ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A., E-mail: andreasm4@yahoo.com
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less
NASA Astrophysics Data System (ADS)
Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph
2008-09-01
High-speed inline digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets and 50 μm diameter neutral density particles. Experiments are performed in a 50×50×70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by two dimensional particle image velocimetry. An automated tracking program has been used for measuring velocity time history of more than 17 000 droplets and 15 000 particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. The turbulent diffusion coefficient is calculated by integration of the ensemble-averaged Lagrangian velocity autocovariance. Trends of the asymptotic droplet diffusion coefficient are examined by noting that it can be viewed as a product of a mean square velocity and a diffusion time scale. To compare the effects of turbulence and buoyancy, the turbulence intensity (ui') is scaled by the droplet quiescent rise velocity (Uq). The droplet diffusion coefficients in horizontal and vertical directions are lower than those of the fluid at low normalized turbulence intensity, but exceed it with increasing normalized turbulence intensity. For most of the present conditions the droplet horizontal diffusion coefficient is higher than the vertical diffusion coefficient, consistent with trends of the droplet velocity fluctuations and in contrast to the trends of the diffusion timescales. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale are a monotonically increasing function of ui'/Uq.
A feasibility study for measuring stratospheric turbulence using metrac positioning system
NASA Technical Reports Server (NTRS)
Gage, K. S.; Jasperson, W. H.
1975-01-01
The feasibility of obtaining measurements of Lagrangian turbulence at stratospheric altitudes is demonstrated by using the METRAC System to track constant-level balloons. The basis for current estimates of diffusion coefficients are reviewed and it is pointed out that insufficient data is available upon which to base reliable estimates of vertical diffusion coefficients. It is concluded that diffusion coefficients could be directly obtained from Lagrangian turbulence measurements. The METRAC balloon tracking system is shown to possess the necessary precision in order to resolve the response of constant-level balloons to turbulence at stratospheric altitudes. A small sample of data recorded from a tropospheric tetroon flight tracked by the METRAC System is analyzed to obtain estimates of small-scale three-dimensional diffusion coefficients. It is recommended that this technique be employed to establish a climatology of diffusion coefficients and to ascertain the variation of these coefficients with altitude, season, and latitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com
2017-10-01
In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper wemore » derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.« less
Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel
Sayre, William W.; Chamberlain, A.R.
1964-01-01
In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A., E-mail: andreasm4@yahoo.com
2016-10-20
We explore the transport of energetic particles in two-component turbulence in which the stochastic magnetic field is assumed to be a superposition of slab and two-dimensional modes. It is known that in magnetostatic slab turbulence, the motion of particles across the mean magnetic field is subdiffusive. If a two-dimensional component is added, diffusion is recovered. It was also shown before that in two-component turbulence, the slab modes do not explicitly contribute to the perpendicular diffusion coefficient. In the current paper, the implicit contribution of slab modes is explored and it is shown that this contribution leads to a reduction ofmore » the perpendicular diffusion coefficient. This effect improves the agreement between simulations and analytical theory. Furthermore, the obtained results are relevant for investigations of diffusive shock acceleration.« less
Experimental determination of turbulence in a GH2-GOX rocket combustion chamber
NASA Technical Reports Server (NTRS)
Tou, P.; Russell, R.; Ohara, J.
1974-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.
Experimental determination of the turbulence in a liquid rocket combustion chamber
NASA Technical Reports Server (NTRS)
Hara, J.; Smith, L. O.; Partus, F. P.
1972-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity.
Transport of Charged Particles in Turbulent Magnetic Fields
NASA Astrophysics Data System (ADS)
Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.
2017-12-01
Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are discussed.
Quenching and anisotropy of hydromagnetic turbulent transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Brandenburg, Axel; Rheinhardt, Matthias
2014-11-01
Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for themore » quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Ω×J effect nearly the same quenching exponent is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.« less
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A.; Negrea, M.; Petrisor, I.
2016-07-15
We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less
Charged Particle Diffusion in Isotropic Random Static Magnetic Fields
NASA Astrophysics Data System (ADS)
Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.
2013-12-01
Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.
Turbulence in a gaseous hydrogen-liquid oxygen rocket combustion chamber
NASA Technical Reports Server (NTRS)
Lebas, J.; Tou, P.; Ohara, J.
1975-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a LOX-GH2 rocket combustion chamber was determined from experimental measurements of tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and a numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber, and an exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the value of the intensity of turbulence reaches a maximum of 14% at a location about 7" downstream from the injector. The Lagrangian correlation coefficient associated with this value is given by the above exponential expression where alpha = 10,000/sec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, P.; Matthaeus, W. H.; Chuychai, P.
The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicablemore » to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.« less
NASA Astrophysics Data System (ADS)
Chu, Peter C.
2018-03-01
SOund Fixing And Ranging (RAFOS) floats deployed by the Naval Postgraduate School (NPS) in the California Current system from 1992 to 2001 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/) are used to study 2-D turbulent characteristics. Each drifter trajectory is adaptively decomposed using the empirical mode decomposition (EMD) into a series of intrinsic mode functions (IMFs) with corresponding specific scale for each IMF. A new steepest ascent low/non-low-frequency ratio is proposed in this paper to separate a Lagrangian trajectory into low-frequency (nondiffusive, i.e., deterministic) and high-frequency (diffusive, i.e., stochastic) components. The 2-D turbulent (or called eddy) diffusion coefficients are calculated on the base of the classical turbulent diffusion with mixing length theory from stochastic component of a single drifter. Statistical characteristics of the calculated 2-D turbulence length scale, strength, and diffusion coefficients from the NPS RAFOS data are presented with the mean values (over the whole drifters) of the 2-D diffusion coefficients comparable to the commonly used diffusivity tensor method.
Non-Markovian Effects in Turbulent Diffusion in Magnetized Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagorodny, Anatoly; Weiland, Jan
2009-10-08
The derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is presented. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient for saturated turbulence.
Turbulent diffusion of chemically reacting flows: Theory and numerical simulations
NASA Astrophysics Data System (ADS)
Elperin, T.; Kleeorin, N.; Liberman, M.; Lipatnikov, A. N.; Rogachevskii, I.; Yu, R.
2017-11-01
The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014), 10.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.
Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R
2017-11-01
The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
Study of the propagation of a plane turbulent jet in flow-through chamber workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laigna, K.Yu.; Potter, E.A.
1988-05-01
The purpose of this study was to determine experimentally the parameters of microstructures of confined planar jets and to investigate the specific features of turbulent diffusion of impurities in such flows for problems of mine ventilation and pollution abatement in underground workings. A confined planar jet flowing from a slot coaxially into the model of a chamber working of rectangular transverse cross section was studied. The averaged and pulsating characteristics of the jet were measured by a thermoanemometer. Transient and channel zones were identified and the movement of the jet within them was described. Results demonstrated that the turbulent diffusionmore » coefficient in the jet-affected zone was greater by two or three orders of magnitude than in the remainder of the flow and that it is therefore incorrect to use turbulent diffusion coefficients of confined flows for evaluations of the jet diffusion of impurities.« less
NASA Astrophysics Data System (ADS)
Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.
2017-12-01
Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum near the shock.
Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock
NASA Astrophysics Data System (ADS)
Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.
2016-12-01
Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.
Turbulent transport of a passive-scalar field by using a renormalization-group method
NASA Technical Reports Server (NTRS)
Hossain, Murshed
1992-01-01
A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In the absence of any correlation between the passive-scalar fluctuations and any component of the fluid velocity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the turbulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a dependence of the turbulent decay of the passive scalar on the turbulent Prandtl number.
Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling
NASA Astrophysics Data System (ADS)
Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.
2018-02-01
A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelbrecht, N. Eugene, E-mail: n.eugene.engelbrecht@gmail.com
The effects of Alfvén cyclotron waves generated due to the formation in the outer heliosphere of pickup ions on the transport coefficients of low-energy electrons is investigated here. To this end, parallel mean free path (MFP) expressions are derived from quasilinear theory, employing the damping model of dynamical turbulence. These are then used as inputs for existing expressions for the perpendicular MFP and turbulence-reduced drift coefficient. Using outputs generated by a two-component turbulence transport model, the resulting diffusion coefficients are compared with those derived using a more typically assumed turbulence spectral form, which neglects the effects of pickup ion-generated waves.more » It is found that the inclusion of pickup ion effects greatly leads to considerable reductions in the parallel and perpendicular MFPs of 1–10 MeV electrons beyond ∼10 au, which are argued to have significant consequences for studies of the transport of these particles.« less
COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan
2015-09-20
Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.
Stratospheric Turbulence and Vertical Effective Diffusion Coefficients
1975-09-29
UMBER AFCRL-TR-75.-0519 - 4. TILE (moiS."Eti) S. Tlr OF C RP~hT S PESO0 COVERED STRATOSPHERIC TURBULENCE AND VERTICAL EFFECTIVE DIFFUSION COEFFICIENTS...that CAT plays a prominent role in vertical transport in the stratosphere. I ~1 Unclassified t FUrs,*Tv C , Uq C ~ml .. at ’r *n he.. a* U I Department...phenomenon. Thorpe himself refers (1973) to underwater K-H as "underwater CAT." ____ ____ ____WE006 SflJGLE ( SPAD M LAVER 4" Ri" i0 15 0t (m’iJr
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1977-01-01
In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagorodny, A.; Weiland, J.
2009-05-15
The problem of derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is considered. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. Kinetic calculations of the dielectric response function are also performed with regard to the influence of turbulent fields on particle motion. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient formore » saturated turbulence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X.; Florinski, V.
We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Ourmore » results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.« less
Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions
NASA Astrophysics Data System (ADS)
McGrath-Spangler, E. L.; Molod, A.
2014-07-01
Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Köppen-Geiger climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number methods are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.
Comparison of GEOS-5 AGCM Planetary Boundary Layer Depths Computed with Various Definitions
NASA Technical Reports Server (NTRS)
Mcgrath-Spangler, E. L.; Molod, A.
2014-01-01
Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Koppen climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes, the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.
Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions
NASA Astrophysics Data System (ADS)
McGrath-Spangler, E. L.; Molod, A.
2014-03-01
Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Köppen climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes, the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.
Transport Coefficients in weakly compressible turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Erlebacher, Gordon
1996-01-01
A theory of transport coefficients in weakly compressible turbulence is derived by applying Yoshizawa's two-scale direct interaction approximation to the compressible equations of motion linearized about a state of incompressible turbulence. The result is a generalization of the eddy viscosity representation of incompressible turbulence. In addition to the usual incompressible eddy viscosity, the calculation generates eddy diffusivities for entropy and pressure, and an effective bulk viscosity acting on the mean flow. The compressible fluctuations also generate an effective turbulent mean pressure and corrections to the speed of sound. Finally, a prediction unique to Yoshizawa's two-scale approximation is that terms containing gradients of incompressible turbulence quantities also appear in the mean flow equations. The form these terms take is described.
Lagrangian Statistics of Slightly Buoyant Droplets in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph
2006-11-01
This project examines the dynamics of slightly buoyant diesel droplets in isotropic turbulence using high speed in-line digital Holographic PIV. A cloud of droplets with specific gravity of 0.85 is injected into the central portion of an isotropic turbulence facility. The droplet trajectories are measured in a 50x50x50 mm̂3 sample volume using high speed in-line digital holography. An automated program has been developed to obtain accurate time history of droplet velocities. Data analysis determines the PDF of velocity and acceleration in three dimensions. The time histories enable us to calculate the three dimensional Lagrangian velocity autocorrelation function, and from them the diffusion coefficients. Due to buoyancy the vertical diffusion time scale exceeds the horizontal one by about 65% .The diffusion coefficients vary between 2.8 cm̂2/sec in the horizontal direction to 5.5 cm̂2/sec in the vertical direction. For droplets with size varying from 2 to 11 Kolmogorov scales there are no clear trends with size. The variations of diffusion rates for different turbulent intensities and the effect of finite window size are presently examined. For shorter time scales, when the diffusion need not be Fickian the three dimensional trajectories can be used to calculate the generalized dispersion tensor and measure the time elapsed for diffusion to become Fickian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less
NASA Astrophysics Data System (ADS)
Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph
2007-11-01
Lagrangian motion in isotropic turbulence of slightly buoyant diesel oil droplets (specific gravity 0.85 and size 0.6-1.1 mm) and almost neutrally buoyant, 50 μm tracer particles are studied using high speed, in-line digital holographic cinematography. Droplets and particles are injected into a 50x50x70 mm^3 sample volume located at the center of a nearly isotropic turbulence facility, and data are obtained for Reλ of 190, 195 and 214. The turbulence is characterized by 2D PIV measurements at different planes. An automated tracking program has been used for measuring velocity time history of more than 22000 droplet tracks and 15000 particle tracks. Analysis compares probability density functions (PDF) of Lagrangian velocity and acceleration, spectra, as well as velocity and acceleration autocorrelation functions of droplets with those of particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. PDFs of droplet velocity have nearly Gaussian distributions, justifying use of Taylor's (1921) model to calculate diffusion parameters. The fluid particle diffusion coefficient exceeds that of the droplet primarily because the fluid diffusion timescale is higher than that of the droplet. For all droplet sizes and Reynolds numbers, the diffusion coefficient, calculated using Taylor's model, scaled by quiescent rise velocity and turbulence integral length scale, is a monotonically increasing function of the turbulence level normalized by droplet quiescent rise velocity.
NASA Astrophysics Data System (ADS)
Novikov, E. A.
1990-05-01
The influence of intermittency on turbulent diffusion is expressed in terms of the statistics of the dissipation field. The high-order moments of relative diffusion are obtained by using the concept of scale similarity of the breakdown coefficients (bdc). The method of bdc is useful for obtaining new models and general results, which then can be expressed in terms of multifractals. In particular, the concavity and other properties of spectral codimension are proved. Special attention is paid to the logarithmically periodic modulations. The parametrization of small-scale intermittent turbulence, which can be used for large-eddy simulation, is presented. The effect of molecular viscosity is taken into account in the spirit of the renorm group, but without spectral series, ɛ expansion, and fictitious random forces.
Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion
NASA Astrophysics Data System (ADS)
Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.
2018-04-01
The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.
NASA Astrophysics Data System (ADS)
Gopalan, Balaji
In part I, high speed in-line digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets (specific gravity of 0.85) and 50 mum diameter neutral density particles. Experiments are performed in a 50x50x70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by 2-D PIV. An automated tracking program has been used for measuring velocity time history of more than 17000 droplets and 15000 particles. The PDF's of droplet velocity fluctuations are close to Gaussian for all turbulent intensities ( u'i ). The mean rise velocity of droplets is enhanced or suppressed, compared to quiescent rise velocity (Uq), depending on Stokes number at lower turbulence levels, but becomes unconditionally enhanced at higher turbulence levels. The horizontal droplet velocity rms exceeds the fluid velocity rms for most of the data, while the vertical ones are higher than the fluid only at the highest turbulence level. The scaled droplet horizontal diffusion coefficient is higher than the vertical one, for 1 < u'i /Uq < 5, consistent with trends of the droplet velocity fluctuations. Conversely, the scaled droplet horizontal diffusion timescale is smaller than the vertical one due to crossing trajectories effect. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale is a monotonically increasing function of u'i /Uq. Part II of this work explains the formation of micron sized droplets in turbulent flows from crude oil droplets pre-mixed with dispersants. Experimental visualization shows that this breakup starts with the formation of very long and quite stable, single or multiple micro threads that trail behind millimeter sized droplets. These threads form in regions with localized increase in concentration of surfactant, which in turn depends on the flow around the droplet. The resulting reduction of local surface tension, aided by high oil viscosity and stretching by the flow, suppresses capillary breakup and explains the stability of these threads. Due to increasing surface area and diffusion of dispersants into the continuous phase, the threads eventually breakup into ˜3 mum droplets.
Diffusion in biased turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, M.; Spineanu, F.; Misguich, J. H.
2001-06-01
Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.
NASA Technical Reports Server (NTRS)
Khoo, Boo-Cheong; Sonin, Ain A.
1992-01-01
An experimental correlation is derived for gas absorption at a turbulent, shear-free liquid interface. The correlation is expressed in terms of the liquid-side turbulence intensity, liquid-side macroscale, and the properties of the diffusing gas and solvent. The transfer coefficient increases linearly with rms velocity up to a point where the eddy Reynolds number reaches a critical (Schmidt number dependent) value. At higher velocities, there is a more rapid linear rise. The slope of the lower Reynolds number region is proportional to the square root of the diffusivity; at Reynolds numbers much higher than that of the break point, the slope becomes independent of diffusivity.
Vertical mass transfer in open channel flow
Jobson, Harvey E.
1968-01-01
The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.
NASA Technical Reports Server (NTRS)
Strobel, D. F.; Apruzese, J. P.; Schoeberl, M. R.
1985-01-01
The constraints on turbulence improved by the mesospheric heat budget are reexamined, and the sufficiency of the theoretical evidence to support the hypothesis that the eddy Prandtl number is greater than one in the mesosphere is considered. The mesopause thermal structure is calculated with turbulent diffusion coefficients commonly used in chemical models and deduced from mean zonal wind deceleration. It is shown that extreme mesopause temperatures of less than 100 K are produced by the large net cooling. The results demonstrate the importance of the Prandtl number for mesospheric turbulence.
A Numerical Assessment of Cosmic-Ray Energy Diffusion through Turbulent Media
NASA Astrophysics Data System (ADS)
Fatuzzo, M.; Melia, F.
2014-04-01
How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.
Radial mixing in turbomachines
NASA Astrophysics Data System (ADS)
Segaert, P.; Hirsch, Ch.; Deruyck, J.
1991-03-01
A method for computing the effects of radial mixing in a turbomachinery blade row has been developed. The method fits in the framework of a quasi-3D flow computation and hence is applied in a corrective fashion to through flow distributions. The method takes into account both secondary flows and turbulent diffusion as possible sources of mixing. Secondary flow velocities determine the magnitude of the convection terms in the energy redistribution equation while a turbulent diffusion coefficient determines the magnitude of the diffusion terms. Secondary flows are computed by solving a Poisson equation for a secondary streamfunction on a transversal S3-plane, whereby the right-hand side axial vorticity is composed of different contributions, each associated to a particular flow region: inviscid core flow, end-wall boundary layers, profile boundary layers and wakes. The turbulent mixing coefficient is estimated by a semi-empirical correlation. Secondary flow theory is applied to the VUB cascade testcase and comparisons are made between the computational results and the extensive experimental data available for this testcase. This comparison shows that the secondary flow computations yield reliable predictions of the secondary flow pattern, both qualitatively and quantitatively, taking into account the limitations of the model. However, the computations show that use of a uniform mixing coefficient has to be replaced by a more sophisticated approach.
Magnetic Field Line Random Walk in Arbitrarily Stretched Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Wongpan, P.; Ruffolo, D.; Matthaeus, W. H.; Rowlands, G.
2006-12-01
Many types of space and laboratory plasmas involve turbulent fluctuations with an approximately uniform mean magnetic field B_0, and the field line random walk plays an important role in guiding particle motions. Much of the relevant literature concerns isotropic turbulence, and has mostly been perturbative, i.e., for small fluctuations, or based on numerical simulations for specific conditions. On the other hand, solar wind turbulence is apparently anisotropic, and has been modeled as a sum of idealized two-dimensional and one dimensional (slab) components, but with the deficiency of containing no oblique wave vectors. In the present work, we address the above issues with non-perturbative analytic calculations of diffusive field line random walks for unpolarized, arbitrarily stretched isotropic turbulence, including the limits of nearly one-dimensional (highly stretched) and nearly two-dimensional (highly squashed) turbulence. We develop implicit analytic formulae for the diffusion coefficients D_x and D_z, two coupled integral equations in which D_x and D_z appear inside 3-dimensional integrals over all k-space, are solved numerically with the aid of Mathematica routines for specific cases. We can vary the parameters B0 and β, the stretching along z for constant turbulent energy. Furthermore, we obtain analytic closed-form solutions in all extreme cases. We obtain 0.54 < D_z/D_x < 2, indicating an approximately isotropic random walk even for very anisotropic (unpolarized) turbulence, a surprising result. For a given β, the diffusion coefficient vs. B0 can be described by a Padé approximant. We find quasilinear behavior at high B0 and percolative behavior at low B_0. Partially supported by a Sritrangthong Scholarship from the Faculty of Science, Mahidol University; the Thailand Research Fund; NASA Grant NNG05GG83G; and Thailand's Commission for Higher Education.
NASA Astrophysics Data System (ADS)
Moloto, K. D.; Engelbrecht, N. E.; Burger, R. A.
2018-06-01
A simplified ab initio approach is followed to model cosmic-ray proton modulation, using a steady-state three-dimensional stochastic solver of the Parker transport equation that simulates some effects of time dependence. Standard diffusion coefficients based on Quasilinear Theory and Nonlinear Guiding Center Theory are employed. The spatial and temporal dependences of the various turbulence quantities required as inputs for the diffusion, as well as the turbulence-reduced drift coefficients, follow from parametric fits to results from a turbulence transport model as well as from spacecraft observations of these turbulence quantities. Effective values are used for the solar wind speed, magnetic field magnitude, and tilt angle in the modulation model to simulate temporal effects due to changes in the large-scale heliospheric plasma. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to the high intensities during that solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.
Losses in Channels with Increased External Turbulence
NASA Technical Reports Server (NTRS)
Zaryankin, A. Y.; Soloveva, G. S.
1986-01-01
An approximate method for determining the effect of the level of turbulence on the aerodynamic characteristics of convergent and diffuser channels is examined. A momentum equation for the boundary layer is in the method, introducing external flow turbulence on the basis of experimental values of the coefficient of friction and the form factor. It is found that at significant levels of external turbulence, losses must be considered not only in the boundary layer but also in the central region of the channel.
Confinement of the solar tachocline by a cyclic dynamo magnetic field
NASA Astrophysics Data System (ADS)
Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul
2017-05-01
Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.
Computation of turbulent boundary layer flows with an algebraic stress turbulence model
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1986-01-01
An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.
NASA Astrophysics Data System (ADS)
Negrea, M.; Petrisor, I.; Shalchi, A.
2017-11-01
We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .
Modeling and calculation of turbulent lifted diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, J.P.H.; Lamers, A.P.G.G.
1994-01-01
Liftoff heights of turbulent diffusion flames have been modeled using the laminar diffusion flamelet concept of Peters and Williams. The strain rate of the smallest eddies is used as the stretch describing parameter, instead of the more common scalar dissipation rate. The h(U) curve, which is the mean liftoff height as a function of fuel exit velocity can be accurately predicted, while this was impossible with the scalar dissipation rate. Liftoff calculations performed in the flames as well as in the equivalent isothermal jets, using a standard k-[epsilon] turbulence model yield approximately the same correct slope for the h(U) curvemore » while the offset has to be reproduced by choosing an appropriate coefficient in the strain rate model. For the flame calculations a model for the pdf of the fluctuating flame base is proposed. The results are insensitive to its width. The temperature field is qualitatively different from the field calculated by Bradley et al. who used a premixed flamelet model for diffusion flames.« less
NASA Astrophysics Data System (ADS)
Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders
2018-02-01
A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders
2018-07-01
A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.
Investigations of Turbulent Transport Channels in Gyrokinetic Simulations
NASA Astrophysics Data System (ADS)
Dimits, A. M.; Candy, J.; Guttenfelder, W.; Holland, C.; Howard, N.; Nevins, W. M.; Wang, E.
2014-10-01
Magnetic-field stochasticity arises due to microtearing perturbations, which can be driven linearly or nonlinearly (in cases where they are linearly stable), even at very modest values of the plasma beta. The resulting magnetic-flutter contribution may or may not be a significant component of the overall electron (particle and thermal) transport. Investigations of the effect of ExB flow shear on electron-drift magnetic-flutter diffusion coefficient Dedr (r ,v||) using perturbed magnetic fields from simulations, using the GYRO code, of ITG turbulence show a significant effect for electrons with parallel velocities v|| surprisingly far from the resonant velocity. We further examine changes in the radial dependence of this diffusion coefficient vs. v|| and which resonant magnetic-field perturbations are important to the values and radial structure of Dedr. The resulting electron transport fluxes are compared with the simulation results. Improvements over in treating the ambipolar field in the relationship between the magnetic (or drift) diffusion coefficients and the transport have been made in these comparisons. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344, by GA under Contract DE-FG03-95ER54309, and by PPPL under Contract DE-AC02-09CH11466.
Mixing Efficiency in the Ocean.
Gregg, M C; D'Asaro, E A; Riley, J J; Kunze, E
2018-01-03
Mixing efficiency is the ratio of the net change in potential energy to the energy expended in producing the mixing. Parameterizations of efficiency and of related mixing coefficients are needed to estimate diapycnal diffusivity from measurements of the turbulent dissipation rate. Comparing diffusivities from microstructure profiling with those inferred from the thickening rate of four simultaneous tracer releases has verified, within observational accuracy, 0.2 as the mixing coefficient over a 30-fold range of diapycnal diffusivities. Although some mixing coefficients can be estimated from pycnocline measurements, at present mixing efficiency must be obtained from channel flows, laboratory experiments, and numerical simulations. Reviewing the different approaches demonstrates that estimates and parameterizations for mixing efficiency and coefficients are not converging beyond the at-sea comparisons with tracer releases, leading to recommendations for a community approach to address this important issue.
Mixing Efficiency in the Ocean
NASA Astrophysics Data System (ADS)
Gregg, M. C.; D'Asaro, E. A.; Riley, J. J.; Kunze, E.
2018-01-01
Mixing efficiency is the ratio of the net change in potential energy to the energy expended in producing the mixing. Parameterizations of efficiency and of related mixing coefficients are needed to estimate diapycnal diffusivity from measurements of the turbulent dissipation rate. Comparing diffusivities from microstructure profiling with those inferred from the thickening rate of four simultaneous tracer releases has verified, within observational accuracy, 0.2 as the mixing coefficient over a 30-fold range of diapycnal diffusivities. Although some mixing coefficients can be estimated from pycnocline measurements, at present mixing efficiency must be obtained from channel flows, laboratory experiments, and numerical simulations. Reviewing the different approaches demonstrates that estimates and parameterizations for mixing efficiency and coefficients are not converging beyond the at-sea comparisons with tracer releases, leading to recommendations for a community approach to address this important issue.
Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy
2017-03-01
The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.
NASA Astrophysics Data System (ADS)
Bomela, Christian Loangola
The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k--o turbulence model produced a mean flow velocity profile at the middle of the annular diffuser portion that had the best overall match with the experiment. The RNG k --epsilon, however, better predicted the diffuser performance along the exhaust diffuser length by means of the pressure recovery coefficient. These results were obtained using uniform inflow conditions and steady-state simulations. As such, the last phase of our investigations involved varying the inflow parameters like the turbulence intensity, the inlet flow temperature, and the flow angularity, which constitute important characteristics of the turbine blade wake, to investigate their impact on the diffuser design and performance. These isothermal CFD simulations revealed that by changing the flow temperature from 15 to 427°C, the pressure recovery coefficient significantly increased. However, it has been shown that the increase of temperature had no effects on the size of the reversed flow region and the thickness of the separated casing boundary layer, although the flow appears to be more turbulent. Furthermore, it has been established that an optimum turbulence intensity of about 4% produced comparable diffuser performance as the experiment. We also found that a velocity angle of about 2.5° at the last turbine stage will ensure a better exhaust diffuser performance.
Tracing Gas Motions in the Centaurus Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, James; Fabian, A.C.; Sanders, J.S.
2006-03-01
We apply the stochastic model of iron transport developed by Rebusco et al. (2005) to the Centaurus cluster. Using this model, we find that an effective diffusion coefficient D in the range 2 x 10{sup 28} - 4 x 10{sup 28} cm{sup 2}s{sup -1} can approximately reproduce the observed abundance distribution. Reproducing the flat central profile and sharp drop around 30-70 kpc, however, requires a diffusion coefficient that drops rapidly with radius so that D > 4 x 10{sup 28} cm{sup 2}s{sup -1} only inside about 25 kpc. Assuming that all transport is due to fully-developed turbulence, which is alsomore » responsible for offsetting cooling in the cluster core, we calculate the length and velocity scales of energy injection. These length scales are found to be up to a factor of {approx} 10 larger than expected if the turbulence is due to the inflation and rising of a bubble. We also calculate the turbulent thermal conductivity and find it is unlikely to be significant in preventing cooling.« less
Line transport in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Nikoghossian, Artur
We consider the spectral line transfer in turbulent atmospheres with a spatially correlated velocity field. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. New approach proposed in solving this problem is based on invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity and the line width on the mean correlation length and average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulent one occurs within a comparatively narrow range of variation in the correlation length. The diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere is examined. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.
Line Transport in Turbulent Atmospheres
NASA Astrophysics Data System (ADS)
Nikoghossian, A. G.
2017-07-01
The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.
Vertical profile of tritium concentration in air during a chronic atmospheric HT release.
Noguchi, Hiroshi; Yokoyama, Sumi
2003-03-01
The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.
Population dynamics in non-homogeneous environments
NASA Astrophysics Data System (ADS)
Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico
2014-11-01
For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.
VizieR Online Data Catalog: Solar wind 3D magnetohydrodynamic simulation (Chhiber+, 2017)
NASA Astrophysics Data System (ADS)
Chhiber, R.; Subedi, P.; Usmanov, A. V.; Matthaeus, W. H.; Ruffolo, D.; Goldstein, M. L.; Parashar, T. N.
2017-08-01
We use a three-dimensional magnetohydrodynamic simulation of the solar wind to calculate cosmic-ray diffusion coefficients throughout the inner heliosphere (2Rȯ-3au). The simulation resolves large-scale solar wind flow, which is coupled to small-scale fluctuations through a turbulence model. Simulation results specify background solar wind fields and turbulence parameters, which are used to compute diffusion coefficients and study their behavior in the inner heliosphere. The parallel mean free path (mfp) is evaluated using quasi-linear theory, while the perpendicular mfp is determined from nonlinear guiding center theory with the random ballistic interpretation. Several runs examine varying turbulent energy and different solar source dipole tilts. We find that for most of the inner heliosphere, the radial mfp is dominated by diffusion parallel to the mean magnetic field; the parallel mfp remains at least an order of magnitude larger than the perpendicular mfp, except in the heliospheric current sheet, where the perpendicular mfp may be a few times larger than the parallel mfp. In the ecliptic region, the perpendicular mfp may influence the radial mfp at heliocentric distances larger than 1.5au; our estimations of the parallel mfp in the ecliptic region at 1 au agree well with the Palmer "consensus" range of 0.08-0.3au. Solar activity increases perpendicular diffusion and reduces parallel diffusion. The parallel mfp mostly varies with rigidity (P) as P.33, and the perpendicular mfp is weakly dependent on P. The mfps are weakly influenced by the choice of long-wavelength power spectra. (2 data files).
Hydrodynamic effects on phase transition in active matter
NASA Astrophysics Data System (ADS)
Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team
2017-11-01
Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.
NASA Astrophysics Data System (ADS)
Lasuik, J.; Shalchi, A.
2018-06-01
In the current paper we explore the influence of the assumed particle statistics on the transport of energetic particles across a mean magnetic field. In previous work the assumption of a Gaussian distribution function was standard, although there have been known cases for which the transport is non-Gaussian. In the present work we combine a kappa distribution with the ordinary differential equation provided by the so-called unified non-linear transport theory. We then compute running perpendicular diffusion coefficients for different values of κ and turbulence configurations. We show that changing the parameter κ slightly increases or decreases the perpendicular diffusion coefficient depending on the considered turbulence configuration. Since these changes are small, we conclude that the assumed statistics is less significant in particle transport theory. The results obtained in the current paper support to use a Gaussian distribution function as usually done in particle transport theory.
Small particle transport across turbulent nonisothermal boundary layers
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Fernandez De La Mora, J.
1982-01-01
The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.
Small-scale structure and turbulence observed in MAP/WINE)
NASA Technical Reports Server (NTRS)
Blix, T. A.
1989-01-01
During MAP/WINE small scale structure and turbulence in the mesosphere and lower thermosphere was studied in situ by rocket-borne instruments as well as from the ground by remote sensing techniques. The eight salvoes launched during the campaign resulted in a wealth of information on the dynamical structure of these regions. The experimental results are reviewed and their interpretation is discussed in terms of gravity waves and turbulence. It is shown that eddy diffusion coefficients and turbulent energy dissipation rates may be derived from the in situ measurements in a consistent manner. The observations are also shown to be consistent with the hypothesis that turbulence can be created by a process of gravity wave saturation.
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
Kubo number and magnetic field line diffusion coefficient for anisotropic magnetic turbulence.
Pommois, P; Veltri, P; Zimbardo, G
2001-06-01
The magnetic field line diffusion coefficients Dx and D(y) are obtained by numerical simulations in the case that all the magnetic turbulence correlation lengths l(x), l(y), and l(z) are different. We find that the variety of numerical results can be organized in terms of the Kubo number, the definition of which is extended from R=(deltaB/B(0))(l(parallel)/l(perpendicular)) to R=(deltaB/B(0))(l(z)/l(x)), for l(x) > or = l(y). Here, l(parallel) (l(perpendicular)) is the correlation length along (perpendicular to) the average field B(0)=B(0)ê(z). We have anomalous, non-Gaussian transport for R less, similar 0.1, in which case the mean square deviation scales nonlinearly with time. For R greater, similar 1 we have several Gaussian regimes: an almost quasilinear regime for 0.1 less, similar R less, similar 1, an intermediate, transition regime for 1 less, similar R less, similar 10, and a percolative regime for R greater, similar 10. An analytical form of the diffusion coefficient is proposed, D(i)=D(deltaBl(z)/B(0)l(x))(mu)(l(i)/l(x))(nu)l(2)(x)/l(z), which well describes the numerical simulation results in the quasilinear, intermediate, and percolative regimes.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1976-01-01
The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory.
Field Line Random Walk in Isotropic Magnetic Turbulence up to Infinite Kubo Number
NASA Astrophysics Data System (ADS)
Sonsrettee, W.; Wongpan, P.; Ruffolo, D. J.; Matthaeus, W. H.; Chuychai, P.; Rowlands, G.
2013-12-01
In astrophysical plasmas, the magnetic field line random walk (FLRW) plays a key role in the transport of energetic particles. In the present, we consider isotropic magnetic turbulence, which is a reasonable model for interstellar space. Theoretical conceptions of the FLRW have been strongly influenced by studies of the limit of weak fluctuations (or a strong mean field) (e.g, Isichenko 1991a, b). In this case, the behavior of FLRW can be characterized by the Kubo number R = (b/B0)(l_∥ /l_ \\bot ) , where l∥ and l_ \\bot are turbulence coherence scales parallel and perpendicular to the mean field, respectively, and b is the root mean squared fluctuation field. In the 2D limit (R ≫ 1), there has been an apparent conflict between concepts of Bohm diffusion, which is based on the Corrsin's independence hypothesis, and percolative diffusion. Here we have used three non-perturbative analytic techniques based on Corrsin's independence hypothesis for B0 = 0 (R = ∞ ): diffusive decorrelation (DD), random ballistic decorrelation (RBD) and a general ordinary differential equation (ODE), and compared them with direct computer simulations. All the analytical models and computer simulations agree that isotropic turbulence for R = ∞ has a field line diffusion coefficient that is consistent with Bohm diffusion. Partially supported by the Thailand Research Fund, NASA, and NSF.
NASA Astrophysics Data System (ADS)
Zhao, L.; Zank, G. P.; Adhikari, L.
2017-12-01
The radial and rigidity dependence of cosmic ray (CR) diffusion tensor is investigated on the basis of the recently developed 2D and slab turbulence transport model using nearly incompressible (NI) theory (Zank et al. 2017; Adhikari et al. 2017). We use the energy in forward propagating modes from 0.29 to 1 AU and in backward propagating modes from 1 to 75 AU. We employ the quasi-linear theory (QLT) and nonlinear guiding center (NLGC) theory, respectively, to determine the parallel and perpendicular elements of CR diffusion tensor. We also present the effect of both weak and moderately strong turbulence on the drift element of CR diffusion tensor. We find that (1) from 0.29 to 1 AU the radial mean free path (mfp) is dominated by the parallel component, both increase slowly after 0.4 AU; (2) from 1 to 75 AU the radial mfp starts with a rapid increase and then decreases after a peak at about 3.5 AU, mainly caused by pick-up ion sources of turbulence model; (3) after 20 AU the perpendicular mfp is nearly constant and begin to dominate the radial mfp; (4) the rigidity dependence of the parallel mfp is proportional to at 1 AU from 0.1 to 10 GV and the perpendicular mfp is weakly influenced by the rigidity; (5) turbulence does more than suppress the traditional drift element but introduces a new component normal to the magnetic field. This study shows that a proper two-component turbulence model is necessary to produce the complexity of diffusion coefficient for CR modulation throughout the heliosphere.
Vertical eddy diffusion coefficient from the LANDSAT imagery
NASA Technical Reports Server (NTRS)
Viswanadham, Y. (Principal Investigator); Torsani, J. A.
1982-01-01
Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.
Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...
2015-12-28
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less
A Realizable Reynolds Stress Algebraic Equation Model
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1993-01-01
The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.
A B-B-G-K-Y framework for fluid turbulence
NASA Technical Reports Server (NTRS)
Montgomery, D.
1975-01-01
A kinetic theory for fluid turbulence is developed from the Liouville equation and the associated BBGKY hierarchy. Real and imaginary parts of Fourier coefficients of fluid variables play the roles of particles. Closure is achieved by the assumption of negligible five-coefficient correlation functions and probability distributions of Fourier coefficients are the basic variables of the theory. An additional approximation leads to a closed-moment description similar to the so-called eddy-damped Markovian approximation. A kinetic equation is derived for which conservation laws and an H-theorem can be rigorously established, the H-theorem implying relaxation of the absolute equilibrium of Kraichnan. The equation can be cast in the Fokker-Planck form, and relaxation times estimated from its friction and diffusion coefficients. An undetermined parameter in the theory is the free decay time for triplet correlations. Some attention is given to the inclusion of viscous damping and external driving forces.
Correlation time and diffusion coefficient imaging: application to a granular flow system.
Caprihan, A; Seymour, J D
2000-05-01
A parametric method for spatially resolved measurements for velocity autocorrelation functions, R(u)(tau) = , expressed as a sum of exponentials, is presented. The method is applied to a granular flow system of 2-mm oil-filled spheres rotated in a half-filled horizontal cylinder, which is an Ornstein-Uhlenbeck process with velocity autocorrelation function R(u)(tau) = e(- ||tau ||/tau(c)), where tau(c) is the correlation time and D = tau(c) is the diffusion coefficient. The pulsed-field-gradient NMR method consists of applying three different gradient pulse sequences of varying motion sensitivity to distinguish the range of correlation times present for particle motion. Time-dependent apparent diffusion coefficients are measured for these three sequences and tau(c) and D are then calculated from the apparent diffusion coefficient images. For the cylinder rotation rate of 2.3 rad/s, the axial diffusion coefficient at the top center of the free surface was 5.5 x 10(-6) m(2)/s, the correlation time was 3 ms, and the velocity fluctuation or granular temperature was 1.8 x 10(-3) m(2)/s(2). This method is also applicable to study transport in systems involving turbulence and porous media flows. Copyright 2000 Academic Press.
On the cosmic ray diffusion in a violent interstellar medium
NASA Technical Reports Server (NTRS)
Bykov, A. M.; Toptygin, I. N.
1985-01-01
A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.
TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForest, C. E.; Howard, T. A.; Matthaeus, W. H.
2015-10-20
By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysismore » and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.« less
Non-local transport in turbulent MHD convection
NASA Technical Reports Server (NTRS)
Miesch, Mark; Brandenburg, Axel; Zweibel, Ellen; Toomre, Juri
1995-01-01
The nonlocal non-diffusive transport of passive scalars in turbulent magnetohydrodynamic (MHD) convection is investigated using transilient matrices. These matrices describe the probability that a tracer particle beginning at one position in a flow will be advected to another position after some time. A method for the calculation of these matrices from simulation data which involves following the trajectories of passive tracer particles and calculating their transport statistics, is presented. The method is applied to study the transport in several simulations of turbulent, rotating, three dimensional compressible, penetrative MDH convection. Transport coefficients and other diagnostics are used to quantify the transport, which is found to resemble advection more closely than diffusion. Some of the results are found to have direct relevance to other physical problems, such as the light element depletion in sun-type stars. The large kurtosis found for downward moving particles at the base of the convection zone implies several extreme events.
About a flame propagation by a premixed gas mixture at high turbulence
NASA Astrophysics Data System (ADS)
Gaponov, Sergey A.
2018-03-01
In the paper the new model of the turbulent flame propagation in a premixed gas is offered. In its basis the diffusion equation of combustion products with a source, which is proportional to the contact surface of combustion products with a fresh mixture and an expansion coefficient is put. It is shown that the dependence of the generation rate of combustion products on their mass concentration satisfies conditions of the KPP (Kolmogorov, Petrovsky, Piskounov). In this case, the flame propagation speed depends on the flame surface in a unit volume near the leading front. But at turbulent motion the isolated fragments of combustion products surrounded with fresh mix can be formed on the forward front. It is assumed that the isolated fragments are the sphere shape at the weak turbulence, and with increase in intensity of turbulent pulsations the flame surface of each center is proportional to the pulsations velocity and inversely proportional to the flame speed relatively combustion products, i.e. it is inversely proportional to the product of normal flame speed and expansion coefficient. As a result the formula for the propagation speed calculation of the turbulent flame is proposed which includes not only traditional values of a pulsations velocity and normal flame speed, but also values of an expansion coefficient. On its basis it is explained why the turbulent flame speed exceeds the pulsations velocity by many times at moderate turbulence. It is shown that at the power dependence the turbulent flame speed on the pulsation velocity exponent can vary from 0.5 to unit. The received dependence can be improved if to replace the flat laminar flame with average on the surface of the curved flame, i.e. to take into account the Markstein theory.
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs
NASA Astrophysics Data System (ADS)
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Pincus, R.
2016-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC is now incorporated into a version of GFS, as well as into the next generation of the NCEP global model - NOAA Environmental Modeling System (NEMS). Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these variables. Radiative transfer parameterization uses cloudiness computed by SHOC.Outstanding problems include high level tropical cloud fraction being too high in SHOC runs, possibly related to the interaction of SHOC with condensate detrained from deep convection.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.
Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Oughton, S.
2013-12-10
The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less
NASA Astrophysics Data System (ADS)
Osman, M. K.; Hocking, W. K.; Tarasick, D. W.
2016-06-01
Vertical diffusion and mixing of tracers in the upper troposphere and lower stratosphere (UTLS) are not uniform, but primarily occur due to patches of turbulence that are intermittent in time and space. The effective diffusivity of regions of patchy turbulence is related to statistical parameters describing the morphology of turbulent events, such as lifetime, number, width, depth and local diffusivity (i.e., diffusivity within the turbulent patch) of the patches. While this has been recognized in the literature, the primary focus has been on well-mixed layers, with few exceptions. In such cases the local diffusivity is irrelevant, but this is not true for weakly and partially mixed layers. Here, we use both theory and numerical simulations to consider the impact of intermediate and weakly mixed layers, in addition to well-mixed layers. Previous approaches have considered only one dimension (vertical), and only a small number of layers (often one at each time step), and have examined mixing of constituents. We consider a two-dimensional case, with multiple layers (10 and more, up to hundreds and even thousands), having well-defined, non-infinite, lengths and depths. We then provide new formulas to describe cases involving well-mixed layers which supersede earlier expressions. In addition, we look in detail at layers that are not well mixed, and, as an interesting variation on previous models, our procedure is based on tracking the dispersion of individual particles, which is quite different to the earlier approaches which looked at mixing of constituents. We develop an expression which allows determination of the degree of mixing, and show that layers used in some previous models were in fact not well mixed and so produced erroneous results. We then develop a generalized model based on two dimensional random-walk theory employing Rayleigh distributions which allows us to develop a universal formula for diffusion rates for multiple two-dimensional layers with general degrees of mixing. We show that it is the largest, most vigorous and less common turbulent layers that make the major contribution to global diffusion. Finally, we make estimates of global-scale diffusion coefficients in the lower stratosphere and upper troposphere. For the lower stratosphere, κeff ≈ 2x10-2 m2 s-1, assuming no other processes contribute to large-scale diffusion.
Numerical simulation of life cycles of advection warm fog
NASA Technical Reports Server (NTRS)
Hung, R. J.; Vaughan, O. H.
1977-01-01
The formation, development and dissipation of advection warm fog is investigated. The equations employed in the model include the equation of continuity, momentum and energy for the descriptions of density, wind component and potential temperature, respectively, together with two diffusion equations for the modification of water-vapor mixing ratio and liquid-water mixing ratios. A description of the vertical turbulent transfer of heat, moisture and momentum has been taken into consideration. The turbulent exchange coefficients adopted in the model are based on empirical flux-gradient relations.
Dispersion of the solar magnetic flux in the undisturbed photosphere as derived from SDO/HMI data
NASA Astrophysics Data System (ADS)
Abramenko, Valentina I.
2017-11-01
To explore the magnetic flux dispersion in the undisturbed solar photosphere, magnetograms acquired by Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) were utilized. Two areas, a coronal hole (CH) area and an area of super-granulation (SG) pattern, were analysed. We explored the displacement and separation spectra and the behaviour of the turbulent diffusion coefficient, K. The displacement and separation spectra are very similar to each other. Small magnetic elements (of size 3-100 squared pixels and the detection threshold of 20 Mx sm-2) in both CH and SG areas disperse in the same way and they are more mobile than the large elements (of size 20-400 squared pixels and the detection threshold of 130 Mx sm-2). The regime of super-diffusivity is found for small elements (γ ≈ 1.3 and K growing from ˜100 to ˜ 300 km2 s-1). Large elements in the CH area are scanty and show super-diffusion with γ ≈ 1.2 and K = (62-96) km2 s-1 on a rather narrow range of 500-2200 km. Large elements in the SG area demonstrate two ranges of linearity and two diffusivity regimes: sub-diffusivity on scales 900-2500 km with γ = 0.88 and K decreasing from ˜130 to ˜100 km2 s-1, and super-diffusivity on scales 2500-4800 km with γ ≈ 1.3 and K growing from ˜140 to ˜200 km2 s-1. A comparison of our results with the previously published shows that there is a tendency of saturation of the diffusion coefficient on large scales, I.e. the turbulent regime of super-diffusivity is gradually replaced by normal diffusion.
NASA Astrophysics Data System (ADS)
Consalvi, J. L.; Nmira, F.
2016-03-01
The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
Drift-wave turbulence and zonal flow generation.
Balescu, R
2003-10-01
Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.
New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Poroseva, Svetlana; Murman, Scott
2014-11-01
To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-05-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-03-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
Transport of cosmic-ray protons in intermittent heliospheric turbulence: Model and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alouani-Bibi, Fathallah; Le Roux, Jakobus A., E-mail: fb0006@uah.edu
The transport of charged energetic particles in the presence of strong intermittent heliospheric turbulence is computationally analyzed based on known properties of the interplanetary magnetic field and solar wind plasma at 1 astronomical unit. The turbulence is assumed to be static, composite, and quasi-three-dimensional with a varying energy distribution between a one-dimensional Alfvénic (slab) and a structured two-dimensional component. The spatial fluctuations of the turbulent magnetic field are modeled either as homogeneous with a Gaussian probability distribution function (PDF), or as intermittent on large and small scales with a q-Gaussian PDF. Simulations showed that energetic particle diffusion coefficients both parallelmore » and perpendicular to the background magnetic field are significantly affected by intermittency in the turbulence. This effect is especially strong for parallel transport where for large-scale intermittency results show an extended phase of subdiffusive parallel transport during which cross-field transport diffusion dominates. The effects of intermittency are found to depend on particle rigidity and the fraction of slab energy in the turbulence, yielding a perpendicular to parallel mean free path ratio close to 1 for large-scale intermittency. Investigation of higher order transport moments (kurtosis) indicates that non-Gaussian statistical properties of the intermittent turbulent magnetic field are present in the parallel transport, especially for low rigidity particles at all times.« less
Air-sea fluxes of momentum and mass in the presence of wind waves
NASA Astrophysics Data System (ADS)
Zülicke, Christoph
2010-05-01
An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.
Ion and impurity transport in turbulent, anisotropic magnetic fields
NASA Astrophysics Data System (ADS)
Negrea, M.; Petrisor, I.; Isliker, H.; Vogiannou, A.; Vlahos, L.; Weyssow, B.
2011-08-01
We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.
On the Spectral Hardening at gsim300 keV in Solar Flares
NASA Astrophysics Data System (ADS)
Li, G.; Kong, X.; Zank, G.; Chen, Y.
2013-05-01
It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies gsim300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ~k -2.7. A ~k -2.7 dissipation range spectrum is consistent with recent solar wind observations.
Ion distribution effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1982-01-01
An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.
Transport of solar electrons in the turbulent interplanetary magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com; Dresing, N., E-mail: dresing@physik.uni-kiel.de
2016-01-15
The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profilesmore » can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.« less
NASA Technical Reports Server (NTRS)
Garcia, R. R.
1986-01-01
The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vauclair, Sylvie; Theado, Sylvie, E-mail: sylvie.vauclair@irap.omp.eu
2012-07-01
We have derived a new expression for the thermohaline mixing coefficient in stars, including the effects of radiative levitation and external turbulence, by solving Boussinesq equations in a nearly incompressible stratified fluid with a linear approximation. It is well known that radiative levitation of individual elements can lead to their accumulation in specific stellar layers. In some cases, it can induce important effects on the stellar structure. Here we confirm that this accumulation is moderated by thermohaline convection due to the resulting inverse {mu}-gradient. The new coefficient that we have derived shows that the effect of radiative accelerations on themore » thermohaline instability itself is small. This effect must however be checked in all computations. We also confirm that the presence of large horizontal turbulence can reduce or even suppress the thermohaline convection. These results are important as they concern all the cases of heavy element accumulation in stars. Computations of radiative diffusion must be revisited to include thermohaline convection and its consequences. It may be one of the basic reasons for the fact that the observed abundances are always smaller than those predicted by pure atomic diffusion. In any case, these processes have to compete with rotation-induced mixing, but this competition is more complex than previously thought due to their mutual interaction.« less
Pitch angle scattering in three-dimensional "critical balance" MHD turbulence.
NASA Astrophysics Data System (ADS)
Forman, Miriam; Oughton, Sean; Horbury, Tim
2004-11-01
We calculated the dependence of the quasi-linear particle pitch angle scattering coefficient in general 3-dimensional turbulence axi-symmetric about the mean magnetic field. We integrate over the power spectrum tensor of the turbulence in terms of the scalar functions E, F, C, and H of the wavevector k, as described by Oughton, et al. for incompressible MHD. The application to a "slab+ 2.5D" model is trivial, and reproduces Bieber, et al.'s extremely important previous result that the 2.5D part does not do any pitch-angle scattering. However, the "slab + 2D" is a highly idealized model. One wonders how its two parts are related to actual turbulence, as observed in space or in simulations, and to the calculation of the particle scattering. Here we update the "slab + 2D" model to a more realistic distribution in k-space, specifically a modification of the inertial-range "critical balance" form introduced by Goldreich and Sridhar, and developed further by Cho, Lazarian and Vishniac. We apply the 3D quasi-linear method to calculate D and the spatial diffusion coefficient parallel to the local mean magnetic field, in the "critical balance" anisotropic turbulence. We thank the International Space Science Institute (Bern, Switzerland) for support of this work.
Turbulent flow separation in three-dimensional asymmetric diffusers
NASA Astrophysics Data System (ADS)
Jeyapaul, Elbert
2011-12-01
Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.
Turbulent diffusion with memories and intrinsic shear
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1974-01-01
The first part of the present theory is devoted to the derivation of a Fokker-Planck equation. The eddies smaller than the hydrodynamic scale of the diffusion cloud form a diffusivity, while the inhomogeneous, bigger eddies give rise to a nonuniform migratory drift. This introduces an eddy-induced shear which reflects on the large-scale diffusion. The eddy-induced shear does not require the presence of a permanent wind shear and is intrinsic to the diffusion. Secondly, a transport theory of diffusivity is developed by the method of repeated-cascade and is based upon a relaxation of a chain of memories with decreasing information. The full range of diffusion consists of inertia, composite, and shear subranges, for which variance and eddy diffusivities are predicted. The coefficients are evaluated. Comparison with experiments in the upper atmosphere and oceans is made.
NASA Astrophysics Data System (ADS)
Yu, R.; Lipatnikov, A. N.; Bai, X. S.
2014-08-01
In order to gain further insight into (i) the use of conditioned quantities for characterizing turbulence within a premixed flame brush and (ii) the influence of front propagation on turbulent scalar transport, a 3D Direct Numerical Simulation (DNS) study of an infinitely thin front that self-propagates in statistically stationary, homogeneous, isotropic, forced turbulence was performed by numerically integrating Navier-Stokes and level set equations. While this study was motivated by issues relevant to premixed combustion, the density was assumed to be constant in order (i) to avoid the influence of the front on the flow and, therefore, to know the true turbulence characteristics as reference quantities for assessment of conditioned moments and (ii) to separate the influence of front propagation on turbulent transport from the influence of pressure gradient induced by heat release. Numerical simulations were performed for two turbulence Reynolds numbers (50 and 100) and four ratios (1, 2, 5, and 10) of the rms turbulent velocity to the front speed. Obtained results show that, first, the mean front thickness is decreased when a ratio of the rms turbulent velocity to the front speed is decreased. Second, although the gradient diffusion closure yields the right direction of turbulent scalar flux obtained in the DNS, the diffusion coefficient Dt determined using the DNS data depends on the mean progress variable. Moreover, Dt is decreased when the front speed is increased, thus, indicating that the front propagation affects turbulent scalar transport even in a constant-density case. Third, conditioned moments of the velocity field differ from counterpart mean moments, thus, disputing the use of conditioned velocity moments for characterizing turbulence when modeling premixed turbulent combustion. Fourth, computed conditioned enstrophies are close to the mean enstrophy in all studied cases, thus, suggesting the use of conditioned enstrophy for characterizing turbulence within a premixed flame brush.
Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J.S.; Krishnan, S.K.; Faeth, G.M.
1996-11-01
Measurements of the optical properties of soot, emphasizing refractive indices, are reported for visible wavelengths. The experiments considered soot in the fuel-lean (overfire) region of buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and residence time. Flames fueled with acetylene, propylene, ethylene and propane burning in still air provided a range of soot physical and structure properties. Measurements included soot composition, density, structure, gravimetric volume fraction, scattering properties and absorption properties. These data were analyzed to find soot fractal dimensions, refractive indices and dimensionless extinction coefficients, assumingmore » Rayleigh-Debye-Gans scattering for polydisperse mass fractal aggregates (RDG-PFA theory). RDG-PFA theory was successfully evaluated, based on measured scattering patterns. Soot fractal dimensions were independent of both fuel type and wavelength, yielding a mean value of 1.77 with a standard deviation of 0.04. Refractive indices were independent of fuel type within experimental uncertainties and were in reasonably good agreement with earlier measurements for soot in the fuel-lean region of diffusion flames due to Dalzell and Sarofim (1969). Dimensionless extinction coefficients were independent of both fuel type and wavelength, yielding a mean value of 5.1 with a standard deviation of 0.5, which is lower than earlier measurements for reasons that still must be explained.« less
NASA Astrophysics Data System (ADS)
Otsuka, Fumiko; Matsukiyo, Shuichi; Kis, Arpad; Nakanishi, Kento; Hada, Tohru
2018-02-01
Field-aligned diffusion of energetic ions in the Earth’s foreshock is investigated by using the quasi-linear theory (QLT) and test particle simulation. Non-propagating MHD turbulence in the solar wind rest frame is assumed to be purely transverse with respect to the background field. We use a turbulence model based on a multi-power-law spectrum including an intense peak that corresponds to upstream ULF waves resonantly generated by the field-aligned beam (FAB). The presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The QLT including the effect of the ULF wave explains the simulation result well, when the energy density of the turbulent magnetic field is 1% of that of the background magnetic field and the power-law index of the wave spectrum is less than 2. The numerically obtained e-folding distances from 10 to 32 keV ions match with the observational values in the event discussed in the companion paper, which contains an intense ULF peak in the spectra generated by the FAB. Evolution of the power spectrum of the ULF waves when approaching the shock significantly affects the energy dependence of the e-folding distance.
NASA Astrophysics Data System (ADS)
Hayes, Stephen Andrew
Film cooling is used to thermally protect combustor and turbine components by creating a layer of relatively cooler air than the freestream air to insulate the components from the hot freestream gases. This relatively cooler air is taken from upstream in the high-pressure compressor section at a loss to the engine efficiency, and therefore must be used as effectively as possible. The efficiency gained from increasing the turbine inlet temperature outweighs the loss due to extracting air from the compressor section if the cooling air is used effectively. A novel anti-vortex hole (AVH) geometry has been investigated experimentally through a transient infrared thermography technique to study the film cooling effectiveness and surface convective heat transfer coefficients for varying blowing ratio and freestream turbulence intensity. A major concern with the AVH will be how the secondary jets counteract the main counter rotating vortex (CRV) pair at increased freestream turbulence levels. This is the first experimental facility to study the effects of higher freestream turbulence levels on an AVH geometry. Furthermore, this is the first experimental investigation to report centerline film cooling effectiveness and the convective heat transfer coefficient that had not been reported in prior studies. The AVH geometry is designed with two secondary holes stemming from a main cooling hole; these holes attempt to diffuse the coolant jet and mitigate the vorticity produced by conventional straight holes. This geometry shows improved results at low turbulence intensities compared to conventional straight holes. Three freestream turbulence intensities of 1, 7.5, and 11.7% were investigated at blowing ratios of 0.5, 1.0, 1.5, and 2.0 to form a test matrix of twelve different test conditions. Results showed that the higher freestream turbulence conditions were beneficial in the performance of the AVH. Increasing the blowing ratio at all turbulence levels also improved film cooling effectiveness both span-averaged and on the centerline. The highest performing case was at a turbulence intensity of 7.5% and a blowing ratio of 2.0. The 11.7% cases outperformed the 1% cases, but it appears that at 11.7% cases that the higher freestream turbulence reduces the performance of the secondary holes compared to the 7.5% cases. Increasing the blowing ratio and turbulence intensity will result in a higher heat transfer coefficient, and thus must be taken into account for future designs.
NASA Technical Reports Server (NTRS)
Amano, R. S.
1985-01-01
The hybrid model of the Reynolds-stress turbulence closure is tested for the computation of the flows over a step and disk. Here it is attempted to improve the redistributive action of the turbulence energy among the Reynolds stresses. By evaluating the existing models for the pressure-strain correlation, better coefficients are obtained for the prediction of separating shear flows. Furthermore, the diffusion rate of the Reynolds stresses is reevaluated adopting several algebraic correlations for the triple-velocity products. The models of Cormack et al., Daly-Harlow, Hanjalic-Launder, and Shir were tested for the reattaching shear flows. It was generally observed that all these algebraic models give considerably low values of the triple-velocity products. This is attributed to the fact that none of the algebraic models can take the convective effect of the triple-velocity products into account in the separating shear flows, thus resulting in much lower diffusion rate than Reynolds stresses. In order to improve the evaluation of these quantities correction factors are introduced based on the comparison with some experimental data.
Transport and Lagrangian Statistics in Rotating Stratified Turbulence
NASA Astrophysics Data System (ADS)
Rosenberg, D. L.
2015-12-01
Transport plays a crucial role in geophysical flows, both in theatmosphere and in the ocean. Transport in such flows is ultimatelycontrolled by small-scale turbulence, although the large scales arein geostrophic balance between pressure gradient, gravity and Coriolisforces. As a result of the seemingly random nature of the flow, singleparticles are dispersed by the flow and on time scales significantlylonger than the eddy turn-over time, they undergo a diffusive motionwhose diffusion coefficient is the integral of the velocity correlationfunction. On intermediate time scales, in homogeneous, isotropic turbuilence(HIT) the separation between particle pairs has been argued to grow withtime according to the Richardson law: <(Δ x)2(t)> ~ t3, with aproportionality constant that depends on the initial particleseparation. The description of the phenomena associated withthe dispersion of single particles, or of particle pairs, ultimatelyrests on relatively simple statistical properties of the flowvelocity transporting the particles, in particular on its temporalcorrelation function. In this work, we investigate particle dispersionin the anisotropic case of rotating stratified turbulence examining whetherthe dependence on initial particle separation differs from HIT,particularly in the presence of an inverse cascade.
Microtearing turbulence: Magnetic braiding and disruption limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firpo, Marie-Christine
2015-12-15
A realistic reduced model involving a large poloidal spectrum of microtearing modes is used to probe the existence of some stochasticity of magnetic field lines. Stochasticity is shown to occur even for the low values of the magnetic perturbation δB/B devoted to magnetic turbulence that have been experimentally measured. Because the diffusion coefficient may strongly depend on the radial (or magnetic-flux) coordinate, being very low near some resonant surfaces, and because its evaluation implicitly makes a normal diffusion hypothesis, one turns to another indicator appropriate to diagnose the confinement: the mean residence time of magnetic field lines. Their computation inmore » the microturbulence frame points to the existence of a disruption limit, namely of a critical order of magnitude of δB/B above which stochasticity is no longer benign yet, leads to a macroscopic loss of confinement in some tens to hundred of electron toroidal excursions. Since the level of magnetic turbulence δB/B has been measured to grow with the plasma electron density, this would also be a density limit.« less
Second-Order Fermi Acceleration and Emission in Blazar Jets
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
Effect of screens in wide-angle diffusers
NASA Technical Reports Server (NTRS)
Schubauer, G B; Spangenberg, W G
1949-01-01
An experimental investigation at low airspeeds was made of the filling effect observed when a screen or similar resistance is placed across a diffuser. The filling effect is found to be real in that screens can prevent separation or restore separated flow in diffusers even of extreme divergence and to depend principally on screen location and pressure-drop coefficient of the screen. Results are given for three different diffusers of circular cross section with a variety of screen arrangements. Effects of single screens and multiple screens are shown. The mechanics of the filling effect is explained, and possible efficiencies are discussed. Results of arrangements of multiple screens in wide-angle diffusers are given to show a possible application to damping screens as used in wind tunnels to reduce turbulence. (author)
On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations
NASA Astrophysics Data System (ADS)
Keenan, Brett D.
Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. In effect, we demonstrate how the diffusive and radiative properties of plasmas with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful tool for the diagnosis of laboratory, astrophysical, and space plasmas.
Turbulent transport of alpha particles in tokamak plasmas
NASA Astrophysics Data System (ADS)
Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.
2017-03-01
We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.
Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport
NASA Astrophysics Data System (ADS)
Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.
2018-03-01
Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.
NASA Astrophysics Data System (ADS)
Schilling, Oleg; Mueschke, Nicholas J.
2017-12-01
Data from a 1152 ×760 ×1280 direct numerical simulation [N. J. Mueschke and O. Schilling, Phys. Fluids 21, 014106 (2009), 10.1063/1.3064120] of a Rayleigh-Taylor mixing layer modeled after a small-Atwood-number water-channel experiment is used to investigate the validity of gradient diffusion and similarity closures a priori. The budgets of the mean flow, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate transport equations across the mixing layer were previously analyzed [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] at different evolution times to identify the most important transport and mixing mechanisms. Here a methodology is introduced to systematically estimate model coefficients as a function of time in the closures of the dynamically significant terms in the transport equations by minimizing the L2 norm of the difference between the model and correlations constructed using the simulation data. It is shown that gradient-diffusion and similarity closures used for the turbulent kinetic energy K , turbulent kinetic energy dissipation rate ɛ , heavy-fluid mass fraction variance S , and heavy-fluid mass fraction variance dissipation rate χ equations capture the shape of the exact, unclosed profiles well over the nonlinear and turbulent evolution regimes. Using order-of-magnitude estimates [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] for the terms in the exact transport equations and their closure models, it is shown that several of the standard closures for the turbulent production and dissipation (destruction) must be modified to include Reynolds-number scalings appropriate for Rayleigh-Taylor flow at small to intermediate Reynolds numbers. The late-time, large Reynolds number coefficients are determined to be different from those used in shear flow applications and largely adopted in two-equation Reynolds-averaged Navier-Stokes (RANS) models of Rayleigh-Taylor turbulent mixing. In addition, it is shown that the predictions of the Boussinesq model for the Reynolds stress agree better with the data when additional buoyancy-related terms are included. It is shown that an unsteady RANS paradigm is needed to predict the transitional flow dynamics from early evolution times, analogous to the small Reynolds number modifications in RANS models of wall-bounded flows in which the production-to-dissipation ratio is far from equilibrium. Although the present study is specific to one particular flow and one set of initial conditions, the methodology could be applied to calibrations of other Rayleigh-Taylor flows with different initial conditions (which may give different results during the early-time, transitional flow stages, and perhaps asymptotic stage). The implications of these findings for developing high-fidelity eddy viscosity-based turbulent transport and mixing models of Rayleigh-Taylor turbulence are discussed.
NASA Astrophysics Data System (ADS)
Xu, Tongren; Bateni, S. M.; Neale, C. M. U.; Auligne, T.; Liu, Shaomin
2018-03-01
In different studies, land surface temperature (LST) observations have been assimilated into the variational data assimilation (VDA) approaches to estimate turbulent heat fluxes. The VDA methods yield accurate turbulent heat fluxes, but they need an adjoint model, which is difficult to derive and code. They also cannot directly calculate the uncertainty of their estimates. To overcome the abovementioned drawbacks, this study assimilates LST data from Geostationary Operational Environmental Satellite into the ensemble Kalman smoother (EnKS) data assimilation system to estimate turbulent heat fluxes. EnKS does not need to derive the adjoint term and directly generates statistical information on the accuracy of its predictions. It uses the heat diffusion equation to simulate LST. EnKS with the state augmentation approach finds the optimal values for the unknown parameters (i.e., evaporative fraction and neutral bulk heat transfer coefficient, CHN) by minimizing the misfit between LST observations from Geostationary Operational Environmental Satellite and LST estimations from the heat diffusion equation. The augmented EnKS scheme is tested over six Ameriflux sites with a wide range of hydrological and vegetative conditions. The results show that EnKS can predict not only the model parameters and turbulent heat fluxes but also their uncertainties over a variety of land surface conditions. Compared to the variational method, EnKS yields suboptimal turbulent heat fluxes. However, suboptimality of EnKS is small, and its results are comparable to those of the VDA method. Overall, EnKS is a feasible and reliable method for estimation of turbulent heat fluxes.
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
Passive scalars: Mixing, diffusion, and intermittency in helical and nonhelical rotating turbulence
NASA Astrophysics Data System (ADS)
Imazio, P. Rodriguez; Mininni, P. D.
2017-03-01
We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions, and effective transport coefficients of passive scalars in turbulent rotating helical and nonhelical flows. We show that helicity affects the inertial range scaling of the velocity and of the passive scalar when rotation is present, with a spectral law consistent with ˜k⊥-1.4 for the passive scalar variance spectrum. This scaling law is consistent with a phenomenological argument [P. Rodriguez Imazio and P. D. Mininni, Phys. Rev. E 83, 066309 (2011), 10.1103/PhysRevE.83.066309] for rotating nonhelical flows, which follows directly from Kolmogorov-Obukhov scaling and states that if energy follows a E (k ) ˜k-n law, then the passive scalar variance follows a law V (k ) ˜k-nθ with nθ=(5 -n ) /2 . With the second-order scaling exponent obtained from this law, and using the Kraichnan model, we obtain anomalous scaling exponents for the passive scalar that are in good agreement with the numerical results. Multifractal intermittency models are also considered. Intermittency of the passive scalar is stronger than in the nonhelical rotating case, a result that is also confirmed by stronger non-Gaussian tails in the probability density functions of field increments. Finally, Fick's law is used to compute the effective diffusion coefficients in the directions parallel and perpendicular to rotation. Calculations indicate that horizontal diffusion decreases in the presence of helicity in rotating flows, while vertical diffusion increases. A simple mean field argument explains this behavior in terms of the amplitude of velocity fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, A.; Merci, B.; Roekaerts, D.
2007-10-15
Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixingmore » fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI. (author)« less
Toward validation of a 3-D plasma turbulence model using LAPD data
NASA Astrophysics Data System (ADS)
Umansky, M. V.
2010-11-01
Detailed results from a 3-D fluid simulation of plasma turbulence are compared with experimental data from the Large Plasma Device (LAPD) at UCLA. LAPD is a magnetized plasma column experiment with a high repetition rate, allowing detailed time-and-space resolved probe data on plasma turbulence and transport. The large amount of data allows a thorough comparison with the simulation results. For the observed drift-type modes, LAPD plasmas are strongly collisional (φ*/νei1 and λei/L1), providing justification for a fluid treatment. Accordingly, the model is based on reduced Braginskii equations and is implemented in the framework of the BOUT code, originally developed at LLNL for tokamak edge plasmas. Analysis of linear plasma instabilities shows that resistive drift modes, rotation-driven interchange modes, and Kelvin-Helmholtz modes can all be important in LAPD and have comparable frequencies and growth rates. In nonlinear simulations using measured LAPD density profiles, evolution of instabilities and self-generated zonal flows results in a saturated turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good agreement, in particular in the frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. Also, consistent with the experiment, the simulations indicate a great deal of similarity between plasma turbulence in LAPD and some features of tokamak edge turbulence. Similar to tokamak edge plasmas, density transport appears to be predominantly carried by large particle-flux events. Despite the intermittent character of the calculated turbulence, as indicated by fluctuation statistics, the turbulent particle flux is consistent with a diffusive model with diffusion coefficient close to the Bohm value.
Model development and verification for mass transport to Escherichia coli cells in a turbulent flow
NASA Astrophysics Data System (ADS)
Hondzo, Miki; Al-Homoud, Amer
2007-08-01
Theoretical studies imply that fluid motion does not significantly increase the molecular diffusive mass flux toward and away from microscopic organisms. This study presents experimental and theoretical evidence that small-scale turbulence modulates enhanced mass transport to Escherichia coli cells in a turbulent flow. Using the technique of inner region and outer region expansions, a model for dissolved oxygen and glucose uptake by E. coli was developed. The mass transport to the E. coli was modeled by the Sherwood (Sh)-Péclet (Pe) number relationship with redefined characteristic length and velocity scales. The model Sh = (1 + Pe1/2 + Pe) agreed with the laboratory measurements well. The Péclet number that quantifies the role and function of small-scale turbulence on E. coli metabolism is defined by Pe = (?) where Ezz is the root mean square of fluid extension in the direction of local vorticity, ηK is the Kolmogorov length scale, Lc is the length scale of E. coli, and D is the molecular diffusion coefficient. An alternative formulation for the redefined Pe is given by Pe = (?) where ? = 0.5(ɛν)1/4 is the Kolmogorov velocity averaged over the Kolmogorov length scale, ɛ is dissipation of turbulent kinetic energy, and ν is the kinematic viscosity of fluid. The dissipation of turbulent kinetic energy was estimated directly from measured velocity gradients and was within the reported range in engineered and natural aquatic ecosytems. The specific growth of E. coli was up to 5 times larger in a turbulent flow in comparison to the still water controls. Dissolved oxygen and glucose uptake were enhanced with increased ɛ in the turbulent flow.
1991-07-01
wall compared with a smooth wall. layer is due to the molecular diffusivity and to the increase in heat flux is less than the in- the transport by...models in use an Reyon-stmss- is now much , and cosiderable acityw recenly equit (R!) mdek also know ma lela 1 di1w1sed towass tesa; ad dewioplag low...flow relation is used to take into account the dependence of variables are hypothesized for the different zones. the molecular viscosity coefficient
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.
NASA Astrophysics Data System (ADS)
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.
2017-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF demonstrated that CF is improved if SHOC is provided with correct variances of total water and MSE. Consequently, SHOC was modified to include two new prognostic equations for variances of total water and MSE, and coupled with the Chikira-Sugiyama parameterization of deep convection to include effects of detrainment on the prognostic variances.
NASA Astrophysics Data System (ADS)
Simard, Corinne; Charbonneau, Paul; Dubé, Caroline
2016-10-01
We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos and Charbonneau (2014). The turbulent electromotive force (emf) operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. (2011), we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed α -tensor shows good agreement with that obtained by Racine et al. (2011), who did not include derivatives of the mean-field in their fit, as well as with the α -tensor extracted by Augustson et al. (2015) from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor β is positive definite and reaches values of 5.0 ×107 m2 s-1 in the middle of the convecting fluid layers. The spatial variations of both αϕϕ and βϕϕ component are well reproduced by expressions obtained under the Second Order Correlation Approximation, with a good matching of amplitude requiring a turbulent correlation time about five times smaller than the estimated turnover time of the small-scale turbulent flow. By segmenting the simulation data into epochs of magnetic cycle minima and maxima, we also measure α - and β -quenching. We find the magnetic quenching of the α -effect to be driven primarily by a reduction of the small-scale flow's kinetic helicity, with variations of the current helicity playing a lesser role in most locations in the simulation domain. Our measurements of turbulent diffusivity quenching are restricted to the βϕϕ component, but indicate a weaker quenching, by a factor of ≃ 1.36, than of the α -effect, which in our simulation drops by a factor of three between the minimum and maximum phases of the magnetic cycle.
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Belochitski, A.; Moorthi, S.; Bogenschutz, P.; Pincus, R.
2015-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC code was adopted for a global model environment from its origins in a cloud resolving model, and incorporated into NCEP GFS. SHOC was first tested in a non-interactive mode, a configuration where SHOC receives inputs from the host model, but its outputs are not returned to the GFS. In this configuration: a) SGS TKE values produced by GFS SHOC are consistent with those produced by SHOC in a CRM, b) SGS TKE in GFS SHOC exhibits a well defined diurnal cycle, c) there's enhanced boundary layer turbulence in the subtropical stratocumulus and tropical transition-to-cumulus areas d) buoyancy flux diagnosed from the assumed PDF is consistent with independently calculated Brunt-Vaisala frequency in identifying stable and unstable regions.Next, SHOC was coupled to GFS, namely turbulent diffusion coefficients computed by SHOC are now used in place of those currently produced by the GFS boundary layer and shallow convection schemes (Han and Pan, 2011), as well as condensation and cloud fraction diagnosed from the SGS PDF replace those calculated in the current large-scale cloudines scheme (Zhao and Carr, 1997). Ongoing activities consist of debugging the fully coupled GFS/SHOC.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Tong, Li; Greenberg, Paul S.
1996-01-01
This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar flames and turbulent jet flames. Predicted soot volume fraction results also agree with our data for 1-g and 0-g laminar jet names as well as 1-g turbulent jet flames.
NASA Astrophysics Data System (ADS)
Laitinen, Timo; Effenberger, Frederic; Kopp, Andreas; Dalla, Silvia
2018-02-01
Insights into the processes of Solar Energetic Particle (SEP) propagation are essential for understanding how solar eruptions affect the radiation environment of near-Earth space. SEP propagation is influenced by turbulent magnetic fields in the solar wind, resulting in stochastic transport of the particles from their acceleration site to Earth. While the conventional approach for SEP modelling focuses mainly on the transport of particles along the mean Parker spiral magnetic field, multi-spacecraft observations suggest that the cross-field propagation shapes the SEP fluxes at Earth strongly. However, adding cross-field transport of SEPs as spatial diffusion has been shown to be insufficient in modelling the SEP events without use of unrealistically large cross-field diffusion coefficients. Recently, Laitinen et al. [ApJL 773 (2013b); A&A 591 (2016)] demonstrated that the early-time propagation of energetic particles across the mean field direction in turbulent fields is not diffusive, with the particles propagating along meandering field lines. This early-time transport mode results in fast access of the particles across the mean field direction, in agreement with the SEP observations. In this work, we study the propagation of SEPs within the new transport paradigm, and demonstrate the significance of turbulence strength on the evolution of the SEP radiation environment near Earth. We calculate the transport parameters consistently using a turbulence transport model, parametrised by the SEP parallel scattering mean free path at 1 AU, λ∥*, and show that the parallel and cross-field transport are connected, with conditions resulting in slow parallel transport corresponding to wider events. We find a scaling σφ,max∝(1/λ∥*)1/4 for the Gaussian fitting of the longitudinal distribution of maximum intensities. The longitudes with highest intensities are shifted towards the west for strong scattering conditions. Our results emphasise the importance of understanding both the SEP transport and the interplanetary turbulence conditions for modelling and predicting the SEP radiation environment at Earth.
NASA Technical Reports Server (NTRS)
Sanderson, T. R.; Heras, A. M.; Marsden, R. G.; Winterhalter, D.
1992-01-01
We present results of a survey of the relation between Forbush decreases, magnetic clouds, and interplanetary shocks during the period August 1978 to November 1982. We have used data from the ISEE-3 study of bidirectional ions associated with magnetic structures or clouds of Marsden et al. (1987), and ground-based observations of Forbush decreases from several neutron monitors. We use the two-step model of a Forbush decrease. We assume that the first step is due to the passage of the postshock turbulent region, and that the second is due to the passage of the magnetic cloud or structure which usually follows the postshock turbulent region. To determine the effectiveness of the postshock turbulent region in causing a Forbush decrease, we have evaluated the radial diffusion coefficient of the postshock turbulent region for the eight largest events during the above period using observations of the magnetic field. We have made a quantitative assessment of the relative importance of the postshock turbulent region in the formation of the Forbush decrease, concluding that the postshock turbulent region alone is not sufficient to cause a Forbush decrease.
A graphics-card implementation of Monte-Carlo simulations for cosmic-ray transport
NASA Astrophysics Data System (ADS)
Tautz, R. C.
2016-05-01
A graphics card implementation of a test-particle simulation code is presented that is based on the CUDA extension of the C/C++ programming language. The original CPU version has been developed for the calculation of cosmic-ray diffusion coefficients in artificial Kolmogorov-type turbulence. In the new implementation, the magnetic turbulence generation, which is the most time-consuming part, is separated from the particle transport and is performed on a graphics card. In this article, the modification of the basic approach of integrating test particle trajectories to employ the SIMD (single instruction, multiple data) model is presented and verified. The efficiency of the new code is tested and several language-specific accelerating factors are discussed. For the example of isotropic magnetostatic turbulence, sample results are shown and a comparison to the results of the CPU implementation is performed.
Applications of Laser Scattering Probes to Turbulent Diffusion Flames
1983-11-01
APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame
Simulations of the stratocumulus-topped boundary layer with a third-order closure model
NASA Technical Reports Server (NTRS)
Moeng, C. H.; Randall, D. A.
1984-01-01
A third order closure model is proposed by Andre et al. (1982), in which the time rate of change terms, the relaxation and rapid effects for the pressure related terms, and the clipping approximation are included along with the quasi-normal closure, to study turbulence in a cloudy layer which is cooled radiatively from above. A spurious oscillation which is strongest near the inversion occurs. An analysis of the problem shows that the oscillation arises from the mean gradient and buoyancy terms of the triple moment equations; these terms are largest near the cloud top. The oscillation is physical, rather than computational. In nature the oscillation is effectively damped, by a mechanism which apparently is not included in our model. In the stably stratified layer just above the mixed layer top, turbulence can excite gravity waves, whose energy is radiated away. Because the closure assumption for the pressure terms does not take into account the transport of wave energy, the model generates spurious oscillations. Damping of the oscillations is possible by introducing diffusion terms into the triple moment equations. With a large enough choice for the diffusion coefficient, the oscillation is effectively eliminated. The results are quite sensitive to the ad hoc eddy coefficient.
Wake orientation and its influence on the performance of diffusers with inlet distortion
NASA Astrophysics Data System (ADS)
Coffman, Jesse M.
Distortion at the inlet to diffusers is very common in internal flow applications. Inlet velocity distortion influences the pressure recovery and flow regimes of diffusers. This work introduced a centerline wake at the square inlet of a plane wall diffuser in two orthogonal orientations to investigate its influence on the diffuser performance. Two different wakes were generated. One was from a mesh strip which produced a velocity deficit with low turbulence intensity and two shear layers. The other wake generator was a D-shaped cylinder which produced a wake with high turbulence intensity and large length scales. These inlet conditions were generated for a diffuser with a diffusion angle of 3° and 6°. A pair of RANS simulations were used to investigate the influence of the orthogonal inlet orientations on the solution. The inlet conditions were taken from the inlet velocity field measured for the mesh strip. The flow development and exit conditions showed some similarities and some differences with the experimental results. The performance of a diffuser is typically measured through the static pressure recovery coefficient and the total pressure losses. The definition of these metrics commonly found in the literature were insufficient to discern differences between the wake orientations. New metrics were derived using the momentum flux profile parameter which related the static pressure recovery, the total pressure losses, and the velocity uniformity at the inlet and exit of the diffuser. These metrics revealed a trade-off between the total pressure losses and the uniformity of the velocity field.
Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy
NASA Astrophysics Data System (ADS)
Lebiga, O.; Santos-Lima, R.; Yan, H.
2018-05-01
The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.
Diapycnal Transport and Pattern Formation in Double-Diffusive Convection
2015-12-01
of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual turbulent/double-diffusive systems and...is presented to remedy this dearth of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual...8 2. Double-Diffusion: The Constant Flux Ratio Model ..........................9 3. The Combined Effects of
Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode
NASA Astrophysics Data System (ADS)
Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.
1994-10-01
The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.
Comparison of analytical and experimental performance of a wind-tunnel diffuser section
NASA Technical Reports Server (NTRS)
Shyne, R. J.; Moore, R. D.; Boldman, D. R.
1986-01-01
Wind tunnel diffuser performance is evaluated by comparing experimental data with analytical results predicted by an one-dimensional integration procedure with skin friction coefficient, a two-dimensional interactive boundary layer procedure for analyzing conical diffusers, and a two-dimensional, integral, compressible laminar and turbulent boundary layer code. Pressure, temperature, and velocity data for a 3.25 deg equivalent cone half-angle diffuser (37.3 in., 94.742 cm outlet diameter) was obtained from the one-tenth scale Altitude Wind Tunnel modeling program at the NASA Lewis Research Center. The comparison is performed at Mach numbers of 0.162 (Re = 3.097x19(6)), 0.326 (Re = 6.2737x19(6)), and 0.363 (Re = 7.0129x10(6)). The Reynolds numbers are all based on an inlet diffuser diameter of 32.4 in., 82.296 cm, and reasonable quantitative agreement was obtained between the experimental data and computational codes.
On turbulent diffusion of magnetic fields and the loss of magnetic flux from stars
NASA Technical Reports Server (NTRS)
Vainshtein, Samuel I.; Rosner, Robert
1991-01-01
The turbulent diffusion of magnetic fields in astrophysical objects, and the processes leading to magnetic field flux loss from such objects are discussed with attention to the suppression of turbulent diffusion by back-reaction of magnetic fields on small spatial scales, and on the constraint imposed on magnetic flux loss by flux-freezing within stars. Turbulent magnetic diffusion can be suppressed even for very weak large-scale magnetic fields, so that 'standard' turbulent diffusion is incapable of significant magnetic flux destruction within a star. Finally, magnetic flux loss via winds is shown to be generally ineffective, no matter what the value of the effective magnetic Reynolds number is.
Implementation of an anomalous radial transport model for continuum kinetic edge codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2007-11-01
Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.
Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames
NASA Technical Reports Server (NTRS)
Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.
2002-01-01
This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.
Analogies Between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers
NASA Technical Reports Server (NTRS)
Tong, P.; Ackerson, B. J.
1999-01-01
A new set of coarse-grained equations of motion is proposed to describe concentration and velocity fluctuations in a dilute sedimenting suspension of non-Brownian particles. With these equations, colloidal sedimentation is found to be analogous to turbulent convection at high Prandtl numbers. Using Kraichnan's mixing-length theory, we obtain scaling relations for the diffusive dissipation length delta(sub theta), the velocity variance delta u, and the concentration variance delta phi. The obtained scaling laws over varying particle radius alpha and volume fraction phi(sub ) are in excellent agreement with the recent experiment by Segre, Herbolzheimer, and Chaikin. The analogy between colloidal sedimentation and turbulent convection gives a simple interpretation for the existence of a velocity cut-off length, which prevents hydrodynamic dispersion coefficients from being divergent. It also provides a coherent framework for the study of sedimentation dynamics in different colloidal systems.
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing
NASA Astrophysics Data System (ADS)
Cook, Andrew W.
2007-05-01
An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
NASA Technical Reports Server (NTRS)
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
NASA Astrophysics Data System (ADS)
Falceta-Gonçalves, D.; Lazarian, A.; Houde, M.
2010-04-01
Theoretical and observational studies on the turbulence of the interstellar medium developed fast in the past decades. The theory of supersonic magnetized turbulence, as well as the understanding of the projection effects of observed quantities, is still in progress. In this work, we explore the characterization of the turbulent cascade and its damping from observational spectral line profiles. We address the difference of ion and neutral velocities by clarifying the nature of the turbulence damping in the partially ionized. We provide theoretical arguments in favor of the explanation of the larger Doppler broadening of lines arising from neutral species compared to ions as arising from the turbulence damping of ions at larger scales. Also, we compute a number of MHD numerical simulations for different turbulent regimes and explicit turbulent damping, and compare both the three-dimensional distributions of velocity and the synthetic line profile distributions. From the numerical simulations, we place constraints on the precision with which one can measure the three-dimensional dispersion depending on the turbulence sonic Mach number. We show that no universal correspondence between the three-dimensional velocity dispersions measured in the turbulent volume and minima of the two-dimensional velocity dispersions available through observations exist. For instance, for subsonic turbulence the correspondence is poor at scales much smaller than the turbulence injection scale, while for supersonic turbulence the correspondence is poor for the scales comparable with the injection scale. We provide a physical explanation of the existence of such a two-dimensional to three-dimensional correspondence and discuss the uncertainties in evaluating the damping scale of ions that can be obtained from observations. However, we show that the statistics of velocity dispersion from observed line profiles can provide the spectral index and the energy transfer rate of turbulence. Also, by comparing two similar simulations with different viscous coefficients, it was possible to constrain the turbulent cut-off scale. This may especially prove useful since it is believed that ambipolar diffusion may be one of the dominant dissipative mechanisms in star-forming regions. In this case, the determination of the ambipolar diffusion scale may be used as a complementary method for the determination of magnetic field intensity in collapsing cores. We discuss the implications of our findings in terms of a new approach to magnetic field measurement proposed by Li & Houde.
On the X-ray temperature of hot gas in diffuse nebulae
NASA Astrophysics Data System (ADS)
Toalá, J. A.; Arthur, S. J.
2018-05-01
X-ray emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3]× 106 K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae (PNe), Wolf-Rayet nebulae (WR) and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.
On the X-ray temperature of hot gas in diffuse nebulae
NASA Astrophysics Data System (ADS)
Toalá, J. A.; Arthur, S. J.
2018-07-01
X-ray-emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3] × 106K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae, Wolf-Rayet (WR) nebulae, and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.
Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere
NASA Technical Reports Server (NTRS)
Bjarnason, Gudmundur G.; Solomon, Susan; Garcia, Rolando R.
1987-01-01
Possible dynamical influences on the diurnal behavior of ozone are investigated. A time dependent one-dimensional photochemical model is developed for this purpose; all model calculations are made at 70 deg N during summer. It is shown that the vertical diffusion can vary as much as 1 order of magnitude within a day as a result of large changes in the zonal wind induced by atmospheric thermal tides. It is found that by introducing a dissipation time scale for turbulence produced by breaking gravity waves, the agreement with Poker Flat echo data is improved. Comparisons of results from photochemical model calculations, where the vertical diffusion is a function of height only, with those in which the vertical diffusion coefficient is changing in time show large differences in the diurnal behavior of ozone between 70 and 90 km. By including the dynamical effect, much better agreement with the Solar Mesosphere Explorers data is obtained. The results are, however, sensitive to the background zonally averaged wind. The influence of including time-varying vertical diffusion coefficient on the OH densities is also large, especially between 80 and 90 km. This suggests that dynamical effects are important in determining the diurnal behavior of the airglow emission from the Meinel bands.
Electron particle transport and turbulence studies in the T-10 tokamak
NASA Astrophysics Data System (ADS)
Vershkov, V. A.; Borisov, M. A.; Subbotin, G. F.; Shelukhin, D. A.; Dnestrovskii, Yu. N.; Danilov, A. V.; Cherkasov, S. V.; Gorbunov, E. P.; Sergeev, D. S.; Grashin, S. A.; Krylov, S. V.; Kuleshin, E. O.; Myalton, T. B.; Skosyrev, Yu. V.; Chistiakov, V. V.
2013-08-01
The goals of this paper are to compare the results of electron particle transport measurements in ohmic (OH) plasmas by means of a small perturbation technique, high-level gas puff and gas switch off, investigate the phenomenon of ‘density pump out’ during electron cyclotron resonance heating (ECRH) and to correlate density behaviour with turbulence. Two approaches for plasma particle transport studies were compared: the low perturbation technique of periodic puff (δn/ne = 0.3%) and strong density variations (δn/ne < 50%), including density ramp-up by gas puff and ramp-down with gas switch off. The model with constant in time diffusion coefficients and pinch velocities could describe the core density perturbations but failed at the edge. In the case of strong puff three stages were distinguished. Degraded energy confinement and, respectively, low turbulence frequencies were observed during density ramp-up and ramp-down, while enhanced confinement and higher turbulence frequencies were typical for the intermediate stage. Density profile variation during this intermediate phase could be described in the framework of the transport model with constant in time coefficients. The application of ECRH at the density ramp-up phase provided the possibility of postponing the ‘density pump out’. The increase in the low-frequency modes in turbulence spectra was observed at the ‘density pump out’ phase during central ECRH. Although the high- and low-frequency bands of turbulence spectra behaved as trapped electron mode and ion temperature gradient, respectively, they both rotated at the same angular velocity as a rigid body together with magnetohydrodynamic mode m/n = 2/1 and [E × B] plasma rotation.
NASA Astrophysics Data System (ADS)
Zimbardo, G.; Pommois, P.; Veltri, P.
2003-09-01
The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.
Transport of Internetwork Magnetic Flux Elements in the Solar Photosphere
NASA Astrophysics Data System (ADS)
Agrawal, Piyush; Rast, Mark P.; Gošić, Milan; Bellot Rubio, Luis R.; Rempel, Matthias
2018-02-01
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics.
The generation and dissipation of solar and galactic magnetic fields.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1973-01-01
Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
NASA Astrophysics Data System (ADS)
Blackman, Eric G.; Subramanian, Kandaswamy
2013-02-01
The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.
Drag reduction in the turbulent Kolmogorov flow.
Boffetta, Guido; Celani, Antonio; Mazzino, Andrea
2005-03-01
We investigate the phenomenon of drag reduction in a viscoelastic fluid model of dilute polymer solutions. By means of direct numerical simulations of the three-dimensional turbulent Kolmogorov flow we show that drag reduction takes place above a critical Reynolds number Re(c). An explicit expression for the dependence of Re(c) on polymer elasticity and diffusivity is derived. The values of the drag coefficient obtained for different fluid parameters collapse onto a universal curve when plotted as a function of the rescaled Reynolds number Re/ Re(c). The analysis of the momentum budget allows us to gain some insight on the physics of drag reduction, and suggests the existence of a Re-independent value of the drag cofficient--lower than the Newtonian one--for large Reynolds numbers.
A variable turbulent Prandtl and Schmidt number model study for scramjet applications
NASA Astrophysics Data System (ADS)
Keistler, Patrick
A turbulence model that allows for the calculation of the variable turbulent Prandtl (Prt) and Schmidt (Sct) numbers as part of the solution is presented. The model also accounts for the interactions between turbulence and chemistry by modeling the corresponding terms. Four equations are added to the baseline k-zeta turbulence model: two equations for enthalpy variance and its dissipation rate to calculate the turbulent diffusivity, and two equations for the concentrations variance and its dissipation rate to calculate the turbulent diffusion coefficient. The underlying turbulence model already accounts for compressibility effects. The variable Prt /Sct turbulence model is validated and tuned by simulating a wide variety of experiments. Included in the experiments are two-dimensional, axisymmetric, and three-dimensional mixing and combustion cases. The combustion cases involved either hydrogen and air, or hydrogen, ethylene, and air. Two chemical kinetic models are employed for each of these situations. For the hydrogen and air cases, a seven species/seven reaction model where the reaction rates are temperature dependent and a nine species/nineteen reaction model where the reaction rates are dependent on both pressure and temperature are used. For the cases involving ethylene, a 15 species/44 reaction reduced model that is both pressure and temperature dependent is used, along with a 22 species/18 global reaction reduced model that makes use of the quasi-steady-state approximation. In general, fair to good agreement is indicated for all simulated experiments. The turbulence/chemistry interaction terms are found to have a significant impact on flame location for the two-dimensional combustion case, with excellent experimental agreement when the terms are included. In most cases, the hydrogen chemical mechanisms behave nearly identically, but for one case, the pressure dependent model would not auto-ignite at the same conditions as the experiment and the other chemical model. The model was artificially ignited in that case. For the cases involving ethylene combustion, the chemical model has a profound impact on the flame size, shape, and ignition location. However, without quantitative experimental data, it is difficult to determine which one is more suitable for this particular application.
PIV study of flow through porous structure using refractive index matching
NASA Astrophysics Data System (ADS)
Häfeli, Richard; Altheimer, Marco; Butscher, Denis; Rudolf von Rohr, Philipp
2014-05-01
An aqueous solution of sodium iodide and zinc iodide is proposed as a fluid that matches the refractive index of a solid manufactured by rapid prototyping. This enabled optical measurements in single-phase flow through porous structures. Experiments were also done with an organic index-matching fluid (anisole) in porous structures of different dimensions. To compare experiments with different viscosities and dimensions, we employed Reynolds similarity to deduce the scaling laws. One of the target quantities of our investigation was the dissipation rate of turbulent kinetic energy. Different models for the dissipation rate estimation were evaluated by comparing isotropy ratios. As in many other studies also, our experiments were not capable of resolving the velocity field down to the Kolmogorov length scale, and therefore, the dissipation rate has to be considered as underestimated. This is visible in experiments of different relative resolutions. However, being near the Kolmogorov scale allows estimating a reproducible, yet underestimated spatial distribution of dissipation rate inside the porous structure. Based on these results, the model was used to estimate the turbulent diffusivity. Comparing it to the dispersion coefficient obtained in the same porous structure, we conclude that even at the turbulent diffusivity makes up only a small part of mass transfer in axial direction. The main part is therefore attributed to Taylor dispersion.
Seasonal and Regional Variability in North Pacific Upper-Ocean Turbulence
NASA Astrophysics Data System (ADS)
Najjar, R.; Creedon, R.; Cronin, M. F.
2016-02-01
Turbulent diffusion at marine mixed layer base (MLB) plays a fundamental role in the transport of energy between the upper and abyssal ocean. Recent investigations of North Pacific mooring data at Ocean Climate Stations (OCS) Papa (50.1N,144.9W) and KEO (32.3N,144.6E) suggest seasonal and regional variability in thermal diffusivity (κT). In this investigation, it is hypothesized that these observed differences in κT are directly associated with synoptic variability in net surface heat flux (Q0), surface wind stress (τ), mixed layer depth (h), and density stratification at MLB (∂zσ|-h). To test this hypothesis, daily-averaged time series of κT are regressed against those of Q0, τ, h, and ∂zσ|-h at both Papa and KEO over a six year time period (2007-2013). Seasonality of each time series is removed before regression to capture synoptic variability of each variable. Preliminary results of the regression analysis suggest statistically significant correlations between κT and all forcing parameters at both mooring sites. These correlations have well-determined orders of magnitude and signs consistent with the hypothesis. As a result, differences in κT between Papa and KEO may be recast in terms of differences in their correlation coefficients. In order to continue investigation of these parameters and their effects on mean seasonal differences between the two regions, these results will be compared with turbulence predicted by the K-Profile Parameterization ocean turbulence model.
NASA Astrophysics Data System (ADS)
Hajaali, Arthur
2017-04-01
This project has for ambition to analyse and further the general understanding on cross-flows interactions and behaviours at the mouth of a mini/small tidal hydropower plant and a river. Although, the study of these interactions could benefit and find applications in multiple hydraulic problems, this project concentrates its focus on the influence of the transposed turbulences generated by the cross-flow into the diffuser. These eddies affect the overall performance and efficiency of the bulb-turbines by minimizing the pressure recovery. In the past, these turbulences were accounted with the implementation of the Bordas-Carnot losses coefficient for the design of tidal project using bulb-turbines. The bulb turbine technology has been the interest and subject of many scientific papers but most of them concentrate and narrow their focus on the design of the rotor, blades and combiner. This project wants to focus the design of the diffuser by performing an analysis on the development of eddies and the turbulences using computational fluid dynamic (CFD) models. The Severn estuary is endowed with one of the highest tidal range around the hemisphere. The first part of the research requires to select case studies sites such as Briton-Ferry to virtually design mini-tidal plant in 0-Dimentional (D), 2D and 3D modelling to study development and behaviour of turbulences within the diffuser. The far-field model represents the marine environment prior and after the structure where bulb turbines are located. The near-field modelling has allowed researcher to study at much higher resolution and precision the design of a single turbine feeding model with predetermined and fix boundary condition. For this reason, a near-field model is required to study in depth the behaviour and evolution of the turbulence with the diffuser. One of the main challenge and advancement of this research is to find a methodology and system to link the far-field and near-field modelling to produce an interacting and dynamic model. The first model of the tidal plant in 0D is near completion and will provide a rough idea of the energy potential of the Briton-Ferry site based on the operation type of the turbine. Simultaneously, the 2D modelling of the area was initiated a week ago using TELEMAC-2D and Bluekenue as pre/post-processor. The hope for the conference would be to present result on the turbulence occurring at the mouth of the river and the structure in the far-field model and to have started the near-field model on Hydro3D with some idea on ways to connect it adequately to the far-field model. Ulterior to the conference next September, the ongoing collaboration with GE will benefit the validation of the computational model as the second part of this research will consist of building a bulb turbine and the diffuser with their facilities and laboratory in Grenoble (France). Once the collection of the necessary experimental observations on the turbulence within the diffuser will be complete, the model will be refined. Finally, it will be attempt to improve the design of the diffuser.
NASA Astrophysics Data System (ADS)
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
NASA Astrophysics Data System (ADS)
Kuzmina, N. P.
2000-01-01
CTD-data obtained in the Azores Frontal Zone using a towed undulating vehicle are analyzed to study the relationship between characteristics of intrusions and mean parameters of the thermohaline field. A self-similar dependence between intrusion intensity and hydrological parameters is obtained. The most well-founded interpretation of the empirical dependence is as follows: (a) the main source supporting intrusive layering is the salt finger convection; (b) the abrupt decrease of intrusion intensity with the reduction of geostrophic Richardson number obtained from the analysis is explained by the beginning of turbulence when salt fingers do not work any longer, so the "driving force" for intrusive motion disappears. These results are consistent with the conclusions of the paper [Kuzmina N.P., Rodionov V.B., 1992. About the influence of baroclinicity upon generation of the thermohaline intrusions in the oceanic frontal zones. Izvestiya Akad. Nauk SSSR, Atmosperic and Oceanic Physics 28 (10-11), 1077-1086]. These conclusions imply that there are three main mechanisms of intrusive layering at oceanic fronts, namely the 2D baroclinic instability of geostrophic flow, the vertical shear instability and the thermohaline instability where the driving source of intrusive motion is double diffusive convection. The baroclinic and thermohaline instabilities can generate intrusions of large vertical scale, while vertical shear instability usually gives rise to thin turbulent layers. Turbulence in these thin layers can prevent salt finger convection and thus destroy the energy source of the intrusive motion conditioned by thermoclinicity. Therefore, the baroclinicity plays two parts in the processes of the intrusive layering: (1) it prevents double-diffusion interleaving by means of turbulence, and (2) it generates intrusions due to the 2D baroclinic instability of geostrophic current. Using features of thermohaline interleaving as a specific tracer of turbulent mixing, we have estimated turbulent mixing coefficient as k t˜ Ri-0.8 ( Ri>1), where Ri is the geostrophic Richardson number. Application of the proposed approach to other frontal zones is discussed.
Heat transfer in turbulent magneto-fluid-mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andelman, M.P.
1975-12-01
The ability to predict heat transfer in Magneto-Fluid-Mechanic flow is of importance in light of the development of MHD generators and the proposed development of thermonuclear reactors. In both cases heat transfer from (or to) a conducting fluid in the presence of a magnetic field plays an important part in the overall economics of the system. A semi-empirical analytical method is given for obtaining heat transfer coefficients in turbulent liquid metal pipe flow in the presence of a magnetic field aligned to the flow. The analysis was based on the Lykoudis turbulent transport model with the influence of a longitudinalmore » magnetic field included. The results are shown to be in agreement with available experimental values. Experimental velocity profiles in mercury for pipe flow in a transverse magnetic field were made at a Reynolds number of 315,000; for Hartmann numbers of 0, 92, 184, 369, and 1198; and at orientations of 0 degrees, 45 degrees, and 90 degrees from the magnetic field. These results provide a basis for the determination of the effect of a transverse magnetic field on turbulent diffusivities.« less
Particle deposition due to turbulent diffusion in the upper respiratory system
NASA Technical Reports Server (NTRS)
Hamill, P.
1979-01-01
Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.
THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. I. THE TURBULENT STIRRING RECIPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzumi, Satoshi; Ormel, Chris W., E-mail: okuzumi@geo.titech.ac.jp
2013-07-01
Turbulence in protoplanetary disks affects planet formation in many ways. While small dust particles are mainly affected by the aerodynamical coupling with turbulent gas velocity fields, planetesimals and larger bodies are more affected by gravitational interaction with gas density fluctuations. For the latter process, a number of numerical simulations have been performed in recent years, but a fully parameter-independent understanding has not been yet established. In this study, we present simple scaling relations for the planetesimal stirring rate in turbulence driven by magnetorotational instability (MRI), taking into account the stabilization of MRI due to ohmic resistivity. We begin with order-of-magnitudemore » estimates of the turbulence-induced gravitational force acting on solid bodies and associated diffusion coefficients for their orbital elements. We then test the predicted scaling relations using the results of recent ohmic-resistive MHD simulations by Gressel et al. We find that these relations successfully explain the simulation results if we properly fix order-of-unity uncertainties within the estimates. We also update the saturation predictor for the density fluctuation amplitude in MRI-driven turbulence originally proposed by Okuzumi and Hirose. Combination of the scaling relations and saturation predictor allows us to know how the turbulent stirring rate of planetesimals depends on disk parameters such as the gas column density, distance from the central star, vertical resistivity distribution, and net vertical magnetic flux. In Paper II, we apply our recipe to planetesimal accretion to discuss its viability in turbulent disks.« less
Computational Investigation of Combustion Dynamics in a Lean-Direct Injection Gas Turbine Combustor
2012-11-01
variable vector which includes turbulence kinetic energy and specific dissipation, k and w; In the viscous flux, D is the molecular diffusion coefficient...for the liquid particle. This equation assumes the uniform temperature inside the liquid particle. The source term consist of the net sensible ...Spray Characteristics on Diesel Engine Combustion and Emission, SAE 980131, 1998 24 Fu, Y., “Aerodynamics and Combustion of Axial Swirlers,” Ph . D. dissertation from the University of Cincinnati, 2008.
NASA Astrophysics Data System (ADS)
Guo, Yi-Qing; Yuan, Qiang
2018-03-01
Recent direct measurements of Galactic cosmic ray spectra by balloon/space-borne detectors reveal spectral hardenings of all major nucleus species at rigidities of a few hundred GV. The all-sky diffuse γ -ray emissions measured by the Fermi Large Area Telescope also show spatial variations of the intensities and spectral indices of cosmic rays. These new observations challenge the traditional simple acceleration and/or propagation scenario of Galactic cosmic rays. In this work, we propose a spatially dependent diffusion scenario to explain all these phenomena. The diffusion coefficient is assumed to be anticorrelated with the source distribution, which is a natural expectation from the charged particle transportation in a turbulent magnetic field. The spatially dependent diffusion model also gives a lower level of anisotropies of cosmic rays, which are consistent with observations by underground muons and air shower experiments. The spectral variations of cosmic rays across the Galaxy can be properly reproduced by this model.
Characteristics of transitional and turbulent jet diffusion flames in microgravity
NASA Technical Reports Server (NTRS)
Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.
1995-01-01
This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.
Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate.
Shekunov, Boris; Montgomery, Eda Ross
2016-09-01
The first-principles approach presented in this work combines surface kinetics and convective diffusion modeling applied to compounds with pH-dependent solubility and in different dissolution media. This analysis is based on experimental data available for approximately 100 compounds of pharmaceutical interest. Overall, there is a linear relationship between the drug solubility and intrinsic dissolution rate expressed through the total kinetic coefficient of dissolution and dimensionless numbers defining the mass transfer regime. The contribution of surface kinetics appears to be significant constituting on average ∼20% resistance to the dissolution flux in the compendial rotating disk apparatus at 100 rpm. The surface kinetics contribution becomes more dominant under conditions of fast laminar or turbulent flows or in cases when the surface kinetic coefficient may decrease as a function of solution composition or pH. Limitations of the well-known convective diffusion equation for rotating disk by Levich are examined using direct computational modeling with simultaneous dissociation and acid-base reactions in which intrinsic dissolution rate is strongly dependent on pH profile and solution ionic strength. It is shown that concept of diffusion boundary layer does not strictly apply for reacting/interacting species and that thin-film diffusion models cannot be used quantitatively in general case. Copyright © 2016. Published by Elsevier Inc.
Deterministic chaos in atmospheric radon dynamics
NASA Astrophysics Data System (ADS)
Cuculeanu, Vasile; Lupu, Alexandru
2001-08-01
The correlation dimension and Lyapunov exponents have been calculated for two time series of atmospheric radon daughter concentrations obtained from four daily measurements during the period 1993-1996. A number of about 6000 activity concentration values of 222Rn and 220Rn daughters have been used. The measuring method is based on aerosol collection on filters. In order to determine the filter activity, a low background gross beta measuring device with Geiger-Müller counter tubes in anticoincidence was used. The small noninteger value of the correlation dimension (≃2.2) and the existence of a positive Lyapunov exponent prove that deterministic chaos is present in the time series of atmospheric 220Rn daughters. This shows that a simple diffusion equation with a parameterized turbulent diffusion coefficient is insufficient for describing the dynamics in the near-ground layer where turbulence is not fully developed and coherent structures dominate. The analysis of 222Rn series confirms that the dynamics of the boundary layer cannot be described by a system of ordinary differential equations with a low number of independent variables.
Mixing parametrizations for ocean climate modelling
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir
2016-04-01
The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model. The high sensitivity of the eddy-permitting circulation model to the definition of mixing is revealed, which is associated with significant changes of density fields in the upper baroclinic ocean layer over the total considered area. For instance, usage of the turbulence parameterization instead of PP algorithm leads to increasing circulation velocity in the Gulf Stream and North Atlantic Current, as well as the subpolar cyclonic gyre in the North Atlantic and Beaufort Gyre in the Arctic basin are reproduced more realistically. Consideration of the Prandtl number as a function of the Richardson number significantly increases the modelling quality. The research was supported by the Russian Foundation for Basic Research (grant № 16-05-00534) and the Council on the Russian Federation President Grants (grant № MK-3241.2015.5)
Influence of hot and cold neutrals on scrape-off layer tokamak plasma turbulence
NASA Astrophysics Data System (ADS)
Bisai, N.; Kaw, P. K.
2018-01-01
The modification of interchange plasma turbulence in the scrape-off layer (SOL) region by the presence of hot and cold neutral gas molecules has been studied. The nonlinear equations have been solved numerically using two different simulations ("uniform-Te" and "varying-Te"), and the results obtained from both of the models have been compared. The hot neutrals, responsible for the increase in the electron density in the SOL, also account for more ionization of the cold molecules. The effect of hot and cold neutrals on the interchange turbulence is almost similar in the "uniform-Te" model, but in the "varying-Te" model, the influence of the hot neutrals is very small, specifically in the far SOL region. The neutral gas in the "varying Te" model decreases the heat load on the material walls by about 7%. A reduction in the radial velocity by about 25% and effective diffusion coefficient of the plasma particles has been found by the influence of the neutral gas.
Modeling Europa's Ice-Ocean Interface
NASA Astrophysics Data System (ADS)
Elsenousy, A.; Vance, S.; Bills, B. G.
2014-12-01
This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.
Modeling of turbulence effects on the heat and mass transfer of evaporating sprays
NASA Astrophysics Data System (ADS)
Madhanabharatam, Balasubramanyam
A large diversity of two-phase gas-liquid flows of both scientific and practical interest involves the evaporation of near spherical liquid droplets in high temperature turbulent environments. Current numerical modeling approaches are predominantly focused towards the effects of continuous phase (gas phase) turbulence on the evaporation rates of liquid fuel sprays during the evaporation process, failing to account for the inherent turbulence present in the dispersed phase (liquid phase), due to the injection of sprays at high velocities. Existing models accounting for internal turbulence effects use Direct Numerical Simulations and Large Eddy Simulations that are computationally intensive. This research provides an alternative phenomenological approach of modeling droplet internal turbulence effects through the mass and heat transfer between the droplet surface and the external gas phase within a thin film inside the droplet. This finite conductivity (F-C) model was based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity (alphaeff) within the droplet phase. The alphaeff is estimated from the physical properties of the flow within the droplet rather than from a 'curve-fit' as done conventionally. The results of the one-way coupled study indicated that the equilibrium drop temperature predictions were higher than calculations by the infinite conductivity (I-C) model. The liquid internal turbulence has a considerable effect on the diffusivity in the primary atomization regime. The thermal boundary layer was found to be substantially thick initially, decreasing quickly to a small value, exhibiting a reasonable physical trend. The two-way coupled studies (CFD) indicated that the F-C model, slowed down the evaporation process, produced larger droplets and longer tip penetration lengths during the initial stages of injection. For a jet in a supersonic cross-flow, results indicated that jet penetration increased rapidly in the vicinity of the injector exit and then gradually increased due to increase in the drag of the air stream. A modified drag coefficient was incorporated to improve model accuracy in predictions. Overall the results obtained from the numerical calculations during this study were reasonably comparable to measured data and showed more accurate comparisons to that of the I-C model.
Effects of fluid inertia and turbulence on force coefficients for squeeze film dampers
NASA Technical Reports Server (NTRS)
Andres, L. S.; Vance, J. M.
1984-01-01
The effects of fluid inertia and turbulence on the force coefficients of squeeze film dampers are investigated analytically. Both the convective and the temporal terms are included in the analysis of inertia effects. The analysis of turbulence is based on friction coefficients currently found in the literature for Poiseuille flow. The effect of fluid inertia on the magnitude of the radial direct inertia coefficient (i.e., to produce an apparent added mass at small eccentricity ratios, due to the temporal terms) is found to be completely reversed at large eccentricity ratios. The reversal is due entirely to the inclusion of the convective inertia terms in the analysis. Turbulence is found to produce a large effect on the direct damping coefficient at high eccentricity ratios. For the long or sealed squeeze film damper at high eccentricity ratios, the damping prediction with turbulence included is an order of magnitude higher than the laminar solution.
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1999-01-01
Combining analysis of satellite data (altimeter, scatterometer, high-resolution visible and infrared images, etc.) with mathematical modeling of non-linear wave processes, we investigate various ocean wave fields (on scales from capillary to planetary), their role in ocean dynamics and turbulent transport (of heat and biogeochemical quantities), and their effects on satellite altimeter measuring accuracy. In 1998 my attention was focused on long internal gravity waves (10 to 1000 km), known also as baroclinic inertia-gravity (BIG) waves. We found these waves to be a major factor of altimeter measurements "noise," resulting in a greater uncertainty [up to 10 cm in terms of sea surface height (SSH) amplitude] in the measured SSH signal than that caused by the sea state bias variations (up to 5 cm or so). This effect still remains largely overlooked by the satellite altimeter community. Our studies of BIG waves address not only their influence on altimeter measurements but also their role in global ocean dynamics and in transport and turbulent diffusion of biogeochemical quantities. In particular, in collaboration with Prof Peter Weichman, Caltech, we developed a theory of turbulent diffusion caused by wave motions of most general nature. Applied to the problem of horizontal turbulent diffusion in the ocean, the theory yielded the effective diffusion coefficient as a function of BIG wave parameters obtainable from satellite altimeter data. This effort, begun in 1997, has been successfully completed in 1998. We also developed a theory that relates spatial fluctuations of scalar fields (such as sea surface temperature, chlorophyll concentration, drifting ice concentration, etc.) to statistical characteristics of BIG waves obtainable from altimeter measurements. A manuscript is in the final stages of preparation. In order to verify the theoretical predictions and apply them to observations, we are now analyzing Sea-viewing Wide Field of view Sensor (SeaWiFS) and Field of view Sensor (SeaWiFS) and Advanced Very High-Resolution Radiometer (AVHRR) data on sea surface temperature (SST) and chlorophyll concentration jointly with TOPEX/POSEIDON data on SSH variations.
Yavuzkurt, S; Iyer, G R
2001-05-01
A review of the past work done on free stream turbulence (FST) as applied to gas turbine heat transfer and its implications for future studies are presented. It is a comprehensive approach to the results of many individual studies in order to derive the general conclusions that could be inferred from all rather than discussing the results of each individual study. Three experimental and four modeling studies are reviewed. The first study was on prediction of heat transfer for film cooled gas turbine blades. An injection model was devised and used along with a 2-D low Reynolds number k-epsilon model of turbulence for the calculations. Reasonable predictions of heat transfer coefficients were obtained for turbulence intensity levels up to 7%. Following this modeling study a series of experimental studies were undertaken. The objective of these studies was to gain a fundamental understanding of mechanisms through which FST augments the surface heat transfer. Experiments were carried out in the boundary layer and in the free stream downstream of a gas turbine combustor simulator, which produced initial FST levels of 25.7% and large length scales (About 5-10 cm for a boundary layer 4-5 cm thick). This result showed that one possible mechanism through which FST caused an increase in heat transfer is by increasing the number of ejection events. In a number of modeling studies several well-known k-epsilon models were compared for their predictive capability of heat transfer and skin friction coefficients under moderate and high FST. Two data sets, one with moderate levels of FST (about 7%) and one with high levels of FST (about 25%) were used for this purpose. Although the models did fine in their predictions of cases with no FST (baseline cases) they failed one by one as FST levels were increased. Under high FST (25.7% initial intensity) predictions of Stanton number were between 35-100% in error compared to the measured values. Later a new additional production term indicating the interaction between the turbulent kinetic energy (TKE) and mean velocity gradients was introduced into the TKE equation. The predicted results of skin friction coefficient and Stanton number were excellent both in moderate and high FST cases. In fact these model also gave good predictions of TKE profiles whereas earlier unmodified models did not predict the correct TKE profiles even under moderate turbulence intensities. Although this new production term seems to achieve the purpose, it is the authors' belief that it is diffusion term of the TKE equation, which needs to be modified in order to fit the physical events in high FST boundary layer flows. The results of these studies are currently being used to come up with new diffusion model for the TKE equation.
Effect of air turbulence on gas transport in soil; comparison of approaches
NASA Astrophysics Data System (ADS)
Pourbakhtiar, Alireza; Papadikis, Konstantinos; Poulsen, Tjalfe; Bridge, Jonathan; Wilkinson, Stephen
2017-04-01
Greenhouse gases are playing the key role in global warming. Soil is a source of greenhouse gases such as methane (CH4). Radon (Rn) which is a radioactive gas can emit form subsurface into the atmosphere and leads to health concerns in urban areas. Temperature, humidity, air pressure and vegetation of soil can affect gas emissions inside soil (Oertel et al., 2016). It's shown in many cases that wind induced fluctuations is an important factor in transport of gas through soil and other porous media. An example is: landfill gas emissions (Poulsen et al., 2001). We applied an experimental equipment for measuring controlled air turbulence on gas transport in soil in relation to the depth of sample. Two approaches for measurement of effect of wind turbulence on gas transport were applied and compared. Experiments were carried out with diffusion of CO2 and air as tracer gases with average vertical wind speeds of 0 to 0.83 m s-1. In approach A, Six different sample thicknesses from 5 to 30 cm were selected and total of 4 different wind conditions with different speed and fluctuations were applied. In approach B, a sample with constant depth was used. Five oxygen sensors were places inside sample at different depths. Total of 111 experiments were carried out. Gas transport is described by advection-dispersion equation. Gas transport is quantified as a dispersion coefficient. Oxygen breakthrough curves as a function of distance to the surface of the sample exposed to wind were derived numerically with an explicit forward time, central space finite-difference based model to evaluate gas transport. We showed that wind turbulence-induced fluctuations is an important factor in gas transport that can increase gas transport with average of 45 times more than molecular diffusion under zero wind condition. Comparison of two strategies for experiments, indicated that, constant deep samples (Approach B) are more reliable for measurement of gas transport under influence of wind turbulence. They are more similar to natural conditions and also the lower layers of soil are affecting the diffusion and dispersion coefficients of soil in the upper layers. Power spectrum density is calculated for all the all wind conditions to determine strength vibration of all the wind speeds and its relation to gas transport. Differential pressure for different wind conditions are measured at two sides of samples. References Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry, 76, 327-352. Poulsen, T.G., Christophersen, M., Moldrup, P. & Kjeldsen, P. 2001. Modeling lateral gas transport in soil adjacent to old landfill. Journal of Environmental Engineering (ASCE), 127, 145-153.
Ambipolar diffusion drifts and dynamos in turbulent gases
NASA Technical Reports Server (NTRS)
Zweibel, Ellen G.
1988-01-01
Ambipolar drift in turbulent fluids are considered. Using mean-field electrodynamics, a two-scale theory originally used to study hydromagnetic dynamos, it is shown that magnetic fields can be advected by small-scale magnetosonic (compressional) turbulence or generated by Alfvenic (helical) turbulence. A simple dynamo theory is made and is compared with standard theories in which dissipation is caused by turbulent diffusion. The redistribution of magnetic flux in interstellar clouds is also discussed.
DNS of a turbulent lifted DME jet flame
Minamoto, Yuki; Chen, Jacqueline H.
2016-05-07
A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less
Modelling thermal radiation in buoyant turbulent diffusion flames
NASA Astrophysics Data System (ADS)
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
A Unified Theory for the Great Plains Nocturnal Low-Level Jet
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Rahimi, S.
2014-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing predictions that peak jet strength increases with attenuation of the minimum surface buoyancy, and that the single most important parameter determining jet height is the nighttime diffusivity, with weaker nightime diffusion associated with smaller jet heights. These and other highlights will be discussed in the presentation.
Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause
NASA Astrophysics Data System (ADS)
Le, A.; Daughton, W.; Ohia, O.; Chen, L.-J.; Liu, Y.-H.; Wang, S.; Nystrom, W. D.; Bird, R.
2018-06-01
Using fully kinetic 3D simulations, the reconnection dynamics of asymmetric current sheets are examined at the Earth's magnetopause. The plasma parameters are selected to model MMS magnetopause diffusion region crossings with guide fields of 0.1, 0.4, and 1 of the reconnecting magnetosheath field. In each case, strong drift-wave fluctuations are observed in the lower-hybrid frequency range at the steep density gradient across the magnetospheric separatrix. These fluctuations give rise to cross-field electron particle transport. In addition, this turbulent mixing leads to significantly enhanced electron parallel heating in comparison to 2D simulations. We study three different methods of quantifying the anomalous dissipation produced by the drift fluctuations, based on spatial averaging, temporal averaging, and temporal averaging followed by integrating along magnetic field lines. A comparison of different methods reveals complications in identifying and measuring the anomalous dissipation. Nevertheless, the anomalous dissipation from short wavelength drift fluctuations appears weak for each case, and the reconnection rates observed in 3D are nearly the same as in 2D models. The 3D simulations feature a number of interesting new features that are consistent with recent MMS observations, including cold beams of magnetosheath electrons that penetrate into the hotter magnetospheric inflow, the related observation of decreasing temperature in regions of increasing total density, and an effective turbulent diffusion coefficient that agrees with predictions from quasi-linear theory.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.
1999-01-01
We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.
The effect of free-stream turbulence on heat transfer from a flat plate
NASA Technical Reports Server (NTRS)
Sugawara, Sugao; Sato, Takashi; Komatsu, Hiroyasu; Osaka, Hiroichi
1958-01-01
Turbulence was generated by using screens, and the turbulence percentage was measured by a hot-wire anemometer both in the boundary layer and the free stream. The local heat-transfer coefficient was measured at 12 locations along the plate for the cases of various turbulence levels. The transition Reynolds number from laminar to turbulent flow decreases as the main-stream turbulence level increases. In the range of laminar heat transfer the effect of turbulence in the main flow was not great, but in the range of turbulent heat transfer the heat-transfer coefficient increases according to the increase of turbulence.
Mihailovic, Dragutin T; Alapaty, Kiran; Podrascanin, Zorica
2009-03-01
Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.
NASA Technical Reports Server (NTRS)
Hocking, W. K.
1989-01-01
The objective of any radar experiment is to determine as much as possible about the entities which scatter the radiation. This review discusses many of the various parameters which can be deduced in a radar experiment, and also critically examines the procedures used to deduce them. Methods for determining the mean wind velocity, the RMS fluctuating velocities, turbulence parameters, and the shapes of the scatterers are considered. Complications with these determinations are discussed. It is seen throughout that a detailed understanding of the shape and cause of the scatterers is important in order to make better determinations of these various quantities. Finally, some other parameters, which are less easily acquired, are considered. For example, it is noted that momentum fluxes due to buoyancy waves and turbulence can be determined, and on occasions radars can be used to determine stratospheric diffusion coefficients and even temperature profiles in the atmosphere.
NASA Astrophysics Data System (ADS)
Tang, S. L.; Antonia, R. A.; Djenidi, L.; Danaila, L.; Zhou, Y.
2016-09-01
The transport equation for the mean scalar dissipation rate ɛ ¯ θ is derived by applying the limit at small separations to the generalized form of Yaglom's equation in two types of flows, those dominated mainly by a decay of energy in the streamwise direction and those which are forced, through a continuous injection of energy at large scales. In grid turbulence, the imbalance between the production of ɛ ¯ θ due to stretching of the temperature field and the destruction of ɛ ¯ θ by the thermal diffusivity is governed by the streamwise advection of ɛ ¯ θ by the mean velocity. This imbalance is intrinsically different from that in stationary forced periodic box turbulence (or SFPBT), which is virtually negligible. In essence, the different types of imbalance represent different constraints imposed by the large-scale motion on the relation between the so-called mixed velocity-temperature derivative skewness ST and the scalar enstrophy destruction coefficient Gθ in different flows, thus resulting in non-universal approaches of ST towards a constant value as Reλ increases. The data for ST collected in grid turbulence and in SFPBT indicate that the magnitude of ST is bounded, this limit being close to 0.5.
On the influence of curvature and torsion on turbulence in helically coiled pipes
NASA Astrophysics Data System (ADS)
Ciofalo, M.; Di Liberto, M.; Marotta, G.
2014-04-01
Turbulent flow and heat transfer in helically coiled pipes at Reτ=400 was investigated by DNS using finite volume grids with up to 2.36×107 nodes. Two curvatures (0.1 and 0.3) and two torsions (0 and 0.3) were considered. The flow was fully developed hydrodynamically and thermally. The central discretization scheme was adopted for diffusion and advection terms, and the second order backward Euler scheme for time advancement. The grid spacing in wall units was ~3 radially, 7.5 circumferentially and 20 axially. The time step was equal to one viscous wall unit and simulations were typically protracted for 8000 time steps, the last 4000 of which were used to compute statistics. The results showed that curvature affects the flow significantly. As it increases from 0.1 to 0.3 the friction coefficient and the Nusselt number increase and the secondary flow becomes stronger; axial velocity fluctuations decrease, but the main Reynolds shear stress increases. Torsion, at least at the moderate level tested (0.3), has only a minor effect on mean and turbulence quantities, yielding only a slight reduction of peak turbulence levels while leaving pressure drop and heat transfer almost unaffected.
Particle transport in low-collisionality H-mode plasmas on DIII-D
Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...
2015-10-05
In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less
Non-equilibrium radiation from viscous chemically reacting two-phase exhaust plumes
NASA Technical Reports Server (NTRS)
Penny, M. M.; Smith, S. D.; Mikatarian, R. R.; Ring, L. R.; Anderson, P. G.
1976-01-01
A knowledge of the structure of the rocket exhaust plumes is necessary to solve problems involving plume signatures, base heating, plume/surface interactions, etc. An algorithm is presented which treats the viscous flow of multiphase chemically reacting fluids in a two-dimensional or axisymmetric supersonic flow field. The gas-particle flow solution is fully coupled with the chemical kinetics calculated using an implicit scheme to calculate chemical production rates. Viscous effects include chemical species diffusion with the viscosity coefficient calculated using a two-equation turbulent kinetic energy model.
NASA Technical Reports Server (NTRS)
Dow, J. W.
1972-01-01
A numerical solution of the turbulent mass transport equation utilizing the concept of eddy diffusivity is presented as an efficient method of investigating turbulent mass transport in boundary layer type flows. A FORTRAN computer program is used to study the two-dimensional diffusion of ammonia, from a line source on the surface, into a turbulent boundary layer over a flat plate. The results of the numerical solution are compared with experimental data to verify the results of the solution. Several other solutions to diffusion problems are presented to illustrate the versatility of the computer program and to provide some insight into the problem of mass diffusion as a whole.
Neoclassical diffusion at low L-shel
NASA Astrophysics Data System (ADS)
Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.
2017-12-01
At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L as a function of pitch-angle, energy and L-shell, and find that we quantitatively reproduce the results in Newkirk and Walt and Imhof et al, conclusively demonstrating that neoclassical diffusion is an important effect for energetic electrons in the deep inner belt.
Mixing of a passive scalar by the instability of a differentially rotating axial pinch
NASA Astrophysics Data System (ADS)
Paredes, A.; Gellert, M.; Rüdiger, G.
2016-04-01
The mean-field diffusion of passive scalars such as lithium, beryllium or temperature dispersals due to the magnetic Tayler instability of a rotating axial pinch is considered. Our study is carried out within a Taylor-Couette setup for two rotation laws: solid-body quasi-Kepler rotation. The minimum magnetic Prandtl number used is 0.05, and the molecular Schmidt number Sc of the fluid varies between 0.1 and 2. An effective diffusivity coefficient for the mixing is numerically measured by the decay of a prescribed concentration peak located between both cylinder walls. We find that only models with Sc exceeding 0.1 basically provide finite instability-induced diffusivity values. We also find that for quasi-Kepler rotation at a magnetic Mach number Mm ≃ 2, the flow transits from the slow-rotation regime to the fast-rotation regime that is dominated by the Taylor-Proudman theorem. For fixed Reynolds number, the relation between the normalized turbulent diffusivity and the Schmidt number of the fluid is always linear so that also a linear relation between the instability-induced diffusivity and the molecular viscosity results, just in the sense proposed by Schatzman (1977, A&A, 573, 80). The numerical value of the coefficient in this relation reaches a maximum at Mm ≃ 2 and decreases for larger Mm, implying that only toroidal magnetic fields on the order of 1 kG can exist in the solar tachocline.
Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.
Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn
2016-04-01
In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.
NASA Astrophysics Data System (ADS)
Dan, Youquan; Xu, Yonggen
2018-04-01
The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.
An idealised study of the effects of small scales on chemistry in a two-dimensional turbulent flow.
NASA Astrophysics Data System (ADS)
Chaalal, F. Ait; Bartello, P.; Bourqui, M.
2009-04-01
The non-linear nature of stratospheric chemical reactions makes them sensitive to mixing and diffusion. Most stratospheric Climate-Chemistry Models neglect the effects of sub-grid flow structures on chemistry. Several previous studies have pointed out that such unresolved small scales could significantly affect the chemistry. However this problem has not been thoroughly studied from a theoretical point of view. To fulfill this gap, we investigate the interactions between advection, diffusion and chemistry for a simple bimolecular reaction between two initially unmixed reactants, within the framework of two-dimensional isotropic and homogenous turbulence. This is a highly simplified representation of quasi-isentropic mixing in the stratosphere. Our goal here is to describe and understand how the production rate of the product species is affected by the size of the smallest scales of the tracer field, as determined by the tracer diffusion coefficient ΰ. The spatial average of the prognostic equation for the product's concentration involves the covariance of the reactants. The time evolution of this covariance depends in turn on a dissipative term, and on second and third order chemical terms. The set of equations is not closed and any finite resolution model would need a parameterization of the dissipation and a closure hypothesis on the chemical terms. To study these terms, we perform ensembles of direct numerical simulations using a pseudo-spectral two-dimensional periodic model. The ensembles span different initial conditions of the flow and different tracer diffusion coefficients ΰ. Our results show a strong dependence of the total production on the diffusion coefficient. This production scales like ΰp(t) , where p(t) is a positive decreasing function of time. This scaling is very similar to the one found by Tan et al. (1998) for atmospheric flows on the deactivation of chlorine by nitrogen oxide at the southern edge of the winter time polar vortex. Furthermore, the time derivative of the reactants' covariance is found to be only very weakly dependent on the chemical reaction rate, for both slow and fast chemistries compared to the advection. The variations of the dissipation and of the chemical terms with the reaction speed compensate each other. As a consequence, the calculation of the product's concentration using the covariance of the dissipation without chemistry is a good approximation of the effect of diffusion with chemistry. Reference Tan, DGH; Haynes, PH; MacKenzie, AR; et al., Effects of fluid-dynamical stirring and mixing on the deactivation of stratospheric chlorine, Journal of Geophysical Research-Atmospheres, Volume: 103 Issue: D1 Pages: 1585-1605 (1998).
Finite Larmor radius effects on weak turbulence transport
NASA Astrophysics Data System (ADS)
Kryukov, N.; Martinell, J. J.
2018-06-01
Transport of test particles in two-dimensional weak turbulence with waves propagating along the poloidal direction is studied using a reduced model. Finite Larmor radius (FLR) effects are included by gyroaveraging over one particle orbit. For low wave amplitudes the motion is mostly regular with particles trapped in the potential wells. As the amplitude increases the trajectories become chaotic and the Larmor radius modifies the orbits. For a thermal distribution of Finite Larmor radii the particle distribution function (PDF) is Gaussian for small th$ (thermal gyroradius) but becomes non-Gaussian for large th$ . However, the time scaling of transport is diffusive, as characterized by a linear dependence of the variance of the PDF with time. An explanation for this behaviour is presented that provides an expression for an effective diffusion coefficient and reproduces the numerical results for large wave amplitudes which implies generalized chaos. When a shear flow is added in the direction of wave propagation, a modified model is obtained that produces free-streaming particle trajectories in addition to trapped ones; these contribute to ballistic transport for low wave amplitude but produce super-ballistic transport in the chaotic regime. As in the previous case, the PDF is Gaussian for low th$ becoming non-Gaussian as it increases. The perpendicular transport presents the same behaviour as in the case with no flow but the diffusion is faster in the presence of the flow.
NASA Technical Reports Server (NTRS)
Cladis, J. B.; Francis, W. E.
1985-01-01
The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O(+) flux of 2.8 x 10 to the 8th per sq cm per s (w greater than 10 eV) and an H(+) flux of 5.5 x 10 to the 8th per sq cm per s (w greater than 0.63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O(+) flux and a large part of the H(+) flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.
Prediction of Very High Reynolds Number Compressible Skin Friction
NASA Technical Reports Server (NTRS)
Carlson, John R.
1998-01-01
Flat plate skin friction calculations over a range of Mach numbers from 0.4 to 3.5 at Reynolds numbers from 16 million to 492 million using a Navier Stokes method with advanced turbulence modeling are compared with incompressible skin friction coefficient correlations. The semi-empirical correlation theories of van Driest; Cope; Winkler and Cha; and Sommer and Short T' are used to transform the predicted skin friction coefficients of solutions using two algebraic Reynolds stress turbulence models in the Navier-Stokes method PAB3D. In general, the predicted skin friction coefficients scaled well with each reference temperature theory though, overall the theory by Sommer and Short appeared to best collapse the predicted coefficients. At the lower Reynolds number 3 to 30 million, both the Girimaji and Shih, Zhu and Lumley turbulence models predicted skin-friction coefficients within 2% of the semi-empirical correlation skin friction coefficients. At the higher Reynolds numbers of 100 to 500 million, the turbulence models by Shih, Zhu and Lumley and Girimaji predicted coefficients that were 6% less and 10% greater, respectively, than the semi-empirical coefficients.
A solar dynamo surface wave at the interface between convection and nonuniform rotation
NASA Technical Reports Server (NTRS)
Parker, E. N.
1993-01-01
A simple dynamo surface wave is presented to illustrate the basic principles of a dynamo operating in the thin layer of shear and suppressed eddy diffusion beneath the cyclonic convection in the convection zone of the sun. It is shown that the restriction of the shear delta(Omega)/delta(r) to a region below the convective zone provides the basic mode with a greatly reduced turbulent diffusion coefficient in the region of strong azimuthal field. The dynamo takes on the character of a surface wave tied to the lower surface z = 0 of the convective zone. There is a substantial body of evidence suggesting a fibril state for the principal flux bundles beneath the surface of the sun, with fundamental implications for the solar dynamo.
Local magnetohydrodynamic instabilities and the wave-driven dynamo in accretion disks
NASA Technical Reports Server (NTRS)
Vishniac, Ethan T.; Diamond, Patrick
1992-01-01
We consider the consequences of magnetic buoyancy and the magnetic shearing instability (MSI) on the strength and organization of the magnetic field in a thin accretion disk. We discuss a model in which the wave-driven dynamo growth rate is balanced by the dissipative effects of the MSI. As in earlier work, the net helicity is due to small advective motions driven by nonlinear interactions between internal waves. Assuming a simple model of the internal wave spectrum generated from the primary m = 1 internal waves, we find that the magnetic energy density saturates at about (H/r) exp 4/3 times the local pressure (where H is the disk thickness and r is its radius). On very small scales the shearing instability will produce an isotropic fluctuating field. For a stationary disk this is equivalent to a dimensionless 'viscosity' of about (H/r) exp 4/3. The vertical and radial diffusion coefficients will be comparable to each other. Magnetic buoyancy will be largely suppressed by the turbulence due to the MSI. We present a rough estimate of its effects and find that it removes magnetic flux from the disk at a rate comparable to that caused by turbulent diffusion.
An investigation of turbulent transport in the extreme lower atmosphere
NASA Technical Reports Server (NTRS)
Koper, C. A., Jr.; Sadeh, W. Z.
1975-01-01
A model in which the Lagrangian autocorrelation is expressed by a domain integral over a set of usual Eulerian autocorrelations acquired concurrently at all points within a turbulence box is proposed along with a method for ascertaining the statistical stationarity of turbulent velocity by creating an equivalent ensemble to investigate the flow in the extreme lower atmosphere. Simultaneous measurements of turbulent velocity on a turbulence line along the wake axis were carried out utilizing a longitudinal array of five hot-wire anemometers remotely operated. The stationarity test revealed that the turbulent velocity is approximated as a realization of a weakly self-stationary random process. Based on the Lagrangian autocorrelation it is found that: (1) large diffusion time predominated; (2) ratios of Lagrangian to Eulerian time and spatial scales were smaller than unity; and, (3) short and long diffusion time scales and diffusion spatial scales were constrained within their Eulerian counterparts.
Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects
NASA Astrophysics Data System (ADS)
Silva, Tiago S.; B. da Silva, Carlos; Idmec Team
2016-11-01
The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 <= Reλ <= 246 , and Schmidt numbers from 0 . 07 <= Sc <= 7 . The steepness of the scalar gradient, as observed from conditional profiles near the TNTI, increases with the Schmidt number. Conditional scalar gradient budgets show that for low and moderate Schmidt numbers a diffusive superlayer emerges at the TNTI, where the scalar gradient diffusion dominates, while the production is negligible. For low Schmidt numbers the growth of the turbulent front is commanded by the molecular diffusion, whereas the scalar gradient convection is negligible. The authors acknowledge the Laboratory for Advanced Computing at University of Coimbra for providing HPC, computing, consulting resources that have contributed to the research results reported within this paper. URL http://www.lca.uc.pt.
Scaling laws of passive-scalar diffusion in the interstellar medium
NASA Astrophysics Data System (ADS)
Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan
2017-05-01
Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.
Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun
2014-01-01
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
Role of Magnetic Diffusion Induced by Turbulent Magnetic Reconnection for Star Formation
NASA Astrophysics Data System (ADS)
Lazarian, Alex; Santos de Lima, R.; de Gouveia Dal Pino, E.
2010-01-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology or reconnect in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in the computer simulations and turbulent astrophysical environments is similar, as far as the magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our study of magnetic field diffusion reveals important propertie s of the process. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a decorrelation of the magnetic field and density, which corresponds well to the observations of the interstellar media. In the presence of gravity, our 3D simulations show the decrease of the flux to mass ratio with density concentration when turbulence is present. We observe this effect both in the situations when we start with the equilibrium distributions of gas and magnetic field and when we start with collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasistatic subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and flux in the saturated final state of simulations, supporting the notion that turbulent diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. At the same time, turbulence of high level may get the system unbound making the flux to mass ratio more uniform through the simulation box.
NASA Astrophysics Data System (ADS)
Galerkin, Y. B.; Voinov, I. B.; Drozdov, A. A.
2017-08-01
Computational Fluid Dynamics (CFD) methods are widely used for centrifugal compressors design and flow analysis. The calculation results are dependent on the chosen software, turbulence models and solver settings. Two of the most widely applicable programs are NUMECA Fine Turbo and ANSYS CFX. The objects of the study were two different stages. CFD-calculations were made for a single blade channel and for full 360-degree flow paths. Stage 1 with 3D impeller and vaneless diffuser was tested experimentally. Its flow coefficient is 0.08 and loading factor is 0.74. For stage 1 calculations were performed with different grid quality, a different number of cells and different models of turbulence. The best results have demonstrated the Spalart-Allmaras model and mesh with 1.854 million cells. Stage 2 with return channel, vaneless diffuser and 3D impeller with flow coefficient 0.15 and loading factor 0.5 was designed by the known Universal Modeling Method. Its performances were calculated by the well identified Math model. Stage 2 performances by CFD calculations shift to higher flow rate in comparison with design performances. The same result was obtained for stage 1 in comparison with measured performances. Calculated loading factor is higher in both cases for a single blade channel. Loading factor performance calculated for full flow path (“360 degrees”) by ANSYS CFX is in satisfactory agreement with the stage 2 design performance. Maximum efficiency is predicted accurately by the ANSYS CFX “360 degrees” calculation. “Sector” calculation is less accurate. Further research is needed to solve the problem of performances mismatch.
Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget
NASA Astrophysics Data System (ADS)
Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.
2012-12-01
The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.
Diffusion of magnetic field via turbulent reconnection
NASA Astrophysics Data System (ADS)
Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon
2010-05-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Roux, J. A.
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales.more » In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.« less
NASA Technical Reports Server (NTRS)
Mizukami, M.; Saunders, J. D.
1995-01-01
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
NASA Technical Reports Server (NTRS)
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions
NASA Technical Reports Server (NTRS)
Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.
2001-01-01
Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).
Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection
NASA Astrophysics Data System (ADS)
Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.
2010-05-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.
The Turbulent Flow in Diffusers of Small Divergence Angle
NASA Technical Reports Server (NTRS)
Gourzhienko, G. A.
1947-01-01
The turbulent flow in a conical diffuser represents the type of turbulent boundary layer with positive longitudinal pressure gradient. In contrast to the boundary layer problem, however, it is not necessary that the pressure distribution along the limits of the boundary layer(along the axis of the diffuser) be given, since this distribution can be obtained from the computation. This circumstance, together with the greater simplicity of the problem as a whole, provides a useful basis for the study of the extension of the results of semiempirical theories to the case of motion with a positive pressure gradient. In the first part of the paper,formulas are derived for the computation of the velocity and.pressure distributions in the turbulent flow along, and at right angles to, the axis of a diffuser of small cone angle. The problem is solved.
Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; ...
2015-07-24
Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H 2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilizationmore » are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H 2 or CO species reveals that hydrogen contributes significantly to premixing, particularly in explosive zones in the upstream leeward region, i.e. at the preferred flame stabilization location. Therefore, a small amount of H 2 diffuses much faster than CO, creating relatively homogeneous mixture pockets depending on the competition with turbulent mixing. These pockets, together with high H 2 reactivity, contribute to stabilizing the flame at a consistent location regardless of the CO concentration in the fuel for the present range of DNS conditions.« less
NASA Astrophysics Data System (ADS)
Li, Guo; Su, Hang; Kuhn, Uwe; Meusel, Hannah; Ammann, Markus; Shao, Min; Pöschl, Ulrich; Cheng, Yafang
2018-02-01
Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney-Kim-Davis (CKD)/Knopf-Pöschl-Shiraiwa (KPS) methods), which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ). We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT) to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method) or γKPS (derived with the KPS method) can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ) and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg / R0). On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity), to ensure not only unaffected laminar flow patterns but also other specific requirements for an individual flow tube experiment. We use coating thickness values from previous coated-wall flow tube studies to assess potential roughness effects using the δc criterion. In most studies, the coating thickness was sufficiently small to avoid complications, but some may have been influenced by surface roughness and local turbulence effects.
A simple reaction-rate model for turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Bangert, L. H.
1975-01-01
A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.
A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoi, N.; Hamba, F.; Schmitt, D.
2016-06-20
A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solvedmore » simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.« less
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
RAS one-equation turbulence model with non-singular eddy-viscosity coefficient
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Agarwal, R. K.; Siikonen, T.
2016-02-01
A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman-Agarwal-Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart-Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Cranmer, Steven R.
2018-03-01
In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.
Jurčišinová, E; Jurčišin, M
2017-05-01
The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.
SNOW LINES AS PROBES OF TURBULENT DIFFUSION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, James E.
2014-07-20
Sharp chemical discontinuities can occur in protoplanetary disks, particularly at ''snow lines'' where a gas-phase species freezes out to form ice grains. Such sharp discontinuities will diffuse out due to the turbulence suspected to drive angular momentum transport in accretion disks. We demonstrate that the concentration gradient—in the vicinity of the snow line—of a species present outside a snow line but destroyed inside is strongly sensitive to the level of turbulent diffusion (provided the chemical and transport timescales are decoupled) and provides a direct measurement of the radial ''Schmidt number'' (the ratio of the angular momentum transport to radial turbulentmore » diffusion). Taking as an example the tracer species N{sub 2}H{sup +}, which is expected to be destroyed inside the CO snow line (as recently observed in TW Hya) we show that ALMA observations possess significant angular resolution to constrain the Schmidt number. Since different turbulent driving mechanisms predict different Schmidt numbers, a direct measurement of the Schmidt number in accretion disks would allow inferences to be made about the nature of the turbulence.« less
NASA Technical Reports Server (NTRS)
Shaw, R. J.
1979-01-01
The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.
Vertical variation of mixing within porous sediment beds below turbulent flows
Chandler, I. D.; Pearson, J. M.; van Egmond, R.
2016-01-01
Abstract River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. PMID:27635104
Reconnection Diffusion in Turbulent Fluids and Its Implications for Star Formation
NASA Astrophysics Data System (ADS)
Lazarian, A.
2014-05-01
Astrophysical fluids are turbulent a fact which changes the dynamics of many key processes, including magnetic reconnection. Fast reconnection of magnetic field in turbulent fluids allows the field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. Plasma associated with a given magnetic field line at one instant is distributed along a different set of magnetic field lines at the next instant. This diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed "reconnection diffusion". The astrophysical implications of this concept include heat transfer in plasmas, advection of heavy elements in interstellar medium, magnetic field generation etc. However, the most dramatic implications of the concept are related to the star formation process. The reason is that magnetic fields are dynamically important for most of the stages of star formation. The existing theory of star formation has been developed ignoring the possibility of reconnection diffusion. Instead, it appeals to the decoupling of mass and magnetic field arising from neutrals drifting in respect to ions entrained on magnetic field lines, i.e. through the process that is termed "ambipolar diffusion". The predictions of ambipolar diffusion and reconnection diffusion are very different. For instance, if the ionization of media is high, ambipolar diffusion predicts that the coupling of mass and magnetic field is nearly perfect. At the same time, reconnection diffusion is independent of the ionization but depends on the scale of the turbulent eddies and on the turbulent velocities. In the paper we explain the physics of reconnection diffusion both from macroscopic and microscopic points of view, i.e. appealing to the reconnection of flux tubes and to the diffusion of magnetic field lines. We make use of the Lazarian and Vishniac (Astrophys. J. 517:700, 1999) theory of magnetic reconnection and show that this theory is applicable to the partially ionized gas. We quantify the reconnection diffusion rate both for weak and strong MHD turbulence and address the problem of reconnection diffusion acting together with ambipolar diffusion. In addition, we provide a criterion for correctly representing the magnetic diffusivity in simulations of star formation. We discuss the intimate relation between the processes of reconnection diffusion, field wandering and turbulent mixing of a magnetized media and show that the role of the plasma effects is limited to "breaking up lines" on small scales and does not affect the rate of reconnection diffusion. We address the existing observational results and demonstrate how reconnection diffusion can explain the puzzles presented by observations, in particular, the observed higher magnetization of cloud cores in comparison with the magnetization of envelopes. We also outline a possible set of observational tests of the reconnection diffusion concept and discuss how the application of the new concept changes our understanding of star formation and its numerical modeling. Finally, we outline the differences of the process of reconnection diffusion and the process of accumulation of matter along magnetic field lines that is frequently invoked to explain the results of numerical simulations.
Planar laser imaging of differential molecular diffusion in gas-phase turbulent jets
NASA Astrophysics Data System (ADS)
Brownell, C. J.; Su, L. K.
2008-03-01
Planar laser Rayleigh scattering yields quantitative, two-dimensional measurements of differential diffusion in a turbulent propane-helium jet issuing into air. The jet exit Reynolds number ranges from 1000 to 3000, corresponding to estimated outer-scale Reynolds numbers from 4300 to 13 000. Using a technique originally proposed by Bilger and Dibble [Combust. Sci. Technol. 28, 161 (1982)], the imaging measurements allow direct determination of a normalized scalar difference quantity ξ. For the lower Re, significant differential diffusion develops in the pretransitional portion of the flow. Downstream of the turbulent transition, radial profiles of mean ξ take on a characteristic form, with an excess of the less-diffusive propane on the jet boundary. This characteristic form is independent of Reynolds number, and is thus apparently independent of the degree of differential diffusion in the pretransition range. Evolution of the ξ fields in the turbulent part of the flow is surprisingly consistent with the mixing of conventional scalar quantities. Fluctuation profiles of ξ have a self-similar, bimodal shape for each Re, and power spectra of ξ are monotonically decreasing, with a distinct k-5/3 inertial range. This spectral form is at odds with prior analytical and computational results in isotropic turbulence, which predicted that the spectrum would show a peak intermediate between the diffusive cutoffs of the individual scalars. The discrepancy appears to be due to the forcing applied in the simulations; the differential diffusion in the experiments preferentially develops in the jet near field, so the resulting evolution is more akin to a decay process. This is further emphasized by the observation that the thickness of ξ structures in the jet decreases with downstream distance. The present results indicate that consideration of differential diffusion must account for the details of the flow configuration, particularly the uniformity of turbulence levels. This has important implications for reacting flows, where local laminarization by heat release can be significant.
NASA Technical Reports Server (NTRS)
Cho, Soo-Yong; Greber, Isaac
1994-01-01
Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.
Analysis of data from NASA B-57B gust gradient program
NASA Technical Reports Server (NTRS)
Frost, W.; Lin, M. C.; Chang, H. P.; Ringnes, E.
1985-01-01
Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations.
Instabilities and turbulence in highly ionized plasmas in a magnetic field
NASA Technical Reports Server (NTRS)
Jennings, W. C.
1972-01-01
Physical mechanisms were considered which are responsible for plasma turbulence and the establishment of necessary conditions for energy exchange and transfer in the frequency spectrum. In addition, work was performed to better understand the drift instability in the highly inhomogeneous Rensselaer arc, and methods to suppress this instability using feedback stabilization techniques. Correlation techniques were refined to study plasma turbulence, the diffusion wave technique for monitoring cross-field diffusion was extended to include regimes of high turbulence levels, and a technique for coupling stabilizing RF power to the Rensselaer arc was developed.
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described in this paper. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model has been calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence
NASA Astrophysics Data System (ADS)
Minter, Anthony H.; Spangler, Steven R.
1997-08-01
We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being approximately valid. We conclude that the dissipation of turbulence is capable of providing a substantial and perhaps major contribution to the energy budget of the diffuse ionized medium.
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.
1993-01-01
Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.
Prediction of the blowout of jet diffusion flames in a coflowing stream of air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbasi, M.; Wierzba, I.
1995-12-31
The blowout limits of a lifted diffusion flame in a coflowing stream of air are estimated using a simple model for extinction, for a range of fuels, jet diameters and co-flowing stream velocities. The proposed model uses a parameter which relates to the ratio of a time associated with the mixing processes in a turbulent jet to a characteristic chemical time. The Kolmogorov microscale of time is used as time scale in this model. It is shown that turbulent diffusion flames are quenched by excessive turbulence for a critical value of this parameter. The predicted blowout velocity of diffusion flamesmore » obtained using this model is in good agreement with the available experimental data.« less
Some Basic Laws of Isotropic Turbulent Flow
NASA Technical Reports Server (NTRS)
Loitsianskii, L. G.
1945-01-01
An Investigation is made of the diffusion of artificially produced turbulence behind screens or other turbulence producers. The method is based on the author's concept of disturbance moment as a certain theoretically well-founded measure of turbulent disturbances.
TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME
The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...
NASA Astrophysics Data System (ADS)
Dhariwal, Rohit; Rani, Sarma; Koch, Donald
2015-11-01
In an earlier work, Rani, Dhariwal, and Koch (JFM, Vol. 756, 2014) developed an analytical closure for the diffusion current in the PDF transport equation describing the relative motion of high-Stokes-number particle pairs in isotropic turbulence. In this study, an improved closure was developed for the diffusion coefficient, such that the motion of the particle-pair center of mass is taken into account. Using the earlier and the new analytical closures, Langevin simulations of pair relative motion were performed for four particle Stokes numbers, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Detailed comparisons of the analytical model predictions with those of DNS were undertaken. It is seen that the pair relative motion statistics obtained from the improved theory show excellent agreement with the DNS statistics. The radial distribution functions (RDFs), and relative velocity PDFs obtained from the improved-closure-based Langevin simulations are found to be in very good agreement with those from DNS. It was found that the RDFs and relative velocity RMS increased with Reλ for all Stη . The collision kernel also increased strongly with Reλ , since it depended on the RDF and the radial relative velocities.
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
1993-11-01
This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.
Calculations of the flow properties of a confined diffusion flame
NASA Technical Reports Server (NTRS)
Kim, Yongmo; Chung, T. J.; Sohn, Jeong L.
1989-01-01
A finite element algorithm for the computation of confined, axisymmetric, turbulent diffusion flames is developed. The mean mixture properties were obtained by three methods based on diffusion flame concept: without using a probability density function (PDF), with a double-delta PDF, and with a beta PDF. A comparison is made for the combustion models, and the effect of turbulence on combustion are discussed.
TURBULENT TRANSPORT IN A STRONGLY STRATIFIED FORCED SHEAR LAYER WITH THERMAL DIFFUSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaud, Pascale
2016-04-10
This work presents numerical results on the transport of heat and chemical species by shear-induced turbulence in strongly stratified, thermally diffusive environments. The shear instabilities driven in this regime are sometimes called “secular” shear instabilities, and can take place when the Richardson number of the flow is large, provided the Péclet number is small. We have identified a set of simple criteria to determine whether these instabilities can take place or not. Generally speaking, we find that they may be relevant whenever the thermal diffusivity of the fluid is very large (typically larger than 10{sup 14} cm{sup 2} s{sup −1}),more » which is the case in the outer layers of high-mass stars (M ≥ 10 M{sub ⊙}), for instance. Using a simple model setup in which the shear is forced by a spatially sinusoidal, constant-amplitude body-force, we have identified several regimes ranging from effectively unstratified to very strongly stratified, each with its own set of dynamical properties. Unless the system is in one of the two extreme regimes (effectively unstratified or completely stable), however, we find that (1) only about 10% of the input power is used toward heat transport, while the remaining 90% is viscously dissipated; (2) that the effective compositional mixing coefficient is well-approximated by the model of Zahn, with D ≃ 0.02κ{sub T}/J where κ{sub T} is the thermal diffusivity and J is the Richardson number. These results need to be confirmed, however, with simulations in different model setups and at higher effective Reynolds number.« less
NASA Astrophysics Data System (ADS)
Cazalbou, J.-B.; Chassaing, P.
2002-02-01
The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.
NASA Technical Reports Server (NTRS)
Gorton, C. A.; Lakshminarayana, B.
1980-01-01
The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.
Time-dependent models for blazar emission with the second-order Fermi acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Katsuaki; Takahara, Fumio; Toma, Kenji
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101–232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range ofmore » Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 10{sup 38} erg s{sup –1}, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.« less
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Similarity theory of the buoyantly interactive planetary boundary layer with entrainment
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Sud, Y. C.
1976-01-01
A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.
On the possibility of an alpha-sq omega-type dynamo in a thin layer inside the sun
NASA Technical Reports Server (NTRS)
Choudhuri, Arnab Rai
1990-01-01
If the solar dynamo operates in a thin layer of 10,000-km thickness at the interface between the convection zone and the radiative core, using the facts that the dynamo should have a period of 22 years and a half-wavelength of 40 deg in the theta-direction, it is possible to impose restrictions on the values which various dynamo parameters are allowed to have. It is pointed out that the dynamo should be of alpha-sq omega nature, and kinematical calculations are presented for free dynamo waves and for dynamos in thin rectangular slabs with appropriate boundary conditions. An alpha-sq omega dynamo is expected to produce a significant poloidal field which does not leak to the solar surface. It is found that the turbulent diffusity eta and alpha-coefficient are restricted to values within about a factor of 10, the median values being eta of about 10 to the 10th sq cm/sec and alpha of about 10 cm/sec. On the basis of mixing length theory, it is pointed out that such values imply a reasonable turbulent velocity of the order 30 m/s, but rather small turbulent length scales like 300 km.
NASA Astrophysics Data System (ADS)
Ivers, D. J.; Phillips, C. G.
2018-03-01
We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found that anisotropic turbulent thermal diffusivity has a strong destabilising effect on magneto-convective instabilities, which may relax the tight energy budget constraining geodynamo models. The enhanced instability is not due to a reduction of the total diffusivity. The anisotropy also strengthens instabilities which break the symmetry of the underlying state, which may facilitate magnetic field reversal. Geostrophic flow appears to suppress the symmetry breaking modes and magnetic instabilities. Through symmetry breaking and the geostrophic flow the anisotropy may provide a mechanism of magnetic field reversal and its suppression in computational dynamo models.
NASA Astrophysics Data System (ADS)
Jha, Pradeep Kumar
Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow. Comparisons are made between the predicted results of the present FPI scheme and Steady Laminar Flamelet Model (SLFM) approach for diffusion flames. The effects of grid resolution on the predicted overall flame solutions are also assessed. Other non-reacting flows have also been considered to further validate other aspects of the numerical scheme. The present schemes predict results which are in good agreement with published experimental results and reduces the computational cost involved in modelling turbulent diffusion flames significantly, both in terms of storage and processing time.
Detailed stress tensor measurements in a centrifugal compressor vaneless diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinarbasi, A.; Johnson, M.W.
1996-04-01
Detailed flow measurements have been made in the vaneless diffuser of a large low-speed centrifugal compressor using hot-wire anemometry. The three time mean velocity components and full stress tensor distributions have been determined on eight measurement plans within the diffuser. High levels of Reynolds stress result in the rapid mixing out of the blade wake. Although high levels of turbulent kinetic energy are found in the passage wake, they are not associated with strong Reynolds stresses and hence the passage wake mixes out only slowly. Low-frequency meandering of the wake position is therefore likely to be responsible for the highmore » kinetic energy levels. The anisotropic nature of the turbulence suggests that Reynolds stress turbulence models are required for CFD modeling of diffuser flows.« less
Miniature drag-force anemometer
NASA Technical Reports Server (NTRS)
Krause, L. N.; Fralick, G. C.
1977-01-01
A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.
An Experiment Investigation of Fully-Modulated, Turbulent Diffusion Flames in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Stocker, D. P.; Nagashima, T.; Obata, S.
1999-01-01
Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The ultimate objective of this program is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This can give rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. In addition, the fully-modulated injection approach avoids the strong acoustic forcing present in pulsed combustion devices, significantly simplifying the mixing and combustion processes. Relatively little is known of the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. The goal of this Flight-Definition experiment (PUFF, for PUlsed-Fully Flames) is to establish the behavior of fully-modulated, turbulent diffusion flames under microgravity conditions. Fundamental issues to be addressed in this experiment include the mechanisms responsible for the flame length decrease for fully-modulated, turbulent diffusion flames compared with steady flames, the impact of buoyancy on the mixing and combustion characteristics of these flames, and the characteristics of turbulent flame puffs under fully momentum-dominated conditions.
Coastal Microstructure: From Active Overturn to Fossil Turbulence
NASA Astrophysics Data System (ADS)
Tau Leung, Pak
2011-11-01
The Remote Anthropogenic Sensing Program was a five year effort (2001- 2005) to examine subsurface phenomena related to a sewage outfall off the coast of Oahu, Hawaii. This research has implications for basic ocean hydrodynamics, particularly for a greatly improved understanding of the evolution of turbulent patches. It was the first time a microstructure measurement was used to study such a buoyancy-driven turbulence generated by a sea-floor diffuser. In 2004, two stations were selected to represent the near field and ambient conditions. They have nearly identical bathymetrical and hydrographical features and provide an ideal environment for a control experiment. Repeated vertical microstructure measurements were performed at both stations for 20 days. A time series of physical parameters was collected and used for statistical analysis. After comparing the data from both stations, it can be concluded that the turbulent mixing generated by the diffuser contributes to the elevated dissipation rate observed in the pycnocline and bottom boundary layer. To further understand the mixing processes in both regions, data were plotted on a Hydrodynamic Phase Diagram. The overturning stages of the turbulent patches are identified by Hydrodynamic Phase Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence theory. This study concluded that: 1. Field Data collected near a sea-floor outfall diffuser show that turbulent patches evolve from active (overturning) to fossil (buoyancy-inhibited) stages, consistent with the process of turbulent patch evolution proposed by fossil turbulence theory. 2. The data show that active (overturning) and fossil (buoyancy-inhibited) patches have smaller length scales than the active+fossil (intermediate) stage of patch evolution, consistent with fossil turbulence theory and with laboratory studies. 3. Compared to a far-field reference, elevated dissipation rates near the diffuser were found in the seasonal pycnocline as well as in the bottom boundary layer. 4. More than 90% of the turbulent patches observed in the water column were non- overturning (active+fossil and fossil). Such patches can provide significant mixing in the interior of the ocean, far from surface and bottom boundary layers.
Double-diffusive layers in the Adriatic Sea
NASA Astrophysics Data System (ADS)
Carniel, Sandro; Sclavo, Mauro; Kantha, Lakshmi; Prandke, Hartmut
2008-01-01
A microstructure profiler was deployed to make turbulence measurements in the upper layers of the southern Adriatic Sea in the Mediterranean during the Naval Research Laboratory (NRL) DART06A (Dynamics of the Adriatic in Real Time) winter cruise in March 2006. Measurements in the Po river plume along the Italian coast near the Gargano promontory displayed classic double-diffusive layers and staircase structures resulting from the relatively colder and fresher wintertime Po river outflow water masses overlying warmer and more saline water masses from the Adriatic Sea. We report here on the water mass and turbulence structure measurements made both in the double-diffusive interfaces and the adjoining mixed layers in the water columns undergoing double-diffusive convection (DDC). This dataset augments the relatively sparse observations available hitherto on the diffusive layer type of DDC. Measured turbulence diffusivities are consistent with those from earlier theoretical and experimental formulations, suggesting that the wintertime Po river plume is a convenient and easily accessible place to study double diffusive convective processes of importance to mixing in the interior of many regions of the global oceans.
Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, M.; Shalchi, A., E-mail: m_hussein@physics.umanitoba.ca, E-mail: andreasm4@yahoo.com
2014-04-10
A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit ofmore » the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor δB/B {sub 0} where B {sub 0} is the mean field and δB the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.« less
Flame Shapes of Luminous NonBuoyant Laminar Coflowing Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.
1999-01-01
Laminar diffusion flames are of interest as model flame systems that are more tractable for analysis and experiments than practical turbulent diffusion flames. Certainly understanding laminar flames must precede understanding more complex turbulent flames while man'y laminar diffusion flame properties are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Motivated by these observations, the shapes of laminar flames were considered during the present investigation. The present study was limited to nonbuoyant flames because most practical flames are not buoyant. Effects of buoyancy were minimized by observing flames having large flow velocities at small pressures. Present methods were based on the study of the shapes of nonbu,3yant round laminar jet diffusion flames of Lin et al. where it was found that a simple analysis due to Spalding yielded good predictions of the flame shapes reported by Urban et al. and Sunderland et al.
Modulation of Galactic Cosmic Rays in the Inner Heliosphere, Comparing with PAMELA Measurements
NASA Astrophysics Data System (ADS)
Qin, G.; Shen, Z.-N.
2017-09-01
We develop a numerical model to study the time-dependent modulation of galactic cosmic rays in the inner heliosphere. In the model, a time-delayed modified Parker heliospheric magnetic field (HMF) and a new diffusion coefficient model, NLGCE-F, from Qin & Zhang, are adopted. In addition, the latitudinal dependence of magnetic turbulence magnitude is assumed to be ˜ (1+{\\sin }2θ )/2 from the observations of Ulysses, and the radial dependence is assumed to be ˜ {r}S, where we choose an expression of S as a function of the heliospheric current sheet tilt angle. We show that the analytical expression used to describe the spatial variation of HMF turbulence magnitude agrees well with the Ulysses, Voyager 1, and Voyager 2 observations. By numerically calculating the modulation code, we get the proton energy spectra as a function of time during the recent solar minimum, it is shown that the modulation results are consistent with the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics measurements.
Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific
NASA Astrophysics Data System (ADS)
Cronin, M. F.; Pelland, N.; Emerson, S. R.; Crawford, W. R.
2015-12-01
Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20-m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1×10-4 m2/s during summer, increasing to ~3×10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivity are found based upon the mixed layer heat budget: ~ 3×10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.
Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific
NASA Astrophysics Data System (ADS)
Cronin, Meghan F.; Pelland, Noel A.; Emerson, Steven R.; Crawford, William R.
2015-11-01
Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20 m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1 × 10-4 m2/s during summer, increasing to ˜3 × 10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivities are found based upon the mixed layer heat budget: ˜ 3 × 10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.
Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...
2015-04-17
Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less
A stochastic multi-scale method for turbulent premixed combustion
NASA Astrophysics Data System (ADS)
Cha, Chong M.
2002-11-01
The stochastic chemistry algorithm of Bunker et al. and Gillespie is used to perform the chemical reactions in a transported probability density function (PDF) modeling approach of turbulent combustion. Recently, Kraft & Wagner have demonstrated a 100-fold gain in computational speed (for a 100 species mechanism) using the stochastic approach over the conventional, direct integration method of solving for the chemistry. Here, the stochastic chemistry algorithm is applied to develop a new transported PDF model of turbulent premixed combustion. The methodology relies on representing the relevant spatially dependent physical processes as queuing events. The canonical problem of a one-dimensional premixed flame is used for validation. For the laminar case, molecular diffusion is described by a random walk. For the turbulent case, one of two different material transport submodels can provide the necessary closure: Taylor dispersion or Kerstein's one-dimensional turbulence approach. The former exploits ``eddy diffusivity'' and hence would be much more computationally tractable for practical applications. Various validation studies are performed. Results from the Monte Carlo simulations compare well to asymptotic solutions of laminar premixed flames, both with and without high activation temperatures. The correct scaling of the turbulent burning velocity is predicted in both Damköhler's small- and large-scale turbulence limits. The effect of applying the eddy diffusivity concept in the various regimes is discussed.
NASA Astrophysics Data System (ADS)
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.
2018-03-01
Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Teixeira, João
2018-01-01
Abstract Large‐scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid‐scale turbulence and convection—such as that they adjust instantaneously to changes in resolved‐scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary‐layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large‐scale models. Here we lay the theoretical foundations for an extended eddy‐diffusivity mass‐flux (EDMF) scheme that has explicit time‐dependence and memory of subgrid‐scale variables and is designed to represent all subgrid‐scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross‐sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large‐scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time‐dependent life cycle. PMID:29780442
2ND EF Conference in Turbulent Heat Transfer, Manchester, UK 1998. Volume 1
1998-06-01
study the effect of Pr on statistical properties characterizing the scalar field. Turbulent diffusivities are presented for Pr=0.1-2400. A time scale, r...can be defined from the kinetic energy, fc, and the dissipation of turbulence, e, where r = -. The observed influence of Pr (0.05-10) on a time ...dimensional, time -dependent Navier-Stokes equa- tion in a skew-symmetric form and the advection- diffusion equation. du = (u x w) - VIE - Pxex
Investigations of turbulent scalar fields using probability density function approach
NASA Technical Reports Server (NTRS)
Gao, Feng
1991-01-01
Scalar fields undergoing random advection have attracted much attention from researchers in both the theoretical and practical sectors. Research interest spans from the study of the small scale structures of turbulent scalar fields to the modeling and simulations of turbulent reacting flows. The probability density function (PDF) method is an effective tool in the study of turbulent scalar fields, especially for those which involve chemical reactions. It has been argued that a one-point, joint PDF approach is the one to choose from among many simulation and closure methods for turbulent combustion and chemically reacting flows based on its practical feasibility in the foreseeable future for multiple reactants. Instead of the multi-point PDF, the joint PDF of a scalar and its gradient which represents the roles of both scalar and scalar diffusion is introduced. A proper closure model for the molecular diffusion term in the PDF equation is investigated. Another direction in this research is to study the mapping closure method that has been recently proposed to deal with the PDF's in turbulent fields. This method seems to have captured the physics correctly when applied to diffusion problems. However, if the turbulent stretching is included, the amplitude mapping has to be supplemented by either adjusting the parameters representing turbulent stretching at each time step or by introducing the coordinate mapping. This technique is still under development and seems to be quite promising. The final objective of this project is to understand some fundamental properties of the turbulent scalar fields and to develop practical numerical schemes that are capable of handling turbulent reacting flows.
Zooplankton can actively adjust their motility to turbulent flow
Michalec, François-Gaël; Fouxon, Itzhak
2017-01-01
Calanoid copepods are among the most abundant metazoans in the ocean and constitute a vital trophic link within marine food webs. They possess relatively narrow swimming capabilities, yet are capable of significant self-locomotion under strong hydrodynamic conditions. Here we provide evidence for an active adaptation that allows these small organisms to adjust their motility in response to background flow. We track simultaneously and in three dimensions the motion of flow tracers and planktonic copepods swimming freely at several intensities of quasi-homogeneous, isotropic turbulence. We show that copepods synchronize the frequency of their relocation jumps with the frequency of small-scale turbulence by performing frequent relocation jumps of low amplitude that seem unrelated to localized hydrodynamic signals. We develop a model of plankton motion in turbulence that shows excellent quantitative agreement with our measurements when turbulence is significant. We find that, compared with passive tracers, active motion enhances the diffusion of organisms at low turbulence intensity whereas it dampens diffusion at higher turbulence levels. The existence of frequent jumps in a motion that is otherwise dominated by turbulent transport allows for the possibility of active locomotion and hence to transition from being passively advected to being capable of controlling diffusion. This behavioral response provides zooplankton with the capability to retain the benefits of self-locomotion despite turbulence advection and may help these organisms to actively control their distribution in dynamic environments. Our study reveals an active adaptation that carries strong fitness advantages and provides a realistic model of plankton motion in turbulence. PMID:29229858
NASA Technical Reports Server (NTRS)
Amano, R. S.; Goel, P.
1986-01-01
A numerical study of computations in backward-facing steps with flow separation and reattachment, using the Reynolds stress closure is presented. The highlight of this study is the improvement of the Reynold-stress model (RSM) by modifying the diffusive transport of the Reynolds stresses through the formulation, solution and subsequent incorporation of the transport equations of the third moments, bar-u(i)u(j)u(k), into the turbulence model. The diffusive transport of the Reynolds stresses, represented by the gradients of the third moments, attains greater significance in recirculating flows. The third moments evaluated by the development and solution of the complete transport equations are superior to those obtained by existing algebraic correlations. A low-Reynolds number model for the transport equations of the third moments is developed and considerable improvement in the near-wall profiles of the third moments is observed. The values of the empirical constants utilized in the development of the model are recommended. The Reynolds-stress closure is consolidated by incorporating the equations of k and e, containing the modified diffusion coefficients, and the transport equations of the third moments into the Reynolds stress equations. Computational results obtained by the original k-e model, the original RSM and the consolidated and modified RSM are compared with experimental data. Overall improvement in the predictions is seen by consolidation of the RMS and a marked improvement in the profiles of bar-u(i)u(j)u(k) is obtained around the reattachment region.
A study of hydrogen diffusion flames using PDF turbulence model
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
The application of probability density function (pdf) turbulence models is addressed. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional computational fluid dynamic (CFD) flow solver with the Monte Carlo simulation of the pdf evolution equation was developed. The algorithm was validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames was carried out using this algorithm. Numerical results compared favorably with experimental data. The computations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.
A study of hydrogen diffusion flames using PDF turbulence model
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
The application of probability density function (pdf) turbulence models is addressed in this work. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD flow solver with the Monte Carlo simulation of the pdf evolution equation has been developed. The algorithm has been validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames has been carried out using this algorithm. Numerical results compared favorably with experimental data. The computuations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.
Turbulent patterns in wall-bounded flows: A Turing instability?
NASA Astrophysics Data System (ADS)
Manneville, Paul
2012-06-01
In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An intrinsic status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.
NASA Astrophysics Data System (ADS)
Kassemi, Mohammad; Kartuzova, Olga
2016-03-01
Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.
NASA Technical Reports Server (NTRS)
Childs, D. W.
1983-01-01
An improved theory for the prediction of the rotordynamic coefficients of turbulent annular seals was developed. Predictions from the theory are compared to the experimental results and an approach for the direct calculation of empirical turbulent coefficients from test data are introduced. An improved short seal solution is shown to do a better job of calculating effective stiffness and damping coefficients than either the original short seal solution or a finite length solution. However, the original short seal solution does a much better job of predicting equivalent added mass coefficient.
Coupled nonequilibrium flow, energy and radiation transport for hypersonic planetary entry
NASA Astrophysics Data System (ADS)
Frederick, Donald Jerome
An ever increasing demand for energy coupled with a need to mitigate climate change necessitates technology (and lifestyle) changes globally. An aspect of the needed change is a decrease in the amount of anthropogenically generated CO2 emitted to the atmosphere. The decrease needed cannot be expected to be achieved through only one source of change or technology, but rather a portfolio of solutions are needed. One possible technology is Carbon Capture and Storage (CCS), which is likely to play some role due to its combination of mature and promising emerging technologies, such as the burning of hydrogen in gas turbines created by pre-combustion CCS separation processes. Thus research on effective methods of burning turbulent hydrogen jet flames (mimicking gas turbine environments) are needed, both in terms of experimental investigation and model development. The challenge in burning (and modeling the burning of) hydrogen lies in its wide range of flammable conditions, its high diffusivity (often requiring a diluent such as nitrogen to produce a lifted turbulent jet flame), and its behavior under a wide range of pressures. In this work, numerical models are used to simulate the environment of a gas turbine combustion chamber. Concurrent experimental investigations are separately conducted using a vitiated coflow burner (which mimics the gas turbine environment) to guide the numerical work in this dissertation. A variety of models are used to simulate, and occasionally guide, the experiment. On the fundamental side, mixing and chemistry interactions motivated by a H2/N2 jet flame in a vitiated coflow are investigated using a 1-D numerical model for laminar flows and the Linear Eddy Model for turbulent flows. A radial profile of the jet in coflow can be modeled as fuel and oxidizer separated by an initial mixing width. The effects of species diffusion model, pressure, coflow composition, and turbulent mixing on the predicted autoignition delay times and mixture composition at ignition are considered. We find that in laminar simulations the differential diffusion model allows the mixture to autoignite sooner and at a fuel-richer mixture than the equal diffusion model. The effect of turbulence on autoignition is classified in two regimes, which are dependent on a reference laminar autoignition delay and turbulence time scale. For a turbulence timescale larger than the reference laminar autoignition time, turbulence has little influence on autoignition or the mixture at ignition. However, for a turbulence timescale smaller than the reference laminar timescale, the influence of turbulence on autoignition depends on the diffusion model. Differential diffusion simulations show an increase in autoignition delay time and a subsequent change in mixture composition at ignition with increasing turbulence. Equal diffusion simulations suggest the effect of increasing turbulence on autoignition delay time and the mixture fraction at ignition is minimal. More practically, the stabilizing mechanism of a lifted jet flame is thought to be controlled by either autoignition, flame propagation, or a combination of the two. Experimental data for a turbulent hydrogen diluted with nitrogen jet flame in a vitiated coflow at atmospheric pressure, demonstrates distinct stability regimes where the jet flame is either attached, lifted, lifted-unsteady, or blown out. A 1-D parabolic RANS model is used, where turbulence-chemistry interactions are modeled with the joint scalar-PDF approach, and mixing is modeled with the Linear Eddy Model. The model only accounts for autoignition as a flame stabilization mechanism. However, by comparing the local turbulent flame speed to the local turbulent mean velocity, maps of regions where the flame speed is greater than the flow speed are created, which allow an estimate of lift-off heights based on flame propagation. Model results for the attached, lifted, and lifted-unsteady regimes show that the correct trend is captured. Additionally, at lower coflow equivalence ratios flame propagation appears dominant, while at higher coflow equivalence ratios autoignition appears dominant.
The instability of the spiral wave induced by the deformation of elastic excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong
2008-09-01
There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites which are selected symmetrically in different cases, such as the condition that the spiral wave coexists with the spiral turbulence, spiral wave without evident deformation, complete instability of the spiral wave (turbulence) and weak deformation of the spiral wave. It is found that more new peaks appear in the power spectrum and the distribution of frequency becomes sparser when the spiral wave encounters instability.
Numerical study of influence of molecular diffusion in the Mild combustion regime
NASA Astrophysics Data System (ADS)
Mardani, Amir; Tabejamaat, Sadegh; Ghamari, Mohsen
2010-09-01
In this paper, the importance of molecular diffusion versus turbulent transport in the moderate or intense low-oxygen dilution (Mild) combustion mode has been numerically studied. The experimental conditions of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154] were used for modelling. The EDC model was used to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI 2.11 full mechanism were used to represent the chemical reactions of an H2/methane jet flame. The importance of molecular diffusion for various O2 levels, jet Reynolds numbers and H2 fuel contents was investigated. Results show that the molecular diffusion in Mild combustion cannot be ignored in comparison with the turbulent transport. Also, the method of inclusion of molecular diffusion in combustion modelling has a considerable effect on the accuracy of numerical modelling of Mild combustion. By decreasing the jet Reynolds number, decreasing the oxygen concentration in the airflow or increasing H2 in the fuel mixture, the influence of molecular diffusion on Mild combustion increases.
Modeling of turbulent chemical reaction
NASA Technical Reports Server (NTRS)
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Turbulent Transport of Fast Ions in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu; Heidbrink, William; McWilliams, Roger; Boehmer, Heinrich; Carter, Troy; Popovich, Pavel; Tripathi, Shreekrishna; Vincena, Steve; Jenko, Frank
2010-11-01
Due to gyroradius averaging and drift-orbit averaging, the transport of fast ions by microturbulence is often smaller than for thermal ions. In this experiment, Strong drift wave turbulence is observed in LAPD on gradients produced by a plate obstacle. Energetic lithium ions orbit through the turbulent region. Scans with a collimated analyzer and with probes give detailed profiles of the fast ion spatial distribution and of the fluctuating fields. The fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Unlike the diffusive transport caused by Coulomb collisions, in this case the turbulent transport is non-diffusive. Analysis and simulation suggest that the fast ions interact ballistically with stationary two-dimensional electrostatic turbulence. The energy dependence of the transport is well explained by gyro-averaging theory. In new experiments, different sources and obstacles alter the drift-wave turbulence to modify the nature of the transport.
Plume meander and dispersion in a stable boundary layer
NASA Astrophysics Data System (ADS)
Hiscox, April L.; Miller, David R.; Nappo, Carmen J.
2010-11-01
Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (<90 s) from the submesoscale (>90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.
Multi-Scale Modeling and the Eddy-Diffusivity/Mass-Flux (EDMF) Parameterization
NASA Astrophysics Data System (ADS)
Teixeira, J.
2015-12-01
Turbulence and convection play a fundamental role in many key weather and climate science topics. Unfortunately, current atmospheric models cannot explicitly resolve most turbulent and convective flow. Because of this fact, turbulence and convection in the atmosphere has to be parameterized - i.e. equations describing the dynamical evolution of the statistical properties of turbulence and convection motions have to be devised. Recently a variety of different models have been developed that attempt at simulating the atmosphere using variable resolution. A key problem however is that parameterizations are in general not explicitly aware of the resolution - the scale awareness problem. In this context, we will present and discuss a specific approach, the Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, that not only is in itself a multi-scale parameterization but it is also particularly well suited to deal with the scale-awareness problems that plague current variable-resolution models. It does so by representing small-scale turbulence using a classic Eddy-Diffusivity (ED) method, and the larger-scale (boundary layer and tropospheric-scale) eddies as a variety of plumes using the Mass-Flux (MF) concept.
Experimental study of stratified jet by simultaneous measurements of velocity and density fields
NASA Astrophysics Data System (ADS)
Xu, Duo; Chen, Jun
2012-07-01
Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.
Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P
2016-04-01
Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.
Toward a Greater Understanding of the Reduction of Drift Coefficients in the Presence of Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelbrecht, N. E.; Strauss, R. D.; Burger, R. A.
2017-06-01
Drift effects play a significant role in the transport of charged particles in the heliosphere. A turbulent magnetic field is also known to reduce the effects of particle drifts. The exact nature of this reduction, however, is not clear. This study aims to provide some insight into this reduction and proposes a relatively simple, tractable means of modeling it that provides results in reasonable agreement with numerical simulations of the drift coefficient in a turbulent magnetic field.
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
Laminar and Turbulent Gaseous Diffusion Flames. Appendix C
NASA Technical Reports Server (NTRS)
Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.
Turbulent mixing and removal of ozone within an Amazon rainforest canopy
NASA Astrophysics Data System (ADS)
Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.
2017-03-01
Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to smallmore » Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.« less
Turbulent flow near the wall of a conical diffuser
NASA Astrophysics Data System (ADS)
Satyaprakash, B. R.; Azad, R. S.; Nagabushana, K. A.; Kassab, S. Z.
The turbulent flow in a conical diffuser is predicted adapting the boundary layer calculation method of Bradshaw, Ferris and Atwell. The predicted mean velocity and shear stress profiles, using the experimental data as initial input, agree well with the measured profiles. The universal low of the wall present at the inlet vahishes in the initial region and reappears later, but the width of validity is diminished considerably. The effect of divergence is present in the initial region of the diffuser only. This technique fails to predict beyond one half the total length of the diffuser.
Turbulent MHD transport coefficients - An attempt at self-consistency
NASA Technical Reports Server (NTRS)
Chen, H.; Montgomery, D.
1987-01-01
In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.
Characteristics of Non-Premixed Turbulent Flames in Microgravity
NASA Technical Reports Server (NTRS)
Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.
2001-01-01
This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.
Detailed flow measurements in a centrifugal compressor vaneless diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinarbasi, A.; Johnson, M.W.
1994-07-01
Hot-wire anemometer measurements have been made in the vaneless diffuser of a 1-m-dia low-speed backswept centrifugal compressor using a phase lock loop technique. Radial, tangential, and axial velocity measurements have been made on eight measurement planes through the diffuser. The flow field at the diffuser entry clearly shows the impeller jet-wake flow pattern and the blade wakes. The passage wake is located on the shroud side of the diffuser and mixes out slowly as the flow moves through the diffuser. The blade wakes, on the other hand, distort and mix out rapidly in the diffuser. Contours of turbulent kinetic energymore » are also presented on each of the measurement stations, from which the regions of turbulent mixing can be deduced.« less
Structure of turbulent non-premixed flames modeled with two-step chemistry
NASA Technical Reports Server (NTRS)
Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.
1992-01-01
Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.
NASA Astrophysics Data System (ADS)
Martinez, Luis; Meneveau, Charles
2014-11-01
Large Eddy Simulations (LES) of the flow past a single wind turbine with uniform inflow have been performed. A goal of the simulations is to compare two turbulence subgrid-scale models and their effects in predicting the initial breakdown, transition and evolution of the wake behind the turbine. Prior works have often observed negligible sensitivities to subgrid-scale models. The flow is modeled using an in-house LES with pseudo-spectral discretization in horizontal planes and centered finite differencing in the vertical direction. Turbines are represented using the actuator line model. We compare the standard constant-coefficient Smagorinsky subgrid-scale model with the Lagrangian Scale Dependent Dynamic model (LSDM). The LSDM model predicts faster transition to turbulence in the wake, whereas the standard Smagorinsky model predicts significantly delayed transition. The specified Smagorinsky coefficient is larger than the dynamic one on average, increasing diffusion thus delaying transition. A second goal is to compare the resulting near-blade properties such as local aerodynamic forces from the LES with Blade Element Momentum Theory. Results will also be compared with those of the SOWFA package, the wind energy CFD framework from NREL. This work is supported by NSF (IGERT and IIA-1243482) and computations use XSEDE resources, and has benefitted from interactions with Dr. M. Churchfield of NREL.
NASA Technical Reports Server (NTRS)
Barr, P. K.
1980-01-01
An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.
Laminar flamelet modeling of turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Mell, W. E.; Kosaly, G.; Planche, O.; Poinsot, T.; Ferziger, J. H.
1990-01-01
In modeling turbulent combustion, decoupling the chemistry from the turbulence is of great practical significance. In cases in which the equilibrium chemistry model breaks down, laminar flamelet modeling (LFM) is a promising approach to decoupling. Here, the validity of this approach is investigated using direct numerical simulation of a simple chemical reaction in two-dimensional turbulence.
Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions
NASA Astrophysics Data System (ADS)
Evoy, E.; Kamal, S.; Bertram, A. K.
2017-12-01
Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.
NASA Astrophysics Data System (ADS)
Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.
2016-12-01
The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the diffusion regions. At stage IV, the magnetic reconnection type nanoplasmid (200km) stop expanding and carrying enough energy to eject particles as constant velocity. Last, the role of magnetic field turbulence and electric field turbulence in electron and ion acceleration at the diffusion regions in solar flare fractural current sheet is given.
Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents
NASA Astrophysics Data System (ADS)
Diez, M.; Redondo, J. M.
2009-04-01
As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities between different sites is not direct and a good understanding of the dominant mixing processes is needed. There is an increase of diffusivity with wave height but only for large Wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal diffusivity shows a marked anisotropy as a function of wave height and distance from the coast. The measurements were performed under a variety of weather conditions conditional sampling has been used to identify the different influences of the environmental agents on the actual effective horizontal diffusion[4]. [1] Bahia E. (1998) "Un estudio numerico experimental de la dispersion de contaminantes en aguas costeras, PhD Tesis UPC, Barcelona. [2] Bezerra M.O., (2000) "Diffusion de contaminantes en la costa. , PhD Tesis Uni. De Barcelona, Barcelona. [3] Diez M. (1998) "Estudio de la Hidrodinamica de la zona de rompientes mediante el analisis digital de imagenes. Master Thesis, UPC, Barcelona. [4] Artale V., Boffetta G., Celani A., Cencini M. and Vulpiani A., 1997, "Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient", Physics of Fluids, vol 9, pp 3162-1997
Stochastic differential equations and turbulent dispersion
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
NASA Astrophysics Data System (ADS)
Bourdin, Philippe-A.; Hofer, Bernhard; Narita, Yasuhito
2018-03-01
Electromotive force is an essential quantity in dynamo theory. During a coronal mass ejection (CME), magnetic helicity gets decoupled from the Sun and advected into the heliosphere with the solar wind. Eventually, a heliospheric magnetic transient event might pass by a spacecraft, such as the Helios space observatories. Our aim is to investigate the electromotive force, the kinetic helicity effect (α term), the turbulent diffusion (β term), and the cross-helicity effect (γ term) in the inner heliosphere below 1 au. We set up a one-dimensional model of the solar wind velocity and magnetic field for a hypothetic interplanetary CME. Because turbulent structures within the solar wind evolve much slower than this structure needs to pass by the spacecraft, we use a reduced curl operator to compute the current density and vorticity. We test our CME shock-front model against an observed magnetic transient that passes by the Helios-2 spacecraft. At the peak of the fluctuations in this event we find strongly enhanced α, β, and γ terms, as well as a strong peak in the total electromotive force. Our method allows us to automatically identify magnetic transient events from any in situ spacecraft observations that contain magnetic field and plasma velocity data of the solar wind.
Effect of Free Stream Turbulence on the Performance of a Marine Hydrokinetic Turbine
NASA Astrophysics Data System (ADS)
Vinod, Ashwin; Banerjee, Arindam
2015-11-01
The effects of controlled and elevated levels of free stream turbulence on the performance characteristics of a three bladed, constant chord, untwisted marine hydrokinetic turbine is tested experimentally. Controlled homogeneous free stream turbulence levels ranging from 3% to ~20% are achieved by employing an active grid turbulence generator that is placed at the entrance of the water channel test section and is equipped with motor controlled winglet shafts. In addition to free stream turbulence, various (turbine) operating conditions such as the free stream velocity and rotational speed are varied. A comparison of performance characteristics that includes the mean and standard deviations of the power coefficient (CP) , and thrust coefficient (CT) will be presented and compared to the case of a laminar free stream with FST levels <1%.
Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements
NASA Technical Reports Server (NTRS)
Trefny, C. J.
1985-01-01
Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.
Vertical eddy diffusivity as a control parameter in the tropical Pacific
NASA Astrophysics Data System (ADS)
Martinez Avellaneda, N.; Cornuelle, B.
2011-12-01
Ocean models suffer from errors in the treatment of turbulent sub-grid-scale motions responsible for mixing and energy dissipation. Unrealistic small-scale physics in models can have large-scale consequences, such as biases in the upper ocean temperature, a symptom of poorly-simulated upwelling, currents and air-sea interactions. This is of special importance in the tropical Pacific Ocean (TP), which is home to energetic air-sea interactions that affect global climate. It has been shown in a number of studies that the simulated ENSO variability is highly dependent on the state of the ocean (e.g.: background mixing). Moreover, the magnitude of the vertical numerical diffusion is of primary importance in properly reproducing the Pacific equatorial thermocline. This work is part of a NASA-funded project to estimate the space- and time-varying ocean mixing coefficients in an eddy-permitting (1/3dgr) model of the TP to obtain an improved estimate of its time-varying circulation and its underlying dynamics. While an estimation procedure for the TP (26dgr S - 30dgr N) in underway using the MIT general circulation model, complementary adjoint-based sensitivity studies have been carried out for the starting ocean state from Forget (2010). This analysis aids the interpretation of the estimated mixing coefficients and possible error compensation. The focus of the sensitivity tests is the Equatorial Undercurrent and sub-thermocline jets (i.e., Tsuchiya Jets), which have been thought to have strong dependence on vertical diffusivity and should provide checks on the estimated mixing parameters. In order to build intuition for the vertical diffusivity adjoint results in the TP, adjoint and forward perturbed simulations were carried out for an idealized sharp thermocline in a rectangular domain.
The Formation of Super-Earths by Tidally Forced Turbulence
NASA Astrophysics Data System (ADS)
Yu, Cong
2017-12-01
The Kepler observations indicate that many exoplanets are super-Earths, which brings about a puzzle for the core-accretion scenario. Since observed super-Earths are in the range of critical mass, they accrete gas efficiently and become gas giants. Theoretically, super-Earths are predicted to be rare in the core-accretion framework. To resolve this contradiction, we propose that the tidally forced turbulent diffusion may affect the heat transport inside the planet. Thermal feedback induced by turbulent diffusion is investigated. We find that the tidally forced turbulence generates pseudo-adiabatic regions within radiative zones, which pushes the radiative-convective boundaries inward. This decreases the cooling luminosity and enhances the Kelvin-Helmholtz (KH) timescale. For a given lifetime of protoplanetary disks (PPDs), there exists a critical threshold for the turbulent diffusivity, ν critical. If ν turb > ν critical, the KH timescale is longer than the disk lifetime and the planet becomes a super-Earth, rather than a gas giant. We find that even a small value of turbulent diffusion has influential effects on the evolution of super-Earths. The ν critical increases with the core mass. We further ascertain that, within the minimum-mass extrasolar nebula, ν critical increases with the semimajor axis. This may explain the feature that super-Earths are common in inner PPD regions, while gas giants are common in outer PPD regions. The predicted envelope mass fraction is not fully consistent with observations. We discuss physical processes, such as late core assembly and mass-loss mechanisms, that may be operating during super-Earth formation.
NASA Astrophysics Data System (ADS)
Michaud, Georges
Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars.
NASA Astrophysics Data System (ADS)
Michaud, Georges
Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars
NASA Astrophysics Data System (ADS)
Michaud, Georges; Richard, Olivier; Richer, Jacques
2005-01-01
Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars.
Anatomy of small-scale mixing along a Northeast Atlantic transect
NASA Astrophysics Data System (ADS)
Jurado, Elena; Dijkstra, Henk A.; van der Woerd, Hans; Brussaard, Corina
2010-05-01
The study of turbulence occurring at the smallest scales, in the energy dissipation range, is required when evaluating interrelations between turbulent mixing and phytoplankton distribution. To derive microturbulent parameters, microstructure profiler surveys, consisting in high resolution temperature, salinity or velocity vertical profiles have been performed in localized regions of the open ocean. However, they are very localized and based on few datasets, difficult to extrapolate to other regions due to the dependence on the local background conditions. During the STRATIPHYT-I cruise (July-August 2009) from Las Palmas (Gran Canaria) to Reykjavik (Iceland), high resolution measurements of both turbulent mixing (with a Self Contained Autonomous Micro Profiler, SCAMP) and phytoplankton have been carried out in the top 100 m of the ocean. With these data, the gradient from a more stratified, warmer surface water tropical environment to a less stratified subpolar ocean environment is covered. Adding up a total of 15 stations and 148 profiles, it constitutes the most extensive dataset of directly derived vertical mixing coefficients in a latitudinal transect of the Northeast Atlantic. In the presentation, the focus is on the explanation of the changes in turbulent mixing along the cruise section, recalling in its latitudinal gradient and presenting parameters that can further help to evaluate effects in the phytoplankton distribution. Side issues such as the encountered disagreement between heat and density eddy diffusivities and an analysis of the main source of instabilities through GOTM model and an internal wave analysis, are also treated in detail.
Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; ...
2015-09-01
The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore » the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less
Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange
NASA Astrophysics Data System (ADS)
Poindexter, C.; Variano, E. A.
2010-12-01
Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the gas transfer coefficient, k, for both a vegetated condition and a control condition (no cylinders). The presence of cylinders in the tank substantially increased the rate of the gas transfer. For the highest wind speed, the gas transfer coefficient was several times higher when cylinders were present compared to when they were not. The gas transfer coefficient for the vegetated condition also proved sensitive to wind speed, increasing markedly with increasing mean wind speeds. Profiles of dissolved oxygen revealed well-mixed conditions in the bulk water column following prolonged air-flow above the water surface, suggesting application of the thin-film model is appropriate. The enhanced gas exchange observed might be explained by increased turbulent kinetic energy within the water column and the anisotropy of the cylinder array, which constrains horizontal motions more than vertical motions. Improved understanding of gas exchange in vegetated water columns may be of particularly use to investigations of carbon fluxes and soil accretion in wetlands. Reference: Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahidi, R.; Chakroun, W.; Al-Fahed, S.
2005-11-01
Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-frictionmore » coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.« less
Stellwagen, Earle; Stellwagen, Nancy C
2015-09-01
Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.
Heat transfer and fluid mechanics measurements in transitional boundary layer flows
NASA Technical Reports Server (NTRS)
Wang, T.; Simon, T. W.; Buddhavarapu, J.
1985-01-01
Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
NASA Astrophysics Data System (ADS)
Watanabe, T.; Nagata, K.
2016-08-01
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K.
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting amore » value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.« less
The role of intra-NAPL diffusion on mass transfer from MGP residuals
NASA Astrophysics Data System (ADS)
Shafieiyoun, Saeid; Thomson, Neil R.
2018-06-01
An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.
Quantitative photography of intermittency in surface wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, W.; Budakian, R.; Putterman, S.J.
1997-12-31
At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state.
Statistical analysis of Hasegawa-Wakatani turbulence
NASA Astrophysics Data System (ADS)
Anderson, Johan; Hnat, Bogdan
2017-06-01
Resistive drift wave turbulence is a multipurpose paradigm that can be used to understand transport at the edge of fusion devices. The Hasegawa-Wakatani model captures the essential physics of drift turbulence while retaining the simplicity needed to gain a qualitative understanding of this process. We provide a theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent events in Hasegawa-Wakatani turbulence with enforced equipartition of energy in large scale zonal flows, and small scale drift turbulence. We find that for a wide range of adiabatic index values, the stochastic component representing the small scale turbulent eddies of the flow, obtained from the autoregressive integrated moving average model, exhibits super-diffusive statistics, consistent with intermittent transport. The PDFs of large events (above one standard deviation) are well approximated by the Laplace distribution, while small events often exhibit a Gaussian character. Furthermore, there exists a strong influence of zonal flows, for example, via shearing and then viscous dissipation maintaining a sub-diffusive character of the fluxes.
The closure problem for turbulence in meteorology and oceanography
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.
1985-01-01
The dependent variables used for computer based meteorological predictions and in plans for oceanographic predictions are wave number and frequency filtered values that retain only scales resolvable by the model. Scales unresolvable by the grid in use become 'turbulence'. Whether or not properly processed data are used for initial values is important, especially for sparce data. Fickian diffusion with a constant eddy diffusion is used as a closure for many of the present models. A physically realistic closure based on more modern turbulence concepts, especially one with a reverse cascade at the right times and places, could help improve predictions.
Effective diffusion coefficient including the Marangoni effect
NASA Astrophysics Data System (ADS)
Kitahata, Hiroyuki; Yoshinaga, Natsuhiko
2018-04-01
Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.
NASA Technical Reports Server (NTRS)
Massman, William J.
1987-01-01
The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.
A Model of Magnetic Braking of Solar Rotation that Satisfies Observational Constraints
NASA Astrophysics Data System (ADS)
Denissenkov, Pavel A.
2010-08-01
The model of magnetic braking of solar rotation considered by Charbonneau & MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.
NASA Technical Reports Server (NTRS)
Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.
1993-01-01
A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.
Excitation of turbulence by density waves
NASA Technical Reports Server (NTRS)
Tichen, C. M.
1985-01-01
A nonlinear system describes the microdynamical state of turbulence that is excited by density waves. It consists of an equation of propagation and a master equation. A group-scaling generates the scaled equations of many interacting groups of distribution functions. The two leading groups govern the transport processes of evolution and eddy diffusivity. The remaining sub-groups represent the relaxation for the approach of diffusivity to equilibrium. In strong turbulence, the sub-groups disperse themselves and the ensemble acts like a medium that offers an effective damping to close the hierarchy. The kinetic equation of turbulence is derived. It calculates the eddy viscosity and identifies the effective damping of the assumed medium self-consistently. It formulates the coupling mechanism for the intensification of the turbulent energy at the expense of the wave energy, and the transfer mechanism for the cascade. The spectra of velocity and density fluctuations find the power law k sup-2 and k sup-4, respectively.
NASA Astrophysics Data System (ADS)
Bywater, R. J.
1980-01-01
Solutions are presented for the turbulent diffusion flame in a two-dimensional shear layer based upon a kinetic theory of turbulence (KTT). The fuel and oxidizer comprising the two streams are considered to react infinitely fast according to a one-step, irreversible kinetic mechanism. The solutions are obtained by direct numerical calculation of the transverse velocity probability density function (PDF) and the associated species distributions. The mean reactant profiles calculated from the solutions display the characteristic thick, turbulent flame zone. The phenomena result from the fact that in the context of the KTT, species react only when in the same velocity cell. This coincides with the known physical requirement that molecular mixing precedes reaction. The solutions demonstrate this behavior by showing how reactants can coexist in the mean, even when infinite reaction rates are enforced at each point (t,x,u) of velocity space.
High range free space optic transmission using new dual diffuser modulation technique
NASA Astrophysics Data System (ADS)
Rahman, A. K.; Julai, N.; Jusoh, M.; Rashidi, C. B. M.; Aljunid, S. A.; Anuar, M. S.; Talib, M. F.; Zamhari, Nurdiani; Sahari, S. k.; Tamrin, K. F.; Jong, Rudiyanto P.; Zaidel, D. N. A.; Mohtadzar, N. A. A.; Sharip, M. R. M.; Samat, Y. S.
2017-11-01
Free space optical communication fsoc is vulnerable with fluctuating atmospheric. This paper focus analyzes the finding of new technique dual diffuser modulation (ddm) to mitigate the atmospheric turbulence effect. The performance of fsoc under the presence of atmospheric turbulence will cause the laser beam keens to (a) beam wander, (b) beam spreading and (c) scintillation. The most deteriorate the fsoc is scintillation where it affected the wavefront cause to fluctuating signal and ultimately receiver can turn into saturate or loss signal. Ddm approach enhances the detecting bit `1' and bit `0' and improves the power received to combat with turbulence effect. The performance focus on signal-to-noise (snr) and bit error rate (ber) where the numerical result shows that the ddm technique able to improves the range where estimated approximately 40% improvement under weak turbulence and 80% under strong turbulence.
A two-equation model for heat transport in wall turbulent shear flows
NASA Astrophysics Data System (ADS)
Nagano, Y.; Kim, C.
1988-08-01
A new proposal for closing the energy equation is presented at the two-equation level of turbulence modeling. The eddy diffusivity concept is used in modeling. However, just as the eddy viscosity is determined from solutions of the k and epsilon equations, so the eddy diffusivity for heat is given as functions of temperature variance, and the dissipation rate of temperature fluctuations, together with k and epsilon. Thus, the proposed model does not require any questionable assumptions for the 'turbulent Prandtl number'. Modeled forms of the equations are developed to account for the physical effects of molecular Prandtl number and near-wall turbulence. The model is tested by application to a flat-plate boundary layer, the thermal entrance region of a pipe, and the turbulent heat transfer in fluids over a wide range of the Prandtl number. Agreement with the experiment is generally very satisfactory.
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.; Hoffman, Joe D.
1993-01-01
An advanced engineering computational model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multi-species, chemically reacting and diffusing Navier-Stokes equations are modelled, finite difference approach that is tailored to be conservative in an axisymmetric coordinate system for both the inviscid and viscous terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and transpiration cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent plug-and-spool rocket engine analysis cases performed. Further, the Soret term was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration cooled rocket engine.
Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis
2017-10-01
In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
NASA Astrophysics Data System (ADS)
Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu
2018-04-01
Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.
Repeated-cascade theory of strong turbulence in a magnetized plasma
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1976-01-01
A two-dimensional Navier-Stokes equation of vorticity in fluid turbulence is used to model drift turbulence in a plasma with a strong constant magnetic field and a constant mean density gradient. The nonlinear eddy diffusivity is described by a time-integrated Lagrangian correlation of velocities, and the repeated-cascade method is employed to choose the rank accounting for nearest-neighbor interactions, to calculate the Lagrangian correlation, and to close the correlation hierarchy. As a result, the diffusivity becomes dependent on the plasma's induced diffusion and is represented by a memory chain that is cut off by similarity and inertial randomization. Spectral laws relating the kinetic-energy spectrum to the -5, -5/2, -3, and -11 powers of wavenumber are derived for the velocity subranges of production, approach to inertia, inertia, and dissipation, respectively. It is found that the diffusivity is proportional to some inverse power of the magnetic field, that power being 1, 2/3, 5/6, and 2, respectively, for the four velocity subranges.
Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A.; Chen, C. P.
1990-01-01
Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.
Stochastic nature of series of waiting times.
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H; Salehi, E; Behjat, E; Qorbani, M; Nezhad, M Khazaei; Zirak, M; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Stochastic nature of series of waiting times
NASA Astrophysics Data System (ADS)
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Merunka, Dalibor; Peric, Miroslav
2017-05-25
Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.
Vendelin, Marko; Birkedal, Rikke
2008-01-01
A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224
Fluid self-diffusion in Scots pine sapwood tracheid cells.
Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B
2006-02-09
The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.
Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.
1993-01-01
Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.
Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oran, E.S.; Boris, J.P.
1991-01-01
Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less
Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
NASA Astrophysics Data System (ADS)
Schlup, Jason; Blanquart, Guillaume
2018-03-01
The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.
K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution
DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...
2017-06-09
The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less
On time-dependent diffusion coefficients arising from stochastic processes with memory
NASA Astrophysics Data System (ADS)
Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.
2017-08-01
Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.
Gas diffusion in and out of super-hydrophobic surface in transitional and turbulent boundary layers
NASA Astrophysics Data System (ADS)
Ling, Hangjian; Fu, Matthew; Hultmark, Marcus; Katz, Joseph
2017-11-01
The rate of gas diffusion in and out of a super-hydrophobic surface (SHS) located in boundary layers is investigated at varying Reynolds numbers and ambient pressures. The hierarchical SHS consists of nano-textured, 100 μm wide spanwise grooves. The boundary layers over the SHS under the Cassie-Baxter and Wenzel states as well as a smooth wall at same conditions are characterized by particle image velocimetry. The Reynolds number based on momentum thickness of the smooth wall, ReΘ0, ranges from 518 to 2088, covering transitional and turbulent boundary layer regimes. The mass diffusion rate is estimated by using microscopy to measure the time-evolution of plastron shape and volume. The data is used for calculating the Sherwood number based on smooth wall momentum thickness, ShΘ0. As expected, the diffusion rate increases linearly with the under- or super-saturation level, i.e., ShΘ0 is independent of ambient pressure. For the turbulent boundary layers, the data collapses onto ShΘ0 = 0.47ReΘ00.77 . For the transitional boundary layer, ShΘ0 is lower than the turbulent power law. When ShΘ0 is plotted against the friction Reynolds number (Reτ0) , both the transitional and turbulent boundary layer data collapse onto a single power law, ShΘ0 = 0.34Reτ00.913 . Results scaled based on Wenzel state momentum thickness show very similar trends. Sponsored by ONR.
A diapycnal diffusivity model for stratified environmental flows
NASA Astrophysics Data System (ADS)
Bouffard, Damien; Boegman, Leon
2013-06-01
The vertical diffusivity of density, Kρ, regulates ocean circulation, climate and coastal water quality. Kρ is difficult to measure and model in these stratified turbulent flows, resulting in the need for the development of Kρ parameterizations from more readily measurable flow quantities. Typically, Kρ is parameterized from turbulent temperature fluctuations using the Osborn-Cox model or from the buoyancy frequency, N, kinematic viscosity, ν, and the rate of dissipation of turbulent kinetic energy, ɛ, using the Osborn model. More recently, Shih et al. (2005, J. Fluid Mech. 525: 193-214) proposed a laboratory scale parameterization for Kρ, at Prandtl number (ratio of the viscosity over the molecular diffusivity) Pr = 0.7, in terms of the turbulence intensity parameter, Re=ɛ/(νN), which is the ratio between the destabilizing effect of turbulence to the stabilizing effects of stratification and viscosity. In the present study, we extend the SKIF parameterization, against extensive sets of published data, over 0.7 < Pr < 700 and validate it at field scale. Our results show that the SKIF model must be modified to include a new Buoyancy-controlled mixing regime, between the Molecular and Transitional regimes, where Kρ is captured using the molecular diffusivity and Osborn model, respectively. The Buoyancy-controlled regime occurs over 10Pr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.
2010-08-15
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less
Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi
2018-01-01
The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.
NASA Astrophysics Data System (ADS)
Kim, Kyoungyoun; Sureshkumar, Radhakrishna
2018-03-01
The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.
Magnetic flux concentration and zonal flows in magnetorotational instability turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu
2014-11-20
Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less
NASA Astrophysics Data System (ADS)
Laitinen, T. L.; Kopp, A.; Effenberger, F.; Dalla, S.; Marsh, M. S.
2014-12-01
Multi-spacecraft observations of Solar Energetic Particles (SEPs) show that the SEPs can spread large distances across the mean Parker spiral field. The SEPs accelerated during a solar eruption can be observed 360° around the Sun, and the dependence of SEP peak intensity on heliographic longitude at 1 AU has been fitted with Gaussian profiles with σ=30-50° for several events (e.g., Dresing et al 2014; Richardson et al 2014). SEP anisotropy measurements suggest that interplanetary transport is an important factor to the SEP cross-field extent (Dresing et al 2014). However, the currently used diffusive Fokker Planck (FP) description of SEP transport, with realistic diffusion coefficients, has been found insufficient to explain the SEP event cross-field extents. Recently Laitinen et al (2013) emphasised the importance of particle propagation along meandering field lines, which cannot be described as diffusion. They showed that early in an event field line meandering dominates particle cross-field transport and produces events wider than the FP description. They also introduced a new FP model that incorporates both field line meandering and SEP cross-field diffusion using stochastic differential equations and a constant background magnetic field. In this work, we implement the new FP model into Parker field geometry, to study the evolution of an SEP event in the interplanetary space. We compare the new model to the traditional FP approach by using particle and field line diffusion coefficients that are calculated consistently for both models using an assumed radial and spectral description of the turbulence evolution. We find that while the traditional SEP propagation modelling gives typically longitudinal extent with σ=10-20°, the new model results in values σ=30-50°, which is consistent with SEP observations. We conclude that field line meandering must be taken into account when modelling SEP propagation in the interplanetary space.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio
2013-02-01
We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.
NASA Technical Reports Server (NTRS)
Mark, W. D.
1977-01-01
Mathematical expressions were derived for the exceedance rates and probability density functions of aircraft response variables using a turbulence model that consists of a low frequency component plus a variance modulated Gaussian turbulence component. The functional form of experimentally observed concave exceedance curves was predicted theoretically, the strength of the concave contribution being governed by the coefficient of variation of the time fluctuating variance of the turbulence. Differences in the functional forms of response exceedance curves and probability densities also were shown to depend primarily on this same coefficient of variation. Criteria were established for the validity of the local stationary assumption that is required in the derivations of the exceedance curves and probability density functions. These criteria are shown to depend on the relative time scale of the fluctuations in the variance, the fluctuations in the turbulence itself, and on the nominal duration of the relevant aircraft impulse response function. Metrics that can be generated from turbulence recordings for testing the validity of the local stationary assumption were developed.
Resolving High Amplitude Surface Motion with Diffusing Light
NASA Technical Reports Server (NTRS)
Wright, W.; Budakian, R.; Putterman, Seth J.
1996-01-01
A new technique has been developed for the purpose of imaging high amplitude surface motion. With this method one can quantitatively measure the transition to ripple wave turbulence. In addition, one can measure the phase of the turbulent state. These experiments reveal strong coherent structures in turbulent range of motion.
Two-fluid models of turbulence
NASA Technical Reports Server (NTRS)
Spalding, D. B.
1985-01-01
The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown.
Survey and analysis of multiresolution methods for turbulence data
Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; ...
2015-11-10
This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 512 3 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Re t = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisonsmore » between the algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.« less
A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation
NASA Astrophysics Data System (ADS)
Samiee, Mehdi; Zayernouri, Mohsen
2016-11-01
We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.
Stellar evolution with turbulent diffusion. I. A new formalism of mixing.
NASA Astrophysics Data System (ADS)
Deng, L.; Bressan, A.; Chiosi, C.
1996-09-01
In this paper we present a new formulation of diffusive mixing in stellar interiors aimed at casting light on the kind of mixing that should take place in the so-called overshoot regions surrounding fully convective zones. Key points of the analysis are the inclusion the concept of scale length most effective for mixing, by means of which the diffusion coefficient is formulated, and the inclusion of intermittence and stirring, two properties of turbulence known from laboratory fluid dynamics. The formalism is applied to follow the evolution of a 20Msun_ star with composition Z=0.008 and Y=0.25. Depending on the value of the diffusion coefficient holding in the overshoot region, the evolutionary behaviour of the test stars goes from the case of virtually no mixing (semiconvective like structures) to that of full mixing over there (standard overshoot models). Indeed, the efficiency of mixing in this region drives the extension of the intermediate fully convective shell developing at the onset of the the shell H-burning, and in turn the path in the HR Diagram (HRD). Models with low efficiency of mixing burn helium in the core at high effective temperatures, models with intermediate efficiency perform extended loops in the HRD, finally models with high efficiency spend the whole core He-burning phase at low effective temperatures. In order to cast light on this important point of stellar structure, we test whether or not in the regions of the H-burning shell a convective layer can develop. More precisely, we examine whether the Schwarzschild or the Ledoux criterion ought to be adopted in this region. Furthermore, we test the response of stellar models to the kind of mixing supposed to occur in the H-burning shell regions. Finally, comparing the time scale of thermal dissipation to the evolutionary time scale, we get the conclusion that no mixing in this region should occur. The models with intermediate efficiency of mixing and no mixing at all in the shell H-burning regions are of particular interest as they possess at the same time evolutionary characteristics that are separately typical of models calculated with different schemes of mixing. In other words, the new models share the same properties of models with standard overshoot, namely a wider main sequence band, higher luminosity, and longer lifetimes than classical models, but they also possess extended loops that are the main signature of the classical (semiconvective) description of convection at the border of the core.
On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Shuta J.; Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp
The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include themore » energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.« less
Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M
2015-12-01
Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.
Dissipation in the Baltic proper during winter stratification
NASA Astrophysics Data System (ADS)
Lass, Hans Ulrich; Prandke, Hartmut; Liljebladh, Bengt
2003-06-01
Profiles of dissipation rates and stratification between 10 and 120 m depth were measured with a loosely tethered profiler over a 9-day winter period in the Gotland Basin of the Baltic Sea. Supplementary measurements of current profiles were made with moored ADCPs. Temporal and spatial patterns of the stratification were observed by means of towed CTD. Shallow freshwater lenses in the surface mixed layer, mesoscale eddies, inertial oscillations, and inertial waves as part of the internal wave spectrum provided the marine physical environment for the small-scale turbulence. Two well-separated turbulence regimes were detected. The turbulence in the surface mixed layer was well correlated with the wind. The majority of the energy flux from the wind to the turbulent kinetic energy was dissipated within the surface mixed layer. A minor part of this flux was consumed by changes of the potential energy of the fresh water lenses. The penetration depth Hpen of the wind-driven turbulence into the weakly stratified surface mixed layer depended on the local wind speed (W10) as Hpen = cW103/2 Active erosion of the Baltic halocline by wind-driven turbulence is expected for wind speeds greater than 14 m/s. The turbulence in the strongly stratified interior of the water column was quite independent of the meteorological forcing at the sea surface. The integrated production of turbulent kinetic energy exceeded the energy loss of inertial oscillations in the surface layer suggesting additional energy sources which might have been provided by inertial wave radiation during geostrophic adjustment of coastal jets and mesoscale eddies. The averaged dissipation rate profile in the stratified part of the water column, best fitted by ɛ ∝ EN, was different from the scaling of the dissipation in the thermocline of the ocean [, 1986]. The diapycnical mixing coefficient (Kv) was best fit by Kv = a0/N according to [1987] with a0 ≈ 0.87 × 10-7 m2/s2. The diapycnal diffusivity estimated from the dissipation rate was lower than those estimated by the bulk method.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Energetic Particle Transport across the Mean Magnetic Field: Before Diffusion
NASA Astrophysics Data System (ADS)
Laitinen, T.; Dalla, S.
2017-01-01
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1-10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.
A priori analysis of differential diffusion for model development for scale-resolving simulations
NASA Astrophysics Data System (ADS)
Hunger, Franziska; Dietzsch, Felix; Gauding, Michael; Hasse, Christian
2018-01-01
The present study analyzes differential diffusion and the mechanisms responsible for it with regard to the turbulent/nonturbulent interface (TNTI) with special focus on model development for scale-resolving simulations. In order to analyze differences between resolved and subfilter phenomena, direct numerical simulation (DNS) data are compared with explicitly filtered data. The DNS database stems from a temporally evolving turbulent plane jet transporting two passive scalars with Schmidt numbers of unity and 0.25 presented by Hunger et al. [F. Hunger et al., J. Fluid Mech. 802, R5 (2016), 10.1017/jfm.2016.471]. The objective of this research is twofold: (i) to compare the position of the turbulent-nonturbulent interface between the original DNS data and the filtered data and (ii) to analyze differential diffusion and the impact of the TNTI with regard to scale resolution in the filtered DNS data. For the latter, differential diffusion quantities are studied, clearly showing the decrease of differential diffusion at the resolved scales with increasing filter width. A transport equation for the scalar differences is evaluated. Finally, the existence of large scalar gradients, gradient alignment, and the diffusive fluxes being the physical mechanisms responsible for the separation of the two scalars are compared between the resolved and subfilter scales.
NASA Astrophysics Data System (ADS)
Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong
2018-05-01
Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.
NASA Astrophysics Data System (ADS)
Bardoczi, Laszlo
Neoclassical Tearing Modes (NTMs) are a major impediment in the development of operational scenarios of present toroidal fusion devices. The multi-scale and non-linear interaction of NTMs with turbulence has been an active field of theoretical plasma research in the past decade for its role in plasma confinement. However, little to no experimental effort has been devoted to explore this interaction. As part of this thesis, dedicated experiments were conducted utilizing the full complement of the DIII-D turbulence diagnostics to study the effect of NTM on turbulence as well as the effect of turbulence on NTM growth. The first localized measurements of long and intermediate wavelength turbulent density fluctuations and long wavelength turbulent electron temperature fluctuations modified by magnetic islands are presented. These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) scales, respectively. Two regimes were observed when tracking density fluctuations during NTM evolution: (1) small islands are characterized by steep electron temperature radial profile and turbulence levels comparable to that of the background; (2) large islands have a flat electron temperature profile and reduced turbulence level at the O-point. Radially outside of the large island, the electron temperature profile is steeper and the turbulence level increased compared to the no or small island case. It was also found that turbulence is reduced in the O-point region compared to the X-point region. This helical structure of turbulence modification leads to a 15% modulation of the density fluctuation power as the island rotates in the lab frame and this modulation is nearly in phase with the electron temperature modulation. These measurements were also used to determine the turbulence penetration length scale at the island separatrix and was found that the turbulence penetration length scale is on the order of the threshold island width for temperature flattening and turbulence reduction to occur at the O-point. This suggests that the physics of island transition could be related to turbulence penetration into the island. In addition, a novel, anisotropic, non-linear heat transport model of magnetic islands with spatially non-uniform cross-field thermal diffusivity was developed. This model was utilized to derive the diffusivity at the O-point from measured electron temperature data and it was found that the diffusivity at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport. As the anomalously large values of the diffusivity are often attributed to turbulence driven transport, the reduction of the diffusivity is consistent with the found turbulence reduction at the O-point. Complementing the experimental results of turbulence-NTM interaction described in this thesis, qualitative comparisons were carried out for the first time to GENE non-linear gyrokinetic turbulence simulations employing static magnetic islands. These simulations qualitatively replicate the measured 2D response of turbulence as well as the observed scaling with island size. The consequences of the observed NTM-turbulence interaction on the global plasma confinement were studied via analyses of simultaneous changes in NTM amplitude, plasma profiles, turbulence, fluxes and confinement. It was found that the global confinement degradation is intimately linked to the turbulence enhancement outside of the island region (induced by the island). Experimentally observed local turbulence and transport reduction at the O-point, as well as the effect of global confinement decrease was incorporated in the dynamical equation of NTMs, which shows that the NTM growth rate increases when turbulence and gradients are reduced inside the island (right after the transition from small to large island regime). Additionally, the shrinking of NTM islands due to strong temperature perturbations associated with Edge Localized Modes was observed. Simultaneous increase in turbulence level at the O-point was also observed and the data suggests that this temporal increase of turbulence level at the O-point accelerates NTM recovery after the ELM-crash. This is facilitated via the fast turbulent cross-field transport that leads to a rapid restoration of the flat profile (and bootstrap current perturbation) at the O-point. Finally, a series of low torque H-mode experiments were carried out to measure the perturbed ion temperature and toroidal flow profiles via CER across slowly rotating islands. Comparison of the observed flow perturbation to the gyrokinetic simulations suggests that large islands develop a vortex like plasma flow circulating around the O-point.
Performance Characteristics of Plane-Wall Two-Dimensional Diffusers
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1953-01-01
Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre; ...
2018-05-16
Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre
Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less
Computational Study of Separating Flow in a Planar Subsonic Diffuser
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.
2005-01-01
A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.
NASA Astrophysics Data System (ADS)
Tanaka, Hiroaki; Takahashi, Sachiko; Yamanaka, Mari; Yoshizaki, Izumi; Sato, Masaru; Sano, Satoshi; Motohara, Moritoshi; Kobayashi, Tomoyuki; Yoshitomi, Susumu; Tanaka, Tetsuo; Fukuyama, Seijiro
2006-09-01
The diffusion coefficients of lysozyme and alpha-amylase were measured in the various polyethylene glycol (PEG) solutions. Obtained diffusion coefficients were studied with the viscosity coefficient of the solution. It was found that the diffusion process of the protein was suppressed with a factor of vγ, where ν is a relative viscosity coefficient of the PEG solution. The value of γ is -0.64 at PEG1500 for both proteins. The value increased to -0.48 at PEG8000 for lysozyme, while decreased to -0.72 for alpha-amylase. The equation of an approximate diffusion coefficient at certain PEG molecular weight and concentration was roughly obtained.
NASA Astrophysics Data System (ADS)
Moshonkin, Sergey; Gusev, Anatoly; Zalesny, Vladimir; Diansky, Nikolay
2017-04-01
Series of experiments were performed with a three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM) using vertical grid refinement in the zone of fully developed turbulence (40 sigma-levels). The model variables are horizontal velocity components, potential temperature, and salinity as well as free surface height. For parameterization of viscosity and diffusivity, the original splitting turbulence algorithm (STA) is used when total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF) split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage the analytical solution was obtained for TKE and TDF as functions of the buoyancy and velocity shift frequencies (BF and VSF). The proposed model with STA is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. For mixing simulation in the zone of turbulence decay, the two kind numerical experiments were carried out, as with assimilation of annual mean climatic buoyancy frequency, as with variation of Prandtl number function dependence upon the BF, VSF, TKE and TDF. The CORE-II data for 1948-2009 were used for experiments. Quality of temperature T and salinity S structure simulation is estimated by the comparison of model monthly profiles T and S averaged for 1980-2009, with T and S monthly data from the World Ocean Atlas 2013. Form of coefficients in equations for TKE and TDF on the generation-dissipation stage makes it possible to assimilate annual mean climatic buoyancy frequency in a varying degree that cardinally improves adequacy of model results to climatic data in all analyzed model domain. The numerical experiments with modified Prandtl number presents possibility for essential improvement of the TKE attenuation with depth and more realistic water entrainment from pycnocline into the mixed layer. The high sensitivity is revealed of the eddy-permitting circulation stable model solution to the change of the used above mixing parameterizations. This sensitivity is connected with significant changes of density fields in the upper baroclinic ocean layer over the total considered area. For instance, assimilation of annual mean climatic buoyancy frequency in equations for TKE and TDF leads to more realistic circulation in the North Atlantic. Variations of Prandtl number made it possible to simulate intense circulation in Beaufort Gyre owing to steric effect during the whole period under consideration. The research was supported by the Russian Foundation for Basic Research (grants №16-05-00534 and 15-05-00557).
NASA Astrophysics Data System (ADS)
Simón-Moral, Andres; Santiago, Jose Luis; Krayenhoff, E. Scott; Martilli, Alberto
2014-06-01
A Reynolds-averaged Navier-Stokes model is used to investigate the evolution of the sectional drag coefficient and turbulent length scales with the layouts of aligned arrays of cubes. Results show that the sectional drag coefficient is determined by the non-dimensional streamwise distance (sheltering parameter), and the non-dimensional spanwise distance (channelling parameter) between obstacles. This is different than previous approaches that consider only plan area density . On the other hand, turbulent length scales behave similarly to the staggered case (e. g. they are function of only). Analytical formulae are proposed for the length scales and for the sectional drag coefficient as a function of sheltering and channelling parameters, and implemented in a column model. This approach demonstrates good skill in the prediction of vertical profiles of the spatially-averaged horizontal wind speed.
A consistent transported PDF model for treating differential molecular diffusion
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Zhang, Pei
2016-11-01
Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.
Studying Suspended Sediment Mechanism with Two-Phase PIV
NASA Astrophysics Data System (ADS)
Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.
2017-12-01
Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.
Double-Diffusive Convection at Low Prandtl Number
NASA Astrophysics Data System (ADS)
Garaud, Pascale
2018-01-01
This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.
Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone
NASA Astrophysics Data System (ADS)
Rüdiger, G.; Kitchatinov, L. L.; Brandenburg, A.
2011-03-01
In a density-stratified turbulent medium, the cross helicity < u'ṡ B'> is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s-1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.
Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.
Rogachevskii, Igor; Kleeorin, Nathan
2003-09-01
An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.
Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.
2016-01-01
In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
Turbulence radiation coupling in boundary layers of heavy-duty diesel engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sircar, Arpan; Paul, Chandan; Ferreyro-Fernandez, Sebastian
The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on the most recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating pressures and exhaust-gas recirculation levels typical of modern heavy-duty compression-ignition engines, radiative emissionmore » can be as high as 40% of the wall heat losses, that molecular gas radiation (mainly CO2 and H2O) can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation not only contributes to heat losses, but also changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number.« less
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Sarkar, S.
1993-01-01
The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models.
Systematic study of Reynolds stress closure models in the computations of plane channel flows
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Sarkar, S.
1992-01-01
The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models.
Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2014-04-10
We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less
NASA Astrophysics Data System (ADS)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
Conditional statistics in a turbulent premixed flame derived from direct numerical simulation
NASA Technical Reports Server (NTRS)
Mantel, Thierry; Bilger, Robert W.
1994-01-01
The objective of this paper is to briefly introduce conditional moment closure (CMC) methods for premixed systems and to derive the transport equation for the conditional species mass fraction conditioned on the progress variable based on the enthalpy. Our statistical analysis will be based on the 3-D DNS database of Trouve and Poinsot available at the Center for Turbulence Research. The initial conditions and characteristics (turbulence, thermo-diffusive properties) as well as the numerical method utilized in the DNS of Trouve and Poinsot are presented, and some details concerning our statistical analysis are also given. From the analysis of DNS results, the effects of the position in the flame brush, of the Damkoehler and Lewis numbers on the conditional mean scalar dissipation, and conditional mean velocity are presented and discussed. Information concerning unconditional turbulent fluxes are also presented. The anomaly found in previous studies of counter-gradient diffusion for the turbulent flux of the progress variable is investigated.
Comparison and prediction of chirping in NSTX and DIII-D
NASA Astrophysics Data System (ADS)
Duarte, Vinicius; Berk, Herbert; Gorelenkov, Nikolai; Heidbrink, William; Kramer, Gerrit; Nazikian, Raffi; Pace, David; Podesta, Mario; van Zeeland, Michael
2016-10-01
We present an explanation of why frequency chirping of Alfven waves is ubiquitous in NSTX and rarely observed in DIII-D. A time-delayed cubic nonlinear equation is employed for the study of the onset of nonlinear phase-space structures. Its explosive solutions are chirping precursors. We employ NOVA and NOVA-K codes to provide consistent Alfvenic eigenmodes and weighted physical contributions from all regions of phase space. In addition, TRANSP is employed to determine the diffusivity needed to fulfill power balance. Though background micro-turbulence is usually unimportant in determining the energetic particle spatial profile, it may still be important with regard to whether chirping structures likely form. We show that the energetic particle micro-turbulent induced scattering often competes with collisional pitch-angle scattering. This competition explains the tendency for NSTX, where micro-turbulence is weak, to exhibit Alfvénic chirping, whereas in DIII-D turbulent diffusion usually dominates and chirping is not observed except when micro-turbulence markedly reduces.
A Simple Parameterization of Mixing of Passive Scalars in Turbulent Flows
NASA Astrophysics Data System (ADS)
Nithianantham, Ajithshanthar; Venayagamoorthy, Karan
2015-11-01
A practical model for quantifying the turbulent diascalar diffusivity is proposed as Ks = 1 . 1γ'LTk 1 / 2 , where LT is defined as the Thorpe length scale, k is the turbulent kinetic energy and γ' is one-half of the mechanical to scalar time scale ratio, which was shown by previous researchers to be approximately 0 . 7 . The novelty of the proposed model lies in the use of LT, which is a widely used length scale in stably stratified flows (almost exclusively used in oceanography), for quantifying turbulent mixing in unstratified flows. LT can be readily obtained in the field using a Conductivity, Temperature and Depth (CTD) profiler. The turbulent kinetic energy is mostly contained in the large scales of the flow field and hence can be measured in the field or modeled in numerical simulations. Comparisons using DNS data show remarkably good agreement between the predicted and exact diffusivities. Office of Naval Research and National Science Foundation.
Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu
2017-11-01
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.
Air- ice-snow interaction in the Northern Hemisphere under different stability conditions
NASA Astrophysics Data System (ADS)
Repina, Irina; Chechin, Dmitry; Artamonov, Arseny
2013-04-01
The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of air pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as sea ice, marginal ice zone or stormy sea). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface air layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and even high latitudes of the Northern Hemisphere because the stable conditions above Arctic ice field dominate. Under such conditions the air flow over the uneven surface behaves in the way it does over the even one. This happens because depressions between ridges are filled with heavier air up to the height of irreguralities. As a result, the air moves at the level of ridges without entering depressions. Increased heat and mass transfer over polynyas and leads through self-organization of turbulent convection is found. The work was sponsored by RFBR grants and funded by the Government of the Russian Federation grants.
NASA Astrophysics Data System (ADS)
Zhang, Yunxin
2009-07-01
In this research, diffusion of an overdamped Brownian particle in the tilted periodic potential is investigated. Using the one-dimensional hopping model, the formulations of the mean velocity V and effective diffusion coefficient D of the Brownian particle have been obtained [B. Derrida, J. Stat. Phys. 31 (1983) 433]. Based on the relation between the effective diffusion coefficient and the moments of the mean first passage time, the formulation of effective diffusion coefficient D of the Brownian particle also has been obtained [P. Reimann, et al., Phys. Rev. E 65 (2002) 031104]. In this research, we'll give another analytical expression of the effective diffusion coefficient D from the moments of the particle's coordinate.
Random walk, diffusion and mixing in simulations of scalar transport in fluid flows
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2008-12-01
Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.
Renormalization group analysis of anisotropic diffusion in turbulent shear flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Barton, J. Michael
1991-01-01
The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.
Bio-mixing due to Diel Vertical Migration of Daphnia spp. in a Small Lake
NASA Astrophysics Data System (ADS)
Simoncelli, Stefano; Wain, Danielle; Thackeray, Stephen
2016-04-01
Bio-turbulence or bio-mixing refers to the contribution of living organisms towards the mixing of waters in oceans and lakes. Experimental measurements in an unstratified tank by Wilhelmus & Dabiri (2014) show that zooplankton can trigger fluid instabilities through collective motions and that energy is imparted to scales bigger than organism's size of few mm. Length scales analysis, for low-Reynolds-number organisms in stratified water by Leshansky & Pismen (2010) and Kunze (2011), estimate eddy diffusivity up two orders of magnitude larger than the molecular thermal diffusivity. Very recently, Wand & Ardekani (2015) showed a maximum diffusivity of 10-5 m2/s for millimetre-sized organisms from numerical simulations in the intermediate Reynolds number regime. Here we focus our attention on turbulence generated by the vertical migration of zooplankton in a small lake, mostly populated by Daphnia spp. This very common species, belonging to Cladocera order, is engaged in a vertical migration (DVM) at sunset, with many organisms crossing the thermocline despite the density stratification. During the ascension they may create hydrodynamic disturbances in the lake interior where the stratification usually suppresses the vertical diffusion. We have conducted five turbulence experiments in Vobster Quay, a small (area ˜ 59,000 m2), deep (40m) man-made basin with small wind fetch and steep sides, located in the South West UK. Turbulence was measured with a temperature microstructure profiler. To asses the zooplankton vertical concentration we used a 100 μm mesh net, by collecting and analyzing samples in 8 layers of the lake. A bottom-mounted acoustic Doppler current profiler was also employed to track their concentration and migration with the measured backscatter strength. Measured dissipation rates ɛ during the day showed low turbulence level (<= 10-8 W/Kg) in the thermocline and in the zooplankton layer. Turbulence, during the DVM in two different days, is highest on the surface, likely due to surface processes. Peaks of 10-6.5 W/kg were measured within the migrating zooplankton layer with respect to profiles before sunset and estimated eddy diffusivity was as much as 10-5 m2/s. Before and after the time series there was no wind and penetrative convection associated with night-time cooling wasn't active during the experiments. Given the uncertainty in measuring the length scales of turbulence associated with small zooplankton and the presence of turbulence patches outside the migrating layer, further datasets are needed for definitive conclusions.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.
1999-01-01
In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point closure has none. After the extensive comparisons presented in papers 1 and 2, we conclude that the new model presented here is overall superior for it not only is parameter free but also 2 because is part of a more general turbulence model that has been previously successfully tested on a wide variety of other types of turbulent flows.
NASA Technical Reports Server (NTRS)
Okhio, Cyril B.
1996-01-01
A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers has been initiated under this award in order to establish the most pertinent design parameters and hence performance characteristics for such devices, an the implications of their application in the design of engine components in the aerospace industries. The diffusers under this study are expected to contain appreciable regions of stall and the effects of swirl on their performance are being studied. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuse geometry and the subsequent downloading of such data to a CNC machine at Central State University (CSU). Two experimental run segments have been completed so far during FY-95 involving flow visualization and diffuser performance evaluation based on Kinetic Energy Dissipation. The method of calculation of the performance of diffusers based on pressure recovery coefficient has been shown to have some shortcomings and so the kinetic energy dissipation approach has been introduced in the run segment two with some success. The application of the discretized, full Navier Stokes and Continuity equations to the numerical study of the problem described above for the time-mean flow is expected to follow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The result of the investigations are expected to indicate that more cost effective component design of such devices as diffusers which normally contain complex flows can still be achieved.
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.; ...
2018-05-05
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
An application of a two-equation model of turbulence to three-dimensional chemically reacting flows
NASA Technical Reports Server (NTRS)
Lee, J.
1994-01-01
A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.
Density probability distribution functions of diffuse gas in the Milky Way
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Fletcher, A.
2008-10-01
In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of
NASA Technical Reports Server (NTRS)
Walowit, Jed A.
1994-01-01
A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.
Turbulence model sensitivity and scour gap effect of unsteady flow around pipe: a CFD study.
Ali, Abbod; Sharma, R K; Ganesan, P; Akib, Shatirah
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.
Impact of multi-component diffusion in turbulent combustion using direct numerical simulations
Bruno, Claudio; Sankaran, Vaidyanathan; Kolla, Hemanth; ...
2015-08-28
This study presents the results of DNS of a partially premixed turbulent syngas/air flame at atmospheric pressure. The objective was to assess the importance and possible effects of molecular transport on flame behavior and structure. To this purpose DNS were performed at with two proprietary DNS codes and with three different molecular diffusion transport models: fully multi-component, mixture averaged, and imposing the Lewis number of all species to be unity.
Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE; Matthaeus, William H.
1990-01-01
A framework based on turbulence theory is presented to develop approximations for the local turbulence effects that are required in transport models. An approach based on Kolmogoroff-style dimensional analysis is presented as well as one based on a wave-number diffusion picture. Particular attention is given to the case of MHD turbulence with arbitrary cross helicity and with arbitrary ratios of the Alfven time scale and the nonlinear time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. Wemore » show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.« less
Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere
NASA Astrophysics Data System (ADS)
Becker, E.
2016-12-01
At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).
Styszko, Katarzyna; Kupiec, Krzysztof
2016-10-01
In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Yan; Li, Mingzhong
2016-01-01
The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Impacts of underwater turbulence on acoustical and optical signals and their linkage.
Hou, Weilin; Jarosz, Ewa; Woods, Sarah; Goode, Wesley; Weidemann, Alan
2013-02-25
Acoustical and optical signal transmission underwater is of vital interest for both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties, in terms of absorption and scattering, determines the effectiveness of deployed electro-optical (EO) technology. The impacts from turbulence have been demonstrated to affect system performance comparable to those from particles by recent studies. This paper examines the impacts from underwater turbulence on both acoustic scattering and EO imaging degradation, and establishes a framework that can be used to correlate these. It is hypothesized here that underwater turbulence would influence the acoustic scattering cross section and the optical turbulence intensity coefficient in a similar manner. Data from a recent field campaign, Skaneateles Optical Turbulence Exercise (SOTEX, July, 2010) is used to examine the above relationship. Results presented here show strong correlation between the acoustic scattering cross-sections and the intensity coefficient related to the modulation transfer function of an EO imaging system. This significant finding will pave ways to utilize long range acoustical returns to predict EO system performance.
NASA Astrophysics Data System (ADS)
Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.
2017-02-01
The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.
Sensitivity of the mesosphere to the Lorenz energy cycle of the troposphere
NASA Astrophysics Data System (ADS)
Becker, Erich
The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability in the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. In particular, a fixed GW source at a single level in the troposphere is often assumed. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs tends to vanish, the main contribution to the EPF divergence at high latitudes of the MLT is due to midand high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of a mechanistic GCM with high spatial resolution and a sophisticated parameterization of turbulence. This model explicitly simulates the wave drag of the MLT that results from the dynamical GW sources in the troposphere. The Smagorinsky-type horizontal and vertical diffusion coefficients are scaled by the Richardson criterion such that no sponge layer is required for the GWs to dissipate in the MLT. A sensitivity experiment shows that a reduced static stability in the lower troposphere, which may be associated with climate change, leads to a stronger Lorenz energy cycle. The intensification of the tropospheric heat engine is accompanied by enhanced GW acitivity in the upper troposphere at middle latitudes. These changes induce the following remote effects in the summer MLT: downshift of the residual circulation, as well as stronger dissipation, lower temperatures, and reduced easterlies below the mesopause. The simulated sensitivity is consistent with enhanced turbulent diffusion at lower altitudes resulting from stronger GW amplitudes.
Mutual influence of molecular diffusion in gas and surface phases
NASA Astrophysics Data System (ADS)
Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya
2018-01-01
We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.
Diffusion of strongly magnetized cosmic ray particles in a turbulent medium
NASA Technical Reports Server (NTRS)
Ptuskin, V. S.
1985-01-01
Cosmic ray (CR) propagation in a turbulent medium is usually considered in the diffusion approximation. Here, the diffusion equation is obtained for strongly magnetized particles in the general form. The influence of a large-scale random magnetic field on CR propagation in interstellar medium is discussed. Cosmic rays are assumed to propagate in a medium with a regular field H and an ensemble of random MHD waves. The energy density of waves on scales smaller than the free path 1 of CR particles is small. The collision integral of the general form which describes interaction between relativistic particles and waves in the quasilinear approximation is used.
Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.
URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.
NASA Astrophysics Data System (ADS)
Lazarian, A.; Esquivel, A.; Crutcher, R.
2012-10-01
Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling Bvpropρ2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed "reconnection diffusion," we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field strength with density. In addition, we demonstrate that the reconnection diffusion process can account for the empirical Larson relations and list a few other implications of the reconnection diffusion concept. We argue that magnetic reconnection provides a solution to the magnetic flux problem of star formation that agrees better with observations than the long-standing ambipolar diffusion paradigm. Due to the illustrative nature of our simplified model we do not seek quantitative agreement, but discuss the complementary nature of our approach to the three-dimensional MHD numerical simulations.
Is the kinetic equation for turbulent gas-particle flows ill posed?
Reeks, M; Swailes, D C; Bragg, A D
2018-02-01
This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.
Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan
2018-04-10
In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.
The features of the modeling the nanofluid flows
NASA Astrophysics Data System (ADS)
Rudyak, Valery; Minakov, Andrey
2018-05-01
The features of the nanofluid flows modeling are analyzed. In the first part the thermophysical properties (viscosity and thermal conductivity) of nanofluids are discussed in detailed. It was shown that the transport coefficients of nanofluids depend not only on the volume concentration of the particles but also on their size and material. The viscosity increases with decreasing the particle size while the thermal conductivity increases with increasing the particle size. The heat transfer of nanofluid in cylindrical channel and laminar-turbulent transition in some flows are considered. The heat transfer coefficient is determined by the flow mode (laminar or turbulent) of the nanofluid. However it was shown that adding nanoparticles to the coolant significantly influences the heat transfer coefficient. The laminar-turbulent transition begins in all cases earlier (at smaller Reynolds numbers) than for base fluid. In conclusion the possibility of the use of traditional similarity criteria are discussed.
Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos
2012-03-08
Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers.
Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.
2018-03-01
Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).
Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures
NASA Astrophysics Data System (ADS)
Afzali, R.; Pashaee, F.
The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.
Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.
Diffusion and mobility of atomic particles in a liquid
NASA Astrophysics Data System (ADS)
Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.
2017-11-01
The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.
Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.
DOT National Transportation Integrated Search
2009-09-01
ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...
Loskutov, V V; Sevriugin, V A
2013-05-01
This article presents a new approximation describing fluid diffusion in porous media. Time dependence of the self-diffusion coefficient D(t) in the permeable porous medium is studied based on the assumption that diffusant molecules move randomly. An analytical expression for time dependence of the self-diffusion coefficient was obtained in the following form: D(t)=(D0-D∞)exp(-D0t/λ)+D∞, where D0 is the self-diffusion coefficient of bulk fluid, D∞ is the asymptotic value of the self-diffusion coefficient in the limit of long time values (t→∞), λ is the characteristic parameter of this porous medium with dimensionality of length. Applicability of the solution obtained to the analysis of experimental data is shown. The possibility of passing to short-time and long-time regimes is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Single-image diffusion coefficient measurements of proteins in free solution.
Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M
2012-04-04
Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Flow in out-of-plane double S-bonds
NASA Technical Reports Server (NTRS)
Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.
1986-01-01
Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
NASA Technical Reports Server (NTRS)
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
A signature of anisotropic cosmic-ray transport in the gamma-ray sky
NASA Astrophysics Data System (ADS)
Cerri, Silvio Sergio; Gaggero, Daniele; Vittino, Andrea; Evoli, Carmelo; Grasso, Dario
2017-10-01
A crucial process in Galactic cosmic-ray (CR) transport is the spatial diffusion due to the interaction with the interstellar turbulent magnetic field. Usually, CR diffusion is assumed to be uniform and isotropic all across the Galaxy. However, this picture is clearly inaccurate: several data-driven and theoretical arguments, as well as dedicated numerical simulations, show that diffusion exhibits highly anisotropic properties with respect to the direction of a background (ordered) magnetic field (i.e., parallel or perpendicular to it). In this paper we focus on a recently discovered anomaly in the hadronic CR spectrum inferred by the Fermi-LAT gamma-ray data at different positions in the Galaxy, i.e. the progressive hardening of the proton slope at low Galactocentric radii. We propose the idea that this feature can be interpreted as a signature of anisotropic diffusion in the complex Galactic magnetic field: in particular, the harder slope in the inner Galaxy is due, in our scenario, to the parallel diffusive escape along the poloidal component of the large-scale, regular, magnetic field. We implement this idea in a numerical framework, based on the DRAGON code, and perform detailed numerical tests on the accuracy of our setup. We discuss how the effect proposed depends on the relevant free parameters involved. Based on low-energy extrapolation of the few focused numerical simulations aimed at determining the scalings of the anisotropic diffusion coefficients, we finally present a set of plausible models that reproduce the behavior of the CR proton slopes inferred by gamma-ray data.
A signature of anisotropic cosmic-ray transport in the gamma-ray sky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerri, Silvio Sergio; Grasso, Dario; Gaggero, Daniele
A crucial process in Galactic cosmic-ray (CR) transport is the spatial diffusion due to the interaction with the interstellar turbulent magnetic field. Usually, CR diffusion is assumed to be uniform and isotropic all across the Galaxy. However, this picture is clearly inaccurate: several data-driven and theoretical arguments, as well as dedicated numerical simulations, show that diffusion exhibits highly anisotropic properties with respect to the direction of a background (ordered) magnetic field (i.e., parallel or perpendicular to it). In this paper we focus on a recently discovered anomaly in the hadronic CR spectrum inferred by the Fermi-LAT gamma-ray data at differentmore » positions in the Galaxy, i.e. the progressive hardening of the proton slope at low Galactocentric radii. We propose the idea that this feature can be interpreted as a signature of anisotropic diffusion in the complex Galactic magnetic field: in particular, the harder slope in the inner Galaxy is due, in our scenario, to the parallel diffusive escape along the poloidal component of the large-scale, regular, magnetic field. We implement this idea in a numerical framework, based on the DRAGON code, and perform detailed numerical tests on the accuracy of our setup. We discuss how the effect proposed depends on the relevant free parameters involved. Based on low-energy extrapolation of the few focused numerical simulations aimed at determining the scalings of the anisotropic diffusion coefficients, we finally present a set of plausible models that reproduce the behavior of the CR proton slopes inferred by gamma-ray data.« less
Simulations of eddy kinetic energy transport in barotropic turbulence
NASA Astrophysics Data System (ADS)
Grooms, Ian
2017-11-01
Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paduano, L.; Sartorio, R.; Vitagliano, V.
Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.
NASA Astrophysics Data System (ADS)
Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang
2016-04-01
This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case substantially differ from the arc appearance and the distribution of Lorentz force in the laminar-model case. Thus, the moving process of the arc in the turbulence-model case is slowed down and slower than in the laminar-model case. Moreover, the more extensive arc column in the turbulence-model case reduces the total arc resistance, which results in a lower arc voltage, more consistent with the experimental results than the arc voltage in the laminar-model case. Therefore, the air plasma inside this air DCCB is believed to be in the turbulence state, and the turbulence model is more suitable than the laminar model for the arc simulation of this kind of air DCCB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mingliang; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Rong, Mingzhe
This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case ismore » much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case substantially differ from the arc appearance and the distribution of Lorentz force in the laminar-model case. Thus, the moving process of the arc in the turbulence-model case is slowed down and slower than in the laminar-model case. Moreover, the more extensive arc column in the turbulence-model case reduces the total arc resistance, which results in a lower arc voltage, more consistent with the experimental results than the arc voltage in the laminar-model case. Therefore, the air plasma inside this air DCCB is believed to be in the turbulence state, and the turbulence model is more suitable than the laminar model for the arc simulation of this kind of air DCCB.« less
NASA Technical Reports Server (NTRS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies (is) greater than1 keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.
NASA Technical Reports Server (NTRS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.
Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.
Taveira, Rodrigo R; Diogo, José S; Lopes, Diogo C; da Silva, Carlos B
2013-10-01
Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.
Bulk diffusion in a kinetically constrained lattice gas
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2018-03-01
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.
One-dimensional Turbulence Models of Type I X-ray Bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Chen
Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection.more » Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.« less
Lagrangian analysis of premixed turbulent combustion in hydrogen-air flames
NASA Astrophysics Data System (ADS)
Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter
2016-11-01
Lagrangian analysis has long been a tool used to analyze non-reacting turbulent flows, and has recently gained attention in the reacting flow and combustion communities. The approach itself allows one to separate local molecular effects, such as those due to reactions or diffusion, from turbulent advective effects along fluid pathlines, or trajectories. Accurate calculation of these trajectories can, however, be rather difficult due to the chaotic nature of turbulent flows and the added complexity of reactions. In order to determine resolution requirements and verify the numerical algorithm, extensive tests are described in this talk for prescribed steady, unsteady, and chaotic flows, as well as for direct numerical simulations (DNS) of non-reacting homogeneous isotropic turbulence. The Lagrangian analysis is then applied to DNS of premixed hydrogen-air flames at two different turbulence intensities for both single- and multi-step chemical mechanisms. Non-monotonic temperature and fuel-mass fraction evolutions are found to exist along trajectories passing through the flame brush. Such non-monotonicity is shown to be due to molecular diffusion resulting from large spatial gradients created by turbulent advection. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.
Evidence for Chaotic Edge Turbulence in the Alcator C-Mod Tokamak
NASA Astrophysics Data System (ADS)
Zhu, Ziyan; White, Anne; Carter, Troy; Terry, Jim; Baek, Seung Gyou
2017-10-01
Turbulence greatly reduces the confinement time of magnetic-confined plasmas; understanding the nature of this turbulence and the associated transport is therefore of great importance. This research seeks to establish whether turbulent fluctuations in Alcator C-Mod are chaotic or stochastic. Stochastic fluctuations may lead to a random walk diffusive transport, whereas a diffusive description is unlikely to be valid for chaotic fluctuations since it lives in restricted areas of phase space (e.g., on attractors). Analysis of the time series obtained with the O-mode reflectometer and the gas puff imaging (GPI) systems reveals that the turbulent density fluctuations in C-Mod are chaotic. Supporting evidence for this conclusion includes the observation of an exponential power spectra (which is associated with Lorentzian-shaped pulses in the time series), the population of the corresponding Bandt-Pompe (BP) probability distribution, and the location of the signal on the Complexity-Entropy plane (C-H plane). These analysis techniques will be briefly introduced along with a discussion of the analysis results. The classification of edge turbulence as chaotic opens the door for further work to understand the underlying process and the impact on turbulent transport. Supported by USDoE awards DE-FC02-99ER54512 and DE-FC02-07ER54918:011.
Laser Raman Diagnostics in Subsonic and Supersonic Turbulent Jet Diffusion Flames.
NASA Astrophysics Data System (ADS)
Cheng, Tsarng-Sheng
1991-02-01
UV spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. For the first time, simultaneous measurements of temperature, major species (H_2, O_2, N_2, H_2O), and minor species (OH) concentrations are made with a "single" narrowband KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat -flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. UV Raman measurements in the subsonic lifted turbulent diffusion flame indicate that fuel and oxidizer are in rich, premixed, and unignited conditions in the center core of the lifted flame base. The unignited mixtures are due to rapid turbulent mixing that affects chemical reaction. Combustion occurs in an intermittent annular turbulent flame brush with strong finite-rate chemistry effects. The OH radical exists in sub-equilibrium and super-equilibrium concentrations. Major species and temperature are found with non-equilibrium values. Further downstream the super-equilibrium OH radicals decay toward equilibrium through slow three-body recombination reactions. In the supersonic lifted flame, a little reaction occurs upstream of the flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and total enthalpy fluctuations lead to temperature, major, and minor species concentrations with non-equilibrium values. Combustion occurs farther downstream of the lifted region. Slow three-body recombination reactions result in super-equilibrium OH concentrations that depress temperature below the equilibrium values. Near the equilibrium region, ambient air entrainment contaminates flame properties. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
Inhomogeneous helicity effect in the solar angular-momentum transport
NASA Astrophysics Data System (ADS)
Yokoi, Nobumitsu
2017-04-01
Coupled with mean absolute vorticity Ω∗ (rotation and mean relative vorticity), inhomogeneous turbulent helicity is expected to contribute to the generation of global flow structure against the linear and angular momentum mixing due to turbulent or eddy viscosity. This inhomogeneous helicity effect was originally derived in Yokoi & Yoshizawa (1993) [1], and recently has been validated by direct numerical simulations (DNSs) of rotating helical turbulence [2]. Turbulence effect enters the mean-vorticity equation through the turbulent vortexmotive force ⟨u'×ω'⟩ [u': velocity fluctuation, ω'(= ∇× u'): vorticity fluctuation], which is the vorticity counterpart of the electromotive force ⟨u'× b'⟩ (b': magnetic fluctuation) in the mean magnetic-field induction. The mean velocity induction δU is proportional to the vortexmotive force. According to the theoretical result [1,2], it is expressed as δU = -νT∇×Ω∗-ηT(∇2H)Ω∗, where ηT is the transport coefficient, H = ⟨u'ṡω'⟩ the turbulent helicity, and Ω∗ the mean absolute vorticity. The first term corresponds to the enhanced diffusion due to turbulent viscosity νT. The second term expresses the large-scale flow generation due to inhomogeneous helicity. Since helicity is self-generated in rotating stratified turbulence [3], an inhomogeneous helicity distribution is expected to exist in the solar convection zone. A rising flow with expansion near the surface of the Sun generates a strongly negative helicity there [4]. This spatial distribution of helicity would lead to a positive Laplacian of turbulent helicity (∇2H > 0) in the subsurface layer of the Sun. In the combination with the large-scale vorticity associated with the meridional circulation, the inhomogeneous helicity effect works for accelerating the mean velocity in the azimuthal direction. The relevance of this inhomogeneous helicity effect in the solar convection zone is discussed further. References [1] Yokoi, N. and Yoshizawa, A., "Statistical analysis of the effects of helicity in inhomogeneous turbulence," Phys. Fluids A, 5, 464-477 (1993). [2] Yokoi, N. and Brandenburg, A., "Large-scale flow generation by inhomogeneous helicity," Phys. Rev. E, 93, 033125-1-14 (2016). [3] Marino, R., Mininni, P., Rosenberg, D., and Pouquet, A., "Emergence of helicity in rotating stratified turbulence," Phys. Rev. E, 87, 033016-1-9 (2013). [4] Duarte, L. D. V., Wicht, J., Browning, M. K., and Gastine, T., "Helicity inversion in spherical convection as a means for equatorward dynamo wave propagation," Mon. Not. Roy. Astron. Soc. 456, 1708-1722 (2016).
Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Davey, K. R.
1979-01-01
The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.
NASA Technical Reports Server (NTRS)
Stocker, Dennis P.
1999-01-01
Most combustion processes in industrial applications (e.g., furnaces and engines) and in nature (e.g., forest fires) are turbulent. A better understanding of turbulent combustion could lead to improved combustor design, with enhanced efficiency and reduced emissions. Despite its importance, turbulent combustion is poorly understood because of its complexity. The rapidly changing and random behavior of such flames currently prevents detailed analysis, whether experimentally or computationally. However, it is possible to learn about the fundamental behavior of turbulent flames by exploring the controlled interaction of steady laminar flames and artificially induced flow vortices. These interactions are an inherent part of turbulent flames, and understanding them is essential to the characterization of turbulent combustion. Well-controlled and defined experiments of vortex interaction with laminar flames are not possible in normal gravity because of the interference of buoyancy- (i.e., gravity) induced vortices. Therefore, a joint microgravity study was established by researchers from the Science and Technology Development Corp. and the NASA Lewis Research Center. The experimental study culminated in the conduct of the Turbulent Gas-Jet Diffusion Flames (TGDF) Experiment on the STS-87 space shuttle mission in November 1997. The fully automated hardware, shown in photo, was designed and built at Lewis. During the mission, the experiment was housed in a Get Away Special (GAS) canister in the cargo bay.
Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores.
Bartelt-Hunt, Shannon L; Smith, James A
2002-06-01
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.
Kinetic energy budgets near the turbulent/nonturbulent interface in jets
NASA Astrophysics Data System (ADS)
Taveira, Rodrigo R.; da Silva, Carlos B.
2013-01-01
The dynamics of the kinetic energy near the turbulent/nonturbulent (T/NT) interface separating the turbulent from the irrotational flow regions is analysed using three direct numerical simulations of turbulent planar jets, with Reynolds numbers based on the Taylor micro-scale across the jet shear layer in the range Reλ ≈ 120-160. Important levels of kinetic energy are already present in the irrotational region near the T/NT interface. The mean pressure and kinetic energy are well described by the Bernoulli equation in this region and agree with recent results obtained from rapid distortion theory in the turbulent region [M. A. C. Teixeira and C. B. da Silva, "Turbulence dynamics near a turbulent/non-turbulent interface," J. Fluid Mech. 695, 257-287 (2012)], 10.1017/jfm.2012.17 while the normal Reynolds stresses agree with the theoretical predictions from Phillips ["The irrotational motion outside a free turbulent boundary," Proc. Cambridge Philos. Soc. 51, 220 (1955)], 10.1017/S0305004100030073. The use of conditional statistics in relation to the distance from the T/NT interface allow a detailed study of the build up of kinetic energy across the T/NT interface, pointing to a very different picture than using classical statistics. Conditional kinetic energy budgets show that apart from the viscous dissipation of kinetic energy, the maximum of all the mechanisms governing the kinetic energy are concentrated in a very narrow region distancing about one to two Taylor micro-scales from the T/NT interface. The (total and fluctuating) kinetic energy starts increasing in the irrotational region by pressure-velocity interactions - a mechanism that can act at distance, and continue to grow by advection (for the total kinetic energy) and turbulent diffusion (for the turbulent kinetic energy) inside the turbulent region. These mechanisms tend to occur preferentially around the core of the large-scale vortices existing near T/NT interface. The production of turbulent kinetic energy then becomes the dominating mechanism and the so called "peak production" is located at about one Taylor micro-scale from the T/NT interface. Simple analytical estimates are given for the peaks of pressure strain, turbulent diffusion, and production near the T/NT interface. The growth of kinetic energy across the T/NT interface is an inertial process, since the viscous terms (diffusion and dissipation) are negligible during this process. The present results highlight the importance of the region near the T/NT interface in the entire jet development.
The coupled effects of chemistry and diffusion on the stratospheric ozone reduction
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Grose, W. L.
1980-01-01
The effect of diffusive-mixing on O3-depletion is estimated using the five-step chemistry model. The coupled treatment uses an equilibrium turbulence field and retains the key features of the kinetics while keeping the chemistry simple. Results indicate that those calculations of Hilst and Donaldson (1973) employing the conservation of NO2/NO will yield erroneous results, and it is found that any significant level of turbulence will reduce the severity of the NOx catalytic cycle for O3 destruction.
Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.
2009-05-01
Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.
Prediction of friction coefficients for gases
NASA Technical Reports Server (NTRS)
Taylor, M. F.
1969-01-01
Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
NASA Astrophysics Data System (ADS)
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.
Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Intensity, Scale, and Spectra of Turbulence in Mixing Region of Free Subsonic Jet
NASA Technical Reports Server (NTRS)
Laurence, James C
1956-01-01
Report presents the results of the measurements of intensity of turbulence, the longitudinal and lateral correlation coefficients, and the spectra of turbulence in a 3.5-inch-diameter free jet measured with hot-wire anemometers at exit Mach numbers from 0.2 to 0.7 and Reynolds numbers from 192,000 to 725,000.
NASA Technical Reports Server (NTRS)
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
NASA Astrophysics Data System (ADS)
Dupuis, HéLèNe; Taylor, Peter K.; Weill, Alain; Katsaros, K.
1997-09-01
The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence field. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be Cen × 103 = 2.79U10n-1 + 0.66 (U10n < 5.2 m/s), Cen × 103 = Chn × 103 = 1.2 (U10n ≥ 5.2 m/s), and Cdn × 103 = 11.710n-2 + 0.668 (U10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.
NASA Astrophysics Data System (ADS)
Li, Zhe; Xiao, Yan; Yang, Jixiang; Li, Chao; Gao, Xia; Guo, Jinsong
2017-11-01
Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSII (the ratio of F v/ F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
Determination of the diffusion coefficient of hydrogen ion in hydrogels.
Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső
2017-05-17
The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.
Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre
2016-07-15
Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghilea, M. C.; Ruffolo, D.; Sonsrettee, W.
2011-11-01
The magnetic field line random walk (FLRW) is important for the transport of energetic particles in many astrophysical situations. While all authors agree on the quasilinear diffusion of field lines for fluctuations that mainly vary parallel to a large-scale field, for the opposite case of fluctuations that mainly vary in the perpendicular directions, there has been an apparent conflict between concepts of Bohm diffusion and percolation/trapping effects. Here computer simulation and non-perturbative analytic techniques are used to re-examine the FLRW in magnetic turbulence with slab and two-dimensional (2D) components, in which 2D flux surfaces are disturbed by the slab fluctuations.more » Previous non-perturbative theories for D{sub perpendicular}, based on Corrsin's hypothesis, have identified a slab contribution with quasilinear behavior and a 2D contribution due to Bohm diffusion with diffusive decorrelation (DD), combined in a quadratic formula. Here we present analytic theories for other routes to Bohm diffusion, with random ballistic decorrelation (RBD) either due to the 2D component itself (for a weak slab contribution) or the total fluctuation field (for a strong slab contribution), combined in a direct sum with the slab contribution. Computer simulations confirm the applicability of RBD routes for weak or strong slab contributions, while the DD route applies for a moderate slab contribution. For a very low slab contribution, interesting trapping effects are found, including a depressed diffusion coefficient and subdiffusive behavior. Thus quasilinear, Bohm, and trapping behaviors are all found in the same system, together with an overall viewpoint to explain these behaviors.« less
A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denissenkov, Pavel A., E-mail: pavel.denisenkov@gmail.co
The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic withmore » the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.« less
Method of producing microporous joints in metal bodies
Danko, Joseph C.
1982-01-01
Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.
First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe
Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...
2015-02-17
The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less
Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichimura, Chiaki; Yokoyama, Takaaki
2017-04-10
Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentzmore » force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.« less
Gas-film coefficients for streams
Rathbun, R.E.; Tai, D.Y.
1983-01-01
Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.
Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study
Ali, Abbod; Sharma, R. K.; Ganesan, P.
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed. PMID:25136666
Gyrokinetic simulations of particle transport in pellet fuelled JET discharges
NASA Astrophysics Data System (ADS)
Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.; Garzotti, L.; Lupelli, I.; Roach, C. M.; Romanelli, M.; Valovič, M.; Contributors, JET
2017-10-01
Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/{L}n,a/{L}T and plasma β. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.
Gravity influence on the clustering of charged particles in turbulence
NASA Astrophysics Data System (ADS)
Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond
2010-11-01
We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.
An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-01-01
The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122
Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri
2018-01-01
This paper examines the impact of the characterisation technique considered for the determination of the Li+ solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. Li+ diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3.48×10−10 cm2·s−1 and 1.56×10−10 cm2·s−1 , respectively. The dependency of the Li+ diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1.76×10−15 cm2·s−1 and 4.06×10−12 cm2·s−1, while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV. PMID:29360787
Capron, Odile; Gopalakrishnan, Rahul; Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri
2018-01-23
This paper examines the impact of the characterisation technique considered for the determination of the L i + solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. L i + diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3 . 48 × 10 - 10 cm 2 ·s - 1 and 1 . 56 × 10 - 10 cm 2 ·s - 1 , respectively. The dependency of the L i + diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1 . 76 × 10 - 15 cm 2 ·s - 1 and 4 . 06 × 10 - 12 cm 2 ·s - 1 , while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV.
Turbulent circulation above the surface heat source in a stably stratified environment
NASA Astrophysics Data System (ADS)
Kurbatskii, A. F.; Kurbatskaya, L. I.
2016-09-01
The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered. Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index junction for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index function for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.
A Generalized Framework for Reduced-Order Modeling of a Wind Turbine Wake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc
A reduced-order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a seriesmore » of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large-scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open-loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root-mean-square error. A high-level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.« less
Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting
2007-04-02
The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.
Radon diffusion coefficients in 360 waterproof materials of different chemical composition.
Jiránek, M; Kotrbatá, M
2011-05-01
This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.
Karlsson, David; Zacchi, Guido; Axelsson, Anders
2002-01-01
The aim of this study was to demonstrate electronic speckle pattern interferometry (ESPI) as a powerful tool in determining diffusion coefficients and partition coefficients for proteins in gels. ESPI employs a CCD camera instead of a holographic plate as in conventional holographic interferometry. This gives the advantage of being able to choose the reference state freely. If a hologram at the reference state is taken and compared to a hologram during the diffusion process, an interferometric picture can be generated that describes the refraction index gradients and thus the concentration gradients in the gel as well as in the liquid. MATLAB is then used to fit Fick's law to the experimental data to obtain the diffusion coefficients in gel and liquid. The partition coefficient is obtained from the same experiment from the flux condition at the interface between gel and liquid. This makes the comparison between the different diffusants more reliable than when the measurements are performed in separate experiments. The diffusion and partitioning coefficients of lysozyme, BSA, and IgG in 4% agarose gel at pH 5.6 and in 0.1 M NaCl have been determined. In the gel the diffusion coefficients were 11.2 +/- 1.6, 4.8 +/- 0.6, and 3.0 +/- 0.3 m(2)/s for lysozyme, BSA, and IgG, respectively. The partition coefficients were determined to be 0.65 +/- 0.04, 0.44 +/- 0.06, and 0.51 +/- 0.04 for lysozyme, BSA, and IgG, respectively. The current study shows that ESPI is easy to use and gives diffusion coefficients and partition coefficients for proteins with sufficient accuracy from the same experiment.
Shkilnyy, Andriy; Proulx, Pierre; Sharp, Jamie; Lepage, Martin; Vermette, Patrick
2012-05-01
Scaffolds with adequate mass transport properties are needed in many tissue engineering applications. Fibrin is considered a good biological material to fabricate such scaffolds. However, very little is known about mass transport in fibrin. Therefore, a method based on the analysis of fluorescence intensity for measuring the apparent diffusion coefficient of rhodamine B and fluorescein-labelled bovine serum albumin (FITC-BSA) is described. The experiments are performed in fibrin gels with and without human umbilical vein endothelial cells (HUVEC). The apparent diffusion coefficients of rhodamine B and FITC-BSA in fibrin (fibrinogen concentration of 4 mg/mL) with different cell densities are reported. A LIVE/DEAD(®) assay is performed to confirm the viability of HUVEC seeded at high densities. Diffusion coefficients for rhodamine B remain more or less constant up to 5×10(5) cells/mL and correlate well with literature values measured by other methods in water systems. This indicates that the presence of HUVEC in the fibrin gels (up to 5×10(5) cells/mL) has almost no effect on the diffusion coefficients. Higher cell densities (>5×10(5) cells/mL) result in a decrease of the diffusion coefficients. Diffusion coefficients of rhodamine B and FITC-BSA obtained by this method agree with diffusion coefficients in water predicted by the Stokes-Einstein equation. The experimental design used in this study can be applied to measure diffusion coefficients in different types of gels seeded or not with living cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Collisional transport across the magnetic field in drift-fluid models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.
2016-03-15
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less
Turbulent resistivity, diffusion and heating
NASA Technical Reports Server (NTRS)
Fried, B. D.; Kennel, C. F.; Mackenzie, K.; Coroniti, F. V.; Kindel, J. M.; Stenzel, R.; Taylor, R. J.; White, R.; Wong, A. Y.; Bernstein, W.
1971-01-01
Experimental and theoretical studies are reported on ion acoustic and ion cyclotron turbulence and their roles in anomalous resistivity, viscosity, diffusion and heating and in the structure of collisionless electrostatic shocks. Resistance due to ion acoustic turbulence has been observed in experiments with a streaming cesium plasma in which electron current, potential rise due to turbulent resistivity, spectrum of unstable ion acoustic waves, and associated electron heating were all measured directly. Kinetic theory calculations for an expanding, unstable plasma, give results in agreement with the experiment. In a strong magnetic field, with T sub e/T sub i approximately 1 and current densities typical for present Tokomaks, the plasma is stable to ion acoustic but unstable to current driven electrostatic ion cyclotron waves. Relevant characteristics of these waves are calculated and it is shown that for ion, beta greater than m sub e/m sub i, the electromagnetic ion cyclotron wave has a lower instability threshold than the electrostatic one. However, when ion acoustic turbulence is present experiments with double plasma devices show rapid anomalous heating of an ion beam streaming through a plasma.
On modelling the pressure-strain correlations in wall bounded flows
NASA Technical Reports Server (NTRS)
Peltier, L. J.; Biringen, S.
1990-01-01
Turbulence models for the pressure-strain term of the Reynolds-stress equations in the vicinity of a moving wall are evaluated for a high Reynolds number flow using decaying grid turbulence as a model problem. The data of Thomas and Hancock are used as a base for evaluating the different turbulence models. In particular, the Rotta model for return-to-isotropy is evaluated both in its inclusion into the Reynolds-stress equation model and in comparison to a nonlinear model advanced by Sarkar and Speziale. Further, models for the wall correction to the transfer term advanced by Launder et al., Shir, and Shih and Lumley are compared. Initial data using the decaying grid turbulence experiment as a base suggests that the coefficients proposed for these models are high perhaps by as much as an order of magnitude. The Shih and Lumley model which satisfies realizability constraints, in particular, seems to hold promise in adequately modeling the Reynolds stress components of this flow. Extensions of this work are to include testing the homogeneous transfer model by Shih and Lumley and the testing of the wall transfer models using their proposed coefficients and the coefficients chosen from this work in a flow with mean shear component.
Calculation of Turbulent Expansion Processes
NASA Technical Reports Server (NTRS)
Tollmien, Walter
1945-01-01
On the basis of certain formulas recently established by L. Prandtl for the turbulent interchange of momentum in stationary flows, various cases of "free turbulence" - that is, of flows without boundary walls - are treated in the present report. Prandtl puts the apparent shearing stress introduced by the turbulent momentum interchange. This present report deals first with the mixing of an air stream of uniform velocity with the adjacent still air, than with the expansion or diffusion of an air jet in the surrounding air space.
Pierre, Th
2013-01-01
In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.
Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution
NASA Astrophysics Data System (ADS)
Stein, Victor P.; Kaltenbach, Hans-Jakob
2016-09-01
Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.
The Influence of Turbulent Coherent Structure on Suspended Sediment Transport
NASA Astrophysics Data System (ADS)
Huang, S. H.; Tsai, C.
2017-12-01
The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.
NASA Astrophysics Data System (ADS)
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.
1992-01-01
Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
NASA Astrophysics Data System (ADS)
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan
2015-09-21
The mean-square angle-of-arrival (AOA) difference between two counter-propagating spherical waves in atmospheric turbulence is theoretically formulated. Closed-form expressions for the path weighting functions are obtained. It is found that the diffraction and refraction effects of turbulent cells make negative and positive contributions to the mean-square AOA difference, respectively, and the turbulent cells located at the midpoint of the propagation path have no contributions to the mean-square AOA difference. If the mean-square AOA difference is separated into the refraction and diffraction parts, the refraction part always dominates the diffraction one, and the ratio of the diffraction part to the refraction one is never larger than 0.5 for any turbulence spectrum. Based on the expressions for the mean-square AOA difference, formulae for the correlation coefficient between the angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are derived. Numerical calculations are carried out by considering that the turbulence spectrum has no path dependence. It is shown that the mean-square AOA difference always approximates to the variance of AOA fluctuations. It is found that the correlation coefficient between the angles of arrival in the x or y direction of two counter-propagating spherical waves ranges from 0.46 to 0.5, implying that the instantaneous angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are far from being perfectly correlated even when the turbulence spectrum does not vary along the path.
Thermodynamic properties and diffusion of water + methane binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au
2014-03-14
Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less
NASA Astrophysics Data System (ADS)
Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert
2016-08-01
Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.
Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.
Pendleton, Phillip; Wu, Sophie Hua
2003-10-15
This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.
NASA Technical Reports Server (NTRS)
Hoffmann, Jon A.
1988-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.
NASA Technical Reports Server (NTRS)
Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.
1989-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.