonged biodurability in artificial lung fluids compared to tungsten metal or WO3 and therefore potentially could pose a greater inhalation hazard. Methods Dissolution of tungsten metal, WO3, one fiber-free TBO (WO2.98), and three fiber-containing TBO (WO2.81, WO2.66, and WO2.51) powders were measured for the material as-received, dispersed, and mixed with metallic cobalt. Solubility was evaluated using artificial airway epithelial lining fluid (SUF) and macrophage phagolysosomal simulant fluid (PSF). Results Dissolution rates of tungsten compounds were one to four orders of magnitude slower in PSF compared to SUF. The state of the fiber-containing TBOs did not influence their dissolution in either SUF or PSF. In SUF, fiber-containing WO2.66 and WO2.51 dissolved more slowly than tungsten metal or WO3. In PSF, all three fiber-containing TBOs dissolved more slowly than tungsten metal. Conclusions Fiber-containing TBO powders dissolved more slowly than tungsten metal and WO3 powders in SUF and more slowly than tungsten metal in PSF. Existing pulmonary toxicological information on tungsten compounds indicates potential for pulmonary irritation and possibly fibrosis. Additional research is needed to fully understand the hazard potential of TBOs. PMID:21126345
Secondary electron emission from textured surfaces
NASA Astrophysics Data System (ADS)
Huerta, C. E.; Patino, M. I.; Wirz, R. E.
2018-04-01
In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.
Polarographic determination of tungsten in rocks
Reichen, L.E.
1954-01-01
This work was undertaken to develop a simpler and faster method than the classical gravimetric procedure for the determination of tungsten in rocks and ores. A new polarographic wave of tungsten is obtained in a supporting electrolyte of dilute hydrochloric acid containing tartrate ion. This permits the determination of tungsten both rapidly and accurately. No precipitation of the tungsten is necessary, and only the iron need be separated from the tungsten. The accuracy is within the limits of a polarographic procedure; comparison of polarographic and gravimetric results is given. The method reduces appreciably the amount of time ordinarily consumed in determination of tungsten.
Rosenkoetter, Kyle E; Ziller, Joseph W; Heyduk, Alan F
2017-05-02
Complexes of the general formula W[SNS] 2 M(dppe) (M = Pd, Pt; [SNS]H 3 = bis(2-mercapto-p-tolyl)amine; dppe = 1,2-bis(diphenylphosphino)ethane) were prepared by combining the corresponding (dppe)MCl 2 synthon with W[SNS] 2 under reducing conditions. X-ray diffraction studies revealed the formation of a heterobimetallic complex supported by a single thiolate bridging ligand and a short metal-metal bond between the tungsten and palladium or platinum. Electrochemical and computational results show that the frontier orbitals lie predominantly on the W[SNS] 2 fragment suggesting that it behaves as a redox-active metalloligand in these complexes.
Bayse, Craig A; Ortwine, Kristine N
2007-08-16
Green's functions calculations are presented for several complexes of molybdenum and tungsten, two metals that are similar structurally but display subtle, but significant, differences in electronic structure. Outer valence Green's functions IPs for M(CO)6, M(Me)6, MH6, [MCl4O](-), and [MO4](-) (M = Mo, W) are generally within +/-0.2 eV of available experimental photoelectron spectra. The calculations show that electrons in M-L bonding orbitals are ejected at lower energies for Mo while the detachment energy for electrons in d orbitals varies with metal and complex. For the metal carbonyls, the quasiparticle picture assumed in OVGF breaks down for the inner valence pi CO molecular orbitals due to the coupling of two-hole-one-particle charge transfer states to the one-hole states. Incorporation of the 2h1p states through a Tamm-Dancoff approximation calculation accurately represents the band due to detachment from these molecular orbitals. Though the ordering of IPs for Green's functions methods and DFT Koopmans' theorem IPs is similar for the highest IPs for most compounds considered, the breakdown of the quasiparticle picture for the metal carbonyls suggests that scaling of the latter values may result in a fortuitous or incorrect assignment of experimental VDEs.
High strength and density tungsten-uranium alloys
Sheinberg, Haskell
1993-01-01
Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.
Process Of Bonding Copper And Tungsten
Slattery, Kevin T.; Driemeyer, Daniel E.
1999-11-23
Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.
Process Of Bonding Copper And Tungsten
Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.
2000-07-18
Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.
An initial examination of tungsten geochemistry along groundwater flow paths
NASA Astrophysics Data System (ADS)
Dave, H. B.; Johannesson, K. H.
2008-12-01
Groundwater samples were collected along groundwater flow paths from the Upper Floridan (Florida), Carrizo Sand (Texas), and the Aquia (Maryland) aquifers and analyzed for tungsten (W) concentrations by high- resolution inductively couple plasma mass spectrometry. At each well head, groundwater samples were also analyzed for pH, specific conductance, temperature, alkalinity, dissolved oxygen (DO), oxidation-reduction potential (Eh), dissolved iron speciation, and dissolved sulfide [S(-II)] concentrations. Sediment samples from the Carrizo Sand and Aquia aquifers were also collected and subjected to sequential extractions to provide additional insights into the solid-phase speciation of W in these aquifers. Tungsten concentrations varied along the groundwater flow paths chiefly in response to changing pH, and to a lesser extent, variations in the redox conditions. For groundwater from the Carrizo Sand aquifer, W ranges between 3.64 and 1297 pmol/kg, exhibiting the lowest values proximal to the recharge zone. Tungsten concentrations progressively increase along the flow path, reaching 1297 pmol/kg in the sulfidic groundwaters located approximately 60 km downgradient from the recharge area. Tungsten is strongly correlated with S(-II) concentrations and pH in Carrizo groundwaters (r = 0.95 and 0.78, respectively). Within the Aquia aquifer, however, W generally occurs at lower concentrations than the Carrizo (14 to 184 pmol/kg; mean = 80 pmol/kg), and shows no systematic trends along the flow path (e.g., r = 0.08 and 0.4 for W vs. S(-II) and pH, respectively). Our data are consistent with the increase in W concentrations in Carrizo groundwaters reflecting, in part, pH-related desorption, which has been shown to be substantial for pH greater than 8. Moreover, because of the broad similarities in the chemistry of W and Mo, which forms thiomolybdates in sulfidic waters, we suggest that thiotungstate complexes may form in sulfidic groundwaters, thus partially explaining the elevated W in sulfidic waters of the Carrizo aquifer. We propose that the substantially lower W concentrations in Aquia groundwaters reflect the fact that these waters are suboxic and have not undergone sulfate reduction. Hence, the evolution of W concentrations in the Aquia aquifer is consistent with conservative behavior in these generally oxic to suboxic groundwaters. In summary, our data indicate that pH related adsorption/desorption reactions are the key factors controlling W concentrations in oxic and sub-oxic waters, whereas formation of thiotungstate complexes may be important in sulfidic/anoxic waters.
40 CFR 421.310 - Applicability: Description of the secondary tungsten and cobalt subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... the production of tungsten or cobalt at secondary tungsten and cobalt facilities processing tungsten...
Refractory metal joining for first wall applications
NASA Astrophysics Data System (ADS)
Cadden, C. H.; Odegard, B. C.
2000-12-01
The potential use of high temperature coolant (e.g. 900°C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000°C to 1275°C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laulicht, Freda; Brocato, Jason; Cartularo, Laura
Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. Inmore » a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.« less
40 CFR 421.314 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. NSPS for the Secondary Tungsten and Cobalt....570 30.850 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Tungsten post-leaching wash... times. (e) Tungsten carbide leaching wet air pollution control. NSPS for the Secondary Tungsten and...
40 CFR 421.314 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. NSPS for the Secondary Tungsten and Cobalt....570 30.850 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Tungsten post-leaching wash... times. (e) Tungsten carbide leaching wet air pollution control. NSPS for the Secondary Tungsten and...
40 CFR 421.314 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. NSPS for the Secondary Tungsten and Cobalt....570 30.850 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Tungsten post-leaching wash... times. (e) Tungsten carbide leaching wet air pollution control. NSPS for the Secondary Tungsten and...
40 CFR 421.314 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. NSPS for the Secondary Tungsten and Cobalt....570 30.850 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Tungsten post-leaching wash... times. (e) Tungsten carbide leaching wet air pollution control. NSPS for the Secondary Tungsten and...
40 CFR 421.314 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. NSPS for the Secondary Tungsten and Cobalt....570 30.850 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Tungsten post-leaching wash... times. (e) Tungsten carbide leaching wet air pollution control. NSPS for the Secondary Tungsten and...
Precipitation of a monoclonal antibody by soluble tungsten.
Bee, Jared S; Nelson, Stephanie A; Freund, Erwin; Carpenter, John F; Randolph, Theodore W
2009-09-01
Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0.
Precipitation of a Monoclonal Antibody by Soluble Tungsten
Bee, Jared S.; Nelson, Stephanie A.; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.
2009-01-01
Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0. PMID:19230018
NASA Astrophysics Data System (ADS)
Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.
2016-02-01
For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.
Relativistic effects in metallocorroles: comparison of molybdenum and tungsten biscorroles
Alemayehu, Abraham B.; Vazquez-Lima, Hugo; McCormick, Laura J.; ...
2017-05-12
We present the homoleptic sandwich compounds-Mo and W biscorroles-have afforded a novel platform for experimental studies of relativistic effects. A 200 mV difference in reduction potential and a remarkable 130 nm shift of a near-IR spectral feature have been identified as manifestations of relativistic effects on the properties of these complexes.
NASA Astrophysics Data System (ADS)
Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.
2017-04-01
We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.
NASA Astrophysics Data System (ADS)
Na, Xieyu; Poirier, Michel
2017-06-01
This paper is devoted to the analysis of transition arrays of magnetic-dipole (M1) type in highly charged ions. Such transitions play a significant role in highly ionized plasmas, for instance in the tungsten plasma present in tokamak devices. Using formulas recently published and their implementation in the Flexible Atomic Code for M1-transition array shifts and widths, absorption and emission spectra arising from transitions inside the 3*n complex of highly-charged tungsten ions are analyzed. A comparison of magnetic-dipole transitions with electric-dipole (E1) transitions shows that, while the latter are better described by transition array formulas, M1 absorption and emission structures reveal some insufficiency of these formulas. It is demonstrated that the detailed spectra account for significantly richer structures than those predicted by the transition array formalism. This is due to the fact that M1 transitions may occur between levels inside the same relativistic configuration, while such inner configuration transitions are not accounted for by the currently available averaging expression. In addition, because of configuration interaction, transition processes involving more than one electron jump, such as 3p1/23d5/2 → 3p3/23d3/2, are possible but not accounted for in the transition array formulas. These missing transitions are collected in pseudo-arrays using a post-processing method described in this paper. The relative influence of inner- and inter-configuration transitions is carefully analyzed in cases of tungsten ions with net charge around 50. The need for an additional theoretical development is emphasized.
Bonsu, Richard O; Kim, Hankook; O'Donohue, Christopher; Korotkov, Roman Y; Abboud, Khalil A; Anderson, Timothy J; McElwee-White, Lisa
2015-08-03
The soluble bis(fluoroalkoxide) dioxo tungsten(VI) complexes WO2(OR)2(DME) [1, R = C(CF3)2CH3; 2, R = C(CF3)3] have been synthesized by alkoxide-chloride metathesis and evaluated as precursors for aerosol-assisted chemical vapor deposition (AACVD) of WOx. The (1)H NMR and (19)F NMR spectra of 1 and 2 are consistent with an equilibrium between the dimethoxyethane (DME) complexes 1 and 2 and the solvato complexes WO2(OR)2(CD3CN)2 [1b, R = C(CF3)2CH3; 2b, R = C(CF3)3] in acetonitrile-d3 solution. Studies of the fragmentation of 1 and 2 by mass spectrometry and thermolysis resulted in observation of DME and the corresponding alcohols, with hexafluoroisobutylene also generated from 1. DFT calculations on possible decomposition mechanisms for 1 located pathways for hydrogen abstraction by a terminal oxo to form hexafluoroisobutylene, followed by dimerization of the resulting terminal hydroxide complex and dissociation of the alcohol. AACVD using 1 occurred between 100 and 550 °C and produced both substoichiometric amorphous WOx and a polycrystalline W18O49 monoclinic phase, which exhibits 1-D preferred growth in the [010] direction. The work function (4.9-5.6 eV), mean optical transmittance (39.1-91.1%), conductivity (0.4-2.3 S/cm), and surface roughness (3.4-7.9 nm) of the WOx films are suitable for charge injection layers in organic electronics.
NASA Astrophysics Data System (ADS)
Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen
2017-02-01
A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.
Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin
2010-09-21
In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.
Deuterium trapping in tungsten
NASA Astrophysics Data System (ADS)
Poon, Michael
Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D irradiation. Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C+ irradiation; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten.
NASA Astrophysics Data System (ADS)
Kashiwabara, Teruhiko; Takahashi, Yoshio; Marcus, Matthew A.; Uruga, Tomoya; Tanida, Hajime; Terada, Yasuko; Usui, Akira
2013-04-01
The tungsten (W) species in marine ferromanganese oxides were investigated by wavelength dispersive XAFS method. We found that the W species are in distorted Oh symmetry in natural ferromanganese oxides. The host phase of W is suggested to be Mn oxides by μ-XRF mapping. We also found that the W species forms inner-sphere complexes in hexavalent state and distorted Oh symmetry on synthetic ferrihydrite, goethite, hematite, and δ-MnO2. The molecular-scale information of W indicates that the negatively-charged WO42- ion mainly adsorbs on the negatively-charged Mn oxides phase in natural ferromanganese oxides due to the strong chemical interaction. In addition, preferential adsorption of lighter W isotopes is expected based on the molecular symmetry of the adsorbed species, implying the potential significance of the W isotope systems similar to Mo. Adsorption experiments of W on synthetic ferrihydrite and δ-MnO2 were also conducted. At higher equilibrium concentration, W exhibits behaviors similar to Mo on δ-MnO2 due to their formations of inner-sphere complexes. On the other hand, W shows a much larger adsorption on ferrihydrite than Mo. This is due to the formation of the inner- and outer-sphere complexes for W and Mo on ferrihydrite, respectively. Considering the lower equilibrium concentration such as in oxic seawater, however, the enrichment of W into natural ferromanganese oxides larger than Mo may be controlled by the different stabilities of their inner-sphere complexes on the Mn oxides. These two factors, (i) the stability of inner-sphere complexes on the Mn oxides and (ii) the mode of attachment on ferrihydrite (inner- or outer-sphere complex), are the causes of the different behaviors of W and Mo on the surface of the Fe/Mn (oxyhydr)oxides.
NASA Astrophysics Data System (ADS)
Zakharova, E. S.; Markova, I. Yu; Maslov, A. L.; Polushin, N. I.; Laptev, A. I.
2017-05-01
Modern drill bits have high abrasive wear in the area of contact with the rock and removed sludge. Currently, these bits have a protective layer on the bit body, which consists of a metal matrix with inclusions of carbide particles. The research matrix of this coating and the wear-resistant particles is a prerequisite in the design and production of drill bits. In this work, complex investigation was made for various carbide powders of the grades Relit (tungsten carbide produced by Ltd “ROSNAMIS”) which are used as wear-resistant particles in the coating of the drill bit body. The morphology and phase composition of the chosen powders as well as the influence of a particle shape on prospects of their application in wear-resistance coating presented in this work.
Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value ofmore » G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.« less
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method
NASA Astrophysics Data System (ADS)
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Thorium-Free Versus Thoriated Plasma Gun Electrodes: Statistical Evaluation of Coating Properties
NASA Astrophysics Data System (ADS)
Colmenares-Angulo, Jose; Molz, Ronald; Hawley, David; Seshadri, Ramachandran Chidambaram
2016-04-01
Industries throughout the world today have an increased awareness of environmental, health, and safety issues. This, together with recent Nuclear Regulatory Commission changes concerning source material (e.g., thorium) has added complexity in the supply chain of thoriated tungsten commonly used in plasma spray gun spares. In the interest of a safer and more sustainable work environment, Oerlikon Metco has developed thorium-free material solutions proven to have longer service life than conventional thoriated spares. This work reports on the effect, if any, caused by tungsten compositional changes and extended service life in coating properties. Microstructure, coating efficiency parameters, hardness, particle state, in situ coating stress, and ex situ modulus are evaluated over the service life duration of the nozzle, comparing coatings with thoriated and non-thoriated nozzles and electrodes with the same spray parameters.
Lee, Jin -Kyu; Kim, Song -Yi; Ott, Ryan T.; ...
2015-07-15
Nanostructured tungsten composites were fabricated by spark plasma sintering of nanostructured composite powders. The composite powders, which were synthesized by mechanical milling of tungsten and Ni-based alloy powders, are comprised of alternating layers of tungsten and metallic glass several hundred nanometers in size. The mechanical behavior of the nanostructured W composite is similar to pure tungsten, however, in contrast to monolithic pure tungsten, some macroscopic compressive plasticity accompanies the enhanced maximum strength up to 2.4 GPa by introducing reinforcement. As a result, we have found that the mechanical properties of the composites strongly depend on the uniformity of the nano-grainedmore » tungsten matrix and reinforcement phase distribution.« less
NASA Technical Reports Server (NTRS)
Bacigalupi, R. J.; Breitwieser, R.
1972-01-01
Method is described for producing tungsten-reinforced tantalum, a material possessing the high temperature strength of tungsten and room temperature ductility and weldability of tantalum. This material is produced by bonding together and overlaying structure of tungsten wires with chemical vapor deposited tantalum.
NASA Astrophysics Data System (ADS)
Donovan, David; Buchenauer, Dean; Whaley, Josh; Friddle, Raymond; Wright, Graham
2014-10-01
Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We are exploring the potential for using a compact ECR plasma in situ with scanning tunneling microscopy (STM) to investigate the early stages of helium induced tungsten migration. Here we report on characterization of the plasma source for helium plasmas with a desired ion flux of ~1 × 1019 ions m-2 s-1 and the surface morphology changes seen on the exposed tungsten surfaces. Exposures of polished tungsten discs have been performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons are made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.
1984-05-02
the syntheses of dinuclear and trinuclear complexes employing metal -alkylidyne or -alkylidene fragments.8 Reaction 1 also has a parallel with the...1 0 which was previously examined. The mixed metal complex is undoubtedly disordered with respect to the disposition of molybdenum and tungsten atoms...than for the analogous Mo3 complex suggests greater metal - metal overlap and possibly stronger bonding interactions in the W3 complex which would not
An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances
Lemus, Ranulfo; Venezia, Carmen F.
2015-01-01
Abstract Tungsten is a relatively rare metal with numerous applications, most notably in machine tools, catalysts, and superalloys. In 2003, tungsten was nominated for study under the National Toxicology Program, and in 2011, it was nominated for human health assessment under the US Environmental Protection Agency's (EPA) Integrated Risk Information System. In 2005, the Agency for Toxic Substances and Disease Registry (ATSDR) issued a toxicological profile for tungsten, identifying several data gaps in the hazard assessment of tungsten. By filling the data gaps identified by the ATSDR, this review serves as an update to the toxicological profile for tungsten and tungsten substances. A PubMed literature search was conducted to identify reports published during the period 2004–2014, in order to gather relevant information related to tungsten toxicity. Additional information was also obtained directly from unpublished studies from within the tungsten industry. A systematic approach to evaluate the quality of data was conducted according to published criteria. This comprehensive review has gathered new toxicokinetic information and summarizes the details of acute and repeated-exposure studies that include reproductive, developmental, neurotoxicological, and immunotoxicological endpoints. Such new evidence involves several relevant studies that must be considered when regulators estimate and propose a tungsten reference or concentration dose. PMID:25695728
NASA Astrophysics Data System (ADS)
Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi
2017-04-01
Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.
Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy
NASA Astrophysics Data System (ADS)
Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian
2017-08-01
Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.
Mukund, S; Adams, M W
1996-01-01
Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals. PMID:8550411
The tungsten powder study of the dispenser cathode
NASA Astrophysics Data System (ADS)
Bao, Ji-xiu; Wan, Bao-fei
2006-06-01
The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.
OEDGE modeling for the planned tungsten ring experiment on DIII-D
Elder, J. David; Stangeby, Peter C.; Abrams, Tyler W.; ...
2017-04-19
The OEDGE code is used to model tungsten erosion and transport for DIII-D experiments with toroidal rings of high-Z metal tiles. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasmamore » impurity simulations. We developed a new model for tungsten erosion in OEDGE which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. Furthermore, these values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport), the choice of tungsten atomic physics data used in the model (in particular sviz(Te) for W-atoms), and the model of the carbon flux and energy used for 2 calculating the tungsten source due to sputtering. The core tungsten density is found to be of order 10 15 m -3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned) with density decaying into the scrape off layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru; Buzhinskiy, O. I.
2015-12-15
A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.
Accelerator Production and Separations for High Specific Activity Rhenium-186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurisson, Silvia S.; Wilbur, D. Scott
2016-04-01
Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.
Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan
2015-03-20
The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).
Development of refractory armored silicon carbide by infrared transient liquid phase processing
NASA Astrophysics Data System (ADS)
Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.
2005-12-01
Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.
40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...
40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...
40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...
Measurement of uptake and release of tritium by tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, M.; Torikai, Y.; Saito, M.
2015-03-15
Tungsten is currently contemplated as plasma facing material for the divertor of future fusion machines. In this paper the uptake of tritium by tungsten and its release behavior have been investigated. Tungsten samples have been annealed at various temperatures and loaded at also different temperatures with deuterium containing 7.2 % tritium at a pressure of 1.2 kPa. A specific system was designed to assess the release of tritiated water and molecular tritium by the samples. Due to the rather low solubility of hydrogen isotopes in tungsten it is particularly important to be aware of the presence of hydrogen traps ormore » thin oxide films. As shown in this work, traps or oxide films may affect the retention capability of tungsten and lead to significantly modified release properties. It became clear that there were capture sites that had different thermal stability and different capture intensity in tungsten after polishing, or oxide films that were grown on the surface of tungsten and had barrier effects.« less
METHOD OF MAKING TUNGSTEN FILAMENTS
Frazer, J.W.
1962-12-18
A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)
Effect of Helmholtz Oscillation on Auto-shroud for APS Tungsten Carbide Coating
NASA Astrophysics Data System (ADS)
Jin, Younggil; Choi, Sooseok; Yang, Seung Jae; Park, Chong Rae; Kim, Gon-Ho
2013-06-01
The atmospheric-pressure plasma spray (APS) of tungsten coating was performed using tungsten carbide (WC) powder by means of DC plasma torch equipped with a stepped anode nozzle as a potential method of W coating on graphite plasma-facing component of fusion reactors. This nozzle configuration allows Helmholtz oscillation mode dominating in APS arc fluctuation, and the variation of auto-shroud effect with Helmholtz oscillation characteristics can be investigated. Tungsten coating made from WC powder has lower porosity and higher tungsten purity than that made from pure tungsten powder. The porosity and chemical composition of coatings were investigated by mercury intrusion porosimetry and x-ray photoelectron spectroscopy, respectively. The purity of tungsten coating layer is increased with the increasing frequency of Helmholtz oscillation and the increasing arc current. The modulation of Helmholtz oscillation frequency and magnitude may enhance the decarburization of WC to deposit tungsten coating without W-C and W-O bond from WC powder.
High-temperature properties of joint interface of VPS-tungsten coated CFC
NASA Astrophysics Data System (ADS)
Tamura, S.; Liu, X.; Tokunaga, K.; Tsunekawa, Y.; Okumiya, M.; Noda, N.; Yoshida, N.
2004-08-01
Tungsten coated carbon fiber composite (CFC) is a candidate material for the high heat flux components in fusion reactors. In order to investigate the high-temperature properties at the joint interface of coating, heat load experiments by using electron beam were performed on VPS-tungsten coated CX-2002U samples. After the heat load test for 3.6 ks at 1400 °C, tungsten-rhenium multilayer (diffusion barrier for carbon) at the joint interface of coating was observed clearly. But, at the temperatures above 1600 °C, the multilayer was disappeared and a tungsten carbide layer was formed in the VPS-tungsten coating. At the temperatures below 1800 °C, the thickness of this layer logarithmically increased with increasing its loading time. At 2000 °C, the growth of the tungsten carbide layer was proportional to the square root of loading time. These results indicate that the diffusion barrier for carbon is not expected to suppress the carbide formation at the joint interface of the VPS-tungsten coating above 1600 °C.
Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak
Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke; ...
2017-10-04
Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.
NASA Technical Reports Server (NTRS)
Manning, C. R., Jr.; Honeycutt, L., III
1974-01-01
Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.
NASA Astrophysics Data System (ADS)
Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars
2018-01-01
The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.
Tungsten carbide: Crystals by the ton
NASA Astrophysics Data System (ADS)
Smith, E. N.
1988-06-01
A comparison is made of the conventional process of making tungsten carbide by carburizing tungsten powder and the Macro Process wherein the tungsten carbide is formed directly from the ore concentrate by an exothermic reaction of ingredients causing a simultaneous reduction and carburization. Tons of tungsten monocarbide crystals are formed in a very rapid reaction. The process is unique in that it is self regulating and produces a tungsten carbide compound with the correct stoichiometry. The high purity with respect to oxygen and nitrogen is achieved because the reactions occur beneath the molten metal. The morphology and hardness of these crystals has been studied by various investigators and reported in the listed references.
Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke
Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.
Ductilisation of tungsten (W): Tungsten laminated composites
Reiser, Jens; Garrison, Lauren M.; Greuner, Henri; ...
2017-08-02
Here we elucidate the mechanisms of plastic deformation and fracture of tungsten laminated composites. Furthermore our results suggest that the mechanical response of the laminates is governed by the plastic deformation of the tungsten plies. In most cases, the impact of the interlayer is of secondary importance.
40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this...
40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this...
Accurate pointing of tungsten welding electrodes
NASA Technical Reports Server (NTRS)
Ziegelmeier, P.
1971-01-01
Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.
NASA Astrophysics Data System (ADS)
Wang, Xiaoshuang; Wu, Zhangwen; Hou, Qing
2015-10-01
Molecular dynamics simulations were performed to study the dependence of migration behaviours of single helium atoms near tungsten surfaces on the surface orientation and temperature. For W{100} and W{110} surfaces, He atoms can quickly escape out near the surface without accumulation even at a temperature of 400 K. The behaviours of helium atoms can be well-described by the theory of continuous diffusion of particles in a semi-infinite medium. For a W{111} surface, the situation is complex. Different types of trap mutations occur within the neighbouring region of the W{111} surface. The trap mutations hinder the escape of He atoms, resulting in their accumulation. The probability of a He atom escaping into vacuum from a trap mutation depends on the type of the trap mutation, and the occurrence probabilities of the different types of trap mutations are dependent on the temperature. This finding suggests that the escape rate of He atoms on the W{111} surface does not show a monotonic dependence on temperature. For instance, the escape rate at T = 1500 K is lower than the rate at T = 1100 K. Our results are useful for understanding the structural evolution and He release on tungsten surfaces and for designing models in other simulation methods beyond molecular dynamics.
Zhou, Haifeng; Ran, Guoxia; Masson, Jean-Francois; Wang, Chan; Zhao, Yuan; Song, Qijun
2018-05-15
Biosensors based on converting the concentration of analytes in complex samples into single electrochemical signals are attractive candidates as low cost, high-throughput, portable and renewable sensor platforms. Here, we describe a simple but practical analytical device for sensing an anticancer drug in whole blood, using the detection of methotrexate (MTX) as a model system. In this biosensor, a novel carbon-based composite, tungsten phosphide embedded nitrogen-doped carbon nanotubes (WP/N-CNT), was fixed to the electrode surface that supported redox cycling. The electronic transmission channel in nitrogen doped carbon nanotubes (N-CNT) and the synergistic effect of uniform distribution tungsten phosphide (WP) ensured that the electrode materials have outstanding electrical conductivity and catalytic performance. Meanwhile, the surface electronic structure also endows its surprisingly reproducible performance. To demonstrate portable operation for MTX sensing, screen printing electrodes (SPE) was modified with WP/N-CNT. The sensor exhibited low detection limits (45 nM), wide detection range (0.01-540 μM), good selectivity and long-term stability for the determination of MTX. In addition, the technique was successfully applied for the determination of MTX in whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.
Correy, Thomas B.
1989-01-01
An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.
Gleeble Testing of Tungsten Samples
2013-02-01
as a diffusion barrier to prevent the tungsten samples from fusing to the tungsten carbide inserts at elevated temperatures. After the anvils were...anvils with removable tungsten carbide inserts. The inserts were 19.05 mm (0.75 in) in diameter and 25.4 mm (1 in) long; they were purchased from...rhenium are shown in tables 6 and 7 and figure 7. The sample tested at 1300 °C, T4, partially embedded into the tungsten carbide (WC) inserts during
Motion of W and He atoms during formation of W fuzz
NASA Astrophysics Data System (ADS)
Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; Schwarz-Selinger, T.; Zach, M.
2018-06-01
Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion of the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten ‘fuzz’. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. This supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.
Motion of W and He atoms during formation of W fuzz
Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; ...
2018-04-11
Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion ofmore » the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten 'fuzz'. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. Lastly, this supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.« less
Secondary electron emission from plasma-generated nanostructured tungsten fuzz
Patino, M.; Raitses, Y.; Wirz, R.
2016-11-14
Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less
Correy, T.B.
1989-05-09
An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1974-01-01
The deformation behavior of tungsten at temperatures below 0.2 times the absolute melting temperature is reviewed with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition. It is concluded that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. Future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of alloys of tungsten and other transition metal alloys.
Review of deformation behavior of tungsten at temperature less than 0.2 absolute melting temperature
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1972-01-01
The deformation behavior of tungsten at temperatures 0.2 T sub m is reviewed, with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition temperature. It appears that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research is discussed which suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. It is concluded that future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of tungsten alloys and other transition metal alloys.
Oishi, T; Morita, S; Huang, X L; Zhang, H M; Goto, M
2014-11-01
Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500-2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, T., E-mail: oishi@LHD.nifs.ac.jp; Morita, S.; Goto, M.
2014-11-15
Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.
Erickson, R.L.; Marsh, S.P.
1971-01-01
Detailed geologic and geochemical studies of the four 7 1/2-minute quadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun during the 1969 summer field season. The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals. Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks, base-metal and barite deposits in Paleozoic sedimentary rocks, and copper-molybdenum in granodiorite plutons of Cretaceous age occur in the Edna Mountain area. None of these deposits have been of much economic signigicance, although tungsten was mined from the hot-spring deposits during World War II.
Erickson, R.L.; Marsh, S.P.
1971-01-01
Detailed geologic and geochemical studies of the four 7 1/2-minute wuadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun druring the 1969 summer field season. The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals. Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks, base-metal and barite deposits in Paleozoic sedimentary rocks, and copper-molybdenum in granodiorite plutons of Creataceous age occur in the Edna Mountain dare. None of these deposits have been of much economic significance, although tungsten was mined from the hot-spring deposits during World War II.
NASA Astrophysics Data System (ADS)
Lyon, Jonathan T.; Gruene, Philipp; Fielicke, André; Meijer, Gerard; Rayner, David M.
2009-11-01
The binding of carbon monoxide to iron, ruthenium, rhenium, and tungsten clusters is studied by means of infrared multiple photon dissociation spectroscopy. The CO stretching mode is used to probe the interaction of the CO molecule with the metal clusters and thereby the activation of the C-O bond. CO is found to adsorb molecularly to atop positions on iron clusters. On ruthenium and rhenium clusters it also binds molecularly. In the case of ruthenium, binding is predominantly to atop sites, however higher coordinated CO binding is also observed for both metals and becomes prevalent for rhenium clusters containing more than nine atoms. Tungsten clusters exhibit a clear size dependence for molecular versus dissociative CO binding. This behavior denotes the crossover to the purely dissociative CO binding on the earlier transition metals such as tantalum.
Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites
NASA Astrophysics Data System (ADS)
Herbold, Eric; Cai, Jing; Benson, David; Nesterenko, Vitali
2007-06-01
Recent investigations of the dynamic compressive strength of cold isostatically pressed (CIP) composites of polytetrafluoroethylene (PTFE), tungsten and aluminum powders show significant differences depending on the size of metallic particles. PTFE and aluminum mixtures are known to be energetic under dynamic and thermal loading. The addition of tungsten increases density and overall strength of the sample. Multi-material Eulerian and arbitrary Lagrangian-Eulerian methods were used for the investigation due to the complexity of the microstructure, relatively large deformations and the ability to handle the formation of free surfaces in a natural manner. The calculations indicate that the observed dependence of sample strength on particle size is due to the formation of force chains under dynamic loading in samples with small particle sizes even at larger porosity in comparison with samples with large grain size and larger density.
Destruction of tungsten limiters in the T-10 Tokamak under high plasma heat loads
NASA Astrophysics Data System (ADS)
Grashin, S. A.; Arkhipov, I. I.; Budaev, V. P.; Giniyatulin, R. N.; Karpov, A. V.; Klyuchnikov, L. A.; Krupin, V. A.; Litunovskiy, N. V.; Masul, I. V.; Makhankov, F. N.; Martynenko, Yu V.; Sarytchev, D. V.; Solomatin, R. Yu; Khimchenko, L. N.
2017-10-01
Tungsten limiters were tested in the T-10 tokamak. The limiters were made from the ITER-grade WMP “POLEMA” tungsten. The influence of the edge tokamak plasma on tungsten limiters leads to significant cracking of tungsten. The heat load of up to 2 MW · m-2 leads to the micro-crack development at the grain boundaries accompanied by the loss of grains. The heat loads that exceed 5 MW · m-2 lead to the macro crack development. Under the present T-10 tokamak conditions, the heat and particle fluxes in the edge plasma lead to the significant destruction of tungsten limiters during the experimental campaign. During the disruption and runaway electron formation, extreme heat loads of more than 1 GW/m2 cause strong melting of tungsten on the inner and outer part of the ring limiter.
Baseline high heat flux and plasma facing materials for fusion
NASA Astrophysics Data System (ADS)
Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.
2017-09-01
In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).
A study of scandia and rhenium doped tungsten matrix dispenser cathode
NASA Astrophysics Data System (ADS)
Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling
2007-10-01
Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.
NASA Astrophysics Data System (ADS)
Hulsbosch, Niels; Boiron, Marie-Christine; Dewaele, Stijn; Muchez, Philippe
2016-02-01
The identification of a magmatic source for granite-associated rare metal (W, Nb, Ta and Sn) mineralisation in metasediment-hosted quartz veins is often obscured by intense fluid-rock interactions which metamorphically overprinted most source signatures in the vein system. In order to address this recurrent metal sourcing problem, we have studied the metasediment-hosted tungsten-bearing quartz veins of the Nyakabingo deposit of the Karagwe-Ankole belt in Central Rwanda. The vein system (992 ± 2 Ma) is spatiotemporal related to the well-characterised B-rich, F-poor G4 leucogranite-pegmatite suite (986 ± 10 Ma to 975 ± 8 Ma) of the Gatumba-Gitarama area which culminated in Nb-Ta-Sn mineralisation. Muscovite in the Nyakabingo veins is significantly enriched in granitophile elements (Rb, Cs, W and Sn) and show alkali metal signatures equivalent to muscovite of less-differentiated pegmatite zones of the Gatumba-Gitarama area. Pegmatitic muscovite records a decrease in W content with increasing differentiation proxies (Rb and Cs), in contrast to the continuous enrichment of other high field strength elements (Nb and Ta) and Sn. This is an indication of a selective redistribution for W by fluid exsolution and fluid fractionation. Primary fluid inclusions in tourmaline of these less-differentiated pegmatites demonstrate the presence of medium to low saline, H2O-NaCl-KCl-MgCl2-complex salt (e.g. Rb, Cs) fluids which started to exsolve at the G4 granite-pegmatite transition stage. Laser ablation inductively coupled plasma mass-spectrometry shows significant tungsten enrichment in these fluid phases (∼5-500 ppm). Fractional crystallisation has been identified previously as the driving mechanism for the transition from G4 granites, less-differentiated biotite, biotite-muscovite towards muscovite pegmatites and eventually columbite-tantalite mineralised pegmatites. The general absence of tungsten mineralisation in this magmatic suite, including the most differentiated columbite-tantalite mineralised pegmatites of the Gatumba-Gitarama area, emphasises the efficiency of fluid saturation to extract crystal-melt incompatible tungsten from the differentiating melt phase. Fluid-melt-crystal partitioning calculations support the concept of a magmatic-hydrothermal fluid source for tungsten and constrain the range of permissible crystal-melt and fluid-melt partition coefficients together with realistic values for water solubility in the parental G4 granitic melt. Consequently, we propose that for highly-differentiated B-rich, F-poor granite systems fluid saturation started prior to or at the granite-pegmatite transition stage resulting in apical to peribatholitic tungsten veins systems that are paragenetically older than the final pegmatite stage.
Raman scattering from rapid thermally annealed tungsten silicide
NASA Technical Reports Server (NTRS)
Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.
1987-01-01
Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.
Method for producing microporous metal bodies
Danko, Joseph C.
1982-01-01
Tungsten is vapor-deposited by hydrogen reduction of tungsten hexafluoride (WF.sub.6) to produce a tungsten body having from 40 to 100 ppm fluorine. The tungsten is then heated under vacuum to produce grain boundary porosity for a sufficient period of time to allow the pores along the grain boundaries to become interconnected.
NASA Astrophysics Data System (ADS)
Liao, Yulong; Zhao, Zhongwei
2018-04-01
Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.
Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes
Hermans, Andre; Wightman, R. Mark
2008-01-01
Here we describe a simple method to prepare voltammetric microelectrodes using tungsten wires as a substrate. Tungsten wires have high tensile modulus and enable the fabrication of electrodes that have small dimensions overall while retaining rigidity. In this work, 125 μm tungsten wires with a conical tip were employed. For the preparation of gold or platinum ultramicroelectrodes, commercial tungsten microelectrodes, completely insulated except at the tip, were used as substrates. Following removal of oxides from the exposed tungsten, platinum or gold was electroplated yielding surfaces with an electroactive area of between 1×10−6 cm2 to 2×10−6 cm2. Carbon surfaces on the etched tip of tungsten microwires were prepared by coating with photoresist followed by pyrolysis. The entire electrode was then insulated with Epoxylite except the tip yielding an exposed carbon surface with an area of around 4×10−6 cm2 to 6×10−6 cm2. All three types of ultramicroelectrodes fabricated on the tungsten wire had similar electrochemical behavior to electrodes fabricated from wires or fibers insulated with glass tubes. PMID:17129002
Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam
NASA Astrophysics Data System (ADS)
Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian
2017-09-01
The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.
Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less
Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...
2018-05-23
Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less
NASA Astrophysics Data System (ADS)
El-Atwani, O.; Taylor, C. N.; Frishkoff, J.; Harlow, W.; Esquivel, E.; Maloy, S. A.; Taheri, M. L.
2018-01-01
Microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed helium was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.
El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James; ...
2017-11-09
Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less
Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
NASA Astrophysics Data System (ADS)
Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET
2017-05-01
Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
Assessing tungsten transport in the vadose zone: from dissolution studies to soil columns.
Tuna, Gulsah Sen; Braida, Washington; Ogundipe, Adebayo; Strickland, David
2012-03-01
This study investigates the dissolution, sorption, leachability, and plant uptake of tungsten and alloying metals from canister round munitions in the presence of model, well characterized soils. The source of tungsten was canister round munitions, composed mainly of tungsten (95%) with iron and nickel making up the remaining fraction. Three soils were chosen for the lysimeter studies while four model soils were selected for the adsorption studies. Lysimeter soils were representatives of the typical range of soils across the continental USA; muck-peat, clay-loamy and sandy-quartzose soil. Adsorption equilibrium data on the four model soils were modeled with Langmuir and linear isotherms and the model parameters were obtained. The adsorption affinity of soils for tungsten follows the order: Pahokee peat>kaolinite>montmorillonite>illite. A canister round munition dissolution study was also performed. After 24 d, the measured dissolved concentrations were: 61.97, 3.56, 15.83 mg L(-1) for tungsten, iron and nickel, respectively. Lysimeter transport studies show muck peat and sandy quartzose soils having higher tungsten concentration, up to 150 mg kg(-1) in the upper layers of the lysimeters and a sharp decline with depth suggesting strong retardation processes along the soil profile. The concentrations of tungsten, iron and nickel in soil lysimeter effluents were very low in terms of posing any environmental concern; although no regulatory limits have been established for tungsten in natural waters. The substantial uptake of tungsten and nickel by ryegrass after 120 d of exposure to soils containing canister round munition suggests the possibility of tungsten and nickel entering the food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan
2016-11-25
An aqueous two-phase system composed of Triton X-100-(NH 4 ) 2 SO 4 -H 2 O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Mononuclear Sulfido-Tungsten(V) Complexes: Completing the Tp*MEXY (M = Mo, W; E = O, S) Series.
Sproules, Stephen; Eagle, Aston A; George, Graham N; White, Jonathan M; Young, Charles G
2017-05-01
Orange Tp*WSCl 2 has been synthesized from the reactions of Tp*WOCl 2 with boron sulfide in refluxing toluene or Tp*WS 2 Cl with PPh 3 in dichloromethane at room temperature. Mononuclear sulfido-tungsten(V) complexes, Tp*WSXY {X = Y = Cl, OPh, SPh, SePh; X = Cl, Y = OPh; XY = toluene-3,4-dithiolate (tdt), quinoxaline-2,3-dithiolate (qdt); and Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate} were prepared by metathesis of Tp*WSCl 2 with the respective alkali metal salt of X - /XY 2- , or [NHEt 3 ] 2 (qdt). The complexes were characterized by microanalysis, mass spectrometry, electrochemistry, and infrared (IR), electron paramagnetic resonance (EPR) and electronic absorption spectroscopies. The molecular structures of Tp*WS(OPh) 2 , Tp*WS(SePh) 2 , and Tp*WS(tdt) have been determined by X-ray crystallography. The six-coordinate, distorted-octahedral W centers are coordinated by terminal sulfido (W≡S = 2.128(2) - 2.161(1) Å), terdentate facial Tp*, and monodentate/bidentate O/S/Se-donor ligands. The sulfido-W(V) complexes are characterized by lower energy electronic transitions, smaller g iso , and larger A iso ( 183 W) values, and more positive reduction potentials compared with their oxo-W(V) counterparts. This series has been probed by sulfur K-edge X-ray absorption spectroscopy (XAS), the spectra being assigned by comparison to Tp*WOXY (X = Y = SPh; XY = tdt, qdt) and time-dependent density functional theoretical (TD-DFT) calculations. This study provides insight into the electronic nature and chemistry of the catalytically and biologically important sulfido-W unit.
Mirrorlike pulsed laser deposited tungsten thin film.
Mostako, A T T; Rao, C V S; Khare, Alika
2011-01-01
Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.
A molecular dynamics study of melting and dissociation of tungsten nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Min; Wang, Jun; Fu, Baoqin
2015-12-15
Molecular dynamics simulations were conducted to study the melting and dissociation of free tungsten nanoparticles. For the various interatomic potentials applied, the melting points of the tungsten nanoparticles increased with increasing nanoparticle diameter. Combining these results with the melting point of bulk tungsten in the experiment, the melting point of nanoparticles with diameters ranging from 4 to 12 nm could be determined. As the temperature increases, free nanoparticles are subject to dissociation phenomena. The dissociation rate was observed to follow Arrhenius behavior, and the Meyer–Neldel rule was obeyed. These results are useful in understanding the behavior of tungsten dust generatedmore » in nuclear fusion devices as well as for the preparation, formation, and application of tungsten powders.« less
1983-12-01
Tucker and R. J. Sampson. 16 A field check of the area confirmed many of the physical aspects of the property as reported, but the tungsten grades...iron, mercury, perlite, pumice, aggregate, evaporites, travertine, and diatomite . Geothermal and water-producing strata were also investigated. The...Prospect ( Diatomite ) (N-1602) ..... ... 436 Evaporites .......... ....................... .436 Bonanza Group (N-1502) ..... ............... ... 436
Controlled Ring-Opening Metathesis Polymerization by Molybdenum and Tungsten Alkylidene Complexes
1988-07-29
weights and low polydispersities (as low as 1.03) consistent with a living catalyst system employing 50, 100, 200, and 400 eq of monomer. The reactions are...secondary metathesis of polymer chains Bulky alkoxide ligands Wittig-like reaction Ring-opening metathesis polymerization (ROMP) Feast monomer Cyclic...olefins Retro Diels-Alder reaction Norbornene (NBE) Low temperature column chromatography Endo-,endo-5,6-dicarbomethoxynorbornene Discrete, soluble
Rhenium, Molybdenum, Tungsten - Prospects for Production and Industrial Applications
1998-06-18
concentrates from unique complex copper -containing porphyry deposit of the Almalyk region. The ore containing over 10 associated valuable constituents is...L.I.Ruzin, M .F.Sherem etyev ............................................... 71 Recovery of rhenium as by-product of treatment of molybdenite and copper ...for processing copper -molybdenum ores from "Erdenet- Ovoo" deposit S.Davaanyam, I.Sh.Sataev, Zh.Baatarkhuu, A.M.Desyatov, M.I.Khersonsky
Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper
NASA Astrophysics Data System (ADS)
Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.
1996-08-01
Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.
Study on the mechanism of liquid phase sintering (M-12)
NASA Technical Reports Server (NTRS)
Kohara, S.
1993-01-01
The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.
Interaction of tungsten with tungsten carbide in a copper melt
NASA Astrophysics Data System (ADS)
Bodrova, L. E.; Goida, E. Yu.; Pastukhov, E. A.; Marshuk, L. A.; Popova, E. A.
2013-07-01
The chemical interaction between tungsten and tungsten carbide in a copper melt with the formation of W2C at 1300°C is studied. It is shown that the mechanical activation of a composition consisting of copper melt + W and WC powders by low-temperature vibrations initiates not only the chemical interaction of its solid components but also their refinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James
Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less
NASA Astrophysics Data System (ADS)
Donovan, David; Maan, Anurag; Duran, Jonah; Buchenauer, Dean; Whaley, Josh
2015-11-01
Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We used a relatively low flux (2.5x1019 ions m-2 s-1) compact ECR plasma source at Sandia-California to investigate the early stages of helium induced tungsten damage. Exposures of polished tungsten discs were performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons were made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. A similar He plasma exposure stage has now been developed at the University of Tennessee-Knoxville with an improved compact ECR plasma source. Status of the new UTK exposure stage will be discussed as well as planned experiments and new material characterization techniques (EBSD, GIXRD). Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.
New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors
NASA Astrophysics Data System (ADS)
Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Coenen, J. W.; Mao, Y.; Gonzalez-Julian, J.; Bram, M.
2017-12-01
Smart tungsten-based alloys are under development as plasma-facing components for a future fusion power plant. Smart alloys are planned to adjust their properties depending on environmental conditions: acting as a sputter-resistant plasma-facing material during plasma operation and suppressing the sublimation of radioactive tungsten oxide in case of an accident on the power plant. New smart alloys containing yttrium are presently in the focus of research. Thin film smart alloys are featuring an remarkable 105-fold suppression of mass increase due to an oxidation as compared to that of pure tungsten at 1000 °C. Newly developed bulk smart tungsten alloys feature even better oxidation resistance compared to that of thin films. First plasma test of smart alloys under DEMO-relevant conditions revealed the same mass removal as for pure tungsten due to sputtering by plasma ions. Exposed smart alloy samples demonstrate the superior oxidation performance as compared to tungsten-chromium-titanium systems developed earlier.
Studies of thermionic materials for space power applications
NASA Technical Reports Server (NTRS)
1972-01-01
The effect of microstructures of tungsten cladding on the transport rates of carbide fuel components was studied at 2073 K. hyperstoichiometric 90UC-10ZrC containing 4 wt% tungsten was clad with six types of tungsten material of 40 mil thickness. Screening tests of 1000 hours were carried out, and then selected samples were subjected to long-term tests up to 10,000 hours. The results indicate that the microstructures strongly affect the transport rates of carbide fuel components. The conditions for preparing (110) oriented cylindrical chloride tungsten emitters of high vacuum work functions were also investigated. Specimen sets were deposited on fluoride tungsten substrates for evaluating the effects of various deposition parameters on the degree and uniformity of the (110) preferred orientation and the vacuum work function. Long-term tests showed that the high vacuum work function of a cylindrical emitter was stable and the chloride tungsten to fluoride tungsten bond remained in excellent shape after 4850 hours at 2073 K.
Tungsten recycling in the United States in 2000
Shedd, Kim B.
2011-01-01
This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.
Study of properties of tungsten irradiated in hydrogen atmosphere
NASA Astrophysics Data System (ADS)
Tazhibayeva, I.; Skakov, M.; Baklanov, V.; Koyanbayev, E.; Miniyazov, A.; Kulsartov, T.; Ponkratov, Yu.; Gordienko, Yu.; Zaurbekova, Zh.; Kukushkin, I.; Nesterov, E.
2017-12-01
The paper presents the results of the experiments with DF (double forged) tungsten samples irradiated at the WWR-K research reactor in hydrogen and helium atmospheres. The irradiation time was 3255 h (135.6 d). After reactor irradiation, W samples have been subjected to investigations of their activity level, hardness, and microstructure, as well as x-ray and texture observations. The hydrogen yield released from irradiated tungsten samples have been measured using TDS-method. The hydrogen concentration in the tungsten samples irradiated in hydrogen was higher than that in the samples irradiated in helium atmosphere. It is shown that the surface microstructure of tungsten samples irradiated in hydrogen is characterized by micro-pits, inclusions and blisters in the form of bubbles, which were not observed earlier for tungsten irradiated in hydrogen.
NASA Astrophysics Data System (ADS)
Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.
2009-12-01
Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.
Method of preparing high-temperature-stable thin-film resistors
Raymond, L.S.
1980-11-12
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
Method of preparing high-temperature-stable thin-film resistors
Raymond, Leonard S.
1983-01-01
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS
NASA Astrophysics Data System (ADS)
Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.
2013-07-01
Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.
TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.
FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS
Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Sujuan; Shi, Binbin; Yao, Guoxing
2011-10-15
Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.K.; Lee, I.C.; Park, S.K.
1996-03-01
The promotional effect of tungsten in the CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst was studied for series of W-incorporated CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts with different content of tungsten. Two series of the catalysts were prepared by changing the impregnation order of cobalt and tungsten onto a base Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. Impregnation of tungsten was achieved under the condition that the pH of an aqueous impregnating solution of W anion was controlled to 9.5. The hydrodesulfurization (HDS) and hydrogenation (HYD) activities of the sulfided catalysts were evaluated by thiophene HDS and ethylene HYD reactions at atmospheric pressure, respectively. Low-temperature O{sub 2} chemisorptionmore » at 195 K was conducted for the sulfided catalysts in order to determine the W-incorporation effects on the surface concentration of coordinatively unsaturated sites related to the catalytic activities. The dependence of catalytic activities on tungsten content showed initially an increase and subsequent decrease with increasing tungsten content. The maximum promotion of HDS and HYD activities occurred at a low content of tungsten corresponding to 0.025 in W/(W + Mo) atomic ratio regardless of the impregnation order of tungsten and cobalt. Oxygen uptake correlated well with catalytic activities. In general, the catalysts prepared by impregnating tungsten onto the CoMo/{gamma}-Al{sub 2}O{sub 3} showed higher activities than the catalysts prepared by impregnating tungsten onto Mo/{gamma}-Al{sub 2}O{sub 3} prior to impregnation of cobalt. 37 refs., 7 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sisrova, Irena; Janda, Vaclav
2011-06-01
The effects of tungsten material used as a high-voltage needle electrode on the production of hydrogen peroxide and the degradation of dimethylsulfoxide (DMSO) caused by a pulsed corona discharge in water were investigated. A reactor of needle-plate electrode geometry was used. The erosion of the tungsten electrodes by the discharge was evaluated. The yields of H2O2 production and the decomposition of DMSO by the discharge, which were obtained using the tungsten electrodes, were compared with those determined for titanium electrodes. The electrode erosion increased significantly with an increase in the solution conductivity. A large fraction (50-70%) of the eroded tungsten electrode material was released into the solution in dissolved form as tungstate WO_4^{2-} ions. A correlation between the amount of eroded tungsten material released into the solution and the chemical effects induced by the discharge was determined. Lower yields of H2O2 and a higher degradation of DMSO by the discharge were obtained using the tungsten electrodes than were determined using titanium electrodes. Tungstate ions were shown to play a dominant role in the decomposition of H2O2, which was produced by the discharge using a tungsten electrode. The higher degradation of DMSO that was determined for tungsten was attributed to the tungstate-catalyzed oxidation of DMSO by H2O2, in addition to the oxidation of DMSO by OH radicals. Such a mechanism was supported by the detection of degradation by-products of DMSO (methanesulfonate, sulfate and dimethyl sulfone). The catalytic role of tungstate ions in the plasmachemical activity of the discharge generated using a tungsten electrode was also demonstrated on a pH-dependent decomposition of H2O2 and DMSO.
Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe
2000-01-01
A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.
Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.
NASA Astrophysics Data System (ADS)
Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.
2016-10-01
The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2013-09-30
The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.
Future requirements for advanced materials
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1980-01-01
Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.
40 CFR 421.316 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
.../kg (pounds per million pounds) of tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia....951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111 Tungsten 8.947 3.985 (c) Tungsten post-leaching... Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900...
40 CFR 421.316 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
.../kg (pounds per million pounds) of tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia....951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111 Tungsten 8.947 3.985 (c) Tungsten post-leaching... Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900...
40 CFR 421.316 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
.../kg (pounds per million pounds) of tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia....951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111 Tungsten 8.947 3.985 (c) Tungsten post-leaching... Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900...
40 CFR 421.316 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
.../kg (pounds per million pounds) of tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia....951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111 Tungsten 8.947 3.985 (c) Tungsten post-leaching... Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900...
40 CFR 421.316 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
.../kg (pounds per million pounds) of tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia....951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111 Tungsten 8.947 3.985 (c) Tungsten post-leaching... Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900...
2006-10-01
Embedded Depleted Uranium and Heavy-Metal Tungsten Alloy in Rodents PRINCIPAL INVESTIGATOR: John F. Kalinich, Ph.D...Carcinogenicity and Immunotoxicity of Embedded Depleted Uranium and Heavy- Metal Tungsten Alloy in Rodents 5b. GRANT NUMBER DAMD17-01-1-0821 5c...ABSTRACT This study investigated the carcinogenic and immunotoxic potential of embedded fragments of depleted uranium (DU) and a heavy-metal tungsten
Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas
NASA Astrophysics Data System (ADS)
Takamura, S.; Uesugi, Y.
2015-03-01
Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.
NASA Astrophysics Data System (ADS)
Ishchenko, A. N.; Tabachenko, A. N.; Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; D'yachkovskii, A. S.; Rogaev, K. S.; Skosyrskii, A. B.; Yugov, N. T.
2018-02-01
The paper studies physical and mechanical properties of tungsten-nickel-iron-cobalt metal foam alloyed with titanium tungsten carbide. Test specimens are obtained by the liquid phase sintering of powder materials, including those containing tungsten nanopowders. High porosity metal foams are prepared through varying the porosity of powder specimens and the content of filling material. The penetration capability of cylinder projectiles made of new alloys is explored in this paper. It is shown that their penetration depth exceeds that of the prototype with relevant weight and size, made of tungsten-nickel-iron alloy, other factors being equal.
Weldability, strength, and high temperature stability of chemically vapor deposited tungsten
NASA Technical Reports Server (NTRS)
Bryant, W. A.
1972-01-01
Three types of CVD tungsten (fluoride-produced, chloride-produced and the combination of the two which is termed duplex) were evaluated to determine their weldability, high temperature strength and structural stability during 5000 hour exposure to temperatures of 1540 C and 1700 C. Each type of CVD tungsten could be successfully electron beam welded but the results for the chloride product were not as satisfactory as those of the other two materials. The high temperature strength behavior of the three materials did not differ greatly. However a large difference was noted for the grain growth behavior of the two basic CVD tungsten materials. Fluoride tungsten was found to be relatively stable while for the most part the grain size of chloride tungsten increased appreciably. The examination of freshly fractured surfaces with a scanning electron microscope revealed numerous bubbles in the fluoride material following its exposure to 1700 C for 5000 hours. Less severe thermal treatments produced relatively few bubbles in this material. Only at certain locations within the chloride material associated with the interruption of tungsten were bubbles noted.
Meng, Tian; Kou, Zongkui; Amiinu, Ibrahim Saana; Hong, Xufeng; Li, Qingwei; Tang, Yongfu; Zhao, Yufeng; Liu, Shaojun; Mai, Liqiang; Mu, Shichun
2018-04-17
Tuning the electron structure is of vital importance for designing high active electrode materials. Here, for boosting the capacitive performance of tungsten oxide, an atomic scale engineering approach to optimize the electronic structure of tungsten oxide by Ni doping is reported. Density functional theory calculations disclose that through Ni doping, the density of state at Fermi level for tungsten oxide can be enhanced, thus promoting its electron transfer. When used as electrode of supercapacitors, the obtained Ni-doped tungsten oxide with 4.21 at% Ni exhibits an ultrahigh mass-specific capacitance of 557 F g -1 at the current density of 1 A g -1 and preferable durability in a long-term cycle test. To the best of knowledge, this is the highest supercapacitor performance reported so far in tungsten oxide and its composites. The present strategy demonstrates the validity of the electronic structure control in tungsten oxide via introducing Ni atoms for pseudocapacitors, which can be extended to other related fields as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budaev, V. P., E-mail: budaev@mail.ru
2016-12-15
Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production ofmore » submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.« less
Enhancement of deuterium retention in damaged tungsten by plasma-induced defect clustering
NASA Astrophysics Data System (ADS)
Jin, Younggil; Roh, Ki-Baek; Sheen, Mi-Hyang; Kim, Nam-Kyun; Song, Jaemin; Kim, Young-Woon; Kim, Gon-Ho
2017-12-01
The enhancement of deuterium retention was investigated for tungsten in the presence of both 2.8 MeV self-ion induced cascade damage and fuel hydrogen isotope plasma. Vacancy clustering in cascade damaged polycrystalline tungsten occurred due to deuterium irradiation and was observed near the grain boundary by using all-step transmission electron microscopy analysis. Analysis of the highest desorption temperature peak using thermal desorption spectroscopy supports reasonable evidence of defect clustering in the damaged polycrystalline tungsten. The defect clustering was neither observed on the damaged polycrystalline tungsten without deuterium irradiation nor on the damaged single-crystalline tungsten with deuterium irradiation. This result implies the synergetic role of deuterium and grain boundary on defect clustering. This study proposes a path for the defect transform from point defect to defect cluster, by the agglomeration between irradiated deuterium and cascade damage-induced defect. This agglomeration may induce more severe damage on the tungsten divertor at which the high fuel hydrogen ions, fast neutrons, and self-ions are irradiated simultaneously and it would increase the in-vessel tritium inventory.
NASA Astrophysics Data System (ADS)
Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul
2016-07-01
Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.
Fabrication and life testing of thermionic converters
NASA Technical Reports Server (NTRS)
Yang, L.; Bruce, R.
1973-01-01
An unfueled converter containing a chloride-fluoride duplex tungsten emitter of 4.78 eV vacuum work function was tested for 46,647 hours at an emitter temperature of 1973 K and an electrode power output of about 8 watts/sq cm. The test demonstrated the superior and stable performance of the (110) oriented tungsten emitter at high temperatures. Three 90 UC-10 ZrC(C/U = 1.04, tungsten additive = 4 wt %) fueled converters were fabricated and tested at an emitter temperature of 1873 K. Converter containing chloride-arc-cast duplex tungsten cladding showed temperature thermionic performance and slower rate of performance drop than converter containing chloride-fluoride duplex tungsten cladding. This is believed to be due to the superior fuel component diffusion resistance of the arc-cast tungsten substrate used in the fuel cladding. It was shown that a converter containing a carbide fueled chloride-arc-cast duplex tungsten emitter with an initial electrode power output of 6.80 watts/sq cm could still deliver an electrode power output of 6.16 watts/sq cm after 18,632 hours of operation at an emitter temperature of 1873 K.
Irradiation effects in tungsten-copper laminate composite
Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; ...
2016-09-19
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
A Review of the Science and Technology of Cathodes from the Viewpoint of Spacecraft TWT Applications
1980-06-01
thermionic emitters for various applications. Of the pure metals, only tungsten , rhenium , and tantalum have sufficiently high melting temperatures to yield...the activation process. These ele- ments, carbon , zirconium, magnesium, manganese, aluminum, silicon, and, perhaps, tungsten , were originally added to...in the cavity. The porous tungsten plug has a density between 73 to 83% of the maxi- mum theoretical density of tungsten . The carbonates are
Phase II Tungsten Fate-and Transport Study for Camp Edwards
2010-02-01
soil and water . However, previous studies at the Massachusetts Military Reservation (MMR) at Camp Edwards demonstrated that metallic tungsten used ...7.5-12.5 ft bwt) using a Waterra sampler. Unfiltered and filtered water samples were sent to ERDC-EL for analysis of tungsten and other metals... water for tungsten and metals using ICP-MS, following the USEPA Method 6020 for sample preparation by EPA Method 3005. Metals analysis included antimony
Air-to-Ground Gunnery: A-77, A-78, A-79, and B-7 Final Programmatic Environmental Assessment
2004-07-01
tungsten from bullets made of tungsten-nylon and tungsten-tin were studied by ORNL. Concentrations of tungsten in leachate from experiments using sand...Assessment Eglin Air Force Base, Florida Phytoremediation serves as an ecologically sound remediation tool for explosives-contaminated soil and... Phytoremediation has been shown to be less costly than the more common processes, such as excavation or thermal treatment. Optimal conditions for
Growth and characterization of α and β-phase tungsten films on various substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr
2016-03-15
The growth conditions of tungsten thin films were investigated using various substrates including Si, Si/SiO{sub 2}, GaAs, MgO, and Al{sub 2}O{sub 3}, and recipes were discovered for the optimal growth conditions of thick metastable β-phase tungsten films on Si, GaAs, and Al{sub 2}O{sub 3} substrates, which is an important material in spin orbit torque studies. For the Si/SiO{sub 2} substrate, the crystal phase of the tungsten films was different depending upon the tungsten film thickness, and the transport properties were found to dramatically change with the thickness owing to a change in phase from the α + β phase to the α-phase.more » It is shown that the crystal phase changes are associated with residual stress in the tungsten films and that the resistivity is closely related to the grain sizes.« less
NASA Astrophysics Data System (ADS)
Saberi, Maliheh; Ashkarran, Ali Akbar
Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.
NASA Astrophysics Data System (ADS)
Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.
2011-08-01
With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.
Schmid, Paul; Maier, Matthias; Pfeiffer, Hendrik; Belz, Anja; Henry, Lucas; Friedrich, Alexandra; Schönfeld, Fabian; Edkins, Katharina; Schatzschneider, Ulrich
2017-10-10
Two isostructural and isoelectronic group VI azide complexes of the general formula [M(η 3 -allyl)(N 3 )(bpy)(CO) 2 ] with M = Mo, W and bpy = 2,2'-bipyridine were prepared and fully characterized, including X-ray structure analysis. Both reacted smoothly with electron-poor alkynes such as dimethyl acetylenedicarboxylate (DMAD) and 4,4,4-trifluoro-2-butynoic acid ethyl ester in a catalyst-free room-temperature iClick [3 + 2] cycloaddition reaction. Reaction with phenyl(trifluoromethyl)acetylene, on the other hand, did not lead to any product formation. X-ray structures of the four triazolate complexes isolated showed the monodentate ligand to be N2-coordinated in all cases, which requires a 1,2-shift of the nitrogen from the terminal azide to the triazolate cycloaddition product. On the other hand, a 19 F NMR spectroscopic study of the reaction of the fluorinated alkyne with the tungsten azide complex at 27 °C allowed detection of the N1-coordinated intermediate. With this method, the second-order rate constant was determined as (7.3 ± 0.1) × 10 -2 M -1 s -1 , which compares favorably with that of first-generation compounds such as difluorocyclooctyne (DIFO) used in the strain-promoted azide-alkyne cycloaddition (SPAAC). In contrast, the reaction of the molybdenum analogue was too fast to be studied with NMR methods. Alternatively, solution IR studies revealed pseudo-first order rate constants of 0.4 to 6.5 × 10 -3 s -1 , which increased in the order of Mo > W and F 3 C-C[triple bond, length as m-dash]C-COOEt > DMAD.
Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.
1998-01-01
Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.
Electrode carrying wire for GTAW welding
NASA Technical Reports Server (NTRS)
Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)
1990-01-01
A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.
NASA Astrophysics Data System (ADS)
Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia
2015-12-01
Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.
Gas-driven permeation of deuterium through tungsten and tungsten alloys
Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...
2016-03-25
Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D 2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less
Thermal effects on the structural properties of tungsten oxide nanoparticles
NASA Astrophysics Data System (ADS)
Yang, Tsung-Yeh; Wu, Chung-Yi; Tsai, Meng-Hung; Lin, Hong-Ming; Tsai, Wen-Li; Hwu, Yeukuang
2004-06-01
Tungsten oxide nanoparticles are prepared by evaporating and oxidizing the tungsten boat in helium and oxygen atmosphere and then quenched to the liquid nitrogen temperature. The as-prepared tungsten oxide nanoparticles are porous-free with uniform size. The morphology and particle size distribution of the as-prepared and after sinter treatments tungsten oxide nanoparticles are revealed by TEM and AFM. The long-range order of these nanoparticles can be examined by X-ray diffraction technique. The as-prepared nanoparticles exhibit a mixture structure of monoclinic and hexagonal crystals. Preliminary X-ray diffraction results indicate that the hexagonal structure is transformed to monoclinic structure after annealing to above 600°C. In order to better distinguish the structural properties of the tungsten oxide (WO3- x) nanoparticles before and after annealing, the X-ray absorption spectrum technique is utilized; thus, the detailed local atomic arrangement of oxygen and/or tungsten can be determined. According to the XAS result, the shape of the W L3-edge undergoes no considerable changes. This infers that structural transformation of tungsten oxide nanoparticle may be caused by the migration of oxygen after sintering. From the O K-edge of absorption spectrum, it suggests that a mixture phase structure is obtained when sintered below 300°C. And this result indicates that heat treatment to approximately 600°C produces a stable structure of a monoclinic crystal of WO3.
Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing
NASA Astrophysics Data System (ADS)
Stein, David
This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented. In this mechanism, the colloid reacts with the chemistry of the slurry to produce active sites. These active sites become inactive by removing tungsten from the film. The process repeats when then inactive sites are reconverted to active sites. It is shown that the empirical form of the heuristic mechanism fits all of the data obtained. The mechanism also agrees with the limiting cases that were investigated.
NASA Astrophysics Data System (ADS)
Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.
2018-06-01
Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.
A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, S.; Goto, M.; Murakami, I.
2013-07-11
Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have beenmore » measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.« less
Tungsten insulated susceptor cup for high temperature induction furnace eliminates contamination
NASA Technical Reports Server (NTRS)
Geringer, H. J.
1966-01-01
METILUR /Materials Experimental Tungsten Induction Laboratory Unit Replacement/ is an improved, unitized design of a susceptor cup and shielding that uses only one type of construction material /tungsten/ which eliminates contamination. Cycling runs can be accomplished with METILUR.
Properties of Vacancy Complexes with Hydrogen and Helium Atoms in Tungsten from First Principles
Samolyuk, German D.; Osetsky, Yury N.; Stoller, Roger E.
2016-12-03
Tungsten and its alloys are the primary candidate materials for plasma-facing components in fusion reactors. The material is exposed to high-energy neutrons and the high flux of helium and hydrogen atoms. In this paper, we have studied the properties of vacancy clusters and their interaction with H and He in W using density functional theory. Convergence of calculations with respect to modeling cell size was investigated. It is demonstrated that vacancy cluster formation energy converges with small cells with a size of 6 × 6 × 6 (432 lattice sites) enough to consider a microvoid of up to six vacanciesmore » with high accuracy. Most of the vacancy clusters containing fewer than six vacancies are unstable. Introducing He or H atoms increases their binding energy potentially making gas-filled bubbles stable. Finally, according to the results of the calculations, the H 2 molecule is unstable in clusters containing six or fewer vacancies.« less
Spatial heterogeneity of tungsten transmutation in a fusion device
NASA Astrophysics Data System (ADS)
Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.
2017-04-01
Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.
Oxidation/vaporization of silicide coated columbium base alloys
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Stearns, C. A.
1971-01-01
Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.
Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source
NASA Astrophysics Data System (ADS)
Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.
2005-08-01
Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.
Development of tungsten armor and bonding to copper for plasma-interactive components
NASA Astrophysics Data System (ADS)
Smid, I.; Akiba, M.; Vieider, G.; Plöchl, L.
1998-10-01
For the highest sputtering threshold of all possible candidates, tungsten will be the most likely armor material in highly loaded plasma-interactive components of commercially relevant fusion reactors. The development of new materials, as well as joining and coating techniques are needed to find the best balance in plasma compatibility, lifetime, reliability, neutron irradiation resistance, and safety. Further important issues for selection are availability, costs of machining and production, etc. Tungsten doped with lanthanum oxide is a commercially available W grade for electrodes, designed for low electron work function, higher recrystallization temperature, reduced secondary grain growth, and machinability at relatively low costs. W-Re and related tungsten base alloys are preferred for application at high temperatures, when high strength, high thermal shock and recrystallization resistance are required. Due to the high costs and limited global availability of Re, however, the amount of such alloys in a commercial reactor should be kept low. Newly measured material properties up to high temperatures are presented for lanthanated and W-Re alloys, and the impact on fusion application is discussed. Recently developed coatings of chemical vapor deposited tungsten (CVD-W) on copper substrates have proven to be resistant to repeated thermal and shock loading. Layers of more than 5 mm, as required for the International Thermonuclear Experimental Reactor (ITER), became available. Vacuum plasma sprayed tungsten (VPS-W) in particular is attractive for its lower costs, and the potential of in situ repair. However, the advantage of sacrificial plasma-interactive tungsten coatings in long-term fusion devices has yet to be demonstrated. A durable and reliable joining of bulk tungsten to copper is needed to achieve an acceptable component lifetime in a fusion environment. The material properties of the copper alloys proposed for ITER, and their impact on the quality of bonding to tungsten is discussed. Future materials R&D should concern issues such as plasma compatibility, and above all neutron irradiation damage of promising tungsten-copper joints.
Smart tungsten alloys as a material for the first wall of a future fusion power plant
NASA Astrophysics Data System (ADS)
Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.
2017-06-01
Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.
NASA Astrophysics Data System (ADS)
Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.
2010-02-01
A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.
Tungsten coating for improved wear resistance and reliability of microelectromechanical devices
Fleming, James G.; Mani, Seethambal S.; Sniegowski, Jeffry J.; Blewer, Robert S.
2001-01-01
A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 .degree. C. in the presence of gaseous nitrogen trifluoride (NF.sub.3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF.sub.6) at an elevated temperature, preferably about 450.degree. C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.
Tungsten devices in analytical atomic spectrometry
NASA Astrophysics Data System (ADS)
Hou, Xiandeng; Jones, Bradley T.
2002-04-01
Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon
2016-07-12
Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAMmore » potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.« less
1979-01-01
product is magnesium pinacolate, minor but important are the magnesium enolate of acetone and isopropoxide in 1:1 ratio. The double ketyl is a...tungsten, molybdenum and titanium were either unknown or had been made in very poor yield. Our vaporization techniques make these compounds readily...excess cyclooctatetraene. Mono and binuclear complexes of titanium have been isolated; the latter, triscyclooctatetraenedititanium was shown to be a
High-strength tungsten alloy with improved ductility
NASA Technical Reports Server (NTRS)
Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.
1967-01-01
Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.
Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Min; Guo, Hongyan; Ge, Changchun
2014-05-14
A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (α-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, α-CNTs/amorphous tungsten carbide, α-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.
RECOVERY OF URANIUM FROM TUNGSTEN
Newnam, K.
1959-02-01
A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.
2016-03-01
Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.
NASA Astrophysics Data System (ADS)
Kirschner, A.; Tskhakaya, D.; Brezinsek, S.; Borodin, D.; Romazanov, J.; Ding, R.; Eksaeva, A.; Linsmeier, Ch
2018-01-01
Main processes of plasma-wall interaction and impurity transport in fusion devices and their impact on the availability of the devices are presented and modelling tools, in particular the three-dimensional Monte-Carlo code ERO, are introduced. The capability of ERO is demonstrated on the example of tungsten erosion and deposition modelling. The dependence of tungsten deposition on plasma temperature and density is studied by simulations with a simplified geometry assuming (almost) constant plasma parameters. The amount of deposition increases with increasing electron temperature and density. Up to 100% of eroded tungsten can be promptly deposited near to the location of erosion at very high densities (˜1 × 1014 cm-3 expected e.g. in the divertor of ITER). The effect of the sheath characteristics on tungsten prompt deposition is investigated by using particle-in-cell (PIC) simulations to spatially resolve the plasma parameters inside the sheath. Applying PIC data instead of non-resolved sheath leads in general to smaller tungsten deposition, which is mainly due to a density and temperature decrease towards the surface within the sheath. Two-dimensional tungsten erosion/deposition simulations, assuming symmetry in toroidal direction but poloidally spatially varying plasma parameter profiles, have been carried out for the JET divertor. The simulations reveal, similar to experimental findings, that tungsten gross erosion is dominated in H-mode plasmas by the intra-ELM phases. However, due to deposition, the net tungsten erosion can be similar within intra- and inter-ELM phases if the inter-ELM electron temperature is high enough. Also, the simulated deposition fraction of about 84% in between ELMs is in line with spectroscopic observations from which a lower limit of 50% has been estimated.
Inter-diffusion analysis of joint interface of tungsten-rhenium couple
NASA Astrophysics Data System (ADS)
Hua, Y. F.; Li, Z. X.; Zhang, X.; Du, J. H.; Huang, C. L.; Du, M. H.
2011-09-01
The tungsten-rhenium couple was prepared by using glow plasma physical vapor deposition (PVD) on the isotropic fine grained graphite (IG) substrates. Diffusion anneals of the tungsten-rhenium couple were conducted at the temperature from 1100 °C to 1400 °C to investigate the inter-diffusion behaviors. The results showed that the thickness of the inter-diffusion zone increased with increasing annealing temperature. The relationship between the inter-diffusion coefficient and the annealing temperature accorded with the Arrhenius manner. The value of inter-diffusion activation energies was 189 kJ/mole (1.96 eV). The service time of tungsten-rhenium multilayer diffusion barrier was limited by the inter-diffusion for rhenium and tungsten rather than the diffusion of carbon in rhenium.
Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chechenin, N. G., E-mail: chechenin@sinp.msu.ru; Chuvilskaya, T. V.; Shirokova, A. A.
2015-01-15
Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failuresmore » of space-vehicle electronics.« less
NASA Technical Reports Server (NTRS)
1981-01-01
This research program was used to further develop the existing W-Ta generator and to evaluate alternative adsorbents, preferably inorganic materials, as supports for the generator. During the first half year, combinations of non-complexing eluents and a variety of adsorbents, both inorganic and organic, were evaluated. Some of these adsorbents were synthetic, such as chelate resins that could be specific for tungsten. In the second half of the year, the stress was mainly on the use of complexing eluents because of the high affinity of hydrous oxides for tantalum, on the synthesis of chelate resins and on the use novel techniques (electrolytic) to solve the tantalum-adsorption problem.
Tungsten Abundances in Hawaiian Picrites: Implications for the Mantle Sources of Hawaiian Volcanoes
NASA Astrophysics Data System (ADS)
Ireland, T. J.; Arevalo, R. D.; Walker, R. J.; McDonough, W. F.
2008-12-01
Tungsten abundances have been measured in a suite of Hawaiian picrites (MgO >13 wt.%) from nine Hawaiian shield volcanoes (Mauna Kea, Mauna Loa, Hualalai, Loihi, Koolau, Kilauea, Kohala, Lanai and Molokai). Tungsten concentrations in the parental melts for these volcanoes have been estimated via the intersection of linear W-MgO trends with the putative MgO content of the parental melt (~16 wt.%). Tungsten behaves as a highly incompatible trace element in mafic to ultramafic systems; thus, given an independent assessment of the degree of partial melting for each volcanic center, the W abundances in their mantle sources can be determined. The mantle sources for Hualalai, Kilauea, Kohala and Loihi have non- uniform estimated W abundances of 11, 13, 16 and 27 ng/g, respectively, giving an average source abundance of 17±5 ng/g. This average source abundance is nearly six times more enriched than Depleted MORB Mantle (DMM: 3.0±2.3 ng/g) and slightly elevated relative to the Bulk Silicate Earth (BSE: 13±10 ng/g). The relatively high abundances of W in the Hawaiian sources relative to the DMM can potentially be explained as a consequence of crustal recycling. For example, incorporation of 30% oceanic crust (30 ng/g W), including 3% sediment (1500 ng/g W), into a DMM source could create the W enrichment observed in the Loihi source, consistent with estimates from earlier models based on other trace elements and isotope systems. The Hualalai source, however, has also been suggested to contain a substantial recycled component, as implied by similarly radiogenic 187Os/188Os, yet this source has the lowest estimated W abundance among the volcanic centers studied. The conflict between these results may: 1) reflect chemical differences among recycled components, 2) indicate a more complex history for Hualalai samples, e.g. involvement of a melt percolation component, or 3) implicate other sources of W.
NASA Astrophysics Data System (ADS)
Kushkhov, Kh. B.; Kardanov, A. L.; Adamokova, M. N.
2013-02-01
Nanopowders of binary tungsten-molybdenum carbide are fabricated by high-temperature electrochemical synthesis. The optimum concentration relations between electrolyte components, the current density, and the quantity of electricity are determined to synthesize binary tungsten-molybdenum carbides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, L. M.; Katoh, Y.; Snead, L. L.
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410-780°C and fast neutron fluences of 0.02-9.0×1025 n/m2, E>0.1 MeV, 0.0039-1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22°C. After only 0.0039 dpa this was reduced to 7.7% elongation, andmore » no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22°C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, L. M.; Katoh, Yutai; Snead, Lance L.
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
NASA Astrophysics Data System (ADS)
Xu, Qian; Yang, Zhongshi; Luo, Guang-Nan
2015-09-01
The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable.
Material properties and their influence on the behaviour of tungsten as plasma facing material
NASA Astrophysics Data System (ADS)
Wirtz, M.; Uytdenhouwen, I.; Barabash, V.; Escourbiac, F.; Hirai, T.; Linke, J.; Loewenhoff, Th.; Panayotis, S.; Pintsuk, G.
2017-06-01
With the aim of a possible improvement of the material specification for tungsten, five different tungsten products by different companies and by different production technologies (forging and rolling) are subject to a materials characterization program. Tungsten produced by forging results in an uniaxial elongated grain shape while rolled products have a plate like grain shape which has an influence on the mechanical properties of the material. The materials were investigated with respect to the following parameters: hardness measurements, microstructural investigations, tensile tests and recrystallisation sensitivity tests at 3 different temperatures. The obtained results show that different production processes have an influence on the resulting anisotropic microstructure and the related material properties of tungsten in the as-received state. Additionally, the recrystallization sensitivity varies between the different products, what could be a result of the different production processes. Additionally, two tungsten products were exposed to thermal shocks. The obtained results show that the improved recrystallisation behaviour has no major impact on the thermal shock performance.
High temperature surface effects of He + implantation in ICF fusion first wall materials
NASA Astrophysics Data System (ADS)
Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.
2009-06-01
The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.
Recovery of Tungsten and Molybdenum from Low-Grade Scheelite
NASA Astrophysics Data System (ADS)
Li, Yongli; Yang, Jinhong; Zhao, Zhongwei
2017-10-01
With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.
NASA Technical Reports Server (NTRS)
Forman, R.
1976-01-01
The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium or barium oxide coated tungsten surface. The barium and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface.
NASA Technical Reports Server (NTRS)
Forman, R.
1976-01-01
Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.
Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips
NASA Astrophysics Data System (ADS)
Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.
2017-12-01
Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only 22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.
Moussa, Hassan I; Logan, Megan; Siow, Geoffrey C; Phann, Darron L; Rao, Zheng; Aucoin, Marc G; Tsui, Ting Y
2017-01-01
Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.
Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips
Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.
2017-01-01
Abstract Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability. PMID:29152017
Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad
2006-03-01
Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.
Advanced smart tungsten alloys for a future fusion power plant
NASA Astrophysics Data System (ADS)
Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.
2017-06-01
The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.
75 FR 14628 - Notice of Commission Decision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... complete, third recited step of claim 1, i.e., ``depositing a tungsten layer by chemical vapor deposition, said tungsten layer covering said glue layer on said dielectric and said exposed material.'' The... to the third step only includes the step of ``depositing a tungsten layer by chemical vapor...
Sproules, Stephen; Eagle, Aston A; Taylor, Michelle K; Gable, Robert W; White, Jonathan M; Young, Charles G
2011-05-16
Sky-blue Tp*WOCl(2) has been synthesized from the high-yielding reaction of Tp*WO(2)Cl with boron trichloride in refluxing toluene. Dark-red Tp*WOI(2) was prepared via thermal decarbonylation followed by aerial oxidation of Tp*WI(CO)(3) in acetonitrile. From these precursors, an extensive series of mononuclear tungstenyl complexes, Tp*WOXY [X = Cl(-), Y = OPh(-), SPh(-); X = Y = OPh(-), 2-(n-propyl)phenolate (PP(-)), SPh(-), SePh(-); XY = toluene-3,4-dithiolate (tdt(2-)), quinoxaline-2,3-dithiolate (qdt(2-)), benzene-1,2-diselenolate (bds(2-)); Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate], was prepared by metathesis with the respective alkali-metal salt of X(-)/XY(2-) or (NHEt(3))(2)(qdt). The complexes were characterized by microanalysis, mass spectrometry, electrochemistry, IR, electron paramagnetic resonance (EPR), and electronic absorption spectroscopies, and X-ray crystallography (for X = Y = OPh(-), PP(-), SPh(-); XY = bds(2-)). The six-coordinate, distorted-octahedral tungsten centers are coordinated by terminal oxo [W≡O = 1.689(6)-1.704(3) Å], tridentate Tp*, and monodentate or bidentate O/S/Se-donor ligands. Spin Hamiltonian parameters derived from the simulation of fluid-solution X-band EPR spectra revealed that the soft-donor S/Se ligand complexes had larger g values and smaller (183)W hyperfine coupling constants than the less covalent hard-donor O/Cl species. The former showed low-energy ligand-to-metal charge-transfer bands in the near-IR region of their electronic absorption spectra. These oxotungsten(V) complexes display lower reduction potentials than their molybdenum counterparts, underscoring the preference of tungsten for higher oxidation states. Furthermore, the protonation of the pyrazine nitrogen atoms of the qdt(2-) ligand has been examined by spectroelectrochemistry; the product of the one-electron reduction of [Tp*WO(qdtH)](+) revealed usually intense low-energy bands.
Catalytic ionic hydrogenation of ketones using tungsten or molybdenum organometallic species
Voges, Mark; Bullock, R. Morris
2000-01-01
The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes. The functional group is selected from groups represented by the formulas R(C.dbd.O)R' and R(C.dbd.O)H, wherein R and R' are selected from hydrogen or any alkyl or aryl group. The active catalyst for the process has the form: [CpM(CO).sub.2 (PR*.sub.3) L].sup.+ A.sup.-, where Cp=.eta..sup.5 -R.sup..tangle-solidup..sub.m C.sub.5 H.sub.5-m and R.sup..tangle-solidup. represents an alkyl group or a halogen (F, Cl, Br, I) or R.sup..tangle-solidup. =OR' (where R'=H, an alkyl group or an aryl group) or R.sup..tangle-solidup. =CO.sub.2 R' (where R'=H, an alkyl group or an aryl group) and m=0 to 5; M represents a molybdenum atom or a tungsten atom; R*.sub.3 represents three hydrocarbon groups selected from a cyclohexyl group (C.sub.6 H.sub.11), a methyl group (CH.sub.3), and a phenyl group (C.sub.6 H.sub.5) and all three R* groups can be the same or different or two of the three groups can be the same; L represents a ligand; and A.sup.- represents an anion. In another embodiment, one, two or three of the R* groups can be an OR*.
ERIC Educational Resources Information Center
Ruiz, Michael J.; Perkins, James
2016-01-01
We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…
Fabrication of large tungsten structures by chemical vapor deposition
NASA Technical Reports Server (NTRS)
Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.
1971-01-01
Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.
Casting copper to tungsten for high-power arc lamp cathodes
NASA Technical Reports Server (NTRS)
Will, H. A.
1974-01-01
Voids forming at interface when copper is cast onto tungsten can be eliminated by adding wetting agent during casting process. Small amount of copper and nickel are cast onto thoriated tungsten insert, insert is recast with more copper to form electrode. Good thermal conductance results in long-lived cathode.
ERIC Educational Resources Information Center
Noey, Elizabeth; Curtis, Jeff C.; Tam, Sylvia; Pham, David M.; Jones, Ella F.
2011-01-01
In this experiment students are exposed to concepts in inorganic synthesis and various spectroscopies as applied to a tri-tungsten cluster with applications in biomedical imaging. The tungsten-acetate cluster, Na[W[superscript 3](mu-O)[subscript 2](CH[superscript 3]COO)[superscript 9
NASA Astrophysics Data System (ADS)
Kanerva, M.; Koerselman, J. R.; Revitzer, H.; Johansson, L.-S.; Sarlin, E.; Rautiainen, A.; Brander, T.; Saarela, O.
2014-06-01
Spacecraft include sensitive electronics that must be protected against radiation from the space environment. Hybrid laminates consisting of tungsten layers and carbon- fibre-reinforced epoxy composite are a potential solution for lightweight, efficient, and protective enclosure material. Here, we analysed six different surface treatments for tungsten foils in terms of the resulting surface tension components, composition, and bonding strength with epoxy. A hydrofluoric-nitric-sulfuric-acid method and a diamond-like carbon-based DIARC® coating were found the most potential surface treatments for tungsten foils in this study.
Creation of deuterium protective layer below the tungsten surface
NASA Astrophysics Data System (ADS)
Krstic, Predrag; Kaganovich, Igor; Startsev, Edward
2014-10-01
By cumulative irradiation of both pre-damaged and virgin surfaces of monocrystal tungsten by deuterium atoms of impact energy of few tens of eV, we simulate by classical molecular dynamics the creation of a deuterium protective layer. The depth and width of the layer depend on the deuterium impact energy and the diffusion rate of deuterium in tungsten, the latter being influenced by the tungsten temperature and damage. Found simulation results are in concert with the experimental results, found recently in DIFFER. Support of the PPPL LDRD project acknowledged.
NASA Technical Reports Server (NTRS)
Forman, R.
1979-01-01
Auger spectra and work function measurements are used to study the surface reactions between tungsten surface and adsorbed layers of barium, and barium and oxygen. The barium on an impregnated tungsten cathod seems to be an intermediate state, probably a coadsorbed barium-oxygen layer on tungsten. A slightly revised version of the previously suggested (1976) impregnated tungsten cathode model is proposed. This revised model assumes that the cathode surface during life has an adsorbed surface layer of a monolayer or less of both barium and oxygen on the surface. At end of life, steep drop in electron emission and resultant cathode failure occur. Recent NASA life test results on TWT type tubes are reported and explained by the proposed model.
Deuterium retention in tungsten in dependence of the surface conditions
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.; Roth, J.; Mayer, M.
2003-03-01
The paper reviews hydrogen isotope retention and migration in tungsten (W). Due to a large scatter of the deuterium (D) retention database, new measurements of ion-driven D retention in polycrystalline W foil have been performed to clarify the mechanism of hydrogen isotope inventory in W. Deuterium retention has been investigated as a function of ion fluence, implantation temperature, incident energy and surface conditions. Special attention has been given on the investigation of D retention in thin films of tungsten carbide and tungsten oxide which can be formed on W surface in a fusion device. Such kinds of films increase the D retention in W. Several points are reviewed: (i) inventory in pure W, (ii) inventory in W pre-implanted by carbon ions and (iii) inventory in tungsten oxide.
Some observations on uranium carbide alloy/tungsten compatibility.
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1972-01-01
Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.
Tungsten bridge for the low energy ignition of explosive and energetic materials
Benson, David A.; Bickes, Jr., Robert W.; Blewer, Robert S.
1990-01-01
A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANI,SEETHAMBAL S.; FLEMING,JAMES G.; WALRAVEN,JEREMY A.
Two major problems associated with Si-based MEMS (MicroElectroMechanical Systems) devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors present a CVD (Chemical Vapor Deposition) process that selectively coats MEMS devices with tungsten and significantly enhances device durability. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable. This selective deposition process results in a very conformal coating and can potentially address both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through the siliconmore » reduction of WF{sub 6}. The self-limiting nature of the process ensures consistent process control. The tungsten is deposited after the removal of the sacrificial oxides to minimize stress and process integration problems. The tungsten coating adheres well and is hard and conducting, which enhances performance for numerous devices. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release adhered parts that are contacted over small areas such as dimples. The wear resistance of tungsten coated parts has been shown to be significantly improved by microengine test structures.« less
Kang, Jin Soo; Kim, Jin; Lee, Myeong Jae; Son, Yoon Jun; Jeong, Juwon; Chung, Dong Young; Lim, Ahyoun; Choe, Heeman; Park, Hyun S; Sung, Yung-Eun
2017-05-04
Photoelectrochemical (PEC) cells are promising tools for renewable and sustainable solar energy conversion. Currently, their inadequate performance and high cost of the noble metals used in the electrocatalytic counter electrode have postponed the practical use of PEC cells. In this study, we report the electrochemical synthesis of nanoporous tungsten carbide and its application as a reduction catalyst in PEC cells, namely, dye-sensitized solar cells (DSCs) and PEC water splitting cells, for the first time. The method employed in this study involves the anodization of tungsten foil followed by post heat treatment in a CO atmosphere to produce highly crystalline tungsten carbide film with an interconnected nanostructure. This exhibited high catalytic activity for the reduction of cobalt bipyridine species, which represent state-of-the-art redox couples for DSCs. The performance of tungsten carbide even surpassed that of Pt, and a substantial increase (∼25%) in energy conversion efficiency was achieved when Pt was substituted by tungsten carbide film as the counter electrode. In addition, tungsten carbide displayed decent activity as a catalyst for the hydrogen evolution reaction, suggesting the high feasibility for its utilization as a cathode material for PEC water splitting cells, which was also verified in a two-electrode water photoelectrolyzer.
Temperature dependence of deuterium retention mechanisms in tungsten
NASA Astrophysics Data System (ADS)
Roszell, J. P.; Davis, J. W.; Haasz, A. A.
2012-10-01
The retention of 500 eV D+ was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ˜2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loarte, A.; Polevoi, A. R.; Hosokawa, M.
2015-05-15
Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results,more » however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.« less
Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes
NASA Technical Reports Server (NTRS)
Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.
2008-01-01
The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.
Structures and transitions in tungsten grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, T.; Zhu, Q.; Marian, J.
2017-02-07
The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.
Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…
Calibration and Temperature Profile of a Tungsten Filament Lamp
ERIC Educational Resources Information Center
de Izarra, Charles; Gitton, Jean-Michel
2010-01-01
The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
Tungsten or Wolfram: Friend or Foe?
Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max
2018-01-01
Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Tungsten dust impact on ITER-like plasma edge
Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...
2015-01-12
The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less
NASA Astrophysics Data System (ADS)
Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.
2017-12-01
In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.
Tensile Properties of Molybdenum and Tungsten from 2500 to 3700 F
NASA Technical Reports Server (NTRS)
Hall, Robert W.; Sikora, Paul F.
1959-01-01
Specimens of commercially pure sintered tungsten, arc-cast unalloyed molybdenum, and two arc-cast molybdenum-base alloys (one with 0.5 percent titanium, the other with 0.46 percent titanium and 0.07 percent zirconium) were fabricated from 1/2-inch-diameter rolled or swaged bars. All specimens were evaluated in short-time tensile tests in the as-received condition, and all except the molybdenum-titanium-zirconium alloy were tested after a 30-minute recrystallization anneal at 3800 F in a vacuum of approximately 0.1 micron. Results showed that the tungsten was considerably stronger than either the arc-cast unalloyed molybdenum or the molybdenum-base alloys over the 2500 to 3700 F temperature range. Recrystallization of swaged tungsten at 3800 F considerably reduced its tensile strength at 2500 F. However, above 3100 F, the as-swaged tungsten specimens recrystallized during testing, and had about the same strength as when recrystallized at 3800 F before evaluation. The ductility of molybdenum-base materials was very high at all test temperatures; the ductility of tungsten decreased sharply above about 3120 F.
Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface
NASA Astrophysics Data System (ADS)
Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei
2018-01-01
This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.
Tungsten bridge for the low energy ignition of explosive and energetic materials
Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.
1990-12-11
A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O
2010-06-01
Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less
R&D of A MW-class solid-target for a spallation neutron source
NASA Astrophysics Data System (ADS)
Kawai, Masayoshi; Furusaka, Michihiro; Kikuchi, Kenji; Kurishita, Hiroaki; Watanabe, Ryuzo; Li, Jing-Feng; Sugimoto, Katsuhisa; Yamamura, Tsutomu; Hiraoka, Yutaka; Abe, Katsunori; Hasegawa, Akira; Yoshiie, Masatoshi; Takenaka, Hiroyuki; Mishima, Katsuichiro; Kiyanagi, Yoshiaki; Tanabe, Tetsuo; Yoshida, Naoaki; Igarashi, Tadashi
2003-05-01
R&D for a MW-class solid target composed of tungsten was undertaken to produce a pulsed intense neutron source for a future neutron scattering-facility. In order to solve the corrosion of tungsten, tungsten target blocks were clad with tantalum by means of HIP'ing, brazing and electrolytic coating in a molten salt bath. The applicability of the HIP'ing method was tested through fabricating target blocks for KENS (spallation neutron source at KEK). A further investigation to certify the optimum HIP conditions was made with the small punch test method. The results showed that the optimum temperature was 1500 °C at which the W/Ta interface gave the strongest fracture strength. In the case of the block with a hole for thermocouple, it was found that the fabrication preciseness of a straight hole and a tantalum sheath influenced the results. The development of a tungsten stainless-steel alloy was tried to produce a bare tungsten target, using techniques in powder metallurgy. Corrosion tests for various tungsten alloys were made while varying the water temperature and velocity. The mass loss of tungsten in very slow water at 180 °C was as low as 0.022 mg/y, but increased remarkably with water velocity. Simulation experiments for radiation damage to supplement the STIP-III experiments were made to investigate material hardening by hydrogen and helium, and microstructures irradiated by electrons. Both experiments showed consistent results on the order of the dislocation numbers and irradiation hardness among the different tungsten materials. Thermal-hydraulic designs were made for two types of solid target system of tungsten: slab and rod geometry as a function of the proton beam power. The neutronic performance of a solid target system was compared with that of mercury target based on Monte Carlo calculations by using the MCNP code.
Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes
Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.
2009-01-01
In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers. PMID:19126624
As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition
NASA Astrophysics Data System (ADS)
Blackwood, Van Stephen
The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.
Method for deposition of a conductor in integrated circuits
Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.
1997-01-01
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony
2012-07-15
The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.
OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign
NASA Astrophysics Data System (ADS)
Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.
2017-10-01
During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Hu, Lin; Wirth, Brian D.; Maroudas, Dimitrios
2017-08-01
We report results on the lattice thermal conductivities of tungsten single crystals containing nanoscale-sized pores or voids and helium (He) nanobubbles as a function of void/bubble size and gas pressure in the He bubbles based on molecular-dynamics simulations. For reference, we calculated lattice thermal conductivities of perfect tungsten single crystals along different crystallographic directions at room temperature and found them to be about 10% of the overall thermal conductivity of tungsten with a weak dependence on the heat flux direction. The presence of nanoscale voids in the crystal causes a significant reduction in its lattice thermal conductivity, which decreases with increasing void size. Filling the voids with He to form He nanobubbles and increasing the bubble pressure leads to further significant reduction of the tungsten lattice thermal conductivity, down to ˜20% of that of the perfect crystal. The anisotropy in heat conduction remains weak for tungsten single crystals containing nanoscale-sized voids and He nanobubbles throughout the pressure range examined. Analysis of the pressure and atomic displacement fields in the crystalline region that surrounds the He nanobubbles reveals that the significant reduction of tungsten lattice thermal conductivity in this region is due to phonon scattering from the nanobubbles, as well as lattice deformation around the nanobubbles and formation of lattice imperfections at higher bubble pressure.
[Determination of tungsten and cobalt in the air of workplace by ICP-OES].
Zhang, J; Ding, C G; Li, H B; Song, S; Yan, H F
2017-08-20
Objective: To establish the inductively coupled plasma optical emission spectrometry (ICP-OES) method for determination of cobalt and tungsten in the air of workplace. Methods: The cobalt and tungsten were collected by filter membrane and then digested by nitric acid, inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the detection of cobalt and tungsten. Results: The linearity of tungsten was good at the range of 0.01-1 000 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.006 7 μg/ml and 0.022 μg/ml, respectively. The recovery was ranged from 98%-101%, the RSD of intra-and inter-batch precision were 1.1%-3.0% and 2.1%-3.8%, respectively. The linearity of cobalt was good at the range of 0.01-100 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.001 2 μg/ml and 0.044 μg/ml, respectively. The recovery was ranged from 95%-97%, the RSD of intra-and inter-batch precision were 1.1%-2.4% and 1.1%-2.9%, respectively. The sampling efficiency of tungsten and cobalt were higher than 94%. Conclusion: The linear range, sensitivity and precision of the method was suitable for the detection of tungsten and cobalt in the air of workplace.
NASA Astrophysics Data System (ADS)
Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.
2016-01-01
In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.
Genesis and evolution of the Baid al Jimalah tungsten deposit, Kingdom of Saudi Arabia
Kamilli, Robert J.
1986-01-01
Baid al Jimalah is similar in character and origin to other tungsten-tin greisen deposits in the world, especially the Hemerdon deposit in Devon, England. It is also analogous to Climax-type molybdenum deposits, which contain virtually identical mineral assemblages, but with the relative intensities of the molybdenum and tungsten mineralization reversed.
TUNGSTEN INTERFERENCE IN VOLUMETRIC ANALYSIS OF URANIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, R.F.; Articolo, O.
1958-08-01
Tungsten was found to have a negligible effect on the determination of uranium in uranium-zirconium alloys by the Jones reductor-dichromate method used at KAPL. The tungstate ion interferred seriously and gave high results. However, the soluble tungsten was precipitated by intensive fuming with sulfuric acid and rendered ineffective in tbe subsequent oxidationreduction reactions of the uranium. (auth)
Interaction between tungsten monocarbide and an iron-based metallic melt
NASA Astrophysics Data System (ADS)
Chumanov, I. V.; Anikeev, A. N.
2015-12-01
A technique and results of investigation of compacted tungsten carbide substrates by scanning microscopy are reported. Samples are prepared in the course of studies of the wettability of tungsten carbide substrates with the iron melt, which are performed in accordance with the sessile drop method using two different heating strategies, namely, contact and noncontact heating of metal.
PCD tool wear and its monitoring in machining tungsten
NASA Astrophysics Data System (ADS)
Wang, Lijiang; Zhang, Zhenlie; Sun, Qi; Liu, Pin
The views of Chinese and foreign researchers are quite different as to whether or not polycrystalline diamond (PCD) tools can machine tungsten that is used in the aerospace and electronic industries. A study is presented that shows the possibility of machining tungsten, and a new method is developed for monitoring the tool wear in production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, A.; Jeffery, J.C.; Maher, J.P.
The authors have prepared the new monodentate ligands 4-(4-methoxyphenyl)pyridine, 1-(4-pyridyl)-2-(4-methoxyphenyl)ethene, 1-(4-pyridyl)-2-(3-methoxyphenyl)ethene, and 1-(3-pyridyl)-2-(4-methoxyphenyl)ethene (L[sup 5]-L[sup 8]); demethylation of the methoxy group in each case afforded the new bridging bidentate ligands HL[sup 1]-HL[sup 4], which contain one pyridyl and one phenolate donor. Attachment of a MoL*(NO)Cl [L* = hydrotris(3,5-dimethylpyrazolyl)borate] moiety to the pyridyl groups of L[sup 5]-L[sup 8] gave the 17-electron complexes [Mo(NO)L*ClL[prime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu
2014-09-01
Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungstenmore » with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com
Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressuremore » of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.« less
Electrons, phonons and superconductivity in rocksalt and tungsten-carbide phases of CrC.
Tütüncü, H M; Baǧcı, S; Srivastava, G P; Akbulut, A
2012-11-14
We present results of ab initio theoretical investigations of the electronic structure, phonon dispersion relations, electron-phonon interaction and superconductivity in the rocksalt and tungsten-carbide phases of CrC. It is found that, compared to the stable tungsten-carbide phase, the metastable rocksalt phase is characterized by a much larger electronic density of states at the Fermi level. The phonon spectra of the rocksalt phase exhibit anomalies in the dispersion curves of both the transverse and longitudinal acoustic branches along the main symmetry directions. A combination of these characteristic electronic and phonon properties leads to an order of magnitude larger value of the electron-phonon coupling constant (λ = 2.66) for the rocksalt phase compared to that for the tungsten-carbide phase (λ = 0.24). Our calculations suggest that superconducting transition temperature values of 0.01 K and 25-35 K may be expected for the tungsten-carbide and rocksalt phases, respectively.
Chen, Ganxin; Zhang, Qinyuan; Cheng, Yun; Zhao, Chun; Qian, Qi; Yang, Zhongmin; Jiang, Zhonghong
2009-05-01
We report on spectroscopic properties and energy transfer of Tm(3+)/Ho(3+)-codoped tungsten tellurite glasses for 1.47microm amplifier. Fluorescence spectra and the analysis of energy transfer indicate that Ho(3+) is an excellent codopant for 1.47microm emission. Comparing with other tellurite glasses, the radiative lifetime of the (3)H(4) level of Tm(3+) in tungsten tellurite glass is slightly lower, but the spontaneous emission probability, stimulated emission cross-section and the figure of merit for bandwidth are obviously larger. Although the pump efficiency of tungsten tellurite amplifier is approximately 50% less than that of fluoride glass, the figure of merit for bandwidth is approximately three times larger in tungsten tellurite glass than in fluoride glass. The results indicate that Tm(3+)/Ho(3+)-codoped tungsten tellurite glass is attractive for broadband amplifier.
[Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].
Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong
2014-07-01
Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.
Pressure Measurements for Tungsten Wire Explosions in Water
NASA Astrophysics Data System (ADS)
Afanas'ev, V. N.
2005-07-01
Successful wire array implosion experiments carried out on PBFA- Z accelerator [1], in which a record-breaking soft x-ray yield of more than 1.5 MJ was observed, stimulated interest in research of electric explosion of thin metal wires. The results of pressure measurements micron's tungsten wire explosion, which carried out in deionized water. Thin tungsten wire explosion was investigated experimentally at current pulse 100 ns duration. The shock waves from the 70 μm tungsten wire explosion were measured by the piezoceramic pressure gauge. The gauges were placed at a range from 3 to 15 mm of wire. The piezoceramic gauges were calibrated on the stable electron beams generator with nanoseconds duration. Experiments were carried out for verifying the tungsten plasma equation of state parameters under different values of the deposited energy. [1] R. B. Spielman, C. Deeney, G. A. Chandler et al., Phys.Plasmas #5, ð. 2105, 1998. The work was supported by ISTC # 1826
Tungsten-nickel-cobalt alloy and method of producing same
Dickinson, James M.; Riley, Robert E.
1977-03-15
An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing said tungsten-nickel-cobalt alloy is further described and comprises (a) coating the tungsten particles with a nickel-cobalt alloy, (b) pressing the coated particles into a compact shape, (c) heating said compact in hydrogen to a temperature in the range of 1400.degree. C and holding at this elevated temperature for a period of about 2 hours, (d) increasing this elevated temperature to about 1500.degree. C and holding for 1 hour at this temperature, (e) cooling to about 1200.degree. C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1/2 hour, and (f) cooling the resulting alloy to room temperature in this argon atmosphere.
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.; Caves, Robert M.
1964-01-01
An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.
NASA Astrophysics Data System (ADS)
Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.
2018-05-01
Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.
Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.
2010-08-15
Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3}more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)« less
Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O; Kuntz, J; Gash, A
2009-02-13
Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17more » g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.« less
Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase.
Seiffert, Grazyna B; Ullmann, G Matthias; Messerschmidt, Albrecht; Schink, Bernhard; Kroneck, Peter M H; Einsle, Oliver
2007-02-27
The tungsten-iron-sulfur enzyme acetylene hydratase stands out from its class because it catalyzes a nonredox reaction, the hydration of acetylene to acetaldehyde. Sequence comparisons group the protein into the dimethyl sulfoxide reductase family, and it contains a bis-molybdopterin guanine dinucleotide-ligated tungsten atom and a cubane-type [4Fe:4S] cluster. The crystal structure of acetylene hydratase at 1.26 A now shows that the tungsten center binds a water molecule that is activated by an adjacent aspartate residue, enabling it to attack acetylene bound in a distinct, hydrophobic pocket. This mechanism requires a strong shift of pK(a) of the aspartate, caused by a nearby low-potential [4Fe:4S] cluster. To access this previously unrecognized W-Asp active site, the protein evolved a new substrate channel distant from where it is found in other molybdenum and tungsten enzymes.
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.
2017-09-01
Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.
Geology and genesis of the Baid al Jimalah tungsten deposit, Kingdom of Saudi Arabia
Kamilli, R.J.; Cole, J.C.; Elliott, J.E.; Criss, R.E.
1993-01-01
The Baid ad Jimalah tungsten deposit in Saudi Arabia consists predominantly of swarms of steeply dipping, subparallel, tungsten-bearing quartz veins and of less abundant, smaller stockwork veins. It is spatially, temporally, and genetically associated with a 569 Ma, highly differentiated, porphyritic, two-feldspar granite that intrudes Late Proterozoic immature sandstones. Baid al Jimalah is similar in character and origin to Phanerozoic tungsten-tin greisen deposits throughout the world, especially the Hemerdon deposit in Devon, England. It is also analogous to Climax-type molybdenum deposits, which contain virtually identical mineral assemblages, but with the relative proportions of molybdenum and tungsten mineralization reversed, primarily owing to differences in oxygen fugacity. This similarity in mineralization styles and fluid histories indicates that metallogenic processes in granite-related deposits in the late Precambrian were similar to those seen in the Phanerozoic. -from Authors
Adhesion and transfer of polytetrafluoroethylene to tungsten studied by field ion microscopy
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1972-01-01
Mechanical contacts between polytetrafluoroethylene (PTFE) and tungsten field ion tips were made in situ in the field ion microscope. Both load and force of adhesion were measured for varying contact times and for clean and contaminated tungsten tips. Strong adhesion between the PTFE and clean tungsten was observed at contact times greater than 2.5 min (forces of adhesion were greater than three times the load). For times less than 2.5 min, the force of adhesion was immeasurably small. The increase in adhesion with contact time after 2.5 min can be attributed to the increase in true contact area by creep of PTFE. No adhesion was measurable at long contact times with contaminated tungsten tips. Neon field ion micrographs taken after the contacts show many linear and branched arrays which appear to represent PTFE that remains adhered to the surface even at the high electric fields required for imaging.
Current Thermal Emission from Photonic Nanostructures Composed of TA, W, GE, and HFO2 Thin Films
2015-03-01
absorptive wavelength bands in the SWIR to LWIR range. Ellipsometric measurements and models were used in order to extract the optical constants of thin...parts of the complex dielectric function of tungsten at 294 K (room temperature) , 1100 K, 1600 K as calculated from the Drude model , Eq (25...real part and k is the imaginary. Values were obtained using the Drude model , Eq (25), with the measured optical parameters in Table 1 from [67] at
Carcinogenicity of Embedded Tungsten Alloys in Mice
2011-03-01
year carcinogenicity (Aim 1) and serial euthanasia (Aim 2) studies were analyzed for metal content using inductively coupled-plasma mass spectrometry...inductively coupled- plasma mass spectrometer (PQ ExCell ICPMS System, ThermoElemental, Franklin, MA) equipped with a Cetac ASX500 Autosampler. High...Metal analysis using inductively coupled-plasma mass spectrometry showed that both the tungsten/nickel/cobalt and tungsten/nickel/iron
2012-09-01
of a di-tungsten boride (W2B) phase was not detected in the nW-B sample, but the low concentration of boron may have made this phase undetectable by...Split Hopkinson Bar UFG ultrafine grained W2B di-tungsten boride XRD x-ray diffraction NO. OF NO. OF COPIES ORGANIZATION COPIES
Ductile tungsten-nickel-alloy and method for manufacturing same
Ludwig, Robert L.
1978-01-01
The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.
1989-03-25
3887) Tantalum Carbide (TaC) 4150 (3877) Niobium Carbide 4023 (3750) Carbon (Graphite) 3970 (3697) Zirconium Carbide 3805 (3532) Tungsten 3643 3643...process. Some fibers, especially those made of tungsten , silicon carbide, and zirconia, survived the reaction conditions. However, the ceramic bodies...displayed cracks and voids. Examination by SEM of cross’sections of the reacted parts made with tungsten fibers disclosed the presence of "whiskers
Design Parameters Affecting the Accuracy of Isothermal Thermocouples
1975-01-02
Design Parameters Lead Wire Length intekference Accuracy Askew Installation Tungsten / Rhenium Wire Diameter Trajectory Insulation Thickness Heatshield...Summary ................. 73 A-3 Thermodynamic Properties of Tungsten / Rhenium Therm ocouples ............................ 75 A-4 Thermodynamic Properties...were tungsten / rhenium , chromel/alumel, and iron/constbntan, which covered the 0 to 5000, 0 to 2200, and 0 to I-00°F temperatut- ranges, resoectively. in
Factors Influencing the Microstructural and Mechanical Properties of ULCB Steel Weldments
1991-12-01
18 3. Molybdenum.................................... 19 4. Chromium ...................................... 19 5...WELDING METHODS UTILIZED IN ANALYSIS 1. Tungsten Inert Gas (TIG) Tungsten inert gas welding, also known as gas tungsten arc welding ( GTAW ), produces a weld...Abson, Pargeter, 1986, p.166). The role of molybdenum and chromium is not fully understood but the formation of molybdenum or chromium carbides may
NASA Astrophysics Data System (ADS)
Melnikova, Irina P.; Vorozheikin, Victor G.; Usanov, Dmitry A.
2003-06-01
The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes are investigated for three different grain morphologies. Best results of tungsten cathode life were found for isoaxis polyhedron morphology in combination with certain powder and matrix parameters.
Method for deposition of a conductor in integrated circuits
Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.
1997-09-02
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.
Measurement of thermal radiation scattering characteristics of submicron refractory particles.
NASA Technical Reports Server (NTRS)
Jacobs, W. R.; Williams, J. R.
1971-01-01
The differential scattering parameter has been measured for 0.04-micron tungsten particles in hydrogen and nitrogen at temperatures to 1080 K. The differential scattering parameter has also been measured for 0.1 micron tungsten, three types of carbon particles, and fly ash in nitrogen at temperatures to 1000 K. The 0.04 micron tungsten shows a temperature dependent total scattering parameter varying from around 4000 sq cm per g at room temperature to 7000 sq cm per g at 1088 K. The temperatures over which data were obtained are not high enough to confirm the temperature dependence of the total scattering parameter of tungsten.
Thermal expansion method for lining tantalum alloy tubing with tungsten
NASA Technical Reports Server (NTRS)
Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.
1973-01-01
A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.
A Wsbnd Ne interatomic potential for simulation of neon implantation in tungsten
NASA Astrophysics Data System (ADS)
Backman, Marie; Juslin, Niklas; Huang, Guiyang; Wirth, Brian D.
2016-08-01
An interatomic pair potential for Wsbnd Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.
NASA Technical Reports Server (NTRS)
Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.
2017-01-01
Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).
NASA Astrophysics Data System (ADS)
Tudorache, Florin
2018-04-01
In the present study we report the structural, electrical, magnetic and humidity characteristics of copper ferrite with different percent on tungsten trioxide addition. The aim of this study was to obtain more stable and sensitive active materials for humidity sensors. In order to highlight the influence of tungsten on the structural, electrical and magnetic properties, the ferrite samples were fabricated via sol-gel self-combustion method and sintered for 30 min at 1000 °C with percent between 0 and 20% tungsten trioxide additions. The X-ray diffraction investigations showed the copper ferrite phase composition. The scanning electron microscopy revealed the influence of the substitution on characteristics of the crystallites and the profilometry showed the surface topography of samples. The investigation was focused on the variation of permittivity and electrical conductivity, in relation with tungsten trioxide addition, frequency and humidity. We have also, investigated the relevant magnetic characteristics of the copper ferrite material by highlighting the influence of tungsten trioxide addition on to Curie temperature and the permeability frequency characteristics. The data suggests that the copper ferrite with tungsten trioxide addition can be used as active material for humidity sensors.
NASA Astrophysics Data System (ADS)
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-11-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges
NASA Astrophysics Data System (ADS)
Xie, H.; Ding, R.; Kirschner, A.; Chen, J. L.; Ding, F.; Mao, H. M.; Feng, W.; Borodin, D.; Wang, L.
2017-09-01
Tungsten erosion and re-deposition at the upper outer divertor of the Experimental Advanced Superconducting Tokamak has been modelled using the 3D Monte Carlo code ERO. The measured divertor plasma condition in attached L mode discharges with upper single null configuration has been used to build the background plasma in the simulations. The tungsten gross erosion rate is mainly determined by carbon impurity in the background plasma. Increasing carbon concentration can first increase and afterwards suppress the tungsten erosion rate. Taking into account the material mixing surface model, the influence of eroded particles returning to the surface on sputtering has been studied. Sputtering by eroded particles returning to the surface can significantly enhance the gross erosion by reduction of the carbon ratio within the surface interaction layer and by increasing the erosion rate due to sputtering by both eroded tungsten and carbon particles. Modelling indicates that carbon deposition occurs on the dome plate and part of the vertical plate close to the dome plate, whereas tungsten net erosion occurs on most of the vertical plate. The modelling results are in reasonable agreement with the experimental WI spectroscopy.
Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G
2012-09-04
Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.
NASA Astrophysics Data System (ADS)
Kushkhov, Hasbi; Adamokova, Marina; Kvashin, Vitalij; Kardanov, Anzor; Gramoteeva, Svetlana
2007-12-01
Iron, cobalt and nickel powders are used as binding components for the production of articles of tungsten carbide by the hot pressing method. This fact and the unique properties of binary carbides of tungsten-iron triad metals encouraged the search for new ways of their synthesis. In the present work, the attempt to synthezise binary tungsten-nickel (cobalt, iron) carbides in molten KCl-NaCl-CsCl at 823 K was made. As a result of voltammetry research, it was established that in eutectic KCl-NaCl-CsCl melts the deposition potentials ofWand Ni (Co, Fe) differ by 150 - 350 mV from each other, which makes their co-deposition difficult. It is possible to shift the deposition potentials of tungsten and metals of the iron triad metals towards each other by changing the acid-base properties of the melt. The products of electrolysis in these molten system were identified by X-ray analysis. They are mixtures of tungsten and nickel (cobalt, iron) carbides: Ni2W4C, W6C2.54; Co3W3C, Co6W6C, W2C, Co3C; FeW3C.
Electrochemical Dissolution of Tungsten Carbide in NaCl-KCl-Na2WO4 Molten Salt
NASA Astrophysics Data System (ADS)
Zhang, Liwen; Nie, Zuoren; Xi, Xiaoli; Ma, Liwen; Xiao, Xiangjun; Li, Ming
2018-02-01
Tungsten carbide was utilized as anode to extract tungsten in a NaCl-KCl-Na2WO4 molten salt, and the electrochemical dissolution was investigated. Although the molten salt electrochemical method is a short process method of tungsten extraction from tungsten carbide in one step, the dissolution efficiency and current efficiency are quite low. In order to improve the dissolution rate and current efficiency, the sodium tungstate was added as the active substance. The dissolution rate, the anode current efficiency, and the cathode current efficiency were calculated with different contents of sodium tungstate addition. The anodes prior to and following the reaction, as well as the product, were analyzed through X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The results demonstrated that the sodium tungstate could improve the dissolution rate and the current efficiency, due to the addition of sodium tungstate decreasing the charge transfer resistance in the electrolysis system. Due to the fact that the addition of sodium tungstate could remove the carbon during electrolysis, pure tungsten powders with 100 nm diameter were obtained when the content of sodium tungstate was 1.0 pct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Haiping; Liao, Jianhua; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000
2014-03-01
Graphical abstract: - Highlights: • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO{sub 2} nanocrystal colloids can be tuned by tungsten doping. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher stability and dispersity. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO{sub 2} samples were investigated carefully by TEM, XRD, XPS, UV–vis, PLmore » and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO{sub 2} nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO{sub 2} colloid combines the characters of high dispersity and high photocatalytic activity.« less
Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron
Bardack, Stephanie; Dalgard, Clifton L.; Kalinich, John F.; Kasper, Christine E.
2014-01-01
Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted. PMID:24619124
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-01-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885
Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A
2014-11-04
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
NASA Astrophysics Data System (ADS)
Deloume, Jean-Pierre; Marote, Pedro; Sigala, Catherine; Matei, Cristian
2003-08-01
WC is tested as precursor to synthesize metal tungstates by reaction in molten alkali metal nitrates. This constitutes a complex redox system with two reducing agents, W and C, and an oxidizer having several oxidation states. The mass loss due to the evolution of gases reveals the reaction steps. The infrared analyses of the gas phase show what kind of reaction develops according to the temperature. WC produces a water-soluble alkali metal tungstate. The reaction of a mixture of WC and a divalent metal chloride (Mg, Ca, Ba, Ni, Cu, Zn) leads to water-insoluble metal tungstates. As the reactivity of the cations increases in the order Zn, Ni, Cu, the reaction of WC is modified by their presence. The physico-chemical characterizations of the products show that some of them are contaminated either by WC or by metal oxide. Some others are rather pure products. These differences, in relationship with the other analyses, allow to propose first reaction pathways of the tungsten carbide in molten salts.
NASA Astrophysics Data System (ADS)
Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman
2017-10-01
Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.
Bullock, R. Morris; Kimmich, Barbara F. M.; Fagan, Paul J.; Hauptman, Elisabeth
2003-09-02
The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes and the catalyst used in the process. The reactants include a functional group which is selected from groups represented by the formulas R*(C.dbd.O)R' and R*(C.dbd.O)H, wherein R* and R' are selected from hydrogen or any alkyl or aryl group. The process includes reacting the organic compound in the presence of hydrogen and a catalyst to form a reaction mixture. The catalyst is prepared by reacting Ph.sub.3 C.sup.+ A.sup.- with a metal hydride. A.sup.- represents an anion and can be BF.sub.4.sup.-, PF.sub.6.sup.-, CF.sub.3 SO.sub.3.sup.- or Bar'.sub.4.sup.-, wherein Ar'=3,5-bis(trifluoromethyl)phenyl. The metal hydride is represented by the formula: HM(CO).sub.2 [.eta..sup.5 :.eta..sup.1 --C.sub.5 H.sub.4 (XH.sub.2).sub.n PR.sub.2 ] wherein M represents a molybdenum (Mo) atom or a tungsten (W) atom; X is a carbon atom, a silicon atom or a combination of carbon (C) and silicon (Si) atoms; n is any positive integer; R represents two hydrocarbon groups selected from H, an aryl group and an alkyl group, wherein both R groups can be the same or different. The metal hydride is reacted with Ph.sub.3 C.sup.+ A.sup.- either before reacting with the organic compound or in the reaction mixture.
Molecular Dynamics Simulation of Hydrogen Trapping on Sigma 5 Tungsten Grain Boundaries
NASA Astrophysics Data System (ADS)
Al-Shalash, Aws Mohammed Taha
Tungsten as a plasma facing material is the predominant contender for future Tokamak reactor environments. The interaction between the plasma particles and tungsten is crucial to be studied for successful usage and design of tungsten in the plasma facing components ensuring the reliability and longevity of the fusion reactors. The bombardment of the sigma 5 polycrystalline tungsten was modeled using the molecular dynamics simulation through the large-scale atomic/molecular massively parallel simulator (LAMMPS) code and Tersoff type interatomic potential. By simulating the operational conditions of the Tokamak reactors, the hydrogen trapping rate, implantation distribution, and bubble formation was investigated at various temperatures (300-1200 K) and various hydrogen incident energy (20-100 eV). The substrate's temperature increases the deflected H atoms, and increases the penetration depth for the ones that go through. As well, the lower temperature tungsten substrates retain more H atoms. Increasing the bombarded hydrogen's energy increases the trapping and retention rate and the depth of penetration. Another experiments were conducted to determine whether the Sigma5 grain boundary's (GB) location affects the trapping profiles in H. The findings are ranges from small effect on deflection rates at low H energies to no effect at high H energies. However, there is a considerable effect on shifting the trapping depth profile upward toward the surface when raising the GB closer to the surface. Hydrogen atoms are highly mobile on tungsten substrate, yet no bubble formation was witnessed.
Tritium Decay Helium-3 Effects in Tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, M.; Merrill, B. J.
2016-06-01
A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructuralmore » evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium retention in helium-3 bubble. This paper reports the initial experimental observation of tritium-decay helium-3 in tungsten exposed to deuterium/tritium plasma along with electron microscope analysis and also discusses a Tritium Migration Analysis Program (TMAP) analysis of tritium-decay helium-3 effects on tritium retention in tungsten for DEMO and future fusion reactor. [1] Y. Hatano, et.al., Nucl. Fusion 53 (2013) 073006 [2] M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008 [3] M. Sawan, Fus. Sci. Technol. 66 (2014) 272 [4] T. Otsuka, Fus. Sci. Technol. 60 (2011) 1539 This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less
DOE/JPL advanced thermionic technology program
NASA Technical Reports Server (NTRS)
1979-01-01
Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.
Brush Plating of Nickel-Tungsten Alloy for Engineering Application
2012-08-01
ASETS Defense ‘12 1 Brush Plating of Nickel-Tungsten Alloy for Engineering Application Zhimin Zhong & Sid Clouser Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Brush Plating of Nickel-Tungsten Alloy for Engineering Application 5a. CONTRACT NUMBER...6 Surface morphology Visual appearance, scanning electron and optical microscope images. Smooth, fine grained, micro- cracked surface morphology
NASA Astrophysics Data System (ADS)
Sheppard, P. R.; Witten, M. L.
2004-12-01
Currently in the US, there are at least two ongoing clusters of childhood leukemia, where the incidence rate over the last several years has exceeded the national norm. In Fallon, Nevada, a town of 8,000 people, 16 children have been diagnosed with leukemia since 1995, three of whom have died. In Sierra Vista, Arizona, a town of 38,000 people, 12 children have been diagnosed since 1998, two of whom have died. A possible third cluster of childhood leukemia and other cancers is being monitored in Elk Grove, California, a suburb of Sacramento. For the purpose of characterizing the heavy metal content of airborne dust of these three communities, total suspended particulate samples were collected from each town as well as from nearby towns that could be considered as control comparisons. Sampling was done using portable high-volume blowers and glass- or quartz-fiber filter media. Filters were measured for elemental concentrations using inductively coupled plasma mass spectroscopy. To date, our most notable results are from the Nevada region. Compared to other control towns in the region, Fallon had significantly more tungsten in its airborne dust. Uranium was also higher in dust of Fallon than in other control towns. Uranium is a known health hazard, though it is not necessarily specifically related to childhood leukemia. The role of tungsten in childhood leukemia has not been widely studied. However, other research has identified tungsten exposure as an environmental concern in Fallon. A CDC study of human tissue samples from Fallon has shown high tungsten levels in people of Fallon, and a USGS study of drinking water in Fallon also has shown high tungsten there. Tree-ring research on selected trees has shown high tungsten values in recent rings compared to earlier rings. While these multiple indications of tungsten in the Fallon environment do not directly lead to the conclusion that tungsten causes leukemia, they do combine to suggest that biomedical research on the role of tungsten in childhood leukemia is justified. It is also worth noting in this session on megacities that environmental pollution issues are concerns not just of large cities, but also of small rural towns.
NASA Astrophysics Data System (ADS)
Sheppard, P. R.; Witten, M. L.
2003-12-01
Currently in the US, there are at least two ongoing clusters of childhood leukemia, where the incidence rate over the last several years has far and away exceeded the national norm. In Fallon, Nevada, a town of 10,000 people, 16 children have been diagnosed with leukemia since 1995, three of whom have died. In Sierra Vista, Arizona, a town of 38,000 people, 11 children have been diagnosed since 1998, one of whom has died. A possible third cluster of childhood leukemia and other cancers is being monitored in Elk Grove, California, a suburb of Sacramento. For the purpose of providing a suite of many elements from which to search for temporal changes in environmental chemical availability that might have possibly contributed to these clusters, increment-core samples were collected from trees within these three communities and measured for elemental concentrations using inductively coupled plasma mass spectroscopy. Two time periods of rings were analyzed, one representing the cluster period (1997 to present) and one representing some period in the past, usually dating into the early 1980s. Among many elements that were measured, only tungsten showed a reasonably consistent change through time across the several trees that were sampled initially. In many cases, tungsten increased in the rings by as much as a doubling from past to present. The obvious dendrochemistry question applies: Does this increase in tungsten through time in tree rings represent a true increase in environmental exposure to tungsten, or is it merely an internal physiological phenomenon? To date, other trees sampled away from the cluster areas have shown variable changes in their tungsten concentrations, with some increasing and others decreasing through time. A CDC study of human tissue samples from Fallon showed high tungsten levels in people of Fallon, and a USGS study of drinking water in Fallon also showed high tungsten there. Filtered samples of inhalable air in Sierra Vista have more tungsten than other nearby areas of southern Arizona. Some medical research work has shown at least a possible connection between tungsten and leukemia or cancer generally.
Engineered Surface Properties of Porous Tungsten from Cryogenic Machining
NASA Astrophysics Data System (ADS)
Schoop, Julius Malte
Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting force, temperature and surface roughness data is developed and used to study the deformation mechanisms of porous tungsten under different machining conditions. It is found that when hmax = hc, ductile mode machining of otherwise highly brittle porous tungsten is possible. The value of hc is approximately the same as the average ligament size of the 80% density porous tungsten workpiece.
Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts.
Rizo, Hanika; Walker, Richard J; Carlson, Richard W; Horan, Mary F; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G
2016-05-13
How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth's primary accretionary period have survived to the present. Copyright © 2016, American Association for the Advancement of Science.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
NASA Technical Reports Server (NTRS)
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
Tungsten nanoparticles influence on radiation protection properties of polymers
NASA Astrophysics Data System (ADS)
Gavrish, V. M.; Baranov, G. A.; Chayka, T. V.; Derbasova, N. M.; Lvov, A. V.; Matsuk, Y. M.
2016-02-01
In the presented article the results of the study of metal-polymer composites based on the ultra-high molecular weight polyethylene GUR 4122 with the addition of superdispersed tungsten nanopowders with 5, 10, 20, 40, and 50 mass percent content levels are given, their thermophysical, radiation-shielding, and mechanical properties are shown, and the influence of content levels of tungsten superdispersed nanopowders on these properties is analyzed. The conducted studies have shown the increase in the listed properties depending on the content level of tungsten superdispersed and nanopowders in the ultra-high molecular weight polyethylene GUR 4122. Owing to their properties, the obtained materials may be used in various fields, such as aviation, space technologies, mechanical engineering, etc.
Ductile tungsten-nickel alloy and method for making same
Snyder, Jr., William B.
1976-01-01
The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.
Design of the polar neutron-imaging aperture for use at the National Ignition Facility.
Fatherley, V E; Barker, D A; Fittinghoff, D N; Hibbard, R L; Martinez, J I; Merrill, F E; Oertel, J A; Schmidt, D W; Volegov, P L; Wilde, C H
2016-11-01
The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.
Mondal, Bijan; Bag, Ranjit; Ghorai, Sagar; Bakthavachalam, K; Jemmis, Eluvathingal D; Ghosh, Sundargopal
2018-07-02
The reaction of [(Cp*Mo) 2 (μ-Cl) 2 B 2 H 6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO) 2 } 2 {μ-η 2 :η 2 -B 2 H 4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged C s structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO) 2 } 2 C 2 H 2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO) 4 ] fragment, [{Cp*Mo(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (3) was isolated upon treatment with [W(CO) 5 ⋅thf]. Compound 3 shows the intriguing presence of [B 2 H 2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (4) and [{Cp*W(CO) 2 } 2 B 2 H 2 Mo(CO) 4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K
NASA Technical Reports Server (NTRS)
Hee, Man Yun
1988-01-01
The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.
NASA Astrophysics Data System (ADS)
Khan, M. N.; Shamim, T.
2017-08-01
Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.
Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material
NASA Astrophysics Data System (ADS)
Koch, F.; Brinkmann, J.; Lindig, S.; Mishra, T. P.; Linsmeier, Ch
2011-12-01
The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.
NASA Astrophysics Data System (ADS)
Hess, D. W.
1986-05-01
Radiofrequency (rf) discharges have been used to deposit films of tungsten, molybdenum and titanium silicide. As-deposited tungsten films, from tungsten hexafluoride and hydrogen source gases, were metastable (beta W), with significant (>1 atomic percent) fluorine incorporation. Film resistivities were 40-55 micro ohm - cm due to the beta W, but dropped to about 8 micro ohm cm after a short heat treatment at 700 C which resulted in a phase transition to alpha W (bcc form). The high resistivity (>10,000 micro ohm) associated with molybdenum films deposited from molybdenum hexafluoride and hydrogen appeared to be a result of the formation of molybdenum trifluoride in the deposited material. Titanium silicide films formed from a discharge of titanium tetrachloride, silane, and hydrogen, displayed resistivities of about 150 micro ohm cm, due to small amounts of oxygen and chlorine incorporated during deposition. Plasma etching studies of tungsten films with fluorine containing gases suggest that the etchant species for tungsten in these discharges are fluorine atoms.
Influence of Au ions irradiation damage on helium implanted tungsten
NASA Astrophysics Data System (ADS)
Kong, Fanhang; Qu, Miao; Yan, Sha; Cao, Xingzhong; Peng, Shixiang; Zhang, Ailin; Xue, Jianming; Wang, Yugang; Zhang, Peng; Wang, Baoyi
2017-10-01
The damages of implanted helium ions together with energetic neutrons in tungsten is concerned under the background of nuclear fusion related materials research. Helium is lowly soluble in tungsten and has high binding energy with vacancy. In present work, noble metal Au ions were used to study the synergistic effect of radiation damage and helium implantation. Nano indenter and the Doppler broaden energy spectrum of positron annihilation analysis measurements were used to research the synergy of radiation damage and helium implantation in tungsten. In the helium fluence range of 4.8 × 1015 cm-2-4.8 × 1016 cm-2, vacancies played a role of trappers only at the very beginning of bubble nucleation. The size and density is not determined by vacancies, but the effective capture radius between helium bubbles and scattered helium atoms. Vacancies were occupied by helium bubbles even at the lowest helium fluence, leaving dislocations and helium bubbles co-exist in tungsten materials.
Measuring the dynamic polarizability of tungsten atom via electrical wire explosion in vacuum
NASA Astrophysics Data System (ADS)
Shi, Huantong; Zou, Xiaobing; Wang, Xinxin
2018-02-01
Electrical explosion of wire provides a practical approach to the experimental measurement of dynamic polarizability of metal atoms with high melting and boiling temperatures. With the help of insulation coating, a section of tungsten wire was transformed to the plasma state while the near electrode region was partially vaporized, which enabled us to locate the "neutral-region" (consisting of gaseous atoms) in the Mach-Zehnder interferogram. In this paper, the polarizability of the tungsten atom at 532 nm was reconstructed based on a technique previously used for the same purpose, and the basic preconditions of the measurement were verified in detail, including the existence of the neutral region, conservation of linear density of tungsten during wire expansion, and neglect of the vaporized insulation coating. The typical imaging time varied from 80 ns to as late as 200 ns and the reconstructed polarizability of the tungsten atom was 16 ± 1 Å3, which showed good statistical consistency and was also in good agreement with the previous results.
Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux
NASA Astrophysics Data System (ADS)
Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda
2003-08-01
Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.
NASA Astrophysics Data System (ADS)
Oya, Yasuhisa; Sato, Misaki; Li, Xiaochun; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Uemura, Yuki; Hatano, Yuji; Yoshida, Naoaki; Ashikawa, Naoko; Sagara, Akio; Chikada, Takumi
2016-02-01
Temperature dependence on deuterium (D) retention for He+ implanted tungsten (W) was studied by thermal desorption spectroscopy (TDS) to evaluate the tritium retention behavior in W. The activation energies were evaluated using Hydrogen Isotope Diffusion and Trapping (HIDT) simulation code and found to be 0.55 eV, 0.65 eV, 0.80 eV and 1.00 eV. The heating scenarios clearly control the D retention behavior and, dense and large He bubbles could work as a D diffusion barrier toward the bulk, leading to D retention enhancement at lower temperature of less than 430 K, even if the damage was introduced by He+ implantation. By comparing the D retention for W, W with carbon deposit and tungsten carbide (WC), the dense carbon layer on the surface enhances the dynamic re-emission of D as hydrocarbons, and induces the reduction of D retention. However, by He+ implantation, the D retention was increased for all the samples.
The deuterium depth profile in neutron-irradiated tungsten exposed to plasma
NASA Astrophysics Data System (ADS)
Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.
2011-12-01
Tungsten samples (99.99% purity from A.L.M.T. Corp., 6 mm in diameter, 0.2 mm in thickness) were irradiated by high-flux neutrons at 50 °C to 0.025 dpa in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Subsequently, the neutron-irradiated tungsten samples were exposed to high-flux deuterium plasmas (ion flux: 1021-1022 m-2 s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment at Idaho National Laboratory. This paper reports the results of deuterium depth profiling in neutron-irradiated tungsten exposed to plasmas at 100, 200 and 500 °C via nuclear reaction analysis (NRA). The NRA measurements show that a significant amount of deuterium (>0.1 at.% D/W) remains trapped in the bulk material (up to 5 μm) at 500 °C. Tritium Migration Analysis Program simulation results using the NRA profiles indicate that different trapping mechanisms exist for neutron-irradiated and unirradiated tungsten.
Validation of tungsten cross sections in the neutron energy region up to 100 keV
NASA Astrophysics Data System (ADS)
Pigni, Marco T.; Žerovnik, Gašper; Leal, Luiz. C.; Trkov, Andrej
2017-09-01
Following a series of recent cross section evaluations on tungsten isotopes performed at Oak Ridge National Laboratory (ORNL), this paper presents the validation work carried out to test the performance of the evaluated cross sections based on lead-slowing-down (LSD) benchmarks conducted in Grenoble. ORNL completed the resonance parameter evaluation of four tungsten isotopes - 182,183,184,186W - in August 2014 and submitted it as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The evaluations were performed with support from the US Nuclear Criticality Safety Program in an effort to provide improved tungsten cross section and covariance data for criticality safety sensitivity analyses. The validation analysis based on the LSD benchmarks showed an improved agreement with the experimental response when the ORNL tungsten evaluations were included in the ENDF/B-VII.1 library. Comparison with the results obtained with the JEFF-3.2 nuclear data library are also discussed.
NASA Astrophysics Data System (ADS)
Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.
2015-08-01
The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.
Zhu, Yanping; Chen, Gao; Zhong, Yijun; Zhou, Wei; Shao, Zongping
2018-02-01
Practical application of hydrogen production from water splitting relies strongly on the development of low-cost and high-performance electrocatalysts for hydrogen evolution reaction (HER). The previous researches mainly focused on transition metal nitrides as HER catalysts due to their electrical conductivity and corrosion stability under acidic electrolyte, while tungsten nitrides have reported poorer activity for HER. Here the activity of tungsten nitride is optimized through rational design of a tungsten nitride-carbon composite. More specifically, tungsten nitride (WN x ) coupled with nitrogen-rich porous graphene-like carbon is prepared through a low-cost ion-exchange/molten-salt strategy. Benefiting from the nanostructured WN x , the highly porous structure and rich nitrogen dopant (9.5 at%) of the carbon phase with high percentage of pyridinic-N (54.3%), and more importantly, their synergistic effect, the composite catalyst displays remarkably high catalytic activity while maintaining good stability. This work highlights a powerful way to design more efficient metal-carbon composites catalysts for HER.
Thermal Neutron Capture onto the Stable Tungsten Isotopes
NASA Astrophysics Data System (ADS)
Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Revay, Zs.; Szentmiklósi, L.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J.; Krticka, M.; Nichols, A.
2012-02-01
Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. BPT Limitations... 10.0 at all times. (c) Tungsten post-leaching wash and rinse. BPT Limitations for the Secondary....100 324.900 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (e) Tungsten carbide leaching...
Gas tungsten arc welding in a microgravity environment: Work done on GAS payload G-169
NASA Technical Reports Server (NTRS)
Welcher, Blake A.; Kolkailah, Faysal A.; Muir, Arthur H., Jr.
1987-01-01
GAS payload G-169 is discussed. G-169 contains a computer-controlled Gas Tungsten Arc Welder. The equipment design, problem analysis, and problem solutions are presented. Analysis of data gathered from other microgravity arc welding and terrestrial Gas Tungsten Arc Welding (GTAW) experiments are discussed in relation to the predicted results for the GTAW to be performed in microgravity with payload G-169.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. BPT Limitations... 10.0 at all times. (c) Tungsten post-leaching wash and rinse. BPT Limitations for the Secondary....100 324.900 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (e) Tungsten carbide leaching...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. BPT Limitations... 10.0 at all times. (c) Tungsten post-leaching wash and rinse. BPT Limitations for the Secondary....100 324.900 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (e) Tungsten carbide leaching...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. BPT Limitations... 10.0 at all times. (c) Tungsten post-leaching wash and rinse. BPT Limitations for the Secondary....100 324.900 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (e) Tungsten carbide leaching...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (b) Tungsten leaching acid. BPT Limitations... 10.0 at all times. (c) Tungsten post-leaching wash and rinse. BPT Limitations for the Secondary....100 324.900 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (e) Tungsten carbide leaching...
2010-07-30
TUNGSTEN ALLOYS ON THE GROWTH OF SELECTED MICROORGANISMS WITH ENVIROMENTAL SIGNIFICANCE 5a. Contract Number: 5b. Grant Number: 5c. Program Element...lower tolerances. Interestingly, bacteria cultivated from the environment displayed only minor delays and reduction in growth relative to pure...settings where nutrients may be limited. 15. SUBJECT TERMS Tungsten, sodium tungstate, microbial growth , environmental microbiology, bacteria , Shewanella
Casting copper to tungsten for high power arc lamp cathodes
NASA Technical Reports Server (NTRS)
Will, H. A.
1973-01-01
A method for making 400-kW arc lamp cathodes is described. The cathodes are made by casting a 1.75-in. diameter copper body onto a thoriated tungsten insert. The addition of 0.5-percent nickel to the copper prevents voids from forming at the copper-tungsten interface. Cathodes made by this process have withstood more than 110 hours of operation in a 400-kW arc lamp.
2015-06-04
These include but are not limited to aluminum, boron, boron carbide (B4C), carbon (graphene), titanium, and tungsten nano-sized particles. When...of plots displaying calculated values for aluminum, titanium, and tungsten additives are shown in Figure 1 to illustrate the potential benefits...of additive weight percent and oxidizer/fuel mixture ratio for aluminum, titanium, and tungsten . With recent improvements in the production and
Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9-12% Cr steels
NASA Astrophysics Data System (ADS)
Park, Kyu-Seop; Bae, Dong-Sik; Lee, Sung-Keun; Lee, Goo-Hyun; Kim, Jung-Ho; Endo, Takao
2006-10-01
Recently, high strength tungsten (W) alloyed steels have been developed for use in power plants with higher steam conditions for environmental reasons as well as the improvement of thermal efficiency resulting in lower fuel costs. In order to establish a creep modeling of high strength martensitic steel and to understand the basic role of W in tungsten alloyed 9-12Cr steels, conventional martensitic steels (X20CrMoV121, X20CrMoWV121, and Mod9Cr-1Mo) and tungsten alloyed steels (NF616 and HCM12A) were employed for creep tests and creep behavior analyses by the Ω method. The proposed creep model, which takes into account both primary and tertiary creep, satisfactorily described the creep curves and accurately predicted creep life, as martensitic steel undergoes a relatively large amount of primary creep, up to nearly 30%, over its normal life. The tungsten alloyed steels exhibited a smaller minimum creep rate and a larger stress exponent compared to the conventional steels. In addition, in tungsten alloyed steel, the Ω value features strong stress dependence such that creep life is prolonged at lower stresses due to high Ω values. The importance of the Ω value from the standpoint of creep strengthening in primary and tertiary creep is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Shibin; College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061; Chang, Xueting, E-mail: xuetingchang@yahoo.cn
Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-dopedmore » tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.« less
Microstructure, optical, and electrochromic properties of sol-gel nanoporous tungsten oxide films
NASA Astrophysics Data System (ADS)
Djaoued, Yahia; Ashrit, P. V.; Badilescu, S.; Bruning, R.
2003-08-01
Porous tungsten oxide films have been prepared by a nonhydrolitic sol-gel method using poly(ethylene glycol) (PEG) as a structure directing agent. The method entails the hydrolysis of an ethanolic solution of tungsten ethoxide (formed by the reaction of WCl6 with ethanol) followed by condensation and polymerization at the PEG-tungsten oxide oligometers interface. A highly porous WO3 framework was obtained after PEG was burned off by calcination at a relativley low temperature. AFM images of the films treated thermally show an ordered material rather than microscopic particulates. Both fibrilar nanostructures and striped phase can be obtained via this approach, depending on the concentration of PEG in the coating solution. XRD data from the fibrils indicate that they are crystalline with very small crystals, whereas the striped phases obtained with 20% PEG correspond to two crystalline phases, one, the stoichiometric WO3 and the other one an oxygen deficient phase, containing larger crystals (~28 nm). The results show that PEG promotes the formation of oxygen deficient phases and delays crystallization. Compared to WO3 with no PEG, the optical and electrochromic properties of the macroporous tungsten oxide films appear to be significantly improved. The formation of organized nanostructures is tentatively accounted for by the strong hydrogen bonding interactions between PEG and the tungsten oxide oligomers.
Chamber wall materials response to pulsed ions at power-plant level fluences
NASA Astrophysics Data System (ADS)
Renk, T. J.; Provencio, P. P.; Tanaka, T. J.; Olson, C. L.; Peterson, R. R.; Stolp, J. E.; Schroen, D. G.; Knowles, T. R.
2005-12-01
Candidate dry-wall materials for the reactor chambers of future laser-driven Inertial Fusion Energy (IFE) power plants have been exposed to ion pulses from RHEPP-1, located at Sandia National Laboratories. These pulses simulate the MeV-level ion pulses with fluences of up to 20 J/cm 2 that can be expected to impinge on the first wall of such future plants. Various forms of tungsten and tungsten alloy were subjected to up to 1600 pulses, usually while being heated to 600 °C. Other metals were exposed as well. Thresholds for roughening and material removal, and evolution of surface morphology were measured and compared with code predictions for materials response. Powder-metallurgy (PM) tungsten is observed to undergo surface roughening and subsurface crack formation that evolves over hundreds of pulses, and which can occur both below and above the melt threshold. This roughening is worse than for other metals, and worse than for either tungsten alloyed with rhenium (W25Re), or for CVD and single-crystal forms of tungsten. Carbon, particularly the form used in composite material, appears to suffer material loss well below its sublimation point. Some engineered materials were also investigated. It appears that some modification to PM tungsten is required for its successful use in a reactor environment.
Barium Depletion in Hollow Cathode Emitters
NASA Technical Reports Server (NTRS)
Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira
2009-01-01
The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.
NASA Astrophysics Data System (ADS)
Doetz, Marius; Dambon, Olaf; Klocke, Fritz; Fähnle, Oliver
2015-08-01
Molds made of tungsten carbide are typically used for the replicative mass production of glass lenses by precision glass molding. Consequently an ultra-precision grinding process with a subsequent fresh-feed polishing operation is conventionally applied. These processes are time consuming and have a relatively low reproducibility. An alternative manufacturing technology, with a high predictability and efficiency, which additionally allows a higher geometrical flexibility, is the single point diamond turning technique (SPDT). However, the extreme hardness and the chemical properties of tungsten carbide lead to significant tool wear and therefore the impossibility of machining the work pieces in an economical way. One approach to enlarge the tool life is to affect the contact zone between tool and work piece by the use of special cutting fluids. This publication emphasizes on the most recent investigations and results in direct machining of nano-grained tungsten carbide with mono crystal diamonds under the influence of various kinds of cutting fluids. Therefore basic ruling experiments on binderless nano grained tungsten carbide were performed, where the tool performed a linear movement with a steadily increasing depth of cut. As the ductile cutting mechanism is a prerequisite for the optical manufacturing of tungsten carbide these experiments serve the purpose for establish the influence of different cutting fluid characteristics on the cutting performance of mono crystal diamonds. Eventually it is shown that by adjusting the coolant fluid it is possible to significantly shift the transition point from ductile to brittle removal to larger depths of cut eventually enabling a SPDT of binderless tungsten carbide molds.
NASA Astrophysics Data System (ADS)
Sheppard, P. R.; Speakman, R. J.; Ridenour, G.; Glascock, M. D.; Farris, C.; Witten, M. L.
2005-12-01
This paper describes spatial patterns of airborne exposures of heavy metals in Fallon, Nevada, where a cluster of childhood leukemia has been on-going since 1997. Lichen chemistry, the measurement and interpretation of element concentrations in lichens, and surface sediment chemistry were used. Lichens were collected from within as well as from well outside of Fallon. Surface sediments were collected in a gridded spatial pattern, also within and outside of Fallon. Both the lichen and the surface sediment samples were measured chemically for a large suite of metals and other elements. Lichens indicate that Fallon itself has a high dual airborne exposure of tungsten and cobalt relative to sites well away from the town. Surface sediments samples also show high peaks of tungsten and cobalt within Fallon with nothing more than background contents away from the town. The tungsten and cobalt peaks coincide spatially with one another, with the highest values located right at a "hard-metal" facility that processes these metals. This present research confirms earlier research on total suspended particulates showing that Fallon is distinct in Nevada for its high dual exposure of airborne tungsten and cobalt and that the source of these two metals can be pinpointed to the hard-metal industry that exists just north of Highway 50 and west of Highway 95. While it is still not possible to conclude that high airborne exposure of tungsten and/or cobalt causes childhood leukemia, it can now be concluded beyond reasonable doubt that Fallon is unique environmentally due to its high airborne concentrations of tungsten and cobalt. Given that Fallon's cluster of childhood leukemia is the "most convincing cluster ever reported," it stands to reason that additional biomedical research should directly test the leukogenecity of combined airborne exposures of tungsten and cobalt.
Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J., E-mail: paul.keall@sydney.edu.au
2014-06-15
Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and <10 % of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic momentm was measured for eachmore » sample as a function of applied external field H{sub 0} and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clementson, Joel
2010-05-01
The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied inmore » high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W 55+ through Ne-like W 64+, and intershell transitions in Zn-like W 44+ through Co-like W 47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W 64+ through Li-like W 71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W 6+ could be useful for plasma diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Egbert, Jonathan D.; Chen, Shentan
2014-04-28
Treatment of trans-[W(N2)2(dppe)(PEtNMePEt)] (dppe = Ph2PCH2CH2PPh2; PEtNMePEt = Et2PCH2N(Me)CH2PEt2) with three equivalents of tetrafluoroboric acid (HBF4∙Et2O) at -78 °C generated the seven-coordinate tungsten hydride trans-[W(N2)2(H)(dppe)(PEtNMePEt)][BF4]. Depending on the temperature of the reaction, protonation of a pendant amine is also observed, affording trans-[W(N2)2(H)(dppe)(PEtNMe(H)PEt)][BF4]2, with formation of the hydrazido complex, [W(NNH2)(dppe)(PEtNMe(H)PEt)][BF4]2, as a minor product. Similar product mixtures were obtained using triflic acid (HOTf). Upon acid addition to the carbonyl analogue, cis-[W(CO)2(dppe)(PEtNMePEt)], the seven-coordinate carbonyl-hydride complex, trans-[W(CO)2(H)(dppe)(PEtN(H)MePEt)][OTf]2 was generated. The mixed diphosphine complex without the pendant amine in the ligand backbone, trans-[W(N2)2(dppe)(depp)] (depp = Et2P(CH2)3PEt2), was synthesized and treated with HBF4∙Et2O, selectivelymore » generating a hydrazido complex, [W(NNH2)(F)(dppe)(depp)][BF4]. Computational analysis was used to probe proton affinity of three sites of protonation, the metal, pendant amine, and N2 ligand in these complexes. Room temperature reactions with 100 equivalents of HOTf produced NH4+ from reduction of the N2 ligand (electrons come from W). The addition of 100 equivalents HOTf to trans-[W(N2)2(dppe)(PEtNMePEt)] afforded 0.88 ± 0.02 equivalents NH4+, while 0.36 ± 0.02 equivalents of NH4+was formed upon treatment of trans-[W(N2)2(dppe)(depp)], the complex without the pendant amine. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less
Monoanionic molybdenum and tungsten tris(dithiolene) complexes: a multifrequency EPR study.
Sproules, Stephen; Banerjee, Priyabrata; Weyhermüller, Thomas; Yan, Yong; Donahue, James P; Wieghardt, Karl
2011-08-01
Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: [M(S(2)C(2)R(2))(3)](z) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is [Mo(IV)((A)L(3)(5-•))](1-) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as [Mo(V)((B)L(3)(6-))](1-) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound [W(bdt)(3)](1-) exhibits spin-Hamiltonian parameters similar to those of [Mo(bdt)(3)](1-) and thus is formulated as [W(V)((B)L(3)(6-))](1-). The EPR spectra of [W((A)L(3))](1-) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {[W(IV)((A)L(3)(5-•))](1-) ↔ [W(V)((A)L(3)(6-))](1-)}. The contrast with the corresponding [Mo(IV)((A)L(3)(5-•))](1-) complexes highlights tungsten's preference for higher oxidation states. © 2011 American Chemical Society
40 CFR 421.315 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236 Tungsten 0.679 0... tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111... per million pounds) of tungsten produced Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600...
40 CFR 421.315 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236 Tungsten 0.679 0... tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111... per million pounds) of tungsten produced Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600...
40 CFR 421.315 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236 Tungsten 0.679 0... tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111... per million pounds) of tungsten produced Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600...
40 CFR 421.315 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236 Tungsten 0.679 0... tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111... per million pounds) of tungsten produced Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600...
40 CFR 421.315 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236 Tungsten 0.679 0... tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700 150.700 Cobalt 7.096 3.111... per million pounds) of tungsten produced Copper 6.583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600...
Initial Considerations of a Dust Dispenser for Injecting Tungsten Particles in Space
2014-09-26
INTRODUCTION We began to learn how to work with tungsten particles as fine as corn starch , which must be ejected as individual particles. Several designs...purchased a quantity of tungsten carbide spheres, with diameters in our desired range, because of their shape and improved resistance to oxidation... resistance . When ignoring air resistance the only force acting on the particle after it leaves the dispenser is gravity. The particle motion can be
NASA Technical Reports Server (NTRS)
Creagh, J. W. R.; Smith, J. R.
1973-01-01
Uranium carbide fueled, thermionic emitter configurations were encapsulated and irradiated. One capsule contained a specimen clad with fluoride derived chemically vapor deposited (CVD) tungsten. The other capsule used a duplex clad specimen consisting of chloride derived on floride derived CVD tungsten. Both fuel pins were 16 millimeters in diameter and contained a 45.7-millimeter length of fuel.
Proceedings of the Tri-Service Conference on Corrosion (1987)
1987-05-01
designated S1 and S2 exhibited preferential local attack. The corrosion in these alloys occur between tungsten particles where matrix alloy precipitated ...surrounded by a matrix alloy of Fe-Ni-W. The EDAX examination of the precipitated matrix alloy between the tungsten particles in sample K1 showed the...the precipitated matrix alloy between the tungsten particles . For alloy Sl, the corrosion was observed at preferential local sites. The SEM
2015-08-21
The Drakelands Mine (previously known as the Hemerdon Mine) is a historic tungsten and tin mine located northeast of Plymouth, England. Tin and tungsten deposits were discovered in 1867, and the mine operated until 1944. Last year work started to re-open the mine, as it hosts the fourth-largest tungsten and tin deposits in the world. Tungsten has innumerable uses due to its incredible density and high melting temperature. Yet more than 80% of world supply is controlled by China, who has imposed restriction on export of the metal. The image covers an area of 17 by 18.9 km, was acquired June 5, 2013, and is located at 50.4 degrees north, 4 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19757
Compatibility of buffered uranium carbides with tungsten.
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1971-01-01
Results of compatibility tests between tungsten and hyperstoichiometric uranium carbide alloys run at 1800 C for 1000 and 2500 hours. These tests compared tungsten-buffered uranium carbide with tungsten-buffered uranium-zirconium carbide. The zirconium carbide addition appeared to widen the homogeneity range of the uranium carbide, making additional carbon available for reaction. Reaction layers could be formed by either of two diffusion paths, one producing UWC2, while the second resulted in the formation of W2C. UWC2 acts as a diffusion barrier for carbon and slows the growth of the reaction layer with time, while carbon diffusion is relatively rapid in W2C, allowing equilibrium to be reached in less than 2500 hours at a temperature of 1800 C.
Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.
Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J
1996-06-01
The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.
Molybdenum chloride catalysts for Z-selective olefin metathesis reactions
NASA Astrophysics Data System (ADS)
Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.
2017-01-01
The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.
W-Incorporated CoMo/{lambda}-Al{sub 2}O{sub 3} hydrosulfurization catalyst. II. Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.K.; Lee, H.T.
1996-03-01
Series of W-incorporated CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts were characterized with TPR, DRS, ESR, and XPS. Two series of catalysts with varying content of tungsten were prepared for characterization by changing the impregnation order of cobalt and tungsten to a base Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. The activity promotion by relatively low content of tungsten arose from the roles of tungsten in changing the Mo-oxide coordination from tetrahedral to octahedral, facilitating the reduction of Mo-oxide species, and increasing the dispersion of MoS{sub 2}. By incorporation of tungsten at a content as much as 0.025 in W/(W + Mo) atomic ratio, the MoS{submore » 2} dispersion of CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst was considered to be maximized without noticeable detriment to the active Co-Mo-O phase, resulting in the maximum activity promotion. The formation of the Co-Mo-O phases was more favored in the catalysts prepared by impregnating W onto CoMo/{gamma}-Al{sub 2}O{sub 3} than in those by impregnating W onto Mo/{gamma}-Al{sub 2}O{sub 3} before impregnation of Co. The effect of tungsten on the dispersion of active phase was not discriminated between the two series of catalysts. The activity decrease observed in the catalysts containing higher content of tungsten originated from the increase in the W-oxide coverage on the surface of Mo-oxides or Co-Mo-O phases, resulting in not only impeding the reduction or sulfidation of the oxidic precursor but facilitating the formation of less active Co-W-O at the sacrifice of more active Co-Mo-O phase. 40 refs., 11 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško
2016-07-01
Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.
Micro-engineered first wall tungsten armor for high average power laser fusion energy systems
NASA Astrophysics Data System (ADS)
Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team
2005-12-01
The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential candidate FW armor materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236... per million pounds) of tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700....583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900 7.972...
Code of Federal Regulations, 2010 CFR
2010-07-01
... tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236... per million pounds) of tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700....583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900 7.972...
Code of Federal Regulations, 2013 CFR
2013-07-01
... tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236... per million pounds) of tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700....583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900 7.972...
Code of Federal Regulations, 2011 CFR
2011-07-01
... tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236... per million pounds) of tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700....583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900 7.972...
Code of Federal Regulations, 2014 CFR
2014-07-01
... tungsten scrap washed Copper 0.250 0.119 Nickel 0.107 0.072 Ammonia (as N) 25.990 11.430 Cobalt 0.538 0.236... per million pounds) of tungsten produced Copper 3.291 1.569 Nickel 1.414 0.951 Ammonia (as N) 342.700....583 3.137 Nickel 2.829 1.903 Ammonia (as N) 685.600 301.400 Cobalt 14.194 6.223 Tungsten 17.900 7.972...
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.
NASA Astrophysics Data System (ADS)
Morgan, T. W.; van den Berg, M. A.; De Temmerman, G.; Bardin, S.; Aussems, D. U. B.; Pitts, R. A.
2017-12-01
For the final design of the ITER divertor it is important to determine whether shaping of each tungsten monoblock to eliminate leading edges is required or not. In order to aid this decision, two experiments were performed in DIFFER’s linear plasma devices to study heat loads on misaligned water cooled blocks at glancing incidence. First, a series of tungsten blocks were exposed to a high parallel heat flux (26 MW \
Qualification of tungsten coatings on plasma-facing components for JET
NASA Astrophysics Data System (ADS)
Maier, H.; Neu, R.; Greuner, H.; Böswirth, B.; Balden, M.; Lindig, S.; Matthews, G. F.; Rasinski, M.; Wienhold, P.; Wiltner, A.
2009-12-01
This contribution summarizes the work that has been performed to establish the industrial production of tungsten coatings on carbon fibre composite (CFC) for application within the ITER-like Wall Project at JET. This comprises the investigation of vacuum plasma-sprayed coatings, physical vapour deposited tungsten/rhenium multilayers, as well as coatings deposited by combined magnetron-sputtering and ion implantation. A variety of analysis tools were applied to investigate failures and oxide and carbide formation in these systems.
Evaluation of Oxide Dispersion Strengthened (ODS) Molybdenum Alloys
1997-01-01
rrSÄSTSÄ approximately 3900° E. Tungsten , molybdenum, »’^^^eÄfon^^Ä^Setttese techniques-are excellent candidates tor <^*Jf?£L5*!s3J to form oxides. The...1% creep strain in 1,000 hours) of thoriated tungsten alloys was measured to be up to five times higher than commercially-pure tungsten . These alloys...temperature decomposable hydroxide or carbonate oxide compound are mixed, Reference (d). The resulting powder batch mixture is then cold isostatically
Determination of small amounts of molybdenum in tungsten and molybdenum ores
Grimaldi, F.S.; Wells, R.C.
1943-01-01
A rapid method has been developed for the determination of small amounts of molybdenum in tungsten and molybdenum ores. After removing iron and other major constituents the molybdenum thiocyanate color is developed in water-acetone solutions, using ammonium citrate to eliminate the interference of tungsten. Comparison is made by titrating a blank with a standard molybdenum solution. Aliquots are adjusted to deal with amounts of molybdenum ranging from 0.01 to 1.30 mg.
Tungsten Speciation in Firing Range Soils
2011-01-01
R. A. A. Suurs, O . Oenema , and W. H. van Riemsdijk. 2004. Phosphorus availability for plant uptake in a phosphorus enriched noncalcareous sandy soil...heteroatom (most commonly P5+, Si4+, or B3+), M is the addenda atom (most common are molybdenum and tungsten), and O represents oxygen. The structure self...coordination to four oxygen atoms. The EXAFS spectrum of tungstate is dominated by os- cillations attributed to tungsten-oxygen (W- O ) bonding (Fig. 4), and to
NASA Astrophysics Data System (ADS)
Kushkhov, Kh. B.; Adamokova, M. N.; Kvashin, V. A.; Kardanov, A. L.
2010-08-01
Single and cyclic voltammetry is used to study the electrode processes that occur during electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal in tungstate and tungstate-carbonate Na2WO4-Li2WO4-Li2CO3 (5.0-22.0 wt %) melts. The conditions of bringing the electroprecipitation potentials of tungsten, carbon, and an iron triad metal into coincidence are determined.
Powder Processing of Amorphous Tungsten-bearing Alloys and Composites
2015-03-01
8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-14-73 Powder Processing of Amorphous Tungsten...Technology, Boise State University, Army Research Laboratory Project Title: Powder Processing of Amorphous Tungsten-bearing Alloys and Composites...Our year 3 tasks, as laid out in the project proposal, were to 1) Consolidate amorphous or nanocrystalline powder blends 2) Mechanical testing
1993-09-01
in TIG weldments. The alloying elements used in ULCB steels are; Carbon (C), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Niobium (Nb), Chromium (Cr...process. 7 C. WELDING PROCESSES 1. Tungsten Inert Gas (TIG) Welding Tungsten Inert Gas (TIG) Welding (or Gas Tungsten Arc Welding ( GTAW )), produces... chromium (Cr), molybdenum (Mo), and sometimes vanadium (V). Reheat cracking occurs in the HAZ during postweld stress relieving, especially in thick
International strategic mineral issues summary report: tungsten
Werner, Antony B.T.; Sinclair, W. David; Amey, Earle B.
1998-01-01
In 1995, China and the former Soviet Union accounted for over three-fourths of the world's mine production of tungsten. China alone produced about two-thirds of world output. Given its vast resources, China will likely maintain its prominent role in world tungsten supply. By the year 2020, changes in supply patterns are likely to result from declining output from individual deposits in Australia, Austria, and Portugal and the opening of new mines in Canada, China, and the United Kingdom.
NASA Astrophysics Data System (ADS)
Ilyasov, Victor V.; Pham, Khang D.; Zhdanova, Tatiana P.; Phuc, Huynh V.; Hieu, Nguyen N.; Nguyen, Chuong V.
2017-12-01
In this paper, we systematically investigate the atomic structure, electronic and thermodynamic properties of adsorbed W atoms on the polar Ti-terminated TixCy (111) surface with different configurations of adsorptions using first principle calculations. The bond length, adsorption energy, and formation energy for different reconstructions of the atomic structure of the W/TixCy (111) systems were established. The effect of the tungsten coverage on the electronic structure and the adsorption mechanism of tungsten atom on the TixCy (111) are also investigated. We also suggest the possible mechanisms of W nucleation on the TixCy (111) surface. The effective charges on W atoms and nearest-neighbor atoms in the examined reconstructions were identified. Additionally, we have established the charge transfer from titanium atom to tungsten and carbon atoms which determine by the reconstruction of the local atomic and electronic structures. Our calculations showed that the charge transfer correlates with the electronegativity of tungsten and nearest-neighbor atoms. We also determined the effective charge per atom of titanium, carbon atoms, and neighboring adsorbed tungsten atom in different binding configurations. We found that, with reduction of the lattice symmetry associated with titanium and carbon vacancies, the adsorption energy increases by 1.2 times in the binding site A of W/TixCy systems.
Kiley, Erin M; Yakovlev, Vadim V; Ishizaki, Kotaro; Vaucher, Sebastien
2012-01-01
Microwave thermal processing of metal powders has recently been a topic of a substantial interest; however, experimental data on the physical properties of mixtures involving metal particles are often unavailable. In this paper, we perform a systematic analysis of classical and contemporary models of complex permittivity of mixtures and discuss the use of these models for determining effective permittivity of dielectric matrices with metal inclusions. Results from various mixture and core-shell mixture models are compared to experimental data for a titanium/stearic acid mixture and a boron nitride/graphite mixture (both obtained through the original measurements), and for a tungsten/Teflon mixture (from literature). We find that for certain experiments, the average error in determining the effective complex permittivity using Lichtenecker's, Maxwell Garnett's, Bruggeman's, Buchelnikov's, and Ignatenko's models is about 10%. This suggests that, for multiphysics computer models describing the processing of metal powder in the full temperature range, input data on effective complex permittivity obtained from direct measurement has, up to now, no substitute.
Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution
Meng, Fanke; Hu, Enyuan; Zhang, Lihua; ...
2015-08-05
We report a new class of highly active and stable tungsten-based catalysts to replace noble metal materials for the hydrogen evolution reaction (HER) in an acidic electrolyte. The catalyst is produced by heating an earth-abundant and low-cost mixture of ammonium tungstate, soybean powder and graphene nanoplatelets (WSoyGnP). The catalyst compound consists of tungsten carbide (W₂C and WC) and tungsten nitride (WN) nanoparticles decorated on graphene nanoplatelets. The catalyst demonstrates an overpotential (η₁₀, the potential at a current density of 10 mA cm⁻²) of 0.105 V, which is the smallest among tungsten-based HER catalysts in acidic media. The coupling with graphenemore » significantly reduces the charge transfer resistance and increases the active surface area of the product, which are favorable for enhancing the HER activity. Therefore, the approach of employing biomass and other less expensive materials as precursors for the production of catalysts with high HER activity provides a new path for the design and development of efficient catalysts for the hydrogen production industry.« less
Fabrication of W-Cu alloy via combustion synthesis infiltration under an ultra-gravity field
NASA Astrophysics Data System (ADS)
Song, Yuepeng; Li, Qian; Li, Jiangtao; He, Gang; Chen, Yixiang; Kim, Hyoung Seop
2014-11-01
Tungsten copper alloy with a tungsten concentrate of 70 vol% was prepared by self-propagating high-temperature synthesis in an ultra-gravity field. The phase structures and components of the W-Cu alloy fabricated via this approach were the same as those via traditional sintering methods. The temperature and stress distributions during this process were simulated using a new scheme of the finite element method. The results indicated that nonequilibrium crystallization conditions can be created for combustion synthesis infiltration in an ultra-gravity field by the rapid infiltration of the liquid copper product into the tungsten compact at high temperature and low viscosity. The cooling rate can be above 100,000 K/s and high stresses in tungsten ( 5 GPa) and copper ( 2.6 GPa) were developed, which passivates the tungsten particle surface, resulting in easy sintering and densifying the W-Cu alloy. The reliability of the simulation was verified through temperature measurement and investigation of the microstructure. The W-Cu composite-formation mechanism was also analyzed and discussed with the simulation results.
NASA Astrophysics Data System (ADS)
Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki
2016-02-01
The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.
The nature of thrombosis induced by platinum and tungsten coils in saccular aneurysms.
Byrne, J V; Hope, J K; Hubbard, N; Morris, J H
1997-01-01
To compare the efficacy and biocompatability of electrolytic and mechanically detachable embolization coils of two metal types. Experimental saccular aneurysms in pigs were used to assess embolization induced by platinum or tungsten coils. Longitudinal angiographic and histologic studies were performed on treated and untreated (control) aneurysms to compare thrombosis and cellular responses after embolization with electrolytically detachable platinum coils and with mechanically detached tungsten coils. Fewer tungsten than platinum coils were needed to induce thrombosis. The inflammatory response within the aneurysmal lumen was more florid in embolized aneurysms than in control aneurysms. No difference was found in the timing or extent of accumulation of eosinophils, lymphocytes, or polymorphs between the two coils used. Giant cell responses were more marked in treated aneurysms; tungsten coils more than platinum coils. The amount of collagen and fibrosis present increased over the study period and was similar in treated and control aneurysms. The coil type influenced the initial cellular response but had little effect on the rate or degree to which blood clot within the aneurysm was replaced by fibrous tissue.
Helium-induced hardening effect in polycrystalline tungsten
NASA Astrophysics Data System (ADS)
Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang
2017-09-01
In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.
Recent progress of tungsten R&D for fusion application in Japan
NASA Astrophysics Data System (ADS)
Ueda, Y.; Lee, H. T.; Ohno, N.; Kajita, S.; Kimura, A.; Kasada, R.; Nagasaka, T.; Hatano, Y.; Hasegawa, A.; Kurishita, H.; Oya, Y.
2011-12-01
The status of ongoing research projects of tungsten R&D in Japan is summarized in this paper. For tungsten material development, a new improved fabrication technique, the so-called superplasticity-based microstructural modification, is described. This technique successfully improved fracture strength and ductility at room temperature. Recent results on vacuum plasma spray W coating and W brazing on ferritic steels and vanadium alloys are explained. Feasibility of these techniques for the manufacture of the blanket is successfully demonstrated. The latest findings on the effect of neutron damage in tungsten on T retention and on the change in mechanical and electrical properties are described. Retention characteristics for neutron-damaged W were different compared to those for ion-damaged W. Upon neutron irradiation, tungsten alloys containing transmutation elements of W (Re and Os) show changes in properties that are different compared with those shown by pure W. The effects of mixed plasma exposure (D/He/C) are described. Both D/He and D/C mixed ion irradiations significantly affect ion-driven permeation in W. He bubble dynamics play a key role in nano-structure formation on the W surface.
An investigation of the normal momentum transfer for gases on tungsten
NASA Technical Reports Server (NTRS)
Moskal, E. J.
1971-01-01
The near monoenergetic beam of neutral helium and argon atoms impinged on a single crystal tungsten target, with the (100) face exposed to the beam. The target was mounted on a torsion balance. The rotation of this torsion balance was monitored by an optical lever, and this reading was converted to a measurement of the momentum exchange between the beam and the target. The tungsten target was flashed to a temperature in excess of 2000 C before every clean run, and the vacuum levels in the final chamber were typically between 0.5 and 1 ntorr. The momentum exchange for the helium-tungsten surface and the argon-tungsten surface combination was obtained over approximately a decade of incoming energy (for the argon gas) at angles of incidence of 0, 30, and 41 deg on both clean and dirty (gas covered) surfaces. The results exhibited a significant variation in momentum transfer between the data obtained for the clean and dirty surfaces. The values of normal momentum accommodation coefficient for the clean surface were found to be lower than the values previously reported.
Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations
NASA Technical Reports Server (NTRS)
Stecura, S.
1975-01-01
Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.
Element 74, the Wolfram Versus Tungsten Controversy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden,N.E.
Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed bymore » IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.« less
K-line spectra from tungsten heated by an intense pulsed electron beam.
Pereira, N R; Weber, B V; Apruzese, J P; Mosher, D; Schumer, J W; Seely, J F; Szabo, C I; Boyer, C N; Stephanakis, S J; Hudson, L T
2010-10-01
The plasma-filled rod-pinch diode (PFRP) is an intense source of x-rays ideal for radiography of dense objects. In the PRFP megavoltage electrons from a pulsed discharge concentrate at the pointed end of a 1 mm diameter tapered tungsten rod. Ionization of this plasma might increase the energy of tungsten's Kα(1) fluorescence line, at 59.3182 keV, enough for the difference to be observed by a high-resolution Cauchois transmission crystal spectrograph. When the PFRP's intense hard bremsstrahlung is suppressed by the proper shielding, such an instrument gives excellent fluorescence spectra, albeit with as yet insufficient resolution to see any effect of tungsten's ionization. Higher resolution is possible with various straightforward upgrades that are feasible thanks to the radiation's high intensity.
NASA Astrophysics Data System (ADS)
Ouaras, K.; Lombardi, G.; Hassouni, K.
2018-03-01
For the first time, we demonstrate that tungsten (W) nanoparticles (NPs) are created when a tungsten target is exposed to low-pressure, high density hydrogen plasma. The plasma was generated using a novel dual plasma system combining a microwave discharge and a pulsed direct-current (DC) discharge. The tungsten surface originates in the multi-generational formation of a significant population of 30-70 nm diameter particles when the W cathode is biased at ~ -1 kV and submitted to ~1020 m2 s-1 H+/H2+ /H3+ ions flux. The evidenced NPs formation should be taking into account as one of the consequence of the plasma surface interaction outcomes, especially for fusion applications.
Masi, Sofia; Mastria, Rosanna; Scarfiello, Riccardo; Carallo, Sonia; Nobile, Concetta; Gambino, Salvatore; Sibillano, Teresa; Giannini, Cinzia; Colella, Silvia; Listorti, Andrea; Cozzoli, P Davide; Rizzo, Aurora
2018-04-25
Thanks to their high stability, good optoelectronic and extraordinary electrochromic properties, tungsten oxides are among the most valuable yet underexploited materials for energy conversion applications. Herein, colloidal one-dimensional carved nanocrystals of reduced tungsten trioxide (WO3-x) are successfully integrated, for the first time, as a hole-transporting layer (HTL) into CH3NH3PbI3 perovskite solar cells with a planar inverted device architecture. Importantly, the use of such preformed nanocrystals guarantees the facile solution-cast-only deposition of a homogeneous WO3-x thin film at room temperature, allowing achievement of the highest power conversion efficiency ever reported for perovskite solar cells incorporating raw and un-doped tungsten oxide based HTL.
Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems
Tian, Yanpei; Zhang, Sinong; Cui, Yali; Zheng, Yi
2017-01-01
In this work, we theoretically analyze the performance characteristics of a near-field thermophotovoltaic system consisting a Mie-metamaterial emitter and GaSb-based photovoltaic cell at separations less than the thermal wavelength. The emitter consists of a tungsten nanoparticle-embedded thin film of SiO2 deposited on bulk tungsten. Numerical results presented here are obtained using formulae derived from dyadic Green’s function formalism and Maxwell-Garnett-Mie theory. We show that via the inclusion of tungsten nanoparticles, the thin layer of SiO2 acts like an effective medium that enhances selective radiative heat transfer for the photons above the band gap of GaSb. We analyze thermophotovoltaic (TPV) performance for various volume fractions of tungsten nanoparticles and thicknesses of SiO2. PMID:28773241
Crystal structure and phase stability of tungsten borides
NASA Astrophysics Data System (ADS)
Li, Quan; Zhou, Dan; Ma, Yanming; Chen, Changfeng
2013-03-01
We address the longstanding and controversial issue of ground-state structures of technically important tungsten borides using a first-principles structural search method via a particle-swarm optimization (PSO) algorithm. We have explored a large set of stable chemical compositions (convex hull) and clarified the ground-state structures for a wide range of boron concentrations, including W2B, W3B2,WB,W2B3, WB2,W2B5, WB3, and WB4. We further assessed relative stability of various tungsten borides and compared the calculated results with previously reported experimental data. The phase diagram predicted by the presented calculations may serve as a useful guide for synthesis of a variety of tungsten borides. This work was supported by DOE Grant No. DE-FC52-06NA26274.
Some observations on uranium carbide alloy/tungsten compatibility
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1972-01-01
Chemical compatibility between both pure and thoriated tungsten and uranium carbide alloys was studied at 1800 C for up to 3300 hours. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, dependent upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. The presence of a thermal gradient had no effect on the reactions observed nor did the presence of thoria in the tungsten clad.
1991-09-01
9H and tungsten silicides may also be present in the microstructure. The non-SiC eiemental concentrations for NC-203 would not be expected to exceed...lesser amounts of yttrium silicate and tungsten silicide . Trace amounts of a-Si 3N4 , silicon oxynitride, tungsten-iron- silicide , and yttrium silicon...SiC ESK On this sample, we detect Silicon, Carbon, and also Oxygen and Nitrogen, as well as Calcium and Sodium traces. After ionic etching up to about
Method of synthesizing tungsten nanoparticles
Thoma, Steven G; Anderson, Travis M
2013-02-12
A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.
1956-12-01
Decomposition of Tungsten Ores ......................................... 111-13 Purification of Tungsten Oxide...which followed in 1945 . THE POSTWAR PERIOD Readjustment ’൚-4-1" type of high-speed steel bymanu- facturers who had been using the Ś-6" The period 1946... 1945 ... 5,26’ 8,639 4,7,74 14, 16 2 4,341 23.17 first. 1Ś ... 4.42 b,s81 6,869 6,458 37 ),980 20.17 I94’... 2,945 9,W02 6,018 7,812 148 3. 23.43袄
ON THE SEPARATION OF VANADIUM, MOLYBDENUM AND TUNGSTEN BY MEANS OF PAPER CHROMATOGRAPHY. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzou, S.; Liang, S.
1959-02-01
Molybdenum, tangsten, and vanadium are separated by chromatography as per-acids, and then detected with tannin solution. Of the seven solvents tested, n-butanolhydrogen peroxide-nitric acid mixtures offer the best separations. With the addition of dioxane, the R/sub F/ values of these elements increase, while vanadium and tungsten spots overlap. The formation of per-acids avoids the retainment of tungsten on the original spot and the tailings of vanadium and molybdenum spots. (B.O.G.)
Corrosion of High-Density Sintered Tungsten Alloys. Part 2. Accelerated Corrosion Testing
1988-12-01
REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore I DTIC . *arit*fl...Commo,,wea°h 91 Avor,++.°_ DECEMBER 1988 012 rI DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORY REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED...TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore ABSTRACT As a consequence of corrosion during long-term storage in
NASA Technical Reports Server (NTRS)
1975-01-01
The development plans, analysis of required R and D and production resources, the costs of such resources, and finally, the potential profitability of a commercial space processing opportunity for containerless melting and resolidification of tungsten are discussed. The aim is to obtain a form of tungsten which, when fabricated into targets for X-ray tubes, provides at least, a 50 percent increase in service life.
NASA Astrophysics Data System (ADS)
Kushkhov, H. B.; Adamokova, M. N.; Kvashin, V. A.; Kardanov, A. L.
2011-04-01
Single and cyclic voltammetry is used to study the electrode processes that occur during electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal in tungstate and tungstate-carbonate Na2WO4-Li2WO4-Li2CO3 (5.0-22.0 wt %) melts. The conditions of bringing the electroprecipitation potentials of tungsten, carbon, and an iron triad metal into coincidence are determined.
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.
A model for predicting high-temperature fatigue failure of a W/Cu composite
NASA Technical Reports Server (NTRS)
Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.
1991-01-01
The material studied, a tungsten-fiber-reinforced, copper-matrix composite, is a candidate material for rocket nozzle liner applications. It was shown that at high temperatures, fatigue cracks initiate and propagate inside the copper matrix through a process of initiation, growth, and coalescence of grain boundary cavities. The ductile tungsten fibers neck and rupture locally after the surrounding matrix fails, and complete failure of the composite then ensues. A simple fatigue life prediction model is presented for the tungsten/copper composite system.
1990-10-01
phase systems such as tungsten; plastic flow of a minor low -temperature phase in a two phase non-interacting system such as tungsten- copper ; and...consolidation heat treatment. The de- the wetting of graphite by copper or during consolidation by this tech- tailed phase transformation evolution other...The driving potential for this solid state phase transformation is the free surface energy associated with the total powder particle surface area in the
Displacement energy of the surface layers of tungsten
NASA Astrophysics Data System (ADS)
Han, Longtao; Krstic, Predrag
2015-11-01
A molecular dynamics study with BOP potential is used to calculate the threshold displacement energy (ED) of primary knock-on atoms in the surface layers of the tungsten bcc crystal lattice at 300 K and at various crystallographic directions. Depending on the direction, ED is 10% to 75% smaller from the bulk value at the first layer, interfacing vacuum, while it reaches close to the bulk value already at the third tungsten layer. Supported by IACS of SBU and LDRD of PPPL.
High-flux plasma exposure of ultra-fine grain tungsten
Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; ...
2016-05-12
Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 10 22 m -2 s -1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of UFG tungsten as a plasma-facing material, although further experimental work is needed to assess material response to transient events and high plasma fluence.« less
Glandular radiation dose in tomosynthesis of the breast using tungsten targets.
Sechopoulos, Ioannis; D'Orsi, Carl J
2008-10-24
With the advent of new detector technology, digital tomosynthesis imaging of the breast has, in the past few years, become a technique intensely investigated as a replacement for planar mammography. As with all other x-ray-based imaging methods, radiation dose is of utmost concern in the development of this new imaging technology. For virtually all development and optimization studies, knowledge of the radiation dose involved in an imaging protocol is necessary. A previous study characterized the normalized glandular dose in tomosynthesis imaging and its variation with various breast and imaging system parameters. This characterization was performed with x-ray spectra generated by molybdenum and rhodium targets. In the recent past, many preliminary patient studies of tomosynthesis imaging have been reported in which the x-ray spectra were generated with x-ray tubes with tungsten targets. The differences in x-ray distribution among spectra from these target materials make the computation of new normalized glandular dose values for tungsten target spectra necessary. In this study we used previously obtained monochromatic normalized glandular dose results to obtain spectral results for twelve different tungsten target x-ray spectra. For each imaging condition, two separate values were computed: the normalized glandular dose for the zero degree projection angle (DgN0), and the ratio of the glandular dose for non-zero projection angles to the glandular dose for the zero degree projection (the relative glandular dose, RGD(alpha)). It was found that DgN0 is higher for tungsten target x-ray spectra when compared with DgN0 values for molybdenum and rhodium target spectra of both equivalent tube voltage and first half value layer. Therefore, the DgN0 for the twelve tungsten target x-ray spectra and different breast compositions and compressed breast thicknesses simulated are reported. The RGD(alpha) values for the tungsten spectra vary with the parameters studied in a similar manner to that found for the molybdenum and rhodium target spectra. The surface fit equations and the fit coefficients for RGD(alpha) included in the previous study were also found to be appropriate for the tungsten spectra.
NASA Astrophysics Data System (ADS)
Borges de Sousa, P.; Morrone, M.; Hovenga, N.; Garion, C.; van Weelderen, R.; Koettig, T.; Bremer, J.
2017-12-01
The High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) will increase the accelerator’s luminosity by a factor 10 beyond its original design value, giving rise to more collisions and generating an intense flow of debris. A new beam screen has been designed for the inner triplets that incorporates tungsten alloy blocks to shield the superconducting magnets and the 1.9 K superfluid helium bath from incoming radiation. These screens will operate between 60 K and 80 K and are designed to sustain a nominal head load of 15 Wm-1, over 10 times the nominal heat load for the original LHC design. Their overall new and more complex design requires them and their constituent parts to be characterised from a thermal performance standpoint. In this paper we describe the experimental parametric study carried out on two principal thermal components: a representative sample of the beam screen with a tungsten-based alloy block and thermal link and the supporting structure composed of an assembly of ceramic spheres and titanium springs. Results from both studies are shown and discussed regarding their impact on the baseline considerations for the thermal design of the beam screens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Paul G.; Seiter, Jennifer M.; Diaz, Alfredo
Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO 4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in themore » mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants.« less
Kürschner, M; Nielsen, K; von Langen, J R; Schenk, W A; Zimmermann, U; Sukhorukov, V L
2000-01-01
The effects of the anionic tungsten carbonyl complex [W(CO)(5)SC(6)H(5)](-) and its fluorinated analog [W(CO)(5)SC(6)F(5)](-) on the electrical properties of the plasma membrane of mouse myeloma cells were studied by the single-cell electrorotation technique. At micromolar concentrations, both compounds gave rise to an additional antifield peak in the rotational spectra of cells, indicating that the plasma membrane displayed a strong dielectric dispersion. This means that both tungsten derivatives act as lipophilic ions that are able to introduce large amounts of mobile charges into the plasma membrane. The analysis of the rotational spectra allowed the evaluation not only of the passive electric properties of the plasma membrane and cytoplasm, but also of the ion transport parameters, such as the surface concentration, partition coefficient, and translocation rate constant of the lipophilic anions dissolved in the plasma membrane. Comparison of the membrane transport parameters for the two anions showed that the fluorine-substituted analog was more lipophilic, but its translocation across the plasma membrane was slower by at least one order of magnitude than that of the parent hydrogenated anion. PMID:10969010
Allison, Paul G; Seiter, Jennifer M; Diaz, Alfredo; Lindsay, James H; Moser, Robert D; Tappero, Ryan V; Kennedy, Alan J
2016-01-01
Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in the mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study of the effects of gaseous environmental on the hot corrosion of superalloy materials
NASA Technical Reports Server (NTRS)
Smeggil, J. G.
1981-01-01
Studies have been conducted to examine the effect of low concentrations of NaCl(g) on the high temperature oxidation behavior of complex superalloys and potential coating formulations modified by silicon and reactive element (i.e., yttrium and hafnium) additions. Depending on alloy composition, a variety of effects were thermogravimetrically produced. Aluminum free alloys such as MAR-M509 and Hastelloy X with molybdenum and tungsten in solid solution showed accelerated (or breakaway) kinetics similar to that observed for Ni-Cr alloys. For IN-792, an alloy high in chromium and low in aluminum, molybdenum and tungsten present in solid solution does not adversely affect oxidation kinetics in the presence of NaCl(g). On the other hand, nickel-base alloys high in aluminum and molybdenum are catastrophically attacked by NaCl-bearing atmospheres. Silicon additions were, in general, observed to slightly improve the oxidation resistance of Ni, Ni-40Cr and CoCrAlY compositions in NaCl(g)-bearing atmospheres. To the degree that processes responsible for Al2O3 whisker formation deleteriously affect protective scale adherence, the addition of yttrium or hafnium can inhibit such whisker growth.
Tungsten oxide--fly ash oxide composites in adsorption and photocatalysis.
Visa, Maria; Bogatu, Cristina; Duta, Anca
2015-05-30
A novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite's crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology. The adsorption capacity and photocatalytic properties of the material were tested on mono- and multi-pollutants systems containing two dyes (Bemacid Blau - BB and Bemacid Rot - BR) and one heavy metal ion-Cu(2+), and the optimized process conditions were identified. The results indicate better removal efficiencies using the novel composite material in the combined adsorption and photocatalysis, as compared to the separated processes. Dyes removal was significantly enhanced in the photocatalytic process by adding hydrogen peroxide and the mechanism was presented and discussed. The pseudo second order kinetics model best fitted the experimental data, both in the adsorption and in the combined processes. The kinetic parameters were calculated and correlated with the properties of the composite substrate. Copyright © 2015 Elsevier B.V. All rights reserved.
Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior
NASA Astrophysics Data System (ADS)
Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.
2016-03-01
It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.
Design of the polar neutron-imaging aperture for use at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatherley, V. E., E-mail: vef@lanl.gov; Martinez, J. I.; Merrill, F. E.
2016-11-15
The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and themore » final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.« less
Molybdenum and tungsten nanostructures and methods for making and using same
Kotaro, Sasaki; Chen, Wei-Fu; Muckerman, James T; Adzic, Radoslav R
2015-01-06
The present invention provides molybdenum and tungsten nanostructures, for example, nanosheets and nanoparticles, and methods of making and using same, including using such nanostructures as catlysts for hydrogen evolution reactions.
NASA Technical Reports Server (NTRS)
Petrasek, D. W.
1974-01-01
An investigation was conducted to determine the effects of mechanical working on the 1093 C (2000 F) tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C (2000 F). The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C (2000 F). Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C (2000 F). The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C (2000 F) ultimate tensile strength of the composites.
Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh
2017-12-14
Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.
NASA Astrophysics Data System (ADS)
Hijazi, Hussein; Martin, C.; Roubin, P.; Addab, Y.; Cabie, C.; Pardanaud, C.; Bannister, M.; Meyer, F.
2017-10-01
Nanocrystalline tungsten oxide thin films (25 nm - 250 nm thickness) produced by thermal oxidation of a tungsten substrate were exposed to low energy D and He plasma. Low energy D plasma exposure (11 eV/D+) of these films have resulted in the formation of a tungsten bronze (DxWO3) clearly observed by Raman microscopy. D plasma bombardment (4 1021 m-2) has also induced a color change of the oxide layer which is similar to the well-known electro-chromic effect and has been named ``plasma-chromic effect''. To unravel physical and chemical origins of the modifications observed under exposure, similar tungsten oxide films were also exposed to low energy helium plasma (20 eV/He+) . Due to the low fluence (4 1021 m-2) and low ion energy (20 eV), at room temperature, He exposure has induced only very few morphological and structural modifications. On the contrary, at 673 K, significant erosion is observed, which gives evidence for an unexpected thermal enhancement of the erosion yield. We present here new results concerning He beam exposures at low fluence (4 1021 m-2) varying the He+ energy from 20 eV to 320 eV to measure the tungsten oxide sputtering threshold energy. Detailed analyses before/after exposure to describe the D and He interaction with the oxide layer, its erosion and structural modification at the atomic and micrometer scale will be presented.
Montealegre-Meléndez, Isabel; Arévalo, Cristina; Perez-Soriano, Eva M; Neubauer, Erich; Rubio-Escudero, Cristina; Kitzmantel, Michael
2017-02-08
In this work, a study of the influence of the starting materials and the processing time used to develop W/Cu alloys is carried out. Regarding powder metallurgy as a promising fabrication route, the difficulties in producing W/Cu alloys motivated us to investigate the influential factors on the final properties of the most industrially demanding alloys: 85-W/15-Cu, 80-W/20-Cu, and 75-W/25-Cu alloys. Two different tungsten powders with large variation among their particle size-fine (W f ) and coarse (W c ) powders-were used for the preparation of W/Cu alloys. Three weight ratios of fine and coarse (W f :W c ) tungsten particles were analyzed. These powders were labelled as "tungsten bimodal powders". The powder blends were consolidated by rapid sinter pressing (RSP) at 900 °C and 150 MPa, and were thus sintered and compacted simultaneously. The elemental powders and W/Cu alloys were studied by optical microscopy (OM) and scanning electron microscopy (SEM). Thermal conductivity, hardness, and densification were measured. Results showed that the synthesis of W/Cu using bimodal tungsten powders significantly affects the final alloy properties. The higher the tungsten content, the more noticeable the effect of the bimodal powder. The best bimodal W powder was the blend with 10 wt % of fine tungsten particles (10-W f :90-W c ). These specimens present good values of densification and hardness, and higher values of thermal conductivity than other bimodal mixtures.
Montealegre-Meléndez, Isabel; Arévalo, Cristina; Perez-Soriano, Eva M.; Neubauer, Erich; Rubio-Escudero, Cristina; Kitzmantel, Michael
2017-01-01
In this work, a study of the influence of the starting materials and the processing time used to develop W/Cu alloys is carried out. Regarding powder metallurgy as a promising fabrication route, the difficulties in producing W/Cu alloys motivated us to investigate the influential factors on the final properties of the most industrially demanding alloys: 85-W/15-Cu, 80-W/20-Cu, and 75-W/25-Cu alloys. Two different tungsten powders with large variation among their particle size—fine (Wf) and coarse (Wc) powders—were used for the preparation of W/Cu alloys. Three weight ratios of fine and coarse (Wf:Wc) tungsten particles were analyzed. These powders were labelled as “tungsten bimodal powders”. The powder blends were consolidated by rapid sinter pressing (RSP) at 900 °C and 150 MPa, and were thus sintered and compacted simultaneously. The elemental powders and W/Cu alloys were studied by optical microscopy (OM) and scanning electron microscopy (SEM). Thermal conductivity, hardness, and densification were measured. Results showed that the synthesis of W/Cu using bimodal tungsten powders significantly affects the final alloy properties. The higher the tungsten content, the more noticeable the effect of the bimodal powder. The best bimodal W powder was the blend with 10 wt % of fine tungsten particles (10-Wf:90-Wc). These specimens present good values of densification and hardness, and higher values of thermal conductivity than other bimodal mixtures. PMID:28772502
Ferraris, Federico; Conti, Alessandro
2014-01-01
The aim of this study is to investigate different instruments for finishing composite restorations, as well as examining different surfaces and interfaces of the same restoration. The null hypothesis is represented by the fact that there are no significant differences on roughness of composite restorations finishing between tungsten carbide and diamond burs, furthermore the null hypothesis is that there are no significant differences on roughness between finishing on composite surfaces (C), compositeenamel (CE) and composite-dentin (CD) interfaces. The study was performed on 28 teeth, and class V cavities were prepared on the extracted teeth. Restorations were done in Filtek XTE nanofilled composite (3M Espe) in a standardized method, to then be finished. A comparison was made in the phase 1 between tungsten carbide burs (16 blades), diamond burs (46 μm), with a similar shape by the same manufacturer (Komet). Each surface received 5 bur applications. Consequently, an analysis with a profilometer was performed. Phase 2 involved further confrontation of ulterior finishing with ultrafine tungsten carbide burs (30 blades) and with extra and ultrafine diamond burs (25 and 8 μm) (the same shape as previously mentioned). A second analysis was then performed with a profilometer. All measurements were taken on C surfaces, CE and CD interfaces. Statistical analyses were carried out with c2 test (a = 0.05). The finishing procedures with fine grit or toothing burs gave a better smoothness with tungsten carbide burs compared to diamond burs. While with the ultrafine grit no significant differences were noted between tungsten carbide and diamond burs on the CE and CD interfaces, the diamond bur left less superficial roughness on the C surfaces. With regards to the superficial roughness of the different areas of restoration, it can be concluded that: minor roughness was detected on C surfaces, while the CD interface had the most superficial roughness, regardless of whether the diamond burs or tungsten carbide burs were used. This study shows some statistical differences that could not be clinically perceivable. The clinical relevance could be resumed as follows: the fine tungsten carbide burs provided less roughness compared to a fine diamond bur. There were no differences between the ultrafine tungsten carbide and diamond burs. The less favourable interface to be finished is CD, compared to the CE interface and C surfaces.
The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten
NASA Astrophysics Data System (ADS)
Roszell, John Patrick Town
Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 eV) with the shallow penetration depth of low energy ions being the major factor in the reduction in retention. A change in retention mechanism was observed as tungsten temperature during irradiation was increased from 300 to 500 K. Modelling of deuterium retention in 300 and 500 K SCW specimens revealed that two traps, 1.0 and 1.3 eV, are involved in retention for irradiations performed at 300K while a single 2.1 eV trap is present for 500 K irradiations. Experiments suggest that the 2.1 eV trap is created during irradiation of tungsten at 500 K and this process also involves the annihilation of the 1.3 and 1.0 eV traps.
NASA Astrophysics Data System (ADS)
Chhina, H.; Campbell, S.; Kesler, O.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.
Electrospark doping of steel with tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru; Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com
2016-01-15
The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensionalmore » approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp
2016-02-01
The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystalmore » geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Brooks, J. N.; Elder, J. D.
2015-03-29
We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (~20 eV, ~4.5 × 10 19 m –3), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. Themore » tungsten surfaces are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (~75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. As a result, this study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.« less
Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; ...
2015-01-31
Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less
Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun
2018-01-01
Abstract Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. PMID:29707073
Wang, Shalong; Dou, Kang; Zou, Yousheng; Dong, Yuhang; Li, Jubin; Ju, Dan; Zeng, Haibo
2017-03-01
High-performance electrochromic films based on tungsten oxide hydrate ([WO 2 (O 2 )H 2 O]·1.66H 2 O) colloidal nanocrystals with fast switching speed were fabricated by laser ablation in a mixture of water and hydrogen peroxide followed by electrophoretic methods. Through electrophoretic deposition, the nanoparticles in the colloids synthesized by laser ablation aggregated onto the FTO coated glass substrate forming a lager cell with a uniform size of around 200nm, which subsequently self-assembled into a porous tungsten oxide hydrate film. By optimizing the electrophoretic time (800s) and voltage (-0.5V), the mesh-like porous tungsten oxide hydrate film achieved a wide optical modulation of 32% at 632nm, fast coloration and bleaching response speed of 7.8 s and 1.7s respectively due to the synergetic effect of the unique atomic structure of [WO 2 (O 2 )H 2 O]·1.66H 2 O and porous structure with large surface area that facilitates the ion insertion/extraction. Thus the tungsten oxide hydrate can be a promising electrochromic material for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Defect Control of the WC Hardmetal by Mixing Recycled WC Nano Powder and Tungsten Powder
NASA Astrophysics Data System (ADS)
Hur, Man Gyu; Shin, Mi Kyung; Kim, Deug Joong; Yoon, Dae Ho
2018-03-01
Tungsten metal powder was added to recycled WC nano powder to control the macro and micro defects of WC hardmetal. The macro and micro defects caused by the excess carbon in the recycled WC powder were markedly removed after the addition of tungsten metal powder ranging from 2 to 6 wt%. The density and hardness of the WC hardmetals also increased due to the removal of defects after adding the tungsten metal powder. The density and hardness of WC hardmetals with the addition of W metal powder ranged from 8 to 12 wt% increased linearly as the W metal powder content increased due to the formation of a new (Co- and W-rich WC) composition. The surface morphology of the WC hardmetals was observed via field emission scanning electron microscopy, and a quantitative elemental analysis was conducted via X-ray fluorescence spectrometry and energy dispersive X-ray analysis. The density and hardness of the WC hardmetals were respectively measured using an analytical balance and a Vikers hardness tester. The effect on the defects in the recycled WC hardmetals through the addition of the tungsten metal powder was discussed in detail.
SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan A. Webb; Indrajit Charit; Cory Sparks
Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with averagemore » respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.« less
Measurements of tungsten migration in the DIII-D divertor
NASA Astrophysics Data System (ADS)
Wampler, W. R.; Rudakov, D. L.; Watkins, J. G.; McLean, A. G.; Unterberg, E. A.; Stangeby, P. C.
2017-12-01
An experimental study of migration of tungsten in the DIII-D divertor is described, in which the outer strike point of L-mode plasmas was positioned on a toroidal ring of tungsten-coated metal inserts. Net deposition of tungsten on the divertor just outside the strike point was measured on graphite samples exposed to various plasma durations using the divertor materials evaluation system. Tungsten coverage, measured by Rutherford backscattering spectroscopy (RBS), was found to be low and nearly independent of both radius and exposure time closer to the strike point, whereas farther from the strike point the W coverage was much larger and increased with exposure time. Depth profiles from RBS show this was due to accumulation of thicker mixed-material deposits farther from the strike point where the plasma temperature is lower. These results are consistent with a low near-surface steady-state coverage on graphite undergoing net erosion, and continuing accumulation in regions of net deposition. This experiment provides data needed to validate, and further improve computational simulations of erosion and deposition of material on plasma-facing components and transport of impurities in magnetic fusion devices. Such simulations are underway and will be reported later.
Tan, Chaolin; Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun
2018-01-01
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm 3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV 0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
NASA Astrophysics Data System (ADS)
Jiang, Fan
2016-02-01
Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.
Extreme ultraviolet spectra of multiply charged tungsten ions
NASA Astrophysics Data System (ADS)
Mita, Momoe; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Nakamura, Nobuyuki
2017-11-01
We present extreme ultraviolet spectra of multiply charged tungsten ions observed with an electron beam ion trap. The observed spectra are compared with previous experimental results and theoretical spectra obtained with a collisional radiative model.
Refractory metals welded or brazed with tungsten inert gas equipment
NASA Technical Reports Server (NTRS)
Wisner, J. P.
1965-01-01
Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.
Tungsten: A Preliminary Environmental Risk Assessment
2011-05-01
Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes γ-Proteobacteria – includes a variety of microbes
2006-11-26
vapor species, formed over tungsten trioxide powder, is 1.25xl0Ŗ atm at 1400°C and 1 atm total pressure (assuming an oxygen partial pressure greater...with CO(g). ■19- These hollow tungsten fibers were then carburized via reaction with CO(g) to generate the polycrystalline WC-based fibers shown in...of tungsten carbide via reaction with a hafnium-copper melt," Ada Mater., 57(13), 3924-3931 (2009).) The kinetic mechanism of incongruent reduction
CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE
Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.
1962-09-01
A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)
Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining
2015-03-16
Titanium diboride TiC-Titanium carbide C-Carbon SiC - Silicon carbide B4C-Boron carbide 67 W-Tungsten WC-Tungsten carbide ZrB2-20ZrC-ZrB2...ceramics with a nominal carbide content of 20 vol% were prepared. Starting powders were mechanically mixed by ball milling ZrB2 (H.C. Starck; Grade B...0.50 wt%, or ~1.5 vol%. Milling was carried out in acetone for 2 hours using tungsten carbide media. After milling, the powder slurry was dried
Diffusion of hydrogen in a hydrogen-saturated tungsten
NASA Astrophysics Data System (ADS)
Krstic, Predrag; Kaganovich, Igor
2015-11-01
Hydrogen diffusion in monoscrystalline tungsten is studied by molecular dynamics with BOP potential in function of hydrogen concentration and temperature. Tungsten surface is prepared by cumulative irradiation of the 25 eV deuterium atoms at various fluences. The diffusion coefficients for T>500K and various D concentrations were calculated from the average slope of the mean square displacements of deuterium as functions of time. The accumulation of deuterium suppresses its diffusion at all temperatures. The results are in a reasonable agreement with the existing experiments. Supported by the LDRD of PPPL.
PROGRESS IN THE STUDY OF ION IRRADIATION IN TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Kruska, Karen; Henager, Charles H.
2017-02-27
The experimental study intends to generate data to validate the theoretical predictions on defect accumulation and recovery, as well as to investigate microstructural evolution and transmutant precipitation in mono- and poly-crystalline tungsten using ion implantation.
NASA Astrophysics Data System (ADS)
Sastry, D. Nagesa; Revanasiddappa, M.; Suresh, T.; Kiran, Y. T. Ravi; Raghavendra, S. C.
2018-05-01
This paper highlights the Electromagnetic Interference (EMI) Shielding Effectiveness and electromagnetic wave attenuation behavior of Polyaniline/Camphor Sulphonic Acid (PANI-CSA) - tungsten oxide (WO3) composites. Insitu polymerization of aniline monomer with camphor sulphonic acid (CSA) as a dopant was carried out in the presence of ammonium persulphate an oxidizing agent to synthesize PANI-CSA tungsten oxide composites (PANI/CSA-WO3) by chemical oxidation method. The composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt %) of tungsten oxide in PANI/CSA matrix. The EMI shielding measurements were carried out in the broad microwave spectrum covering the frequency range from 12 to 18 GHz (Ku-Band). The results show the influence of tungsten oxide in PANI/CSA over the EMI shielding Effectiveness. The composites have shown excellent microwave absorption behavior confirmed by the EMI Shielding Effectiveness values of the order of -15 to -16 dB.
Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350 °C
NASA Astrophysics Data System (ADS)
Alfonso, A.; Juul Jensen, D.; Luo, G.-N.; Pantleon, W.
2014-12-01
Pure tungsten is a potential candidate material for the plasma-facing first wall and the divertor of fusion reactors. Both parts have to withstand high temperatures during service. This will alter the microstructure of the material by recovery, recrystallization and grain growth and will cause degradation in material properties as a loss in mechanical strength and embrittlement. The thermal stability of a pure tungsten plate warm-rolled to 67% thickness reduction was investigated by long-term isothermal annealing in the temperature range between 1150 °C and 1350 °C up to 2200 h. Changes in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process indicate a sufficient thermal stability of the tungsten plate during operation below 1075 °C.
Recombination of open-f-shell tungsten ions
NASA Astrophysics Data System (ADS)
Krantz, C.; Badnell, N. R.; Müller, A.; Schippers, S.; Wolf, A.
2017-03-01
We review experimental and theoretical efforts aimed at a detailed understanding of the recombination of electrons with highly charged tungsten ions characterised by an open 4f sub-shell. Highly charged tungsten occurs as a plasma contaminant in ITER-like tokamak experiments, where it acts as an unwanted cooling agent. Modelling of the charge state populations in a plasma requires reliable thermal rate coefficients for charge-changing electron collisions. The electron recombination of medium-charged tungsten species with open 4f sub-shells is especially challenging to compute reliably. Storage-ring experiments have been conducted that yielded recombination rate coefficients at high energy resolution and well-understood systematics. Significant deviations compared to simplified, but prevalent, computational models have been found. A new class of ab initio numerical calculations has been developed that provides reliable predictions of the total plasma recombination rate coefficients for these ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman
The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less
Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman; ...
2018-02-13
The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less
Opacity of tungsten-seeded hydrogen to 2500 K and 115 atmospheres.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Partain, W. L.; Clement, J. P.
1971-01-01
Experimental investigation and measurement of the radiant heat attenuation of an aerosol which may serve as a gas core nuclear-rocket propellant. The experiment uses a tungsten-hydrogen aerosol heated to temperatures as high as 2500 K under pressures up to 115 atmospheres. The hydrogen aerosol is produced by dispersion of submicron-sized particles of tungsten in hydrogen gas. A narrow beam of broad spectrum (visible and ultraviolet) light is passed through it with the attenuation being measured as a function of wavelength. Other aerosol characteristics examined include the nature and extent of chemical reactions between the seed material and the hydrogen and the degree of dispersion of the seed material obtained before and after heating. Chemical equilibrium calculations and vapor pressure data for the refractory metals indicate that tungsten is a prime candidate for the seed material in the gas core nuclear rocket.
Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads
NASA Astrophysics Data System (ADS)
Pestchanyi, S.; Garkusha, I.; Makhlaj, V.; Landman, I.
2011-12-01
Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m-2 causing surface melting and of 0.45 MJ m-2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of NW~5×1018 W per medium size ELM of 0.75 MJ m-2 and 0.25 ms time duration has been estimated. The radiation cooling power of Prad=150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.
Research and development of plasma sprayed tungsten coating on graphite and copper substrates
NASA Astrophysics Data System (ADS)
Liu, Xiang; Zhang, Fu; Tao, Shunyan; Cao, Yunzhen; Xu, Zengyu; Liu, Yong; Noda, N.
2007-06-01
Vacuum plasma sprayed tungsten coating on graphite and copper substrates has been prepared. VPS-W coated graphite has multilayered silicon and tungsten interface pre-deposited by physical vapor deposition (PVD) and VPS-W coated copper has graded transition interlayer. VPS-W coating was characterized, and then the high heat flux properties of the coating were examined. Experimental results indicated that both VPS-W coated graphite and VPS-W coated copper could endure 1000 cycles without visible failure under a heat flux of approximately 5 MW/m2 absorbed power density and 5 s pulse duration. A comparison between the present VPS-W coated graphite and VPS-W coated carbon fiber composite (CX-2002U) with Re interface made by Plansee Aktiengesllshaft was carried out. Results show that both Re and Si are suitable as intermediate layer for tungsten coating on carbon substrates.
NASA Astrophysics Data System (ADS)
Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.
2003-06-01
Thermal behaviors of tungsten coating of 0.5 mm thick with multi-layers interface of tungsten (W) and rhenium (Re) coated on CFC (CX-2002U) substrate by vacuum plasma spraying (VPS) technique were examined by annealing with an electron beam thermal load facility between 1200 °C and 2000 °C. Change of the microstructure was observed and its chemical composition was analyzed by EDS after annealing. It was observed that remarkable recrystallization of VPS-W occurred above 1400 °C. The structure of the multi-layers of W and Re become obscure by the mutual diffusion of W, Re and C above 1600°C and finally disappeared after annealing at 2000 °C for one hour. Very hard tungsten carbides are formed at the interface above 1600 °C and they were broadening with increasing annealing temperature and time.
Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications
NASA Astrophysics Data System (ADS)
Tiron, Vasile; Velicu, Ioana-Laura; Porosnicu, Corneliu; Burducea, Ion; Dinca, Paul; Malinský, Petr
2017-09-01
In this work, tungsten nitride coatings with nitrogen content in the range of 19-50 at% were prepared by reactive multi-pulse high power impulse magnetron sputtering as a function of the argon and nitrogen mixture and further exposed to a deuterium plasma jet. The elemental composition, morphological properties and physical structure of the samples were investigated by Rutherford backscattering spectrometry, atomic force microscopy and X-ray diffraction. Deuterium implantation was performed using a deuterium plasma jet and its retention in nitrogen containing tungsten films was investigated using thermal desorption spectrometry. Deuterium retention and release behaviour strongly depend on the nitrogen content in the coatings and the films microstructure. All nitride coatings have a polycrystalline structure and retain a lower deuterium level than the pure tungsten sample. Nitrogen content in the films acts as a diffusion barrier for deuterium and leads to a higher desorption temperature, therefore to a higher binding energy.
A molecular dynamics study of helium bombardments on tungsten nanoparticles
NASA Astrophysics Data System (ADS)
Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun
2018-06-01
Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.
Sequential and simultaneous thermal and particle exposure of tungsten
NASA Astrophysics Data System (ADS)
Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M.
2016-02-01
The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481-6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification.
In-flight shortwave calibrations of the active cavity radiometers using tungsten lamps
NASA Technical Reports Server (NTRS)
Thomas, Susan; Lee, Robert B.; Gibson, Michael A.; Wilson, Robert S.; Bolden, William C.
1992-01-01
The Earth Radiation Budget Experiment (ERBE) active cavity radiometers are used to measure the incoming solar, reflected shortwave solar, and emitted longwave radiations from the Earth and atmosphere. The radiometers are located on the NASA's Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 spacecraft platforms. Two of the radiometers, one wide field of view (WFOV) and one medium field of view (MFOV), measure the total radiation in the spectral region of 0.2 to 50 microns and the other two radiometers (WFOV and MFOV) measure the shortwave radiation in the spectral region of 0.2 to 5.0 microns. For the in-flight calibrations, tungsten lamp and the sun are used as calibration sources for shortwave radiometers. Descriptions of the tungsten lamp and solar calibration procedures and mechanisms are presented. The tungsten lamp calibration measurements are compared with the measurements of solar calibration for ERBS and NOAA-9 instruments.