NASA Technical Reports Server (NTRS)
Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.
1986-01-01
About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.
NASA Technical Reports Server (NTRS)
Chan, Y. Y.; Nishimura, Y.; Mineck, R. E.
1989-01-01
Results are reported from a NAE/NRC and NASA cooperative program on two-dimensional wind-tunnel wall-interference research, aimed at developing the technology for correcting or eliminating wall interference effects in two-dimensional transonic wind-tunnel investigations. Both NASA Langley and NAE facilities are described, along with a NASA-designed and fabricated airfoil model. It is shown that data from the NAE facility, corrected for wall interference, agree with those obtained from the NASA tunnel, which has adaptive walls; the comparison of surface pressure data shows that the flowfield conditions in which the model is investigated appear to be nearly identical under most conditions. It is concluded that both approaches, posttest correction and an adaptive wall, adequately eliminate the tunnel-wall interference effects.
Description and evaluation of an interference assessment for a slotted-wall wind tunnel
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1991-01-01
A wind-tunnel interference assessment method applicable to test sections with discrete finite-length wall slots is described. The method is based on high order panel method technology and uses mixed boundary conditions to satisfy both the tunnel geometry and wall pressure distributions measured in the slotted-wall region. Both the test model and its sting support system are represented by distributed singularities. The method yields interference corrections to the model test data as well as surveys through the interference field at arbitrary locations. These results include the equivalent of tunnel Mach calibration, longitudinal pressure gradient, tunnel flow angularity, wall interference, and an inviscid form of sting interference. Alternative results which omit the direct contribution of the sting are also produced. The method was applied to the National Transonic Facility at NASA Langley Research Center for both tunnel calibration tests and tests of two models of subsonic transport configurations.
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
Wall Interference in Two-Dimensional Wind Tunnels
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1986-01-01
Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.
NASA Technical Reports Server (NTRS)
Binion, T. W., Jr.
1975-01-01
Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.
Wind Tunnel Wall Interference Assessment and Correction, 1983
NASA Technical Reports Server (NTRS)
Newman, P. A. (Editor); Barnwell, R. W. (Editor)
1984-01-01
Technical information focused upon emerging wall interference assessment/correction (WIAC) techniques applicable to transonic wind tunnels with conventional and passively or partially adapted walls is given. The possibility of improving the assessment and correction of data taken in conventional transonic wind tunnels by utilizing simultaneously obtained flow field data (generally taken near the walls) appears to offer a larger, nearer-term payoff than the fully adaptive wall concept. Development of WIAC procedures continues, and aspects related to validating the concept need to be addressed. Thus, the scope of wall interference topics discussed was somewhat limited.
NASA Technical Reports Server (NTRS)
Stanewsky, E.; Freimuth, P.
1989-01-01
A comparison of results from conventional and adaptive wall wind tunnels with regard to Reynolds number effects was carried out. The special objective of this comparison was to confirm or reject earlier conclusions, soley based on conventional wind tunnel results, concerning the influence of viscous effects on the characteristics of partially open wind tunnel walls, hence wall interference. The following postulations could be confirmed: (1) certain classes of supercritical airfoils exhibit a non-linear increase in lift which is, at least in part, related to viscous-inviscid interactions on the airfoil. This non-linear lift characteristic can erroneously be suppressed by sidewall interference effects in addition to being affected by changes in Reynolds number. Adaptive walls seem to relieve the influence of sidewall interference; (2) the degree of (horizontal) wall interference effects can be significantly affected by changes in Reynolds number, thus appearing as true Reynolds number effects; (3) perforated wall characteristics seem much more susceptible to viscous changes than the characteristics of slotted walls; here, blockage interference may be most severely influenced by viscous changes; and (4) real Reynolds number effects are present on the CAST 10-2/DOA 2 airfoil; they were shown to be appreciable also by the adaptive wall wind tunnel tests.
Wind tunnel wall interference (January 1980 - May 1988): A selected, annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, Marie H.; Cole, Karen L.
1988-01-01
This selected bibliography lists 423 entries on the subject of wall interference during testing in wind tunnels. It is the third in a series of bibliographies on the subject. The first, NASA TM-87639, August 1986, is concerned with the reduction of wall interference by the use of adaptive walls. The second, NASA TP-89066, December 1986, is on wall interference in V/STOL and high lift testing. This, the third in the series, covers the wall interference literature published during the period January 1980 through May 1988, generally excluding those topics covered in the first two parts.
NASA Technical Reports Server (NTRS)
Rebstock, Rainer; Lee, Edwin E., Jr.
1989-01-01
An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.
A wall interference assessment/correction system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Ulbrich, N.; Sickles, W. L.; Qian, Cathy X.
1992-01-01
A Wall Signature method, the Hackett method, has been selected to be adapted for the 12-ft Wind Tunnel wall interference assessment/correction (WIAC) system in the present phase. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating wall interferences at the model location. The Wall Signature method will be formulated for application to the unique geometry of the 12-ft Tunnel. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method-Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected parameters with those for the free-air simulation. Each set of wind tunnel/test article numerical simulations provides data to validate the WIAC method. A numerical wind tunnel test simulation is initiated to validate the WIAC methods developed in the project. In the present reported period, the blockage correction has been developed and implemented for a rectangular tunnel as well as the 12-ft Pressure Tunnel. An improved wall interference assessment and correction method for three-dimensional wind tunnel testing is presented in the appendix.
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Newman, Perry A.
1991-01-01
A nonlinear, four wall, post-test wall interference assessment/correction (WIAC) code was developed for transonic airfoil data from solid wall wind tunnels with flexibly adaptable top and bottom walls. The WIAC code was applied over a broad range of test conditions to four sets of NACA 0012 airfoil data, from two different adaptive wall wind tunnels. The data include many test points for fully adapted walls, as well as numerous partially adapted and unadapted test points, which together represent many different model/tunnel configurations and possible wall interference effects. Small corrections to the measured Mach numbers and angles of attack were obtained from the WIAC code even for fully adapted data; these corrections generally improve the correlation among the various sets of airfoil data and simultaneously improve the correlation of the data with calculations for a 2-D, free air, Navier-Stokes code. The WIAC corrections for airfoil data taken in fully adapted wall test sections are shown to be significantly smaller than those for comparable airfoil data from straight, slotted wall test sections. This indicates, as expected, a lesser degree of wall interference in the adapted wall tunnels relative to the slotted wall tunnels. Application of the WIAC code to this data was, however, somewhat more difficult and time consuming than initially expected from similar previous experience with WIAC applications to slotted wall data.
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Green, Lawrence L.; Newman, Perry A.
1989-01-01
From the time that wind tunnel wall interference was recognized to be significant, researchers have been developing methods to alleviate or account for it. Despite the best effort so far, it appears that no method is available which completely eliminates the effects due to the wind tunnel walls. This report discusses procedures developed for slotted wall and adaptive wall test sections of the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) to assess and correct for the residual interference by methods consistent with the transonic nature of the tests.
The self streamlining wind tunnel. [wind tunnel walls
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1975-01-01
A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.
Wind tunnels with adapted walls for reducing wall interference
NASA Technical Reports Server (NTRS)
Ganzer, U.
1979-01-01
The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.
The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
1998-01-01
An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.
Comparison of airfoil results from an adaptive wall test section and a porous wall test section
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1989-01-01
Two wind tunnel investigations were conducted to assess two different wall interference alleviation/correction techniques: adaptive test section walls and classical analytical corrections. The same airfoil model has been tested in the adaptive wall test section of the NASA-Langley 0.3 m Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment (NAE) High Reynolds Number 2-D facility. The model has a 9 in. chord and a CAST 10-2/DOA 2 airfoil section. The 0.3 m TCT adaptive wall test section has four solid walls with flexible top and bottom walls. The NAE test section has porous top and bottom walls and solid side walls. The aerodynamic results corrected for top and bottom wall interference at Mach numbers from 0.3 to 0.8 at a Reynolds number of 10 by 1,000,000. Movement of the adaptive walls was used to alleviate the top and bottom wall interference in the test results from the NASA tunnel.
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1988-01-01
The first documented wind tunnel employing a flexible walled test section for the purpose of eliminating wall interference was constructed in England by the National Physical Laboratory (NPL) during the late 1930's. The tunnel was transonic and designed for two-dimensional testing. In an attempt to eliminate the top and bottom wall interference effects on the model NPL developed a strategy to adjust two flexible walls to streamlined shapes. This report covers an evaluation of the NPL wall adjustment strategy in a modern wind tunnel, e.g., the Transonic Self-Streamlining Wind Tunnel (TSWT) at the University of Southampton, England. The evaluation took the form of performance comparisons with other modern strategies which have been developed for use in, and proven in, the TSWT.
1979-02-01
tests were conducted on two geometrica lly similar models of each of two aerofoil sections -—t he NA CA 00/ 2 and the BGK- 1 sections -and covered a...and slotted-wall tes t sections are corrected for wind tunnel wall interference efJ~cts by the application of classical linearized theory. For the...solid wall results , these corrections appear to produce data which are very close to being free of the effects of interference. In the case of
NASA Technical Reports Server (NTRS)
Sawada, H.; Sakakibara, S.; Sato, M.; Kanda, H.; Karasawa, T.
1984-01-01
A quantitative evaluation method of the suction effect from a suction plate on side walls is explained. It is found from wind tunnel tests that the wall interference is basically described by the summation form of wall interferences in the case of two dimensional flow and the interference of side walls.
TWINTN4: A program for transonic four-wall interference assessment in two-dimensional wind tunnels
NASA Technical Reports Server (NTRS)
Kemp, W. B., Jr.
1984-01-01
A method for assessing the wall interference in transonic two-dimensional wind tunnel tests including the effects of the tunnel sidewall boundary layer was developed and implemented in a computer program named TWINTN4. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the equivalent free air flow around the model, and the perturbation attributable to the model. Required input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall-induced perturbation field is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.
TWINTAN: A program for transonic wall interference assessment in two-dimensional wind tunnels
NASA Technical Reports Server (NTRS)
Kemp, W. B., Jr.
1980-01-01
A method for assessing the wall interference in transonic two dimensional wind tunnel test was developed and implemented in a computer program. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the perturbation attriburable to the model, and the equivalent free air flow around the model. Input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall induced perturbation fields is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.
A transonic wind tunnel wall interference prediction code
NASA Technical Reports Server (NTRS)
Phillips, Pamela S.; Waggoner, Edgar G.
1988-01-01
A small disturbance transonic wall interference prediction code has been developed that is capable of modeling solid, open, perforated, and slotted walls as well as slotted and solid walls with viscous effects. This code was developed by modifying the outer boundary conditions of an existing aerodynamic wing-body-pod-pylon-winglet analysis code. The boundary conditions are presented in the form of equations which simulate the flow at the wall, as well as finite difference approximations to the equations. Comparisons are presented at transonic flow conditions between computational results and experimental data for a wing alone in a solid wall wind tunnel and wing-body configurations in both slotted and solid wind tunnels.
Experiments in a three-dimensional adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Schairer, E. T.
1983-01-01
Three dimensional adaptive-wall experiments were performed in the Ames Research Center (ARC) 25- by 13-cm indraft wind tunnel. A semispan wing model was mounted to one sidewall of a test section with solid sidewalls, and slotted top and bottom walls. The test section had separate top and bottom plenums which were divided into streamwise and cross-stream compartments. An iterative procedure was demonstrated for measuring wall interference and for adjusting the plenum compartment pressures to eliminate such interference. The experiments were conducted at a freestream Mach number of 0.60 and model angles of attack between 0 and 6 deg. Although in all the experiments wall interference was reduced after the plenum pressures were adjusted, interference could not be completely eliminated.
Wind tunnel wall interference in V/STOL and high lift testing: A selected, annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Mineck, R. E.; Cole, K. L.
1986-01-01
This bibliography, with abstracts, consists of 260 citations of interest to persons involved in correcting aerodynamic data, from high lift or V/STOL type configurations, for the interference arising from the wind tunnel test section walls. It provides references which may be useful in correcting high lift data from wind tunnel to free air conditions. References are included which deal with the simulation of ground effect, since it could be viewed as having interference from three tunnel walls. The references could be used to design tests from the standpoint of model size and ground effect simulation, or to determine the available testing envelope with consideration of the problem of flow breakdown. The arrangement of the citations is chronological by date of publication in the case of reports or books, and by date of presentation in the case of papers. Included are some documents of historical interest in the development of high lift testing techniques and wall interference correction methods. Subject, corporate source, and author indices, by citation numbers, have been provided to assist the users. The appendix includes citations of some books and documents which may not deal directly with high lift or V/STOL wall interference, but include additional information which may be helpful.
Residual interference and wind tunnel wall adaption
NASA Technical Reports Server (NTRS)
Mokry, Miroslav
1989-01-01
Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.
Methods for assessing wall interference in the 2- by 2-foot adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Schairer, E. T.
1986-01-01
Discussed are two methods for assessing two-dimensional wall interference in the adaptive-wall test section of the NASA Ames 2 x 2-Foot Transonic Wind Tunnel: (1) a method for predicting free-air conditions near the walls of the test section (adaptive-wall methods); and (2) a method for estimating wall-induced velocities near the model (correction methods), both of which methods are based on measurements of either one or two components of flow velocity near the walls of the test section. Each method is demonstrated using simulated wind tunnel data and is compared with other methods of the same type. The two-component adaptive-wall and correction methods were found to be preferable to the corresponding one-component methods because: (1) they are more sensitive to, and give a more complete description of, wall interference; (2) they require measurements at fewer locations; (3) they can be used to establish free-stream conditions; and (4) they are independent of a description of the model and constants of integration.
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1990-01-01
Guidelines are presented for use of the computer program PANCOR to assess the interference due to tunnel walls and model support in a slotted wind tunnel test section at subsonic speeds. Input data requirements are described in detail and program output and general program usage are described. The program is written for effective automatic vectorization on a CDC CYBER 200 class vector processing system.
NASA Technical Reports Server (NTRS)
Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin
1989-01-01
The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.
The effect of wind tunnel wall interference on the performance of a fan-in-wing VTOL model
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1974-01-01
A fan-in-wing model with a 1.07-meter span was tested in seven different test sections with cross-sectional areas ranging from 2.2 sq meters to 265 sq meters. The data from the different test sections are compared both with and without correction for wall interference. The results demonstrate that extreme care must be used in interpreting uncorrected VTOL data since the wall interference may be so large as to invalidate even trends in the data. The wall interference is particularly large at the tail, a result which is in agreement with recently published comparisons of flight and large scale wind tunnel data for a propeller-driven deflected-slipstream configuration. The data verify the wall-interference theory even under conditions of extreme interference. A method yields reasonable estimates for the onset of Rae's minimum-speed limit. The rules for choosing model sizes to produce negligible wall effects are considerably in error and permit the use of excessively large models.
A wall interference assessment/correction system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Overby, Glenn; Qian, Cathy X.; Sickles, W. L.; Ulbrich, N.
1992-01-01
A Wall Signature method originally developed by Hackett has been selected to be adapted for the Ames 12-ft Wind Tunnel WIAC system in the project. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating blockage wall interference. The lifting interference will be treated separately by representing in a horseshoe vortex system for the model's lifting effects. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method--Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected data with those of the free-air simulation.
Advanced experimental techniques for transonic wind tunnels - Final lecture
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.
1987-01-01
A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.
NASA Technical Reports Server (NTRS)
Matthews, Clarence W
1955-01-01
The equations presented in this report give the interference on the trailing-vortex system of a uniformly loaded finite-span wing in a circular tunnel containing partly open and partly closed walls, with special reference to symmetrical arrangements of the open and closed portions. Methods are given for extending the equations to include tunnel shapes other than circular. The rectangular tunnel is used to demonstrate these methods. The equations are also extended to nonuniformly loaded wings.
NASA Technical Reports Server (NTRS)
Amecke, Juergen
1986-01-01
A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.
NACA Transonic Wind-tunnel Test Sections
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ward, Vernon G
1955-01-01
Report presents an approximate subsonic theory for the solid-blockage interference in circular wind tunnels with walls slotted in the direction of flow. This theory indicated the possibility of obtaining zero blockage interference. Tests in a circular slotted tunnel based on the theory confirmed the theoretical predictions.
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Boone, Alan R.
2003-01-01
Data from the test of a large semispan model was used to perform a direct validation of a wall interference correction system for a transonic slotted wall wind tunnel. At first, different sets of uncorrected aerodynamic coefficients were generated by physically changing the boundary condition of the test section walls. Then, wall interference corrections were computed and applied to all data points. Finally, an interpolation of the corrected aerodynamic coefficients was performed. This interpolation made sure that the corrected Mach number of a given run would be constant. Overall, the agreement between corresponding interpolated lift, drag, and pitching moment coefficient sets was very good. Buoyancy corrections were also investigated. These studies showed that the accuracy goal of one drag count may only be achieved if reliable estimates of the wall interference induced buoyancy correction are available during a test.
Sensitivity Study of the Wall Interference Correction System (WICS) for Rectangular Tunnels
NASA Technical Reports Server (NTRS)
Walker, Eric L.; Everhart, Joel L.; Iyer, Venkit
2001-01-01
An off-line version of the Wall Interference Correction System (WICS) has been implemented for the NASA Langley National Transonic Facility. The correction capability is currently restricted to corrections for solid wall interference in the model pitch plane for Mach numbers less than 0.45 due to a limitation in tunnel calibration data. A study to assess output sensitivity to measurement uncertainty was conducted to determine standard operational procedures and guidelines to ensure data quality during the testing process. Changes to the current facility setup and design recommendations for installing the WICS code into a new facility are reported.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Ray, Edward J.
1988-01-01
The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere.
Slotted-wall research with disk and parachute models in a low-speed wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Buffington, R.J.; Henfling, J.L.
1990-01-01
An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.
An evaluation of three experimental processes for two-dimensional transonic tests
NASA Technical Reports Server (NTRS)
Zuppardi, Gennaro
1989-01-01
The aerodynamic measurements in conventional wind tunnels usually suffer from the interference effects of the sting supporting the model and the test section walls. These effects are particularly severe in the transonic regime. Sting interference effects can be overcome through the Magnetic Suspension technique. Wall effects can be alleviated by: testing airfoils in conventional, ventilated tunnels at relatively small model to tunnel size ratios; treatment of the tunnel wall boundary layers; or by utilization of the Adaptive Wall Test Section (AWTS) concept. The operating capabilities and results from two of the foremost two-dimensional, transonic, AWTS facilities in existence are assessed. These facilities are the NASA 0.3-Meter Transonic Cryogenic Tunnel and the ONERA T-2 facility located in Toulouse, France. In addition, the results derived from the well known conventional facility, the NAE 5 ft x 5 ft Canadian wind tunnel will be assessed. CAST10/D0A2 Airfoil results will be used in all of the evaluations.
Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel
NASA Technical Reports Server (NTRS)
Coder, D. W.
1984-01-01
Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.
The Wall Interference of a Wind Tunnel of Elliptic Cross Section
NASA Technical Reports Server (NTRS)
Tani, Itiro; Sanuki, Matao
1944-01-01
The wall interference is obtained for a wind tunnel of elliptic section for the two cases of closed and open working sections. The approximate and exact methods used gave results in practically good agreement. Corresponding to the result given by Glauert for the case of the closed rectangular section, the interference is found to be a minimum for a ratio of minor to major axis of 1:square root of 6 This, however, is true only for the case where the span of the airfoil is small in comparison with the width of the tunnel. For a longer airfoil the favorable ellipse is flatter. In the case of the open working section the circular shape gives the minimum interference.
NASA Technical Reports Server (NTRS)
Burley, Richard R.; Harrington, Douglas E.
1987-01-01
An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.
Emerging technology for transonic wind-tunnel-wall interference assessment and corrections
NASA Technical Reports Server (NTRS)
Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.
1988-01-01
Several nonlinear transonic codes and a panel method code for wind tunnel/wall interference assessment and correction (WIAC) studies are reviewed. Contrasts between two- and three-dimensional transonic testing factors which affect WIAC procedures are illustrated with airfoil data from the NASA/Langley 0.3-meter transonic cyrogenic tunnel and Pathfinder I data. Also, three-dimensional transonic WIAC results for Mach number and angle-of-attack corrections to data from a relatively large 20 deg swept semispan wing in the solid wall NASA/Ames high Reynolds number Channel I are verified by three-dimensional thin-layer Navier-Stokes free-air solutions.
National Transonic Facility Wall Pressure Calibration Using Modern Design of Experiments (Invited)
NASA Technical Reports Server (NTRS)
Underwood, Pamela J.; Everhart, Joel L.; DeLoach, Richard
2001-01-01
The Modern Design of Experiments (MDOE) has been applied to wind tunnel testing at NASA Langley Research Center for several years. At Langley, MDOE has proven to be a useful and robust approach to aerodynamic testing that yields significant reductions in the cost and duration of experiments while still providing for the highest quality research results. This paper extends its application to include empty tunnel wall pressure calibrations. These calibrations are performed in support of wall interference corrections. This paper will present the experimental objectives, and the theoretical design process. To validate the tunnel-empty-calibration experiment design, preliminary response surface models calculated from previously acquired data are also presented. Finally, lessons learned and future wall interference applications of MDOE are discussed.
Adaptive wall technology for minimization of wall interferences in transonic wind tunnels
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1988-01-01
Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.
A wall interference assessment/correction interface measurement system for the NASA/ARC 12-ft PWT
NASA Technical Reports Server (NTRS)
1989-01-01
Development of complex air vehicle configurations is placing increasing demands on wind tunnel testing capabilities. A major area of concern is wall induced interference. Recent developments in wall interference technology provide a means for assessing and correcting for the wall induced interference using information contained in the distribution of flow variables measured at, or near, the wall. The restoration of the NASA-ARC 12-ft pressure wind tunnel (PWT) provides an opportunity to incorporate a measurement system with which wall interference assessment/correction (WIAC) technology can be applied. In this first phase of the development of a WIAC system for the PWT, the design criteria for the placement and the geometry of wall static pressure orifices were determined with a three step approach. First, the operational environment of the PWT was analyzed as to the requirements for the WIAC system. Second, appropriate wall interference theories were evaluated against the requirements determined from the operational environment. Third, the flow about representative models in the PWT was calculated and, specifically, the pressure signatures at the location of the test section wall were obtained. The number of discrete pressure measurements and their locations were determined by curve fitting the pressure distribution through the discrete measurements and evaluating the resulting error.
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1983-01-01
The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.
Residual interference assessment in adaptive wall wind tunnels
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1989-01-01
A two-variable method is presented which is suitable for on-line calculation of residual interference in airfoil testing in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-M TCT). The method applies the Cauchy's integral formula to the closed contour formed by the contoured top and bottom walls, and the upstream and downstream ends. The measured top and bottom wall pressures and position are used to calculate the correction to the test Mach number and the airfoil angle of attack. Application to specific data obtained in the 0.3-M TCT adaptive wall test section demonstrates the need to assess residual interference to ensure that the desired level of wall streamlining is achieved. A FORTRAN computer program was developed for on-line calculation of the residual corrections during airfoil tests in the 0.3-M TCT.
NASA Technical Reports Server (NTRS)
Joppa, R. G.
1973-01-01
A problem associated with the wind tunnel testing of very slow flying aircraft is the correction of observed pitching moments to free air conditions. The most significant effects of such corrections are to be found at moderate downwash angles typical of the landing approach. The wind tunnel walls induce interference velocities at the tail different from those induced at the wing, and these induced velocities also alter the trajectory of the trailing vortex system. The relocated vortex system induces different velocities at the tail from those experienced in free air. The effect of the relocated vortex and the walls is to cause important changes in the measured pitching moments in the wind tunnel.
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1987-01-01
A simplified fourwall interference assessment method has been described, and a computer program developed to facilitate correction of the airfoil data obtained in the Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The procedure adopted is to first apply a blockage correction due to sidewall boundary-layer effects by various methods. The sidewall boundary-layer corrected data are then used to calculate the top and bottom wall interference effects by the method of Capallier, Chevallier and Bouinol, using the measured wall pressure distribution and the model force coefficients. The interference corrections obtained by the present method have been compared with other methods and found to give good agreement for the experimental data obtained in the TCT with slotted top and bottom walls.
Wall interference tests of a CAST 10-2/DOA 2 airfoil in an adaptive-wall test section
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1987-01-01
A wind-tunnel investigation of a CAST 10-2/DOA 2 airfoil model has been conducted in the adaptive-wall test section of the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment High Reynolds Number Two-Dimensional Test Facility. The primary goal of the tests was to assess two different wall-interference correction techniques: adaptive test-section walls and classical analytical corrections. Tests were conducted over a Mach number range from 0.3 to 0.8 and over a chord Reynolds number range from 6 million to 70 million. The airfoil aerodynamic characteristics from the tests in the 0.3-m TCT have been corrected for wall interference by the movement of the adaptive walls. No additional corrections for any residual interference have been applied to the data, to allow comparison with the classically corrected data from the same model in the conventional National Aeronautical Establishment facility. The data are presented graphically in this report as integrated force-and-moment coefficients and chordwise pressure distributions.
NASA Technical Reports Server (NTRS)
Shindo, S.; Joppa, R. G.
1980-01-01
As a means to achieve a minimum interference correction wind tunnel, a partially actively controlled test section was experimentally examined. A jet flapped wing with 0.91 m (36 in) span and R = 4.05 was used as a model to create moderately high lift coefficients. The partially controlled test section was simulated using an insert, a rectangular box 0.96 x 1.44 m (3.14 x 4.71 ft) open on both ends in the direction of the tunnel air flow, placed in the University of Washington Aeronautical Laboratories (UWAL) 2.44 x 3.66 m (8 x 12 ft) wind tunnel. A tail located three chords behind the wing was used to measure the downwash at the tail region. The experimental data indicates that, within the range of momentum coefficient examined, it appears to be unnecessary to actively control all four sides of the test section walls in order to achieve the near interference free flow field environment in a small wind tunnel. The remaining wall interference can be satisfactorily corrected by the vortex lattice method.
Wall-interference corrections for parachutes in a closed wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Buffington, R.J.
1989-01-01
An extensive test program was conducted to gather information on wall-interference effects for parachutes in closed wind tunnels. Drag area and base pressure measurements were made for a set of ribbon parachutes of 7%, 15% and 30% geometric porosity in six different wind tunnels, covering a range of geometric blockages from two to thirty-five percent. The resulting data have been used to formulate and validate approximate blockage correction equations based on the theory of Maskell. The corrections are applicable to single parachutes and clusters of two and three parachutes. 8 refs., 7 figs., 1 tab.
A supercritical airfoil experiment
NASA Technical Reports Server (NTRS)
Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.
1994-01-01
The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.
1946-01-01
tunnel-wall correctliois is divided conveniently into two gen - wind tunnels of various types has been the subject of numer- era] sections. First, the...1 1-2 7. I n77~ 8 - ----------------- -/00 -80 -60 -40 -20 0 20 40 60 80 /00 0/s fance from t0he tunnel center/,ne In percent radius 1 4
Wall interference assessment and corrections
NASA Technical Reports Server (NTRS)
Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.
1989-01-01
Wind tunnel wall interference assessment and correction (WIAC) concepts, applications, and typical results are discussed in terms of several nonlinear transonic codes and one panel method code developed for and being implemented at NASA-Langley. Contrasts between 2-D and 3-D transonic testing factors which affect WIAC procedures are illustrated using airfoil data from the 0.3 m Transonic Cryogenic Tunnel and Pathfinder 1 data from the National Transonic Facility. Initial results from the 3-D WIAC codes are encouraging; research on and implementation of WIAC concepts continue.
NASA Technical Reports Server (NTRS)
Ghaffari, Farhad; Biedron, Robert T.; Luckring, James M.
2002-01-01
Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.
Use of the Ames Check Standard Model for the Validation of Wall Interference Corrections
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Amaya, M.; Flach, R.
2018-01-01
The new check standard model of the NASA Ames 11-ft Transonic Wind Tunnel was chosen for a future validation of the facility's wall interference correction system. The chosen validation approach takes advantage of the fact that test conditions experienced by a large model in the slotted part of the tunnel's test section will change significantly if a subset of the slots is temporarily sealed. Therefore, the model's aerodynamic coefficients have to be recorded, corrected, and compared for two different test section configurations in order to perform the validation. Test section configurations with highly accurate Mach number and dynamic pressure calibrations were selected for the validation. First, the model is tested with all test section slots in open configuration while keeping the model's center of rotation on the tunnel centerline. In the next step, slots on the test section floor are sealed and the model is moved to a new center of rotation that is 33 inches below the tunnel centerline. Then, the original angle of attack sweeps are repeated. Afterwards, wall interference corrections are applied to both test data sets and response surface models of the resulting aerodynamic coefficients in interference-free flow are generated. Finally, the response surface models are used to predict the aerodynamic coefficients for a family of angles of attack while keeping dynamic pressure, Mach number, and Reynolds number constant. The validation is considered successful if the corrected aerodynamic coefficients obtained from the related response surface model pair show good agreement. Residual differences between the corrected coefficient sets will be analyzed as well because they are an indicator of the overall accuracy of the facility's wall interference correction process.
Implementation of the WICS Wall Interference Correction System at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert
2000-01-01
The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration. The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.
Implementation of the WICS Wall Interference Correction System at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Martin, Lockheed; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert
2000-01-01
The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration, The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including, tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.
Description of Panel Method Code ANTARES
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; George, Mike (Technical Monitor)
2000-01-01
Panel method code ANTARES was developed to compute wall interference corrections in a rectangular wind tunnel. The code uses point doublets to represent blockage effects and line doublets to represent lifting effects of a wind tunnel model. Subsonic compressibility effects are modeled by applying the Prandtl-Glauert transformation. The closed wall, open jet, or perforated wall boundary condition may be assigned to a wall panel centroid. The tunnel walls can be represented by using up to 8000 panels. The accuracy of panel method code ANTARES was successfully investigated by comparing solutions for the closed wall and open jet boundary condition with corresponding Method of Images solutions. Fourier transform solutions of a two-dimensional wind tunnel flow field were used to check the application of the perforated wall boundary condition. Studies showed that the accuracy of panel method code ANTARES can be improved by increasing the total number of wall panels in the circumferential direction. It was also shown that the accuracy decreases with increasing free-stream Mach number of the wind tunnel flow field.
Some ideas and opportunities concerning three-dimensional wind-tunnel wall corrections
NASA Technical Reports Server (NTRS)
Rubbert, P. E.
1982-01-01
Opportunities for improving the accuracy and reliability of wall corrections in conventional ventilated test sections are presented. The approach encompasses state-of-the-art technology in transonic computational methods combined with the measurement of tunnel-wall pressures. The objective is to arrive at correction procedures of known, verifiable accuracy that are practical within a production testing environment. It is concluded that: accurate and reliable correction procedures can be developed for cruise-type aerodynamic testing for any wall configuration; passive walls can be optimized for minimal interference for cruise-type aerodynamic testing (tailored slots, variable open area ratio, etc.); monitoring and assessment of noncorrectable interference (buoyancy and curvature in a transonic stream) can be an integral part of a correction procedure; and reasonably good correction procedures can probably be developd for complex flows involving extensive separation and other unpredictable phenomena.
Construction and test of flexible walls for the throat of the ILR high-speed wind tunnel
NASA Technical Reports Server (NTRS)
Igeta, Y.
1983-01-01
Aerodynamic tests in wind tunnels are jeopardized by the lateral limitations of the throat. This influence expands with increasing size of the model in proportion to the cross-section of the throat. Wall interference of this type can be avoided by giving the wall the form of a stream surface that would be identical to the one observed during free flight. To solve this problem, flexible walls that can adapt to every contour of surface flow are needed.
Calculation of wall effects of flow on a perforated wall with a code of surface singularities
NASA Astrophysics Data System (ADS)
Piat, J. F.
1994-07-01
Simplifying assumptions are inherent in the analytic method previously used for the determination of wall interferences on a model in a wind tunnel. To eliminate these assumptions, a new code based on the vortex lattice method was developed. It is suitable for processing any shape of test sections with limited areas of porous wall, the characteristic of which can be nonlinear. Calculation of wall effects in S3MA wind tunnel, whose test section is rectangular 0.78 m x 0.56 m, and fitted with two or four perforated walls, have been performed. Wall porosity factors have been adjusted to obtain the best fit between measured and computed pressure distributions on the test section walls. The code was checked by measuring nearly equal drag coefficients for a model tested in S3MA wind tunnel (after wall corrections) and in S2MA wind tunnel whose test section is seven times larger (negligible wall corrections).
A numerical study of the effects of wind tunnel wall proximity on an airfoil model
NASA Technical Reports Server (NTRS)
Potsdam, Mark; Roberts, Leonard
1990-01-01
A procedure was developed for modeling wind tunnel flows using computational fluid dynamics. Using this method, a numerical study was undertaken to explore the effects of solid wind tunnel wall proximity and Reynolds number on a two-dimensional airfoil model at low speed. Wind tunnel walls are located at varying wind tunnel height to airfoil chord ratios and the results are compared with freestream flow in the absence of wind tunnel walls. Discrepancies between the constrained and unconstrained flows can be attributed to the presence of the walls. Results are for a Mach Number of 0.25 at angles of attack through stall. A typical wind tunnel Reynolds number of 1,200,000 and full-scale flight Reynolds number of 6,000,000 were investigated. At this low Mach number, wind tunnel wall corrections to Mach number and angle of attack are supported. Reynolds number effects are seen to be a consideration in wind tunnel testing and wall interference correction methods. An unstructured grid Navier-Stokes code is used with a Baldwin-Lomax turbulence model. The numerical method is described since unstructured flow solvers present several difficulties and fundamental differences from structured grid codes, especially in the area of turbulence modeling and grid generation.
NASA Technical Reports Server (NTRS)
Allen, H Julian; Vincenti, Walter G
1944-01-01
Theoretical tunnel-wall corrections are derived for an airfoil of finite thickness and camber in a two-dimensional-flow wind tunnel. The theory takes account of the effects of the wake of the airfoil and of the compressibility of the fluid, and is based upon the assumption that the chord of the airfoil is small in comparison with the height of the tunnel. Consideration is given to the phenomenon of choking at high speeds and its relation to the tunnel-wall corrections. The theoretical results are compared with the small amount of low-speed experimental data available and the agreement is seen to be satisfactory, even for relatively large values of the chord-height ratio.
NASA Technical Reports Server (NTRS)
Neal, G.
1988-01-01
Flexible walled wind tunnels have for some time been used to reduce wall interference effects at the model. A necessary part of the 3-D wall adjustment strategy being developed for the Transonic Self-Streamlining Wind Tunnel (TSWT) of Southampton University is the use of influence coefficients. The influence of a wall bump on the centerline flow in TSWT has been calculated theoretically using a streamline curvature program. This report details the experimental verification of these influence coefficients and concludes that it is valid to use the theoretically determined values in 3-D model testing.
Application of Pressure-Based Wall Correction Methods to Two NASA Langley Wind Tunnels
NASA Technical Reports Server (NTRS)
Iyer, V.; Everhart, J. L.
2001-01-01
This paper is a description and status report on the implementation and application of the WICS wall interference method to the National Transonic Facility (NTF) and the 14 x 22-ft subsonic wind tunnel at the NASA Langley Research Center. The method calculates free-air corrections to the measured parameters and aerodynamic coefficients for full span and semispan models when the tunnels are in the solid-wall configuration. From a data quality point of view, these corrections remove predictable bias errors in the measurement due to the presence of the tunnel walls. At the NTF, the method is operational in the off-line and on-line modes, with three tests already computed for wall corrections. At the 14 x 22-ft tunnel, initial implementation has been done based on a test on a full span wing. This facility is currently scheduled for an upgrade to its wall pressure measurement system. With the addition of new wall orifices and other instrumentation upgrades, a significant improvement in the wall correction accuracy is expected.
Wall interference correction improvements for the ONERA main wind tunnels
NASA Technical Reports Server (NTRS)
Vaucheret, X.
1982-01-01
This paper describes improved methods of calculating wall interference corrections for the ONERA large windtunnels. The mathematical description of the model and its sting support have become more sophisticated. An increasing number of singularities is used until an agreement between theoretical and experimental signatures of the model and sting on the walls of the closed test section is obtained. The singularity decentering effects are calculated when the model reaches large angles of attack. The porosity factor cartography on the perforated walls deduced from the measured signatures now replaces the reference tests previously carried out in larger tunnels. The porosity factors obtained from the blockage terms (signatures at zero lift) and from the lift terms are in good agreement. In each case (model + sting + test section), wall corrections are now determined, before the tests, as a function of the fundamental parameters M, CS, CZ. During the windtunnel tests, the corrections are quickly computed from these functions.
Numerical calculation of transonic flow about slender bodies of revolution
NASA Technical Reports Server (NTRS)
Bailey, F. R.
1971-01-01
A relaxation method is described for the numerical solution of the transonic small disturbance equation for flow about a slender body of revolution. Results for parabolic arc bodies, both with and without an attached sting, are compared with wind-tunnel measurements for a free-stream Mach number range from 0.90 to 1.20. The method is also used to show the effects of wind-tunnel wall interference by including boundary conditions representing porous-wall and open-jet wind-tunnel test sections.
Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Koning, Witold J. F.
2016-01-01
Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tiltrotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity Unsteady Reynolds Averaged Navier-Stokes (URANS) solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade-element model (BEM) with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt, and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation, and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall, interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A "quasi linear trim" was used to trim the thrust for the rotor to compare the power as a unique variable. Power differences between free field and wind tunnel cases were found from -7 to 0 percent in the 80- by 120-Foot Wind Tunnel and -1.6 to 4.8 percent in the 40- by 80-Foot Wind Tunnel, depending on the TTR orientation, tunnel velocity, and blade setting. The TTR will be used in 2016 to test the Bell 609 rotor in a similar fashion to the research in this report.
Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Koning, Witold J. F.
2015-01-01
Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tilt Rotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity URANS solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade element model with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at NASA Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A 'quasi linear trim' was used to trim the thrust for the rotor to compare the power as a unique variable. Power differences between free field and wind tunnel cases were found from -7 % to 0 % in the 80- by 120-Foot Wind Tunnel test section and -1.6 % to 4.8 % in the 40- by 80-Foot Wind Tunnel, depending on the TTR orientation, tunnel velocity and blade setting. The TTR will be used in 2016 to test the Bell 609 rotor in a similar fashion to the research in this report.
Numerical Viscous Flow Analysis of an Advanced Semispan Diamond-Wing Model at High-Life Conditions
NASA Technical Reports Server (NTRS)
Ghaffari, F.; Biedron, R. T.; Luckring, J. M.
2002-01-01
Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant width standoff. The analyses include: (1) the numerical simulation of the NTF empty, tunnel flow characteristics; (2) semispan high-lift model with the standoff in the tunnel environment; (3) semispan high-lift model with the standoff and viscous sidewall in free air; and (4) semispan high-lift model without the standoff in free air. The computations were performed at conditions that correspond to a nominal approach and landing configuration. The wing surface pressure distributions computed for the model in both the tunnel and in free air agreed well with the corresponding experimental data and they both indicated small increments due to the wall interference effects. However, the wall interference effects were found to be more pronounced in the total measured and the computed lift, drag and pitching moment due to standard induced up-flow effects. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted well. The numerical predictions are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage fore-body pressure distributions and the resulting impact on the overall configuration longitudinal aerodynamic characteristics.
NASA Technical Reports Server (NTRS)
Garriz, Javier A.; Haigler, Kara J.
1992-01-01
A three dimensional transonic Wind-tunnel Interference Assessment and Correction (WIAC) procedure developed specifically for use in the National Transonic Facility (NTF) at NASA Langley Research Center is discussed. This report is a user manual for the codes comprising the correction procedure. It also includes listings of sample procedures and input files for running a sample case and plotting the results.
Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6
NASA Technical Reports Server (NTRS)
Johnson, C. B.; Kaufman, L. G., II
1974-01-01
An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.
Status of the National Transonic Facility Characterization
NASA Technical Reports Server (NTRS)
Bobbitt, C., Jr.; Everhart, J.
2001-01-01
This paper describes the current activities at the National Transonic Facility to document the test-section flow and to support tunnel improvements. The paper is divided into sections on the tunnel calibration, flow quality measurements, data quality assurance, and implementation of wall interference corrections.
Self streamlining wind tunnel: Low speed testing and transonic test section design
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.; Goodyer, M. J.
1977-01-01
Comprehensive aerodynamic data on an airfoil section were obtained through a wide range of angles of attack, both stalled and unstalled. Data were gathered using a self streamlining wind tunnel and were compared to results obtained on the same section in a conventional wind tunnel. The reduction of wall interference through streamline was demonstrated.
An experimental study of wall adaptation and interference assessment using Cauchy integral formula
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1991-01-01
This paper summarizes the results of an experimental study of combined wall adaptation and residual interference assessment using the Cauchy integral formula. The experiments were conducted on a supercritical airfoil model in the Langley 0.3-m Transonic Cryogenic Tunnel solid flexible wall test section. The ratio of model chord to test section height was about 0.7. The method worked satisfactorily in reducing the blockage interference and demonstrated the primary requirement for correcting for the blockage effects at high model incidences to correctly determine high lift characteristics. The studies show that the method has potential for reducing the residual interference to considerably low levels. However, corrections to blockage and upwash velocities gradients may still be required for the final adapted wall shapes.
Adaptive wall wind tunnels: A selected, annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Mineck, R. E.
1986-01-01
This bibliography, with abstracts, consists of 257 citations arranged in chronological order. Selection of the citations was made for their value to researchers working to solve problems associated with reducing wall interference by the design, development, and operation of adaptive wall test sections. Author, source, and subject indexes are included.
Scaling between Wind Tunnels-Results Accuracy in Two-Dimensional Testing
NASA Astrophysics Data System (ADS)
Rasuo, Bosko
The establishment of exact two-dimensional flow conditions in wind tunnels is a very difficult problem. This has been evident for wind tunnels of all types and scales. In this paper, the principal factors that influence the accuracy of two-dimensional wind tunnel test results are analyzed. The influences of the Reynolds number, Mach number and wall interference with reference to solid and flow blockage (blockage of wake) as well as the influence of side-wall boundary layer control are analyzed. Interesting results are brought to light regarding the Reynolds number effects of the test model versus the Reynolds number effects of the facility in subsonic and transonic flow.
Status of the National Transonic Facility Characterization (Invited)
NASA Technical Reports Server (NTRS)
Bobbitt, C., Jr.; Everhart, J.
2001-01-01
This paper describes the current activities at the National Transonic Facility to document the test-section flow and to support tunnel improvements. The paper is divided into sections on the tunnel calibration, flow quality measurements, data quality assurance, and implementation of wall interference corrections.
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Sampath, S.; Phillips, C. G.
1981-01-01
The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant.
NASA Technical Reports Server (NTRS)
Vincenti, Walter G; Graham, Donald J
1946-01-01
The results of a theoretical and experimental investigation of wall interference for an airfoil spanning a closed-throat circular wind tunnel are presented. Analytical equations are derived which relate the characteristics of an airfoil in the tunnel at subsonic speeds with the characteristics in free air. The analysis takes into consideration the effect of fluid compressibility and is based upon the assumption that the chord of the airfoil is small as compared with the diameter of the tunnel. The development is restricted to an untwisted, constant-chord airfoil spanning the middle of the tunnel. Brief theoretical consideration is also given to the problem of choking at high speeds. Results are then presented of tests to determine the low-speed characteristics of an NACA 4412 airfoil for two chord-diameter ratios. While, on the basis of these experiments, no appraisal is possible of the accuracy of the corrections at high speeds, the data indicate that at low Mach numbers the analytical results are valid, even for relatively large values of the chord-diameter ratio.
An experimental investigation of the subcritical and supercritical flow about a swept semispan wing
NASA Technical Reports Server (NTRS)
Lockman, W. K.; Seegmiller, H. L.
1983-01-01
An experimental investigation of the turbulent, subcritical and supercritical flow over a swept, semispan wing in a solid wall wind tunnel is described. The program was conducted over a range of Mach numbers, Reynolds numbers, and angles of attack to provide a variety of test cases for assessment of wing computer codes and tunnel wall interference effects. Wing flows both without and with three dimensional flow separation are included. Data include mean surface pressures for both the wing and tunnel walls; surface oil flow patterns on the wing; and mean velocity, flow field surveys. The results are given in tabular form and presented graphically to illustrate some of the effects of the test parameters. Comparisons of the wing pressure data with the results from two inviscid wing codes are also shown to assess the importance of viscous flow and tunnel wall effects.
Wall Interference in Wind Tunnels
1982-09-01
concept is fairly succesful in these cases, although some variation of the interference flow field still remains over the airfoil chord. One should...geometry and about as large as we think the tunnel ’ j? can accommodate. These pressures have brought to the fore the need to improve our methods of...methods cease to be reliable? I would like -to return to that point again in a moment. Another point that I think is worth drawing your attention to
Computational Modeling of the Ames 11-Ft Transonic Wind Tunnel in Conjunction with IofNEWT
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Buning, Pieter G.; Erickson, Larry L.; George, Michael W. (Technical Monitor)
1995-01-01
Technical advances in Computational Fluid Dynamics have now made it possible to simulate complex three-dimensional internal flows about models of various size placed in a Transonic Wind Tunnel. TWT wall interference effects have been a source of error in predicting flight data from actual wind tunnel measured data. An advantage of such internal CFD calculations is to directly compare numerical results with the actual tunnel data for code assessment and tunnel flow analysis. A CFD capability has recently been devised for flow analysis of the NASA/Ames 11-Ft TWT facility. The primary objectives of this work are to provide a CFD tool to study the NASA/Ames 11-Ft TWT flow characteristics, to understand the slotted wall interference effects, and to validate CFD codes. A secondary objective is to integrate the internal flowfield calculations with the Pressure Sensitive Paint data, a surface pressure distribution capability in Ames' production wind tunnels. The effort has been part of the Ames IofNEWT, Integration of Numerical and Experimental Wind Tunnels project, which is aimed at providing further analytical tools for industrial application. We used the NASA/Ames OVERFLOW code to solve the thin-layer Navier-Stokes equations. Viscosity effects near the model are captured by Baldwin-Lomax or Baldwin-Barth turbulence models. The solver was modified to model the flow behavior in the vicinity of the tunnel longitudinal slotted walls. A suitable porous type wall boundary condition was coded to account for the cross-flow through the test section. Viscous flow equations were solved in generalized coordinates with a three-factor implicit central difference scheme in conjunction with the Chimera grid procedure. The internal flow field about the model and the tunnel walls were descretized by the Chimera overset grid system. This approach allows the application of efficient grid generation codes about individual components of the configuration; separate minor grids were developed to resolve the model and overset onto a main grid which discretizes the interior of the tunnel test section. Individual grid components axe not required to have mesh boundaries joined in any special way to each other or to the main tunnel grid. Programs have been developed to rotate the model about the tunnel pivot point and rotation axis, similar to that of the tunnel turntable mechanism for adjusting the pitch of the physical model in the test section.
An engineering study of hybrid adaptation of wind tunnel walls for three-dimensional testing
NASA Technical Reports Server (NTRS)
Brown, Clinton; Kalumuck, Kenneth; Waxman, David
1987-01-01
Solid wall tunnels having only upper and lower walls flexing are described. An algorithm for selecting the wall contours for both 2 and 3 dimensional wall flexure is presented and numerical experiments are used to validate its applicability to the general test case of 3 dimensional lifting aircraft models in rectangular cross section wind tunnels. The method requires an initial approximate representation of the model flow field at a given lift with wallls absent. The numerical methods utilized are derived by use of Green's source solutions obtained using the method of images; first order linearized flow theory is employed with Prandtl-Glauert compressibility transformations. Equations are derived for the flexed shape of a simple constant thickness plate wall under the influence of a finite number of jacks in an axial row along the plate centerline. The Green's source methods are developed to provide estimations of residual flow distortion (interferences) with measured wall pressures and wall flow inclinations as inputs.
Flow interference in a variable porosity trisonic wind tunnel.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Graham, R. F.
1972-01-01
Pressure data from a 20-degree cone-cylinder in a variable porosity wind tunnel for the Mach range 0.2 to 5.0 are compared to an interference free standard in order to determine wall interference effects. Four 20-degree cone-cylinder models representing an approximate range of percent blockage from one to six were compared to curve-fits of the interference free standard at each Mach number and errors determined at each pressure tap location. The average of the absolute values of the percent error over the length of the model was determined and used as the criterion for evaluating model blockage interference effects. The results are presented in the form of the percent error as a function of model blockage and Mach number.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1992-01-01
A two dimensional airfoil model was tested in the adaptive wall test section of the NASA Langley 0.3 meter Transonic Cryogenic Tunnel (TCT) and in the ventilated test section of the National Aeronautical Establishment Two Dimensional High Reynold Number Facility (HRNF). The primary goal of the tests was to compare different techniques (adaptive test section walls and classical, analytical corrections) to account for wall interference. Tests were conducted over a Mach number range from 0.3 to 0.8 at chord Reynolds numbers of 10 x 10(exp 6), 15 x 10(exp 6), and 20 x 10(exp 6). The angle of attack was varied from about 12 degrees up to stall. Movement of the top and bottom test section walls was used to account for the wall interference in the HRNF tests. The test results are in good agreement.
Parameter Sensitivity Study of the Wall Interference Correction System (WICS)
NASA Technical Reports Server (NTRS)
Walker, Eric L.; Everhart, Joel L.; Iyer, Venkit
2001-01-01
An off-line version of the Wall Interference Correction System (WICS) has been implemented for the "NASA Langley National Transonic Facility. The correction capability is currently restricted to corrections for solid wall interference in the model pitch plane for Mach numbers, less than 0.45 due to a limitation in tunnel calibration data. A study to assess output sensitivity to the aerodynamic parameters of Reynolds number and Mach number was conducted on this code to further ensure quality during the correction process. In addition, this paper includes all investigation into possible correction due to a semispan test technique using a non metric standoff and all improvement to the standard data rejection algorithm.
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Dor, J. B.; Mignosi, A.; Lamarche, L.
1986-01-01
The test series was carried out at ONERA/CERT at the T2 wind tunnel in September 1984. The objective of this series was to minimize wall interference through a bidimensional adaptation around the models, inducing tridimensional flows. For this, three different models were used, measuring either the pressures or the forces and moment of pitch (balance). The adaptation was derived from a correction computation in the compressible axisymmetric tridimensional.
NASA Technical Reports Server (NTRS)
Gumbert, C. R.
1985-01-01
A transonic Wall-Interference Assessment/Correction (WIAC) procedure has been developed and verified for the 8- by 24-inch airfoil test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This report is a user's manual for the correction procedure. It includes a listing of the computer procedure file as well as input for and results from a step-by-step sample case.
Adaptive-Wall Wind-Tunnel Investigations
1981-02-01
boundary condition for unconfined flow. In this way, theory and experiment are combined to minimize wall interference. The concept of an adaptive wall...should be noted that although shock waves extend to the walls, the exterior-flow calculation was based on subcritical-flow theory . Goodyer’s configuration...and v by aerodynamic probes. Both subsonic and transonic small- disturbance theory were used, as appropriate, to evaluate the functional rela
Adaptive wall research with two- and three-dimensional models in low speed and transonic tunnels
NASA Technical Reports Server (NTRS)
Lewis, M. C.; Neal, G.; Goodyer, M. J.
1988-01-01
This paper summarises recent research at the University of Southampton into adaptive wall technology and outlines the direction of current efforts. The work is aimed at developing techniques for use in test sections where the top and bottom walls may be adjusted in single curvature. Wall streamlining eliminates, as far as experimentally possible, the top and bottom wall interference in low speed and transonic aerofoil testing. A streamlining technique has been developed for low speeds which allows the testing of swept wing panels in low interference environments. At higher speeds, a comparison of several two-dimensional transonic streamlining algorithms has been made and a technique for streamlining with a choked test section has also been developed. Three-dimensional work has mainly concentrated on tests of sidewall mounted half-wings and the development of the software packages required to assess interference and to adjust the flexible walls. It has been demonstrated that two-dimensional wall adaptation can significantly modify the level of wall interference around relatively large three-dimensional models. The residual interferences are small and are probably amenable to standard post-test correction methods. Tests on a calibrated wing-body model are planned in the near future to further validate the proposed streamlining technique.
Computation of wind tunnel wall effects for complex models using a low-order panel method
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Harris, Scott H.
1994-01-01
A technique for determining wind tunnel wall effects for complex models using the low-order, three dimensional panel method PMARC (Panel Method Ames Research Center) has been developed. Initial validation of the technique was performed using lift-coefficient data in the linear lift range from tests of a large-scale STOVL fighter model in the National Full-Scale Aerodynamics Complex (NFAC) facility. The data from these tests served as an ideal database for validating the technique because the same model was tested in two wind tunnel test sections with widely different dimensions. The lift-coefficient data obtained for the same model configuration in the two test sections were different, indicating a significant influence of the presence of the tunnel walls and mounting hardware on the lift coefficient in at least one of the two test sections. The wind tunnel wall effects were computed using PMARC and then subtracted from the measured data to yield corrected lift-coefficient versus angle-of-attack curves. The corrected lift-coefficient curves from the two wind tunnel test sections matched very well. Detailed pressure distributions computed by PMARC on the wing lower surface helped identify the source of large strut interference effects in one of the wind tunnel test sections. Extension of the technique to analysis of wind tunnel wall effects on the lift coefficient in the nonlinear lift range and on drag coefficient will require the addition of boundary-layer and separated-flow models to PMARC.
A numerical study of the controlled flow tunnel for a high lift model
NASA Technical Reports Server (NTRS)
Parikh, P. C.
1984-01-01
A controlled flow tunnel employs active control of flow through the walls of the wind tunnel so that the model is in approximately free air conditions during the test. This improves the wind tunnel test environment, enhancing the validity of the experimentally obtained test data. This concept is applied to a three dimensional jet flapped wing with full span jet flap. It is shown that a special treatment is required for the high energy wake associated with this and other V/STOL models. An iterative numerical scheme is developed to describe the working of an actual controlled flow tunnel and comparisons are shown with other available results. It is shown that control need be exerted over only part of the tunnel walls to closely approximate free air flow conditions. It is concluded that such a tunnel is able to produce a nearly interference free test environment even with a high lift model in the tunnel.
NASA Technical Reports Server (NTRS)
Rebstock, Rainer
1987-01-01
Numerical methods are developed for control of three dimensional adaptive test sections. The physical properties of the design problem occurring in the external field computation are analyzed, and a design procedure suited for solution of the problem is worked out. To do this, the desired wall shape is determined by stepwise modification of an initial contour. The necessary changes in geometry are determined with the aid of a panel procedure, or, with incident flow near the sonic range, with a transonic small perturbation (TSP) procedure. The designed wall shape, together with the wall deflections set during the tunnel run, are the input to a newly derived one-step formula which immediately yields the adapted wall contour. This is particularly important since the classical iterative adaptation scheme is shown to converge poorly for 3D flows. Experimental results obtained in the adaptive test section with eight flexible walls are presented to demonstrate the potential of the procedure. Finally, a method is described to minimize wall interference in 3D flows by adapting only the top and bottom wind tunnel walls.
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1985-01-01
This report covers work done in a transonic wind tunnel towards providing data on the influence of the movement of wall-control jacks on the Mach number perturbations along the test section. The data is derived using an existing streamline-curvature program, and in application is reduced to matrices of influence coefficients.
Evaluation of discrete frequency sound in closed-test-section wind tunnels
NASA Technical Reports Server (NTRS)
Mosher, Marianne
1990-01-01
The principal objective of this study is to assess the adequacy of linear acoustic theory with an impedance wall boundary condition for modeling the detailed sound field of an acoustic source in a duct. This study compares measurements and calculations of a simple acoustic source in a rectangular concrete duct lined with foam on the walls and anechoic end terminations. Measuring acoustic pressure for 12 wave numbers provides variation in frequency and absorption characteristics of the duct walls. The cases in this study contain low frequencies and low wall absorptions corresponding to measurements of low-frequency helicopter noise in a lined wind tunnel. This regime is particularly difficult to measure in wind tunnels due to high levels of the reverberant field relatively close to the source. Close to the source, where the interference of wall reflections is minimal, correlation is very good. Away from the source, correlation degrades, especially for the lower frequencies. Sensitivity studies show little effect on the predicted results for changes in impedance boundary condition values, source location, measurement location, temperature, and source model for variations spanning the expected measurement error.
Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Kuhl, David D.; Walker, Eric L.
2004-01-01
This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.
1983-01-01
disturbance theory . The main feature of the method is the use of measured pressure along lines in the flow direction near the tunnel walls. This method...disturbance theory , then $can be written ( , = qo( , ) .@ (:. S-in(.t + 0.( or s CO (8) Defining cw as co S . ^(9) gives Sin= C, f(4,.) + OCr,z)co.s(0t...AUTHOR (S)/ AUTEUR (S) H. Sawada, visiting scientist 2nd Aerodynamics Division, National Aerospace Laboratory, Japan SERIES/SERIE Aeronautical Note 6
Development of Combined Asymptotic and Numerical Procedures for Transonic and Hypersonic Flows.
1996-04-01
11991 thru December 311995 Contract No. F49620-92-C-0006 Prepared for: Air Force Office of Scientific Research, AFOSR/NM Directorate of Mathematical and...MOMOMNO Air Force Office of Scientific Research AGENCY REOT NUMBER AFOSRJNM Directorat of Mathematical and information Sciences Bldg 410 Boiling AFS, DC...128 wind tunnel leading to the generalization of our Transonic Area Rule for Wind Tunnel Wall Interference (TARWI) to test articles of length
NASA Technical Reports Server (NTRS)
Beutner, Thomas John
1993-01-01
Porous wall wind tunnels have been used for several decades and have proven effective in reducing wall interference effects in both low speed and transonic testing. They allow for testing through Mach 1, reduce blockage effects and reduce shock wave reflections in the test section. Their usefulness in developing computational fluid dynamics (CFD) codes has been limited, however, by the difficulties associated with modelling the effect of a porous wall in CFD codes. Previous approaches to modelling porous wall effects have depended either upon a simplified linear boundary condition, which has proven inadequate, or upon detailed measurements of the normal velocity near the wall, which require extensive wind tunnel time. The current work was initiated in an effort to find a simple, accurate method of modelling a porous wall boundary condition in CFD codes. The development of such a method would allow data from porous wall wind tunnels to be used more readily in validating CFD codes. This would be beneficial when transonic validations are desired, or when large models are used to achieve high Reynolds numbers in testing. A computational and experimental study was undertaken to investigate a new method of modelling solid and porous wall boundary conditions in CFD codes. The method utilized experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution was then imposed as a pressure boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the effect of porosity changes on the wall was investigated. Also, the effectiveness of this method when only sparse experimental measurements were available has been investigated. The current work demonstrated this approach for low speed flows and compared the results with experimental data obtained from a heavily instrumented variable porosity test section. The approach developed was simple, computationally inexpensive, and did not require extensive or intrusive measurements of the boundary conditions during the wind tunnel test. It may be applied to both solid and porous wall wind tunnel tests.
National Transonic Facility Characterization Status
NASA Technical Reports Server (NTRS)
Bobbitt, C., Jr.; Everhart, J.; Foster, J.; Hill, J.; McHatton, R.; Tomek, W.
2000-01-01
This paper describes the current status of the characterization of the National Transonic Facility. The background and strategy for the tunnel characterization, as well as the current status of the four main areas of the characterization (tunnel calibration, flow quality characterization, data quality assurance, and support of the implementation of wall interference corrections) are presented. The target accuracy requirements for tunnel characterization measurements are given, followed by a comparison of the measured tunnel flow quality to these requirements based on current available information. The paper concludes with a summary of which requirements are being met, what areas need improvement, and what additional information is required in follow-on characterization studies.
Toward Supersonic Retropropulsion CFD Validation
NASA Technical Reports Server (NTRS)
Kleb, Bil; Schauerhamer, D. Guy; Trumble, Kerry; Sozer, Emre; Barnhardt, Michael; Carlson, Jan-Renee; Edquist, Karl
2011-01-01
This paper begins the process of verifying and validating computational fluid dynamics (CFD) codes for supersonic retropropulsive flows. Four CFD codes (DPLR, FUN3D, OVERFLOW, and US3D) are used to perform various numerical and physical modeling studies toward the goal of comparing predictions with a wind tunnel experiment specifically designed to support CFD validation. Numerical studies run the gamut in rigor from code-to-code comparisons to observed order-of-accuracy tests. Results indicate that this complex flowfield, involving time-dependent shocks and vortex shedding, design order of accuracy is not clearly evident. Also explored is the extent of physical modeling necessary to predict the salient flowfield features found in high-speed Schlieren images and surface pressure measurements taken during the validation experiment. Physical modeling studies include geometric items such as wind tunnel wall and sting mount interference, as well as turbulence modeling that ranges from a RANS (Reynolds-Averaged Navier-Stokes) 2-equation model to DES (Detached Eddy Simulation) models. These studies indicate that tunnel wall interference is minimal for the cases investigated; model mounting hardware effects are confined to the aft end of the model; and sparse grid resolution and turbulence modeling can damp or entirely dissipate the unsteadiness of this self-excited flow.
Aerofoil testing in a self-streamlining flexible walled wind tunnel. Ph.D. Thesis - Jul. 1987
NASA Technical Reports Server (NTRS)
Lewis, Mark Charles
1988-01-01
Two-dimensional self-streamlining flexible walled test sections eliminate, as far as experimentally possible, the top and bottom wall interference effects in transonic airfoil testing. The test section sidewalls are rigid, while the impervious top and bottom walls are flexible and contoured to streamline shapes by a system of jacks, without reference to the airfoil model. The concept of wall contouring to eliminate or minimize test section boundary interference in 2-D testing was first demonstrated by NPL in England during the early 40's. The transonic streamlining strategy proposed, developed and used by NPL has been compared with several modern strategies. The NPL strategy has proved to be surprisingly good at providing a wall interference-free test environment, giving model performance indistinguishable from that obtained using the modern strategies over a wide range of test conditions. In all previous investigations the achievement of wall streamlining in flexible walled test sections has been limited to test sections up to those resulting in the model's shock just extending to a streamlined wall. This work however, has also successfully demonstrated the feasibility of 2-D wall streamlining at test conditions where both model shocks have reached and penetrated through their respective flexible walls. Appropriate streamlining procedures have been established and are uncomplicated, enabling flexible walled test sections to cope easily with these high transonic flows.
A swept wing panel in a low speed flexible walled test section
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1987-01-01
The testing of two-dimensional airfoil sections in adaptive wall tunnels is relatively widespread and has become routine at all speeds up to transonic. In contrast, the experience with the three-dimensional testing of swept panels in adaptive wall test sections is very limited, except for some activity in the 1940's at NPL, London. The current interest in testing swept wing panels led to the work covered by this report, which describes the design of an adaptive-wall swept-wing test section for a low speed wind tunnel and gives test results for a wing panel swept at 40 deg. The test section has rigid flat sidewalls supporting the panel, and features flexible top and bottom wall with ribs swept at the same angle as the wing. When streamlined, the walls form waves swept at the same angle as the wing. The C sub L (-) curve for the swept wing, determined from its pressure distributions taken with the walls streamlined, compare well with reference data which was taken on the same model, unswept, in a test section deep enough to avoid wall interference.
Space Launch System Ascent Static Aerodynamic Database Development
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T.; Bennett, David W.; Blevins, John A.; Erickson, Gary E.; Favaregh, Noah M.; Houlden, Heather P.; Tomek, William G.
2014-01-01
This paper describes the wind tunnel testing work and data analysis required to characterize the static aerodynamic environment of NASA's Space Launch System (SLS) ascent portion of flight. Scaled models of the SLS have been tested in transonic and supersonic wind tunnels to gather the high fidelity data that is used to build aerodynamic databases. A detailed description of the wind tunnel test that was conducted to produce the latest version of the database is presented, and a representative set of aerodynamic data is shown. The wind tunnel data quality remains very high, however some concerns with wall interference effects through transonic Mach numbers are also discussed. Post-processing and analysis of the wind tunnel dataset are crucial for the development of a formal ascent aerodynamics database.
NASA Technical Reports Server (NTRS)
Al-Saadi, Jassim A.
1993-01-01
A computational simulation of a transonic wind tunnel test section with longitudinally slotted walls is developed and described herein. The nonlinear slot model includes dynamic pressure effects and a plenum pressure constraint, and each slot is treated individually. The solution is performed using a finite-difference method that solves an extended transonic small disturbance equation. The walls serve as the outer boundary conditions in the relaxation technique, and an interaction procedure is used at the slotted walls. Measured boundary pressures are not required to establish the wall conditions but are currently used to assess the accuracy of the simulation. This method can also calculate a free-air solution as well as solutions that employ the classical homogeneous wall conditions. The simulation is used to examine two commercial transport aircraft models at a supercritical Mach number for zero-lift and cruise conditions. Good agreement between measured and calculated wall pressures is obtained for the model geometries and flow conditions examined herein. Some localized disagreement is noted, which is attributed to improper simulation of viscous effects in the slots.
The development of a self-streamlining flexible walled transonic test section
NASA Technical Reports Server (NTRS)
Goodyer, M. J.; Wolf, S. W. D.
1980-01-01
This design eliminates the uncertainties in data from conventional transonic test sections. Sidewalls are rigid, and the flexible floor and ceiling are positioned by motorized jacks controlled by on-line computer to minimize run times. The tunnel-computer combination is self-streamlining without reference to the model. Data is taken from the model only when the walls are good streamlines, and is corrected for the small, known but inevitable residual interferences. Two-dimensional validation testing in the Mach range up to about 0.85 where the walls are just supercritical shows good agreement with reference data using a height:chord ratio of 1.5. Techniques are under development to extend Mach number above 1. This work has demonstrated the feasibility of almost eliminating wall interferences, improving flow quality, and reducing power requirements or increasing Reynolds number. Extensions to three-dimensional testing are outlined.
Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2
NASA Technical Reports Server (NTRS)
Foughner, Jerome T., Jr. (Compiler)
1989-01-01
In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.
Background noise levels measured in the NASA Lewis 9- by 15-foot low-speed wind tunnel
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Dittmar, James H.; Hall, David G.; Kee-Bowling, Bonnie
1994-01-01
The acoustic capability of the NASA Lewis 9 by 15 Foot Low Speed Wind Tunnel has been significantly improved by reducing the background noise levels measured by in-flow microphones. This was accomplished by incorporating streamlined microphone holders having a profile developed by researchers at the NASA Ames Research Center. These new holders were fabricated for fixed mounting on the tunnel wall and for an axially traversing microphone probe which was mounted to the tunnel floor. Measured in-flow noise levels in the tunnel test section were reduced by about 10 dB with the new microphone holders compared with those measured with the older, less refined microphone holders. Wake interference patterns between fixed wall microphones were measured and resulted in preferred placement patterns for these microphones to minimize these effects. Acoustic data from a model turbofan operating in the tunnel test section showed that results for the fixed and translating microphones were equivalent for common azimuthal angles, suggesting that the translating microphone probe, with its significantly greater angular resolution, is preferred for sideline noise measurements. Fixed microphones can provide a local check on the traversing microphone data quality, and record acoustic performance at other azimuthal angles.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Lawing, Pierce L.
1987-01-01
A wind-tunnel investigation of the NASA SC(2)-0012 airfoil has been conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel. This investigation supplements the two-dimensional airfoil studies of the Advanced Technology Airfoil Test Program. The Mach number was varied from 0.60 to 0.84. The stagnation temperature and pressure were varied to provide a Reynolds number range from 6 to 40 x 10 to the 6th power based on a 6.0-in. (15.24-cm) airfoil chord. No corrections for wind-tunnel wall interference have been made to the data. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions without any analysis.
Hiramatsu, Kunihiko; Mae, Tatsuo; Tachibana, Yuta; Nakagawa, Shigeto; Shino, Konsei
2018-02-01
The purpose of this study was to compare the femoral tunnel length, the femoral graft bending angle at the femoral tunnel aperture, and the contact area between the femoral tunnel wall and an interference screw used for fixation in anatomic rectangular tunnel anterior cruciate ligament (ACL) reconstruction (ART ACLR). The study included 149 patients with primary ACL injury who underwent ART ACLR. Preoperatively, flexion angle of the index knee was checked under general anaesthesia. Those of less than 130° of passive flexion were assigned to the outside-in (OI) technique (78 patients), while the others to the trans-portal inside-out (TP) technique (71 patients). The patients underwent computed tomography with multiplanar reconstruction at 3-5 weeks post-operatively. Femoral tunnel length, graft bending angle, and contact ratio between the IFS and femoral tunnel were assessed. P < 0.05 was considered statistically significant. The femoral tunnel length in the OI technique was significantly longer than that in the TP technique (P < 0.001). The femoral graft bending angle in the OI technique was significantly more acute than that in the TP technique (P < 0.001). The contact ratio in the OI technique was significantly larger than that in the TP technique at every point in the femoral tunnel (P < 0.001). The OI technique resulted in a more acute femoral graft bending angle, longer mean femoral tunnel length, and larger contact ratio than the TP technique after ART ACLR. Retrospective comparative study, Level III.
Transonic empirical configuration design process
NASA Technical Reports Server (NTRS)
Whitcomb, R. T.
1983-01-01
This lecture describes some of the experimental research pertaining to transonic configuration development conducted by the Transonic Aerodynamics Branch of the NASA Langley Research Center. Discussions are presented of the following: use of florescent oil films for the study of surface boundary layer flows; the severe effect of wind tunnel wall interference on the measured configuration drag rise near the speed of sound as determined by a comparison between wind tunnel and free air results; the development of a near sonic transport configuration incorporating a supercritical wing and an indented fuselage, designed on the basis of the area rule with a modification to account for the presence of local supersonic flow above the wing; a device for improving the transonic pitch up of swept wings with very little added drag at the cruise condition; a means for reducing the large transonic aerodynamic interference between the wing, fuselage, nacelle and pylon for a for a fuselage mounted nacelle having the inlet above the wing; and methods for reducing the transonic interference between flows over a winglet and the wing.
The propagation of sound in tunnels
NASA Astrophysics Data System (ADS)
Li, Kai Ming; Iu, King Kwong
2002-11-01
The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.
Experience with 3-D composite grids
NASA Technical Reports Server (NTRS)
Benek, J. A.; Donegan, T. L.; Suhs, N. E.
1987-01-01
Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.
NASA Technical Reports Server (NTRS)
Walker, Eric L.
2005-01-01
Wind tunnel experiments will continue to be a primary source of validation data for many types of mathematical and computational models in the aerospace industry. The increased emphasis on accuracy of data acquired from these facilities requires understanding of the uncertainty of not only the measurement data but also any correction applied to the data. One of the largest and most critical corrections made to these data is due to wall interference. In an effort to understand the accuracy and suitability of these corrections, a statistical validation process for wall interference correction methods has been developed. This process is based on the use of independent cases which, after correction, are expected to produce the same result. Comparison of these independent cases with respect to the uncertainty in the correction process establishes a domain of applicability based on the capability of the method to provide reasonable corrections with respect to customer accuracy requirements. The statistical validation method was applied to the version of the Transonic Wall Interference Correction System (TWICS) recently implemented in the National Transonic Facility at NASA Langley Research Center. The TWICS code generates corrections for solid and slotted wall interference in the model pitch plane based on boundary pressure measurements. Before validation could be performed on this method, it was necessary to calibrate the ventilated wall boundary condition parameters. Discrimination comparisons are used to determine the most representative of three linear boundary condition models which have historically been used to represent longitudinally slotted test section walls. Of the three linear boundary condition models implemented for ventilated walls, the general slotted wall model was the most representative of the data. The TWICS code using the calibrated general slotted wall model was found to be valid to within the process uncertainty for test section Mach numbers less than or equal to 0.60. The scatter among the mean corrected results of the bodies of revolution validation cases was within one count of drag on a typical transport aircraft configuration for Mach numbers at or below 0.80 and two counts of drag for Mach numbers at or below 0.90.
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M.; Werth, J.
1979-01-01
The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided.
NASA Technical Reports Server (NTRS)
Couch, L. M.; Brooks, C. W., Jr.
1973-01-01
Experimental data were obtained in two wind tunnels for 13 models over a Mach number range from 0.70 to 1.02. Effects of increasing test-section blockage ratio in the transonic region near a Mach number of 1.0 included change in the shape of the drag curves, premature drag creep, delayed drag divergence, and a positive increment of pressures on the model afterbodies. Effects of wall interference were apparent in the data even for a change in blockage ratio from a very low 0.000343 to an even lower 0.000170. Therefore, models having values of blockage ratio of 0.0003 - an order of magnitude below the previously considered safe value of 0.0050 - had significant errors in the drag-coefficient values obtained at speeds near a Mach number of 1.0. Furthermore, the flow relief afforded by slots or perforations in test-section walls - designed according to previously accepted criteria for interference-free subsonic flow - does not appear to be sufficient to avoid significant interference of the walls with the model flow field for Mach numbers very close to 1.0.
On the Application of Contour Bumps for Transonic Drag Reduction(Invited)
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Owens, Lewis R.
2005-01-01
The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.
The pros and cons of code validation
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1988-01-01
Computational and wind tunnel error sources are examined and quantified using specific calculations of experimental data, and a substantial comparison of theoretical and experimental results, or a code validation, is discussed. Wind tunnel error sources considered include wall interference, sting effects, Reynolds number effects, flow quality and transition, and instrumentation such as strain gage balances, electronically scanned pressure systems, hot film gages, hot wire anemometers, and laser velocimeters. Computational error sources include math model equation sets, the solution algorithm, artificial viscosity/dissipation, boundary conditions, the uniqueness of solutions, grid resolution, turbulence modeling, and Reynolds number effects. It is concluded that, although improvements in theory are being made more quickly than in experiments, wind tunnel research has the advantage of the more realistic transition process of a right turbulence model in a free-transition test.
Operating envelope charts for the Langley 0.3-meter transonic cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Rallo, R. A.; Dress, D. A.; Siegle, H. J. A.
1986-01-01
To take full advantage of the unique Reynolds number capabilities of the 0.3-meter Transonic Cryogenic Tunnel (0.3-m TCT) at the NASA Langley Research Center, it was designed to accommodate test sections other than the original, octagonal, three-dimensional test section. A 20- by 60-cm two-dimensional test section was installed in 1976 and was extensively used, primarily for airfoil testing, through the fall of 1984. The tunnel was inactive during 1985 so that a new test section and improved high speed diffuser could be installed in the tunnel circuit. The new test section has solid adaptive top and bottom walls to reduce or eliminate wall interference for two-dimensional testing. The test section is 33- by 33-cm in cross section at the entrance and is 142 cm long. In the planning and running of past airfoil tests in the 0.3-m TCT, the use of operating envelope charts have proven very useful. These charts give the variation of total temperature and pressure with Mach number and Reynolds number. The operating total temperature range of the 0.3-m TCT is from about 78 K to 327 K with total pressures ranging from about 17.5 psia to 88 psia. This report presents the operating envelope charts for the 0.3-m TCT with the adaptive wall tes t section installed. They were all generated based on a 1-foot chord model. The Mach numbers vary from 0.1 to 0.95.
NASA Technical Reports Server (NTRS)
Chen, Ping-Chih (Inventor)
2013-01-01
This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Jaeger, Stephen M.; Hayes, Julie A.; Allen, Christopher S.
2002-01-01
A recessed, 42-inch deep acoustic lining has been designed and installed in the 40- by 80- Foot Wind Tunnel (40x80) test section to greatly improve the acoustic quality of the facility. This report describes the test section acoustic performance as determined by a detailed static calibration-all data were acquired without wind. Global measurements of sound decay from steady noise sources showed that the facility is suitable for acoustic studies of jet noise or similar randomly generated sound. The wall sound absorption, size of the facility, and averaging effects of wide band random noise all tend to minimize interference effects from wall reflections. The decay of white noise with distance was close to free field above 250 Hz. However, tonal sound data from propellers and fans, for example, will have an error band to be described that is caused by the sensitivity of tones to even weak interference. That error band could be minimized by use of directional instruments such as phased microphone arrays. Above 10 kHz, air absorption began to dominate the sound field in the large test section, reflections became weaker, and the test section tended toward an anechoic environment as frequency increased.
NASA Technical Reports Server (NTRS)
Shinoda, Patrick M.
1994-01-01
A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.
NASA Technical Reports Server (NTRS)
Blanchard, A.; Payry, M. J.; Breil, J. F.
1986-01-01
The results obtained on the AS 07 wing and the working section walls for three types of configurations are reported. The first, called non-adapted, corresponds to the divergent upper and lower rectilinear walls which compensate for limit layer thickening. It can serve as a basis for complete flow calculations. The second configuration corresponds to wall shapes determined from calculations which tend to minimize interference at the level of the fuselage. Finally, the third configuration, called two-dimensional adaptation, uses the standard method for T2 profile tests. This case was tested to determine the influence of wall shape and error magnitude. These results are not sufficient to validate the three-dimensional adaptation; they must be coordinated with calculations or with unlimited atmosphere tests.
NASA Technical Reports Server (NTRS)
Mosher, Marianne
1990-01-01
The principal objective is to assess the adequacy of linear acoustic theory with an impedence wall boundary condition to model the detailed sound field of an acoustic source in a duct. Measurements and calculations are compared of a simple acoustic source in a rectangular concrete duct lined with foam on the walls and anechoic end terminations. Measurement of acoustic pressure for twelve wave numbers provides variation in frequency and absorption characteristics of the duct walls. Close to the source, where the interference of wall reflections is minimal, correlation is very good. Away from the source, correlation degrades, especially for the lower frequencies. Sensitivity studies show little effect on the predicted results for changes in impedance boundary condition values, source location, measurement location, temperature, and source model for variations spanning the expected measurement error.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1984-01-01
Self streamlining two dimensional flexible walled test sections eliminate the uncertainties found in data from conventional test sections particularly at transonic speeds. The test section sidewalls are rigid, while the floor and ceiling are flexible and are positioned to streamline shapes by a system of jacks, without reference to the model. The walls are therefore self streamlining. Data are taken from the model when the walls are good streamlines such that the inevitable residual wall induced interference is acceptably small and correctable. Successful two dimensional validation testing at low speeds has led to the development of a new transonic flexible walled test section. Tunnel setting times are minimized by the development of a rapid wall setting strategy coupled with on line computer control of wall shapes using motorized jacks. Two dimensional validation testing using symmetric and cambered aerofoils in the Mach number range up to about 0.85 where the walls are just supercritical, shows good agreement with reference data using small height-chord ratios between 1.5 and unity.
Pioneering Russian wind tunnels and first experimental investigations, 1871-1915
NASA Astrophysics Data System (ADS)
Gorbushin, A. R.
2017-11-01
A review of foreign and Russian sources is given mentioning the pioneering wind tunnels built in Russia at the turn of 19th and 20th centuries. The first wind tunnel in Russia was constructed by V.A. Pashkevich at the Mikhailovsky Artillery Academy in St. Petersburg in 1871. In total from 1871 through 1915, 18 wind tunnels were constructed in Russia: 11 in Moscow, 5 in St. Petersburg and 2 in Kaluga. An overview of the pioneering Russian wind tunnels built by V.A. Pashkevich, K.E. Tsiolkovsky, prof. N.E. Zhukovsky, D.P. Ryabushinsky and prof. K.P. Boklevsky is given. Schemes, photographs, formulas, description of the research and test results taken from the original papers published by the wind tunnel designers are given. Photographs from the N.E. Zhukovsky Scientific and Memorial Museum and the Archive of the Russian Academy of Sciences are used in the article. Methods of flow visualization and results of their application are presented. The Russian scientists and researchers' contribution to the development of techniques and methods of aerodynamic experiment is shown, including one of the most important aspects - the wall interference problem.
Long-term absorption of poly-L-lactic Acid interference screws.
Barber, F Alan; Dockery, W Dee
2006-08-01
To evaluate the long term in vivo degradation of poly-L-lactic acid (PLLA) interference screws with computed tomography (CT) and radiography as used in patellar tendon autograft anterior cruciate ligament (ACL) reconstruction. A total of 20 patients who had undergone patellar tendon autograft ACL reconstruction fixed with PLLA screws at least 7 years earlier were evaluated by physical examination, radiography, and CT to determine whether PLLA screw reabsorption and bone ingrowth had occurred. This study was granted Institutional Review Board approval. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee (IKDC) scores were obtained. CT data were measured in Hounsfield units. In all, 15 men and 5 women were evaluated 104 months after surgery (range, 89 to 124 months). CT and radiography demonstrated that the bone plug had fused to the tunnel wall, and that no intact interference screw was left. A parallel, threaded, and corticated screw tract was visible adjacent to the bone plug. No bone ingrowth had occurred at the screw site, although, occasionally, minimal calcification was seen. This was never as dense as cancellous bone, and no trabeculae were ever present. No positive pivot-shift test results were obtained. Lysholm, Tegner, and Cincinnati scores were 83, 5.6, and 75, respectively, at follow-up. Average KT difference was 0.7 mm. PLLA interference screws completely degraded, and the resulting area demonstrated a low Hounsfield count, consistent with soft tissue 7 years after insertion. No significant bone ingrowth occurred at the screw site. Femoral and tibial ACL tunnels were absent of anything but fibrous tissue and usually had a sclerotic cortical lining. PLLA biodegradable ACL screws eventually disappear completely. PLLA material is not replaced by bone. ACL graft tunnels are filled with nonossified material. This study provides a baseline for comparison with other biodegradable interference screws that may encourage bone ingrowth as they degrade. Level IV (no or historical control).
5. 'Stones for Wing Walls, Tunnel Walls, BeltCourse and Coping,' ...
5. 'Stones for Wing Walls, Tunnel Walls, Belt-Course and Coping,' Southern Pacific Standard Plan Tunnels, ca. 1909. - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA
Asymptotic Theory of Transonic Wind Tunnel Wall Interference
1991-12-01
completing and reviewing the collection Of Information. Send comments regarding this burden estimate or any other aspect of this collection of...integrated term by t~m. These integrals are convergent for the ray limits (R t ~ 0, 0 fixed) of interest. 16 AEDC-TR-91-24 Collecting results, the...w h ~ e t ~ f a c t t h ~ # ~ ~ I n r + g ( z ) + - . . has been used in (2 - 65b). Noting that rl = 0, and collecting results, I [ ~ S’(z
An experimental investigation of wall-interference effects for parachutes in closed wind tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Buffington, R.J.
1989-09-01
A set of 6-ft-diameter ribbon parachutes (geometric porosities of 7%, 15%, and 30%) was tested in various subsonic wind tunnels covering a range of geometric blockages from 2% to 35%. Drag, base pressure, and inflated geometry were measured under full-open, steady-flow conditions. The result drag areas and pressure coefficients were correlated with the bluff-body blockage parameter (i.e., drag area divided by tunnel cross-sectional area) according to the blockage theory of Maskell. The data show that the Maskell theory provides a simple, accurate correction for the effective increase in dynamic pressure caused by wall constraint for both single parachutes and clusters.more » For single parachutes, the empirically derived blockage factor K{sub M} has the value of 1.85, independent of canopy porosity. Derived values of K{sub M} for two- and three-parachute clusters are 1.35 and 1.59, respectively. Based on the photometric data, there was no deformation of the inflated shape of the single parachutes up to a geometric blockage of 22%. In the case of the three-parachute cluster, decreases in both the inflated diameter and the spacing among member parachutes were observed at a geometric blockage of 35%. 11 refs., 9 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.
2017-12-01
When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.
Wang, Joon Ho; Lee, Eun Su; Lee, Byung Hoon
2017-09-16
Tibial aperture fixation with a bioabsorbable interference screw is a popular fixation method in anterior cruciate ligament reconstruction (ACLR). An interference screw containing β-tricalcium phosphate (β-TCP) to improve bony integration and biocompatibility was recently introduced. This study aims to compare the clinical outcomes and radiological results of tunnel enlargement effect between the 2 bioabsorbable fixative devices of pure poly-L-lactic acid (PLLA) interference screws and β-TCP-containing screws, for tibial interference fixation in ACLR using hamstring autografts. Eighty consecutive patients who had undergone double-bundle ACLR between 2011 to 2012 were prospectively reviewed and randomly divided into two groups based on the type of tibial interference screw: 28 were assigned to the pure PLLA screw group (Group A), while the other 29 were assigned to the β-TCP-containing screw fixation group (Group B). Clinical evaluations and radiological analyses were conducted in both groups with a minimum 2- year follow-up. There was no significant difference in subjective or objective clinical outcome between the 2 groups. In radiological analyses, the use of a β-TCP-containing screw reduced tunnel widening in the portion of the tunnel with screw engagement compared to the pure PLLA screw, while the use of a β-TCP-containing screw resulted in greater tunnel enlargement in the proximal portion of the tunnel without screw engagement than use of a pure PLLA screw. Use of a β-TCP-containing interference screw in tibial aperture fixation reduced tunnel enlargement in the vicinity of the screw, whereas greater enlargement occurred proximal to the screw end relative to use of a pure PLLA interference screw. These paradoxical enlargements in use of β-TCP containing screws suggest that for reducing tunnel enlargement, the length of the interference screw should be as fit as possible with tunnel length in terms of using soft grafts. II, Prospectively comparative study. Retrospectively registered with ClinicalTrials.gov. (NCT02754674) , Date of trial registration: February 10, 2016.
Constructive and Destructive Interference in Nonadiabatic Tunneling via Conical Intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Changjian; Kendrick, Brian K.; Yarkony, David R.
As a manifestation of the molecular Aharonov–Bohm effect, tunneling-facilitated dissociation under a conical intersection (CI) requires the inclusion of the geometric phase (GP) to ensure a single-valued adiabatic wave function encircling the CI. Here, we demonstrate using a simple two-dimensional model that the GP induces destructive interference for vibrational states with even quanta in the coupling mode, but it leads to constructive interference for those with odd quanta. The interference patterns are manifested in tunneling wave functions and clearly affect the tunneling lifetime. Furthermore, we show that the inclusion of the diagonal Born–Oppenheimer correction is necessary for agreement with exactmore » results.« less
Constructive and Destructive Interference in Nonadiabatic Tunneling via Conical Intersections
Xie, Changjian; Kendrick, Brian K.; Yarkony, David R.; ...
2017-03-31
As a manifestation of the molecular Aharonov–Bohm effect, tunneling-facilitated dissociation under a conical intersection (CI) requires the inclusion of the geometric phase (GP) to ensure a single-valued adiabatic wave function encircling the CI. Here, we demonstrate using a simple two-dimensional model that the GP induces destructive interference for vibrational states with even quanta in the coupling mode, but it leads to constructive interference for those with odd quanta. The interference patterns are manifested in tunneling wave functions and clearly affect the tunneling lifetime. Furthermore, we show that the inclusion of the diagonal Born–Oppenheimer correction is necessary for agreement with exactmore » results.« less
NASA Technical Reports Server (NTRS)
Hebbar, K. S.; Melnik, W. L.
1976-01-01
An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall.
Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions
Nandkishore, Rahul; Levitov, Leonid
2011-01-01
Interference and tunneling are two signature quantum effects that are often perceived as the yin and yang of quantum mechanics: a particle simultaneously propagating along several distinct classical paths versus a particle penetrating through a classically inaccessible region via a single least-action path. Here we demonstrate that the Dirac quasiparticles in graphene provide a dramatic departure from this paradigm. We show that Zener tunneling in gapped bilayer graphene, which governs transport through p-n heterojunctions, exhibits common-path interference that takes place under the tunnel barrier. Due to a symmetry peculiar to the gapped bilayer graphene bandstructure, interfering tunneling paths form conjugate pairs, giving rise to high-contrast oscillations in transmission as a function of the gate-tunable bandgap and other control parameters of the junction. The common-path interference is solely due to forward-propagating waves; in contrast to Fabry–Pérot-type interference in resonant-tunneling structures, it does not rely on multiple backscattering. The oscillations manifest themselves in the junction I–V characteristic as N-shaped branches with negative differential conductivity. The negative dI/dV, which arises solely due to under-barrier interference, can enable new high-speed active-circuit devices with architectures that are not available in electronic semiconductor devices. PMID:21825159
Development of a process control computer device for the adaptation of flexible wind tunnel walls
NASA Technical Reports Server (NTRS)
Barg, J.
1982-01-01
In wind tunnel tests, the problems arise of determining the wall pressure distribution, calculating the wall contour, and controlling adjustment of the walls. This report shows how these problems have been solved for the high speed wind tunnel of the Technical University of Berlin.
An introduction to testing parachutes in wind tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.
1991-01-01
This paper reviews some of the technical considerations and current practices for testing parachutes in conventional wind tunnels. Special challenges to the experimentalist caused by the fabric construction, flexible geometry, and buff shape of parachutes are discussed. In particular, the topics of measurement technique, similarity considerations, and wall interference are addressed in a summary manner. Many references are cited which provide detailed coverage of the state of the art in testing methods. From the discussions presented, it is obvious that there are some serious problems with state of the art methods, especially in the area of canopy instrumentation and whenmore » working with reduced-scale models. But if the experimentalist is informed about the relative importance of the various factors for a specific test objective, it is usually possible to design a test that will yield meaningful results. The lower cost and the more favorable measurement environment of wind tunnels make their use an attractive alternative to flight testing whenever possible. 26 refs., 5 figs., 1 tab.« less
A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations
NASA Technical Reports Server (NTRS)
Ghosh, Amitabha
1997-01-01
This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunnel. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally some results of the current investigation are presented.
Numerical design of streamlined tunnel walls for a two-dimensional transonic test
NASA Technical Reports Server (NTRS)
Newman, P. A.; Anderson, E. C.
1978-01-01
An analytical procedure is discussed for designing wall shapes for streamlined, nonporous, two-dimensional, transonic wind tunnels. It is based upon currently available 2-D inviscid transonic and boundary layer analysis computer programs. Predicted wall shapes are compared with experimental data obtained from the NASA Langley 6 by 19 inch Transonic Tunnel where the slotted walls were replaced by flexible nonporous walls. Comparisons are presented for the empty tunnel operating at a Mach number of 0.9 and for a supercritical test of an NACA 0012 airfoil at zero lift. Satisfactory agreement is obtained between the analytically and experimentally determined wall shapes.
Mitigation of wind tunnel wall interactions in subsonic cavity flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.
In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less
Mitigation of wind tunnel wall interactions in subsonic cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...
2015-03-06
In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less
Self-contained instrument for measuring subterranean tunnel wall deflection
Rasmussen, Donald Edgar; Hof, Jr., Peter John
1978-01-01
The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.
Aeroelastic instability stoppers for wind tunnel models
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)
1981-01-01
A mechanism for diverting the flow in a wind tunnel from the wing of a tested model is described. The wing is mounted on the wall of a tunnel. A diverter plate is pivotally mounted on the tunnel wall ahead of the model. An actuator fixed to the tunnel is pivotably connected to the diverter plate, by plunger. When the model is about to become unstable during the test the actuator moves the diverter plate from the tunnel wall to divert maintaining stable model conditions. The diverter plate is then retracted to enable normal flow.
Study of the integration of wind tunnel and computational methods for aerodynamic configurations
NASA Technical Reports Server (NTRS)
Browne, Lindsey E.; Ashby, Dale L.
1989-01-01
A study was conducted to determine the effectiveness of using a low-order panel code to estimate wind tunnel wall corrections. The corrections were found by two computations. The first computation included the test model and the surrounding wind tunnel walls, while in the second computation the wind tunnel walls were removed. The difference between the force and moment coefficients obtained by comparing these two cases allowed the determination of the wall corrections. The technique was verified by matching the test-section, wall-pressure signature from a wind tunnel test with the signature predicted by the panel code. To prove the viability of the technique, two cases were considered. The first was a two-dimensional high-lift wing with a flap that was tested in the 7- by 10-foot wind tunnel at NASA Ames Research Center. The second was a 1/32-scale model of the F/A-18 aircraft which was tested in the low-speed wind tunnel at San Diego State University. The panel code used was PMARC (Panel Method Ames Research Center). Results of this study indicate that the proposed wind tunnel wall correction method is comparable to other methods and that it also inherently includes the corrections due to model blockage and wing lift.
Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box
NASA Astrophysics Data System (ADS)
Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti
2006-05-01
Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system’s unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder type detector for phase and charge.
Continuous-time monitoring of Landau-Zener interference in a cooper-pair box.
Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti
2006-05-12
Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system's unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder-type detector for phase and charge.
Macroscopic quantum interference from atomic tunnel arrays
Anderson; Kasevich
1998-11-27
Interference of atomic de Broglie waves tunneling from a vertical array of macroscopically populated traps has been observed. The traps were located in the antinodes of an optical standing wave and were loaded from a Bose-Einstein condensate. Tunneling was induced by acceleration due to gravity, and interference was observed as a train of falling pulses of atoms. In the limit of weak atomic interactions, the pulse frequency is determined by the gravitational potential energy difference between adjacent potential wells. The effect is closely related to the ac Josephson effect observed in superconducting electronic systems.
IETS and quantum interference: Propensity rules in the presence of an interference feature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykkebo, Jacob; Solomon, Gemma C., E-mail: gsolomon@nano.ku.dk; Gagliardi, Alessio
2014-09-28
Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low current or a particular line shape in current-voltage curves, depending on the position of the interference feature. Second, we consider how inelastic electron tunneling spectroscopy can be used to probe the presence of an interference feature by identifying vibrational modes that are selectively suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electronmore » tunneling spectroscopy to molecules with destructive quantum interference.« less
NASA Technical Reports Server (NTRS)
Ladson, Charles L.; Hill, Acquilla S.; Johnson, William G., Jr.
1987-01-01
Tests were conducted in the 2-D test section of the Langley 0.3-meter Transonic Cryogenic Tunnel on a NACA 0012 airfoil to obtain aerodynamic data as a part of the Advanced Technology Airfoil Test (ATAT) program. The test program covered a Mach number range of 0.30 to 0.82 and a Reynolds number range of 3.0 to 45.0 x 10 to the 6th power. The stagnation pressure was varied between 1.2 and 6.0 atmospheres and the stagnation temperature was varied between 300 K and 90 K to obtain these test conditions. Tabulated pressure distributions and integrated force and moment coefficients are presented as well as plots of the surface pressure distributions. The data are presented uncorrected for wall interference effects and without analysis.
Poehlsgaard, Jacob; Andersen, Niels M; Warrass, Ralf; Douthwaite, Stephen
2012-08-17
The veterinary antibiotic tildipirosin (20,23-dipiperidinyl-mycaminosyl-tylonolide, Zuprevo) was developed recently to treat bovine and swine respiratory tract infections caused by bacterial pathogens such as Pasteurella multocida. Tildipirosin is a derivative of the naturally occurring compound tylosin. Here, we define drug-target interactions by combining chemical footprinting with structure modeling and show that tildipirosin, tylosin, and an earlier tylosin derivative, tilmicosin (20-dimethylpiperidinyl-mycaminosyl-tylonolide, Micotil), bind to the same macrolide site within the large subunit of P. multocida and Escherichia coli ribosomes. The drugs nevertheless differ in how they occupy this site. Interactions of the two piperidine components, which are unique to tildipirosin, distinguish this drug from tylosin and tilmicosin. The 23-piperidine of tildipirosin contacts ribosomal residues on the tunnel wall while its 20-piperidine is oriented into the tunnel lumen and is positioned to interfere with the growing nascent peptide.
NASA Technical Reports Server (NTRS)
Montoya, L. C.; Banner, R. D.
1977-01-01
Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.
4. BASEMENT WALL BENEATH SOUTH PASSAGE SHOWING STEAM TUNNEL OPENING ...
4. BASEMENT WALL BENEATH SOUTH PASSAGE SHOWING STEAM TUNNEL OPENING IN SOUTH WALL. - Pennsylvania Railroad Station, South Baggage Passage & Canopy, 1101 Liberty Avenue, Pittsburgh, Allegheny County, PA
Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls
Zhou, Chenming
2017-01-01
At the ultrahigh frequencies common to portable radios, tunnels such as mine entries are often modeled by hollow dielectric waveguides. The roughness condition of the tunnel walls has an influence on radio propagation, and therefore should be taken into account when an accurate power prediction is needed. This paper investigates how wall roughness affects radio propagation in tunnels, and presents a unified ray tracing and modal method for modeling radio propagation in tunnels with rough walls. First, general analytical formulas for modeling the influence of the wall roughness are derived, based on the modal method and the ray tracing method, respectively. Second, the equivalence of the ray tracing and modal methods in the presence of wall roughnesses is mathematically proved, by showing that the ray tracing-based analytical formula can converge to the modal-based formula through the Poisson summation formula. The derivation and findings are verified by simulation results based on ray tracing and modal methods. PMID:28935995
105. VIEW NORTH FROM SLC3W CABLE TUNNEL INTO CABLE VAULT ...
105. VIEW NORTH FROM SLC-3W CABLE TUNNEL INTO CABLE VAULT AND SLC-3E CABLE TUNNEL. NOTE WOODEN PLANKING ON FLOOR OF TUNNEL AND CABLE TRAYS LINING TUNNEL WALLS. STAIRS ON EAST WALL OF CABLE VAULT LEAD INTO LANDLINE INSTRUMENTATION ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws.
Barber, F Alan; Dockery, William D
2008-04-01
The purpose of this study was to evaluate the long-term in vivo degradation of biodegradable interference screws made of poly-L-lactic acid (PLLA) and beta-tricalcium phosphate (beta-TCP). Twenty patients undergoing patellar tendon autograft anterior cruciate ligament reconstruction fixed at both the femur and tibia with beta-TCP-PLLA screws at least 44 months earlier were evaluated by physical, radiographic, and computed tomography (CT) evaluations. This study was approved by the institutional review board. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee scores were also obtained. CT data were measured in Hounsfield units. We evaluated 13 male and 7 female patients at a mean of 50 months after surgery (range, 44 to 56 months). CT scans and radiographs showed the bone plug fused to the tunnel wall with no beta-TCP-PLLA screw remaining. The screws were replaced with clearly calcified non-trabecular material, denser than soft tissue. Osteoconductivity was present in 75% of the tunnels and complete in 10%. No positive pivot-shift tests were found. Lysholm, Tegner, and Cincinnati scores improved from 60.4, 3.7, and 53.3, respectively, preoperatively to 90.8, 5.8, and 86.4, respectively, at follow-up. The mean side-to-side difference determined by use of the KT arthrometer (MEDmetric, San Diego, CA) was 0.4 mm. The beta-TCP-PLLA interference screw (Bilok; ArthroCare, Sunnyvale, CA) completely degraded, and no remnant was present 4 years after insertion. Osteoconductivity was confirmed by CT scans at 75% of the screw sites and completely filled the site in 10%. The addition of beta-TCP to PLLA results in a biocomposite interference screw that is osteoconductive. Level IV, therapeutic case series.
An experimental study of an adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Celik, Zeki; Roberts, Leonard
1988-01-01
A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.
Zhong, X; Cao, J C
2009-07-22
We study the combined effects of quantum electronic interference and Coulomb interaction on electron transport through near-degenerate molecular states with strong electron-vibration interaction. It is found that quantum electronic interference strongly affects the current and its noise properties. In particular, destructive interference induces pronounced negative differential conductances (NDCs) accompanying the vibrational excited states, and such NDC characters are not related to asymmetric tunnel coupling and are robust to the damping of a thermal bath. In a certain transport regime, the non-equilibrium vibration distribution even shows a peculiar sub-Poissonian behavior, which is enhanced by quantum electronic interference.
NASA Astrophysics Data System (ADS)
Carlotti, Marco; Kovalchuk, Andrii; Wächter, Tobias; Qiu, Xinkai; Zharnikov, Michael; Chiechi, Ryan C.
2016-12-01
Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven interference effects by examining through-space conjugation in which π-conjugated fragments are arranged face-on or edge-on in sufficiently close proximity to interact through space. Observing these effects in the latter requires trapping molecules in a non-equilibrium conformation closely resembling the X-ray crystal structure, which we accomplish using self-assembled monolayers to construct bottom-up, large-area tunnelling junctions. In contrast, interference effects are completely absent in zero-bias simulations on the equilibrium, gas-phase conformation, establishing through-space conjugation as both of fundamental interest and as a potential tool for tuning tunnelling charge-transport in large-area, solid-state molecular-electronic devices.
Space shuttle solid rocket booster sting interference wind tunnel test analysis
NASA Technical Reports Server (NTRS)
Conine, B.; Boyle, W.
1981-01-01
Wind tunnel test results from shuttle solid rocket booster (SRB) sting interference tests were evaluated, yielding the general influence of the sting on the normal force and pitching moment coefficients and the side force and yawing moment coefficients. The procedures developed to determine the sting interference, the development of the corrected aerodynamic data, and the development of a new SRB aerodynamic mathematical model are documented.
Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.; Bennett, Robert M.
2007-01-01
Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1983-01-01
A program called FLEXWAL for calculating wall modifications for solid, adaptive-wall wind tunnels is presented. The method used is the iterative technique of NASA TP-2081 and is applicable to subsonic and transonic test conditions. The program usage, program listing, and a sample case are given.
An experimental comparison of two adaptation strategies in an adaptive-walls wind-tunnel
NASA Astrophysics Data System (ADS)
Russo, G. P.; Zuppardi, G.; Basciani, M.
1995-08-01
In the present work an experimental comparison is made between two adaptation strategies: the Judd's method and the Everhart's method. A NACA 0012 airfoil has been tested at Mach numbers up to 0.4: models with chords up to 200 mm have been tested in a 200 mm × 200 mm test section. The two strategies, though based on different theoretical approaches, show a fairly good agreement as far as c p distribution on the model, lift and drag curves and residual interference are concerned and agree, in terms of lift curve slope and drag coefficient at zero lift, with the McCroskey correlation.
Support interference of wind tunnel models: A selective annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Gloss, B. B.
1981-01-01
This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included.
Support interference of wind tunnel models: A selective annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Lawing, P. L.
1984-01-01
This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included.
Interference of Wing and Fuselage from Tests of 209 Combinations in the NACA Variable-Density Tunnel
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Ward, Kenneth E
1936-01-01
This report presents the results of tests of 209 simple wing-fuselage combinations made in the NACA variable-density wind tunnel to provide information regarding the effects of aerodynamic interference between wings and fuselages at a large value of Reynolds number.
NASA Technical Reports Server (NTRS)
Allmaras, S. R.
1986-01-01
The Wall-Pressure Signature Method for correcting low-speed wind tunnel data to free-air conditions has been revised and improved for two-dimensional tests of bluff bodies. The method uses experimentally measured tunnel wall pressures to approximately reconstruct the flow field about the body with potential sources and sinks. With the use of these sources and sinks, the measured drag and tunnel dynamic pressure are corrected for blockage effects. Good agreement is obtained with simpler methods for cases in which the blockage corrections were about 10% of the nominal drag values.
NASA Technical Reports Server (NTRS)
Ashby, George C.
1988-01-01
An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.
Calculations of Wall Effects on Propeller Noise
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Eversman, Walter
1987-01-01
Reverberations affect sound levels in wind tunnels. Report describes calculations of acoustic field of propeller in wind tunnel having walls of various degrees of softness. Understanding provided by this and related studies necessary for correct interpretation of wind-tunnel measurements of noise generated by high speed, highly loaded, multiple-blade turbopropellers.
Coherent destruction of tunneling in chaotic microcavities via three-state anti-crossings
Song, Qinghai; Gu, Zhiyuan; Liu, Shuai; Xiao, Shumin
2014-01-01
Coherent destruction of tunneling (CDT) has been one seminal result of quantum dynamics control. Traditionally, CDT is understood as destructive interference between two intermediate transition paths near the level crossing. CDT near the level anti-crossings, especially the “locking”, has not been thoroughly explored so far. Taking chaotic microcavity as an example, here we study the inhibition of the tunneling via the strong couplings of three resonances. While the tunneling rate is only slightly affected by each strong coupling between two modes, the destructive interference between two strong couplings can dramatically improve the inhibition of the tunneling. A “locking” point, where dynamical tunneling is completely suppressed, has even been observed. We believe our finding will shed light on researches on micro- & nano-photonics. PMID:24781881
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Bobbitt, Percy J.
1994-01-01
The results of detailed parametric experiments are presented for the near-wall flow field of a longitudinally slotted transonic wind tunnel. Existing data are reevaluated and new data obtained in the Langley 6- by 19-inch Transonic Wind Tunnel are presented and analyzed. In the experiments, researchers systematically investigate many pertinent wall-geometry variables such as the wall openness and the number of slots along with the free stream Mach number and model angle of attack. Flow field surveys on the plane passing through the centerline of the slot were conducted and are presented. The effects of viscosity on the slot flow are considered in the analysis. The present experiments, combined with those of previous investigations, give a more complete physical characterization of the flow near and through the slotted wall of a transonic wind tunnel.
Thaunat, Mathieu; Nourissat, Geoffroy; Gaudin, Pascal; Beaufils, Philippe
2006-06-01
We report a case of tibial plateau fracture after previous anterior cruciate ligament (ACL) reconstruction using patellar tendon autograft and bioabsorbable screws 4 years previously. The fracture occurred through the tibial tunnel. The interference screw had undergone complete resorption and the tunnel widening had increased. The resorption of the interference screw did not simultaneously promote and foster the growth of surrounding bone tissue. Therefore, the area of reactive tissue left by the screw resorption in an enlarged bone tunnel may lead to vulnerability of the tibial plateau. Stress risers would occur following ACL reconstruction if either resorption is not complete or bony integration is not complete.
Supersonic Retropropulsion Experimental Results from the NASA Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.; Player, Charles J.
2011-01-01
A new supersonic retropropulsion experimental effort, intended to provide code validation data, was recently completed in the Langley Research Center Unitary Plan Wind Tunnel Test Section 2 over the Mach number range from 2.4 to 4.6. The experimental model was designed using insights gained from pre-test computations, which were instrumental for sizing and refining the model to minimize tunnel wall interference and internal flow separation concerns. A 5-in diameter 70-deg sphere-cone forebody with a roughly 10-in long cylindrical aftbody was the baseline configuration selected for this study. The forebody was designed to accommodate up to four 4:1 area ratio supersonic nozzles. Primary measurements for this model were a large number of surface pressures on the forebody and aftbody. Supplemental data included high-speed Schlieren video and internal pressures and temperatures. The run matrix was developed to allow for the quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and bias errors due to flow field or model misalignments. Preliminary results and observations from the test are presented, while detailed data and uncertainty analyses are ongoing.
Choi, Chong Hyuk; Kim, Sung-Jae; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Eom, Nam-Kyu; Jung, Min
2018-01-01
The purpose of this study was to find appropriate flexion angle and transverse drill angle for optimal femoral tunnels of anteromedial (AM) bundle and posterolateral (PL) bundle in double-bundle ACL reconstruction using transportal technique. Thirty three-dimensional knee models were reconstructed. Knee flexion angles were altered from 100° to 130° at intervals of 10°. Maximum transverse drill angle (MTA), MTA minus 10° and 20° were set up. Twelve different tunnels were determined by four flexion angles and three transverse drill angles for each bundle. Tunnel length, wall breakage, inter-tunnel communication and graft-bending angle were assessed. Mean tunnel length of AM bundle was >30mm at 120° and 130° of flexion in all transverse drill angles. Mean tunnel length of PL bundle was >30mm during every condition. There were ≥1 cases of wall breakage except at 120° and 130° of flexion with MTA for AM bundle. There was no case of wall breakage for PL bundle. Considering inter-tunnel gap of >2mm without communication and obtuse graft-bending angle, 120° of flexion and MTA could be recommended as optimal condition for femoral tunnels of AM and PL bundles. Flexion angle and transverse drill angle had combined effect on femoral tunnel in double-bundle ACL reconstruction using transportal technique. Achieving flexion angle of 120° and transverse drill angle close to the medial femoral condyle could be recommended as optimal condition for femoral tunnels of AM and PL bundles to avoid insufficient tunnel length, wall breakage, inter-tunnel communication and acute graft-bending angle. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sherman, Albert
1939-01-01
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment to the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angel and as losses in the tail. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for a complete combination.
NASA Technical Reports Server (NTRS)
House, Rufus O; Wallace, Arthur R
1941-01-01
Report presents the results of a wind-tunnel investigation of the effect of wing-fuselage interference on lateral-stability characteristics made in the NACA 7 by 10-foot wind tunnel on four fuselages and two fins, representing high-wing, low-wing, and midwing monoplanes. The fuselages are of circular and elliptical cross section. The wings have rounded tips and, in plan form, one is rectangular and the three are tapered 3:1 with various amounts of sweep. The rate of change in the coefficients of rolling moment, yawing moment, and lateral force with angle of yaw is given in a form to show the increment caused by wing-fuselage interference for the model with no fin and the effect of wing-fuselage interference on fin effectiveness. Results for the fuselage-fin combination and the wing tested alone are also given.
Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle
NASA Technical Reports Server (NTRS)
Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2017-01-01
As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.
Interconnected magnetic tunnel junctions for spin-logic applications
NASA Astrophysics Data System (ADS)
Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.
Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il
2017-01-01
This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.
Resonant tunneling across a ferroelectric domain wall
NASA Astrophysics Data System (ADS)
Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.
2018-04-01
Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.
Measurement and Control of the Variability of Scanning Pressure Transducer Measurements
NASA Technical Reports Server (NTRS)
Kuhl, David D.; Everhart, Joel L.; Hallissy, James B.
2003-01-01
This paper describes the new wall pressure measurement system and data-quality monitoring software installed at 14x22 Ft subsonic tunnel at the NASA Langley Research Center. The monitoring software was developed to enable measurement and control of the variability of the reference pressures and approximately 400 tunnel wall pressure measurements. Variability of the system, based upon data acquired over a year of wind tunnel tests and calibrations, is presented. The level of variation of the wall pressure measurements is shown to be predictable.
Tunneling decay of false domain walls: The silence of the lambs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haberichter, Mareike, E-mail: M.Haberichter@kent.ac.uk; School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF; MacKenzie, Richard, E-mail: richard.mackenzie@umontreal.ca
We study the decay of “false” domain walls, that is, metastable states of the quantum theory where the true vacuum is trapped inside the wall with the false vacuum outside. We consider a theory with two scalar fields, a shepherd field and a field of sheep. The shepherd field serves to herd the solitons of the sheep field so that they are nicely bunched together. However, quantum tunnelling of the shepherd field releases the sheep to spread out uncontrollably. We show how to calculate the tunnelling amplitude for such a disintegration.
NASA Technical Reports Server (NTRS)
Sherman, Albert
1939-01-01
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment of the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angle and as losses in the tail effectiveness and varies with the geometry of the combination. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for complete combination.
The DELTA MONSTER: An RPV designed to investigate the aerodynamics of a delta wing platform
NASA Technical Reports Server (NTRS)
Connolly, Kristen; Flynn, Mike; Gallagher, Randy; Greek, Chris; Kozlowski, Marc; Mcdonald, Brian; Mckenna, Matt; Sellar, Rich; Shearon, Andy
1989-01-01
The mission requirements for the performance of aerodynamic tests on a delta wind planform posed some problems, these include aerodynamic interference; structural support; data acquisition and transmission instrumentation; aircraft stability and control; and propulsion implementation. To eliminate the problems of wall interference, free stream turbulence, and the difficulty of achieving dynamic similarity between the test and actual flight aircraft that are associated with aerodynamic testing in wind tunnels, the concept of the remotely piloted vehicle which can perform a basic aerodynamic study on a delta wing was the main objective for the Green Mission - the Delta Monster. The basic aerodynamic studies were performed on a delta wing with a sweep angle greater than 45 degrees. These tests were performed at various angles of attack and Reynolds numbers. The delta wing was instrumented to determine the primary leading edge vortex formation and location, using pressure measurements and/or flow visualization. A data acquisition system was provided to collect all necessary data.
NASA Technical Reports Server (NTRS)
Sakakibara, S.; Miwa, H.; Kayaba, S.; Sato, M.
1986-01-01
Presented is a description of the design construction and performance of the exhaust silencer for the NAL high Reynolds number two-dimensional transonic blow down wind tunnel, which was completed in October 1979. The silencer is a two-storied construction made of reinforced concrete, 40 m. long, 10 m. wide and 19 m. high and entirely enclosed by thick concrete walls. The upstream part of the first story, particularly, is covered with double walls, the thickness of the two walls being 0.3 m. (inner wall) and 0.2 m. (outer wall), respectively. A noise reduction system using three kinds of parallel baffles and two kinds of lined bends is adopted for the wind tunnel exhaust noise.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.
1986-01-01
Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a 'Gutin' propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.
1986-01-01
Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.
Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-il
2017-01-01
This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel’s global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point’s plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel. PMID:28141829
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M.
1978-01-01
The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.; Goodyer, M. J.
1982-01-01
Operation of the Transonic Self-Streamlining Wind Tunnel (TSWT) involved on-line data acquisition with automatic wall adjustment. A tunnel run consisted of streamlining the walls from known starting contours in iterative steps and acquiring model data. Each run performs what is described as a streamlining cycle. The associated software is presented.
NASA Technical Reports Server (NTRS)
Barger, R. L.
1981-01-01
Wave-induced resonance associated with the geometry of wind-tunnel test sections can occur. A theory that uses acoustic impedance concepts to predict resonance modes in a two dimensional, slotted wall wind tunnel with a plenum chamber is described. The equation derived is consistent with known results for limiting conditions. The computed resonance modes compare well with appropriate experimental data. When the theory is applied to perforated wall test sections, it predicts the experimentally observed closely spaced modes that occur when the wavelength is not long compared with he plenum depth.
Empty test section streamlining of the transonic self-streamlining wind tunnel fitted with new walls
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1988-01-01
The original flexible top and bottom walls of the Transonic Self-Streamlining Wind Tunnel (TSWT), at the University of Southampton, have been replaced with new walls featuring a larger number of static pressure tappings and detailed mechanical improvements. This report describes the streamling method, results, and conclusions of a series of tests aimed at defining sets of aerodynamically straight wall contours for the new flexible walls. This procedure is a necessary prelude to model testing. The quality of data obtained compares favorably with the aerodynamically straight data obtained with the old walls. No operational difficulties were experienced with the new walls.
Failure mechanism of shear-wall dominant multi-story buildings
Yuksel, S.B.; Kalkan, E.
2008-01-01
The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.
NASA Astrophysics Data System (ADS)
Yue, Y.; Jiang, T.; Zhou, Q.
2017-12-01
In order to ensure the rationality and the safety of tunnel excavation, the advanced geological prediction has been become an indispensable step in tunneling. However, the extraction of signal and the separation of P and S waves directly influence the accuracy of geological prediction. Generally, the raw data collected in TSP system is low quality because of the numerous disturb factors in tunnel projects, such as the power interference and machine vibration interference. It's difficult for traditional method (band-pass filtering) to remove interference effectively as well as bring little loss to signal. The power interference, machine vibration interference and the signal are original variables and x, y, z component as observation signals, each component of the representation is a linear combination of the original variables, which satisfy applicable conditions of independent component analysis (ICA). We perform finite-difference simulations of elastic wave propagation to synthetic a tunnel seismic reflection record. The method of ICA was adopted to process the three-component data, and the results show that extract the estimates of signal and the signals are highly correlated (the coefficient correlation is up to more than 0.93). In addition, the estimates of interference that separated from ICA and the interference signals are also highly correlated, and the coefficient correlation is up to more than 0.99. Thus, simulation results showed that the ICA is an ideal method for extracting high quality data from mixed signals. For the separation of P and S waves, the conventional separation techniques are based on physical characteristics of wave propagation, which require knowledge of the near-surface P and S waves velocities and density. Whereas the ICA approach is entirely based on statistical differences between P and S waves, and the statistical technique does not require a priori information. The concrete results of the wave field separation will be presented in the meeting. In summary, we can safely draw the conclusion that ICA can not only extract high quality data from the mixed signals, but also can separate P and S waves effectively.
Turbulence and modeling in transonic flow
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.; Viegas, John R.
1989-01-01
A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it.
Interference Heating to Cavities Between Simulated RSI Tiles
NASA Technical Reports Server (NTRS)
Johnson, C. B.
1973-01-01
Test results for full scale simulated surface insulation tiles on both the tunnel wall and in the free stream, for in-line and staggered tile orientations, are summarized as follows: (1) The staggered tile orientation has heating on the forward face which is a factor of 4.5 times higher than the heating to the forward face of the in-line tile orientation; (2) the longitudinal gap heating was the highest for the 0.3175 cm gap and the lowest for the 0.1587 cm gap; and (3) there was an order of magnitude decrease in the heating on the forward face of a spanwise gap when the gap size was decreased from 0.3175 cm to 0.1587 cm.
NASA Technical Reports Server (NTRS)
Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward
1989-01-01
The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
NASA Technical Reports Server (NTRS)
Wells, O. D.; Lopez, M. L.; Welge, H. R.; Henne, P. A.; Sewell, A. E.
1977-01-01
Results of analytical calculations and wind tunnel tests at cruise speeds of a representative four engine short haul aircraft employing upper surface blowing (USB) with a supercritical wing are discussed. Wind tunnel tests covered a range of Mach number M from 0.6 to 0.78. Tests explored the use of three USB nozzle configurations. Results are shown for the isolated wing body and for each of the three nozzle types installed. Experimental results indicate that a low angle nacelle and streamline contoured nacelle yielded the same interference drag at the design Mach number. A high angle powered lift nacelle had higher interference drag primarily because of nacelle boattail low pressures and flow separation. Results of varying the spacing between the nacelles and the use of trailing edge flap deflections, wing upper surface contouring, and a convergent-divergent nozzle to reduce potential adverse jet effects were also discussed. Analytical comparisons with experimental data, made for selected cases, indicate favorable agreement.
Molecular reorientation in assembled CO structures and contrast inversion in STM
NASA Astrophysics Data System (ADS)
Niemi, Eeva; Nieminen, Jouko
2004-10-01
Recent scanning tunneling microscopy experiments [S. Zöphel, J. Repp, G. Meyer, K.-H. Rieder, Chem. Phys. Lett. 310 (1999) 145; A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Science 298 (2002) 1381] for CO on Cu(1 1 1) and Cu(2 1 1) surfaces show CO monomers as dark depressions, whereas dimers and trimers appear as bright patterns. The dark image of a monomer has been shown to result from a destructive interference between two tunneling paths [J. Nieminen, E. Niemi, K.-H. Rieder, Surf. Sci. 552 (2004) L47]. In this Letter, we show how switching between tunneling channels within the through molecule path can be induced by reorientation of a molecule. Hence, a destructive interference between through vacuum and through molecule paths can be reversed into constructive interference by manipulating the adsorbate geometry.
Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption
NASA Astrophysics Data System (ADS)
Peng, Yandong; Yang, Aihong; Chen, Bing; Li, Lei; Liu, Shande; Guo, Hongju
2016-10-01
A tunable, narrow absorption spectrum induced by resonant tunneling is demonstrated and proposed for measuring interdot tunneling. Tunneling-induced absorption (TIA) arises from constructive interference between different transition paths, and the large nonlinear TIA significantly enhances the total absorption. The narrow nonlinear TIA spectrum is sensitive to inter-dot tunneling, and its sensor characteristics, including sensitivity and bandwidth, are investigated in weak-coupling and strong-coupling regimes, respectively.
Pros and cons of multistory RC tunnel-form (box-type) buildings
Kalkan, E.; Yuksel, S.B.
2008-01-01
Tunnel-form structural systems (i.e., box systems), having a load-carrying mechanism composed of reinforced concrete (RC) shear walls and slabs only, have been prevailingly utilized in the construction of multistory residential units. The superiority of tunnel-form buildings over their conventional counterparts stems from the enhanced earthquake resistance they provide, and the considerable speed and economy of their construction. During recent earthquakes in Turkey, they exhibited better seismic performance in contrast to the damaged condition of a number of RC frames and dual systems (i.e., RC frames with shear wall configurations). Thus the tunnel-form system has become a primary construction technique in many seismically active regions. In this paper, the strengths and weaknesses of tunnel-form buildings are addressed in terms of design considerations and construction applications. The impacts of shear wall reinforcement ratio and its detailing on system ductility, loadcarrying capacity and failure mechanism under seismic forces are evaluated at section and global system levels. Influences of tension/compression coupling and wall openings on the response are also discussed. Three-dimensional nonlinear finite element models, verified through comparisons with experimental results, were used for numerical assessments. Findings from this projection provide useful information on adequate vertical reinforcement ratio and boundary reinforcement to achieve enhanced performance of tunnel-form buildings under seismic actions. Copyright ?? 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Yao, Jie; Kuang, Guan-Ming; Wong, Duo Wai-Chi; Niu, Wen-Xin; Zhang, Ming; Fan, Yu-Bo
2014-04-01
Postoperative tunnel enlargement has been frequently reported after anterior cruciate ligament (ACL) reconstruction. Interference screw, as a surgical implant in ACL reconstruction, may influence natural loading transmission and contribute to tunnel enlargement. The aims of this study are (1) to quantify the alteration of strain energy den sity (SED) distribution after the anatomic single-bundle ACL reconstruction; and (2) to characterize the influence of screw length and diameter on the degree of the SED alteration. A validated finite element model of human knee joint was used. The screw length ranging from 20 to 30mm with screw diameter ranging from 7 to 9 mm were investigated. In the post-operative knee, the SED increased steeply at the extra-articular tunnel aperture under compressive and complex loadings, whereas the SED decreased beneath the screw shaft and nearby the intra-articular tunnel aperture. Increasing the screw length could lower the SED deprivation in the proximal part of the bone tunnel; whereas increasing either screw length or diameter could aggravate the SED deprivation in the distal part of the bone tunnel. Decreasing the elastic modulus of the screw could lower the bone SED deprivation around the screw. In consideration of both graft stability and SED alteration, a biodegradable interference screw with a long length is recommended, which could provide a beneficial mechanical environment at the distal part of the tunnel, and meanwhile decrease the bone-graft motion and synovial fluid propagation at the proximal part of the tunnel. These findings together with the clinical and histological factors could help to improve surgical outcome, and serve as a preliminary knowledge for the following study of biodegradable interference screw. [Figure not available: see fulltext.
Hunt, Patrick; Rehm, Oliver; Weiler, Andreas
2006-12-01
Using soft tissue grafts for anterior cruciate ligament (ACL) reconstruction, insertion site healing plays a crucial role in the long-term fate of the graft. It has been shown in an experimental animal study that using a soft tissue graft and anatomic graft fixation, a direct ligamentous insertion alike the native ACL developed 24 weeks postoperatively. Yet there are no reports on the long-term insertion site healing of anatomically fixed soft tissue grafts. The objective of this study was to evaluate graft insertion site healing, the intra-tunnel fate of the graft and its osseous replacement 2 years after ACL reconstruction in sheep. The left ACLs of six sheep were replaced by an autologous flexor tendon split graft and anatomically fixed with biodegradable poly-(D, L-lactide) interference screws. Animals received polychromic sequential labeling at different points in time to determine bone apposition per period. For evaluation of the insertion site healing and intra-tunnel changes, MRI scans were taken in vivo. Following sacrifice, radiographic imaging, conventional histology and fluorescence microscopy was undertaken. Most of the specimens showed a wide direct ligamentous insertion. It showed patterns alike the direct ligament insertion seen in intact ACLs. The intra-tunnel part of the graft had completely lost its tendon-like structure and in two cases, it was separated from the graft insertion by a thick bony layer. The biodegradable interference screw was fully degraded in all specimens. Ossification of the former drill tunnels was intense, showing only partial-length tunnel remnants in one femoral and three tibial specimens. As the graft heals to the joint surface and the aperture site is closed with soft tissue, mechanical stress of the intra-tunnel part of the graft is eliminated and the bone tunnel is protected from synovial fluid, resulting in osseous bridging of the tunnel aperture site, accelerated intra-tunnel graft resorption and its osseous replacement.
A simplified method for calculating temperature time histories in cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.; Lamb, M.
1976-01-01
Average temperature time history calculations of the test media and tunnel walls for cryogenic wind tunnels have been developed. Results are in general agreement with limited preliminary experimental measurements obtained in a 13.5-inch pilot cryogenic wind tunnel.
Characterization of frictional interference in closely-spaced reinforcements in MSE walls.
DOT National Transportation Integrated Search
2014-09-01
This research addresses one of several knowledge gaps in the understanding of tall MSE wall behavior: prediction of reinforcement loads impacted by frictional interference of closely-spaced reinforcements associated with tall walls.
Estimation of tunnel blockage from wall pressure signatures: A review and data correlation
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Wilsden, D. J.; Lilley, D. E.
1979-01-01
A method is described for estimating low speed wind tunnel blockage, including model volume, bubble separation and viscous wake effects. A tunnel-centerline, source/sink distribution is derived from measured wall pressure signatures using fast algorithms to solve the inverse problem in three dimensions. Blockage may then be computed throughout the test volume. Correlations using scaled models or tests in two tunnels were made in all cases. In many cases model reference area exceeded 10% of the tunnel cross-sectional area. Good correlations were obtained regarding model surface pressures, lift drag and pitching moment. It is shown that blockage-induced velocity variations across the test section are relatively unimportant but axial gradients should be considered when model size is determined.
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Berry, Scott A.; Hamilton, H. Harris
2001-01-01
An experimental investigation was conducted on a 5-degree-half-angle cone with a flare in a conventional Mach 6 wind tunnel to examine the effect of facility noise on boundary layer transition. The effect of tunnel noise was inferred by comparing transition onset locations determined from the present test to that previously obtained in a Mach 6 quiet tunnel. Together, the two sets of experiments are believed to represent the first direct comparison of transition onset between a conventional and a quiet hypersonic wind tunnel using a common test model. In the present conventional hypersonic tunnel experiment, adiabatic wall temperatures were measured and heat transfer distributions were inferred on the cone flare model at zero degree angle of attack over a range of length Reynolds numbers (2 x 10(exp 6) to 10 x 10(exp 6)) which resulted in laminar and turbulent flow. Wall-to-total temperature ratio for the transient heating measurements and the adiabatic wall temperature measurements were 0.69 and 0.86, respectively. The cone flare nosetip radius was varied from 0.0001 to 0.125-inch to examine the effects of bluntness on transition onset. At comparable freestream conditions the transition onset Reynolds number obtained on the cone flare model in the conventional "noisy" tunnel was approximately 25% lower than that measured in the low disturbance tunnel.
2015-09-28
release. Rotary encoder Brushless servo motor Wind tunnel bottom wall Stainless steel shaft Shaft coupling Wind tunnel top wall Titanium flat plate...illustrating the flat plate mounted to a virtual spring-damper system in the wind tunnel test section. 2 DISTRIBUTION A: Distribution approved for...non-dimensional ratios. For example the non-dimensional stiffness, k∗ = 2k/(ρU2∞c 2h), can be kept constant even if the wind speed, U∞, chord, c, and
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.
NASA Astrophysics Data System (ADS)
Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger
2018-06-01
Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.
Experimental Investigation of Wind-Tunnel Interference on the Downwash Behind an Airfoil
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1937-01-01
The interference of the wind-tunnel boundaries on the downwash behind an airfoil has been experimentally investigated and the results have been compared with the available theoretical results for open-throat wind tunnels. As in previous studies, the simplified theoretical treatment that assumes the test section to be an infinite free jet has been shown to be satisfactory at the lifting line. The experimental results, however, show that this assumption may lead to erroneous conclusions regarding the corrections to be applied to the downwash in the region behind the airfoil where the tail surfaces are normally located. The results of a theory based on the more accurate concept of the open-jet wind tunnel as a finite length of free jet provided with a closed exit passage are in good qualitative agreement with the experimental results.
Coleman-de Luccia instanton in dRGT massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-li; Saito, Ryo; Yeom, Dong-han
2014-02-01
We study the Coleman-de Luccia (CDL) instanton characterizing the tunneling from a false vacuum to the true vacuum in a semi-classical way in dRGT (deRham-Gabadadze-Tolley) massive gravity theory, and evaluate the dependence of the tunneling rate on the model parameters. It is found that provided with the same physical Hubble parameters for the true vacuum H{sub T} and the false vacuum H{sub F} as in General Relativity (GR), the thin-wall approximation method implies the same tunneling rate as GR. However, deviations of tunneling rate from GR arise when one goes beyond the thin-wall approximation and they change monotonically until themore » Hawking-Moss (HM) case. Moreover, under the thin-wall approximation, the HM process may dominate over the CDL one if the value for the graviton mass is larger than the inverse of the radius of the bubble.« less
Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer
NASA Technical Reports Server (NTRS)
Beckwith, I. E.; Harvey, W. D.; Harris, J. E.; Holley, B. B.
1973-01-01
One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented.
Characterization of the Test Section Walls at the 14- by 22-Foot Subsonic Tunnel
NASA Technical Reports Server (NTRS)
Lunsford, Charles B.; Graves, Sharon S.
2003-01-01
The test section walls of the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel are known to move under thermal and pressure loads. Videogrammetry was used to measure wall motion during the summer of 2002. In addition, a laser distancemeter was used to measure the relative distance between the test section walls at a single point. Distancemeter and videogrammetry results were consistent. Data were analyzed as a function of temperature and pressure to determine their effects on wall motion. Data were collected between 50 and 100 F, 0 and 0.315 Mach, and dynamic pressures of 0 and 120 psf. The overall motion of each wall was found to be less than 0.25 in. and less than facility personnel anticipated. The results show how motion depends on the temperature and pressure inside the test section as well is the position of the boundary layer vane. The repeatability of the measurements was +/-0.06 in. This report describes the methods used to record the motion of the test section walls and the results of the data analysis. Future facility plans include the development of a suitable wall restraint system and the determination of the effects of the wall motion on tunnel calibration.
Sidewall Mach Number Distributions for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Florance, James R.; Rivera, Jose A., Jr.
2001-01-01
The Transonic Dynamics Tunnel(TDT) was recalibrated due to the conversion of the heavy gas test medium from R-12 to R-134a. The objectives of the tests were to determine the relationship between the free-stream Mach number and the measured test section Mach number, and to quantify any necessary corrections. Other tests included the measurement of pressure distributions along the test-section walls, test-section centerline, at certain tunnel stations via a rake apparatus, and in the tunnel settling chamber. Wall boundary layer, turbulence, and flow angularity measurements were also performed. This paper discusses the determination of sidewall Mach number distributions.
Digital control of wind tunnel magnetic suspension and balance systems
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.
1987-01-01
Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Jeracki, Robert J.
1988-01-01
An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.
Exchange interaction and the tunneling induced transparency in coupled quantum dots
NASA Astrophysics Data System (ADS)
Borges, Halyne; Alcalde, Augusto; Ulloa, Sergio
2014-03-01
Stacked semiconductor quantum dots coupled by tunneling are unique ``quantum molecule'' where it is possible to create a multilevel structure of excitonic states. This structure allows the investigation of quantum interference processes and their control via electric external fields. In this work, we investigate the optical response of a quantum molecule coherently driven by a polarized laser, considering the splitting in excitonic levels caused by isotropic and anisotropic exchange interactions. In our model we consider interdot transitions mediated by the the hole tunneling between states with the same total spin and, between bright and dark exciton states. Using realistic experimental parameters, we demonstrate that the excitonic states coupled by tunneling exhibit an enriched and controllable optical response. Our results show that through the appropriate control of the external electric field and light polarization, the tunneling coupling establishes an efficient destructive quantum interference path that creates a transparency window in the absorption spectra, whenever states of appropriate symmetry are mixed by the hole tunneling. We explore the relevant parameters space that would allows with the experiments. CAPES, INCT-IQ and MWN/CIAM-NSF.
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Beckwith, I. E.; Chen, F. J.
1985-01-01
An investigation at Mach 3.5 into the effects of nozzle wall roughness on free stream pressure fluctuations and cone transition Reynolds numbers was conducted in the pilot low disturbance tunnel at the Langley Research Center. Nozzle wall roughness caused by either particle deposits or imperfections in surface finish increased free stream noise levels and reduced the transition Reynolds numbers on a cone mounted in the test rhombus.
NASA Astrophysics Data System (ADS)
Han, Meng; Ge, Peipei; Shao, Yun; Liu, Ming-Ming; Deng, Yongkai; Wu, Chengyin; Gong, Qihuang; Liu, Yunquan
2017-08-01
We measure photoelectron momentum distributions of Ar atoms in orthogonally polarized two-color laser fields with comparable intensities. The synthesized laser field is used to manipulate the oscillating tunneling barrier and the subsequent motion of electrons onto two spatial dimensions. The subcycle structures associated with the temporal double-slit interference are spatially separated and enhanced. We use such a spatiotemporal interferometer to reveal sub-barrier phase of strong-field tunneling ionization. This study shows that the tunneling process transfers the initial phase onto momentum distribution. Our work has the implication that the sub-barrier phase plays an indispensable role in photoelectron interference processes.
NASA Technical Reports Server (NTRS)
Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.
1974-01-01
The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.
Shielding synchrotron light sources: Advantages of circular shield walls tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less
Shielding synchrotron light sources: Advantages of circular shield walls tunnels
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.
2016-04-26
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less
NASA Technical Reports Server (NTRS)
Ferri, A.; Roffe, G.
1975-01-01
A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.
Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li
2017-06-01
Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the biomechanical stability and strength of the vertebral body. A large diameter of screw tunnel and thick tunnel wall were helpful for the biomechanical stability of the vertebral body.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1978-01-01
Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.
Improving Station Performance by Building Isolation Walls in the Tunnel
NASA Astrophysics Data System (ADS)
Jia, Yan; Horn, Nikolaus; Leohardt, Roman
2014-05-01
Conrad Observatory is situated far away from roads and industrial areas on the Trafelberg in Lower Austria. At the end of the seismic tunnel, the main seismic instrument of the Observatory with a station code CONA is located. This station is one of the most important seismic stations in the Austrian Seismic Network (network code OE). The seismic observatory consists of a 145m long gallery and an underground laboratory building with several working areas. About 25 meters away from the station CONA, six temporary seismic stations were implemented for research purposes. Two of them were installed with the same equipment as CONA, while the remaining four stations were set up with digitizers having lower noise and higher resolution (Q330HR) and sensors with the same type (STS-2). In order to prevent possible disturbances by air pressure and temperature fluctuation, three walls were built inside of the tunnel. The first wall is located ca 63 meters from the tunnel entrance, while a set of double walls with a distance of 1.5 meters is placed about 53 meters from the first isolation wall but between the station CONA and the six temporary stations. To assess impact of the isolation walls on noise reduction and detection performance, investigations are conducted in two steps. The first study is carried out by comparing the noise level and detection performance between the station CONA behind the double walls and the stations in front of the double walls for verifying the noise isolation by the double walls. To evaluate the effect of the single wall, station noise level and detection performance were studied by comparing the results before and after the installation of the wall. Results and discussions will be presented. Additional experiment is conducted by filling insulation material inside of the aluminium boxes of the sensors (above and around the sensors). This should help us to determine an optimal insulation of the sensors with respect to pressure and temperature fluctuations.
Su, Ting; Cheng, Jingdong; Sohmen, Daniel; Hedman, Rickard; Berninghausen, Otto; von Heijne, Gunnar; Wilson, Daniel N; Beckmann, Roland
2017-05-30
Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50-55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome.
Continuous Mapping of Tunnel Walls in a Gnss-Denied Environment
NASA Astrophysics Data System (ADS)
Chapman, Michael A.; Min, Cao; Zhang, Deijin
2016-06-01
The need for reliable systems for capturing precise detail in tunnels has increased as the number of tunnels (e.g., for cars and trucks, trains, subways, mining and other infrastructure) has increased and the age of these structures and, subsequent, deterioration has introduced structural degradations and eventual failures. Due to the hostile environments encountered in tunnels, mobile mapping systems are plagued with various problems such as loss of GNSS signals, drift of inertial measurements systems, low lighting conditions, dust and poor surface textures for feature identification and extraction. A tunnel mapping system using alternate sensors and algorithms that can deliver precise coordinates and feature attributes from surfaces along the entire tunnel path is presented. This system employs image bridging or visual odometry to estimate precise sensor positions and orientations. The fundamental concept is the use of image sequences to geometrically extend the control information in the absence of absolute positioning data sources. This is a non-trivial problem due to changes in scale, perceived resolution, image contrast and lack of salient features. The sensors employed include forward-looking high resolution digital frame cameras coupled with auxiliary light sources. In addition, a high frequency lidar system and a thermal imager are included to offer three dimensional point clouds of the tunnel walls along with thermal images for moisture detection. The mobile mapping system is equipped with an array of 16 cameras and light sources to capture the tunnel walls. Continuous images are produced using a semi-automated mosaicking process. Results of preliminary experimentation are presented to demonstrate the effectiveness of the system for the generation of seamless precise tunnel maps.
NASA Technical Reports Server (NTRS)
Matyk, G.; Kobayashi, Y.
1977-01-01
The boundary layer and crossflow characteristics of 2- by 2-foot and 11- by 11-foot transonic wind-tunnel wall configurations have been studied for Mach numbers ranging from 0.5 to 1.2 and for various crossflow to free stream unit mass flow ratios. For the 2- by 2-ft and 11- by 11-ft wall configurations, these ratios ranged from 0 to 0.12 and from 0 to 0.07, respectively. Most notably, for both wall configurations, the pressure-drop coefficient across the wall was nonlinear with mass flow and invariant with Mach number.
Fabry-Pérot Interference in Gapped Bilayer Graphene with Broken Anti-Klein Tunneling
NASA Astrophysics Data System (ADS)
Varlet, Anastasia; Liu, Ming-Hao; Krueckl, Viktor; Bischoff, Dominik; Simonet, Pauline; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Ensslin, Klaus; Ihn, Thomas
2014-09-01
We report the experimental observation of Fabry-Pérot interference in the conductance of a gate-defined cavity in a dual-gated bilayer graphene device. The high quality of the bilayer graphene flake, combined with the device's electrical robustness provided by the encapsulation between two hexagonal boron nitride layers, allows us to observe ballistic phase-coherent transport through a 1-μm-long cavity. We confirm the origin of the observed interference pattern by comparing to tight-binding calculations accounting for the gate-tunable band gap. The good agreement between experiment and theory, free of tuning parameters, further verifies that a gap opens in our device. The gap is shown to destroy the perfect reflection for electrons traversing the barrier with normal incidence (anti-Klein tunneling). The broken anti-Klein tunneling implies that the Berry phase, which is found to vary with the gate voltages, is always involved in the Fabry-Pérot oscillations regardless of the magnetic field, in sharp contrast with single-layer graphene.
Suppression of background noise in a transonic wind-tunnel test section
NASA Technical Reports Server (NTRS)
Schutzenhofer, L. A.; Howard, P. W.
1975-01-01
Some exploratory tests were recently performed in the transonic test section of the NASA Marshall Space Flight Center 14-in. wind tunnel to suppress the background noise. In these tests, the perforated walls of the test section were covered with fine wire screens. The screens eliminated the edge tones generated by the holes in the perforated walls and significantly reduced the tunnel background noise. The tunnel noise levels were reduced to such a degree by this simple modification at Mach numbers 0.75, 0.9, 1.1, 1.2, and 1.46 that the fluctuating pressure levels of a turbulent boundary layer could be measured on a 5-deg half-angle cone.
Validation of Blockage Interference Corrections in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Walker, Eric L.
2007-01-01
A validation test has recently been constructed for wall interference methods as applied to the National Transonic Facility (NTF). The goal of this study was to begin to address the uncertainty of wall-induced-blockage interference corrections, which will make it possible to address the overall quality of data generated by the facility. The validation test itself is not specific to any particular modeling. For this present effort, the Transonic Wall Interference Correction System (TWICS) as implemented at the NTF is the mathematical model being tested. TWICS uses linear, potential boundary conditions that must first be calibrated. These boundary conditions include three different classical, linear. homogeneous forms that have been historically used to approximate the physical behavior of longitudinally slotted test section walls. Results of the application of the calibrated wall boundary conditions are discussed in the context of the validation test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long
The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can bemore » utilized for optimizing and controlling the optical switching process.« less
Reformulation of Possio's kernel with application to unsteady wind tunnel interference
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1980-01-01
An efficient method for computing the Possio kernel has remained elusive up to the present time. In this paper the Possio is reformulated so that it can be computed accurately using existing high precision numerical quadrature techniques. Convergence to the correct values is demonstrated and optimization of the integration procedures is discussed. Since more general kernels such as those associated with unsteady flows in ventilated wind tunnels are analytic perturbations of the Possio free air kernel, a more accurate evaluation of their collocation matrices results with an exponential improvement in convergence. An application to predicting frequency response of an airfoil-trailing edge control system in a wind tunnel compared with that in free air is given showing strong interference effects.
Smart-actuated continuous moldline technology (CMT) mini wind tunnel test
NASA Astrophysics Data System (ADS)
Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.
1999-07-01
The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.
Wood digestion in Pselactus spadix Herbst--a weevil attacking marine timber structures.
Oevering, Pascal; Pitman, Andrew J; Pandey, Krishna K
2003-04-01
Pselactus spadix tunnels timber structures in the marine environment. Recent studies reported a cosmopolitan distribution for this weevil, which is frequently found in harbour and port areas. P. spadix feeds on timber (hardwood and softwood) in immature and adult life stages, but its digestion of wood components had not been investigated. Using dry weight analyses of tunnel walls and frass produced, P. spadix adults consumed Scots pine with soft rot decay at a rate of 1.59 +/- 0.37 mg d-1 and the digestibility of this substrate was 57.96 +/- 5.89 (i.e. for 100 mg consumed SR-pine, 58 mg was digested). Using gravimetric analysis to quantify structural wood components in tunnel walls and frass, P. spadix adults were found to digest cellulose, lignin and hemicellulose with digestibility coefficients of 82.2, 41.2 and 14.5 respectively. Fourier Transform Infrared (FTIR) spectroscopy analyses of tunnel walls and frass of adults and larvae from soft rotted pine also indicated digestion of all structural components, with larvae digesting cellulose and lignin more efficiently than adults. When FTIR was employed to analyse adult tunnel walls and frass from undecayed pine, cellulose and hemicellulose were digested, but no evidence of lignin digestion was found. This study shows that adults digest lignin when soft rot is present and suggests a symbiotic function of wood degrading microorganisms.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1977-01-01
Work has continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes on airfoil data and wall contours. Mechanical design analyses for the transonic self streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility is outlined.
Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jones, Greg; Lin, John C.
2011-01-01
Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.
NASA Astrophysics Data System (ADS)
Ohuchida, Satoshi; Endoh, Tetsuo
2018-06-01
In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.
Tunneling induced absorption with competing Nonlinearities.
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-12-13
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.
Behavior of tunnel form buildings under quasi-static cyclic lateral loading
Yuksel, S.B.; Kalkan, E.
2007-01-01
In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.
NASA Astrophysics Data System (ADS)
Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.
1998-01-01
Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.
NASA Astrophysics Data System (ADS)
Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten
2018-03-01
We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n -band material.
Interband interference effects at the edge of a multiband chiral p -wave superconductor
NASA Astrophysics Data System (ADS)
Zhang, Jia-Long; Huang, Wen; Sigrist, Manfred; Yao, Dao-Xin
2017-12-01
Chiral superconductors support chiral edge modes and potentially spontaneous edge currents at their boundaries. Motivated by the putative multiband chiral p -wave superconductor Sr2RuO4 , we study the influence of the interference between different bands at the edges, which may appear in the presence of moderate edge disorder or in edge tunneling measurements. We show that interband interference can strongly modify the measurable quantities at the edges when the order parameter exhibits phase difference between the bands. This is illustrated by investigating the edge dispersion and the edge current distribution in the presence of interband mixing, as well as the conductance at a tunneling junction. The results are discussed in connection with the putative chiral p -wave superconductor Sr2RuO4 . In passing, we also discuss similar interference effects in multiband models with other pairing symmetries.
Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten
2018-03-09
We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Dor, J. B.; Payry, M. J.; Lamarche, L.
1986-01-01
The top and bottom two-dimensional walls of the T2 wind tunnel are adapted through an iterative process. The adaptation calculation takes into account the flow three-dimensionally. This method makes it possible to start with any shape of walls. The tests were performed with a C5 axisymmetric model at ambient temperature. Comparisons are made with the results of a true three-dimensional adaptation.
NASA Technical Reports Server (NTRS)
Ziemann, J.
1982-01-01
The NACA 0012 profile at Mach 0.5 was investigated in a wind tunnel with adaptive walls. It is found that adaptation of the flexible walls is possible in the high angle of attack range on both sides of maximum lift. Oil film photographs of the flow at the profile surface show three dimensional effects in the region of the corners between the profile and the sidewall. It is concluded that pure two dimensional separated flow is not possible.
Implementation of a Particle Image Velocimetry System for Wind Tunnel Flowfield Measurements
2014-12-01
Instrumentation Wind tunnel speed was measured by two pitot probes mounted on opposite tunnel walls upstream of the model and above the ground...board. The pitot probes were connected differentially to Scanivalve 1-psi transducers. A secondary measurement of wind tunnel speed was made with the...Manf. Model Range 1 Tunnel Vel (south pitot ) Transducer Scanivalve CR24D 1 psi 2 Tunnel Vel (north pitot ) Transducer Scanivalve CR24D 1 psi 3
Integrity inspection of main access tunnel using ground penetrating radar
NASA Astrophysics Data System (ADS)
Ismail, M. A.; Abas, A. A.; Arifin, M. H.; Ismail, M. N.; Othman, N. A.; Setu, A.; Ahmad, M. R.; Shah, M. K.; Amin, S.; Sarah, T.
2017-11-01
This paper discusses the Ground Penetrating Radar (GPR) survey performed to determine the integrity of wall of tunnel at a hydroelectric power generation facility. GPR utilises electromagnetic waves that are transmitted into the medium of survey. Any reflectors in the medium will reflect the transmitted waves and picked up by the GPR antenna. The survey was done using MALA GeoScience RAMAC CUII with 250MHz antenna. Survey was done on the left, the crown and the right walls of the underground tunnels. Distance was measured using wheel encoders. The results of the survey is discussed in this paper.
The Development of an 8-inch by 8-inch Slotted Tunnel for Mach Numbers up to 1.28
NASA Technical Reports Server (NTRS)
Little, B. H., Jr.; Cubbage, James J., Jr.
1961-01-01
An 8-inch by 8-inch transonic tunnel model with test section slotted on two opposite walls was constructed in which particular emphasis -was given to the development of slot geometry, slot-flow reentry section, and short-diffuser configurations for good test-region flow and minimum total-pressure losses. Center-line static pressures through the test section, wall static pressures through the other parts of the tunnel, and total-pressure distributions at the inlet and exit stations of the diffuser were measured- With a slot length equal to two tunnel heights and 1/14 open-area-ratio slotted walls) a test region one tunnel height in length was obtained in which the deviation from the mean Mach number was less than +/- 0.01 up to Mach number 1.15. With 1/7 open-area-ratio slotted walls, a test region 0.84 tunnel heights in length with deviation less than +/- O.01 was obtained up to Mach number 1.26. Increasing the tunnel diffuser angle from 6.4 to 10 deg. increased pressure loss through the tunnel at Mach number 1.20 from 15 percent to 20 percent of the total pressure. The use of other diffusers with equivalent angles of 10 deg. but contoured so that the initial diffusion angle was less than 10 deg. and the final angle was 200 reduced the losses to as low as 16 percent. A method for changing the test-section Mach number rapidly by controlling the flow through a bypass line from the tunnel settling chamber to the slot-flow plenum chamber of the test section was very effective. The test-section Mach number was reduced approximately 5 percent in 1/8 second by bleeding into the test section a flow of air equal to 2 percent of the mainstream flow and 30 percent in 1/4 second with bleed flow equal to 10 percent of the mainstream flow. The rate of reduction was largely determined by the opening rate of the bleed-flow-control valve.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Hill, Acquilla S.
1990-01-01
A 13 by 13 inch adaptive wall test section was installed in the 0.3 Meter Transonic Cryogenic Tunnel circuit. This new test section is configured for 2-D airfoil testing. It has four solid walls. The top and bottom walls are flexible and movable whereas the sidewalls are rigid and fixed. The wall adaptation strategy employed requires the test section wall shapes associated with uniform test section Mach number distributions. Calibration tests with the test section empty were conducted with the top and bottom walls linearly diverged to approach a uniform Mach number distribution. Pressure distributions were measured in the contraction cone, the test section, and the high speed diffuser at Mach numbers from 0.20 to 0.95 and Reynolds numbers from 10 to 100 x 10 (exp 6)/per foot.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.
Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.
2012-01-01
The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1984-01-01
Validation data from the Transonic Self-Streamlining Wind Tunnel has proved the feasibility of streamlining two dimensional flexible walls at low speeds and up to transonic speeds, the upper limit being the speed where the flexible walls are just supercritical. At this condition, breakdown of the wall setting strategy is evident in that convergence is neither as rapid nor as stable as for lower speeds, and wall streamlining criteria are not always completely satisfied. The only major step necessary to permit the extension of two dimensional testing into higher transonic speeds is the provision of a rapid algorithm to solve for mixed flow in the imagery flow fields. The status of two dimensional high transonic testing in the Transonic Self-Streamlining Wind Tunnel is outlined and, in particular, the progress of adapting an algorithm, which solves the Transonic Small Perturbation Equation, for predicting the imagery flow fields is detailed.
NASA Technical Reports Server (NTRS)
Blanchard, Alan E.; Selby, Gregory V.
1996-01-01
One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.
Performance of the high speed anechoic wind tunnel at Lyon University
NASA Technical Reports Server (NTRS)
Sunyach, M.; Brunel, B.; Comte-Bellot, G.
1986-01-01
The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.
Recent research on V/STOL test limits at the University of Washington aeronautical laboratory
NASA Technical Reports Server (NTRS)
Shindo, S.; Rae, W. H., Jr.
1980-01-01
The occurence of flow breakdown during the wind tunnel testing of a powered V/STOL aircraft was studied. Flow breakdown is the low forward speed test limit in a solid wall wind tunnel and is characterized by a vortex which forms on the floor and walls of the wind tunnel thereby failing to simulate free air conditions. The flow is caused by the interaction of the model wake and tunnel boundary layer and affects the model's aerodynamic characteristics in such fashion as to negate their reliability as correctable wind tunnel data. The low speed test limit was examined using a model that possessed a discretely concentrated powered lift system using a pair of lift jets. The system design is discussed and the tests and results which show that flow breakdown occurs at a velocity ratio of approximately 0.20 are reported.
Forced convective heat transfer in curved diffusers
NASA Technical Reports Server (NTRS)
Rojas, J.; Whitelaw, J. H.; Yianneskis, M.
1987-01-01
Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.
Experimental study on lateral strength of wall-slab joint subjected to lateral cyclic load
NASA Astrophysics Data System (ADS)
Masrom, Mohd Asha'ari; Mohamad, Mohd Elfie; Hamid, Nor Hayati Abdul; Yusuff, Amer
2017-10-01
Tunnel form building has been utilised in building construction since 1960 in Malaysia. This method of construction has been applied extensively in the construction of high rise residential house (multistory building) such as condominium and apartment. Most of the tunnel form buildings have been designed according to British standard (BS) whereby there is no provision for seismic loading. The high-rise tunnel form buildings are vulnerable to seismic loading. The connections between slab and shear walls in the tunnel-form building constitute an essential link in the lateral load resisting mechanism. Malaysia is undergoing a shifting process from BS code to Eurocode (EC) for building construction since the country has realised the safety threats of earthquake. Hence, this study is intended to compare the performance of the interior wall slab joint for a tunnel form structure designed based on Euro and British codes. The experiment included a full scale test of the wall slab joint sub-assemblages under reversible lateral cyclic loading. Two sub-assemblage specimens of the wall slab joint were designed and constructed based on both codes. Each specimen was tested using lateral displacement control (drift control). The specimen designed by using Eurocode was found could survive up to 3.0% drift while BS specimen could last to 1.5% drift. The analysis results indicated that the BS specimen was governed by brittle failure modes with Ductility Class Low (DCL) while the EC specimen behaved in a ductile manner with Ductility Class Medium (DCM). The low ductility recorded in BS specimen was resulted from insufficient reinforcement provided in the BS code specimen. Consequently, the BS specimen could not absorb energy efficiently (low energy dissipation) and further sustain under inelastic deformation.
NASA Astrophysics Data System (ADS)
Falls, Stephen D.; Young, R. Paul
1998-04-01
Acoustic emission (AE) and ultrasonic-velocity monitoring studies have been undertaken at both the Atomic Energy of Canada Limited (AECL) Underground Research Laboratory (URL) and at the Swedish Nuclear Fuel Waste Management Company (SKB) Hard Rock Laboratory (HRL). At both locations the excavations were tunnels in granitic material at approximately 420 m depth. However, the stress regime was more severe at the URL Mine-by tunnel site than the HRL ZEDEX tunnel. Different parts of the ZEDEX tunnel were created using different excavation techniques. Using AE and ultrasonic techniques to study these tunnels we have been able to examine the nature of the excavation-disturbed zone around the tunnel, as well as examining the effects of different stress regimes and excavation techniques. Studies were undertaken both during and after the Mine-by tunnel excavation and during excavation in the ZEDEX tunnel. AE monitoring in the wall of the Mine-by tunnel during excavation showed that some activity occurred in the sidewall regions, but the spatial density of AE hypocentres increased toward the regions in the floor and roof of the tunnel where breakout notches formed. This sidewall activity was clustered primarily within 0.5 m of the tunnel wall. AE monitoring in the floor of the tunnel showed that small numbers of AE continued to occur in the notch region in the floor of the tunnel over 2 years after excavation was completed. This activity became more acute as the rock was heated, imposing thermally induced stresses on the volume. Ultrasonic-velocity studies both in the floor and the wall of the tunnel showed that the velocity is strongly anisotropic with the direction of slowest velocity orthogonal to the tunnel surface. The velocity increased with distance into the rock from the tunnel surface. In the floor, this effect was seen up to 2 m from the tunnel surface. Most of the change occurred within the first 0.5 m from the tunnel perimeter. At the lower-stress HRL, most of the AE again occur very close to the tunnel surface. The occurrence of AE under relatively low stress conditions suggests that the regions experiencing AE activity were damaged during the excavation process, thereby reducing their strength. The section of tunnel excavated by a tunnel-boring machine had fewer events, clustered much closer to the tunnel surface, than the sections excavated using drill and blast excavation techniques. P-wave velocity changes of only about 0.1% were experienced due to the tunnel excavation for ray paths within zero to 2 m from the tunnel surface indicating that crack damage was relatively low.
Wind tunnel wall effects in a linear oscillating cascade
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1991-01-01
Experiments in a linear oscillating cascade reveal that the wind tunnel walls enclosing the airfoils have, in some cases, a detrimental effect on the oscillating cascade aerodynamics. In a subsonic flow field, biconvex airfoils are driven simultaneously in harmonic, torsion-mode oscillations for a range of interblade phase angle values. It is found that the cascade dynamic periodicity - the airfoil to airfoil variation in unsteady surface pressure - is good for some values of interblade phase angle but poor for others. Correlation of the unsteady pressure data with oscillating flat plate cascade predictions is generally good for conditions where the periodicity is good and poor where the periodicity is poor. Calculations based upon linearized unsteady aerodynamic theory indicate that pressure waves reflected from the wind tunnel walls are responsible for the cases where there is poor periodicity and poor correlation with the predictions.
Su, Ting; Cheng, Jingdong; Sohmen, Daniel; Hedman, Rickard; Berninghausen, Otto; von Heijne, Gunnar; Wilson, Daniel N; Beckmann, Roland
2017-01-01
Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50–55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome. DOI: http://dx.doi.org/10.7554/eLife.25642.001 PMID:28556777
Landau-Zener interferometry in a Cooper pair box
NASA Astrophysics Data System (ADS)
Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti
2006-03-01
Quantum-mechanical systems having two crossing energy levels are ubiquitous in nature. The rate v = d (E1- E0)/dt at which such levels in a driven system approach each other determines the probability PLZ of a Landau-Zener (LZ) tunneling between them. The traditional treatment of the LZ process, however, ignores quantum-mechanical interference. Here we report an observation of phase-sensitive interference between consecutive LZ tunneling attempts in an artificial two-state system, a superconducting charge qubit. We interpret the experiment in terms of a multi-pass analog to the optical Mach- Zehnder interferometer: The beam splitting occurs by LZ tunneling at the charge degeneracy, while the arms of the Mach- Zehnder interferometer in energy space are represented by the ground and excited state. In accord with theory, we observe constructive interference when the Stokes phase φS picked up during the LZ interaction, and the dynamical phase of one drive period φ= (E1- E0) dt satisfy the condition: (φ- 2 φS) = m .2π. Our LZ interferometer can be used as a high-resolution detector for phase and charge owing to interferometric sensitivity- enhancement.
Zhang, Yanxi; Ye, Gang; Soni, Saurabh; Qiu, Xinkai; Krijger, Theodorus L.; Jonkman, Harry T.; Carlotti, Marco; Sauter, Eric; Zharnikov, Michael
2018-01-01
Quantum interference effects (QI) are of interest in nano-scale devices based on molecular tunneling junctions because they can affect conductance exponentially through minor structural changes. However, their utilization requires the prediction and deterministic control over the position and magnitude of QI features, which remains a significant challenge. In this context, we designed and synthesized three benzodithiophenes based molecular wires; one linearly-conjugated, one cross-conjugated and one cross-conjugated quinone. Using eutectic Ga–In (EGaIn) and CP-AFM, we compared them to a well-known anthraquinone in molecular junctions comprising self-assembled monolayers (SAMs). By combining density functional theory and transition voltage spectroscopy, we show that the presence of an interference feature and its position can be controlled independently by manipulating bond topology and electronegativity. This is the first study to separate these two parameters experimentally, demonstrating that the conductance of a tunneling junction depends on the position and depth of a QI feature, both of which can be controlled synthetically. PMID:29896382
Tunneling induced absorption with competing Nonlinearities
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-01-01
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303
NASA Technical Reports Server (NTRS)
Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.; Peirson, D. L. (Principal Investigator)
2000-01-01
Glucose interference in production of microcin B17 by Escherichia coli ZK650 was decreased sevenfold by growth in a ground-based rotating-wall bioreactor operated in the simulated microgravity mode as compared with growth in flasks. When cells were grown in the bioreactor in the normal gravity mode, relief from glucose interference was even more dramatic, amounting to a decrease in glucose interference of over 100-fold.
2013-01-01
Cross-conjugated molecules are known to exhibit destructive quantum interference, a property that has recently received considerable attention in single-molecule electronics. Destructive quantum interference can be understood as an antiresonance in the elastic transmission near the Fermi energy and leading to suppressed levels of elastic current. In most theoretical studies, only the elastic contributions to the current are taken into account. In this paper, we study the inelastic contributions to the current in cross-conjugated molecules and find that while the inelastic contribution to the current is larger than for molecules without interference, the overall behavior of the molecule is still dominated by the quantum interference feature. Second, an ongoing challenge for single molecule electronics is understanding and controlling the local geometry at the molecule-surface interface. With this in mind, we investigate a spectroscopic method capable of providing insight into these junctions for cross-conjugated molecules: inelastic electron tunneling spectroscopy (IETS). IETS has the advantage that the molecule interface is probed directly by the tunneling current. Previously, it has been thought that overtones are not observable in IETS. Here, overtones are predicted to be strong and, in some cases, the dominant spectroscopic features. We study the origin of the overtones and find that the interference features in these molecules are the key ingredient. The interference feature is a property of the transmission channels of the π system only, and consequently, in the vicinity of the interference feature, the transmission channels of the σ system and the π system become equally transmissive. This allows for scattering between the different transmission channels, which serves as a pathway to bypass the interference feature. A simple model calculation is able to reproduce the results obtained from atomistic calculations, and we use this to interpret these findings. PMID:24067128
Jagodzinski, Michael; Geiges, Bjoern; von Falck, Christian; Knobloch, Karsten; Haasper, Carl; Brand, Juergen; Hankemeier, Stefan; Krettek, Christian; Meller, Rupert
2010-03-01
Press-fit fixation of a tendon graft has been advocated to achieve tendon-to-bone healing. Fixation of hamstring tendon grafts with a porous bone scaffold limits bone tunnel enlargement compared with a biodegradable interference screw fixation. Randomized controlled trial; Level of evidence, 1. Methods Between 2005 and 2006, 20 patients (17 men, 3 women) with a primary reconstruction of the anterior cruciate ligament (ACL) were enrolled in this study. Patients were randomized to obtain graft fixation in the tibial tunnel either by means of an interference screw (I) or a press-fit fixation with a porous bone cylinder (P). At 3 months after surgery, a computed tomography (CT) scan of the knee was performed, and tunnel enlargement was analyzed in the coronal and sagittal planes for the proximal, middle, and distal thirds of the tunnel. After 6 months and 1 and 2 years, radiographs of the knee in the sagittal and coronal plane were analyzed for bone tunnel widening. The International Knee Documentation Committee (IKDC), Tegner, and Lysholm scores of both groups were compared after 1 and 2 years. The bone tunnel enlargement determined by CT was 106.9% + or - 10.9% for group P and 121.9% + or - 9.0% for group I (P < .02) in the anteroposterior (AP) plane and 102.8% + or - 15.2% versus 121.5% + or - 10.1% in the coronal plane (P <.01). The IKDC, Tegner, and Lysholm scores improved in both groups from preoperatively to postoperatively without significant differences between the 2 groups. There was a trend to higher knee stability in group P after 3 months (0.6 + or - 1.4 mm vs 1.8 + or - 1.5 mm; P = .08). Both interference screw and a press-fit fixation lead to a high number of good or very good outcomes after ACL reconstruction. Tibial press-fit fixation decreases the amount of proximal bone tunnel enlargement.
Geiges, B; von Falck, C; Knobloch, K; Haasper, C; Meller, R; Krettek, C; Hankemeier, S; Brand, J; Jagodzinski, M
2013-02-01
Press-fit fixation of a tendon graft has been advocated in order to achieve tendon to bone healing. Fixation of a tendon graft with a porous bone scaffold limits bone tunnel enlargement compared with a biodegradable interference screw fixation. Between 2005 and 2006, 20 patients (17 men, 3 women) were enrolled in this study for primary reconstruction of the ACL. Patients were randomized to either obtain graft fixation in the tibial tunnel by means of an interference screw (I) or a press-fit fixation with a porous bone cylinder (P). Three months after surgery, a CT scan of the knee was performed and tunnel enlargement was analysed in the coronal and sagittal planes for the proximal, middle and distal thirds of the tunnel. After 6 months, 1 and 2 years, International Knee Documentation Committee (IKDC), Tegner and Lysholm scores of both groups were compared. The bone tunnel enlargement was 106.9±10.9% for group P and 121.9±9.0% for group I (P<0.02) in the AP plane and 102.8±15.2% vs 121.5±10.1% in the coronal plane (P<0.01). IKDC, Tegner, and Lysholm scores improved in both groups from pre- to postoperative assessment without significant differences between the two groups. There was a trend to higher knee stability in group P after 3 months (0.6±1.4 mm vs 1.81±.5 mm, P=0.08). Both interference screw and a press-fit fixation lead to a high number of good or very good outcomes after ACL reconstruction. Tibial press-fit fixation decreases the amount of proximal bone tunnel enlargement. Press-fit fixation decreases the amount of proximal bone tunnel enlargement and improves bone to tendon contact.
Performance of high mach number scramjets - Tunnel vs flight
NASA Astrophysics Data System (ADS)
Landsberg, Will O.; Wheatley, Vincent; Smart, Michael K.; Veeraragavan, Ananthanarayanan
2018-05-01
While typically analysed through ground-based impulse facilities, scramjets experience significant heating loads in flight, raising engine wall temperatures and the fuel used to cool them beyond standard laboratory conditions. Hence, the present work numerically compares an access-to-space scramjet's performance at both these conditions. The Mach 12 Rectangular-to-Elliptical Shape-Transitioning scramjet flow path is examined via three-dimensional and chemically reacting Reynolds-averaged Navier-Stokes solutions. Flight operation is modelled through 800 K and 1800 K inlet and combustor walls respectively, while fuel is injected at both inlet- and combustor-based stations at 1000 K stagnation temperature. Room temperature walls and fuel plena model shock tunnel conditions. Mixing and combustion performance indicates that while flight conditions promote rapid mixing, high combustor temperatures inhibit the completion of reaction pathways, with reactant dissociation reducing chemical heat release by 16%. However, the heated walls in flight ensured 28% less energy was absorbed by the walls. While inlet fuel injection promotes robust burning of combustor-injected fuel, premature ignition upon the inlet in flight suggests these injectors should be moved further downstream. Coupled with counteracting differences in heat release and loss to the walls, the optimal engine design for flight may differ considerably from that which gives the best performance in the tunnel.
Lee, Myung Chul; Jo, Hyunchul; Bae, Tae-Soo; Jang, Jin Dae; Seong, Sang Cheol
2003-03-01
We performed a controlled laboratory study to evaluate the initial fixation strength of press-fit technique. Forty porcine lower limbs were used and divided into four groups according to the method of fixation; group 1 (press-fit+1.4 mm), in which the diameter difference between the bone plug and the femoral tunnel was 1.4 mm; group 2 (press-fit+1.4 mm, 30 degrees), in which the diameter difference was the same with group 1, but the tensile loading axis was 30 degrees away from the long axis of the femoral tunnel; group 3 (titanium), in which a titanium interference screw was used for fixation; group 4 (bioabsorbable), in which a bioabsorbable interference screw was used for fixation. The graft in the press-fit group was harvested with a hollow oscillating saw with inner diameter of 9.4 mm to obtain consistent and completely circular shape of the bone plug. The femoral tunnel with diameter of 8 mm was drilled at the original ACL insertion. Following the bone plug insertion into the femoral tunnel and applying a preload of 20 N, the specimen underwent 500 loading cycles between 0 and 2 mm of displacement. Thereafter the specimen was loaded to failure. There was no fixation site failure during the cyclic loading test. Significant differences in the stiffness, linear load, or failure mode among the groups were not found. The average ultimate failure load of group 1 and group 2 were not significantly different from those of group 3 and group 4. The press-fit groups demonstrated sufficient fixation strength for the rehabilitation and interference screw groups. The completely circular shape of the bone plug and increased diameter difference between the bone plug and the femoral tunnel seemed to contribute to the strong fixation.
NASA Technical Reports Server (NTRS)
Washburn, K. E.; Gloss, B. B.
1978-01-01
Wind tunnel studies are reported on both the canard and wing surfaces of a model that is geometrically identical to one used in several force and moment tests to provide insight into the various aerodynamic interference effects. In addition to detailed pressures measurements, the pressures were integrated to illustrate the effects of Mach number, canard location, and canard-wing interference on various aerodynamic parameters. Transonic pressure tunnel Mach numbers ranged from 0.70 to 1.20 for data taken from 0 deg to approximately 16 deg angle-of-attack at 0 deg sideslip.
Dunker, Susanne; Wilhelm, Christian
2018-01-01
Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.
Akoto, Ralph; Müller-Hübenthal, Jonas; Balke, Maurice; Albers, Malte; Bouillon, Bertil; Helm, Philip; Banerjee, Marc; Höher, Jürgen
2015-08-19
Bone tunnel enlargement is a phenomenon present in all anterior cruciate ligament (ACL)- reconstruction techniques. It was hypothesized that press-fit fixation using a free autograft bone plug reduces the overall tunnel size in the tibial tunnel. In a prospective cohort study twelve patients who underwent primary ACL reconstruction using an autologous quadriceps tendon graft and adding a free bone block for press-fit fixation (PF) in the tibial tunnel were matched to twelve patients who underwent ACL reconstruction with a hamstring graft and interference screw fixation (IF). The diameters of the bone tunnels were analysed by a multiplanar reconstruction technique (MPR) in a CT scan three months postoperatively. Manual and instrumental laxity (Lachman test, Pivot-shift test, Rolimeter) and functional outcome scores (International Knee Documentation Committee sore, Tegner activity level) were measured after one year follow up. In the PF group the mean bone tunnel diameter at the level of the joint entrance was not significantly enlarged. One and two centimeter distal to the bone tunnel diameter was reduced by 15% (p = .001). In the IF group the bone tunnel at the level of the joint entrance was enlarged by 14% (p = .001). One and two centimeter distal to the joint line the IF group showed a widening of the bone tunnel by 21% (p < .001) One and two centimeter below the joint line the bone tunnel was smaller in the PF group when compared to the IF group (p < .001). No significant difference for laxity test and functional outcome scores could be shown. This study demonstrates that press-fit fixation with free autologous bone plugs in the tibial tunnel results in significantly smaller diameter of the tibial tunnel compared to interference screw fixation.
Study on construction technology of metro tunnel under a glass curtain wall
NASA Astrophysics Data System (ADS)
Zhang, Jian; Yu, Deqiang
2018-03-01
To ensure the safety of the glass curtain wall building above loess tunnel and get an optimal scheme, an elastic-plastic FEM model is established to simulate three reinforcement schemes based on a tunnel section in Xi’an Metro Line 3. The results show that the settlement value of the optimal scheme is reduced by 69.89% compared with the drainage measures, and the uneven settlement value is reduced by 57.5%. The construction points, technical processes and technical indexes of the optimal scheme are introduced. According to the actual project, the cumulative settlement of the building under construction is 16mm, which meets the control standards. According to the actual project, the cumulative settlement of the glass curtain wall building is 16mm, which meets the control standards. The reinforcement scheme can provide some reference for the design and construction of the metro in loess area.
Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
NASA Astrophysics Data System (ADS)
Morr, Dirk K.
2017-01-01
Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.
Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing
NASA Technical Reports Server (NTRS)
Howerton, Brian M.
1995-01-01
A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.
Calibration and test capabilities of the Langley 7- by 10- foot high speed tunnel
NASA Technical Reports Server (NTRS)
Fox, C. H., Jr.; Huffman, J. K.
1977-01-01
The results of a new subsonic calibration of the Langley 7 by 10 foot high speed tunnel with the test section in a solid wall configuration are presented. A description of the test capabilities of the 7 by 10 foot high speed tunnel is also given.
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.
NASA Astrophysics Data System (ADS)
Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi
2016-11-01
Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.
Barber, F Alan; Dockery, W D; Hrnack, Scott A
2011-05-01
To evaluate the long-term in vivo degradation of biodegradable interference screws made of poly-L-lactide co-glycolide (poly-L-lactic acid [PLLA]/polyglycolic acid [PGA]) and β-tricalcium phosphate (β-TCP). To study in vivo the biological behavior of a PLLA/PGA/β-TCP biocomposite screw (Milagro; DePuy Mitek, Raynham, MA), an institutional review board-approved program using anterior cruciate ligament (ACL) interference fixation screws was initiated in 2005. Thirteen patients who had bone-patellar tendon-bone ACL reconstruction fixed at both the femur and tibia with PLLA/PGA/β-TCP screws at least 24 months earlier were evaluated by physical, radiographic, and computed tomography (CT) evaluations. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee scores were also obtained. Radiographs and CT scans of the operated knee were obtained. CT scan data measured in Hounsfield units (HU) evaluated the material density at the screw and bone plug sites. Soft-tissue and cancellous and cortical bone site readings were also taken. Osteoconductivity scores were determined at the screw sites by use of an ossification quality score (range, 1 to 4). Eleven men and two women were evaluated at a mean of 38 months after surgery (range, 24 to 49 months). CT scans and radiographs showed the bone plug fused to the tunnel wall with no PLLA/PGA/β-TCP screw remaining. The screws were replaced with material that was calcified and non-trabecular. Osteoconductivity was present in 21 of 26 tunnels (81%) and complete (type 4 ossification) in 5 of 26 (19%). Mean screw site densities (femoral, 159 HU; tibial, 157 HU) were not different from the mean cancellous bone density (femoral, 146 HU; tibial, 140 HU). No positive pivot-shift tests were found. Lysholm, Tegner, and Cincinnati scores improved from 44, 3.7, and 37 preoperatively to 93, 6, and 87 at follow-up, respectively. The mean KT arthrometer (MEDmetric, San Diego, CA) difference was 0.8 mm. The PLLA/PGA/β-TCP interference screw completely degraded, and no remnant was present 3 years after implantation for a bone-patellar tendon-bone graft ACL reconstruction. Osteoconductivity was confirmed in 21 of 26 screw sites (81%) and completely filled the site in 5 of 26 (19%). The PLLA/PGA/β-TCP biocomposite interference screw is osteoconductive. Level IV, therapeutic case series. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hantzsche, W.; Wendt, H.
1942-01-01
For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.
Aerodynamic optimization by simultaneously updating flow variables and design parameters
NASA Technical Reports Server (NTRS)
Rizk, M. H.
1990-01-01
The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve
2011-01-01
Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers: PMID:21711779
Quantum interference in DNA bases probed by graphene nanoribbons
NASA Astrophysics Data System (ADS)
Jeong, Heejeong; Seul Kim, Han; Lee, Sung-Hoon; Lee, Dongho; Hoon Kim, Yong; Huh, Nam
2013-07-01
Based on first-principles nonequilibrium Green's function calculations, we demonstrate quantum interference (QI) effects on the tunneling conductance of deoxyribonucleic acid bases placed between zigzag graphene nanoribbon electrodes. With the analogy of QI in hydrocarbon ring structures, we hypothesize that QI can be well preserved in the π-π coupling between the carbon-based electrode and a single DNA base. We demonstrate indications of QI, such as destructively interfered anti-resonance or Fano-resonance, that affect the variation of tunneling conductance depending on the orientation of a base. We find that guanine, with a 10-fold higher transverse conductance, can be singled out from the other bases.
Interferometry of Klein tunnelling electrons in graphene quantum rings
NASA Astrophysics Data System (ADS)
de Sousa, D. J. P.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.
2017-01-01
We theoretically study a current switch that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning either the height or the width of a potential barrier in the ring arms. By varying the parameters of the potential barriers, the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate with a high on/off ratio.
Wind Tunnel Interference on Wings, Bodies and Airscrews
1933-09-13
jet usually issues from a eliminated by designing tie wiand tunnel with a slight expanson closed cylindrical mouth immediately in front of the model...pressilre at the boundary. This type of constraiA 16 \\1 h 3/. would occur under the ideal conditions of a perfect fluid, and it is I Eperimental confirmation
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Goodyer, Michael J.
1988-01-01
Following the realization that a simple iterative strategy for bringing the flexible walls of two-dimensional test sections to streamline contours was too slow for practical use, Judd proposed, developed, and placed into service what was the first Predictive Strategy. The Predictive Strategy reduced by 75 percent or more the number of iterations of wall shapes, and therefore the tunnel run-time overhead attributable to the streamlining process, required to reach satisfactory streamlines. The procedures of the Strategy are embodied in the FORTRAN subroutine WAS (standing for Wall Adjustment Strategy) which is written in general form. The essentials of the test section hardware, followed by the underlying aerodynamic theory which forms the basis of the Strategy, are briefly described. The subroutine is then presented as the Appendix, broken down into segments with descriptions of the numerical operations underway in each, with definitions of variables.
Digging the termite way: crowding simple robots to excavate ramification structures
NASA Astrophysics Data System (ADS)
Bardunias, Paul
The complex ramification network that termites excavate in soil in search of resources has been shown to emerge from interactions between individuals during periodic crowding at the tips of tunnels. Excavation in these social insects is carried out by a rotation of termites removing soil from the tip of an expanding tunnel and depositing it back along the tunnel walls. Bristle bots, modified to either rock or turn on contact with soil in an artificial tunnel, were used to replicate this process. As in termites, congestion at tunnel tips leads to the widening and branching of tunnels.
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
Contraction design for small low-speed wind tunnels
NASA Technical Reports Server (NTRS)
Bell, James H.; Mehta, Rabindra D.
1988-01-01
An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.
Contraction design for small low-speed wind tunnels
NASA Technical Reports Server (NTRS)
Bell, James H.; Mehta, Rabindra D.
1988-01-01
An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.
Measurement of recovery temperature on an airfoil in the Langley 0.3-m transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Johnson, C. B.; Adcock, J. B.
1981-01-01
Experimental measurements of recovery temperature were made on an airfoil in the Langley 0.3-m Transonic Cryogenic Tunnel at Mach numbers of 0.60 and 0.84 over a Reynolds number per meter range from about 15,000,000 to about 335,000,000. The measured recovery temperatures were considerably below those associated with ideal-gas ambient temperature wind tunnels. This difference was accentuated as the stagnation pressure increased and the total temperature decreased. A boundary-layer code modified for use with cryogenic nitrogen adequately predicted the measured adiabatic wall temperature at all conditions. A quantitative, on-line assessment of the nonadiabatic condition of a model can be made during the operation of a cryogenic wind tunnel by using a correlation for the adiabatic wall temperature which is only a function of total temperature, total pressure, and local Mach number on the model.
The F2 wind tunnel at Fauga-Mauzac
NASA Technical Reports Server (NTRS)
Afchain, D.; Broussaud, P.; Frugier, M.; Rancarani, G.
1984-01-01
Details on the French subsonic wind-tunnel F2 that becomes operational on July 1983 are presented. Some of the requirements were: (1) installation of models on any wall of the facility, (2) good observation points due to transparent walls, (3) smooth flow, (4) a laser velocimeter, and (5) easy access and handling. The characteristics include a nonpressurized return circuit, dimensions of 5 x 1.4 x 1.8 m, maximum velocity of 100 m/s and a variable speed fan of 683 kW.
Exterior of Flexible Wall at the 10- by 10-Foot Supersonic Wind Tunnel
1955-03-21
A mechanic checks the tubing on one of the many jacks which control the nozzle section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 10- by 10-foot tunnel, which had its official opening in May 1956, was built under the Congressional Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10 was the largest of the three NACA tunnels built under the act. The 10- by 10 wind tunnel can be operated as a closed circuit for aerodynamic tests or as an open circuit for propulsion investigations. The 10-foot tall and 76-foot long stainless steel nozzle section just upstream from the test section can be adjusted to change the speed and composition of the air flow. Hydraulic jacks, seen in this photograph, flex the 1.37-inch thick walls of the tunnel nozzle. The size of the nozzle’s opening controls the velocity of the air through the test section. Seven General Electric motors capable of generating 25,000 horsepower produce the Mach 2.5 and 2.5 airflows. The facility was mostly operated at night due to its large power load requirements.
Calibration of the Langley 16-foot transonic tunnel with test section air removal
NASA Technical Reports Server (NTRS)
Corson, B. W., Jr.; Runckel, J. F.; Igoe, W. B.
1974-01-01
The Langley 16-foot transonic tunnel with test section air removal (plenum suction) was calibrated to a Mach number of 1.3. The results of the calibration, including the effects of slot shape modifications, test section wall divergence, and water vapor condensation, are presented. A complete description of the wind tunnel and its auxiliary equipment is included.
The influence of wind-tunnel walls on discrete frequency noise
NASA Technical Reports Server (NTRS)
Mosher, M.
1984-01-01
This paper describes an analytical model that can be used to examine the effects of wind-tunnel walls on discrete frequency noise. First, a complete physical model of an acoustic source in a wind tunnel is described, and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. Second, the simplified physical model is formulated as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. The integral equation has been solved with a panel program on a computer. Preliminary results from a simple model problem will be shown and compared with the approximate analytic solution.
Nocturnal insects use optic flow for flight control
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-01-01
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul; ...
2017-05-08
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Tran, H. N.; Blancon, J.-C.; Arenal, R.; Parret, R.; Zahab, A. A.; Ayari, A.; Vallée, F.; Del Fatti, N.; Sauvajol, J.-L.; Paillet, M.
2017-05-01
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett. 108, 117404 (2012), 10.1103/PhysRevLett.108.117404]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permits us to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less
NASA Technical Reports Server (NTRS)
Sharon, A. D.
1975-01-01
The results and analysis of aerodynamic force data obtained from a small scale model of a V/STOL research vehicle in a low speed wind tunnel are presented. The analysis of the data includes the evaluation of aerodynamic-propulsive lift performance when operating twin ejector nozzles with thrust deflected. Three different types of thrust deflector systems were examined: 90 deg downward deflected nozzle, 90 deg slotted nozzle with boundary layer control, and an externally blown flap configuration. Several nozzle locations were tested, including over and underwing positions. The interference lift of the nacelle and model due to jet exhaust thrust is compared and results show that 90 deg turned nozzles located over the wing (near the trailing edge) produce the largest interference lift increment for an untrimmed aircraft, and that the slotted nozzle located under the wing near the trailing edge (in conjunction with a BLC flap) gives a comparable interference lift in the trimmed condition. The externally blown flap nozzle produced the least interference lift and significantly less total lift due to jet thrust effects.
NASA Technical Reports Server (NTRS)
Rossow, V. J.; Schmidt, G. I.; Meyn, L. A.; Ortner, K. R.; Holmes, R. E.
1986-01-01
A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented.
Shock tunnel studies of scramjet phenomena, supplement 5
NASA Technical Reports Server (NTRS)
Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.
1990-01-01
A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.
1993-08-12
Shop for their expert assistance during thze design ard development ur the wind tunnel and experimental apparatus; Drs. Alan L. Kistler, Seth Lichter...vertical wind tunnel was designed and built for this research. I With the test section in a vertical orientation, gravity effects leading to cylinder sag...were eliminated. The overall design and layout of the wind tunnel, as well as specific design features incorporated into the wind tunnel to satisfy
Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel
NASA Technical Reports Server (NTRS)
Boney, Andy D.
2014-01-01
The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.
NASA Astrophysics Data System (ADS)
Chen, Zhi-De; Liang, J.-Q.; Shen, Shun-Qing
2002-09-01
Renormalized tunnel splitting with a finite distribution in the biaxial spin model for molecular magnets is obtained by taking into account the dipolar interaction of enviromental spins. Oscillation of the resonant tunnel splitting with a transverse magnetic field along the hard axis is smeared by the finite distribution, which subsequently affects the quantum steps of the hysteresis curve evaluated in terms of the modified Landau-Zener model of spin flipping induced by the sweeping field. We conclude that the dipolar-dipolar interaction drives decoherence of quantum tunneling in the molecular magnet Fe8, which explains why the quenching points of tunnel splitting between odd and even resonant tunneling predicted theoretically were not observed experimentally.
NASA Astrophysics Data System (ADS)
Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William
2018-02-01
The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.
NASA Technical Reports Server (NTRS)
Dor, J. B.; Mignosi, A.; Plazanet, M.
1984-01-01
The T2 wind tunnel is described. The process of generating a cyrogenic gust using the example of a test made at very low temperature is presented. Detailed results of tests on temperatures for flow in the settling chamber, the interior walls of the system, and the metal casing are given. The transverse temperature distribution in the settling chamber and working section, and of the thermal gradients in the walls, are given as a function of the temperature level of the test.
1965-10-22
N-222; 2 x 2ft Transonic Wind Tunnel is a closed return, variable-density tunnel equipped with an adjustable flexible-wall nozzle and a slotted test section. Airflow is produced by a two-stage, axial-flow compressor powered by four, variable-speed induction motors mounted in tandem, delivering a total of 4,000 horsepower. For conventional, steady-state testing models are generally supported on a sting. Internal, strain-gage balances are used for measuring forces and moments. This facility is also used for panel-flutter testing (one test-section wall is replaced with another containing the test specimen.
NASA Technical Reports Server (NTRS)
Anders, J. B.; Stainback, P. C.; Beckwith, I. E.; Keefe, L. R.
1975-01-01
Disturbance measurements were made using a hot-wire anemometer and piezoelectric pressure transducers in the settling chamber and free stream of a small Mach 5 wind tunnel. Results from the two instruments are compared and acoustical disturbances in the settling chamber are discussed. The source of the test-section noise is identified as nozzle-wall waviness at low Reynolds numbers and as eddy-Mach-wave radiation from the turbulent boundary layer on the nozzle wall at high Reynolds numbers.
Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation
NASA Astrophysics Data System (ADS)
Tomizawa, H.; Suzuki, K.; Yamaguchi, T.; Akita, S.; Ishibashi, K.
2017-04-01
We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.
Metric half-span model support system
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Dollyhigh, S. M.; Shaw, D. S. (Inventor)
1982-01-01
A model support system used to support a model in a wind tunnel test section is described. The model comprises a metric, or measured, half-span supported by a nonmetric, or nonmeasured half-span which is connected to a sting support. Moments and forces acting on the metric half-span are measured without interference from the support system during a wind tunnel test.
Semi-span wind tunnel testing without conventional peniche
NASA Astrophysics Data System (ADS)
Skinner, S. N.; Zare-Behtash, H.
2017-12-01
Low-speed wind tunnel tests of a flexible wing semi-span model have been implemented in the 9× 7 ft de Havilland wind tunnel at the University of Glasgow. The main objective of this investigation is to quantify the effect of removing the traditional peniche boundary layer spacer utilised in this type of testing. Removal of the peniche results in a stand-off gap between the wind tunnel wall and the model's symmetry plane. This offers the advantage of preventing the development of a horseshoe vortex in front of the model, at the peniche/wall juncture. The formation of the horseshoe vortex is known to influence the flow structures around the entire model and thus alters the model's aerodynamic behaviours. To determine the influence of the stand-off gap, several gap heights have been tested for a range of angles of attack at Re=1.5× 10^6, based on the wing mean aerodynamic chord (MAC). Force platform data have been used to evaluate aerodynamic coefficients, and how they vary with stand-off heights. Stereoscopic Particle Imaging Velocimetry (sPIV) was used to examine the interaction between the tunnel boundary layer and model's respective stand-off gap. In addition, clay and tuft surface visualisation enhanced the understanding of how local flow structures over the length of the fuselage vary with stand-off height and angle of attack. The presented results show that a stand-off gap of four-to-five times the displacement thickness of the tunnel wall boundary layer is capable of achieving a flow field around the model fuselage that is representative of what would be expected for an equivalent full-span model in free-air—this cannot be achieved with the application of a peniche.
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Burrin, R. H.; Ahuja, K. K.; Bartel, H. W.
1986-01-01
Two impulsive sound sources, one using multiple acoustic drivers and the other using a spark discharge were developed to study the acoustic reflection characteristics of hard-walled wind tunnels, and the results of laboratory tests are presented. The analysis indicates that though the intensity of the pulse generated by the spark source was higher than that obtained from the acoustic source, the number of averages needed for a particular test may require an unacceptibly long tunnel-run time due to the low spark generation repeat rate because of capacitor charging time. The additional hardware problems associated with the longevity of electrodes and electrode holders in sustaining the impact of repetitive spark discharges, show the multidriver acoustic source to be more suitable for this application.
MiniWall Tool for Analyzing CFD and Wind Tunnel Large Data Sets
NASA Technical Reports Server (NTRS)
Schuh, Michael J.; Melton, John E.; Stremel, Paul M.
2017-01-01
It is challenging to review and assimilate large data sets created by Computational Fluid Dynamics (CFD) simulations and wind tunnel tests. Over the past 10 years, NASA Ames Research Center has developed and refined a software tool dubbed the MiniWall to increase productivity in reviewing and understanding large CFD-generated data sets. Under the recent NASA ERA project, the application of the tool expanded to enable rapid comparison of experimental and computational data. The MiniWall software is browser based so that it runs on any computer or device that can display a web page. It can also be used remotely and securely by using web server software such as the Apache HTTP server. The MiniWall software has recently been rewritten and enhanced to make it even easier for analysts to review large data sets and extract knowledge and understanding from these data sets. This paper describes the MiniWall software and demonstrates how the different features are used to review and assimilate large data sets.
Wind tunnel and numerical data on the ventilation performance of windcatcher with wing wall.
Nejat, Payam; Calautit, John Kaiser; Abd Majid, Muhd Zaimi; Hughes, Ben Richard; Zeynali, Iman; Jomehzadeh, Fatemeh
2016-12-01
The data presented in this article were the basis for the study reported in the research articles entitled "Evaluation of a two-sided windcatcher integrated with wing wall (as a new design) and comparison with a conventional windcatcher" (P. Nejat, J.K. Calautit, M.Z.A. Majid, B.R. Hughes, I. Zeynali, F. Jomehzadeh, 2016) [1] which presents the effect of wing wall on the air flow distribution under using the windcatchers as a natural ventilation equipment. Here, we detail the wind tunnel testing and numerical set-up used for obtaining the data on ventilation rates and indoor airflow distribution inside a test room with a two-sided windcatcher and wing wall. Three models were integrated with wing wall angled at 30°, 45° and 60° and another windcatcher was a conventional two-sided device. The computer-aided design (CAD) three-dimensional geometries which were produced using Solid Edge modeler are also included in the data article.
MiniWall Tool for Analyzing CFD and Wind Tunnel Large Data Sets
NASA Technical Reports Server (NTRS)
Schuh, Michael J.; Melton, John E.; Stremel, Paul M.
2017-01-01
It is challenging to review and assimilate large data sets created by Computational Fluid Dynamics (CFD) simulations and wind tunnel tests. Over the past 10 years, NASA Ames Research Center has developed and refined a software tool dubbed the "MiniWall" to increase productivity in reviewing and understanding large CFD-generated data sets. Under the recent NASA ERA project, the application of the tool expanded to enable rapid comparison of experimental and computational data. The MiniWall software is browser based so that it runs on any computer or device that can display a web page. It can also be used remotely and securely by using web server software such as the Apache HTTP Server. The MiniWall software has recently been rewritten and enhanced to make it even easier for analysts to review large data sets and extract knowledge and understanding from these data sets. This paper describes the MiniWall software and demonstrates how the different features are used to review and assimilate large data sets.
NASA Astrophysics Data System (ADS)
Sege, J.; Li, Y.; Chang, C. F.; Chen, J.; Chen, Z.; Rubin, Y.; Li, X.; Hehua, Z.; Wang, C.; Osorio-Murillo, C. A.
2015-12-01
This study will develop a numerical model to characterize the perturbation of local groundwater systems by underground tunnel construction. Tunnels and other underground spaces act as conduits that remove water from the surrounding aquifer, and may lead to drawdown of the water table. Significant declines in water table elevation can cause environmental impacts by altering root zone soil moisture and changing inflows to surface waters. Currently, it is common to use analytical solutions to estimate groundwater fluxes through tunnel walls. However, these solutions often neglect spatial and temporal heterogeneity in aquifer parameters and system stresses. Some heterogeneous parameters, such as fracture densities, can significantly affect tunnel inflows. This study will focus on numerical approaches that incorporate heterogeneity across a range of scales. Time-dependent simulations will be undertaken to compute drawdown at various stages of excavation, and to model water table recovery after low-conductivity liners are applied to the tunnel walls. This approach will assist planners in anticipating environmental impacts to local surface waters and vegetation, and in computing the amount of tunnel inflow reduction required to meet environmental targets. The authors will also focus on managing uncertainty in model parameters. For greater planning applicability, extremes of a priori parameter ranges will be explored in order to anticipate best- and worst-case scenarios. For calibration and verification purposes, the model will be applied to a completed tunnel project in Mount Mingtang, China, where tunnel inflows were recorded throughout the construction process.
Tie, Kai; Wang, Hua; Wang, Xin; Chen, Liaobin
2012-10-01
To determine, for anterior cruciate ligament (ACL) reconstruction, whether the bone mineral density (BMD) of the femoral tunnel was higher than that of the tibial tunnel, to provide objective evidence for choosing the appropriate diameter of interference screws. Two groups were enrolled. One group comprised 30 normal volunteers, and the other comprised 9 patients with ACL rupture. Dual-energy X-ray absorptiometry was used to measure the BMD of the femoral and tibial tunnel regions of the volunteers' right knees by choosing a circular area covering the screw fixation region. The knees were also scanned by spiral computed tomography (CT), and the 3-dimensional reconstruction technique was used to determine the circular sections passing through the longitudinal axis of the femoral and tibial tunnels. Grayscale CT values of the cross-sectional area were measured. Cylindrical cancellous bone blocks were removed from the femoral and tibial tunnels during the ACL reconstruction for the patients. The volumetric BMD of the bone blocks was measured using a standardized immersion technique according to Archimedes' principle. As measured by dual-energy X-ray absorptiometry, the BMD of the femoral and tibial tunnel regions was 1.162 ± 0.034 g/cm(2) and 0.814 ± 0.038 g/cm(2), respectively (P < .01). The CT value of the femoral tunnel region was 211.7 ± 11.5 Hounsfield units, and the value of the tibial tunnel region was 104.9 ± 7.4 Hounsfield units (P < .01). The volumetric BMD of the bone block from the femoral tunnel (2.80 ± 0.88 g/cm(3)) was higher than the value from the tibial tunnel (1.88 ± 0.59 g/cm(3)) (P < .01). Comparing the data between male and female patients, we found no significant difference in both femoral and tibial tunnel regions. For ACL reconstruction, the BMD of the femoral tunnel is higher than that of the tibial tunnel. This implies that a proportionally larger-diameter interference screw should be used for fixation in the proximal tibia than that used for fixation in the distal femur. Level IV, therapeutic case series. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Junji; Duan, Lian; Choudhari, Meelan; Missouri Univ of Sci; Tech Team; NASA Langley Research Center Team
2017-11-01
Direct numerical simulations (DNS) are used to examine the acoustic noise generation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube. The emphasis is on characterizing the freestream acoustic pressure disturbances radiated from the nozzle-wall turbulent boundary layer and comparing it with acoustic noise generated from a single, flat wall in an unconfined setting at a similar freestream Mach number to assess the effects of noise reverberation. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the boundary-layer parameters as well as to understand the acoustic source mechanisms. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Air Force Office of Scientific Research Award No. FA9550-14-1-0170.
NASA Technical Reports Server (NTRS)
Dye, W. H.
1975-01-01
Tests were conducted in a hypersonic wind tunnel using various truncated space shuttle orbiter configurations in an attempt to establish the optimum model size for other tests examining body shock-wing leading edge interference effects. The tests were conducted at Mach number 8 using the phase change paint technique. A test description, tabulated data, and tracings of isotherms made from photographs taken during the test are presented.
NASA Technical Reports Server (NTRS)
Judd, M.; Wolf, S. W. D.; Goodyer, M. J.
1976-01-01
A method has been developed for accurately computing the imaginary flow fields outside a flexible walled test section, applicable to lifting and non-lifting models. The tolerances in the setting of the flexible walls introduce only small levels of aerodynamic interference at the model. While it is not possible to apply corrections for the interference effects, they may be reduced by improving the setting accuracy of the portions of wall immediately above and below the model. Interference effects of the truncation of the length of the streamlined portion of a test section are brought to an acceptably small level by the use of a suitably long test section with the model placed centrally.
NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurtis R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.;
2016-01-01
The NASA Environmentally Responsible Aviation (ERA) Project explored enabling technologies to reduce impact of aviation on the environment. One project research challenge area was the study of advanced airframe and engine integration concepts to reduce community noise and fuel burn. To address this challenge, complex wind tunnel experiments at both the NASA Langley Research Center's (LaRC) 14'x22' and the Ames Research Center's 40'x80' low-speed wind tunnel facilities were conducted on a BOEING Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion-airframe interference effects, including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on vehicle aerodynamics. This paper presents a high-level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as the development of some CFD simulation guidelines based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.
NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.;
2016-01-01
NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.
NASA Technical Reports Server (NTRS)
Shinoda, Patrick M.
1996-01-01
A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.
Investigation of water droplet trajectories within the NASA icing research tunnel
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Ibrahim, Mounir
1995-01-01
Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.
FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Biedron, Robert T.
2013-01-01
An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.
Nocturnal insects use optic flow for flight control.
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-08-23
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society
Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.
2002-01-01
In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.
Interference Effects and Drag of Struts on a Monoplane Wing
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1931-01-01
Tests were conducted in the Variable Density Wind Tunnel of the NACA to determine the importance of the interference effects and drag of struts on a monoplane. Inclined struts were placed upon a Gottingen 387 airfoil in the lower surface positions and in two upper surface positions. Tests were made at values of Reynolds Number comparable with those obtained in flight. It was found that the interference drag of struts may be as great as the drag of the struts alone.
The Interference Effects on an Airfoil of a Flat Plate at Mid-span Position
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1931-01-01
This report gives the results of an investigation of the mutual interference of an airfoil and a flat plate inserted at mid-span position. The tests were conducted in the Variable-Density Wind Tunnel of the National Advisory Committee for Aeronautics at a high value of the Reynolds Number. The interference effects of this combination were found to be small. Supplementary tests indicated that the use of fillets decreases both the lift and drag slightly. A bibliography of publication dealing with interference between wings and bodies, and with the effects of cut-outs and fillets is included.
NASA Technical Reports Server (NTRS)
Hood, Manley J; White, James A
1933-01-01
Some preliminary results of full scale wind tunnel testing to determine the best means of reducing the tail buffeting and wing-fuselage interference of a low-wing monoplane are given. Data indicating the effects of an engine cowling, fillets, auxiliary airfoils of short span, reflexes trailing edge, propeller slipstream, and various combinations of these features are included. The best all-round results were obtained by the use of fillets together with the National Advisory Committee for Aeronautics (NACA) cowling. This combination reduced the tail buffeting oscillations to one-fourth of their original amplitudes, increased the maximum lift 11 percent, decreased the minimum drag 9 percent, and increased the maximum ratio of lift to drag 19 percent.
Barber, F Alan; Dockery, W D
2016-04-01
To evaluate the long-term in vivo degradation of biocomposite interference screws made with self-reinforced poly-levo (96%)/dextro (4%)-lactide/β-tricalcium phosphate [SR-PL(96)/D(4)LA/β-TCP]. A study of the in vivo biologic behavior of an SR-PL(96)/D(4)LA/β-TCP biocomposite interference screw was initiated in 2011 using an anterior cruciate ligament (ACL) reconstruction model. Eight patients undergoing a bone-patellar tendon-bone ACL reconstruction fixed at both the femur and tibia with an SR-PL(96)/D(4)LA/β-TCP screw at least 36 months earlier were evaluated by physical, radiographic, and computed tomography (CT) evaluations. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee scores were obtained. After incomplete degradation was observed in these 8 patients, a subsequent series of 17 patients were evaluated at a minimum of 48 months after surgery. By use of CT scans, Hounsfield unit (HU) data were obtained at the femoral and tibial screw and other bone sites. An ossification quality score (range, 1 to 4) was used to determine osteoconductivity at the screw sites. Eleven male and 6 female patients evaluated by CT scan and radiographs at a mean of 50 months (range, 48 to 61 months) after surgery showed bone plug healing to the tunnel wall and the SR-PL(96)/D(4)LA/β-TCP screws were replaced with material that was calcified and non-trabecular. Osteoconductivity was present in 24 of 34 tunnels (70.58%) and nearly complete or complete (type 3 or 4 ossification) in 11 of 34 (32.35%). Mean screw site densities (femoral, 242 HU; tibial, 240 HU) were consistent with cancellous bone density. One positive pivot-shift test was found. Lysholm, Cincinnati, Tegner, and International Knee Documentation Committee activity scores improved from 44.5, 40.7, 2.3, and 1.4, respectively, preoperatively to 92, 92.4, 5.7, and 3.3, respectively, at follow-up (P < .0001). The average postoperative Single Assessment Numeric Evaluation score was 92. The mean KT arthrometer (MEDmetric, San Diego, CA) difference was 1.25 mm. The SR-PL(96)/D(4)LA/β-TCP interference screw was replaced with calcified, non-trabecular material 4 years after implantation in a bone-patellar tendon-bone ACL reconstruction model. Osteoconductivity was confirmed in 24 of 34 screw sites (71%), with nearly complete or complete filling in 11 of 34 (33%). The SR-PL(96)/D(4)LA/β-TCP biocomposite interference screw is osteoconductive. Level IV, therapeutic case series. Copyright © 2016 The Arthroscopy Association of North America. All rights reserved.
2001-11-13
North and West-facing facades of the 8x6 Supersonic Wind Tunnel in the early morning light. Caption: In the early morning light, the strong geometric lines behind the soft pine trees caught the eye of a photographer at Glenn Research Center. Behind the commanding facade lies the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT), an atmospheric tunnel with perforated stainless steel walls that provide boundary control during transonic operations. It is NASA's only transonic propulsion wind tunnel. http://facilities.grc.nasa.gov/8x6/8x6_quick.html
10' x 10' Supersonic Wind Tunnel Flexwall
2015-08-10
The flexwall section of NASA Glenn’s 10x10 supersonic wind tunnel is made up of two movable flexible steel sidewalls. These powerful hydraulic jacks move the walls in and out to control supersonic air speeds in the test section between Mach 2.0 and 3.5.
NASA Technical Reports Server (NTRS)
Pfenninger, W.; Syberg, J.
1974-01-01
The feasibility of quiet, suction laminarized, high Reynolds number (Re) supersonic wind tunnel nozzles was studied. According to nozzle wall boundary layer development and stability studies, relatively weak area suction can prevent amplified nozzle wall TS (Tollmien-Schlichting) boundary layer oscillations. Stronger suction is needed in and shortly upstream of the supersonic concave curvature nozzle area to avoid transition due to amplified TG (Taylor-Goertler) vortices. To control TG instability, moderately rapid and slow expansion nozzles require smaller total suction rates than rapid expansion nozzles, at the cost of larger nozzle length Re and increased TS disturbances. Test section mean flow irregularities can be minimized with suction through longitudinal or highly swept slots (swept behind local Mach cone) as well as finely perforated surfaces. Longitudinal slot suction is optimized when the suction-induced crossflow velocity increases linearly with surface distance from the slot attachment line toward the slot (through suitable slot geometry). Suction in supersonic blowdown tunnels may be operated by one or several individual vacuum spheres.
User's guide to STIPPAN: A panel method program for slotted tunnel interference prediction
NASA Technical Reports Server (NTRS)
Kemp, W. B., Jr.
1985-01-01
Guidelines are presented for use of the computer program STIPPAN to simulate the subsonic flow in a slotted wind tunnel test section with a known model disturbance. Input data requirements are defined in detail and other aspects of the program usage are discussed in more general terms. The program is written for use in a CDC CYBER 200 class vector processing system.
Sting Dynamics of Wind Tunnel Models
1976-05-01
Patterson AFB, AFFDL, Ohio, October 1964. 17. Brunk, James E. "Users Manual: Extended Capability Magnus Rotor and Ballistic Body 6-DOF Trajectory...measure "second-order" aerodynamic effects resulting, for example, from Reynolds number in- fluence. Consequently, all wind tunnel data systems are...sting-model interference effects , sting configurations normally consist of one or more linearly tapered sections combined with one or more untapered
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1979-01-01
Lift interference effects are discussed based on Bland's (1968) integral equation. A mathematical existence theory is utilized for which convergence of the numerical method has been proved for general (square-integrable) downwashes. Airloads are computed using orthogonal airfoil polynomial pairs in conjunction with a collocation method which is numerically equivalent to Galerkin's method and complex least squares. Convergence exhibits exponentially decreasing error with the number n of collocation points for smooth downwashes, whereas errors are proportional to 1/n for discontinuous downwashes. The latter can be reduced to 1/n to the m+1 power with mth-order Richardson extrapolation (by using m = 2, hundredfold error reductions were obtained with only a 13% increase of computer time). Numerical results are presented showing acoustic resonance, as well as the effect of Mach number, ventilation, height-to-chord ratio, and mode shape on wind-tunnel interference. Excellent agreement with experiment is obtained in steady flow, and good agreement is obtained for unsteady flow.
Nguyen, V Hung; Niquet, Y-M; Dollfus, P
2014-05-21
We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems.
Muzychenko, D A; Schouteden, K; Savinov, S V; Maslova, N S; Panov, V I; Van Haesendonck, C
2009-08-01
We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal islands deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are visible in spectroscopic images within a certain range of negative tunneling bias voltages due to the presence of a negative differential conductance in the current-voltage dependence. A theoretical model is introduced, which takes into account non-equilibrium effects in the small tunneling junction area. In the framework of this model the appearance of the ring-like features is explained in terms of interference effects between electrons tunneling directly and indirectly (via a Co island) between the tip and the InAs surface.
Light intensity distribution optimization for tunnel lamps in different zones of a long tunnel.
Lai, Wei; Liu, Xianming; Chen, Weimin; Lei, Xiaohua; Cheng, Xingfu
2014-09-22
The light distributions in different tunnel zones have different requirements in order to meet the driver's visual system. In this paper, the light intensity distributions of tunnel lamps in different zones of a long tunnel are optimized separately. A common nonlinear optimization approach is proposed to minimize the consuming power as well as satisfy the luminance and glare requirements both on the road surface and on the wall set by International Commission on Illumination (CIE). Compared with that of the reported linear optimization method, the optimization model can save energy from 11% to 57.6% under the same installation conditions.
Weiler, Andreas; Peine, Ricarda; Pashmineh-Azar, Alireza; Abel, Clemens; Südkamp, Norbert P; Hoffmann, Reinhard F G
2002-02-01
Interference fit fixation of soft-tissue grafts has recently raised strong interest because it allows for anatomic graft fixation that may increase knee stability and graft isometry. Although clinical data show promising results, no data exist on how tendon healing progresses using this fixation. The purpose of the present study was to investigate anterior cruciate ligament (ACL) reconstruction biomechanically using direct tendon-to-bone interference fit fixation with biodegradable interference screws in a sheep model. Animal study. Thirty-five mature sheep underwent ACL reconstruction with an autologous Achilles tendon split graft. Grafts were directly fixed with poly-(D,L-lactide) interference screws. Animals were euthanized after 6, 9, 12, 24, and 52 weeks and standard biomechanical evaluations were performed. All grafts at time zero failed by pullout from the bone tunnel, whereas grafts at 6 and 9 weeks failed intraligamentously at the screw insertion site. At 24 and 52 weeks, grafts failed by osteocartilaginous avulsion. At 24 weeks, interference screws were macroscopically degraded. At 6 and 9 weeks tensile stress was only 6.8% and 9.6%, respectively, of the graft tissue at time zero. At 52 weeks, tensile stress of the reconstruction equaled 63.8% and 47.3% of the Achilles tendon graft at time zero and the native ACL, respectively. A complete restitution of anterior-posterior drawer displacement was found at 52 weeks compared with the time-zero reconstruction. It was found that over the whole healing period the graft fixation proved not to be the weak link of the reconstruction and that direct interference fit fixation withstands loads without motion restriction in the present animal model. The weak link during the early healing stage was the graft at its tunnel entrance site, leading to a critical decrease in mechanical properties. This finding indicates that interference fit fixation of a soft-tissue graft may additionally alter the mechanical properties of the graft in the early remodeling stage because of a possible tissue compromise at the screw insertion site. Although mechanical properties of the graft tissue had not returned to normal at 1 year compared with those at time zero, knee stability had returned to normal at that time. There was no graft pullout after 24 weeks, indicating that screw degradation does not compromise graft fixation.
Tunneling decay of false vortices with gravitation
NASA Astrophysics Data System (ADS)
Dupuis, Éric; Gobeil, Yan; Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, Manu B.; Yajnik, Urjit A.; Yeom, Dong-han
2017-11-01
We study the effect of vortices on the tunneling decay of a symmetry-breaking false vacuum in three spacetime dimensions with gravity. The scenario considered is one in which the initial state, rather than being the homogeneous false vacuum, contains false vortices. The question addressed is whether, and, if so, under which circumstances, the presence of vortices has a significant catalyzing effect on vacuum decay. After studying the existence and properties of vortices, we study their decay rate through quantum tunneling using a variety of techniques. In particular, for so-called thin-wall vortices we devise a one-parameter family of configurations allowing a quantum-mechanical calculation of tunneling. Also for thin-wall vortices, we employ the Israel junction conditions between the interior and exterior spacetimes. Matching these two spacetimes reveals a decay channel which results in an unstable, expanding vortex. We find that the tunneling exponent for vortices, which is the dominant factor in the decay rate, is half that for Coleman-de Luccia bubbles. This implies that vortices are short-lived, making them cosmologically significant even for low vortex densities. In the limit of the vanishing gravitational constant we smoothly recover our earlier results for the decay of the false vortex in a model without gravity.
Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model
NASA Astrophysics Data System (ADS)
Zhua, Ningning; Jiaa, Yonghong; Luo, Lun
2016-06-01
The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.
Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya
2005-05-30
We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
2009-01-01
Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of under expanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Nearfield pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts. For further study, a design of experiments has been conducted to develop a hybrid method where both CFD and small scale wind tunnel testing will validate the observed trends. The CFD and testing will be used to screen a number of factors which are important to low boom propulsion integration, including boat tail angle, nozzle geometry, and the effect of spacing and stagger on nozzle pairs. To design the wind tunnel experiment, CFD was instrumental in developing a model which would provide adequate space to observe the nozzle and boat tail shock structure without interference from the wind tunnel walls.
Rocker, Andrea; Peschke, Madeleine; Kittilä, Tiia; Sakson, Roman; Brieke, Clara; Meinhart, Anton
2018-04-27
Bacterial toxin-antitoxin complexes are emerging as key players modulating bacterial physiology as activation of toxins induces stasis or programmed cell death by interference with vital cellular processes. Zeta toxins, which are prevalent in many bacterial genomes, were shown to interfere with cell wall formation by perturbing peptidoglycan synthesis in Gram-positive bacteria. Here, we characterize the epsilon/zeta toxin-antitoxin (TA) homologue from the Gram-negative pathogen Neisseria gonorrhoeae termed ng_ɛ1 / ng_ζ1. Contrary to previously studied streptococcal epsilon/zeta TA systems, ng_ɛ1 has an epsilon-unrelated fold and ng_ζ1 displays broader substrate specificity and phosphorylates multiple UDP-activated sugars that are precursors of peptidoglycan and lipopolysaccharide synthesis. Moreover, the phosphorylation site is different from the streptococcal zeta toxins, resulting in a different interference with cell wall synthesis. This difference most likely reflects adaptation to the individual cell wall composition of Gram-negative and Gram-positive organisms but also the distinct involvement of cell wall components in virulence.
Literature Survey of Underground Construction Methods for Application to Hardened Facilities
1985-04-01
Tunnel Supports: oxeutiver Sum pry (Dee. 1979) S SS ppo. NTIS9, P984- 134547. 41 . . . . . . . . .. . . . . . . . . . . . . .. 58. Selmer - Olsen , Rolf...mountains. Many of the installations are tunneled into rock in the mountainsides which is relatively fault-free and is not prone to flooding during...construction., Often, the rock is so strong that the tunnel walls do not have to be lined. The Scandinavian countries have built many underground or
Helicopter hub fairing and pylon interference drag
NASA Technical Reports Server (NTRS)
Graham, D. R.; Sung, D. Y.; Young, L. A.; Louie, A. W.; Stroub, R. H.
1989-01-01
A wind tunnel test was conducted to study the aerodynamics of helicopter hub and pylon fairings. The test was conducted in the 7-by 10 Foot Subsonic Wind Tunnel (Number 2) at Ames Research Center using a 1/5-scale XH-59A fuselage model. The primary focus of the test was on the rotor hub fairing and pylon mutual interference drag. Parametric studies of pylon and hub fairing geometry were also conducted. This report presents the major findings of the test as well as tabulated force and moment data, flow visualization photographs, and graphical presentations of the drag data. The test results indicate that substantial drag reduction can be attained through the use of a cambered hub fairing with circular arc upper surface and flat lower surface. Furthermore, a considerable portion of the overall drag reduction is attributed to the reduction in the hub-on-pylon interference drag. It is also observed that the lower surface curvature of the fairing has a strong influence on the hub fairing and on pylon interference drag. However, the drag reduction benefit that was obtained by using the cambered hub fairing with a flat lower surface was adversely affected by the clearance between the hub fairing and the pylon.
NASA Technical Reports Server (NTRS)
Silverstein, Abe; White, James A
1937-01-01
The theory of wind tunnel boundary influence on the downwash from a wing has been extended to provide more complete corrections for application to airplane test data. The first section of the report gives the corrections of the lifting line for wing positions above or below the tunnel center line; the second section shows the manner in which the induced boundary influence changes with distance aft of the lifting line. Values of the boundary corrections are given for off-center positions of the wing in circular, square, 2:1 rectangular, and 2:1 elliptical tunnels. Aft of the wing the corrections are presented for only the square and the 2:1 rectangular tunnels, but it is believed that these may be applied to jets of circular and 2:1 elliptical cross sections. In all cases results are included for both open and closed tunnels.
The effect of the wind tunnel wall boundary layer on the acoustic testing of propellers
NASA Technical Reports Server (NTRS)
Eversman, Walter
1989-01-01
An approximation based on the representation of the boundary layer by lamina of uniform flow with suitable interlayer boundary conditions is shown to be accurate, efficient, and compatible with finite element formulations. The approximation has been implemented using existing codes to produce a model for assessing the suitability of the acoustic environment in a wind tunnel for the acoustic testing of propellers. It is found that, with suitable acoustic treatment and with measurements made near the propeller and well removed from the walls, the free field directivity and level can be reproduced with good fidelity.
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-01-01
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-10-15
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m³; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.
Kobayashi, Masahiko; Nakagawa, Yasuaki; Suzuki, Takashi; Okudaira, Shuzo; Nakamura, Takashi
2006-10-01
To assess bone tunnel enlargement after anterior cruciate ligament (ACL) reconstruction with the use of hamstring tendons fixed with a round cannulated interference (RCI) screw in the femur. A consecutive series of 30 ACL reconstructions performed with hamstring tendons fixed with an RCI screw in the femur and with staples via Leeds-Keio ligament in the tibia was retrospectively reviewed. The clinical outcome was evaluated through the Lysholm score. Anterior instability was tested by Telos-SE (Telos Japan, Tokyo, Japan) measurement. The location and angle of each femoral and tibial tunnel were measured with the use of plain radiographs, and bone tunnel enlargement greater than 2 mm detected any time 3, 6, 12, and 24 months postoperatively was defined as positive. Each factor (location and angle of the tunnels, sex, affected side, age, Lysholm score, and Telos-SE measurement) was compared between enlarged and nonenlarged groups. Positive enlargement of the bone tunnel (>2.0 mm) was observed in 36.7% (11 of 30) on the femoral side and 33.3% (10 of 30) on the tibial side, and in 6 knees of both sides. Half of patients (15 of 30) had an enlarged tunnel on the femoral or the tibial side until 1 year postoperatively. In most cases, enlargement reached maximum at 6 months postoperatively. Female patients tended to have an enlarged tunnel, especially on the femoral side (P < .05). Tunnel enlargement was not correlated with location and angle of the tunnels. Moreover, no difference was found in Lysholm score and Telos-SE measurement between enlarged and nonenlarged groups, although the nonenlarged group tended to exhibit higher Lysholm score and lesser instability. Bone tunnel enlargement of the femoral or tibial side was observed in half of patients (6 in both sides, 5 only in the femur, and 4 only in the tibia) after ACL reconstruction was performed with a hamstring tendon fixed with an RCI screw. Female patients had a greater chance for enlargement of the femoral tunnel than did males. This enlargement had no significant impact on patient activity and on anterior instability of the knee 1 year after surgery. Level IV, Therapeutic case series.
NASA Technical Reports Server (NTRS)
Martin, T. A.; Spring, D. J.
1973-01-01
Wind tunnel test results are presented to show aerodynamic characteristics over the Mach number range of 0.64 to 2.50 of the DCAT missile. Data are presented showing the interference created by the rear mounted reaction control system. Two candidate fins were installed on the model during tests: a flat folding fin and a curved wrap around fin.
Aeroelastic instability stoppers for wind tunnel models
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)
1981-01-01
A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.
Jenkins, Glyndwr W; Kelly, Michael; Anwar, Siddiq; Ahmed, Saeed S
2015-01-01
Vascular access has been described in the literature anywhere from the 'Achilles Heel' to the 'Cornerstone' of haemodialysis. Displacement of a central venous catheter is not an uncommon occurrence. We discuss an alternative method of placement for the tunnelled central venous catheter to prevent displacement in those patients with excess anterior chest wall soft tissue. A new surgical technique for placement of a tunnelled central venous catheter was developed in an attempt to reduce the number of displacements. This involved the creation of a second tunnel at a 90° angle to the original retrograde tunnelled path. The authors have currently placed five 'S-Line' tunnelled central venous catheters with no reports of displacement or line infection over a period of 18 months. The 'S-Line' offers a simple, straightforward and most importantly safe method to reduce the incidence of tunnelled right internal jugular central venous catheter displacement.
Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Morgan, Daniel G.; Lee, George
1986-01-01
The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird, Emily; Kornfeldt, Torill; Dacke, Marie
2010-05-01
To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1988-01-01
The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.
NASA Technical Reports Server (NTRS)
Atencio, A., Jr.; Mckie, J.
1982-01-01
A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.
NASA Technical Reports Server (NTRS)
Hartman, A. S.; Nutt, K. W.
1982-01-01
Tests of the space shuttle external tank foam insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1440 F and a total pressure which varied from 30-100 psia. Cold wall heating rates were changed by varying the test article support wedge angle and by adding and removing a shock generator or a cylindrical protuberance. Selected results are presented to illustrate the test techniques and typical data obtained.
Intrinsic Tunneling in Phase Separated Manganites
NASA Astrophysics Data System (ADS)
Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.
2009-02-01
We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.
Directional control of infrared antenna-coupled tunnel diodes.
Slovick, Brian A; Bean, Jeffrey A; Krenz, Peter M; Boreman, Glenn D
2010-09-27
Directional control of received infrared radiation is demonstrated with a phased-array antenna connected by a coplanar strip transmission line to a metal-oxide-metal (MOM) tunnel diode. We implement a MOM diode to ensure that the measured response originates from the interference of infrared antenna currents at specific locations in the array. The reception angle of the antenna is altered by shifting the diode position along the transmission line connecting the antenna elements. By fabricating the devices on a quarter wave dielectric layer above a ground plane, narrow beam widths of 35° FWHM in power and reception angles of ± 50° are achieved with minimal side lobe contributions. Measured radiation patterns at 10.6 μm are substantiated by electromagnetic simulations as well as an analytic interference model.
de Graaf, S E; Leppäkangas, J; Adamyan, A; Danilov, A V; Lindström, T; Fogelström, M; Bauch, T; Johansson, G; Kubatkin, S E
2013-09-27
We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Alcorn, Charles W.; Kilgore, W. Allen
1990-01-01
Support interference free drag, lift, and pitching moment measurements on a range of slanted base ogive cylinders were made using the NASA Langley 13 inch magnetic suspension and balance system. Typical test Mach numbers were in the range 0.04 to 0.2. Drag results are shown to be in broad agreement with previous tests with this configuration. Measurements were repeated with a dummy sting support installed in the wind tunnel. Significant support interferences were found at all test conditions and are quantified. Further comparison is made between interference free base pressures, obtained using remote telemetry, and sting cavity pressures.
The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1989-01-01
A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller.
Multisensor system for tunnel inspection
NASA Astrophysics Data System (ADS)
Idoux, Maurice
2005-01-01
The system is aimed at assisting inspection and monitoring of the degradation of tunnels in order to minimize maintenance and repair time. ATLAS 70 is a complete sensors/software package which enables thorough diagnosis of tunnel wall conditions. The data collected locally are stored on a computer hard disk for subsequent analysis in a remote location via elaborate dedicated software. The sensors and local computer are loaded onto a rail and/or road vehicle of specific design, i.e. with even travelling speed of 2 to 5 km/h. Originally, the system has been developed for the Paris Underground Company and has since been applied to rail and road tunnels, large town sewage systems, clean water underground aqueducts and electric cable tunnels.
Effect of Collector Configuration on Test Section Turbulence Levels in an Open-Jet Wind Tunnel
NASA Technical Reports Server (NTRS)
Manuel, G. S.; Molloy, John K.; Barna, P. Stephen
1992-01-01
Flow quality studies in the Langley 14- by 22-Foot Subsonic Tunnel indicated periodic flow pulsation at discrete frequencies in the test section when the tunnel operated in an open-jet configuration. To alleviate this problem, experiments were conducted in a 1/24-scale model of the full-scale tunnel to evaluate the turbulence reduction potential of six collector configurations. As a result of these studies, the original bell-mouth collector of the 14- by 22-Foot Subsonic Tunnel was replaced by a collector with straight walls, and a slot was incorporated between the trailing edge of the collector and the entrance of the diffuser.
Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer
NASA Technical Reports Server (NTRS)
Bhat, M. K.; Vakili, A. D.; Wu, J. M.
1990-01-01
The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.
Mean flow and noise measurements in a Mach 3.5 pilot quiet tunnel
NASA Technical Reports Server (NTRS)
Beckwith, I. E.; Moore, W. O., III
1982-01-01
The use of Mach 3.5 two-dimensional rapid expansion nozzle for wind tunnel testing at supersonic speeds and low noise conditions encountered in high altitude flights is described. The supersonic pilot quiet tunnel is located at the NASA Langley Research Center and a description of the facility is provided, along with instrumentation and noise measurement test data at 30, 50, and 75 psia. The mean pitot pressure distributions, rms noise levels, the effect of unit Reynolds number, wall waviness, wall contaminants, and the effects of closing the bleed valve are analyzed. Typical laminar and turbulent spectra are presented, along with a summary of the effect of slot throat adjustment on the power spectra. Comparisons are made of the power spectra with the bleed valve open and closed, and of the rms fluctuating pressures with levels from conventional nozzles, and the performance capabilities are evaluated for use in transition studies.
Shuttle ascent and shock impingement aerodynamic heating studies
NASA Technical Reports Server (NTRS)
Lanning, W. D.; Hung, F. T.
1971-01-01
The collection and analysis of aerodynamic heating data obtained from shock impingement experimental investigation were completed. The data were categorized into four interference areas; fin leading edge, wing/fuselage fin/plate corners, and space shuttle configurations. The effects of shock impingement were found to increase the heating rates 10 to 40 times the undisturbed values. A test program was completed at NASA/Langley Research Center to investigate the magnitudes and surface patterns of the mated shock interference flowfield. A 0.0065 scale thin-skin model of the MDAC 256-20 space shuttle booster mated with a Stycast model of the MDAC Internal tank orbiter was tested in the 20-inch M=6 tunnel, the 31-inch M=10 tunnel, and the 48-inch Unitary Plan Tunnel. The gap region of the ascent configuration was the principal area of interest where both thermocouple and phase-change paint data were obtained. Pressure and heat transfer distributions data on the leeward surface of a 75-degree sweep slab delta wing are presented. The effects of surface roughness on boundary layer transition and aerodynamic heating were investigated.
Noise radiation directivity from a wind-tunnel inlet with inlet vanes and duct wall linings
NASA Technical Reports Server (NTRS)
Soderman, P. T.; Phillips, J. D.
1986-01-01
The acoustic radiation patterns from a 1/15th scale model of the Ames 80- by 120-Ft Wind Tunnel test section and inlet have been measured with a noise source installed in the test section. Data were acquired without airflow in the duct. Sound-absorbent inlet vanes oriented parallel to each other, or splayed with a variable incidence relative to the duct long axis, were evaluated along with duct wall linings. Results show that splayed vans tend to spread the sound to greater angles than those measured with the open inlet. Parallel vanes narrowed the high-frequency radiation pattern. Duct wall linings had a strong effect on acoustic directivity by attenuating wall reflections. Vane insertion loss was measured. Directivity results are compared with existing data from square ducts. Two prediction methods for duct radiation directivity are described: one is an empirical method based on the test data, and the other is a analytical method based on ray acoustics.
Distributed Fiber Optic Sensors For The Monitoring Of A Tunnel Crossing A Landslide
NASA Astrophysics Data System (ADS)
Minardo, Aldo; Picarelli, Luciano; Zeni, Giovanni; Catalano, Ester; Coscetta, Agnese; Zhang, Lei; DiMaio, Caterina; Vassallo, Roberto; Coviello, Roberto; Macchia, Giuseppe Nicola Paolo; Zeni, Luigi
2017-04-01
Optical fiber distributed sensors have recently gained great attention in structural and environmental monitoring due to specific advantages because they share all the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], but also offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over long distances, without any added devices. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C. These sensors have already been employed in static and dynamic monitoring of a variety of structures resulting able to identify and localize many kind of failures [2,3,4]. This paper deals with the application of BOTDA to the monitoring of the deformations of a railway tunnel (200 m long) constructed in the accumulation of Varco d'Izzo earthflow, Potenza city, in the Southern Italian Apennine. The earthflow, which occurs in the tectonized clay shale formation called Varicoloured Clays, although very slow, causes continuous damage to buildings and infrastructures built upon or across it. The railway tunnel itself had to be re-constructed in 1992. Since then, the Italian National Railway monitored the structure by means of localized fissure-meters. Recently, thanks to a collaboration with the rail Infrastructure Manager (RFI), monitoring of various zones of the landslide including the tunnel is based on advanced systems, among which the optical fiber distributed sensors. First results show how the sensing optical fiber cable is able to detect the formation of localized strains and cracks, following the evolution of their width and identifying their location along the tunnel walls. It is worth noticing that the distributed nature of the sensor makes it possible to perform the monitoring with no preliminary information about the possible location of concentrated deformation. The sensing cable is simply glued to the tunnel walls and the system will remotely detect and locate any deformation and fracture wherever they occur along the fiber path, so representing a powerful early warning system. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, "Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, 29, 2011. [2] L. Zeni, L. Picarelli, B. Avolio, A. Coscetta, R. Papa, G. Zeni, C. Di Maio, R. Vassallo, A. Minardo, "Brillouin Optical Time Domain Analysis for Geotechnical Monitoring", Journal of Rock Mechanics and Geotechnical Engineering, 7, 2015 [3] A. Minardo, G. Porcaro, D. Giannetta, R. Bernini, L. Zeni, "Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors", Applied Optics, 52, 2013 [4] A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, L. Zeni, "Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method", Smart Materials & Structures, 22, 2014
Hu, L H; Peng, W; Huo, R
2008-01-15
In case of a tunnel fire, toxic gas and smoke particles released are the most fatal contaminations. It is important to supply fresh air from the upwind side to provide a clean and safe environment upstream from the fire source for people evacuation. Thus, the critical longitudinal wind velocity for arresting fire induced upwind gas and smoke dispersion is a key criteria for tunnel safety design. Former studies and thus, the models built for estimating the critical wind velocity are all arbitrarily assuming that the fire takes place at the centre of the tunnel. However, in many real cases in road tunnels, the fire originates near the sidewall. The critical velocity of a near-wall fire should be different with that of a free-standing central fire due to their different plume entrainment process. Theoretical analysis and CFD simulation were performed in this paper to estimate the critical velocity for the fire near the sidewall. Results showed that when fire originates near the sidewall, it needs larger critical velocity to arrest the upwind gas and smoke dispersion than when fire at the centre. The ratio of critical velocity of a near-wall fire to that of a central fire was ideally estimated to be 1.26 by theoretical analysis. Results by CFD modelling showed that the ratio decreased with the increase of the fire size till near to unity. The ratio by CFD modelling was about 1.18 for a 500kW small fire, being near to and a bit lower than the theoretically estimated value of 1.26. However, the former models, including those of Thomas (1958, 1968), Dangizer and Kenndey (1982), Oka and Atkinson (1995), Wu and Barker (2000) and Kunsch (1999, 2002), underestimated the critical velocity needed for a fire near the tunnel sidewall.
Constantino, Jason; Long, Yun; Ashihara, Takashi; Trayanova, Natalia A.
2010-01-01
Background Following near-defibrillation threshold (DFT) shocks from an ICD, the first postshock activation that leads to defibrillation failure arises focally after an isolelectric window (IW). The mechanisms underlying the IW remain incompletely understood. Objective The goal of this study was to provide mechanistic insight into the origins of postshock activations and IW following ICD shocks, and to link shock outcome to the preshock state of the ventricles. We hypothesized that the non-uniform ICD field results in the formation of an intramural excitable area (tunnel) only in the LV free wall, through which both pre-existing and new shock-induced wavefronts propagate during the IW. Methods Simulations were conducted using a realistic 3-D model of defibrillation in the rabbit ventricles. Biphasic ICD shocks of varying strengths were delivered to 27 different fibrillatory states. Results Following near-DFT shocks, regardless of preshock state, the main postshock excitable area was always located within LV free wall, creating an intramural tunnel. Either preexisting fibrillatory or shock-induced wavefronts propagated during the IW (duration of up to 74ms) in this tunnel and emerged as breakthroughs on LV epicardium. Preshock activity within the LV played a significant role in shock outcome: large number of preshock filaments resulted in an IW associated with tunnel propagation of preexisting rather than shock-induced wavefronts. Furthermore, shocks were more likely to succeed if LV excitable area was smaller. Conclusions The LV intramural excitable area is the primary reason for near-DFT failure. Any intervention that decreases the extent of this area will improve the likelihood of defibrillation success. PMID:20348028
Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas
2012-01-01
In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.
Salecker-Wigner-Peres clock, Feynman paths, and a tunneling time that should not exist
NASA Astrophysics Data System (ADS)
Sokolovski, D.
2017-08-01
The Salecker-Wigner-Peres (SWP) clock is often used to determine the duration a quantum particle is supposed to spend in a specified region of space Ω . By construction, the result is a real positive number, and the method seems to avoid the difficulty of introducing complex time parameters, which arises in the Feynman paths approach. However, it tells little about the particle's motion. We investigate this matter further, and show that the SWP clock, like any other Larmor clock, correlates the rotation of its angular momentum with the durations τ , which the Feynman paths spend in Ω , thereby destroying interference between different durations. An inaccurate weakly coupled clock leaves the interference almost intact, and the need to resolve the resulting "which way?" problem is one of the main difficulties at the center of the "tunnelling time" controversy. In the absence of a probability distribution for the values of τ , the SWP results are expressed in terms of moduli of the "complex times," given by the weighted sums of the corresponding probability amplitudes. It is shown that overinterpretation of these results, by treating the SWP times as physical time intervals, leads to paradoxes and should be avoided. We also analyze various settings of the SWP clock, different calibration procedures, and the relation between the SWP results and the quantum dwell time. The cases of stationary tunneling and tunnel ionization are considered in some detail. Although our detailed analysis addresses only one particular definition of the duration of a tunneling process, it also points towards the impossibility of uniting various time parameters, which may occur in quantum theory, within the concept of a single tunnelling time.
Incompressible viscous flow simulations of the NFAC wind tunnel
NASA Technical Reports Server (NTRS)
Champney, Joelle Milene
1986-01-01
The capabilities of an existing 3-D incompressible Navier-Stokes flow solver, INS3D, are extended and improved to solve turbulent flows through the incorporation of zero- and two-equation turbulence models. The two-equation model equations are solved in their high Reynolds number form and utilize wall functions in the treatment of solid wall boundary conditions. The implicit approximate factorization scheme is modified to improve the stability of the two-equation solver. Applications to the 3-D viscous flow inside the 80 by 120 feet open return wind tunnel of the National Full Scale Aerodynamics Complex (NFAC) are discussed and described.
Analysis of a turbulent boundary layer over a moving ground plane
NASA Technical Reports Server (NTRS)
Roper, A. T.; Gentry, G. L., Jr.
1972-01-01
Four methods of predicting the integral and friction parameters for a turbulent boundary layer over a moving ground plane were evaluated by using test information obtained in 76.2- by 50.8-centimeter tunnel. The tunnel was operated in the open sidewall configuration. These methods are (1) relative integral parameter method, (2) modified power law method, (3) relative power law method, and (4) modified law of the wall method. The modified law of the wall method predicts a more rapid decrease in skin friction with an increase in the ratio of belt velocity to free steam velocity than do methods (1) and (3).
NASA Technical Reports Server (NTRS)
Sun, C. C.; Childs, M. E.
1977-01-01
Tabulated data from a series of experimental studies of the interaction of a shock wave with a turbulent boundary layer in axisymmetric flow configurations is presented. The studies were conducted at the walls of circular wind tunnels and on the cylindrical centerbody of an annular flow channel. Detailed pitot pressure profiles and wall static pressure profiles upstream of, within and downstream of the interaction region are given. Results are presented for flows at nominal freestream Mach Numbers of 2, 3 and 4. For studies at the tunnel sidewalls, the shock waves were produced by conical shock generators mounted on the centerline of the wind tunnel at zero angle of attack. The annular ring generator was used to produce the shock wave at the centerbody of the annular flow channel. The effects of boundary layer bleed were examined in the investigation. Both bleed rate and bleed location were studied. Most of the bleed studies were conducted with bleed holes drilled normal to the wall surface but the effects of slot suction were also examined. A summary of the principal results and conclusions is given.
The NASA Langley 8-foot Transonic Pressure Tunnel calibration
NASA Technical Reports Server (NTRS)
Brooks, Cuyler W., Jr.; Harris, Charles D.; Reagon, Patricia G.
1994-01-01
The NASA Langley 8-Foot Transonic Pressure Tunnel is a continuous-flow, variable-pressure wind tunnel with control capability to independently vary Mach number, stagnation pressure, stagnation temperature, and humidity. The top and bottom walls of the test section are axially slotted to permit continuous variation of the test section Mach number from 0.2 to 1.2, the slot-width contour provides a gradient-free test section 50 in. long for Mach numbers equal to or greater than 1.0 and 100 in. long for Mach numbers less than 1.0. The stagnation pressure may be varied from 0.25 to 2.0 atm. The tunnel test section has been recalibrated to determine the relationship between the free-stream Mach number and the test chamber reference Mach number. The hardware was the same as that of an earlier calibration in 1972 but the pressure measurement instrumentation available for the recalibration was about an order of magnitude more precise. The principal result of the recalibration was a slightly different schedule of reentry flap settings for Mach numbers from 0.80 to 1.05 than that determined during the 1972 calibration. Detailed tunnel contraction geometry, test section geometry, and limited test section wall boundary layer data are presented.
Effect of Reynolds number variation on aerodynamics of a hydrogen-fueled transport concept at Mach 6
NASA Technical Reports Server (NTRS)
Penland, Jim A.; Marcum, Don C., Jr.
1987-01-01
Two separate tests have been made on the same blended wing-body hydrogen-fueled transport model at a Mach number of about 6 and a range of Reynolds number (based on theoretical body length) of 1.577 to 55.36 X 10 to the 6th power. The results of these tests, made in a conventional hypersonic blowdown tunnel and a hypersonic shock tunnel, are presented through a range of angle of attack from -1 to 8 deg, with an extended study at a constant angle of attack of 3 deg. The model boundary layer flow appeared to be predominately turbulent except for the low Reynolds number shock tunnel tests. Model wall temperatures varied considerably; the blowdown tunnel varied from about 255 F to 340 F, whereas the shock tunnel had a constant 70 F model wall temperature. The experimental normal-force coefficients were essentially independent of Reynolds number. A current theoretical computer program was used to study the effect of Reynolds number. Theoretical predictions of normal-force coefficients were good, particularly at anticipated cruise angles of attack, that is 2 to 5 deg. Axial-force coefficients were generally underestimated for the turbulent skin friction conditions, and pitching-moment coefficients could not be predicted reliably.
Subselenean tunneler melting head design: A preliminary study
NASA Technical Reports Server (NTRS)
Engblom, Bill; Graham, Eric; Perera, Jeevan; Strahan, Alan; Ro, Ted
1988-01-01
The placement of base facilities in subsurface tunnels created as a result of subsurface mining is described as an alternative to the establishing of a base on the lunar surface. Placement of the base facilities and operations in subselenean tunnels will allow personnel to live and work free from the problem of radiation and temperature variations. A conceptual design for a tunneling device applicable to such a lunar base application was performed to assess the feasibility of the concept. A tunneler was designed which would melt through the lunar material leaving behind glass lined tunnels for later development. The tunneler uses a nuclear generator which supplies the energy to thermally melt the regolith about the cone shaped head. Melted regolith is exacavated through intakes in the head and transferred to a truck which hauls it to the surface. The tunnel walls are solidified to provide support lining by using an active cooling system about the mid section of the tunneler. Also addressed is the rationale for a subselenean tunneler and the tunneler configuration and subsystems, as well as the reasoning behind the resulting design.
NASA Technical Reports Server (NTRS)
Lynch, F. T.; Johnson, C. B.
1988-01-01
The need to correct transonic airfoil wind tunnel test data for the influence of the tunnel sidewall boundary layers, in addition to the wall accepted corrections for the analytical investigation was carried out in order to evaluate sidewall boundary layer effects on transonic airfoil characteristics, and to validate proposed correction and the limit to their applications. This investigation involved testing of modern airfoil configurations in two different transonic airfoil test facilities, the 15 x 60 inch two-dimensional insert of the National Aeronautical Establishment (NAE) 5 foot tunnel in Ottawa, Canada, and the two-dimensional test section of the NASA Langley 0.3 m Transonic Cryogenic Tunnel (TCT). Results presented included effects of variations in sidewall-boundary layer bleed in both facilities, different sidewall boundary layer correction procedures, tunnel-to tunnel comparisons of correcte results, and flow conditions with and without separation.
Acoustical characteristics of the NASA Langley full scale wind tunnel test section
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.
1975-01-01
The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.
Jet-Boundary Corrections for Reflection-Plane Models in Rectangular Wind Tunnels
1943-01-01
clock- wiso) located at a distance d above the tunnel center line and at distances equal to VIand —vI from the reflection wall. Tho single trailing vortex...neglected. The angle-.xkmnge is usually small, les than %O. M & fw-refleciicur plane models in 7-by 10-foof cIosedrectangular wind fu-meIs 04
First principles studies of electron tunneling in proteins
Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.
2014-01-01
A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312
Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling
NASA Technical Reports Server (NTRS)
Maserjian, J.; Zamani, N.
1982-01-01
Thin-oxide (40-50 A) metal oxide semiconductor (MOS) structures are shown to exhibit, before large levels of electron tunnel injection, the near-ideal behavior predicted for a uniform trapezoidal barrier with thick-oxide properties. The oscillatory field dependence caused by electron-wave interference at the Si/SiO2 interface suggests an abrupt, one-monolayer barrier transition (approximately 2.5 A) consistent with earlier work. After tunnel injection of 10 to the 17th - 5 x 10 to the 18th electrons/sq cm, the barrier undergoes appreciable degradation, leading to enhanced tunneling conductance. Reproducible behavior is observed among different samples. This effect is found to be consistent with the generation of positive states in the region of the oxide near the Si/SiO2 interface (less than 20 A), where the tunneling electrons emerge into the oxide conduction band.
An investigation of turbulence structure in a low-Reynolds-number incompressible turbulent boundary
NASA Technical Reports Server (NTRS)
White, B. R.; Strataridakis, C. J.
1987-01-01
An existing high turbulence intensity level (5%) atmospheric boundary-layer wind tunnel has been successfully converted to a relatively low level turbulence (0.3%) wind tunnel through extensive modification, testing, and calibration. A splitter plate was designed, built, and installed into the wind-tunnel facility to create thick, mature, two-dimensional turbulent boundary layer flow at zero pressure gradient. Single and cross hot-wire measurements show turbulent boundary layer characteristics of good quality with unusually large physical size, i.e., viscous sublayer of the order of 1 mm high. These confirm the potential ability of the tunnel to be utilized for future high-quality near-wall turbulent boundary layer measurements. It compares very favorably with many low turbulence research tunnels.
NASA Technical Reports Server (NTRS)
Giriunas, Julius A.
2012-01-01
Facility upgrades and large maintenance tasks needed at the NASA Glenn 10x10 Supersonic Wind Tunnel requires significant planning to make sure implementation proceeds in an efficiently and cost effective manner. Advanced planning to secure the funding, complete design efforts and schedule the installation needs to be thought out years in advance to avoid interference with wind tunnel testing. This presentation describes five facility tasks planned for implementation over the next few years. The main focus of the presentation highlights the efforts on possible replacement of the diesel generator and the rationale behind the effort.
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.
2012-01-01
An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.
Coherent control of the Goos-Hänchen shift via Fano interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaopeng; Yang, Wen-Xing, E-mail: wenxingyang@seu.edu.cn; Zhu, Zhonghu
2016-04-14
A scheme of enhanced Goos-Hänchen (GH) shifts in reflected and transmitted light beams is exploited in a cavity, where an asymmetric double AlGaAs/GaAs quantum well structure with resonant tunneling to a common continuum is employed as the intracavity medium. With the help of Fano-type interference induced by resonant tunneling, the generated GH shifts that contain a negative lateral shift in reflected light beam and a positive lateral shift in transmitted light beam are found to be significantly enhanced. More interestingly, these GH shifts in reflected and transmitted light beams are modulated by means of a control beam and external biasmore » voltage, in which maximum negative shift of 1.86 mm and positive shift of 0.37 mm are achievable.« less
Strut and wall interference on jet-induced ground effects of a STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Kristy, Michael H.
1995-01-01
A small scale ground effect test rig was used to study the ground plane flow field generated by a STOVL aircraft in hover. The objective of the research was to support NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test for the ARPA-sponsored ASTOVL program. Specifically, small scale oil flow visualization studies were conducted to make a relative assessment of the aerodynamic interference of a proposed strut configuration and a wall configuration on the ground plane stagnation line. A simplified flat plate model representative of a generic jet-powered STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely represented those used on the LSPM tests. The flow visualization data clearly identified a shift in the stagnation line location for both the strut and the wall configuration. Considering the experimental uncertainty, it was concluded that either the strut configuration o r the wall configuration caused only a minor aerodynamic interference.
NASA Technical Reports Server (NTRS)
Langston, L. S.
1980-01-01
Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.
Quantum Electron Tunneling in Respiratory Complex I1
Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.
2014-01-01
We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666
NASA Technical Reports Server (NTRS)
Pond, C. R.; Texeira, P. D.
1985-01-01
A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.
Optophononics with Coupled Quantum Dots
2014-02-18
polarons’ applicability as an amplifier of the visibility of weakest tunnel coupling channels. This observation via destructive interference proves the...exhibit weak electric field dependence . The |iXnS states exhibit much larger electric field dependence owing to the greater spatial separation of the...gate voltage, Dph¼pr0t2 is the phonon-assisted tunnelling broadening, r0 is the phonon density of states, qFano ¼ niXt=ðnDphÞ is the Fano factor; oph,0
Impairing the useful field of view in natural scenes: Tunnel vision versus general interference.
Ringer, Ryan V; Throneburg, Zachary; Johnson, Aaron P; Kramer, Arthur F; Loschky, Lester C
2016-01-01
A fundamental issue in visual attention is the relationship between the useful field of view (UFOV), the region of visual space where information is encoded within a single fixation, and eccentricity. A common assumption is that impairing attentional resources reduces the size of the UFOV (i.e., tunnel vision). However, most research has not accounted for eccentricity-dependent changes in spatial resolution, potentially conflating fixed visual properties with flexible changes in visual attention. Williams (1988, 1989) argued that foveal loads are necessary to reduce the size of the UFOV, producing tunnel vision. Without a foveal load, it is argued that the attentional decrement is constant across the visual field (i.e., general interference). However, other research asserts that auditory working memory (WM) loads produce tunnel vision. To date, foveal versus auditory WM loads have not been compared to determine if they differentially change the size of the UFOV. In two experiments, we tested the effects of a foveal (rotated L vs. T discrimination) task and an auditory WM (N-back) task on an extrafoveal (Gabor) discrimination task. Gabor patches were scaled for size and processing time to produce equal performance across the visual field under single-task conditions, thus removing the confound of eccentricity-dependent differences in visual sensitivity. The results showed that although both foveal and auditory loads reduced Gabor orientation sensitivity, only the foveal load interacted with retinal eccentricity to produce tunnel vision, clearly demonstrating task-specific changes to the form of the UFOV. This has theoretical implications for understanding the UFOV.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
...; input/output assemblies; electromagnetic interference support walls; bumpers; adhesives; sleeves; rubber... shroud assemblies; mechanism bases; storage; busbars; button dim links; electromagnetic interference fans...
NASA Astrophysics Data System (ADS)
Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.
2018-06-01
We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.
Laser-velocimeter surveys of merging vortices in a wind tunnel: Complete data and analysis
NASA Technical Reports Server (NTRS)
Corsiglia, V. R.; Iversen, J. D.; Orloff, K. L.
1978-01-01
The merger of two corotating vortices was studied with a laser velocimeter designed to measure the two cross-stream components of velocity. Measurements were made at several downstream distances in the vortex wake shed by two semispan wings mounted on the wind-tunnel walls. The velocity data provided wall-defined contours of crossflow velocity, stream function, and vorticity for a variety of test conditions. Downstream of the merger point, the vorticity was found to be independent of the downstream distance for radii smaller than r/b = 0.05. For larger radii, the vorticity depended on the distance from the wing. Upstream of the merger, a multicell vorticity pattern was found.
NASA Technical Reports Server (NTRS)
Mchugh, James G; Derring, Eldridge H
1939-01-01
Report presents the results of an investigation conducted in the NACA 20-foot tunnel to determine the slipstream drag, the body interference, and the cooling characteristics of nacelle-propeller diameter. Four combinations of geometrically similar propellers and nacelles, mounted on standard wing supports, were tested with values of the ratio of nacelle diameter to propeller diameter of 0.25, 0.33, and 0.44.
Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.
Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro
2017-08-25
We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.
2015-02-01
research cell14. The RC-19 facility is a continuous flow wind tunnel designed to study the mechanisms that govern the mixing and combustion process... angle of 39° from the tunnel bottom wall. The shock generator can translate 170 mm in the flow direction to allow for the shock wave to impinge from...approximate absolute pressure of 20.5 kPa. A series of “ wind -off” images for PSP were collected at that time. The tunnel was then started by setting the
Transition Research with Temperature-Sensitive Paints in the Boeing/AFOSR Mach-6 Quiet Tunnel
2011-06-01
flow. This is because the presence of a model in the wind tunnel affects the flowfield due to the presence of a bow shock . This shock impinges on the...model, it was found that the bow shock reflected off the tunnel walls and impinged on the aft end of the model. Besides this region, when the model...reflected bow shock from impinging on the model. Transition occurred on the lee ray on the smaller model. Forward-facing and aft-facing steps on the model
2015-01-02
The wind tunnel is fitted with large windows for extended optical access to permit various non intrusive and minimally intrusive diagnostic ...as well as new dielectric and semiconducting surface structures The tunnel test section is built with dielectric walls to avoid electromagnetic ...14 – DAQ transducer cable. 15 – Pitot tube and hot wire sensors free-stream velocity data. Figure 3. New test section. 250×360×600 mm3. 1-inch
Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation
NASA Technical Reports Server (NTRS)
Murman, E. M.
1982-01-01
The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.
Navier-Stokes calculations for DFVLR F5-wing in wind tunnel using Runge-Kutta time-stepping scheme
NASA Technical Reports Server (NTRS)
Vatsa, V. N.; Wedan, B. W.
1988-01-01
A three-dimensional Navier-Stokes code using an explicit multistage Runge-Kutta type of time-stepping scheme is used for solving the transonic flow past a finite wing mounted inside a wind tunnel. Flow past the same wing in free air was also computed to assess the effect of wind-tunnel walls on such flows. Numerical efficiency is enhanced through vectorization of the computer code. A Cyber 205 computer with 32 million words of internal memory was used for these computations.
NASA Technical Reports Server (NTRS)
Kaul, U. K.; Ross, J. C.; Jacocks, J. L.
1985-01-01
The flow into an open return wind tunnel inlet was simulated using Euler equations. An explicit predictor-corrector method was employed to solve the system. The calculation is time-accurate and was performed to achieve a steady-state solution. The predictions are in reasonable agreement with the experimental data. Wall pressures are accurately predicted except in a region of recirculating flow. Flow-field surveys agree qualitatively with laser velocimeter measurements. The method can be used in the design process for open return wind tunnels.
Fundamental Studies of Subsonic and Transonic Flow Separation. Part I. First Phase Summary Report
1975-09-01
Axial Mach Number Distributions for M> 1.•..•.•. 119 A-8 Total Pressure Profile at X = 66.25 Inch Station. 120 A-9 Surface Temperature Distribution... designed wind tunnel wall as the testing model for achieving high Reynolds number flows. The other is to em- ploy a sufficiently long model such that a...external pressure field can be studied in detail. 3.1 UTSI TRANSONIC TUNNEL In general, most wind tunnels have been designed to have a ’uniform flow in
USDA-ARS?s Scientific Manuscript database
Proteins exist in every plant cell wall. Certain protein residues interfere with lignin characterization and quantification. The current solution-state 2D-NMR technique (gel-NMR) for whole plant cell wall structural profiling provides detailed information regarding cell walls and proteins. However, ...
1980-06-05
N-231 High Reynolds Number Channel II Facility In this timeframe the test section was designed specifically to test two-dimensional airfoil models. It is equipped with 'through-the-wall' turntables that remotely position the airfoil, with flexible upper and lower walls that can be adjusted to minimize wall interference. Porous side-wall panels provide boundary-layer removal.
Experimental study of turbulence in blade end wall corner region
NASA Technical Reports Server (NTRS)
Raj, R.
1982-01-01
Corner flows and wall pressure fluctuations, design and fabrication of the test model, preliminary resuls on boundary layer, flow visualization, turbulence intensity and spectra measurements are presented. The design consideration and fabrication report on the newly built wind tunnel to be used for subsequent continuation of the research effort is also presented.
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...
Thermal sensing of cryogenic wind tunnel model surfaces Evaluation of silicon diodes
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.; Dillon-Townes, L. A.
1986-01-01
Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.
Thermal sensing of cryogenic wind tunnel model surfaces - Evaluation of silicon diodes
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Ash, Robert L.; Dillon-Townes, Lawrence A.
1986-01-01
Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.
Laser angle measurement system
NASA Technical Reports Server (NTRS)
Pond, C. R.; Texeira, P. D.; Wilbert, R. E.
1980-01-01
The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp
We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less
Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.
This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered,more » focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.« less
Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.
2016-01-01
This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.
SRB ascent aerodynamic heating design criteria reduction study, volume 2
NASA Technical Reports Server (NTRS)
Crain, W. K.; Frost, C. L.; Engel, C. D.
1989-01-01
Data are presented for the wind tunnel interference heating factor data base, the timewise tabulated ascent design environments, and the timewise plotted environments comparing the REMTECH results to the Rockwell RI-IVBC-3 results.
NASA Technical Reports Server (NTRS)
Squires, P. K.
1982-01-01
Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.
Characteristics of the Langley 8-foot Transonic Tunnel with Slotted Test Section
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ritchie, Virgil S; Pearson, Albin O
1958-01-01
A large wind tunnel, approximately 8 feet in diameter, has been converted to transonic operation by means of slots in the boundary extending in the direction of flow. The usefulness of such a slotted wind tunnel, already known with respect to the reduction of the subsonic blockage interference and the production of continuously variable supersonic flows, has been augmented by devising a slot shape with which a supersonic test region with excellent flow quality could be produced. Experimental locations of detached shock waves ahead of axially symmetric bodies at low supersonic speeds in the slotted test section agreed satisfactorily with predictions obtained by use of existing approximate methods.
Quantum electron tunneling in respiratory complex I.
Hayashi, Tomoyuki; Stuchebrukhov, Alexei A
2011-05-12
We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. While the one-electron tunneling approximation is found to hold in electron tunneling between the antiferromagnetic binuclear and tetranuclear Fe/S clusters without major orbital or spin rearrangement of the core electrons, induced polarization of the core electrons contributes significantly to decrease the electron transfer rates to 19-56 %. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of the electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A signature of the wave properties of electrons is observed as distinct quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included is in good agreement with a reported phenomenological relation.
Exchange interaction and tunneling-induced transparency in coupled quantum dots
NASA Astrophysics Data System (ADS)
Borges, H. S.; Alcalde, A. M.; Ulloa, Sergio E.
2014-11-01
We investigate the optical response of quantum dot molecules coherently driven by polarized laser light. Our description includes the splitting in excitonic levels caused by isotropic and anisotropic exchange interactions. We consider interdot transitions mediated by hole tunneling between states with the same total angular momentum and between bright and dark exciton states as allowed by spin-flip hopping between the dots in the molecule. Using realistic experimental parameters we demonstrate that the excitonic states coupled by tunneling exhibit a rich and controllable optical response. We show that through the appropriate control of an external electric field and light polarization, the tunneling coupling establishes an efficient destructive quantum interference path that creates a transparency window in the absorption spectra whenever states of appropriate symmetry are mixed by the carrier tunneling. We explore the relevant parameter space that allows probing this phenomenon in experiments. Controlled variation in applied field and laser detuning would allow the optical characterization of spin-preserving and spin-flip hopping amplitudes in such systems by measuring the width of the tunneling-induced transparency windows.
Tunneling through superlattices: the effect of anisotropy and kinematic coupling.
Halilov, S V; Huang, X Y; Hytha, M; Stephenson, R; Yiptong, A; Takeuchi, H; Cody, N; Mears, R J
2012-12-12
The tunneling of carriers in stratified superlattice systems is analyzed in terms of the constituent effective mass tensor. The focus is on the effects on the tunneling which are caused by the side regions of an intervening barrier. Depending on the covalency and work function in the constituent layers of a superlattice, it is concluded that the kinematics in the regions on either side determined by the effective carrier mass and its interference with the band offset at heterojunctions leads to either a constructive or a destructive effect on the tunneling current. As an example, Si(1-x)Ge(x)/Si and Al(x)Ga(1-x)As/GaAs superlattices are demonstrated to reduce the tunneling current at certain fractional thicknesses and stoichiometries of the constituent slabs without affecting the lateral mobility. The findings show, in general, how manipulation of the carrier's effective mass tensor through stoichiometric/structural modulation of the heterostructure may be used to control the tunneling current through a given potential barrier, given that the characteristic de Broglie wavelength exceeds all the constituent dimensions, thus offering a method complementary to high-k technologies.
NASA Technical Reports Server (NTRS)
Bamber, M J; House, R O
1937-01-01
Report presents the results of tests of a 1/10-scale model of the XN2Y-1 airplane tested in the NACA 5-foot vertical wind tunnel in which the six components of forces and moments were measured. The model was tested in 17 attitudes in which the full-scale airplane had been observed to spin, in order to determine the effects of scale, tunnel, and interference. In addition, a series of tests was made to cover the range of angles of attack, angles of sideslip, rates of rotation, and control setting likely to be encountered by a spinning airplane. The data were used to estimate the probable attitudes in steady spins of an airplane in flight and of a model in the free-spinning tunnel. The estimated attitudes of steady spin were compared with attitudes measured in flight and in the spinning tunnel. The results indicate that corrections for certain scale and tunnel effects are necessary to estimate full-scale spinning attitudes from model results.
Loss of adiabaticity with increasing tunneling gap in nonintegrable multistate Landau-Zener models
NASA Astrophysics Data System (ADS)
Malla, Rajesh K.; Raikh, M. E.
2017-09-01
We consider the simplest nonintegrable model of the multistate Landau-Zener transition. In this model, two pairs of levels in two tunnel-coupled quantum dots are swept past each other by the gate voltage. Although this 2 ×2 model is nonintegrable, it can be solved analytically in the limit when the interlevel energy distance is much smaller than their tunnel splitting. The result is contrasted to the similar 2 ×1 model, in which one of the dots contains only one level. The latter model does not allow interference of the virtual transition amplitudes, and it is exactly solvable. In the 2 ×1 model, the probability for a particle, residing at time t →-∞ in one dot, to remain in the same dot at t →∞ , falls off exponentially with tunnel coupling. By contrast, in the 2 ×2 model, this probability grows rapidly with tunnel coupling. The physical origin of this growth is the formation of the tunneling-induced collective states in the system of two dots. This can be viewed as a manifestation of the Dicke effect.
Lelito, Jonathan P; Myrick, Andrew J; Baker, Thomas C
2008-06-01
Three species of North American heliothine moths were used to determine the level at which interspecific female interference of male attraction to conspecific females occurs. We used live calling females of Heliothis virescens, H. subflexa, and Helicoverpa zea, as lures for conspecific males in a wind tunnel, and then placed heterospecific females on either side of the original species such that the plumes of the three females overlapped downwind. In nearly all combinations, in the presence of heterospecific females, fewer males flew upwind and contacted or courted the source than when only conspecific females were used in the same spatial arrangement. Males did not initiate upwind flight to solely heterospecific female arrangements. Our results show that the naturally emitted pheromone plumes from heterospecific females of these three species can interfere with the ability of females to attract conspecific males when multiple females are in close proximity. However, the fact that some males still located their calling, conspecific females attests to the ability of these male moths to discriminate point source odors by processing the conflicting information from interleaved strands of attractive and antagonistic odor filaments on a split-second basis.
[The use of palisade technique in tympanoplasties after Heermann].
Wielgosz, Romuald; Mroczkowski, Edward
2006-01-01
The palisade tympanoplasties-technique with using of tragal and conchal autografts for reconstruction of the tympanic membrane and the auditory canal wall was described. The operation started with the endaural incision. Tragal and conchal autograft palisade fragments with perichondrium for reconstruction of the tympanic membrane and the auditory canal wall have been used up to 1996 in 15,300 cases. We placed palisaded cartilage fragments parallel to the manubrium of the malleus in type I tympanoplasties and in type II or III procedures parallel to the long process of the incus. The "tunnel plasty" in the eustachian tubal entrance is performed with "simmering", "architrave" and "anti-architrave" to keep the tubal entrance open. This "tunnel plasty" results in a nice reconstruction of the tympano-meatal niche. The "annulus-stapes plate" in type III tympanoplasties replaces the function of the incus, crossing the promontory and reducing adhesions. This annulus-stapes bridge is fixed with a further palisade cartilage, "step plasty", which connects the "tunnel-plasty" with "annulus-stapes plate". The palisade-epitympanum-antrum plasty allows ventilation of the antrum via a tunnel constructed of well-fitting parallel pieces of cartilage fixed by self-tension (no glue) and replacing the bony canal wall. The "columella-tunnel plasty" has an L-shaped notch in the "annulus-stapes plate" fixing a columella of cartilage, placed in the oval window. Only in a case with a narrow oval window niche, a type IV palisade plasty can be performed or a prosthesis placed. The "annulus-stapes cartilage plate" is more stable reconstruction in type III tympanoplasties than are incus of foreign body interpositions. Adhesions on the promontory are found more often with fascia than with cartilage fragments. Histologic study of autograft cartilage showed good preservation of cartilage cells even 26 years after transplantation. The use of palisade cartilage technique brings very good functional and better long-term results.
NASA Astrophysics Data System (ADS)
Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee
2017-06-01
Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.
NASA Technical Reports Server (NTRS)
Lin, John C.
1992-01-01
The relative performance and flow phenomena associated with several devices for controlling turbulent separated flow were investigated at low speeds. Relative performance of the devices was examined for flow over a curved, backward-facing ramp in a wind tunnel, and the flow phenomena were examined in a water tunnel using dye-flow visualization. Surface static pressure measurements and oil-flow visualization results from the wind tunnel tests indicated that transverse grooves, longitudinal grooves, submerged vortex generators, vortex generator jets (VGJ's), Viets' fluidic flappers, elongated arches at positive angle of attack, and large-eddy breakup devices (LEBU's) at positive angle of attack placed near the baseline separation location reduce flow separation and increase pressure recovery. Spanwise cylinders reduce flow separation but decrease pressure recovery downstream. Riblets, passive porous surfaces, swept grooves, Helmholtz resonators, and arches and LEBU's with angle of attack less than or = 0 degrees had no significant effect in reducing the extent of the separation region. Wall-cooling computations indicated that separation delay on a partially-cooled ramp is nearly the same as on a fully-cooled ramp, while minimizing the frictional drag increase associated with the wall cooling process. Dry-flow visualization tests in the water tunnel indicated that wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone vortex generators oriented in the reverse direction and doublet vortex generators shed streamwise counterrotating vortices; a spanewise cylinder located near the wall and LEBU's at angle of attack = -10 degrees produced eddies or transverse vortices which rotated with the same sign as the mean vorticity in a turbulent boundary layer; and the most effective VGJ's produced streamwise co-rotating vortices. Comparative wind-tunnel test results indicated that transferring momentum from the outer region of a turbulent boundary layer through the action of embedded streamwise vortices is more effective than by transverse vortices for the separation control application studied herein.
Tunneling dynamics in relativistic and nonrelativistic wave equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, F.; Muga, J. G.; Ruschhaupt, A.
2003-09-01
We obtain the solution of a relativistic wave equation and compare it with the solution of the Schroedinger equation for a source with a sharp onset and excitation frequencies below cutoff. A scaling of position and time reduces to a single case all the (below cutoff) nonrelativistic solutions, but no such simplification holds for the relativistic equation, so that qualitatively different ''shallow'' and ''deep'' tunneling regimes may be identified relativistically. The nonrelativistic forerunner at a position beyond the penetration length of the asymptotic stationary wave does not tunnel; nevertheless, it arrives at the traversal (semiclassical or Buettiker-Landauer) time {tau}. Themore » corresponding relativistic forerunner is more complex: it oscillates due to the interference between two saddle-point contributions and may be characterized by two times for the arrival of the maxima of lower and upper envelopes. There is in addition an earlier relativistic forerunner, right after the causal front, which does tunnel. Within the penetration length, tunneling is more robust for the precursors of the relativistic equation.« less
Wind Tunnel Wall Corrections (la Correction des effets de paroi en soufflerie)
1998-10-01
round holes drilled either normal to the wall surface or at a fixed angle to the normal. Variable porosity features have been implemented in several...walls (holes drilled at 60 deg from the normal), including variable porosity configurations and the effects of screens and splitter plates for edge-tone...Figure 5.68 Schematic of slender wing and the indicated gauge func- tions in anticipation of matching. As detailed in Malmuth and Cole [122], the problems
Effects of cone surface waviness and freestream noise on transition in supersonic flow
NASA Technical Reports Server (NTRS)
Morrisette, E. L.; Creel, T. R., Jr.; Chen, F.-J.
1986-01-01
A comparison of transition on wavy-wall and smooth-wall cones in a Mach 3.5 wind tunnel is made under conditions of either low freestream noise (quiet flow) or high freestream noise (noisy flow). The noisy flow compares to that found in conventional wind tunnels while the quiet flow gives transitional Reynolds numbers on smooth sharp cones comparable to those found in flight. The waves were found to have a much smaller effect on transition than similar sized trip wires. A satisfatory correlating parameter for the effect of waves on transition was simply the wave height-to-length ratio. A given value of this ratio was found to cause the same percentage change in transition location in quiet and noisy flows.
Ultra-High Pressure Driver and Nozzle Survivability in the RDHWT/MARIAH II Hypersonic Wind Tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costantino, M.; Brown, G.; Raman, K.
2000-06-02
An ultra-high pressure device provides a high enthalpy (> 2500 kJ/kg), low entropy (< 5 kJ/kg-K) air source for the RDHWT/MARIAH II Program Medium Scale Hypersonic Wind Tunnel. The design uses stagnation conditions of 2300 MPa (330,000 Psi) and 750 K (900 F) in a radial configuration of intensifiers around an axial manifold to deliver pure air at 100 kg/s mass flow rates for run times suitable for aerodynamic, combustion, and test and evaluation applications. Helium injection upstream of the nozzle throat reduces the throat wall recovery temperature to about 1200 K and reduces the oxygen concentration at the nozzlemore » wall.« less
Cryogenic wind tunnels: Problems of continuous operation at low temperatures
NASA Technical Reports Server (NTRS)
Faulmann, D.
1986-01-01
The design of a cryogenic wind tunnel which operates continuously, and is capable of attaining transonic speeds at generating pressures of about 3 bars is described. Its stainless steel construction with inside insulation allows for very rapid temperature variations promoted by rapid changes in the liquid nitrogen flow. A comparative study of temperature measuring probes shows a good reliability of thin sheet thermocouples. To measure fluctuations, only a cold wire makes it possible to record frequencies of about 300 Hz. The use of an integral computer method makes it possible to determine the impact of the wall temperature ratio to the adiabatic wall temperature for the various parameters characterizing the boundary layer. These cases are processed with positive and negative pressure gradients.
Supersonic laminar flow control research
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1994-01-01
The objective of the research is to understand supersonic laminar flow stability, transition, and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames Proof of Concept (POC) Supersonic Wind Tunnel and Laminar Flow Supersonic Wind Tunnel (LFSWT) nozzle design with laminar flow control are as follows: (1) predictions of supersonic laminar boundary layer stability and transition, (2) effects of wall heating and cooling for supersonic laminar flow control, and (3) performance evaluation of POC and LFSWT nozzles design with wall heating and cooling effects applying at different locations and various length.
Low Density Real Gas Flows About Hypersonic Vehicles.
1991-11-01
equations with fully-coupled finite rate air chemistry. The development of the HYLDA code was motivated by the difficulty of current wind tunnel...2ps,,.,, - psj = , (3-30) PN. 2pNwa - pNead u Uadj v Vadj w T Wadj bc 2TLMau - TadJ where PS4 -- PSj if noncatalytic wall = calculated if catalytic wall
NASA Technical Reports Server (NTRS)
Rogge, R. L.
1974-01-01
Strut support interference investigations were conducted on an 0.004-(-) scale representation of the space shuttle launch vehicle in order to determine transonic and supersonic model support interference effects for use in a future exhaust plume effects study. Strut configurations were also tested. Orbiter, external tank, and solid rocket booster pressures were recorded at Mach numbers 0.9, 1.2, 1.5, and 2.0. Angle of attack and angle of sideslip were varied between plus or minus 4 degrees in 2 degree increments. Parametric variations consisted only of the strut configurations.
NASA Technical Reports Server (NTRS)
Bantle, J. W.
1985-01-01
Aerodynamic interference effects were studied for two slender, streamlined bodies of revolution at Mach 2.7. A wind tunnel investigation produced force and moment data and measurements of pressure distributions on the bodies. As these bodies remained parallel with each other and with the freestream flow, their relative lateral and longitudinal spacing were varied. Results of theoretical methods were used in the analysis of results. The interference effects between the two bodies yielded less total drag than a single body of equal total volume and the same length.
Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface.
Zheng, Hao; Bian, Guang; Chang, Guoqing; Lu, Hong; Xu, Su-Yang; Wang, Guangqiang; Chang, Tay-Rong; Zhang, Songtian; Belopolski, Ilya; Alidoust, Nasser; Sanchez, Daniel S; Song, Fengqi; Jeng, Horng-Tay; Yao, Nan; Bansil, Arun; Jia, Shuang; Lin, Hsin; Hasan, M Zahid
2016-12-23
We combine quasiparticle interference simulation (theory) and atomic resolution scanning tunneling spectromicroscopy (experiment) to visualize the interference patterns on a type-II Weyl semimetal Mo_{x}W_{1-x}Te_{2} for the first time. Our simulation based on first-principles band topology theoretically reveals the surface electron scattering behavior. We identify the topological Fermi arc states and reveal the scattering properties of the surface states in Mo_{0.66}W_{0.34}Te_{2}. In addition, our result reveals an experimental signature of the topology via the interconnectivity of bulk and surface states, which is essential for understanding the unusual nature of this material.
Sadeghi-Avalshahr, Ali Reza; Khorsand-Ghayeni, Mohammad; Nokhasteh, Samira; Molavi, Amir Mahdi; Sadeghi-Avalshahr, Mohammad
2016-12-01
The purpose of this study was to produce and evaluate different mechanical, physical and in vitro cell culture characteristics of poly(L-lactic) acid (PLLA) interference screws. This work will focus on evaluating the effect of two important parameters on operation of these screws, first the tunnel diameter which is one of the most important parameters during the operation and second the thermal behavior, the main effective characteristic in production process. In this work, PLLA screws were produced by a two-stage injection molding machine. For mechanical assessment of the produced screws, Polyurethane rigid foam was used as cancellous bone and polypropylene rope as synthetic graft to simulate bone and ligament in real situation. Different tunnel diameters including 7-10 mm were evaluated for fixation strength. When the tunnel diameter was changed from 10 to 9 mm, the pull-out force has increased to about 12 %, which is probably due to the aforementioned frictional forces, however, by reducing the tunnel diameter to 8 and 7 mm, the pull-out force reduced to 16 and 50 % for 8 and 7 mm tunnel diameter, respectively. The minimum and maximum pull-out force was obtained 160.57 and 506.86 N for 7 and 9 mm tunnel diameters, respectively. For physicochemical assay, Fourier transform infrared spectroscopy (FTIR), degradation test and differential scanning calorimetry (DSC) were carried out. The crystallinity (Xc) of samples were decreased considerably from 64.3 % before injection to 32.95 % after injection with two different crystallographic forms α' and α. probably due to the fast cooling rate at room temperature. In addition, MTT and cell attachment assays were utilized by MG63 osteoblast cell line, to evaluate the cytotoxicity of the produced screws. The results revealed no cytotoxicity effect.
Vibration harvesting in traffic tunnels to power wireless sensor nodes
NASA Astrophysics Data System (ADS)
Wischke, M.; Masur, M.; Kröner, M.; Woias, P.
2011-08-01
Monitoring the traffic and the structural health of traffic tunnels requires numerous sensors. Powering these remote and partially embedded sensors from ambient energies will reduce maintenance costs, and improve the sensor network performance. This work reports on vibration levels detected in railway and road tunnels as a potential energy source for embedded sensors. The measurement results showed that the vibrations at any location in the road tunnel and at the wall in the railway tunnel are too small for useful vibration harvesting. In contrast, the railway sleeper features usable vibrations and sufficient mounting space. For this application site, a robust piezoelectric vibration harvester was designed and equipped with a power interface circuit. Within the field test, it is demonstrated that sufficient energy is harvested to supply a microcontroller with a radio frequency (RF) interface.
Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Wang, Jin; Agarwal, Karuna; Katz, Joseph
2017-11-01
On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.
Test-section noise of the Ames 7 by 10-foot wind tunnel no. 1
NASA Technical Reports Server (NTRS)
Soderman, P. T.
1976-01-01
An investigation was made of the test-section noise levels at various wind speeds in the Ames 7- by 10-Foot Wind Tunnel No. 1. No model was in the test section. Results showed that aerodynamic noise from various struts used to monitor flow conditions in the test section dominated the wind-tunnel background noise over much of the frequency spectrum. A tapered microphone stand with a thin trailing edge generated less noise than did a constant-chord strut with a blunt trailing edge. Noise from small holes in the test-section walls was insignificant.
Nuclear reactor containment structure with continuous ring tunnel at grade
Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.
1977-01-01
A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.
NASA Technical Reports Server (NTRS)
Chevallier, J. P.; Vaucheret, X.
1986-01-01
A synthesis of current trends in the reduction and computation of wall effects is presented. Some of the points discussed include: (1) for the two-dimensional, transonic tests, various control techniques of boundary conditions are used with adaptive walls offering high precision in determining reference conditions and residual corrections. A reduction in the boundary layer effects of the lateral walls is obtained at T2; (2) for the three-dimensional tests, the methods for the reduction of wall effects are still seldom applied due to a lesser need and to their complexity; (3) the supports holding the model of the probes have to be taken into account in the estimation of perturbatory effects.
NASA Technical Reports Server (NTRS)
Ladson, Charles L.; Ray, Edward J.
1987-01-01
Presented is a review of the development of the world's first cryogenic pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). Descriptions of the instrumentation, data acquisition systems, and physical features of the two-dimensional 8- by 24-in, (20.32 by 60.96 cm) and advanced 13- by 13-in (33.02 by 33.02 cm) adaptive-wall test-section inserts of the 0.3-m TCT are included. Basic tunnel-empty Mach number distributions, stagnation temperature distributions, and power requirements are included. The Mach number capability of the facility is from about 0.20 to 0.90. Stagnation pressure can be varied from about 80 to 327 K.
1974-11-01
ol the abstract entered In Block 30. II dlllerent from Report) IB. SUPPLEMENTARY NOTES Available in DDC 19. KEY WORDS (Continue on revetee...Stream. " UTME TP 6808, June 1968. 20. Davis, D. D. , Jr. and Moore, Dewey . "Analytical Study of Blockage- and Lift-Interference...The variables N and NM must be right justified in their fields, and punched without a decimal point. The variables XLAM, UE, DO, BO, XMIN, and
Shock Tunnel Tests of Arched Wall Panels
1974-07-01
NCNOR « LOT S/W ETC lOLT ANCMO« NOO IEE DETAIL* / tELOW , , METAL TIE* / I*" 0. C. VERT -HAiONRT «ALL...same as shown in Table 2-1. 2-6 m^ Table 2-1 SPACING OF WALL TIES i Moiimuffl Dittonc« Moiimum Spocing ef No 4 Gogt Wall Typ. I K«twHn Lot ...sides free to move), the flexural cracking occurs at the top, botton \\ and center, and the resistance to motion, induced by ’ wedging"or geometric
1. View toward south, facade (north side or "A" wall) ...
1. View toward south, facade (north side or "A" wall) of perimeter acquisition radar building. The globe on the upper left is a shelter housing the Hercules tracker antenna. To the right is the utility tunnel leading to the par power plant. The antennae for the par are contained in the large lighter-toned shape covering most of the wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND
Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid
2011-09-15
The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul
2016-01-01
The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.
Effects of temperature distribution on boundary layer stability for a circular cone at Mach 10
NASA Astrophysics Data System (ADS)
Rigney, Jeffrey M.
A CFD analysis was conducted on a circular cone at 3 degrees angle of attack at Mach 10 using US3D and STABL 3D to determine the effect of wall temperature on the stability characteristics that lead to laminar-to-turbulent transition. Wall temperature distributions were manipulated while all other flow inputs and geometric qualities were held constant. Laminar-to-turbulent transition was analyzed for isothermal and adiabatic wall conditions, a simulated short-duration wind tunnel case, and several hot-nose temperature distributions. For this study, stability characteristics include maximum N-factor growth and the corresponding frequency range, disturbance spatial amplification rate and the corresponding modal frequency, and stability neutral point location. STABL 3D analysis indicates that temperature distributions typical of those in short-duration hypersonic wind tunnels do not result in any significant difference on the stability characteristics, as compared to an isothermal wall boundary condition. Hypothetical distributions of much greater temperatures at and past the nose tip do show a trend of dampening of second-mode disturbances, most notably on the leeward ray. The most pronounced differences existed between the isothermal and adiabatic cases.
Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil
NASA Technical Reports Server (NTRS)
Adair, Desmond; Horne, W. Clifton
1988-01-01
Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...
2016-11-09
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Study on Excavation of Particular Part of Underground Cavern for Hydropower Station
NASA Astrophysics Data System (ADS)
Yang, Yang; Zhang, Feng; Shang, Qin; Zheng, Huakang
2018-01-01
In the present study, regarding four particular parts of underground cavern for hydropower station, i.e., crown, high sidewall, the intersection between high sidewall and tunnel and tailrace tunnel, by summarizing the previous construction experience, we have proposed the excavation approach based on “middle first and edge later, soft first and hard later”, “layered construction by excavating the thin layer first and supporting as the layer advances”, “tunnel first and wall later, small tunnels into large ones” and “excavating tunnels supported by separation piers”. In addition, the proposed excavation approach has been analyzed and verified with finite element numerical simulation. The result has indicated that the proposed special approach is reasonable and effective to reduce the turbulence on surrounding rocks, lower the influence of unloading during excavating and enhance the local and global stability of caverns and surrounding rocks.
Dynamic 3d Modeling of a Canal-Tunnel Using Photogrammetric and Bathymetric Data
NASA Astrophysics Data System (ADS)
Moisan, E.; Heinkele, C.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Koehl, M.
2017-02-01
This contribution introduces an original method for dynamically surveying the vault and underwater parts of a canal-tunnel for 3D modeling. The recording system, embedded on a barge, is composed of cameras that provide images of the above-water part of the tunnel, and a sonar that acquires underwater 3D profiles. In this contribution we propose to fully exploit the capacities of photogrammetry to deal with the issue of geo-referencing data in the absence of global positioning system (GPS) data. More specifically, we use it both for reconstructing the vault and side walls of the tunnel in 3D and for estimating the trajectory of the boat, which is necessary to rearrange sonar profiles to form the 3D model of the canal. We report on a first experimentation carried out inside a canal-tunnel and show promising preliminary results that illustrate the potentialities of the proposed approach.
Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel
NASA Technical Reports Server (NTRS)
Cook, W. J.; Giddings, T. A.
1984-01-01
An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.
Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)
1995-01-01
Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.
NASA Technical Reports Server (NTRS)
Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II
2010-01-01
Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements
NASA Astrophysics Data System (ADS)
Tebbutt, J. A.; Vahdati, M.; Carolan, D.; Dear, J. P.
2017-07-01
Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future.
Chiral tunneling in gated inversion symmetric Weyl semimetal.
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-02-18
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device.
Chiral tunneling in gated inversion symmetric Weyl semimetal
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-01-01
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491
NASA Technical Reports Server (NTRS)
Watkins, William B.
1990-01-01
Comparisons between scramjet combustor data and a three-dimensional full Navier-Stokes calculation have been made to verify and substantiate computational fluid dynamics (CFD) codes and application procedures. High Mach number scramjet combustor development will rely heavily on CFD applications to provide wind tunnel-equivalent data of quality sufficient to design, build and fly hypersonic aircraft. Therefore. detailed comparisons between CFD results and test data are imperative. An experimental case is presented, for which combustor wall static pressures were measured and flow-fieid interferograms were obtained. A computer model was done of the experiment, and counterpart parameters are compared with experiment. The experiment involved a subscale combustor designed and fabricated for the National Aero-Space Plane Program, and tested in the Calspan Corporation 96" hypersonic shock tunnel. The combustor inlet ramp was inclined at a 20 angle to the shock tunnel nozzle axis, and resulting combustor entrance flow conditions simulated freestream M=10. The combustor body and cowl walls were instrumented with static pressure transducers, and the combustor lateral walls contained windows through which flowfield holographic interferograms were obtained. The CFD calculation involved a three-dimensional time-averaged full Navier-Stokes code applied to the axial flow segment containing fuel injection and combustion. The full Navier-Stokes approach allowed for mixed supersonic and subsonic flow, downstream-upstream communication in subsonic flow regions, and effects of adverse pressure gradients. The code included hydrogen-air chemistry in the combustor segment which begins near fuel injection and continues through combustor exhaust. Combustor ramp and inlet segments on the combustor lateral centerline were modelled as two dimensional. Comparisons to be shown include calculated versus measured wall static pressures as functions of axial flow coordinate, and calculated path-averaged density contours versus an holographic Interferogram.
An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Liu, Lei
2015-02-01
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1974-01-01
A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.
NASA Astrophysics Data System (ADS)
Dong, Z. C.; Xing, D. Y.; Dong, Jinming
2002-06-01
We study the oscillatory behavior of differential conductance (G) and shot noise (S) in ferromagnet/insulator/ferromagnet/insulator/d-wave superconductor (FM/I/FM/I/d-wave SC) structures by applying an extended Blonder-Tinkham-Klapwijk approach. There are two oscillation components with different periods in either G or S. It is found that the short-period component can be separated from the long-period one by increasing the exchange splitting in FM's and the barrier strength at the FM/SC interface, and vice versa, indicating that the long- and short-period components arise from quantum interference effects, respectively, due to the Andreev and normal reflections at the FM/SC interface. It is also shown that zero-bias G and S in the d-wave SC case is quite different from in the s-wave SC case, which may be used to distinguish between d-wave and s-wave SC's.
Aerodynamic analysis for aircraft with nacelles, pylons, and winglets at transonic speeds
NASA Technical Reports Server (NTRS)
Boppe, Charles W.
1987-01-01
A computational method has been developed to provide an analysis for complex realistic aircraft configurations at transonic speeds. Wing-fuselage configurations with various combinations of pods, pylons, nacelles, and winglets can be analyzed along with simpler shapes such as airfoils, isolated wings, and isolated bodies. The flexibility required for the treatment of such diverse geometries is obtained by using a multiple nested grid approach in the finite-difference relaxation scheme. Aircraft components (and their grid systems) can be added or removed as required. As a result, the computational method can be used in the same manner as a wind tunnel to study high-speed aerodynamic interference effects. The multiple grid approach also provides high boundary point density/cost ratio. High resolution pressure distributions can be obtained. Computed results are correlated with wind tunnel and flight data using four different transport configurations. Experimental/computational component interference effects are included for cases where data are available. The computer code used for these comparisons is described in the appendices.
Control of self-motion in dynamic fluids: fish do it differently from bees.
Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily
2014-05-01
To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Advances in Measurement of Skin Friction in Airflow
NASA Technical Reports Server (NTRS)
Brown, James L.; Naughton, Jonathan W.
2006-01-01
The surface interferometric skin-friction (SISF) measurement system is an instrument for determining the distribution of surface shear stress (skin friction) on a wind-tunnel model. The SISF system utilizes the established oil-film interference method, along with advanced image-data-processing techniques and mathematical models that express the relationship between interferograms and skin friction, to determine the distribution of skin friction over an observed region of the surface of a model during a single wind-tunnel test. In the oil-film interference method, a wind-tunnel model is coated with a thin film of oil of known viscosity and is illuminated with quasi-monochromatic, collimated light, typically from a mercury lamp. The light reflected from the outer surface of the oil film interferes with the light reflected from the oil-covered surface of the model. In the present version of the oil-film interference method, a camera captures an image of the illuminated model and the image in the camera is modulated by the interference pattern. The interference pattern depends on the oil-thickness distribution on the observed surface, and this distribution can be extracted through analysis of the image acquired by the camera. The oil-film technique is augmented by a tracer technique for observing the streamline pattern. To make the streamlines visible, small dots of fluorescentchalk/oil mixture are placed on the model just before a test. During the test, the chalk particles are embedded in the oil flow and produce chalk streaks that mark the streamlines. The instantaneous rate of thinning of the oil film at a given position on the surface of the model can be expressed as a function of the instantaneous thickness, the skin-friction distribution on the surface, and the streamline pattern on the surface; the functional relationship is expressed by a mathematical model that is nonlinear in the oil-film thickness and is known simply as the thin-oil-film equation. From the image data acquired as described, the time-dependent oil-thickness distribution and streamline pattern are extracted and by inversion of the thin-oil-film equation it is then possible to determine the skin-friction distribution. In addition to a quasi-monochromatic light source, the SISF system includes a beam splitter and two video cameras equipped with filters for observing the same area on a model in different wavelength ranges, plus a frame grabber and a computer for digitizing the video images and processing the image data. One video camera acquires the interference pattern in a narrow wavelength range of the quasi-monochromatic source. The other video camera acquires the streamline image of fluorescence from the chalk in a nearby but wider wavelength range. The interference- pattern and fluorescence images are digitized, and the resulting data are processed by an algorithm that inverts the thin-oil-film equation to find the skin-friction distribution.
NASA Technical Reports Server (NTRS)
Garland, D. B.; Harris, J. L.
1980-01-01
Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor.
Model mount system for testing flutter
NASA Technical Reports Server (NTRS)
Farmer, M. G. (Inventor)
1984-01-01
A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure.
NASA Technical Reports Server (NTRS)
Vlajinac, M.; Stephens, T.; Gilliam, G.; Pertsas, N.
1972-01-01
Results of subsonic and supersonic wind-tunnel tests with a magnetic balance and suspension system on a family of bulbous based cone configurations are presented. At subsonic speeds the base flow and separation characteristics of these configurations is shown to have a pronounced effect on the static data. Results obtained with the presence of a dummy sting are compared with support interference free data. Support interference is shown to have a substantial effect on the measured aerodynamic coefficient.
Wind-Tunnel Tests of a Portion of a PV-2 Helicopter Rotor Blade
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1945-01-01
A portion of a PV-2 helicopter rotor blade has been tested in the 6- by 6-foot test section of the Langley stability tunnel to determine if the aerodynamic characteristics were seriously affected by cross flow or fabric distortion. The outer portion of the blade was tested as a reflection plane model pivoted about the tunnel wall to obtain various angles of cross flow over the blade. Because the tunnel wall acts as a plane of sytry, the measured aerodynamic characteristics correspond to those of an airfoil having various angles of sweepforward and sweepback. Tests were made with the vents on the lower surface open and also with the vents sealed and the internal pressure held at -20 inches of water producing an internal pressure coefficient of -1.059. The change in contour resulting from the range of internal pressures used had very little effect on the aerodynamic characteristics of the blade. The test methods were considered to simulate inadequately the flow conditions over the rotor blade because the effects of cross flow were limited to conditions corresponding to sweep of the blade. The results indicated that this type of cross flow had only minor effects on the aerodynamic characteristics of the blade. It is believed, therefore, that future tests to determine the effects on the aerodynamic characteristics of cross flow should utilize complete rotors.
Use of adaptive walls in 2D tests
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Chevallier, J. P.
1984-01-01
A new method for computing the wall effects gives precise answers to some questions arising in adaptive wall concept applications: length of adapted regions, fairings with up and downstream regions, residual misadjustments effects, reference conditions. The acceleration of the iterative process convergence and the development of an efficient technology used in CERT T2 wind tunnels give in a single run the required test conditions. Samples taken from CAST 7 tests demonstrate the efficiency of the whole process to obtain significant results with considerations of tridimensional case extension.
Effects of rocket jet on stability and control at high Mach numbers
NASA Technical Reports Server (NTRS)
Fetterman, David E , Jr
1958-01-01
Paper presents the results of an investigation to determine the jet-interference effects which may occur at high jet static-pressure ratios and high Mach numbers. Tests were made in the Langley 11-inch hypersonic tunnel at a Mach number of 6.86.
Experimental Verification of the Theory of Wind-Tunnel Boundary Interference
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore; Silverstein, Abe
1935-01-01
The results of an experimental investigation on the boundary-correction factor are presented in this report. The values of the boundary-correction factor from the theory, which at the present time is virtually completed, are given in the report for all conventional types of tunnels. With the isolation of certain disturbing effects, the experimental boundary-correction factor was found to be in satisfactory agreement with the theoretically predicted values, thus verifying the soundness and sufficiency of the theoretical analysis. The establishment of a considerable velocity distortion, in the nature of a unique blocking effect, constitutes a principal result of the investigation.
NASA Technical Reports Server (NTRS)
Foster, T. F.; Lockman, W. K.
1975-01-01
Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.
A forecast of new test capabilities using Magnetic Suspension and Balance Systems
NASA Technical Reports Server (NTRS)
Lawing, Pierce L.; Johnson, William G., Jr.
1988-01-01
This paper outlines the potential of Magnetic Suspension and Balance System (MSBS) technology to solve existing problems related to support interference in wind tunnels. Improvement of existing test techniques and exciting new techniques are envisioned as a result of applying MSBS. These include improved data accuracy, dynamic stability testing, two-body/stores release testing, and pilot/designer-in-the-loop tests. It also discusses the use of MSBS for testing exotic configurations such as hybrid hypersonic vehicles. A new facility concept that combines features of ballistic tubes, magnetic suspension, and cryogenic tunnels is described.
CAST-10-2/DOA 2 Airfoil Studies Workshop Results
NASA Technical Reports Server (NTRS)
Ray, Edward J. (Compiler); Hill, Acquilla S. (Compiler)
1989-01-01
During the period of September 23 through 27, 1988, the Transonic Aerodynamics Division at the Langely Research Center hosted an International Workshop on CAST-10-2/DOA 2 Airfoil Studies. The CAST-10 studies were the outgrowth of several cooperative study agreements among the NASA, the NAE of Canada, the DLR of West Germany, and the ONERA of France. Both theoretical and experimental CAST-10 airfoil results that were obtained form an extensive series of tests and studies, were reviewed. These results provided an opportunity to make direct comparisons of adaptive wall test section (AWTS) results from the NASA 0.3-meter Transonic Cryogenic Tunnel and ONERA T-2 AWTS facilities with conventional ventilated wall wind tunnel results from the Canadian high Reynolds number two-dimensional test facility. Individual papers presented during the workshop are included.
Investigation of Seal-to-Floor Effects on Semi-Span Transonic Models
NASA Technical Reports Server (NTRS)
Sleppy, Mark A.; Engel, Eric A.; Watson, Kevin T.; Atler, Douglas M.
2009-01-01
In an effort to achieve the maximum possible Reynolds number (Re) when conducting production testing for flight loads aerodynamic databases, it has been the preferred practice of The Boeing Company / Commercial Airplanes (BCA) -- Loads and Dynamics Group since the early 1990's to test large scale semi-span models in the 11- By 11-Foot Transonic Wind Tunnel (TWT) leg of the Unitary Plan Wind Tunnel (UPWT) at the NASA Ames Research Center (ARC). There are many problems related to testing large scale semi-span models of high aspect ratio flexible transport wings, such as; floor boundary layer effects, wing spanwise wall effects, solid blockage buoyancy effects, floor mechanical interference effects, airflow under the model effects, or tunnel flow gradient effects. For most of these issues, BCA has developed and implemented either standard testing methods or numerical correction schemes and these will not be discussed in this document. Other researchers have reported on semi-span transonic testing correction issues, however most of the reported research has been for low Mach testing. Some of the reports for low Mach testing address the difficult problem of preventing undesirable airflow under a semi-span model while ensuring unrestricted main balance functionality, however, for transonic models this issue has gone unresolved. BCA has been cognizant for sometime that there are marked differences in wing pressure distributions from semi-span transonic model testing than from full model or flight testing. It has been suspected that these differences are at least in part due to airflow under the model. Previous efforts by BCA to address this issue have proven to be ineffective or inconclusive and in one situation resulted in broken hardware. This paper reports on a Boeing-NASA collaborative investigation based on a series of small tests conducted between June 2006 and November 2007 in the 11 by 11 foot Transonic Wind Tunnel at NASA Ames on three large commercial jet transport configurations to assess the effects of sealing a semi-span model to the floor and to investigate efficient sealing and testing techniques. This document will show how sealing the model to the floor has a small but remarkably far reaching spanwise effect on wing pressures, wing local section forces and wing force summations.
Supersonic quiet-tunnel development for laminar-turbulent transition research
NASA Technical Reports Server (NTRS)
Schneider, Steven P.
1995-01-01
This grant supported research into quiet-flow supersonic wind-tunnels, between February 1994 and February 1995. Quiet-flow nozzles operate with laminar nozzle-wall boundary layers, in order to provide low-disturbance flow for studies of laminar-turbulent transition under conditions comparable to flight. Major accomplishments include: (1) development of the Purdue Quiet-Flow Ludwieg Tube, (2) computational evaluation of the square nozzle concept for quiet-flow nozzles, and (3) measurement of the presence of early transition on the flat sidewalls of the NASA LaRC Mach 3.5 supersonic low-disturbance tunnel. Since items (1) and (2) are described in the final report for companion grant NAG1-1133, only item (3) is described here. A thesis addressing the development of square nozzles for high-speed, low-disturbance wind tunnels is included as an appendix.
Tunnel junction enhanced nanowire ultraviolet light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.
Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less
A novel free floating accelerometer force balance system for shock tunnel applications
NASA Astrophysics Data System (ADS)
Joarder, R.; Mahaptra, D. R.; Jagadeesh, G.
In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.