Universality, twisted fans, and the Ising model. [Renormalization, two-loop calculations, scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, J.W.; Harrington, S.J.
1975-06-24
Critical exponents are evaluated for the Ising model using universality in the form of ''twisted fans'' previously introduced in Reggeon field theory. The universality is with respect to scales induced through renormalization. Exact twists are obtained at ..beta.. = 0 in one loop for D = 2,3 with ..nu.. = 0.75 and 0.60 respectively. In two loops one obtains ..nu.. approximately 1.32 and 0.68. No twists are obtained for eta, however. The results for the standard two loop calculations are also presented as functions of a scale.
Interplay of Reggeon and photon in p A collisions
Basar, Gokce; Kharzeev, Dmitri E.; Yee, Ho-Ung; ...
2017-06-14
Here, we discuss the effects of the electromagnetic interaction in high-energy proton collisions with nuclei of large Z at strong coupling λ = g 2 N c . By using the holographic dual limit of large N c > λ >> 1 , we describe the Reggeon exchange as a twisted surface and show that it gets essentially modified by the electromagnetic interaction.
Elastic scattering of virtual photons via a quark loop in the double-logarithmic approximation
NASA Astrophysics Data System (ADS)
Ermolaev, B. I.; Ivanov, D. Yu.; Troyan, S. I.
2018-04-01
We calculate the amplitude of elastic photon-photon scattering via a single quark loop in the double-logarithmic approximation, presuming all external photons to be off-shell and unpolarized. At the same time we account for the running coupling effects. We consider this process in the forward kinematics at arbitrary relations between t and the external photon virtualities. We obtain explicit expressions for the photon-photon scattering amplitudes in all double-logarithmic kinematic regions. Then we calculate the small-x asymptotics of the obtained amplitudes and compare them with the parent amplitudes, thereby fixing the applicability regions of the asymptotics, i.e., fixing the applicability region for the nonvacuum Reggeons. We find that these Reggeons should be used at x <10-8 only.
The Twist Limit for Bipolar Active Regions
NASA Technical Reports Server (NTRS)
Moore, Ron; Falconer, David; Gary, Allen
2008-01-01
We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.
Study of nonlinear MHD equations governing the wave propagation in twisted coronal loops
NASA Technical Reports Server (NTRS)
Parhi, S.; DeBruyne, P.; Goossens, M.; Zhelyazkov, I.
1995-01-01
The solar corona, modelled by a low beta, resistive plasma slab, sustains MHD wave propagations due to shearing footpoint motions in the photosphere. By using a numerical algorithm the excitation and nonlinear development of MHD waves in twisted coronal loops are studied. The plasma responds to the footpoint motion by sausage waves if there is no twist. The twist in the magnetic field of the loop destroys initially developed sausage-like wave modes and they become kinks. The transition from sausage to kink modes is analyzed. The twist brings about mode degradation producing high harmonics and this generates more complex fine structures. This can be attributed to several local extrema in the perturbed velocity profiles. The Alfven wave produces remnants of the ideal 1/x singularity both for zero and non-zero twist and this pseudo-singularity becomes less pronounced for larger twist. The effect of nonlinearity is clearly observed by changing the amplitude of the driver by one order of magnitude. The magnetosonic waves also exhibit smoothed remnants of ideal logarithmic singularities when the frequency of the driver is correctly chosen. This pseudo-singularity for fast waves is absent when the coronal loop does not undergo any twist but becomes pronounced when twist is included. On the contrary, it is observed for slow waves even if there is no twist. Increasing the twist leads to a higher heating rate of the loop. The larger twist shifts somewhat uniformly distributed heating to layers inside the slab corresponding to peaks in the magnetic field strength.
Roe, S C
1997-01-01
Evaluate the mechanical properties of twist, loop, double loop, double-wrap and loop/twist cerclage. The initial tension generated by 18 cerclage of each type was determined using a materials testing machine after tying around a testing jig. Six wires from each type were distracted and the initial stiffness and yield load were determined. Yield behavior was further investigated in six wires of each type by determining the load required to reduce cerclage tension below 30 Newton (N) following and incremental (50 N) stepwise load and unload regimen. The amount of collapse of the simulated bone fragments that resulted in the reduction of initial tension to 30 N was measured for the final six wires of each group. Data were analyzed by analysis of variance and a multiple comparison test. Twist type cerclage generated less tension than loop-type cerclage. The yield load of these two types was similar. Double-loop and double-wrap cerclage generated superior tension and resisted a greater load before loosening. Loop/twist cerclage had an intermediate initial tension but had the greatest resistance to loading. In the collapse test, the greater the initial tension, the more collapse could occur before the wire was loose. For all types of cerclage wire fixation, a reduction of diameter of the testing jig of more than 1% caused loosening. Double-loop and double-wrap cerclage provide greater compression of fragments and resist loads associated with weight-bearing better than the twist and loop methods. Loop/twist cerclage may have advantages because of their superior resistance to loading. All cerclage will loosen if fracture fragments collapse.
Transverse kink oscillations in the presence of twist
NASA Astrophysics Data System (ADS)
Terradas, J.; Goossens, M.
2012-12-01
Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.
Conical twist fields and null polygonal Wilson loops
NASA Astrophysics Data System (ADS)
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
Strength of surgical wire fixation. A laboratory study.
Guadagni, J R; Drummond, D S
1986-08-01
Because of the frequent use of stainless steel wire in spinal surgery and to augment fracture fixation, several methods of securing wire fixation were tested in the laboratory to determine the relative strength of fixation. Any method of fixation stronger than the yield strength of the wire is sufficient. Square knots, knot twists, symmetric twists, and the AO loop-tuck techniques afforded acceptable resistance against tension loads, but the wire wrap and AO loop technique were unacceptable. The double symmetric twist, which is frequently used for tension banding, was barely acceptable. The symmetric twist technique was the most practical because it is strong enough, efficient in maintaining tension applied during fixation, and least likely to cause damage to the wire. To optimize the fixation strength of the symmetrical twist, at least two twists are required at a reasonably tight pitch.
DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics
Laurens, Niels; Rusling, David A.; Pernstich, Christian; Brouwer, Ineke; Halford, Stephen E.; Wuite, Gijs J. L.
2012-01-01
Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond. PMID:22373924
Stability of disclination loop in pure twist nematic liquid crystals
NASA Astrophysics Data System (ADS)
Kadivar, Erfan
2018-04-01
In this work, the annihilations dynamics and stability of disclination loop in a bulk pure twist nematic liquid crystal are investigated. This work is based on the Frank free energy and the nematodynamics equations. The energy dissipation is calculated by using two methods. In the first method, the energy dissipation is obtained from the Frank free energy. In the second method, it is calculated by using the nematodynamics equations. Finally, we derive a critical radius of disclination loop that above this radius, loop creation is energetically forbidden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, Zanyar; Karami, Kayoomars; Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir
There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model andmore » the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.« less
NASA Astrophysics Data System (ADS)
Huang, Zhenghua; Mou, Chaozhou; Fu, Hui; Deng, Linhua; Li, Bo; Xia, Lidong
2018-02-01
We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, Atmospheric Imaging Assembly (AIA), and Helioseismic and Magnetic Imager (HMI). The reconnection event occurred between the threads of a twisted arch filament system (AFS) and coronal loops. Our observations reveal that the relaxation of the twisted AFS drives some of its threads to encounter the coronal loops, providing inflows of the reconnection. The reconnection is evidenced by flared X-shape features in the AIA images, a current-sheet-like feature apparently connecting post-reconnection loops in the Hα + 1 Å images, small-scale magnetic cancelation in the HMI magnetograms and flows with speeds of 40–80 km s‑1 along the coronal loops. The post-reconnection coronal loops seen in the AIA 94 Å passband appear to remain bright for a relatively long time, suggesting that they have been heated and/or filled up by dense plasmas previously stored in the AFS threads. Our observations suggest that the twisted magnetic system could release its free magnetic energy into the upper solar atmosphere through reconnection processes. While the plasma pressure in the reconnecting flux tubes are significantly different, the reconfiguration of field lines could result in transferring of mass among them and induce heating therein.
3D Studies of the Solar Corona and its Evolution with SOHO/EIT
NASA Astrophysics Data System (ADS)
Portier-Fozzani, F.
This thesis deals with 3D evolution of coronal structures based upon the ultraviolet telescope of SOHO : EIT. Anaglyphs and incertainties on a complete stereovision reconstruction are described. Stereoscopic methods for loop reconstruction were successfully made to find 3D parameters. With dynamical stereoscopy, physical conditions were derived for 30 loops of temperature around 1MK. A method which is able to derive twist variation were also built. Emerging loops were found highly twisted and they detwist as they grow. According to helicity conservation, this correspond to a transfert of twist into expansion. Long time twist evolution of magnetic flux tubes are followed in relation with flares as relaxation. Interaction between magnetic field lines were analysed. An example of reconnection between open and closed field line were observed. Other interactions were found with multi-wavelength observations : coronal holes borders (and thus CH) are better defined when an active region nearby is growing. Other imaging techniques were used to better take profit as possible of SOHO/EIT. A multiscale vision model (MVM) was applied with success to show small coronal structures evolutions hidden by the noise level.
Frequencies of Flare Occurrence: Interaction between Convection and Coronal Loops
NASA Astrophysics Data System (ADS)
Mullan, D. J.; Paudel, R. R.
2018-02-01
Observations of solar and stellar flares have revealed the presence of power-law dependences between the flare energy and the time interval between flares. Various models have been proposed to explain these dependences and the numerical value of the power-law indices. Here, we propose a model in which convective flows in granules force the footpoints of coronal magnetic loops, which are frozen-in to photospheric gas, to undergo a random walk. In certain conditions, this can lead to a twist in the loop, which drives the loop unstable if the twist exceeds a critical value. The possibility that a solar flare is caused by such a twist-induced instability in a loop has been in the literature for decades. Here, we quantify the process in an approximate way with a view to replicating the power-law index. We find that, for relatively small flares, the random walk twisting model leads to a rather steep power-law slope that agrees very well with the index derived from a sample of 56,000+ solar X-ray flares reported by the GOES satellites. For relatively large flares, we find that the slope of the power law is shallower. The empirical power-law slopes reported for flare stars also have a range that overlaps with the slopes obtained here. We suggest that in the coolest stars, a significant change in slope should occur when the frozen-flux assumption breaks down due to low electrical conductivity.
Interactions of Twisted Ω-loops in a Model Solar Convection Zone
NASA Astrophysics Data System (ADS)
Jouve, L.; Brun, A. S.; Aulanier, G.
2018-04-01
This study aims at investigating the ability of strong interactions between magnetic field concentrations during their rise through the convection zone to produce complex active regions at the solar surface. To do so, we perform numerical simulations of buoyant magnetic structures evolving and interacting in a model solar convection zone. We first produce a 3D model of rotating convection and then introduce idealized magnetic structures close to the bottom of the computational domain. These structures possess a certain degree of field line twist and they are made buoyant on a particular extension in longitude. The resulting twisted Ω-loops will thus evolve inside a spherical convective shell possessing large-scale mean flows. We present results on the interaction between two such loops with various initial parameters (mainly buoyancy and twist) and on the complexity of the emerging magnetic field. In agreement with analytical predictions, we find that if the loops are introduced with opposite handedness and same axial field direction or the same handedness but opposite axial field, they bounce against each other. The emerging region is then constituted of two separated bipolar structures. On the contrary, if the loops are introduced with the same direction of axial and peripheral magnetic fields and are sufficiently close, they merge while rising. This more interesting case produces complex magnetic structures with a high degree of non-neutralized currents, especially when the convective motions act significantly on the magnetic field. This indicates that those interactions could be good candidates to produce eruptive events like flares or CMEs.
Statistical mechanics of ribbons under bending and twisting torques.
Sinha, Supurna; Samuel, Joseph
2013-11-20
We present an analytical study of ribbons subjected to an external torque. We first describe the elastic response of a ribbon within a purely mechanical framework. We then study the role of thermal fluctuations in modifying its elastic response. We predict the moment-angle relation of bent and twisted ribbons. Such a study is expected to shed light on the role of twist in DNA looping and on bending elasticity of twisted graphene ribbons. Our quantitative predictions can be tested against future single molecule experiments.
NASA Astrophysics Data System (ADS)
Bijnens, Johan; Relefors, Johan
2017-12-01
We calculate vector-vector correlation functions at two loops using partially quenched chiral perturbation theory including finite volume effects and twisted boundary conditions. We present expressions for the flavor neutral cases and the flavor charged case with equal masses. Using these expressions we give an estimate for the ratio of disconnected to connected contributions for the strange part of the electromagnetic current. We give numerical examples for the effects of partial quenching, finite volume and twisting and suggest the use of different twists to check the size of finite volume effects. The main use of this work is expected to be for lattice QCD calculations of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.
NASA Astrophysics Data System (ADS)
Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kallidonis, Christos; Koutsou, Giannis; Vaquero Avilés-Casco, Alejandro
2018-03-01
We present results on the isovector and isoscalar nucleon axial form factors including disconnected contributions, using an ensemble of Nf = 2 twisted mass cloverimproved Wilson fermions simulated with approximately the physical value of the pion mass. The light disconnected quark loops are computed using exact deflation, while the strange and the charm quark loops are evaluated using the truncated solver method. Techniques such as the summation and the two-state fits have been employed to access ground-state dominance.
One-loop transition amplitudes in the D1D5 CFT
NASA Astrophysics Data System (ADS)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
2017-01-01
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed off the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. We consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coefficients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.
Renormalization constants for 2-twist operators in twisted mass QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrou, C.; Computation-based Science and Technology Research Center, The Cyprus Institute, 15 Kypranoros Str., 1645 Nicosia; Constantinou, M.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to {beta}=3.9, 4.05, 4.20. Subtraction of O(a{sup 2}) terms is carried out by performing the perturbative evaluation of thesemore » operators at 1-loop and up to O(a{sup 2}). The renormalization conditions are defined in the RI{sup '}-MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.« less
Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.
Xue, Gongda; Hemmings, Brian A
2012-02-01
The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.
How the embryonic brain tube twists
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry
2014-03-01
During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.
Consistent Orientation of Moduli Spaces
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Hopkins, Michael J.; Teleman, Constantin
In a series of papers by Freed, Hopkins, and Teleman (2003, 2005, 2007a) the relationship between positive energy representations of the loop group of a compact Lie group G and the twisted equivariant K-theory Kτ+dimGG (G) was developed. Here G acts on itself by conjugation. The loop group representations depend on a choice of ‘level’, and the twisting τ is derived from the level. For all levels the main theorem is an isomorphism of abelian groups, and for special transgressed levels it is an isomorphism of rings: the fusion ring of the loop group andKτ+dimGG (G) as a ring. For G connected with π1G torsionfree, it has been proven that the ring Kτ+dimGG (G) is a quotient of the representation ring of G and can be calculated explicitly. In these cases it agrees with the fusion ring of the corresponding centrally extended loop group. This chapter explicates the multiplication on the twisted equivariant K-theory for an arbitrary compact Lie group G. It constructs a Frobenius ring structure on Kτ+dimGG (G). This is best expressed in the language of topological quantum field theory: a two-dimensional topological quantum field theory (TQFT) is constructed over the integers in which the abelian group attached to the circle is Kτ+dimGG (G).
Exclusive and diffractive μ+μ- production in p p collisions at the LHC
NASA Astrophysics Data System (ADS)
Gonçalves, V. P.; Jaime, M. M.; Martins, D. E.; Rangel, M. S.
2018-04-01
In this paper, we estimate the production of dimuons (μ+μ- ) in exclusive photon-photon (γ γ ) and diffractive Pomeron-Pomeron (I P I P ), Pomeron-Reggeon (I P I R ), and Reggeon-Reggeon (I R I R ) interactions in p p collisions at the LHC energy. The invariant mass, rapidity, and tranverse momentum distributions are calculated using the forward physics Monte Carlo (FPMC), which allows us to obtain realistic predictions for the dimuon production with two leading intact hadrons. In particular, predictions taking into account the CMS and LHCb acceptances are presented. Moreover, the contribution of the single diffraction for the dimuon production also is estimated. Our results demonstrate that the experimental separation of these different mechanisms is feasible. In particular, the events characterized by pairs with large squared transverse momentum are dominated by diffractive interactions, which allows us to investigate the underlying assumptions present in the description of these processes.
Modified non-Abelian Toda field equations and twisted quasigraded Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrypnyk, T.
We construct a new family of quasigraded Lie algebras that admit the Kostant-Adler scheme. They coincide with special quasigraded deformations of twisted subalgebras of the loop algebras. Using them we obtain new hierarchies of integrable equations in partial derivatives which we call 'modified' non-Abelian Toda field hierarchies.
Wrinkles, loops, and topological defects in twisted ribbons
NASA Astrophysics Data System (ADS)
Chopin, Julien
Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.
NASA Astrophysics Data System (ADS)
Portier-Fozzani, F.; Noens, J.-C.
In this presentation, I will present different techniques for 3D coronal structures reconstructions. Multiscale vision model (MVM, collaboration with A. Bijaoui) based on wavelet decomposition were used to prepare data. With SOHO/EIT, geometrical constraints were added to be able to measure by stereovision loop size parameters. Thus from these parameters, while including information of several observation wavelenghts, it has been possible by using the CHIANTI code to derive temperature and density along and across the loops, and thus to determine loops physical properties. During the emergence of a new active region, a more sophisticated method, was made to measure the twist degree variations. Loops appear twisted and detwist as expand. The magnetic helicity conservation gives thus important criteria to derive the limit of the stability for a non forced phenomena. Sigmoids, twisted ARLs, sheared filament are related with flares and CMEs. In that case 3D measurement can say upon which level of twist the structure will become unstable. With basic geometrical measures, it has been seen that a new active region reconnected a sigmoide leading to a flare. Also, for CMEs, the measure of the filament ejection angle from stereo EUV images, and the following of temporal evolution from coronagraphic measurement such as done by HACO at the Pic Du Midi Observatory, gives possibility to determine if the CME is coming toward the Earth, and when eventually would be the impact with the magnetosphere. The input of new missions such as STEREO/SECCHI would allow us to better understood the coronal dynamic. Such joined observations GBO-space, used simultaneously together with 3D methods, will allow to develop efficiently forecasting for Space Weather.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toeroek, T.; Aulanier, G.; Schmieder, B.
We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-beta magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven 'kinematic' emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil amore » two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.« less
One-loop transition amplitudes in the D1D5 CFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed of the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. Wemore » consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coeffcients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.« less
One-loop transition amplitudes in the D1D5 CFT
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
2017-01-02
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed of the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. Wemore » consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coeffcients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.« less
QCD unitarity constraints on Reggeon Field Theory
NASA Astrophysics Data System (ADS)
Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2016-08-01
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
Twist functions in vertebral column formation in medaka, Oryzias latipes.
Yasutake, Junichi; Inohaya, Keiji; Kudo, Akira
2004-07-01
Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsally around the notochord and the neural tube, where at a later stage the vertebral column would be formed. This finding strongly suggests that twist-expressing sclerotomal cells participate in vertebral column formation in medaka. To clarify the function of twist gene in the sclerotome, we performed knockdown analysis of twist by using two kinds of morpholino antisense oligonucleotides targeted against twist (MO1 and MO2). Both the MO1 and MO2 morphants exhibited absence of neural arches, which are bilaterally paired, dorsomedially oriented bones on the dorsal aspect of the centrum. In addition, MO2, which blocks translation of only endogenous twist mRNA in the twist-EGFP transgenic medaka, did not affect the migration pattern of EGFP-positive cells, revealing that the migration of sclerotome-derived cells were normal in the absence of twist gene function. These results demonstrate that medaka twist functions in vertebral column formation by regulating the sclerotomal cell differentiation.
The Twist Box Domain is Required for Twist1-induced Prostate Cancer Metastasis
Gajula, Rajendra P.; Chettiar, Sivarajan T.; Williams, Russell D.; Thiyagarajan, Saravanan; Kato, Yoshinori; Aziz, Khaled; Wang, Ruoqi; Gandhi, Nishant; Wild, Aaron T.; Vesuna, Farhad; Ma, Jinfang; Salih, Tarek; Cades, Jessica; Fertig, Elana; Biswal, Shyam; Burns, Timothy F.; Chung, Christine H.; Rudin, Charles M.; Herman, Joseph M.; Hales, Russell K.; Raman, Venu; An, Steven S.; Tran, Phuoc T.
2013-01-01
Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer (PCa). Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in PCa cells using in vitro assays which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extra-thoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for PCa cells to colonize metastatic lung lesions and extra-thoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in PCa cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and PCa metastasis. PMID:23982216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, J.W.; Jones, S.T.
We show that the perturbative Reggeon field theory (RFT) with flavoring corrections added reproduces the pp and pp-bar differential cross sections from Fermilab to the CERN SPS collider (Spp-bar S). This completes a long program of phenomenology which is now capable of providing a unified framework for soft hadronic scattering at current energies. Our scenario of data being influenced by finite scales at least up to ..sqrt..s = 546 GeV is compatible with the truly asymptotic limit being described by the critical RFT scaling laws.
High Speed Network Access to the Last-Mile Using Fixed Broadband Wireless
2004-03-01
could download the 3¼-hour movie Titanic in 7 minutes and 23 seconds while a 56K modem on the other hand would need almost 22 hours”. The MMDS band...9 a. Twisted Copper Pair (xDSL).....................................................9 b. Cable Modem ...of dial-up modems over twisted copper pair1. Copper wire provided the link in the local loop between the telephone subscriber and the local
Conversion from mutual helicity to self-helicity observed with IRIS
NASA Astrophysics Data System (ADS)
Li, L. P.; Peter, H.; Chen, F.; Zhang, J.
2014-10-01
Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org
Characterization of sequences in human TWIST required for nuclear localization
Singh, Shalini; Gramolini, Anthony O
2009-01-01
Background Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) 37RKRR40 and 73KRGKK77 in the human TWIST (H-TWIST) protein. Results Using site-specific mutagenesis and immunofluorescences, we observed that altered TWISTNLS1 K38R, TWISTNLS2 K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWISTNLS2 K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWISTNLS1 with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays. Conclusion Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4. PMID:19534813
Lee, Sang Ki; Hwang, Yoon Sub; Choy, Won Sik
2014-03-01
Conventional operative treatments of patella fractures are frequently associated with implant failure or displacement. Recent biomechanical studies showed that the orientation of the wire loop and the site of the wire twist can affect the fixation strength. The purpose of this study was to compare the clinical outcome of the tension band technique with loops in different orientations and different knot positions. For this retrospective study, 72 patella fractures (71 patients) were fixed with figure-of-eight configurations in combination with 2 K-wires. Patients were divided into 3 groups according to the orientation of tension band construct. A total of 40 patella fractures were placed with figure-of-eight configurations in a vertical orientation either with 1 wire twist (group 1; 16 patella fractures) or with 2 wire twists at the adjacent corners (group 2; 24 patella fractures). Thirty-two patella fractures were placed with figure-of-eight configurations in a horizontal orientation with 2 wire twists at the adjacent corners (group 3). Range of motion, complication rates, and knee scoring scales (Hospital for Special Surgery and Lysholm) were assessed during serial follow-up. Satisfactory reductions were achieved in all groups, but functional results in the early stage were different. Group 3 had better Hospital for Special Surgery and Lysholm scores at 3 months postoperatively; however, at 6 months and 1 year postoperatively, all groups had similar scores. At the 1-year follow-up, all groups achieved acceptable flexion and range of motion. The overall complication rate was lower in the horizontal group (12.5%). Placing the figure-of-eight tension band construct in a horizontal orientation can provide functional benefits in the early stage after patella fractures. Copyright 2014, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.
2002-05-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
Hall, David R [Provo, UT; Hall, Jr., H. Tracy
2007-07-24
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.
Biomechanical performance of different cable and wire cerclage configurations.
Lenz, Mark; Perren, Stephan Marcel; Richards, Robert Geoff; Mückley, Thomas; Hofmann, Gunther Olaf; Gueorguiev, Boyko; Windolf, Markus
2013-01-01
Cerclage technology is regaining interest due to the increasing number of periprosthetic fractures. Different wiring techniques have been formerly proposed and have hibernated over years. Hereby, they are compared to current cerclage technology. Seven groups (n = 6) of different cable cerclage (Ø1.7 mm, crimp closure) configurations (one single cerclage looped once around the shells, one single cerclage looped twice, two cerclages each looped once) and solid wire cerclages (Ø1.5 mm, twist closure) (same configurations as cable cerclages, and two braided wires, twisted around each other looped once) fixed two cortical half shells of human femoral shaft mounted on a testing jig. Sinusoidal cyclic loading with constantly increasing force (0.1 N/cycle) was applied starting at 50 N peak load. Cerclage pretension (P), load leading to onset of plastic deformation (D) and load at total failure (T) were identified. Statistical differences between the groups were detected by univariate ANOVA. Double looped cables (P442N ± 129; D1334N ± 319; T2734N ± 330) performed significantly better (p < 0.05) than single looped cables (P292N ± 56; D646N ± 108; T1622N ± 171) and were comparable to two single cables (P392N ± 154; D1191N ± 334; T2675N ± 361). Double looped wires (P335N ± 49; D752N ± 119; T1359N ± 80) were significantly better (p < 0.05) than single looped wires (P181N ± 16; D343N ± 33; T606N ± 109) and performed similarly to single looped cables. Braided wires (P119N ± 26; D225N ± 55; T919N ± 197) exhibited early loss of pretension and plastic deformation. Double looped cerclages provided a better fixation stability compared to a single looped cerclage. Double looped wires were comparable to a single looped cable. The use of braided wires could not be recommended mechanically.
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.
2002-01-01
The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirilo Antonio, N.; Manojlovic, N.; Departamento de Matematica, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro
sl{sub 2} Gaudin model with jordanian twist is studied. This system can be obtained as the semiclassical limit of the XXX spin chain deformed by the jordanian twist. The appropriate creation operators that yield the Bethe states of the Gaudin model and consequently its spectrum are defined. Their commutation relations with the generators of the corresponding loop algebra as well as with the generating function of integrals of motion are given. The inner products and norms of Bethe states and the relation to the solutions of the Knizhnik-Zamolodchikov equations are discussed.
Twist of generalized skyrmions and spin vortices in a polariton superfluid
Donati, Stefano; Dominici, Lorenzo; Dagvadorj, Galbadrakh; Ballarini, Dario; De Giorgi, Milena; Bramati, Alberto; Gigli, Giuseppe; Rubo, Yuri G.; Szymańska, Marzena Hanna; Sanvitto, Daniele
2016-01-01
We study the spin vortices and skyrmions coherently imprinted into an exciton–polariton condensate on a planar semiconductor microcavity. We demonstrate that the presence of a polarization anisotropy can induce a complex dynamics of these structured topologies, leading to the twist of their circuitation on the Poincaré sphere of polarizations. The theoretical description of the results carries the concept of generalized quantum vortices in two-component superfluids, which are conformal with polarization loops around an arbitrary axis in the pseudospin space. PMID:27965393
Twist of generalized skyrmions and spin vortices in a polariton superfluid.
Donati, Stefano; Dominici, Lorenzo; Dagvadorj, Galbadrakh; Ballarini, Dario; De Giorgi, Milena; Bramati, Alberto; Gigli, Giuseppe; Rubo, Yuri G; Szymańska, Marzena Hanna; Sanvitto, Daniele
2016-12-27
We study the spin vortices and skyrmions coherently imprinted into an exciton-polariton condensate on a planar semiconductor microcavity. We demonstrate that the presence of a polarization anisotropy can induce a complex dynamics of these structured topologies, leading to the twist of their circuitation on the Poincaré sphere of polarizations. The theoretical description of the results carries the concept of generalized quantum vortices in two-component superfluids, which are conformal with polarization loops around an arbitrary axis in the pseudospin space.
Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere
NASA Astrophysics Data System (ADS)
Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.
2018-01-01
Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions appear naturally without invoking flux emergence. Magnetic reconfigurations common to eruptive MFRs and flare loop systems are found in our simulations.
Dualities and Topological Field Theories from Twisted Geometries
NASA Astrophysics Data System (ADS)
Markov, Ruza
I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.
2012-01-01
Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH) transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47), MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS), which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E) were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD) simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro circumstances. PMID:22839202
Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T; Wolfe, Lynne A; Tifft, Cynthia J; Zerfas, Patricia M; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G; Lee, Chyi-Chia R; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K; Mazzanti, Laura; Brunner, Han G; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V; Boerkoel, Cornelius F; Gahl, William A; de Vries, Bert B A; van Haelst, Mieke M; Zenker, Martin; Markello, Thomas C
2015-07-02
Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
2017-03-16
When an active region rotated over to the edge of the sun, it presented us with a nice profile view of its elongated loops stretching and swaying above it (Mar. 8-9, 2017). These loops are actually charged particles (made visible in extreme ultraviolet light) swirling along the magnetic field lines of the active region. The video covers about 30 hours of activity. Also of note is a darker twisting mass of plasma to the left of the active region being pulled and spun about by magnetic forces. Video is available at http://photojournal.jpl.nasa.gov/catalog/PIA21562
Stathopoulos, Angelike; Levine, Michael
2002-07-01
Differential activation of the Toll receptor leads to the formation of a broad Dorsal nuclear gradient that specifies at least three patterning thresholds of gene activity along the dorsoventral axis of precellular embryos. We investigate the activities of the Pelle kinase and Twist basic helix-loop-helix (bHLH) transcription factor in transducing Toll signaling. Pelle functions downstream of Toll to release Dorsal from the Cactus inhibitor. Twist is an immediate-early gene that is activated upon entry of Dorsal into nuclei. Transgenes misexpressing Pelle and Twist were introduced into different mutant backgrounds and the patterning activities were visualized using various target genes that respond to different thresholds of Toll-Dorsal signaling. These studies suggest that an anteroposterior gradient of Pelle kinase activity is sufficient to generate all known Toll-Dorsal patterning thresholds and that Twist can function as a gradient morphogen to establish at least two distinct dorsoventral patterning thresholds. We discuss how the Dorsal gradient system can be modified during metazoan evolution and conclude that Dorsal-Twist interactions are distinct from the interplay between Bicoid and Hunchback, which pattern the anteroposterior axis.
Finite element and analytical models for twisted and coiled actuator
NASA Astrophysics Data System (ADS)
Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo
2018-01-01
Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.
Perturbative two- and three-loop coefficients from large β Monte Carlo
NASA Astrophysics Data System (ADS)
Lepage, G. P.; Mackenzie, P. B.; Shakespeare, N. H.; Trottier, H. D.
Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large β on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z3 tunneling.
Perturbative two- and three-loop coefficients from large b Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.P. Lepage; P.B. Mackenzie; N.H. Shakespeare
1999-10-18
Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large {beta} on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z{sub 3} tunneling.
Study of inverse magnetostrictive effect in metallic glasses Fe80-x Co x P14B6
NASA Astrophysics Data System (ADS)
Severikov, V. S.; Grishin, A. M.; Ignahin, V. S.
2017-11-01
The paper presents the possibility to build a tension gauge capable to discriminate different kinds of deformations: compression and twisting (induced by torsion strain) based on the magnetoelastic effect in new metallic glasses Fe80-x Co x P14B6. Applied loads increase coercive field H c, saturation induction B s and rectangularity of magnetic hysteresis loop. For example, hysteresis loop traced for 1 mm narrow, 50 cm long and 30 μm thick Fe40Co40P14B6 straight ribbon subjected to longitudinal stress of 346 MPa shown increased B s from 1.24 to 1.7 T and squareness from 0.55 to 0.88 compared to unloaded specimen. For twisting, on the contrary, both squareness and coercive field vary whereas the value of B s remains unchanged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Li, Ting; Chen, Huadong, E-mail: zjun@nao.cas.cn, E-mail: hdchen@nao.cas.cn
From 2014 October 19 to 27, six X-class flares occurred in super active region (AR) 12192. They were all confined flares and were not followed by coronal mass ejections. To examine the structures of the four flares close to the solar disk center from October 22 to 26, we firstly employ composite triple-time images in each flare process to display the stratified structure of these flare loops. The loop structures of each flare in both the lower (171 Å) and higher (131 Å) temperature channels are complex, e.g., the flare loops rooting at flare ribbons are sheared or twisted (enwound)more » together, and the complex structures were not destroyed during the flares. For the first flare, although the flare loop system appears as a spindle shape, we can estimate its structures from observations, with lengths ranging from 130 to 300 Mm, heights from 65 to 150 Mm, widths at the middle part of the spindle from 40 to 100 Mm, and shear angles from 16° to 90°. Moreover, the flare ribbons display irregular movements, such as the left ribbon fragments of the flare on October 22 sweeping a small region repeatedly, and both ribbons of the flare on October 26 moved along the same direction instead of separating from each other. These irregular movements also imply that the corresponding flare loops are complex, e.g., several sets of flare loops are twisted together. Although previous studies have suggested that the background magnetic fields prevent confined flares from erupting,based on these observations, we suggest that complex flare loop structures may be responsible for these confined flares.« less
Low-energy effective action in two-dimensional SQED: a two-loop analysis
NASA Astrophysics Data System (ADS)
Samsonov, I. B.
2017-07-01
We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.
Genomic pathways modulated by Twist in breast cancer.
Vesuna, Farhad; Bergman, Yehudit; Raman, Venu
2017-01-13
The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Moreover, many of the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtained from larger, independant datasets of breast cancer patients. We over-expressed the human Twist gene in non-metastatic MCF-7 breast cancer cells to generate the estrogen-independent metastatic breast cancer cell line MCF-7/Twist. These cells were inoculated in the mammary fat pad of female severe compromised immunodeficient mice, which subsequently formed xenograft tumors that metastasized to the lungs. Microarray data was collected from both in vitro (MCF-7 and MCF-7/Twist cell lines) and in vivo (primary tumors and lung metastases) models of Twist expression. Our data was compared to several gene datasets of various subtypes, classes, and grades of human breast cancers. Our data establishes a Twist over-expressing mouse model of breast cancer, which metastasizes to the lung and replicates some of the ontogeny of human breast cancer progression. Gene profiling data, following Twist expression, exhibited novel metastasis driver genes as well as cellular maintenance genes that were synonymous with the metastatic process. We demonstrated that the genes and pathways altered in the transgenic cell line and metastatic animal models parallel many of the dysregulated gene pathways observed in human breast cancers. Analogous gene expression patterns were observed in both in vitro and in vivo Twist preclinical models of breast cancer metastasis and breast cancer patient datasets supporting the functional role of Twist in promoting breast cancer metastasis. The data suggests that genetic dysregulation of Twist at the cellular level drives alterations in gene pathways in the Twist metastatic mouse model which are comparable to changes seen in human breast cancers. Lastly, we have identified novel genes and pathways that could be further investigated as targets for drugs to treat metastatic breast cancer.
Invariant structures of magnetic flux tubes
NASA Astrophysics Data System (ADS)
Solovev, A. A.
1982-04-01
The basic properties of a screened magnetic flux tube possessing a finite radius of curvature are discussed in order to complement the findings of Parker (1974, 1976) and improve their accuracy. Conditions of equilibrium, twisting equilibrium, and twisting oscillations are discussed, showing that a twisted magnetic loop or arch is capable of executing elastic oscillations about an equilibrium state. This property can in particular be used in the theory of solar flares. Invariant structures of a force-free magnetic tube are analyzed, showing that invariant structures of the field preserve their form when the geometrical parameters of the flux tube are changed. In a quasi-equilibrium transition of the tube from one state to another the length and pitch of the tube spiral change in proportion to the radius of its cross section.
Emerging role of Twist1 in fibrotic diseases.
Ning, Xiaoxuan; Zhang, Kun; Wu, Qingfeng; Liu, Minna; Sun, Shiren
2018-03-01
Epithelial-mesenchymal transition (EMT) is a pathological process that occurs in a variety of diseases, including organ fibrosis. Twist1, a basic helix-loop-helix transcription factor, is involved in EMT and plays significant roles in various fibrotic diseases. Suppression of the EMT process represents a promising approach for the treatment of fibrotic diseases. In this review, we discuss the roles and the underlying molecular mechanisms of Twist1 in fibrotic diseases, including those affecting kidney, lung, skin, oral submucosa and other tissues. We aim at providing new insight into the pathogenesis of various fibrotic diseases and facilitating the development of novel diagnostic and therapeutic methods for their treatment. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Gerbes, M5-Brane Anomalies and E8 Gauge Theory
NASA Astrophysics Data System (ADS)
Aschieri, Paolo; Jurco, Branislav
2004-10-01
Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.
Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope
Wang, Haimin; Cao, Wenda; Liu, Chang; Xu, Yan; Liu, Rui; Zeng, Zhicheng; Chae, Jongchul; Ji, Haisheng
2015-01-01
Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere. PMID:25919706
Observational Signatures of a Kink-unstable Coronal Flux Rope Using Hinode /EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, B.; Botha, G. J. J.; Régnier, S.
The signatures of energy release and energy transport for a kink-unstable coronal flux rope are investigated via forward modeling. Synthetic intensity and Doppler maps are generated from a 3D numerical simulation. The CHIANTI database is used to compute intensities for three Hinode /EIS emission lines that cover the thermal range of the loop. The intensities and Doppler velocities at simulation-resolution are spatially degraded to the Hinode /EIS pixel size (1″), convolved using a Gaussian point-spread function (3″), and exposed for a characteristic time of 50 s. The synthetic images generated for rasters (moving slit) and sit-and-stare (stationary slit) are analyzedmore » to find the signatures of the twisted flux and the associated instability. We find that there are several qualities of a kink-unstable coronal flux rope that can be detected observationally using Hinode /EIS, namely the growth of the loop radius, the increase in intensity toward the radial edge of the loop, and the Doppler velocity following an internal twisted magnetic field line. However, EIS cannot resolve the small, transient features present in the simulation, such as sites of small-scale reconnection (e.g., nanoflares).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisovich, V. V., E-mail: anisovic@thd.pnpi.spb.ru; Sarantsev, A. V.
We present technical aspects of the fitting procedure given in the paper by V.V. Anisovich and A.V. Sarantsev 'The analysis of reactions {pi}N {yields} two mesons + N within reggeon exchanges. Fit and results.'
Actin Hydrophobic Loop (262-274) and Filament Nucleation and Elongation
Shvetsov, Alexander; Galkin, Vitold E.; Orlova, Albina; Phillips, Martin; Bergeron, Sarah E.; Rubenstein, Peter A.; Egelman, Edward H.; Reisler, Emil
2014-01-01
Summary The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently using a yeast actin mutant, L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked G-actin does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin - to assist with actin nucleation - and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not alone, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin the helical twist of F-actin changes by ~ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin, and a change of twist by ~ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or a competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics to both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors. PMID:18037437
Fine flow structures in the transition region small-scale loops
NASA Astrophysics Data System (ADS)
Yan, L.; Peter, H.; He, J.; Wei, Y.
2016-12-01
The observation and model have suggested that the transition region EUV emission from the quiet sun region is contributed by very small scale loops which have not been resolved. Recently, the observation from IRIS has revealed that this kind of small scale loops. Based on the high resolution spectral and imaging observation from IRIS, much more detail work needs to be done to reveal the fine flow features in this kind of loop to help us understand the loop heating. Here, we present a detail statistical study of the spatial and temporal evolution of Si IV line profiles of small scale loops and report the spectral features: there is a transition from blue (red) wing enhancement dominant to red (blue) wing enhancement dominant along the cross-section of the loop, which is independent of time. This feature appears as the loop appear and disappear as the loop un-visible. This is probably the signature of helical flow along the loop. The result suggests that the brightening of this kind of loop is probably due to the current dissipation heating in the twisted magnetic field flux tube.
Loop corrections for Kaluza-Klein AdS amplitudes
NASA Astrophysics Data System (ADS)
Aprile, F.; Drummond, J. M.; Heslop, P.; Paul, H.
2018-05-01
Recently we conjectured the four-point amplitude of graviton multiplets in AdS5 × S5 at one loop by exploiting the operator product expansion of N = 4 super Yang-Mills theory. Here we give the first extension of those results to include Kaluza-Klein modes, obtaining the amplitude for two graviton multiplets and two states of the first KK mode. Our method again relies on resolving the large N degeneracy among a family of long double-trace operators, for which we obtain explicit formulas for the leading anomalous dimensions. Having constructed the one-loop amplitude we are able to obtain a formula for the one-loop corrections to the anomalous dimensions of all twist five double-trace operators.
Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling
NASA Astrophysics Data System (ADS)
Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji
2014-08-01
We study the six-point gluon scattering amplitudes in = 4 super Yang-Mills theory at strong coupling based on the twisted ℤ4-symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.
Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse
Vrljicak, Pavle; Cullum, Rebecca; Xu, Eric; Chang, Alex C. Y.; Wederell, Elizabeth D.; Bilenky, Mikhail; Jones, Steven J. M.; Marra, Marco A.; Karsan, Aly; Hoodless, Pamela A.
2012-01-01
Malformations of the cardiovascular system are the most common type of birth defect in humans, frequently affecting the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of TWIST1, we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 939 genes, including 123 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings support a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 can exert its function by direct DNA binding to activate valve specific gene expression. PMID:22815831
PRMT1 Is a Novel Regulator of Epithelial-Mesenchymal-Transition in Non-small Cell Lung Cancer*
Avasarala, Sreedevi; Van Scoyk, Michelle; Karuppusamy Rathinam, Manoj Kumar; Zerayesus, Sereke; Zhao, Xiangmin; Zhang, Wei; Pergande, Melissa R.; Borgia, Jeffrey A.; DeGregori, James; Port, J. David; Winn, Robert A.; Bikkavilli, Rama Kamesh
2015-01-01
Protein arginine methyl transferase 1 (PRMT1) was shown to be up-regulated in cancers and important for cancer cell proliferation. However, the role of PRMT1 in lung cancer progression and metastasis remains incompletely understood. In the present study, we show that PRMT1 is an important regulator of epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion, which are essential processes during cancer progression, and metastasis. Additionally, we have identified Twist1, a basic helix-loop-helix transcription factor and a well-known E-cadherin repressor, as a novel PRMT1 substrate. Taken together, we show that PRMT1 is a novel regulator of EMT and arginine 34 (Arg-34) methylation of Twist1 as a unique “methyl arginine mark” for active E-cadherin repression. Therefore, targeting PRMT1-mediated Twist1 methylation might represent a novel strategy for developing new anti-invasive/anti-metastatic drugs. Moreover, methylated Twist1 (Arg-34), as such, could also emerge as a potential important biomarker for lung cancer. PMID:25847239
Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1+/- mice.
Bai, Shanshan; Li, Dong; Xu, Liang; Duan, Huichuan; Yuan, Jie; Wei, Min
2018-04-17
Saethre-Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre-Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre-Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients. We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1 +/- mice (a mouse model of Saethre-Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1 +/- mice were also injected with recombinant mouse periostin to verify the treatment effects. Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1 +/- mice showed patent coronal sutures in comparison with non-treated Twist1 +/- mice which have coronal craniosynostosis. Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1 +/- mice.
Analysis of current distribution in a large superconductor
NASA Astrophysics Data System (ADS)
Hamajima, Takataro; Alamgir, A. K. M.; Harada, Naoyuki; Tsuda, Makoto; Ono, Michitaka; Takano, Hirohisa
An imbalanced current distribution which is often observed in cable-in-conduit (CIC) superconductors composed of multistaged, triplet type sub-cables, can deteriorate the performance of the coils. It is, hence very important to analyze the current distribution in a superconductor and find out methods to realize a homogeneous current distribution in the conductor. We apply magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and thereby analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of individual layer. We numerically analyze a homogeneous current distribution as a function of the twist pitches of layers, using the fundamental formula. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor.
N = 2 → 0 super no-scale models and moduli quantum stability
NASA Astrophysics Data System (ADS)
Kounnas, Costas; Partouche, Hervé
2017-06-01
We consider a class of heterotic N = 2 → 0 super no-scale Z2-orbifold models. An appropriate stringy Scherk-Schwarz supersymmetry breaking induces tree level masses to all massless bosons of the twisted hypermultiplets and therefore stabilizes all twisted moduli. At high supersymmetry breaking scale, the tachyons that occur in the N = 4 → 0 parent theories are projected out, and no Hagedorn-like instability takes place in the N = 2 → 0 models (for small enough marginal deformations). At low supersymmetry breaking scale, the stability of the untwisted moduli is studied at the quantum level by taking into account both untwisted and twisted contributions to the 1-loop effective potential. The latter depends on the specific branch of the gauge theory along which the background can be deformed. We derive its expression in terms of all classical marginal deformations in the pure Coulomb phase, and in some mixed Coulomb/Higgs phases. In this class of models, the super no-scale condition requires having at the massless level equal numbers of untwisted bosonic and twisted fermionic degrees of freedom. Finally, we show that N = 1 → 0 super no-scale models are obtained by implementing a second Z2 orbifold twist on N = 2 → 0 super no-scale Z2-orbifold models.
Elwell, Jennifer A.; Lovato, TyAnna L.; Adams, Melanie M.; Baca, Erica M.; Lee, Thai; Cripps, Richard M.
2015-01-01
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arise through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist expression in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. PMID:25704510
Extraction of t slopes from experimental γ p → K + Λ and γ p → K + Σ 0 cross section data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freese, Adam; Puentes, Daniel; Adhikari, Shankar
We analyze recent K + meson photoproduction data from the CLAS collaboration for the reactions γp → K +Λ and γp → K +Σ 0 , fitting measured forward-angle differential cross sections to the form AeBt. We develop a quantitative scheme for determining the kinematic region where the fit is to be done, and, from the extracted t-slope B, determine whether single-Reggeon exchange can explain the production mechanism. We find that, in the region 5 < s < 8.1 GeV2 , production of the K +Λ channel can be explained by single K + Reggeon exchange, but the K +Σmore » 0 production channel cannot. We verify these conclusions by fitting the data to a differential cross section produced by the interfering sum of two exponential amplitudes.« less
Extraction of t slopes from experimental γ p →K+Λ and γ p →K+Σ0 cross section data
NASA Astrophysics Data System (ADS)
Freese, Adam; Puentes, Daniel; Adhikari, Shankar; Badui, Rafael; Guo, Lei; Raue, Brian
2017-10-01
We analyze recent K+ meson photoproduction data from the CLAS collaboration for the reactions γ p →K+Λ and γ p →K+Σ0 , fitting measured forward-angle differential cross sections to the form A eB t . We develop a quantitative scheme for determining the kinematic region where the fit is to be done, and, from the extracted t -slope B , determine whether single-Reggeon exchange can explain the production mechanism. We find that, in the region 5
Development and preclinical testing of a new tension-band device for the spine: the Loop system.
Garner, Matthew D; Wolfe, Steven J; Kuslich, Stephen D
2002-10-01
Wire sutures, cerclage constructs, and tension bands have been used for many years in orthopedic surgery. Spinous process and sublaminar wires and other strands or cables are used in the spine to re-establish stability of the posterior spinal ligament complex. Rigid monofilament wires often fail due to weakening created during twisting or wrapping. Stronger metal cables do not conform well to bony surfaces. Polyethylene cables have higher fatigue strength than metal cables. The Loop cable is a pliable, radiolucent, polyethylene braid. Creep of the Loop/locking clip construct is similar to metal cable constructs using crimps. Both systems have less creep than knotted polyethylene cable constructs.
Sonographic diagnosis of fetal intestinal volvulus with ileal atresia: a case report.
Yu, Wang; Ailu, Cai; Bing, Wang
2013-05-01
Fetal intestinal volvulus is a rare life-threatening condition usually manifesting after birth with most cases being associated with intestinal malrotation. It appears on prenatal sonography (US) as a twisting of the bowel loops around the mesenteric artery, leading to mechanical obstruction and ischemic necrosis of the bowel. We report a case of intrauterine intestinal volvulus with ileal atresia, suspected when US revealed a typical "whirlpool" sign at 37 weeks' gestation, with a segment of markedly distended bowel loops and small amount of fetal ascites. Copyright © 2012 Wiley Periodicals, Inc.
Transequatorial loops interconnecting McMath regions 12472 and 12474
NASA Technical Reports Server (NTRS)
Svestka, Z.; Krieger, A. S.; Chase, R. C.; Howard, R.
1977-01-01
The paper reviews the life history of one transequatorial loop in a system observed in soft X-rays for at least 1.5 days and which interconnected a newly born active region with an old region. The birth of the selected loop is discussed along with properties of the interconnected active regions, sharpening and brightening of the loop, decay of the loop system, and physical relations between the interconnected regions. It is concluded that: (1) the loop was most probably born via reconnection of magnetic-field lines extending from the two active regions toward the equator, which occurred later than 33 hr after the younger region was born; (2) the fully developed interconnection was composed of several loops, all of which appeared to be rooted in a spotless magnetic hill of preceding northern polarity but were spread over two separate spotty regions of southern polarity in the magnetically complex new region; (3) the loop electron temperature increased from 2.1 million to 3.1 million K in one to three hours when the loop system brightened; and (4) the loops became twisted during the brightening, possibly due to their rise in the corona while remaining rooted in moving magnetic features in the younger region.
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, Ronald L.; Hara, Hirohisa
2013-01-01
Active region eruption of 1 June 2011. Ejective eruption. GOES class C4.1 flare. SDO/AIA, various filters (94, 131, 171, 193, 211, 304, 335 Ang.) High time cadence (24 s) and high spatial resolution (0 .6 pixels). SDO/HMI line-of-sight magnetograms. Hinode observed the onset, and the later decay phase. There are two filament eruptions (filament 1 and filament 2). Filament 1 has slow rise with steps, as in several previous cases. GOES "episodes" play role of "microflares" in other events; that is, filament jumps <=> intensity peaks. Episode 1 brightening: Accompanied by filament 1 s initial motions. (Rest of talk.) Filament 1 becomes unstable, and.. Episode 2 brightening: Flare ribbons following filament 1 s fast liftoff. This destabilizes neighboring filament 2, and... Episode 3 brightening: Flare ribbons of whole system following filament 2 s eruption.Something leads to reconnection; not totally clear what. Reconnection -> twisted flux rope in approx.20 min; episode 1 microflare (flare ribbons; TC) and filament jump. Twist -> writhe, via kink instability; filament-trajectory plateau, approx. 20 min. Writhe -> jump and eruption of filament 1, via instability; episode 2 microflare (flare ribbons; TC). (E.g., Williams et al.) First eruption -> second filament eruption (episode 3 flare ribbons; TC). (E.g., Sterling, Moore; Liu et al.; Torok et al.; Schrijver & Title.). Estimate amount of free energy in newly-twisted field (cf. Moore 1988): where we have taken L and r = 50, 3 arcsec. Energy of the total system is likely 1030 ergs or more. So "no" is answer to question. Additional energy comes from remainder of sheared large loop, shear (free energy) of second filament, etc. (Normally assumed situation.) Some history of twist-induced instability in filament eruptions: e.g., Sakurai, Torok & Kliem, Fan & Gibson, Gilbert et al., van Driel-Gesztelyi et al. Criterion : Kink instability for line-tied tube (Hood & Priest): 2.5pi; for Titov & Demoulin loop (Torok et al): approx.3.5pi We observe here: approx.1.5 turns (3.0pi) over 50. => consistent with kink instability acting. (Cf. Srivastava et al. (2010): Small flare seen in TRACE and Hinode: approx.6.0pi)
Holographic calculation for large interval Rényi entropy at high temperature
NASA Astrophysics Data System (ADS)
Chen, Bin; Wu, Jie-qiang
2015-11-01
In this paper, we study the holographic Rényi entropy of a large interval on a circle at high temperature for the two-dimensional conformal field theory (CFT) dual to pure AdS3 gravity. In the field theory, the Rényi entropy is encoded in the CFT partition function on n -sheeted torus connected with each other by a large branch cut. As proposed by Chen and Wu [Large interval limit of Rényi entropy at high temperature,
Structural basis of arrestin-3 activation and signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiuyan; Perry, Nicole A.; Vishnivetskiy, Sergey A.
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underliemore » coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.« less
Scattering of Cosmic Strings by Black Holes:. Loop Formation
NASA Astrophysics Data System (ADS)
Dubath, Florian; Sakellariadou, Mairi; Viallet, Claude Michel
We study the deformation of a long cosmic string by a nearby rotating black hole. We examine whether the deformation of a cosmic string, induced by the gravitational field of a Kerr black hole, may lead to the formation of a string loop. The segment of the string which enters the ergo-sphere of a rotating black hole gets deformed and, if it is sufficiently twisted, it can self-intersect, chopping off a loop. We find that the formation of a loop, via such a mechanism, is a rare event. It will only arise in a small region of the collision phase space, which depends on the string velocity, the impact parameter and the black hole angular momentum. We conclude that, generically, a long cosmic string is simply scattered, or captured, by a nearby rotating black hole.
Chiral limit of N = 4 SYM and ABJM and integrable Feynman graphs
NASA Astrophysics Data System (ADS)
Caetano, João; Gürdoğan, Ömer; Kazakov, Vladimir
2018-03-01
We consider a special double scaling limit, recently introduced by two of the authors, combining weak coupling and large imaginary twist, for the γ-twisted N = 4 SYM theory. We also establish the analogous limit for ABJM theory. The resulting non-gauge chiral 4D and 3D theories of interacting scalars and fermions are integrable in the planar limit. In spite of the breakdown of conformality by double-trace interactions, most of the correlators for local operators of these theories are conformal, with non-trivial anomalous dimensions defined by specific, integrable Feynman diagrams. We discuss the details of this diagrammatics. We construct the doubly-scaled asymptotic Bethe ansatz (ABA) equations for multi-magnon states in these theories. Each entry of the mixing matrix of local conformal operators in the simplest of these theories — the bi-scalar model in 4D and tri-scalar model in 3D — is given by a single Feynman diagram at any given loop order. The related diagrams are in principle computable, up to a few scheme dependent constants, by integrability methods (quantum spectral curve or ABA). These constants should be fixed from direct computations of a few simplest graphs. This integrability-based method is advocated to be able to provide information about some high loop order graphs which are hardly computable by other known methods. We exemplify our approach with specific five-loop graphs.
Elwell, Jennifer A; Lovato, TyAnna L; Adams, Melanie M; Baca, Erica M; Lee, Thai; Cripps, Richard M
2015-04-15
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zirin, H.; Tanaka, K.
1972-01-01
Analysis is made of observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impart and by heating by the energetic electrons and protons. The region showed twisted flux and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.
ERIC Educational Resources Information Center
Ansberry, Karen; Morgan, Emily
2008-01-01
Students of all ages are fascinated by the ups, downs, loops, and twists of roller coaster rides! What they may not realize is that there is a lot of science involved in making a roller coaster work. This month's column puts students in the shoes of a roller coaster designer as they work in teams to create their own roller coasters. (Contains 1…
ERIC Educational Resources Information Center
Leckie, Linda
2010-01-01
Mike Elrick knew how to stay warm. He loved to wrap himself from head to toe in wool; the author pictures Mike as a wool-clad moccasin-footed snow walker twisting into lampwick harnesses with his trail axe looped through his belt. Mike looked forward to winter and welcomed a drop in the mercury--the lower the better! He loved the physical work of…
A digital optical phase-locked loop for diode lasers based on field programmable gate array.
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
A digital optical phase-locked loop for diode lasers based on field programmable gate array
NASA Astrophysics Data System (ADS)
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
Kuchnir, M.; Mills, F.E.
1984-09-28
A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.
Kuchnir, Moyses; Mills, Frederick E.
1987-01-01
A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.
Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation
NASA Astrophysics Data System (ADS)
Malekzadeh, Maryam; Karimpour, Hossein
2018-05-01
The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huadong; Zhang, Jun; Yang, Shuhong
2014-12-20
Using multi-wavelength data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we investigated two successive solar flares, a C5.1 confined flare and an X4.9 ejective flare with a halo coronal mass ejection, in NOAA active region 11990 from 2014 February 24 to 25. Before the confined flare onset, EUV brightening beneath the filament was detected. As the flare began, a twisted helical flux rope (FR) wrapping around the filament moved upward and then stopped, and in the meantime an obvious X-ray source below it was observed. Prior to the ejective X4.9 flare, some pre-existing loop structures inmore » the active region interacted with each other, which produced a brightening region beneath the filament. Meanwhile, a small flaring loop appeared below the interaction region and some new helical lines connecting the far ends of the loop structures were gradually formed and continually added into the former twisted FR. Then, due to the resulting imbalance between the magnetic pressure and tension, the new FR, together with the filament, erupted outward. Our observations coincide well with a tether-cutting model, suggesting that the two flares probably have the same triggering mechanism, i.e., tether-cutting reconnection. To our knowledge, this is the first direct observation of tether-cutting reconnection occurring between pre-existing loops in an active region. In the ejective flare case, the erupting filament exhibited an Ω-like kinked structure and underwent an exponential rise after a slow-rise phase, indicating that the kink instability might be also responsible for the eruption initiation.« less
Mechanical origins of rightward torsion in early chick brain development
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry
2015-03-01
During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.
Aminian, Farimah; Esmaeilzadeh, Maryam; Moladoust, Hassan; Maleki, Majid; Shahrzad, Soraya; Emkanjoo, Zahra; Sadeghpour, Anita
2014-08-01
The aim of this study was to determine the impact of manifest accessory pathway on left ventricle (LV) twist physiology in Wolff-Parkinson-White (WPW) patients. Although this issue was addressed in 1 study based on speckle tracking method, there was no comparative study with a different technique. We planned to use velocity vector imaging (VVI) to find out how much an accessory pathway can affect LV twist mechanics. Thirty patients were enrolled regarding inclusion and exclusion criteria. Two serial comprehensive transthoracic echocardiography evaluations were performed before and after radiofrequency catheter ablation (RFCA) within 24 hours. Stored cine loops were analyzed using VVI technique and LV twist and related parameters were extracted. Comparing pre- and post-RFCA data, no significant changes were observed in LV systolic and diastolic dimensions, LV ejection fraction (LVEF), and Doppler and tissue Doppler-related parameters. VVI study revealed remarkable rise in peak LV apical rotation (10.3º ± 3.0º to 13.8º ± 3.6º, P < 0.001) and basal rotation (-6.0 ± 1.8º to -7.7 ± 1.8º, P < 0.001) after RFCA. Subsequently LV twist showed a surge from 14.7º ± 3.9º to 20.2º ± 4.4º (P < 0.001). LV untwisting rate changed significantly from -96 ± 67 to -149.0 ± 47.5°/sec (P < 0.001) and apical-basal rotation delay showed a remarkable decline after RFCA (106 ± 81 vs. 42.8 ± 26.0 msec, P < 0.001). Accessory pathways have a major impact on LV twist mechanics. © 2013, Wiley Periodicals, Inc.
Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution
NASA Astrophysics Data System (ADS)
Migliore, Christina; Winter, Henry; Murphy, Nicholas
2018-01-01
The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.
NASA Astrophysics Data System (ADS)
Gupta, Bhupender S.
The first conversion of naturally occurring fibers into threads strong enough to be looped into snares, knit to form nets, or woven into fabrics is lost in prehistory. Unlike stone weapons, such threads, cords, and fabrics—being organic in nature—have in most part disappeared, although in some dry caves traces remain. There is ample evidence to indicate that spindles used to assist in the twisting of fibers together had been developed long before the dawn of recorded history. In that spinning process, fibers such as wool were drawn out of a loose mass, perhaps held in a distaff, and made parallel by human fingers. (A maidservant so spins in Giotto's The Annunciation to Anne, ca. A.D. 1306, Arena Chapel, Padua, Italy.1) A rod (spindle), hooked to the lengthening thread, was rotated so that the fibers while so held were twisted together to form additional thread. The finished length then was wound by hand around the spindle, which, in becoming the core on which the finished product was accumulated, served the dual role of twisting and storing, and, in so doing, established a principle still in use today.
Helicity charging and eruption of magnetic flux from the Sun
NASA Technical Reports Server (NTRS)
Rust, David M.; Kumar, A.
1994-01-01
The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.
A digital optical phase-locked loop for diode lasers based on field programmable gate array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhouxiang; Zhang Xian; Huang Kaikai
2012-09-15
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat notemore » line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.« less
NASA Astrophysics Data System (ADS)
Inoue, S.; Hayashi, K.; Magara, T.; Choe, G. S.; Park, Y. D.
2014-06-01
We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the dramatic dynamics seen in observations, i.e., it is in a stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, they consequently erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this, the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriately maps the distribution of the observed two-ribbon flares. Interestingly, after the flare, the reconnected field lines convert into a structure like the post-flare loops, which is analogous to the extreme ultraviolet image taken by the Solar Dynamics Observatory. Eventually, we found that the twisted lines exceed a critical height at which the flux tube becomes unstable to the torus instability. These results illustrate the reliability of our simulation and also provide an important relationship between flare and coronal mass ejection dynamics.
Zhang, Yao; Tang, Shengjing; Guo, Jie
2017-11-01
In this paper, a novel adaptive-gain fast super-twisting (AGFST) sliding mode attitude control synthesis is carried out for a reusable launch vehicle subject to actuator faults and unknown disturbances. According to the fast nonsingular terminal sliding mode surface (FNTSMS) and adaptive-gain fast super-twisting algorithm, an adaptive fault tolerant control law for the attitude stabilization is derived to protect against the actuator faults and unknown uncertainties. Firstly, a second-order nonlinear control-oriented model for the RLV is established by feedback linearization method. And on the basis a fast nonsingular terminal sliding mode (FNTSM) manifold is designed, which provides fast finite-time global convergence and avoids singularity problem as well as chattering phenomenon. Based on the merits of the standard super-twisting (ST) algorithm and fast reaching law with adaption, a novel adaptive-gain fast super-twisting (AGFST) algorithm is proposed for the finite-time fault tolerant attitude control problem of the RLV without any knowledge of the bounds of uncertainties and actuator faults. The important feature of the AGFST algorithm includes non-overestimating the values of the control gains and faster convergence speed than the standard ST algorithm. A formal proof of the finite-time stability of the closed-loop system is derived using the Lyapunov function technique. An estimation of the convergence time and accurate expression of convergence region are also provided. Finally, simulations are presented to illustrate the effectiveness and superiority of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Toward microstate counting beyond large N in localization and the dual one-loop quantum supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal
The topologically twisted index for ABJM theory with gauge group U(N)k × U(N)−k has recently been shown, in the large-N limit, to reproduce the BekensteinHawking entropy of certain magnetically charged asymptotically AdS4 black holes. We numerically study the index beyond the large-N limit and provide evidence that it contains a subleading logarithmic term of the form −1/2 log N. On the holographic side, this term naturally arises from a one-loop computation. However, we find that the contribution coming from the near horizon states does not reproduce the field theory answer. We give some possible reasons for this apparent discrepancy.
Unbundling in Current Broadband and Next-Generation Ultra-Broadband Access Networks
NASA Astrophysics Data System (ADS)
Gaudino, Roberto; Giuliano, Romeo; Mazzenga, Franco; Valcarenghi, Luca; Vatalaro, Francesco
2014-05-01
This article overviews the methods that are currently under investigation for implementing multi-operator open-access/shared-access techniques in next-generation access ultra-broadband architectures, starting from the traditional "unbundling-of-the-local-loop" techniques implemented in legacy twisted-pair digital subscriber line access networks. A straightforward replication of these copper-based unbundling-of-the-local-loop techniques is usually not feasible on next-generation access networks, including fiber-to-the-home point-to-multipoint passive optical networks. To investigate this issue, the article first gives a concise description of traditional copper-based unbundling-of-the-local-loop solutions, then focalizes on both next-generation access hybrid fiber-copper digital subscriber line fiber-to-the-cabinet scenarios and on fiber to the home by accounting for the mix of regulatory and technological reasons driving the next-generation access migration path, focusing mostly on the European situation.
Physics of magnetic flux ropes
NASA Astrophysics Data System (ADS)
Russell, C. T.; Priest, E. R.; Lee, L. C.
The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.
Pati, Akshaya K; Sahoo, N C
2017-07-01
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, X. L.; Qu, Z. Q.; Xue, Z. K.
We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contractionmore » loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.« less
NASA Astrophysics Data System (ADS)
Yan, X. L.; Pan, G. M.; Liu, J. H.; Qu, Z. Q.; Xue, Z. K.; Deng, L. H.; Ma, L.; Kong, D. F.
2013-06-01
We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contraction loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.
Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading
NASA Astrophysics Data System (ADS)
Wang, Xu; Li, Yingxu; Gao, Yuanwen
2016-01-01
The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.
NASA Astrophysics Data System (ADS)
Carlqvist, P.; Gahm, G. F.; Kristen, H.
2003-05-01
Using the 2.6 m Nordic Optical Telescope we have observed a large number of elephant trunks in several H II regions. Here, we present a small selection of this material consisting of a few large, well-developed trunks, and some smaller ones. We find that: (i) the well-developed trunks are made up of dark filaments and knots which show evidence of twisted structures, (ii) the trunks are connected with essentially two filamentary legs running in V-shape, and (iii) all trunks have the maximum extinction in their heads. We advance a theory of twisted elephant trunks which is based on the presence of magnetic flux ropes in molecular clouds where hot OB stars are formed. If the rope contains a local condensation it may adopt a V-shape as the H II region around the hot stars expands. If, in addition, the magnetic field in the rope is sufficiently twisted, the rope may form a double helix at the apex of the V. The double helix is identified with the twisted elephant trunks. In order to illustrate the mechanisms behind the double helix we have constructed a mechanical analogy model of the magnetic flux rope in which the rope has been replaced by a bundle of elastic strings loaded by a weight. Experiments with the model clearly show that part of the bundle will transform into a double helix when the twist of the bundle is sufficiently large. We have also worked out a simple theoretical model of a mass-loaded magnetic flux rope. Numerical calculations show that a double helix will indeed form when the twist of the rope exceeds a certain critical limit. Numerical model calculations are applied to both the analogy model experiments and one of the well-developed elephant trunks. On the basis of our model we also suggest a new interpretation of the so called EGGs. The double helix mechanism is quite general, and should be active also in other suitable environments. One such environment may be the shell of supernova remnants. Another example is the expanding bubble outlined by the North Celestial Pole Loop. Based on observations collected at the Nordic Optical Telescope, La Palma, Spain.
Amplitudes in the N=4 supersymmetric Yang-Mills theory from quantum geometry of momentum space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorsky, A.
We discuss multiloop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory in terms of effective gravity in the momentum space with IR regulator branes as degrees of freedom. Kinematical invariants of external particles yield the moduli spaces of complex or Kahler structures which are the playgrounds for the Kodaira-Spencer or Kahler type gravity. We suggest fermionic representation of the loop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory assuming the identification of the IR regulator branes with Kodaira-Spencer fermions in the B model and Lagrangian branes in the A model. The two-easy mass box diagram ismore » related to the correlator of fermionic currents on the spectral curve in the B model or hyperbolic volume in the A model and it plays the role of a building block in the whole picture. The Bern-Dixon-Smirnov-like ansatz has the interpretation as the semiclassical limit of a fermionic correlator. It is argued that fermionic representation implies a kind of integrability on the moduli spaces. We conjecture the interpretation of the reggeon degrees of freedom in terms of the open strings stretched between the IR regulator branes.« less
DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, M. J.
2016-02-20
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux ropemore » would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.« less
Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae
NASA Technical Reports Server (NTRS)
Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.
2016-01-01
EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.
Flare particle acceleration in the interaction of twisted coronal flux ropes
NASA Astrophysics Data System (ADS)
Threlfall, J.; Hood, A. W.; Browning, P. K.
2018-03-01
Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.
Multimedia article. The keys to the new laparoscopic world Thumbs up! knot and Tornado knot.
Uchida, K; Haruta, N; Okajima, M; Matsuda, M; Yamamoto, M
2005-06-01
Most laparoscopic surgeons feel some anxiety when performing intracorporeal knotting with conventional techniques [1, 2]. Two factors contribute to this anxiety. The first is the necessity of recognizing three dimensions on a two-dimensional monitor. The conventional intracorporeal knotting techniques make loops by twisting the thread with a second pair of forceps. This necessitates cooperative movement of both hands, with the added difficulties of depth perception. Regular touch confirmations reduce problems with depth perception. However, touch confirmation is more complicated in laparoscopic surgery than in laparotomy. The second problem is that tied loops can come loose and escape the instruments, especially with hard thread. This is not only stressful but also increases operation time.
Shi, Yunfei; Yao, Jiang; Young, Jonathan M.; Fee, Judy A.; Perucchio, Renato; Taber, Larry A.
2014-01-01
The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study. PMID:25161623
Shi, Yunfei; Yao, Jiang; Young, Jonathan M; Fee, Judy A; Perucchio, Renato; Taber, Larry A
2014-01-01
The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
NASA Astrophysics Data System (ADS)
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
NASA Astrophysics Data System (ADS)
Roy, Abhishek; Chen, Xiao; Teo, Jeffrey
2013-03-01
We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship
NASA Astrophysics Data System (ADS)
Hata, K.; Fukuda, K.; Masuzaki, S.
2018-04-01
Twisted-tape-induced swirl-flow heat transfer due to exponentially increasing heat inputs with various exponential periods ( Q = Q 0 exp(t/τ), τ = 6.04 to 23.07 s) and twisted-tape-induced pressure drop was systematically measured for various mass velocities ( G = 4115 to 13,656 kg/m2 s), inlet liquid temperatures ( T in = 285.88 to 299.09 K), and inlet pressures ( P in = 847.45 to 943.29 kPa) using an experimental water loop flow. Measurements were made over a 59.2-mm effective length and three sections (upper, middle, and lower positions), within which four potential taps were spot-welded onto the outer surface of a 6-mm-inner-diameter, 69.6-mm-heated length, 0.4-mm-thickness platinum circular test tube. Type SUS304 twisted tapes with a width w = 5.6 mm, a thickness δ T = 0.6 mm, a total length l = 372 mm, and twist ratios y = 2.39 and 4.45 were employed in this study. The RANS equations (Reynolds Averaged Navier-Stokes Simulation) with a k-ɛ turbulence model for a circular tube 6 mm in diameter and 636 mm in length were numerically solved for heating of water with a heated section 6 mm in diameter and 70 mm in length using the CFD code, under the same conditions as the experimental ones and considering the temperature dependence of the thermo-physical properties concerned. The theoretical values of surface heat flux q on the circular tubes with twisted tapes with twist ratios y of 2.39 and 4.45 were found to be almost in agreement with the corresponding experimental values of heat flux q, with deviations of less than 30% for the range of temperature difference between the average heater inner surface temperature and the liquid bulk mean temperature ΔT L [ = T s,av - T L , T L = ( T in + T out )/2] considered in this study. The theoretical values of the local surface temperature T s , local average liquid temperature T f,av , and local liquid pressure drop ΔP x were found to be within almost 15% of the corresponding experimental ones. The thickness of the conductive sub-layer δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL on the circular tubes with various twisted-tape inserts were determined on the basis of numerical solutions for the swirl velocities u sw ranging from 5.23 to 21.18 m/s. Correlations between the conductive sub-layer thickness δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL for twisted-tape-induced swirl-flow heat transfer in a vertical circular tube were derived.
NASA Astrophysics Data System (ADS)
Kumar, P.; Manoharan, P. K.
2013-05-01
We present a multiwavelength study of the formation and ejection of a plasma blob and associated extreme ultraviolet (EUV) waves in active region (AR) NOAA 11176, observed by SDO/AIA and STEREO on 25 March 2011. The EUV images observed with the AIA instrument clearly show the formation and ejection of a plasma blob from the lower atmosphere of the Sun at ~9 min prior to the onset of the M1.0 flare. This onset of the M-class flare happened at the site of the blob formation, while the blob was rising in a parabolic path with an average speed of ~300 km s. The blob also showed twisting and de-twisting motion in the lower corona, and the blob speed varied from ~10-540 km s. The faster and slower EUV wavefronts were observed in front of the plasma blob during its impulsive acceleration phase. The faster EUV wave propagated with a speed of ~785 to 1020 km s, whereas the slower wavefront speed varied in between ~245 and 465 km s. The timing and speed of the faster wave match the shock speed estimated from the drift rate of the associated type II radio burst. The faster wave experiences a reflection by the nearby AR NOAA 11177. In addition, secondary waves were observed (only in the 171 Å channel), when the primary fast wave and plasma blob impacted the funnel-shaped coronal loops. The Helioseismic Magnetic Imager (HMI) magnetograms revealed the continuous emergence of new magnetic flux along with shear flows at the site of the blob formation. It is inferred that the emergence of twisted magnetic fields in the form of arch-filaments/"anemone-type" loops is the likely cause for the plasma blob formation and associated eruption along with the triggering of M-class flare. Furthermore, the faster EUV wave formed ahead of the blob shows the signature of fast-mode MHD wave, whereas the slower wave seems to be generated by the field line compression by the plasma blob. The secondary wave trains originated from the funnel-shaped loops are probably the fast magnetoacoustic waves. Three movies are available in electronic form at http://www.aanda.org
One-Loop Test of Quantum Black Holes in anti–de Sitter Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
Small but Dynamic Active Region
2018-04-20
The sun featured just one, rather small active region over the past few days, but it developed rapidly and sported a lot of magnetic activity in just one day (Apr. 11-12, 2018). The activity was observed in a wavelength of extreme ultraviolet light. The loops and twisting arches above it are evidence of magnetic forces tangling with each other. The video clip was produced using Helioviewer software. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA06676
One-Loop Test of Quantum Black Holes in anti–de Sitter Space
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; ...
2018-06-01
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
One-Loop Test of Quantum Black Holes in anti-de Sitter Space
NASA Astrophysics Data System (ADS)
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; Zhao, Wenli
2018-06-01
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
One-Loop Test of Quantum Black Holes in anti-de Sitter Space.
Liu, James T; Pando Zayas, Leopoldo A; Rathee, Vimal; Zhao, Wenli
2018-06-01
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS_{4} black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidai, H.; Quertermous, E.E.; Quertermous, T.
1995-12-10
bHLH-EC2 is a recently characterized member of a growing family of basic helix-loop-helix transcription factors. This family includes bHLH factors such as twist, which appear to be primarily involved in early mesodermal differentiation, and bHLH factors such as TAL-1, which have been characterized through their association with chromosomal breakpoints associated with T-cell leukemias. To provide for studies aimed at understanding the genetic regulation of bHLH-EC2, we have characterized the organization of this gene and conducted preliminary studies of the transcriptional activity of the upstream promoter region. The mouse bHLH-EC2 gene was found to consist of two exons separated by amore » 5-kb intron, an organization pattern similar to the mouse twist gene. The transcription initiation site was identified by RNase protection assay and primer extension analysis. Linked promoter-reporter gene transfection experiments in cultured cells indicated that while the identified upstream sequence can function to promote transcription, it does not function in a cell-specific fashion. To investigate the possible association of bHLH-EC2 with hematological malignancy, the chromosomal location of this gene in the human was mapped by fluorescence in situ hybridization and assigned to chromosome band 20p13. 16 refs., 3 figs.« less
Energy buildup in coronal magnetic flux tubes
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.; Tajima, T.
1987-01-01
A time-dependent two-dimensional MHD simulation is used to study the response of the magnetic field in coronal loops to photospheric motion. From an initially uniform field, circular sections of the ends of the loop are slowly rotated to represent the photospheric motion. The evolution of the field and flow is characterized by three phases: (1) a phase of negligible kinetic energy where the current and field are predominantly parallel; (2) a phase where the field twist increases, the axial field at and near the axis increases, and the axial field decreases in two cylindrical regions away from the axis; and (3) a phase in which a significant portion of the field makes several rotations at large radii, with a corresponding reducton in the axial field to a few percent of the initial value.
Yangian symmetry for bi-scalar loop amplitudes
NASA Astrophysics Data System (ADS)
Chicherin, Dmitry; Kazakov, Vladimir; Loebbert, Florian; Müller, Dennis; Zhong, De-liang
2018-05-01
We establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled N=4 SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet Feynman graph of disc topology cut out of a regular square lattice. The Yangian can be realized by the action of a product of Lax operators with a specific sequence of inhomogeneity parameters on the boundary of the disc. Based on this observation, the Yangian generators of level one for generic bi-scalar amplitudes are explicitly constructed. Finally, we comment on the relation to the dual conformal symmetry of these scattering amplitudes.
High-energy evolution to three loops
NASA Astrophysics Data System (ADS)
Caron-Huot, Simon; Herranen, Matti
2018-02-01
The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to the equation in planar N = 4 super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the threeloop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in crosssection calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.
Hiermeier, Florian; Männer, Jörg
2017-11-19
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.
Hiermeier, Florian; Männer, Jörg
2017-01-01
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548
Transverse Oscillations of Coronal Loops
NASA Astrophysics Data System (ADS)
Ruderman, Michael S.; Erdélyi, Robert
2009-12-01
On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2002-08-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2005-11-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO
NASA Astrophysics Data System (ADS)
Aschwanden, M. J.
2013-12-01
One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.
ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil
Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowingmore » a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.« less
Flavor and baryon quantum numbers and their nondiffractive renormalizations of the Pomeron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, J.W.; Jones, S.T.; Manesis, E.K.
We present a theoretical review and a detailed phonomenological description of the ''flavoring'' of the bare Pomeron pole at t = 0 (i.e., the nondiffractive renormalization of its multiperipheral unitarity sum by strange quarks, charmed quarks, diquarks,...) from an ''unflavored'' intercept alpha-circumflex = 0.85 to a ''flavored'' intercept ..cap alpha.. approx. = 1.08. Experimentally, flavoring effects seem to converge rapidly; hence this number is probably close to the bare intercept of the Reggeon field theory. We treat NN, ..pi..N, and KN total cross sections and real to imaginary amplitude ratios. We do not observe oscillations. We pay particular attention tomore » 2sigma/sub K/N - sigma/sub piN/ which rises monotonically. We present a closely related combination of inelastic diffraction cross sections which decreases monotonically, indicating that vacuum amplitudes are not simply the sum of a Pomeron pole and an ideally mixed f. In fact we argue that a Pomeron + f structure is neither compatible with flavoring nor with schemes in which flavoring is somehow absorbed away. In contrast, flavoring is required for consistency with experiment by the Chew-Rosenzweig hypothesis of the Pomeron-f identity. We close with a description of flavoring threshold effects on the Reggeon field theory at current energies.« less
3D MHD MODELING OF TWISTED CORONAL LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reale, F.; Peres, G.; Orlando, S.
We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km.more » We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Sykora, Juan; Cheung, Mark C. M.; Moreno-Insertis, Fernando
We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively largemore » diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.« less
Suppression of heating of coronal loops rooted in opposite polarity sunspot umbrae
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep; Winebarger, Amy R.
2016-05-01
EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the HMI onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral areas of the opposite polarity sunspots. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.We hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbra. Many transient, outstandingly bright, loops in the AIA 94 movie of the AR do have this expected rooting pattern. We will also present another example of AR in which we find a similar rooting pattern of coronal loops.
Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics
NASA Astrophysics Data System (ADS)
Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng
2013-03-01
Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.
NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Zhang, Jun; Liu, Zhong
2014-04-01
One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads,more » tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.« less
The Caltech experimental investigation of fast 3D non-equilbrium dynamics: an overview
NASA Astrophysics Data System (ADS)
Bellan, Paul; Shikama, Taiichi; Chai, Kilbyoung; Ha, Bao; Chaplin, Vernon; Kendall, Mark; Moser, Auna; Stenson, Eve; Tobin, Zachary; Zhai, Xiang
2012-10-01
The formation and dynamics of writhing, plasma-filled, twisted open magnetic flux tubes is being investigated using pulsed-power laboratory experiments. This work is relevant to solar corona loops, astrophysical jets, spheromak formation, and open field lines in tokamaks and RFP's. MHD forces have been observed to drive fast axial plasma flows into the flux tube from the boundary it intercepts. These flows fill the flux tube with plasma while simultaneously injecting linked frozen-in azimuthal flux; helicity injection is thus associated with mass injection. Recent results include observation of a secondary instability (Rayleigh-Taylor driven by the effective gravity of an exponentially growing kink mode), color-coded plasmas manifesting bidirectional axial flows in a geometry similar to a solar corona loop, and spectroscopic measurements of the internal vector magnetic field. Experiments underway include investigating how an external magnetic field straps down a solar loop, investigation of the details of the Rayleigh-Taylor instability, development of a fast EUV movie camera, increasing the jet velocity, excitation of Alfven waves, and investigating 3D magnetic reconnection.
Evidence of suppressed heating of coronal loops rooted in opposite polarity sunspot umbrae
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv K.; Thalmann, Julia K.; Winebarger, Amy R.; Panesar, Navdeep K.; Moore, Ronald
2015-04-01
Observations of active region (AR) coronae in different EUV wavelengths reveal the presence of various loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect opposite-polarity plage or a sunspot to a opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94 A, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.From this result, we further hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbrae. Many transient, outstandingly bright, loops in the AIA 94 A movie of the AR do have this expected rooting pattern.
Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction
NASA Technical Reports Server (NTRS)
Shin, SangJoon; Cesnik, Carlos E. S.
2001-01-01
Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration minimizing controller is designed based on this result, which implements classical disturbance rejection algorithm with some modifications. The controller is simulated numerically, and more than 90% of the 4P hub vibratory load is eliminated. By accomplishing the experimental and analytical steps described in this thesis, the present concept is found to be a viable candidate for future generation low-vibration helicopters. Also, the analytical framework is shown to be very appropriate for exploring active blade designs, aeroelastic behavior prediction, and as simulation tool for closed-loop controllers.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-06-15
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.
Confronting effective models for deconfinement in dense quark matter with lattice data
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Brauner, Tomáš; Naylor, William R.
2015-12-01
Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these artifacts in the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model and compare its predictions to existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even qualitative agreement with lattice data requires the introduction of two novel elements in the model: (i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to previously used analytical Ansätze, we determine its dependence on the chemical potential from lattice data for the expectation value of the Polyakov loop. Finally, we propose adding a two-derivative operator to our effective model. This term acts as an additional source of explicit chiral symmetry breaking, mimicking an analogous term in the lattice Wilson action.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-01-01
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP’s position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice. PMID:28617338
NASA Astrophysics Data System (ADS)
Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef
2009-05-01
A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.
A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014
NASA Technical Reports Server (NTRS)
Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.
2016-01-01
We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from SDO/AIA EUV channels and from Hinode/XRT, and CME observations are from the SOHO/LASCO C2 coronograph. Each jet-driven CME was relatively slow-moving (approx. 200 - 300 km/s) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer-puff" variety, whereby a pre-existing streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.
A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014
NASA Technical Reports Server (NTRS)
Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.
2016-01-01
We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multiitude of jets occurred from the southeast edge of the active region, and in contrast to the major-flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from multiple SDO/AIA EUV channels, including 304, 171 and 193 Angstrom, and CME observations are taken from SOHO/LASCO C2 coronograph. Each jet-driven CME was relatively slow-moving (approximately 200 - 300 km s(sup-1) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer-puff" variety, whereby a preexisting streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.
Simulations of Solar Jets Confined by Coronal Loops
NASA Technical Reports Server (NTRS)
Wyper, P. F.; De Vore, C. R.
2016-01-01
Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that there connection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.
SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F.; DeVore, C. R., E-mail: peter.f.wyper@nasa.gov, E-mail: c.richard.devore@nasa.gov
Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an idealmore » kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.« less
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk; Wang, Haimin
2017-07-01
Using high-resolution observations from the 1.6 m New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO), we report direct evidence of merging and reconnection of cool Hα loops in the chromosphere during two homologous flares (B and C class) caused by a shear motion at the footpoints of two loops. The reconnection between these loops caused the formation of an unstable flux rope that showed counterclockwise rotation. The flux rope could not reach the height of torus instability and failed to form a coronal mass ejection. The HMI magnetograms revealed rotation of the negative and positive (N1/P2) polarity sunspots in the opposite directions, which increased the right- and left-handed twist in the magnetic structures rooted at N1/P2. Rapid photospheric flux cancellation (duration 20-30 min, rate ≈3.44 × 1020 Mx h-1) was observed during and even after the first B6.0 flare and continued until the end of the second C2.3 flare. The RHESSI X-ray sources were located at the site of the loop coalescence. To the best of our knowledge, such a clear interaction of chromospheric loops along with rapid flux cancellation has not been reported before. These high-resolution observations suggest the formation of a small flux rope by a series of magnetic reconnections within chromospheric loops that are associated with very rapid flux cancellation. Movies attached to Figs. 2, 7, 8, and 10 are available at http://www.aanda.org
Effective actions for high energy scattering in QCD and in gravity
NASA Astrophysics Data System (ADS)
Lipatov, L. N.
2017-12-01
The scattering amplitudes in QCD and gravity at high energies are described in terms of reggeized gluons and gravitons, respectively. In particular, the BFKL Pomeron in N = 4 SUSY is dual to the reggeized graviton living in the 10-dimensional anti-de-Sitter space. The effective actions for the reggeized gluons and gravitons are local in their rapidities. The Euler-Lagrange equations for these effective theories are constructed and their solutions are used for calculations of corresponding Reggeon vertices and trajectories.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
NASA Astrophysics Data System (ADS)
Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian
2014-08-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝aN,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Krishnamurthy, Kanakapura S; Palakurthy, Nani Babu; Yelamaggad, Channabasaveshwar V
2017-06-01
We report wormlike flexoelectric structures evolving deep in the Freedericksz state of a nematic layer of the liquid crystal cyanobiphenyl-(CH2) 7 -cyanobiphenyl. They form in the predominantly splay-bend thin boundary layers and are built up of solitary flexoelectric domains of the Bobylev-Pikin type. Their formation is possibly triggered by the gradient flexoelectric surface instability that remains optically discernible up to unusually high frequencies. The threshold voltage at which the worms form scales as square root of the frequency; in their extended state, worms often appear as labyrinthine structures on a section of loops that separate regions of opposite director deviation. Such asymmetric loops are also derived through pincement-like dissociation of ring-shaped walls. Formation of isolated domains of bulk electroconvection precedes the onset of surface instabilities. In essence, far above the Freedericksz threshold, the twisted nematic layer behaves as a combination of two orthogonally oriented planar half-layers destabilized by localized flexoelectric distortion.
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.; Alexander, David; Hurlburt, Neal; Newmark, Jeffrey S.; Neupert, Werner M.; Klimchuk, J. A.; Gary, G. Allen
1999-01-01
In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop-aligned magnetic field component B(sub z) at the footpoints, but is correlated with the azimuthal field B(sub phi) = Bz(RDelta Phi/L) of a twisted loop, and is thus consistent with heating mechanisms based on field-aligned currents.
Ishiguro, Toshitaka; Hiyama, Takashi; Nasu, Katsuhiro; Akashi, Yoshimasa; Minami, Manabu
2017-07-01
Gastrointestinal volvulus is mainly classified into two subtypes, mesentero-axial volvulus and organo-axial volvulus. The detailed imaging findings of organo-axial volvulus of the small intestine have never been reported as far as we know. In this article, we report a case of organo-axial volvulus of the small intestine, focusing on the computed tomography (CT) findings. An 80-year-old man was radiologically diagnosed as having organo-axial volvulus of the terminal ileum and it was confirmed by open surgery without adhesion or any other anatomical abnormalities. CT showed two specific findings, split-bowel sign and rotating-C sign, which we think reflect pathophysiologic features of organo-axial volvulus. We think the pathogenic mechanism of organo-axial volvulus can be explained by the convergence of the reversed-rotational twist following the formation of a twisted but non-obstructive circular loop, even if there is no adhesion. Radiologists should be aware that organo-axial volvulus can occur even in the small intestine, and in the case of small bowel obstruction with single transition point, the two pathophysiologic signs mentioned above must be looked for to diagnose the possibility of organo-axial volvulus.
Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muna, Alice Baca; LaFleur, Chris Bensdotter; Brooks, Dusty Marie
This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of themore » tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.« less
Active Region Formation and Subsurface Structure
NASA Astrophysics Data System (ADS)
Stein, F.; Nordlund, Robert A.
2016-10-01
We present results from emerging magnetic flux simulations showing how several different active regions form and their very different subsurface structures. The simulations assumed an infinite sheet of uniform, untwisted, horizontal field advected into the computational domain by inflows at a depth of 20 Mm. Results from two different horizontal field strengths, 1 and 5 kG, will be presented. Convective up and down flows buckle the horizontal field into Omega and U loops. Upflows and magnetic buoyancy carry the field toward the surface, while fast downflows pin down the field. Small (granular) convective motions, near the surface, shred the emerging field into fine filaments that emerge as the observed "pepper and salt" pattern. The large (supergranular) motions, at depth, keep the overall loop structure intact, so that as the overall omega-loop emerges through the surface the opposite polarity fields counter-stream into large unipolar flux concentrations producing first pores which then coalesce into spots. These tend to be located over the supergranular downflow lanes near the bottom of the domain. The pores and spots exhibit a great variety of subsurface field structures - from monolithic but twisted bundles to intertwined separate spaghetti sturctures. We will show movies of the surface evolution of the field and emergent continuum intensity and of the subsurface evolution of the magnetic field lines.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-05-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-01-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033
Xia, Chuanwu; Hamdane, Djemel; Shen, Anna L.; Choi, Vivian; Kasper, Charles B.; Pearl, Naw May; Zhang, Haoming; Im, Sang-Choul; Waskell, Lucy; Kim, Jung-Ja P.
2011-01-01
The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp147 and Arg514 in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP+ revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ∼20° compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP+ shows movement of the Gly631–Asn635 loop. In the NADP+-free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP+ shows movement of the Gly631–Asn635 loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly631–Asn635 loop movement controls NADPH binding and NADP+ release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners. PMID:21345800
Neonatal testicular infarction--possibly due to compression of the umbilical cord?
Eifinger, Frank; Ahrens, Ulrike; Wille, Sebastian; Roth, Bernhard; Engelmann, Udo
2010-06-01
Neonatal testicular infarction is a rare occurrence. We report on a newborn infant with bilateral testicular infarction. At birth, the uncut umbilical cord ran taut between the thighs making a complete loop around the genitals, compressing the testes. At the age of 6 hours, because of increasing agitation and the beginnings of scrotal discoloration, the infant was operated on, showing a bilateral testicular infarction potentially induced by strangulation of the twisted umbilical cord. Here, we discuss the clinical findings of neonatal testicular infarction and give advice as to the management of this serious complication with regard to the available published data. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Wang, J; Lim, K; Smolyar, A; Teng, M; Liu, J; Tse, A G; Liu, J; Hussey, R E; Chishti, Y; Thomson, C T; Sweet, R M; Nathenson, S G; Chang, H C; Sacchettini, J C; Reinherz, E L
1998-01-01
Each T cell receptor (TCR) recognizes a peptide antigen bound to a major histocompatibility complex (MHC) molecule via a clonotypic alphabeta heterodimeric structure (Ti) non-covalently associated with the monomorphic CD3 signaling components. A crystal structure of an alphabeta TCR-anti-TCR Fab complex shows an Fab fragment derived from the H57 monoclonal antibody (mAb), interacting with the elongated FG loop of the Cbeta domain, situated beneath the Vbeta domain. This loop, along with the partially exposed ABED beta sheet of Cbeta, and glycans attached to both Cbeta and Calpha domains, forms a cavity of sufficient size to accommodate a single non-glycosylated Ig domain such as the CD3epsilon ectodomain. That this asymmetrically localized site is embedded within the rigid constant domain module has implications for the mechanism of signal transduction in both TCR and pre-TCR complexes. Furthermore, quaternary structures of TCRs vary significantly even when they bind the same MHC molecule, as manifested by a unique twisting of the V module relative to the C module. PMID:9427737
In-fiber torsion sensor based on dual polarized Mach-Zehnder interference.
Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhang, Hao; Sieg, Jonathan; Zhou, Quan; Zhang, Li-Yu; Wang, Biao; Yan, Tie-Yi
2014-12-29
This paper presents a novel optical fiber torsion sensor based on dual polarized Mach-Zehnder interference (DPMZI). Unlike the conventional fiber sensor, the proposed sensor is composed of a sensor part and a demodulator. The demodulator is made by a bared single mode fiber (SMF) loop, and the sensor part is a segment of a coated SMF placed before the loop. A mathematical model is proposed based on DPMZI mechanism and from the model when the sensor part is twisted, the E-field rotational angle will bring a quasi-linear impact on the resonance dip wavelength in their matched detecting range. A proof-of-concept experiment was performed to verify the theoretical prediction. From the experimental data, a sensitivity of -0.3703, -1.00962, and -0.59881 nm•m/rad is achieved with the determining range of 12.0936, 7.6959, and 10.4444 rad/m respectively. The sensor which is composed only of the SMF has the advantages of low insertion loss (~-2dB), healthy structure, low manufacture cost, and easy assembly and application.
How the embryonic chick brain twists.
Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A
2016-11-01
During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).
TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo
2014-01-01
Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.
TFBSshape: a motif database for DNA shape features of transcription factor binding sites
Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo
2014-01-01
Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955
Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems
Kerner, Thomas M.
2001-01-01
The present invention provides a wide tracking range phase locked loop (PLL) circuit that achieves minimal jitter in a recovered clock signal, regardless of the source of the jitter (i.e. whether it is in the source or the transmission media). The present invention PLL has automatic harmonic lockout detection circuitry via a novel lock and seek control logic in electrical communication with a programmable frequency discriminator and a code balance detector. (The frequency discriminator enables preset of a frequency window of upper and lower frequency limits to derive a programmable range within which signal acquisition is effected. The discriminator works in combination with the code balance detector circuit to minimize the sensitivity of the PLL circuit to random data in the data stream). In addition, the combination of a differential loop integrator with the lock and seek control logic obviates a code preamble and guarantees signal acquisition without harmonic lockup. An adaptive cable equalizer is desirably used in combination with the present invention PLL to recover encoded transmissions containing a clock and/or data. The equalizer automatically adapts to equalize short haul cable lengths of coaxial and twisted pair cables or wires and provides superior jitter performance itself. The combination of the equalizer with the present invention PLL is desirable in that such combination permits the use of short haul wires without significant jitter.
A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes.
Ren, Rui; Chen, Zhufeng; Zhao, Xia; Sun, Tao; Zhang, Yuchao; Chen, Jie; Lu, Sumei; Ma, Wanshan
2016-11-08
Peroxisome proliferator-activated receptor γ (PPARγ) is a critical gene that regulates the function of adipocytes. Therefore, studies on the molecular regulation mechanism of PPARγ are important to understand the function of adipose tissue. Twist 1 is another important functional gene in adipose tissue, and hundreds of genes are regulated by Twist 1. The aim of this study was to investigate the regulation of Twist 1 and PPARγ expression in 3T3-L1 mature adipocytes. We induced differentiation in 3T3-L1 preadipocytes and examined alterations in Twist 1 and PPARγ expression. We used the PPARγ agonist pioglitazone and the PPARγ antagonist T0070907 to investigate the effect of PPARγ on Twist 1 expression. In addition, we utilized retroviral interference and overexpression of Twist 1 to determine the effects of Twist 1 on PPARγ expression. The expression levels of Twist 1 and PPARγ were induced during differentiation in 3T3-L1 adipocytes. Application of either a PPARγ agonist (pioglitazone) or antagonist (T0070907) influenced Twist 1 expression, with up-regulation of Twist 1 under pioglitazone (1 μM, 24 h) and down-regulation of Twist 1 under T0070907 (100 μM, 24 h) exposure. Furthermore, the retroviral interference of Twist 1 decreased the protein and mRNA expression of PPARγ, while Twist 1 overexpression had the opposite effect. There was a possible regulatory link between Twist 1 and PPARγ in 3T3-L1 mature adipocytes. This regulatory link enhanced the regulation of PPARγ and may be a functional mechanism of Twist 1 regulation of adipocyte physiology and pathology.
Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis
Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing
2014-01-01
Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas
2014-03-01
Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences the world over with its complex patterns or ``tricks,'' such as the Merry-Go-Round , the Wedding-Ring, the Spoke-Jumping, the Texas Skip... Its implement is the lasso, a length of rope with a small loop (``honda'') at one end through which the other end is passed to form a large loop. Here, we study the physics of the simplest rope trick, the Flat Loop, in which the motion of the lasso is forced by a uniform circular motion of the cowboy's/cowgirl's hand in a horizontal plane. To avoid accumulating twist in the rope, the cowboy/cowgirl rolls it between his/her thumb and forefinger while spinning it. The configuration of the rope is stationary in a reference frame that rotates with the hand. Exploiting this fact we derive a dynamical ``string'' model in which line tension is balanced by the centrifugal force and the rope's weight. Using a numerical continuation method, we calculate the steady shapes of a lasso with a fixed honda, examine their stability, and determine a bifurcation diagram exhibiting coat-hanger shapes and whirling modes in addition to flat loops. We then extend the model to a honda with finite sliding friction by using matched asymptotic expansions to determine the structure of the boundary layer where bending forces are significant, thereby obtaining a macroscopic criterion for frictional sliding of the honda. We compare our theoretical results with high-speed videos of a professional trick roper and experiments performed using a laboratory ``robo-cowboy.'' Finally, we conclude with a practical guidance on how to spin a lasso in the air based on the results of our analysis. With the support of Univ. Paris Sud (Lab. FAST/CNRS) and UPMC (d'Alembert/CNRS).
Role of left ventricular twist mechanics in cardiomyopathies, dance of the helices
Kauer, Floris; Geleijnse, Marcel Leonard; van Dalen, Bastiaan Martijn
2015-01-01
Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in “the cardiology community” as it comes to twist mechanics. Fortunately the development of speckle tracking echocardiography, allowing accurate, reproducible and rapid bedside assessment of left ventricular twist, has boosted the interest in this important mechanical aspect of left ventricular deformation. Although the fundamental physiological role of left ventricular twist is undisputable, the clinical relevance of assessment of left ventricular twist in cardiomyopathies still needs to be established. The fact remains; analysis of left ventricular twist mechanics has already provided substantial pathophysiological understanding on a comprehensive variety of cardiomyopathies. It has become clear that increased left ventricular twist in for example hypertrophic cardiomyopathy may be an early sign of subendocardial (microvascular) dysfunction. Furthermore, decreased left ventricular twist may be caused by left ventricular dilatation or an extensive myocardial scar. Finally, the detection of left ventricular rigid body rotation in noncompaction cardiomyopathy may provide an indispensible method to objectively confirm this difficult diagnosis. All this endorses the value of left ventricular twist in the field of cardiomyopathies and may further encourage the implementation of left ventricular twist parameters in the “diagnostic toolbox” for cardiomyopathies. PMID:26322187
Coronal Seismology -- Achievements and Perspectives
NASA Astrophysics Data System (ADS)
Ruderman, Michael
Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the explanation of the oscillation damping is resonant absorption. The damping due to resonant absorption is, broadly speaking, proportional to the inhomogeneity scale of the density in the loop in the transverse direction. This fact was used to estimate the density inhomogeneity scale from the observations. The first observation of the coronal loop transverse oscillations gave a strong boost to the theoretical study of this phenomenon. In the last ten years theorists sufficiently refined their models taking into account such loop properties as the density variation in the longitudinal and transverse directions, the twist of the magnetic field, the non-circular loop cross-section, the variation of the cross-section along the loop, and the loop curvature. Now, to obtain more accurate estimates of the coronal plasma parameters, we need the following from the observations: (i) Since the frequency of the loop oscillation depends on the plasma density, more accurate data on this quantity is required. (ii) Since the estimate of the coronal temperature strongly depends of the loop shape, an accurate three-dimensional picture of the loop is desirable. (iii) The fundamental frequency and first overtone of the loop oscillation are sufficiently affected by the variation of the loop cross-section. The observational data on this quantity is important for further progress of the coronal seismology.
Fetal midgut volvulus: report of eight cases.
Sciarrone, A; Teruzzi, E; Pertusio, A; Bastonero, S; Errante, G; Todros, T; Viora, E
2016-01-01
To evaluate whether prenatal diagnosis of intestinal midgut volvulus (a rare condition due to the small bowel loops twisting) can improve the prognosis of the newborns. In our Prenatal Diagnosis Center, eight cases of intestinal volvulus observed between 2007 and 2014 were retrospectively considered. Ultrasonographic signs can be direct and specific (whirlpool sign, coffee bean sign) or indirect and non-specific (abdominal mass, dilated bowel loops, pseudocysts, ascites, polyhydramnios). Prenatal diagnosis was performed at 20-34 weeks of gestation. All newborns were exposed to an emergency surgery: the major complication was due to cystic fibrosis. An early suspicion of intestinal volvulus allows the clinician to refer the patient to a tertiary center so to confirm the diagnosis and perform an appropriate follow-up in order to identify the proper time of delivery. The prognosis of the babies with prenatal intestinal volvulus depends on the length of the segment involved, on the level of intestinal obstruction, on the presence of meconium peritonitis and on the gestational age at birth. Our experience, according with the literature, suggests that ascites and absence of abdominal peristalsis are ultrasonographic signs that, in the third trimester of pregnancy, correctly lead to an immediate delivery intervention.
Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huadong; Zhang, Jun; Ma, Suli
We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearbymore » coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s{sup −1}. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.« less
Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets
NASA Astrophysics Data System (ADS)
Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao
2017-05-01
We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19-20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ˜280 km s-1. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ˜8 G.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komiya, Eriko; Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp; Yamazaki, Hiroto
Highlights: • CD26-expressing MPM cells upregulate production of periostin. • The intracytoplasmic region of CD26 mediates the upregulation of periostin. • CD26 expression leads to nuclear translocation of Twist1 via phosphorylation of Src. • Secreted periostin enhances migration and invasion of MPM cells. - Abstract: Malignant pleural mesothelioma (MPM) is an aggressive malignancy arising from mesothelial lining of pleura. It is generally associated with a history of asbestos exposure and has a very poor prognosis, partly due to the lack of a precise understanding of the molecular mechanisms associated with its malignant behavior. In the present study, we expanded onmore » our previous studies on the enhanced motility and increased CD26 expression in MPM cells, with a particular focus on integrin adhesion molecules. We found that expression of CD26 upregulates periostin secretion by MPM cells, leading to enhanced MPM cell migratory and invasive activity. Moreover, we showed that upregulation of periostin expression results from the nuclear translocation of the basic helix-loop-helix transcription factor Twist1, a process that is mediated by CD26-associated activation of Src phosphorylation. While providing new and profound insights into the molecular mechanisms involved in MPM biology, these findings may also lead to the development of novel therapeutic strategies for MPM.« less
TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics
Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland
2016-01-01
Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424
Shukunami, Chisa; Takimoto, Aki; Nishizaki, Yuriko; Yoshimoto, Yuki; Tanaka, Seima; Miura, Shigenori; Watanabe, Hitomi; Sakuma, Tetsushi; Yamamoto, Takashi; Kondoh, Gen; Hiraki, Yuji
2018-02-16
Tenomodulin (Tnmd) is a type II transmembrane glycoprotein predominantly expressed in tendons and ligaments. We found that scleraxis (Scx), a member of the Twist-family of basic helix-loop-helix transcription factors, is a transcriptional activator of Tnmd expression in tenocytes. During embryonic development, Scx expression preceded that of Tnmd. Tnmd expression was nearly absent in tendons and ligaments of Scx-deficient mice generated by transcription activator-like effector nucleases-mediated gene disruption. Tnmd mRNA levels were dramatically decreased during serial passages of rat tenocytes. Scx silencing by small interfering RNA significantly suppressed endogenous Tnmd mRNA levels in tenocytes. Mouse Tnmd contains five E-box sites in the ~1-kb 5'-flanking region. A 174-base pair genomic fragment containing a TATA box drives transcription in tenocytes. Enhancer activity was increased in the upstream region (-1030 to -295) of Tnmd in tenocytes, but not in NIH3T3 and C3H10T1/2 cells. Preferential binding of both Scx and Twist1 as a heterodimer with E12 or E47 to CAGATG or CATCTG and transactivation of the 5'-flanking region were confirmed by electrophoresis mobility shift and dual luciferase assays, respectively. Scx directly transactivates Tnmd via these E-boxes to positively regulate tenocyte differentiation and maturation.
Extension-twist coupling of composite circular tubes with application to tilt rotor blade design
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1987-01-01
This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.
Processing mechanics of alternate twist ply (ATP) yarn technology
NASA Astrophysics Data System (ADS)
Elkhamy, Donia Said
Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The successful results of this work have led to the filing of a US patent disclosing the method for producing ATP yarns with high yarn twist efficiency using a high convergence angle at the self ply point together with applying ply torque.
NASA Astrophysics Data System (ADS)
Liu, Jianxing; Laghrouche, Salah; Wack, Maxime
2014-06-01
In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.
A microcomputer network for control of a continuous mining machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiffbauer, W.H.
1993-12-31
This report details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines and installed on a continuous mining machine. The network consists of microcomputers that are connected together via a single twisted-pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers, in conjunction with the appropriate sensors, provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and control the continuous miningmore » machine. Because of the network`s generic structure, it can be installed on most mining machines.« less
Purification and characterization of Escherichia coli MreB protein.
Nurse, Pearl; Marians, Kenneth J
2013-02-01
The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.
Purification and Characterization of Escherichia coli MreB Protein*
Nurse, Pearl; Marians, Kenneth J.
2013-01-01
The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm. PMID:23235161
Quantum Sheaf Cohomology on Grassmannians
NASA Astrophysics Data System (ADS)
Guo, Jirui; Lu, Zhentao; Sharpe, Eric
2017-05-01
In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been computed for abelian gauged linear sigma models (GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous methods have been intractable. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. We also utilize recent advances in supersymmetric localization to compute A/2 correlation functions and check the general result in examples. In this paper we focus on physics derivations and examples; in a companion paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology ring.
Teaching Spatial Awareness for Better Twisting Somersaults.
ERIC Educational Resources Information Center
Hennessy, Jeff T.
1985-01-01
The barani (front somersault with one-half twist) and the back somersault with one twist are basic foundation skills necessary for more advanced twisting maneuvers. Descriptions of these movements on a trampoline surface are offered. (DF)
Wang, Lin; Lin, Li; Chen, Xi; Sun, Li; Liao, Yulin; Huang, Na; Liao, Wangjun
2015-01-01
Vasculogenic mimicry (VM) is a blood supply modality that is strongly associated with the epithelial-mesenchymal transition (EMT), TWIST1 activation and tumor progression. We previously reported that metastasis-associated in colon cancer-1 (MACC1) induced the EMT and was associated with a poor prognosis of patients with gastric cancer (GC), but it remains unknown whether MACC1 promotes VM and regulates the TWIST signaling pathway in GC. In this study, we investigated MACC1 expression and VM by immunohistochemistry in 88 patients with stage IV GC, and also investigated the role of TWIST1 and TWIST2 in MACC1-induced VM by using nude mice with GC xenografts and GC cell lines. We found that the VM density was significantly increased in the tumors of patients who died of GC and was positively correlated with MACC1 immunoreactivity (p < 0.05). The 3-year survival rate was only 8.6% in patients whose tumors showed double positive staining for MACC1 and VM, whereas it was 41.7% in patients whose tumors were negative for both MACC1 and VM. Moreover, nuclear expression of MACC1, TWIST1, and TWIST2 was upregulated in GC tissues compared with matched adjacent non-tumorous tissues (p < 0.05). Overexpression of MACC1 increased TWIST1/2 expression and induced typical VM in the GC xenografts of nude mice and in GC cell lines. MACC1 enhanced TWIST1/2 promoter activity and facilitated VM, while silencing of TWIST1 or TWIST2 inhibited VM. Hepatocyte growth factor (HGF) increased the nuclear translocation of MACC1, TWIST1, and TWIST2, while a c-Met inhibitor reduced these effects. These findings indicate that MACC1 promotes VM in GC by regulating the HGF/c-Met-TWIST1/2 signaling pathway, which means that MACC1 and this pathway are potential new therapeutic targets for GC. PMID:25895023
Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration. PMID:24078795
Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
NASA Astrophysics Data System (ADS)
Hu, F.; Das, Suprem R.; Luan, Y.; Chung, T.-F.; Chen, Y. P.; Fei, Z.
2017-12-01
We report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly due to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.
Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, F.; Das, Suprem R.; Luan, Y.
Here, we report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly duemore » to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.« less
Hydrogen bonds and twist in cellulose microfibrils.
Kannam, Sridhar Kumar; Oehme, Daniel P; Doblin, Monika S; Gidley, Michael J; Bacic, Antony; Downton, Matthew T
2017-11-01
There is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges. For the majority of simulations a consistent right handed twist is observed. The exceptions are two sets of simulations that block the O2-O6' intrachain hydrogen bond, where no consistent twist is observed in multiple independent simulations suggesting that the O2-O6' hydrogen bond can drive twist. However, in a further simulation where exocyclic group rotation is also blocked, right-handed twist still develops suggesting that intrachain hydrogen bonds are not necessary to drive twist in cellulose microfibrils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
Hu, F.; Das, Suprem R.; Luan, Y.; ...
2017-12-13
Here, we report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly duemore » to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.« less
Gauge transformations for twisted spectral triples
NASA Astrophysics Data System (ADS)
Landi, Giovanni; Martinetti, Pierre
2018-05-01
It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.
Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1.
Cao, Jingying; Wang, Xin; Dai, Tao; Wu, Yuanzhong; Zhang, Meifang; Cao, Renxian; Zhang, Ruhua; Wang, Gang; Jiang, Rou; Zhou, Binhua P; Shi, Jian; Kang, Tiebang
2018-01-01
Rationale: Twist is a key transcription factor for induction of epithelial-mesenchymal transition (EMT), which promotes cell migration, invasion, and cancer metastasis, confers cancer cells with stem cell-like characteristics, and provides therapeutic resistance. However, the functional roles and targeted genes of Twist in EMT and cancer progression remain elusive. Methods: The potential targeted genes of Twist were identified from the global transcriptomes of T47D/Twist cells by microarray analysis. EMT phenotype was detected by western blotting and immunofluorescence of marker proteins. The dual-luciferase reporter and chromatin immunoprecipitation assays were employed to observe the direct transcriptional induction of ROR1 by Twist. A lung metastasis model was used to study the pro-metastatic role of Twist and ROR1 by injecting MDA-MB-231 cells into tail vein of nude mice. Bio-informatics analysis was utilized to measure the metastasis-free survival of breast cancer patients. Results: Twist protein was proved to directly activate the transcription of ROR1 gene, a receptor of Wnt5a in non-canonical WNT signaling pathway. Silencing of ROR1 inhibited EMT process, cell migration, invasion, and cancer metastasis of basal-like breast cancer (BLBC) cells. Knockdown of ROR1 also ameliorated the pro-metastatic effect of Twist. Furthermore, analyses of clinical specimens indicated that high expression of both ROR1 and Twist tightly correlates with poor metastasis-free survival of breast cancer patients. Conclusion: ROR1 is a targeted gene of Twist. Twist/ROR1 signaling is critical for invasion and metastasis of BLBC cells.
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Mignemi, Salvatore; Pikutić, Danijel; Štrajn, Rina
2018-03-01
We construct the twist operator for the Snyder space. Our starting point is a non-associative star product related to a Hermitian realisation of the noncommutative coordinates originally introduced by Snyder. The corresponding coproduct of momenta is non-coassociative. The twist is constructed using a general definition of the star product in terms of a bi-differential operator in the Hopf algebroid approach. The result is given by a closed analytical expression. We prove that this twist reproduces the correct coproducts of the momenta and the Lorentz generators. The twisted Poincaré symmetry is described by a non-associative Hopf algebra, while the twisted Lorentz symmetry is described by the undeformed Hopf algebra. This new twist might be important in the construction of different types of field theories on Snyder space.
Effect of twist on single-mode fiber-optic 3 × 3 couplers
NASA Astrophysics Data System (ADS)
Chen, Dandan; Ji, Minning; Peng, Lei
2018-01-01
In the fabricating process of a 3 × 3 fused tapered coupler, the three fibers are usually twisted to be close-contact. The effect of twist on 3 × 3 fused tapered couplers is investigated in this paper. It is found that though a linear 3 × 3 coupler may realize equal power splitting ratio theoretically by twisting a special angle, it is hard to be fabricated actually because the twist angle and the coupler's length must be determined in advance. While an equilateral 3 × 3 coupler can not only realize approximate equal power splitting ratio theoretically but can also be fabricated just by controlling the elongation length. The effect of twist on the equilateral 3 × 3 coupler lies in the relationship between the equal ratio error and the twist angle. The more the twist angle is, the larger the equal ratio error may be. The twist angle usually should be no larger than 90° on one coupling period length in order to keep the equal ratio error small enough. The simulation results agree well with the experimental data.
Twisted supersymmetry: Twisted symmetry versus renormalizability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, Marija; Nikolic, Biljana; Radovanovic, Voja
We discuss a deformation of superspace based on a Hermitian twist. The twist implies a *-product that is noncommutative, Hermitian and finite when expanded in a power series of the deformation parameter. The Leibniz rule for the twisted supersymmetry transformations is deformed. A minimal deformation of the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss different possibilities to render a renormalizable model.
Twist limits for late twisting double somersaults on trampoline.
Yeadon, M R; Hiley, M J
2017-06-14
An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na
Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cellmore » lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.« less
TWIST1-WDR5-Hottip regulates Hoxa9 chromatin to facilitate prostate cancer metastasis
Malek, Reem; Gajula, Rajendra P.; Williams, Russell D.; Nghiem, Belinda; Simons, Brian W.; Nugent, Katriana; Wang, Hailun; Taparra, Kekoa; Lemtiri-Chlieh, Ghali; Yoon, Arum R.; True, Lawrence; An, Steven S.; DeWeese, Theodore L.; Ross, Ashley E.; Schaeffer, Edward M.; Pienta, Kenneth J.; Hurley, Paula J.; Morrissey, Colm; Tran, Phuoc T.
2017-01-01
TWIST1 is a transcription factor critical for development which can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are co-expressed in mouse prostate and then silenced post-natally. Here we report that TWIST1 and HOXA9 co-expression are re-activated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to co-enrichment of TWIST1 and WDR5 as well increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacological inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo. This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. PMID:28484075
Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.
2012-01-01
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667
Modeling and control of active twist aircraft
NASA Astrophysics Data System (ADS)
Cramer, Nicholas Bryan
The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.
Anderson transition in a multiply-twisted helix.
Ugajin, R
2001-06-01
We investigated the Anderson transition in a multiply-twisted helix in which a helical chain of components, i.e., atoms or nanoclusters, is twisted to produce a doubly-twisted helix, which itself can be twisted to produce a triply-twisted helix, and so on, in which there are couplings between adjacent rounds of helices. As the strength of the on-site random potentials increases, an Anderson transition occurs, suggesting that the number of dimensions is 3 for electrons running along the multiply-twisted helix when the couplings between adjacent rounds are strong enough. If the couplings are weakened, the dimensionality becomes less, resulting in localization of electrons. The effect of random connections between adjacent rounds of helices and random magnetic fields that thread the structure is analyzed using the spectral statistics of a quantum particle.
Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao
2018-01-01
Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.
Cerclage handling for improved fracture treatment. A biomechanical study on the twisting procedure.
Wähnert, D; Lenz, M; Schlegel, U; Perren, S; Windolf, M
2011-01-01
Twisting is clinically the most frequently applied method for tightening and maintaining cerclage fixation. The twisting procedure is controversially discussed. Several factors during twisting affect the mechanical behaviour of the cerclage. This in vitro study investigated the influence of different parameters of the twisting procedure on the fixation strength of the cerclage in an experimental setup with centripetal force application. Cortical half shells of the femoral shaft were mounted on a testing fixture. 1.0 mm, 1.25 mm and 1.5 mm stainless ste- el wire cerclages as well as a 1.0mm cable cerclage were applied to the bone. Pretension of the cerclage during the installation was measured during the locking procedure. Subsequently, cyclic testing was performed up to failure. Higher pretension could be achieved with increasing wire diameter. However, with larger wire diameter the drop of pre- tension due to the bending and cutting the twist also increased. The cable cerclage showed the highest pretension after locking. Cerclages twisted under traction revealed significantly higher initial cerclage tension. Plastically deformed twists offered higher cerclage pretension compared to twists which were deformed in the elastic region of the material. Cutting the wire within the twist caused the highest loss of cerclage tension (44% initial tension) whereas only 11 % was lost when cutting the wire ends separately. The bending direction of the twist significantly influenced the cerclage pretension. 45% pretension was lost in forward bending of the twist, 53% in perpendicular bending and 90% in backward bending. Several parameters affect the quality of a cerclage fixation. Adequate installation of cerclage wires could markedly improve the clinical outcome of cerclage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Shyy Woei; Yang, Tsun Lirng; Liou, Jin Shuen
An experimental study measuring the axial heat transfer distributions and the pressure drop coefficients of the tube fitted with a broken twisted tape of twist ratio 1, 1.5, 2, 2.5 or {infinity} is performed in the Re range of 1000-40,000. This type of broken twisted tape is newly invented without previous investigations available. Local Nusselt numbers and mean Fanning friction factors in the tube fitted with the broken twisted tape increase as the twist ratio decreases. Heat transfer coefficients, mean Fanning friction factors and thermal performance factors in the tube fitted with the broken twisted tape are, respectively, augmented tomore » 1.28-2.4, 2-4.7 and 0.99-1.8 times of those in the tube fitted with the smooth twisted tape. Empirical heat transfer and pressure drop correlations which evaluate the local Nusselt number and the mean Fanning friction factor for the tube with the broken twisted tape insert are generated to assist the industrial applications. (author)« less
The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis.
Fu, Junjiang; Qin, Li; He, Tao; Qin, Jun; Hong, Jun; Wong, Jiemin; Liao, Lan; Xu, Jianming
2011-02-01
The epithelial-mesenchymal transition (EMT) converts epithelial tumor cells into invasive and metastatic cancer cells, leading to mortality in cancer patients. Although TWIST is a master regulator of EMT and metastasis for breast and other cancers, the mechanisms responsible for TWIST-mediated gene transcription remain unknown. In this study, purification and characterization of the TWIST protein complex revealed that TWIST interacts with several components of the Mi2/nucleosome remodeling and deacetylase (Mi2/NuRD) complex, MTA2, RbAp46, Mi2 and HDAC2, and recruits them to the proximal regions of the E-cadherin promoter for transcriptional repression. Depletion of these TWIST complex components from cancer cell lines that depend on TWIST for metastasis efficiently suppresses cell migration and invasion in culture and lung metastasis in mice. These findings not only provide novel mechanistic and functional links between TWIST and the Mi2/NuRD complex but also establish new essential roles for the components of Mi2/NuRD complex in cancer metastasis.
In Silico Measurements of Twist and Bend Moduli for β-Solenoid Protein Self-Assembly Units.
Heinz, Leonard P; Ravikumar, Krishnakumar M; Cox, Daniel L
2015-05-13
We compute potentials of mean force for bend and twist deformations via force pulling and umbrella sampling experiments for four β-solenoid proteins (BSPs) that show promise in nanotechnology applications. In all cases, we find quasi-Hooke's law behavior until the point of rupture. Bending moduli show modest anisotropy for two-sided and three-sided BSPs, and little anisotropy for a four-sided BSP. There is a slight clockwise/counterclockwise asymmetry in the twist potential of mean force, showing greater stiffness when the applied twist follows the intrinsic twist. When we extrapolate to beam theory appropriate for amyloid fibrils of the BSPs, we find bend/twist moduli which are somewhat smaller than those in the literature for other amyloid fibrils. Twist persistence lengths are on the order of a micron, and bend persistence lengths are several microns. Provided the intrinsic twist can be reversed, these results support the usage of BSPs in biomaterials applications.
Analysis of lead twist in modern high-performance grinding methods
NASA Astrophysics Data System (ADS)
Kundrák, J.; Gyáni, K.; Felhő, C.; Markopoulos, AP; Deszpoth, I.
2016-11-01
According to quality requirements of road vehicles shafts, which bear dynamic seals, twisted-pattern micro-geometrical topography is not allowed. It is a question whether newer modern grinding methods - such as quick-point grinding and peel grinding - could provide twist- free topography. According to industrial experience, twist-free surfaces can be made, however with certain settings, same twist occurs. In this paper it is proved by detailed chip-geometrical analysis that the topography generated by the new procedures is theoretically twist-patterned because of the feeding motion of the CBN tool. The presented investigation was carried out by a single-grain wheel model and computer simulation.
NASA Astrophysics Data System (ADS)
Dong, Xinran; Xie, Zheng; Song, Yuxin; Yin, Kai; Luo, Zhi; Duan, Ji'an; Wang, Cong
2017-12-01
A highly sensitive torsion sensor based on long period fiber grating (LPFG) fabricated by 800 nm femtosecond laser pulses is proposed and demonstrated. LPFG with an attenuation depth of ∼14 dB is achieved within the wavelength range of 1425-1575 nm. The experiment results show that the LP02 and LP03 resonant wavelengths experience red-shift when the twist direction is clockwise while they occur blue-shift in the twist counterclockwise direction as the twist rate increases. However, the LP04 resonant wavelength is always shifted toward shorter wavelength independently of the twist directions and higher twist sensitivity is observed. In addition, the loss peak amplitude of LPFG shows a tendency to decrease with the twist rate increases whether the LPFG is twisted clockwise or counterclockwise. Meanwhile, the resonant wavelength occurs splitting phenomenon in the case of higher twist rate as well as the high order resonant wavelength performs more significantly. Additionally, the sensor shows a twist sensitivity as high as 118.7 pm/(rad/m) in the range of -105 to -52.5 rad/m and that of 181.7 pm/(rad/m) in the range of 52.5-105 rad/m.
NASA Astrophysics Data System (ADS)
Kumar, Birendra; Nayak, Rajen Kumar; Singh, S. N.
2018-05-01
A twisted tape inserted in an absorber tube may be an excellent option to enhance the performance of a cylindrical parabolic concentrating solar collector (CPC). The present work is an experimental study of the flow and heat transfer with and without twisted tape inserts in the absorber tube of a CPC. Results are presented for mass flow rates of water, ṁ=0.0198-0.0525 kg/s, twist ratio, y=5-10 and Reynolds number, Re=2577.46-6785.55. In the present study, we found that the outlet water temperature, collector efficiency and Nusselt number (Nu) are higher in the twisted tapes as compared to those without the twisted tape inserts in the absorber tube of the CPC. For fixed mass flow rate of water ṁ, the To and η increased with the decrease in twist ratio, y, and is higher in lower twist ratio, y=5, of the twisted tapes. The whole experiment was performed at the Indian Institute of Technology (ISM) in Dhanbad, India during the months of March-April 2017. Based on the experimental data, the correlations for the Nu and friction factor were also developed.
Electronic and Optical Properties of Twisted Bilayer Graphene
NASA Astrophysics Data System (ADS)
Huang, Shengqiang
The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion symmetry is broken with an external electric field. We observe a double-line profile of these states on the domain walls, only occurring when the AB and BA regions are gaped. These states give rise to channels that could transport charge in a dissipationless manner making twisted bilayer graphene a promising platform to realize controllable topological networks for future applications.
Tan, Jiangning; Tedrow, John R.; Nouraie, Mehdi; Dutta, Justin A.; Miller, David T.; Li, Xiaoyun; Yu, Shibing; Chu, Yanxia; Juan-Guardela, Brenda; Kaminski, Naftali; Ramani, Kritika; Biswas, Partha S.; Zhang, Yingze
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow–derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury. PMID:28179498
Tight Placement of Erich Arch Bar While Avoiding Wire Fatigue Failure.
Kirk, Daniel; Whitney, Joseph; Shafer, David; Song, Liansheng
2016-03-01
To determine the number of wire twists needed to acquire ideal Erich arch bar tightness before wire fatigue failure (fracture) in relation to different distances and angles at which different gauge wires are grasped to provide information to improve the efficiency of arch bar application. This study mimicked surgical placement of arch bars with 24- and 26-gauge wires. The number of twists to tightness and failure was evaluated when the wire distance between the arch bar and wire holder tip changed (5 vs 10 mm) and when the degree at which the wire was held relative to the tooth axis was changed (45° vs 90°). A wire shearing test also was used to investigate the fatigability of wires tightened under these same conditions. Wires twisted to tightness, past tightness, and after shearing test movements were visualized with electron microscopy. For 24-gauge wire held at 5 mm, 2.6 to 2.8 twists were needed for wire tightness, with failure after 1.7 to 1.9 twists past tightness; for 24-gauge wire held at 10 mm, 4.4 to 4.9 twists produced tightness, with failure after 2.3 to 2.9 twists past tightness. For 26-gauge wire held at 5 mm, 3.3 to 3.5 twists provided tightness, with 1.6 to 1.8 twists past tightness causing failure; for 26-gauge wire held at 10 mm, 5.1 to 5.5 twists produced tightness, with 3.1 to 3.7 twists past tightness causing failure. At a 45° angle, the wire tightened with fewer twists and showed more resistance to failure with twists past tightness compared with 90° using 24- and 26-gauge wires. In contrast, 24-gauge wire held at a 5-mm distance showed the opposite result, with decreased resistance to failure at the 45° angle. However, the differences were not statistically meaningful. Scanning election microscopy showed no wire fatigue for either angle for 26-gauge wire held at a 5-mm distance and twisted to tightness. After overtightening and oscillation, the 90° angle trials showed fatigue, whereas the 45° angle trials did not. Holding a 24-gauge wire at 45° to the tooth axis is recommended owing to fewer twists to tightness and more resistance to failure. A 5-mm grasping distance is recommended for experienced surgeons owing to fewer twists to tightness, whereas a 10-mm grasping distance is recommended for novice surgeons owing to a greater tolerance for over-twisting before failure. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
TWIST1-WDR5-Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis.
Malek, Reem; Gajula, Rajendra P; Williams, Russell D; Nghiem, Belinda; Simons, Brian W; Nugent, Katriana; Wang, Hailun; Taparra, Kekoa; Lemtiri-Chlieh, Ghali; Yoon, Arum R; True, Lawrence; An, Steven S; DeWeese, Theodore L; Ross, Ashley E; Schaeffer, Edward M; Pienta, Kenneth J; Hurley, Paula J; Morrissey, Colm; Tran, Phuoc T
2017-06-15
TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR . ©2017 American Association for Cancer Research.
Study of Two Successive Three-ribbon Solar Flares on 2012 July 6
NASA Astrophysics Data System (ADS)
Wang, Haimin; Liu, Chang; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda
2014-01-01
This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.''1 resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing "fish-bone-like" morphology evidenced by both Hα images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Hα apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.
Study of Two Successive Three-ribbon Solar Flares Using BBSO/NST Observations
NASA Astrophysics Data System (ADS)
Wang, Haimin; Liu, Chang; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda
2014-06-01
We studied two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.1 arcsec resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing "fish-bone-like" morphology evidenced by both Halpha images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Halpha apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2017-10-01
The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
Bronchial obstruction secondary to idiopathic scoliosis in a child: a case report
Alotaibi, Saad; Harder, James; Spier, Sheldon
2008-01-01
Introduction Patients with severe idiopathic scoliosis are reported to have significant pulmonary complications, including recurrent chest infections, alveolar hypoventilation and respiratory failure. Case presentation We report a case of a 13-year-old boy with moderate-to-severe scoliosis resulting in torsion or twisting of the bronchus intermedius, which contributed to airflow obstruction defects, as revealed by both spirometry and bronchoscopy. Conclusion We recommend that inspection of the shape of the maximal expiratory flow-volume loop obtained from spirometry, as well as other parameters suggestive of obstructive lung disease, may be important in children with scoliosis. To the best of the authors' knowledge, this is the first report of a child in which pulmonary function testing and direct visualization via a flexible bronchoscope have been used to characterize intrathoracic large airway obstruction. PMID:18498624
Observations of Rotating Sunspots from TRACE
NASA Astrophysics Data System (ADS)
Brown, D. S.; Nightingale, R. W.; Alexander, D.; Schrijver, C. J.; Metcalf, T. R.; Shine, R. A.; Title, A. M.; Wolfson, C. J.
2003-09-01
Recent observations from TRACE in the photospheric white-light channel have shown sunspots that rotate up to 200° about their umbral centre over a period of 3 5 days. The corresponding loops in the coronal fan are often seen to twist and can erupt as flares. In an ongoing study, seven cases of rotating sunspots have been identified, two of which can be associated with sigmoid structures appearing in Yohkoh/SXT and six with events seen by GOES. This paper analyzes the rotation rates of the sunspots using TRACE white-light data. Observations from AR 9114 are presented in detail in the main text and a summary of the results for the remaining six sunspots is presented in Appendixes A F. Discussion of the key results, particularly common features, are presented, as well as possible mechanisms for sunspot rotation.
2017-05-01
developed CRISPR technology to examine if Twist enhances ATX and LPAR1 expression. Specifically, we performed lentiviral transduction of Twist...targeting gRNA into breast cancer cells MDA-MB-578 and SUM-1315, and selected single cell colony with Twist knockout. We chose CRISPR -gRNA over the...shRNA system which was originally proposed, as CRISPR provides higher specificity and fewer off-target effects. To verify knockout of Twist, we first
NASA Astrophysics Data System (ADS)
Lu, Yanfang; Shen, Changyu; Chen, Debao; Chu, Jinlei; Wang, Qiang; Dong, Xinyong
2014-10-01
The transmission intensity of the tilted fiber Bragg grating (TFBG) is strongly dependent on the polarization properties of the TFBG. The polarization characteristic of the cladding modes can be used for twist measuring. In this paper, a highly sensitive fiber twist sensor is proposed. The transmission intensity on the strong loss wavelength showed a quasi-sin θ changing with the twist angle ranging from 0° to 180° for S- or P-polarized input. A high sensitivity of 0.299 dB/° is achieved, which is almost 17.9 times higher than that of the current similar existing twist sensor. The twist angle can be measured precisely with the matrix.
Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance
NASA Astrophysics Data System (ADS)
Shen, Changyu; Zhang, Yang; Zhou, Wenjun; Albert, Jacques
2014-02-01
A fiber twist sensor based on the surface plasmon resonance (SPR) effect of an Au-coated tilted fiber Bragg grating (TFBG) is proposed. The SPR response to the twist effect on an Au-coated TFBG (immersing in distilled water) is studied theoretically and experimentally. The results show that the transmission power around the wavelength of SPR changes with the twist angle. For the twist ranging from 0° to 180° in clockwise or anti-clockwise directions, the proposed sensor shows sensitivities of 0.037 dBm/° (S-polarized) and 0.039 dBm/° (P-polarized), which are almost 7.5 times higher than that of the current similar existing twist sensor.
NASA Astrophysics Data System (ADS)
Tripathi, Shubhandra; Srivastava, Gaurava; Singh, Aastha; Prakasham, A. P.; Negi, Arvind S.; Sharma, Ashok
2018-03-01
Colchicine site inhibitors are microtubule destabilizers having promising role in cancer therapeutics. In the current study, four such indanone derivatives (t1, t9, t14 and t17) with 3,4,5-trimethoxyphenyl fragment (ring A) and showing significant microtubule destabilization property have been explored. The interaction mechanism and conformational modes triggered by binding of these indanone derivatives and combretastatin at colchicine binding site (CBS) of αβ-tubulin dimer were studied using molecular dynamics (MD) simulation, principle component analysis and free energy landscape analysis. In the MD results, t1 showed binding similar to colchicine interacting in the deep hydrophobic core at the CBS. While t9, t14 and t17 showed binding conformation similar to combretastatin, with ring A superficially binding at the CBS. Results demonstrated that ring A played a vital role in binding via hydrophobic interactions and got anchored between the S8 and S9 sheets, H8 helix and T7 loop at the CBS. Conformational modes study revealed that twisting and bending conformational motions (as found in the apo system) were nearly absent in the ligand bound systems. Absence of twisting motion might causes loss of lateral contacts in microtubule, thus promoting microtubule destabilization. This study provides detailed account of microtubule destabilization mechanism by indanone ligands and combretastatin, and would be helpful for designing microtubule destabilizers with higher activity.
Twisted complex superfluids in optical lattices
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-01-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721
The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis
Fu, Junjiang; Qin, Li; He, Tao; Qin, Jun; Hong, Jun; Wong, Jiemin; Liao, Lan; Xu, Jianming
2011-01-01
The epithelial-mesenchymal transition (EMT) converts epithelial tumor cells into invasive and metastatic cancer cells, leading to mortality in cancer patients. Although TWIST is a master regulator of EMT and metastasis for breast and other cancers, the mechanisms responsible for TWIST-mediated gene transcription remain unknown. In this study, purification and characterization of the TWIST protein complex revealed that TWIST interacts with several components of the Mi2/nucleosome remodeling and deacetylase (Mi2/NuRD) complex, MTA2, RbAp46, Mi2 and HDAC2, and recruits them to the proximal regions of the E-cadherin promoter for transcriptional repression. Depletion of these TWIST complex components from cancer cell lines that depend on TWIST for metastasis efficiently suppresses cell migration and invasion in culture and lung metastasis in mice. These findings not only provide novel mechanistic and functional links between TWIST and the Mi2/NuRD complex but also establish new essential roles for the components of Mi2/NuRD complex in cancer metastasis. PMID:20714342
Meckel's diverticulum incarcerated in a transmesocolic internal hernia
Wu, Si-Yuan; Ho, Meng-Hsing; Hsu, Sheng-Der
2014-01-01
Intestinal obstruction is a common complication associated with Meckel’s diverticulum in adults. The diverticulum itself or its fibrous band can lead to an intestinal volvulus, intussusceptions, or closed-loop obstructions, which require surgery. The incarceration of Meckel’s diverticulum in either inguinal or femoral hernia sacs (Littre’s hernia) is another, less common, etiology underlying intestinal obstruction. This case report describes a 45-year-old man who had an obstruction associated with a Meckel’s diverticulum that passed through a congenital defect in the mesocolon into the right subphrenic space. The patient, who had not undergone abdominal surgery previously, came to the emergency room with acute onset of intermittent epigastric pain and abdominal distention. Computed tomography images showed the presence of a segment of the small bowel and a diverticulum in the right subphrenic space and paracolic gutter. The twisted mesentery and the dilated loops of the proximal small bowel were indicative of an intestinal volvulus and obstruction. Meckel’s diverticulum complicated by a transmesocolic internal hernia was diagnosed, and this condition was confirmed during emergency surgery. The patient’s postoperative recovery was uneventful. This case report highlights another presentation of Meckel’s diverticulum, that is, in combination with a transmesocolic internal hernia. This etiology may lead to an intestinal volvulus and necessitate early surgery. PMID:25309093
Evaluation of the operatorial Q-system for non-compact super spin chains
NASA Astrophysics Data System (ADS)
Frassek, Rouven; Marboe, Christian; Meidinger, David
2017-09-01
We present an approach to evaluate the full operatorial Q-system of all u(p,q\\Big|r+s) -invariant spin chains with representations of Jordan-Schwinger type. In particular, this includes the super spin chain of planar N=4 super Yang-Mills theory at one loop in the presence of a diagonal twist. Our method is based on the oscillator construction of Q-operators. The Q-operators are built as traces over Lax operators which are degenerate solutions of the Yang-Baxter equation. For non-compact representations these Lax operators may contain multiple infinite sums that conceal the form of the resulting functions. We determine these infinite sums and calculate the matrix elements of the lowest level Q-operators. Transforming the Lax operators corresponding to the Q-operators into a representation involving only finite sums allows us to take the supertrace and to obtain the explicit form of the Q-operators in terms of finite matrices for a given magnon sector. Imposing the functional relations, we then bootstrap the other Q-operators from those of the lowest level. We exemplify this approach for non-compact spin - s spin chains and apply it to N=4 at the one-loop level using the BMN vacuum as an example.
Comparison of split double and triple twists in pair figure skating.
King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I
2008-05-01
In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
Takeuchi, Ario; Shiota, Masaki; Beraldi, Eliana; Thaper, Daksh; Takahara, Kiyoshi; Ibuki, Naokazu; Pollak, Michael; Cox, Michael E; Naito, Seiji; Gleave, Martin E; Zoubeidi, Amina
2014-03-25
Clusterin (CLU) is cytoprotective molecular chaperone that is highly expressed in castrate-resistant prostate cancer (CRPC). CRPC is also characterized by increased insulin-like growth factor (IGF)-I responsiveness which induces prostate cancer survival and CLU expression. However, how IGF-I induces CLU expression and whether CLU is required for IGF-mediated growth signaling remain unknown. Here we show that IGF-I induced CLU via STAT3-Twist1 signaling pathway. In response to IGF-I, STAT3 was phosphorylated, translocated to the nucleus and bound to the Twist1 promoter to activate Twist1 transcription. In turn, Twist1 bound to E-boxes on the CLU promoter and activated CLU transcription. Inversely, we demonstrated that knocking down Twist1 abrogated IGF-I induced CLU expression, indicating that Twist1 mediated IGF-I-induced CLU expression. When PTEN knockout mice were crossed with lit/lit mice, the resultant IGF-I deficiency suppressed Twist1 as well as CLU gene expression in mouse prostate glands. Moreover, both Twist1 and CLU knockdown suppressed prostate cancer growth accelerated by IGF-I, suggesting the relevance of this signaling not only in an in vitro, but also in an in vivo. Collectively, this study indicates that IGF-I induces CLU expression through sequential activation of STAT3 and Twist1, and suggests that this signaling cascade plays a critical role in prostate cancer pathogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Twist number and order properties of periodic orbits
NASA Astrophysics Data System (ADS)
Petrisor, Emilia
2013-11-01
A less studied numerical characteristic of periodic orbits of area preserving twist maps of the annulus is the twist or torsion number, called initially the amount of rotation Mather (1984) [2]. It measures the average rotation of tangent vectors under the action of the derivative of the map along that orbit, and characterizes the degree of complexity of the dynamics. The aim of this paper is to give new insights into the definition and properties of the twist number and to relate its range to the order properties of periodic orbits. We derive an algorithm to deduce the exact value or a demi-unit interval containing the exact value of the twist number. We prove that at a period-doubling bifurcation threshold of a mini-maximizing periodic orbit, the new born doubly periodic orbit has the absolute twist number larger than the absolute twist of the original orbit after bifurcation. We give examples of periodic orbits having large absolute twist number, that are badly ordered, and illustrate how characterization of these orbits only by their residue can lead to incorrect results. In connection to the study of the twist number of periodic orbits of standard-like maps we introduce a new tool, called 1-cone function. We prove that the location of minima of this function with respect to the vertical symmetry lines of a standard-like map encodes a valuable information on the symmetric periodic orbits and their twist number.
Heidari, Nazanin; Vosoughi, Tina; Mohammadi Asl, Javad; Saki Malehi, Amal; Saki, Najmaldin
2018-01-12
The activation and increased expression of BCR-ABL1 lead to malignant chronic myelogenous leukaemia (CML) cells, as well as the resistance to antitumour agents and apoptosis inducers. Moreover, TWIST-1 protein is a prognostic factor of leukemogenesis, and its level is raised in CML patients with cytogenetic resistance to imatinib. So, there is a likely relationship between BCR-ABL1 and TWIST-1 genes. The aim of the study was to assess the relationship between TWIST-1 and BCR-ABL1 expressions. Peripheral blood samples were obtained from 44 CML patients under treatment and also from ten healthy subjects as normal controls. The expression of TWIST-1 and BCR-ABL1 genes was measured using real-time PCR, and ABL1 was used as the reference gene. The gene expression was evaluated by REST software. The expression levels of TWIST-1 and BCR-ABL1 genes in CML patients was changed 40.23 ± 177.75-fold and 6 ± 18-fold, respectively. No significant relationship was observed between the expressions of TWIST-1 and BCR-ABL1 genes. All patients with TWIST-1 expression levels ≥100-fold had failure of response to treatment. The probability of the relationship between BCR-ABL1 and TWIST-1 is still debatable, and the average of TWIST-1 expression has been higher in patients without response to treatment. Definitive conclusion needs further investigations.
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol
2016-07-08
This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.
Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon
2012-01-01
Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208
Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J.
2016-01-01
Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, V˙O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of V˙O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results. PMID:27100099
Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J
2016-01-01
Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.
Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan
2018-09-01
Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.
Superconducting flat tape cable magnet
Takayasu, Makoto
2015-08-11
A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.
Twist-induced tuning in tapered fiber couplers.
Birks, T A
1989-10-01
The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.
Twirling and Whirling: Viscous Dynamics of Rotating Elastica
NASA Astrophysics Data System (ADS)
Wolgemuth, Charles; Powers, Thomas; Goldstein, Raymond
1999-10-01
The stability of forced elastic filaments arise in several important biological settings involving bend and twist elasticity at low Reynolds number. Examples include DNA transcription and replication and bacterial flagellar motion. In order to elucidate fundamental processes common to these systems, we consider the model problem of a rotationally forced filament with twist and bend elasticity. Competition between twist injection, twist diffusion, and writhing instabilities is described by a novel pair of PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist/bend coupling and reveal two dynamical regimes seperated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. Experiments are proposed to examine these phenomena and the consequences for swimming investigated.
NASA Astrophysics Data System (ADS)
Nijhuis, A.; van Lanen, E. P. A.; Rolando, G.
2012-01-01
The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up-cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained by the distinct difference in mechanical response of the cable during axial contraction for short and long pitches. For short pitches periodic bending in different directions with relatively short wavelength is imposed because of a lack of sufficient lateral restraint of radial pressure. This can lead to high bending strain and eventually buckling. Whereas for cables with long twist pitches, the strands are only able to react as coherent bundles, being tightly supported by the surrounding strands, providing sufficient lateral restraint of radial pressure in combination with enough slippage to avoid single strand bending along detrimental short wavelengths. Experimental evidence of good performance was already provided with the test of the long pitch TFPRO2-OST2, which is still until today, the best ITER-type cable to strand performance ever without any cyclic load (electromagnetic and thermal contraction) degradation. For reduction of the coupling loss, specific choices of the cabling twist sequence are needed to minimize the area of linked strands and bundles that are coupled and form loops with the applied changing magnetic field, instead of simply avoiding longer pitches. In addition we recommend increasing the wrap coverage of the CS conductor from 50% to at least 70%. A larger wrap coverage fraction enhances the overall strand bundle lateral restraint. The long pitch design seems the best solution to optimize the ITER CS conductor within the given restrictions of the present coil design envelope, only allowing marginal changes. The models predict significant improvement against strain sensitivity and substantial decrease of the AC coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the coupling loss can obviously be achieved. Although the success of long pitches to transverse load degradation was already demonstrated, the prediction of the elegant innovative combination with low coupling loss needs to be validated by a short sample test.
Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes
NASA Astrophysics Data System (ADS)
Terradas, J.; Magyar, N.; Van Doorsselaere, T.
2018-01-01
Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.
Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Xin-Hong; Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan; Lv, Xin-Quan
2014-03-28
Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cellsmore » and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.« less
NASA Technical Reports Server (NTRS)
Casey, E. J.; Commadore, C. C.; Ingles, M. E.
1980-01-01
Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.
Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew M.; Allen, Michael J.
2007-01-01
Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew; Allen, Michael J.
2005-01-01
Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Comer, J.; Ortoleva, P.
2007-01-01
Coexistence of twisted and untwisted crystals is explained via a model that accounts for the coupling of the entropic and energetic effects of impurities and a supra-lattice-scale structural order parameter. It is shown that twisted impure crystals can be in equilibrium with untwisted purer ones. The model explains how coexistence can occur in agates and other systems under hydrostatic stress. The model implies that untwisted crystals grown under one set of conditions could undergo a phase separation that, when accompanied by an imposed compositional gradient, leads to commonly observed, alternating bands of twisted and untwisted crystals and, when occurring in the absence of an external gradient, mossy patterns of crystal texture can emerge. This phenomenon is not related to anisotropic applied stress. Rather coexistence is a consequence of a compositional segregation/twist phase transition. Since twist coexistence is a compositional equilibrium, it arises from the exchange between bulk phases; hence, the detailed nature of the atomic structure within an interface between twisted and untwisted zones is not relevant. The approach places crystal-twist phenomena within the theory of order/disorder phase transitions.
Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...
2016-03-14
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Experimental Investigation of the Electronic Properties of Twisted Bilayer Graphene by STM and STS
NASA Astrophysics Data System (ADS)
Yin, Longjing; Qiao, Jiabin; Wang, Wenxiao; Zuo, Weijie; He, Lin
The electronic properties of graphene multilayers depend sensitively on their stacking order. A twisted angle is treated as a unique degree of freedom to tune the electronic properties of graphene system. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). We demonstrate that the interlayer coupling strength affects both the Van Hove singularities and the Fermi velocity of twisted bilayers dramatically. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data. Moreover, we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by STM and STS. At a magic twisted angle, about 1.11°, a pronounced sharp peak is observed in the tunnelling spectra due to the action of the non-Abelian gauge fields. Because of the effective non-Abelian gauge fields, the rotation angle could transfer the charge carriers in the twisted bilayers from massless Dirac fermions into well localized electrons, or vice versa, efficiently. This provides a new route to tune the electronic properties of graphene systems, which will be essential in future graphene nanoelectronics.
NASA Technical Reports Server (NTRS)
Alkire, K.
1984-01-01
A nonlinear analysis which is necessary to adequately model elastic helicopter rotor blades experiencing moderately large deformations was examined. The analysis must be based on an appropriate description of the blade's deformation geometry including elastic bending and twist. Built-in pretwist angles complicate the deformation process ant its definition. Relationships between the twist variables associated with different rotation sequences and corresponding forms of the transformation matrix are lasted. Relationships between the twist variables associated with first, the pretwist combined with the deformation twist are included. Many of the corresponding forms of the transformation matrix for the two cases are listed. It is shown that twist variables connected with the combined twist treatment are related to those where the pretwist is applied initially. A method to determine the relationships and some results are outlined. A procedure to evaluate the transformation matrix that eliminates the Eulerlike sequence altogether is demonstrated. The resulting form of the transformation matrix is unaffected by rotation sequence or pretwist treatment.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Electrostatic contribution to twist rigidity of DNA.
Mohammad-Rafiee, Farshid; Golestanian, Ramin
2004-06-01
The electrostatic contribution to the twist rigidity of DNA is studied, and it is shown that the Coulomb self-energy of the double-helical sugar-phosphate backbone makes a considerable contribution-the electrostatic twist rigidity of DNA is found to be C(elec) approximately 5 nm, which makes up about 7% of its total twist rigidity ( C(DNA) approximately 75 nm). The electrostatic twist rigidity is found, however, to depend only weakly on the salt concentration, because of a competition between two different screening mechanisms: (1) Debye screening by the salt ions in the bulk, and (2) structural screening by the periodic charge distribution along the backbone of the helical polyelectrolyte. It is found that, depending on the parameters, the electrostatic contribution to the twist rigidity could stabilize or destabilize the structure of a helical polyelectrolyte.
Effect of twist on transverse impact response of ballistic fiber yarns
Song, Bo; Lu, Wei -Yang
2015-06-15
A Hopkinson bar was employed to conduct transverse impact testing of twisted Kevlar KM2 fiber yarns at the same impact speed. The speed of Euler transverse wave generated by the impact was measured utilizing a high speed digital camera. The study included fiber yarns twisted by different amounts. The Euler transverse wave speed was observed to increase with increasing amount of twist of the fiber yarn, within the range of this investigation. As a result, the higher transverse wave speeds in the more twisted fiber yarns indicate better ballistic performance in soft body armors for personal protection.
Dynamics and control of robotic aircraft with articulated wings
NASA Astrophysics Data System (ADS)
Paranjape, Aditya Avinash
There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control, and compare the steady state performance of rigid and flexible-winged aircraft. We present an intuitive but very useful notion, called the effective dihedral, which allows us to extend some of the stability and performance results derived for rigid aircraft to flexible aircraft. In the process, we identify the extent of flexibility needed to induce substantial performance benefits, and conversely the extent to which results derived for rigid aircraft apply to a flexible aircraft. We demonstrate, interestingly enough, that wing flexibility actually causes a deterioration in the maximum achievable turn rate when the sideslip is regulated. We also present experimental results which help demonstrate the capability of wing dihedral for control and for executing maneuvers such as slow, rapid descent and perching. Open loop as well as closed loop experiments are performed to demonstrate (a) the effectiveness of symmetric dihedral for flight path angle control, (b) yaw control using asymmetric dihedral, and (c) the elements of perching. Using a simple order of magnitude analysis, we derive conditions under which the wing is structurally statically stable, as well as conditions under which there exists time scale separation between the bending and twisting dynamics. We show that the time scale separation depends on the geometry of the wing cross section, the Poisson's ratio of the wing material, the flight speed and the aspect ratio of the wing. We design independent control laws for bending and twisting. A key contribution of this thesis is the formulation of a partial differential equation (PDE) boundary control problem for wing deformation. PDE-backstepping is used to derive tracking and exponentially stabilizing boundary control laws for wing twist which ensure that a weighted integral of the wing twist (net lift or the rolling moment) tracks the desired time-varying reference input. We show that a control law which only ensures tracking of a weighted integral improves the stability margin of the twisting dynamics sixteen fold. A tracking control law is derived for the wing tip displacement which uses motion planning and a novel two-stage perturbation observer. This work on PDE-based control of wing deformation allows for the use of highly flexible wings on MAVs. Put together, the thesis provides a comprehensive understanding of the flight dynamics of a robotic aircraft equipped with articulated wings, and provides a set of control laws for performing agile maneuvers and for honing the benefits of using highly flexible wings.
Yang, Huilun; Hu, Haiyang; Gou, Yanling; Hu, Yuhong; Li, Hui; Zhao, Hongwei; Wang, Beidi; Li, Peiling; Zhang, Zongfeng
2018-04-01
Cervical cancer is one of the most common malignant tumours of the female reproductive system, ranking second only to breast cancer in morbidity worldwide. Essential features of the progression of cervical cancer are invasion and metastasis, which are closely related to disease prognosis and mortality rate. At the present time there is no effective method to evaluate cancer invasion and metastasis before surgery. Here we report our study on molecular changes in biopsy tissue for the prognostic evaluation of cancer invasion and metastasis. Expression of the epithelial-mesenchymal transition-inducing transcription factors Twist1 and Snail1 was detected by immunohistochemistry in 32 normal, 36 low-grade squamous intraepithelial neoplasia (LSIL), 54 high-grade squamous intraepithelial neoplasia (HSIL) and 320 cervical squamous cell carcinoma (CSCC) samples. The correlation between the expression of Twist1, Snail1 and squamous cell carcinoma antigen (SCCA) in CSCC tissues and clinical pathology results was evaluated. A transwell migration and invasion assay was used to explore the roles of Twist1 and Snail1 in the invasion of cancer cells. Lymph node metastasis and lymphovascular space invasion (LVSI) rates for the following groups were analysed: SCCA(+) group, Twist1(+) group, Snail1(+) group, Twist1(+)Snail1(+)group, Twist1(+)SCCA(+)group, Snail1(+)SCCA(+)group and Twist1(+)Snail1(+)SCCA(+) group. The expression of Twist1 and Snail1 was significantly upregulated in HSIL and CSCC (p < 0.05). Twist1 and Snail1 expression levels were associated with LVSI, lymph node metastasis and histological grade (p < 0.05) but not with age or FIGO stage (p > 0.05). The expression of SCCA was associated with LVSI, lymph node metastasis, FIGO stage and histological grade (p < 0.05) but not with age (p > 0.05). Twist1 was an independent factor contributing to the invasion ability of cervical cancer cells. In addition, the positive rate of lymph node metastasis and LVSI was higher in the Twist1(+)Snail1(+)SCCA(+) group than in the SCCA(+) group, Twist1(+) group and Snail1(+) group, respectively (p < 0.05). Combined detection of Twist1 and Snail1 in SCCA-positive biopsy specimens may be a potential method for evaluating the invasion and metastasis of CSCC prior to surgery.
NASA Astrophysics Data System (ADS)
Wilkie, William Keats
1997-12-01
An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority. Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.
Twisting failure of centrally loaded open-section columns in the elastic range
NASA Technical Reports Server (NTRS)
Kappus, Robert
1938-01-01
In the following report a complete theory of twisting failure by the energy method is developed, based on substantially the same assumptions as those employed by Wagner and Bleich. Problems treated in detail are: the stress and strain condition under St. Venant twist and in twist with axial constraint; the concept of shear center and the energy method for problems of elastic stability.
On the twists of interplanetary magnetic flux ropes observed at 1 AU
NASA Astrophysics Data System (ADS)
Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian
2016-10-01
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
Aeromechanical Evaluation of Smart-Twisting Active Rotor
NASA Technical Reports Server (NTRS)
Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline;
2014-01-01
An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.
Sanabria, Charlie; Lee, Peter J.; Starch, William; ...
2016-05-31
As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanabria, Charlie; Lee, Peter J.; Starch, William
As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less
Triggering Scenario of Geo-effective Solar Eruption on 15 March 2015
NASA Astrophysics Data System (ADS)
Bamba, Yumi; Inoue, Satoshi; Hayashi, Keiji
2017-08-01
The largest magnetic storm so far, called St Patricks’s Day event, in the solar cycle 24 occurred on 17 March 2015. It was caused by fast coronal mass ejection (CME) on 15 March 2015 from solar active region (AR) NOAA 12297. Surprisingly, the CME is suggested to be related to a C9.1 flare while the large CME is usually corresponding to a large flare. The purpose of this study is to understand the onset mechanism of the huge solar eruption which caused big impact on a magnetic environment of the geospace. The magnetic field structure in the AR was complicated: There were several filaments including the one which erupted and caused the CME. We hence carefully investigated the photospheric magnetic field, brightenings observed in the region from the chromosphere to the corona, and the three-dimensional coronal magnetic field calculated through our nonlinear force-free field (NLFFF) model using photospheric vector magnetic field data from the Hinode SOT and the Solar Dynamics Observatory (SDO). We focused on the C2.4 flare occurred prior to the C9.1 flare and filament eruption. Through our provisional analysis covering long time span, we noticed the C2.4 flare prior to the C9.1 flare is important to understanding the dynamics of this AR system and the CME event. (1) There was a compact but noticeably highly twisted magnetic field structure. During the C2.4 flare, flux cancellation was seen on the photospheric magnetic field data. (2) The erupting filament is sustained by the coronal magnetic field prior to the flare, and C2.4 flaring site locates in the vicinity of one footpoint of them. (3) The top of the coronal loops sustaining the filament touch to a region where the torus instability would be expected.Therefore, we consider that the magnetic reconnection at the C2.4 flaring site changed the magnetic environment of the filament, destabilized the highly twisted magnetic field structure, and finally allowed the twisted magnetic field to erupt.
Dasarathy, Dhweeja; Ito, Yoichiro
2015-10-30
A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the constituent components. Published by Elsevier B.V.
Colliding Magnetic Flux Ropes and Quasi-Separatrix Layers in a Laboratory Plasma
NASA Astrophysics Data System (ADS)
Lawrence, Eric Eugene
An experimental study of the dynamics of colliding magnetic flux ropes and the magnetic reconnection that occurs during these collisions is presented. A magnetic flux rope is a bundle of twisted magnetic field lines that is ubiquitous in space and solar plasmas. The flux ropes are created in the Large Plasma Device (LAPD) using two heated lanthanum hexaboride (LaB6) cathodes that inject currents into the background plasma. The currents are initially parallel to the background magnetic field. The azimuthal field of each current together with the background axial field create helical twisted flux ropes. It is found that the flux ropes rotate in time (corkscrew) and collide with each other. During a collision, antiparallel magnetic fields can undergo magnetic reconnection. When these collisions occur, we observe current layers flowing in the opposite direction of the injected current, a signatuare of reconnection. Analysis of the three-dimensional magnetic field lines shows the existence of quasi-separatrix layers (QSLs). These are regions in the magnetic configuration where there are large spatial gradients in the connectivity of field line footpoints in the boundary surfaces. QSLs are thought to be favorable sites for magnetic reconnection. It is shown that the location and shape of the QSL is similar to what is seen in simulations of merging flux ropes. Furthermore, the field line structure of the QSL is similar to that of a twisted hyperbolic flux tube (HFT). An HFT is a type of QSL that has been shown to be a preferred site for current sheet formation in simulations of interacting coronal loops. The HFT in this experiment is found to be generally near the reverse current layers, although the agreement is not perfect. Looking at the time evolution of the QSL, we find that the QSL cross-sectional area grows and contracts at the same time that the flux ropes collide and that the reverse current layers appear. Analysis of the field line motion shows that, during reconnection, bundles of field lines rapidly flip across the QSLs. This is analagous to the way that field lines are pushed across a separatrix in 2D reconnection.
Spectral determinants for twist field correlators
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2018-04-01
Twist fields were introduced a few decades ago as a quantum counterpart to classical kink configurations and disorder variables in low dimensional field theories. In recent years they received a new incarnation within the framework of geometric entropy and strong coupling limit of four-dimensional scattering amplitudes. In this paper, we study their two-point correlation functions in a free massless scalar theory, namely, twist-twist and twist-antitwist correlators. In spite of the simplicity of the model in question, the properties of the latter are far from being trivial. The problem is reduced, within the formalism of the path integral, to the study of spectral determinants on surfaces with conical points, which are then computed exactly making use of the zeta function regularization. We also provide an insight into twist correlators for a massive complex scalar by means of the Lifshitz-Krein trace formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karami, K.; Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir
2012-10-01
We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order ofmore » magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.« less
NASA Astrophysics Data System (ADS)
Kaur, Sukhdeep; Randhawa, Deep Kamal Kaur; Bindra Narang, Sukhleen
2018-05-01
Based on Non-Equilibrium Green’s function method, we demonstrate that the twisted deformation is an efficient method to improve the figure of merit ZT of porous armchair graphene nanoribbons AGNRs. The peak value of ZT can be obtained for a certain tunable twist angle. Further analysis shows that the tunable twist angle exhibits an inverse relationship with the pore size laying forth the designers a choice for the larger twists to be replaced by smaller ones simply by increasing the size of the pore. Ballistic transport regime and semi-empirical method using Huckel basis set is used to obtain the electrical properties while the Tersoff potential is employed for the phononic system. These interesting findings indicate that the twisted porous AGNRs can be utilized as designing materials for potential thermoelectric applications.
Finlay, James; Roberts, Cai M.; Dong, Juyao; Zink, Jeffrey I.; Tamanoi, Fuyuhiko; Glackin, Carlotta A.
2015-01-01
Growth and progression of solid tumors depends on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. Chemically modified siRNA against TWIST1 was complexed to cation-coated mesoporous silica nanoparticles and tested in vitro and in vivo. In cell culture experiments, siRNA reduced expression of TWIST1 and its target genes, and reduced cell migration. In mice, injections of the siRNA-nanoparticle complex led to reduced tumor weight. Data suggest that diminished tumor burden was the result of reduced CCL2 expression and angiogenesis following TWIST1 knockdown. PMID:26115637
NASA Astrophysics Data System (ADS)
Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.
2018-05-01
Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.
Microcomputer network for control of a continuous mining machine. Information circular/1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiffbauer, W.H.
1993-01-01
The paper details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines, and installed on a Joy 14 continuous mining machine. The network consists of microcomputers that are connected together via a single twisted pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers in conjunction with the appropriate sensors provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and controlmore » the continuous mining machine. Although the network was installed on a Joy 14 continuous mining machine, its use extends beyond it. Its generic structure lends itself to installation onto most mining machine types.« less
Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid
2017-03-01
This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Integrability in dipole-deformed \\boldsymbol{N=4} super Yang-Mills
NASA Astrophysics Data System (ADS)
Guica, Monica; Levkovich Maslyuk, Fedor; Zarembo, Konstantin
2017-09-01
We study the null dipole deformation of N=4 super Yang-Mills theory, which is an example of a potentially solvable ‘dipole CFT’: a theory that is non-local along a null direction, has non-relativistic conformal invariance along the remaining ones, and is holographically dual to a Schrödinger space-time. We initiate the field-theoretical study of the spectrum in this model by using integrability inherited from the parent theory. The dipole deformation corresponds to a nondiagonal Drinfeld-Reshetikhin twist in the spin chain picture, which renders the traditional Bethe ansatz inapplicable from the very beginning. We use instead the Baxter equation supplemented with nontrivial asymptotics, which gives the full 1-loop spectrum in the sl(2) sector. We show that anomalous dimensions of long gauge theory operators perfectly match the string theory prediction, providing a quantitative test of Schrödinger holography. Dedicated to the memory of Petr Petrovich Kulish.
Nucleon electromagnetic form factors using lattice simulations at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-08-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Twisted surfaces with vanishing curvature in Galilean 3-space
NASA Astrophysics Data System (ADS)
Dede, Mustafa; Ekici, Cumali; Goemans, Wendy; Ünlütürk, Yasin
In this work, we define twisted surfaces in Galilean 3-space. In order to construct these surfaces, a planar curve is subjected to two simultaneous rotations, possibly with different rotation speeds. The existence of Euclidean rotations and isotropic rotations leads to three distinct types of twisted surfaces in Galilean 3-space. Then we classify twisted surfaces in Galilean 3-space with zero Gaussian curvature or zero mean curvature.
Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells
NASA Technical Reports Server (NTRS)
Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)
2001-01-01
A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.
TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts
NASA Astrophysics Data System (ADS)
Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.
2018-05-01
Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta
By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency.more » The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.« less
Structural and electron diffraction scaling of twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Zhang, Kuan; Tadmor, Ellad B.
2018-03-01
Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.
Twisted sigma-model solitons on the quantum projective line
NASA Astrophysics Data System (ADS)
Landi, Giovanni
2018-04-01
On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.
NASA Astrophysics Data System (ADS)
Ham, J.-Y.; Lee, J.
2016-09-01
We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.
Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene
NASA Astrophysics Data System (ADS)
Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin
2018-01-01
Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.
Balmith, Marissa; Soliman, Mahmoud E S
2017-03-01
The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic "twisting" motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin
2015-11-13
The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad,more » is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.« less
Sun, Chunran; Wang, Muguang; Jian, Shuisheng
2017-08-21
In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.
Two-pseudoscalar-meson decay of {chi}{sub cJ} with twist-3 corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Mingzhen; Zhou Haiqing; Department of Physics, Southeast University, Nanjing 211189
2009-11-01
The decays of {chi}{sub cJ}{yields}{pi}{sup +}{pi}{sup -}, K{sup +}K{sup -} (J=0,2) are discussed within the standard and modified hard-scattering approach when including the contributions from twist-3 distribution amplitudes and wave functions of the light pseudoscalar meson. A model for twist-2 and twist-3 distribution amplitudes and wave functions of the pion and kaon with BHL prescription are proposed as the solution to the end-point singularities. The results show that the contributions from twist-3 parts are actually not power suppressed comparing with the leading-twist contribution. After including the effects from the transverse momentum of light meson valence-quark state and Sudakov factors, themore » decay widths of the {chi}{sub cJ} into pions or kaons are comparable with the their experimental data.« less
Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Bin; Wang, Peng; Pan, Cheng
2015-07-20
When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine themore » twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.« less
Landau damping of Langmuir twisted waves with kappa distributed electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman; Mahmood, Shahzad
2015-11-15
The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and aremore » illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].« less
Acoustic Aspects of Active-Twist Rotor Control
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Wilbur, Matthew L.
2002-01-01
The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.
NASA Astrophysics Data System (ADS)
Autrey, Daniel; Choo, Jaebum; Laane, Jaan
2000-10-01
The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.
Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes
Weizbauer, Renate; Peters, Winfried S.; Schulz, Burkhard
2011-01-01
The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell files rotate in phase around the organ axis, as has been illustrated for the Arabidopsis spr1 and twd1 mutants in this work. Evaluating the geometry of such organs, we demonstrate that a radial gradient in cell elongation and changes in cellular growth anisotropy must occur in twisting organs out of geometric necessity alone. In-phase rotation of the different cell layers results in a decrease of length and angle toward organ axis from the outer cell layers inward. Additionally, the circumference of each cell layer increases in twisting organs, which requires compensation through radial expansion or an adjustment of cell number. Therefore, differential cell elongation and growth anisotropy cannot serve as arguments for or against specific hypotheses regarding the molecular cause of twisting growth. We suggest instead, that based on mathematical modeling, geometric constraints in twisting organs are indispensable for the explanation of the causal connection of molecular and biomechanical processes in twisting as well as normal organs. PMID:22645544
Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich
2015-07-22
Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in endometriosis and may contribute to the formation of endometriotic lesions by inducing epithelial to mesenchymal transition, as CDH1 was reduced in ectopic lesions. We found exclusive expression of either TWIST1 or MYC in the same samples, indicating that EMT and proliferation contribute independently of each other to the formation of endometriotic lesions.
NASA Technical Reports Server (NTRS)
Monaghan, R. C.
1981-01-01
The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.
Demonstration of an elastically coupled twist control concept for tilt rotor blade application
NASA Technical Reports Server (NTRS)
Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.
1994-01-01
The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
A photometric determination of twists in early-type galaxies. II
NASA Technical Reports Server (NTRS)
Williams, T. B.; Schwarzschild, M.
1979-01-01
In continuation of previous work, detailed photometric data have been obtained for two elliptical galaxies by using the Mount Lemmon 1.5-m telescope and a large SEC television camera. As before, the aim of this photometry is to gain additional information on the occurrence of twists in such galaxies; i.e., on the change of the position angle of the major axes of the isophotes from the center outward. No significant twist was found in NGC 1052. However, NGC 584 was found to have a securely observed twist of about 10 deg within 10 kpc from its center. These data strengthen previous indications that many ellipticals contain twists in their inner, bright portions.
McGillewie, Lara; Soliman, Mahmoud E
2015-09-01
Herein, for the first time, we comparatively report the opening and closing of apo plasmepsin I - V. Plasmepsins belong the aspartic protease family of enzymes, and are expressed during the various stages of the P. falciparum lifecycle, the species responsible for the most lethal and virulent malaria to infect humans. Plasmepsin I, II, IV and HAP degrade hemoglobin from infected red blood cells, whereas plasmepsin V transport proteins crucial to the survival of the malaria parasite across the endoplasmic reticulum. Flap-structures covering the active site of aspartic proteases (such as HIV protease) are crucial to the conformational flexibility and dynamics of the protein, and ultimately control the binding landscape. The flap-structure in plasmepsins is made up of a flip tip in the N-terminal lying perpendicular to the active site, adjacent to the flexible loop region in the C-terminal. Using molecular dynamics, we propose three parameters to better describe the opening and closing of the flap-structure in apo plasmepsins. Namely, the distance, d1, between the flap tip and the flexible region; the dihedral angle, ϕ, to account for the twisting motion; and the TriCα angle, θ1. Simulations have shown that as the flap-structure twists, the flap and flexible region move apart opening the active site, or move toward each other closing the active site. The data from our study indicate that of all the plasmepsins investigated in the present study, Plm IV and V display the highest conformational flexibility and are more dynamic structures versus Plm I, II, and HAP. © 2015 Wiley Periodicals, Inc.
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2018-01-01
Two independent mol-ecules ( A and B ) comprise the asymmetric unit of the title compound, C 18 H 21 N 3 O 3 . The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN 2 O urea core [dihedral angles = 25.57 (11) ( A ) and 29.13 (10)° ( B )]. The second amine is connected to an imine ( E conformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intra-molecular amine-N-H⋯N(imine) and hydroxyl-O-H⋯O(meth-oxy) hydrogen bonds close S (5) loops in each case. The mol-ecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) ( A ) and 48.55 (7)° ( B ). In the crystal, amide-N-H⋯O(amide) hydrogen bonds link the mol-ecules A and B via an eight-membered {⋯HNCO} 2 synthon. Further associations between mol-ecules, leading to supra-molecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O-H⋯N(imine) and phenyl-amine-N-H⋯O(meth-oxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C-H⋯O(hy-droxy) inter-actions. A detailed analysis of the calculated Hirshfeld surfaces shows mol-ecules A and B participate in very similar inter-molecular inter-actions and that any variations relate to conformational differences between the mol-ecules.
NUMERICAL SIMULATIONS OF HELICITY CONDENSATION IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Zurbuchen, T. H.; DeVore, C. R.
The helicity condensation model has been proposed by Antiochos to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences are observed to form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontalmore » photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the corona. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of a bipolar active region, for example. The calculations demonstrate that, contrary to common belief, opposite helicity twists do not lead to significant reconnection in such a coronal system, whereas twists with the same sense of helicity do produce substantial reconnection. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.« less
Magnetic Braids in Eruptions of a Spiral Structure in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Huang, Zhenghua; Xia, Lidong; Nelson, Chris J.; Liu, Jiajia; Wiegelmann, Thomas; Tian, Hui; Klimchuk, James A.; Chen, Yao; Li, Bo
2018-02-01
We report on high-resolution imaging and spectral observations of eruptions of a spiral structure in the transition region, which were taken with the Interface Region Imaging Spectrograph, and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The eruption coincided with the appearance of two series of jets, with velocities comparable to the Alfvén speeds in their footpoints. Several pieces of evidence of magnetic braiding in the eruption are revealed, including localized bright knots, multiple well-separated jet threads, transition region explosive events, and the fact that all three of these are falling into the same locations within the eruptive structures. Through analysis of the extrapolated 3D magnetic field in the region, we found that the eruptive spiral structure corresponded well to locations of twisted magnetic flux tubes with varying curl values along their lengths. The eruption occurred where strong parallel currents, high squashing factors, and large twist numbers were obtained. The electron number density of the eruptive structure is found to be ∼3 × 1012 cm‑3, indicating that a significant amount of mass could be pumped into the corona by the jets. Following the eruption, the extrapolations revealed a set of seemingly relaxed loops, which were visible in the AIA 94 Å channel, indicating temperatures of around 6.3 MK. With these observations, we suggest that magnetic braiding could be part of the mechanisms explaining the formation of solar eruption and the mass and energy supplement to the corona.
Lifshits Tails for Randomly Twisted Quantum Waveguides
NASA Astrophysics Data System (ADS)
Kirsch, Werner; Krejčiřík, David; Raikov, Georgi
2018-03-01
We consider the Dirichlet Laplacian H_γ on a 3D twisted waveguide with random Anderson-type twisting γ . We introduce the integrated density of states N_γ for the operator H_γ , and investigate the Lifshits tails of N_γ , i.e. the asymptotic behavior of N_γ (E) as E \\downarrow \\inf supp dN_γ . In particular, we study the dependence of the Lifshits exponent on the decay rate of the single-site twisting at infinity.
Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.
1994-01-01
Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.
Khan, Md Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-08-14
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis.
Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-01-01
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Soto, Hector L.; South, Bruce W.
2002-01-01
Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.
Zhang, Li; Zhang, Jing; Han, Wei; Gao, Jun; He, Lin; Yang, Yali; Yin, Ping; Xie, Mingxing; Ge, Shuping
2016-01-01
The specific aim of this study was to evaluate the feasibility, reproducibility and maturational changes of LV rotation, twist and torsion variables by real-time 3D speckle-tracking echocardiography (RT3DSTE) in children. A prospective study was conducted in 347 consecutive healthy subjects (181 males/156 females, mean age 7.12 ± 5.3 years, and range from birth to 18-years) using RT 3D echocardiography (3DE). The LV rotation, twist and torsion measurements were made off-line using TomTec software. Manual landmark selection and endocardial border editing were performed in 3 planes (apical "2"-, "4"-, and "3"- chamber views) and semi-automated tracking yielded LV rotation, twist and torsion measurements. LV rotation, twist and torsion analysis by RT 3DSTE were feasible in 307 out of 347 subjects (88.5%). There was no correlation between rotation or twist and age, height, weight, BSA or heart rate, respectively. However, there was statistically significant, but very modest correlation between LV torsion and age (R2 = 0.036, P< 0.001). The normal ranges were defined for rotation and twist in this cohort, and for torsion for each age group. The intra-observer and inter-observer variabilities for apical and basal rotation, twist and torsion ranged from 7.3% ± 3.8% to 12.3% ± 8.8% and from 8.8% ± 4.6% to 15.7% ± 10.1%, respectively. We conclude that analysis of LV rotation, twist and torsion by this new RT3D STE is feasible and reproducible in pediatric population. There is no maturational change in rotation and twist, but torsion decreases with age in this cohort. Further refinement is warranted to validate the utility of this new methodology in more sensitive and quantitative evaluation of congenital and acquired heart diseases in children.
Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS 2
Huang, Shengxi; Liang, Liangbo; Ling, Xi; ...
2016-02-21
A variety of van der Waals homo- and hetero- structures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. Twisted bilayer transition metal dichalcogenides offer a great platform for developing a precise understanding of the structure/property relationship. Here, we study the low-frequency interlayer shear and breathing Raman modes (<50 cm-1) in twisted bilayer MoS 2 by Raman spectroscopy and first-principles modeling. Twisting introduces both rotational and translational shifts and significantly alters the interlayer stacking and coupling, leading to notable frequency andmore » intensity changes of low-frequency modes. The frequency variation can be up to 8 cm-1 and the intensity can vary by a factor of ~5 for twisting near 0 and 60 , where the stacking is a mixture of multiple high-symmetry stacking patterns and is thus especially sensitive to twisting. Moreover, for twisting angles between 20 and 40 , the interlayer coupling is nearly constant since the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Interestingly, unlike the breathing mode, the shear mode is extremely sensitive to twisting: it disappears between 20 and 40 as its frequency drops to almost zero due to the stacking-induced mismatch. Note that for some samples, multiple breathing mode peaks appear, indicating non-uniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling, showing negligible changes upon twisting. Our research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2, and potentially other two-dimensional materials and heterostructures.« less
Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube
NASA Astrophysics Data System (ADS)
Sturrock, Z.; Hood, A. W.
2016-09-01
Context. Observations of flux emergence indicate that rotational velocities may develop within sunspots. However, the dependence of this rotation on sub-photospheric field strength and twist remains largely unknown. Aims: We investigate the effects of varying the initial field strength and twist of an emerging sub-photospheric magnetic flux tube on the rotation of the sunspots at the photosphere. Methods: We consider a simple model of a stratified domain with a sub-photospheric interior layer and three overlying atmospheric layers. A twisted arched flux tube is inserted in the interior and is allowed to rise into the atmosphere. To achieve this, the magnetohydrodynamic equations are solved using the Lagrangian-remap code, Lare3d. We perform a parameter study by independently varying the sub-photospheric magnetic field strength and twist. Results: Altering the initial magnetic field strength and twist of the flux tube significantly affects the tube's evolution and the rotational motions that develop at the photosphere. The rotation angle, vorticity, and current show a direct dependence on the initial field strength. We find that an increase in field strength increases the angle through which the fieldlines rotate, the length of the fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. This also affects the amount of residual twist in the interior. The length of the fieldlines is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines. No such direct dependence is found when we modify the twist of the magnetic field owing to the complex effect this has on the tension force acting on the tube. However, there is still a clear ordering in quantities such as the rotation angle, helicity, and free energy with higher initial twist cases being related to sunspots that rotate more rapidly, transporting more helicity and magnetic energy to the atmosphere.
Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin
2015-08-01
Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.
NASA Astrophysics Data System (ADS)
Cao, Pengfei; Fu, Wenyu
2017-10-01
Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.
Roschger, Cornelia; Schubert, Mario; Regl, Christof; Andosch, Ancuela; Marquez, Augusto; Berger, Thomas; Huber, Christian G; Lütz-Meindl, Ursula; Cabrele, Chiara
2018-04-07
The inhibitor of DNA binding and cell differentiation 2 (Id2) is a helix-loop-helix (HLH) protein that acts as negative dominant regulator of basic-HLH transcription factors during development and in cancer. The structural properties of Id2 have been investigated so far by using synthetic or recombinant fragments reproducing single domains (N-terminus, HLH, C-terminus): the HLH domain tends to dimerize into a four-helix bundle, whereas the flanking regions are flexible. In this work, the intact protein was expressed in E. coli , solubilized from inclusion bodies with urea, purified and dissolved in water at pH~4. Under these conditions, Id2 was obtained with both cysteine residues disulfide-bonded to β-mercaptoethanol that was present during the solubilization process. Moreover, it existed in a self-assembled state, in which the N-terminus remained highly flexible, while the HLH domain and, surprisingly, part of the C-terminus, which corresponds to the nuclear export signal (NES), both were involved in slowly tumbling, rigid structures. The protein oligomers also formed twisted fibrils that were several micrometers long and up to 80 nm thick. These results show that self-assembly decreases the backbone flexibility of those two protein regions (HLH and NES) that are important for interaction with basic-HLH transcription factors or for nucleocytoplasmic shuttling.
Videodermoscopy does not enhance diagnosis of scalp contact dermatitis due to topical minoxidil.
Tosti, Antonella; Donati, Aline; Vincenzi, Colombina; Fabbrocini, Gabriella
2009-07-01
Videodermoscopy (VD) is a noninvasive diagnostic tool that provides useful information for the differential diagnosis of scalp disorders. The aim of this study was to investigate if dermoscopy may help the clinician in the diagnosis of contact dermatitis of the scalp. We analyzed the dermoscopic images taken from 7 patients with contact dermatitis due to topical minoxidil, 6 patients complaining of intense scalp itching during treatment with topical minoxidil but with negative patch tests and 19 controls. The following dermoscopic patterns described for scalp diseases were evaluated: Vascular patterns (simple loops, twisted loops and arborizing lines), follicular/perifollicular patterns (yellow dots, empty ostia, white dots, peripilar signs), white scales, yellow scales, follicular plugging, hair diameter diversity, honeycomb pattern and short regrowing hairs. Findings were graded from 0-4, according to severity in 20-fold magnifications. Statistical analysis included univariate analysis and Chi-square test by SPSS version 12. There were no statistical differences in the analysis of the vascular patterns and scales between the 3 groups. We were not able to detect dermoscopic features that can help the clinician in distinguishing scalp contact dermatitis due to topical minoxidil from other conditions that cause severe scalp itching. In particular, minoxidil contact dermatitis does not produce increase or alterations in the morphology of the scalp vessels or significant scalp scaling when evaluated with dermoscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinert, J.; Haimberger, C.; Zabawa, P. J.
We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.
Morphing wing structure with controllable twist based on adaptive bending-twist coupling
NASA Astrophysics Data System (ADS)
Raither, Wolfram; Heymanns, Matthias; Bergamini, Andrea; Ermanni, Paolo
2013-06-01
A novel semi-passive morphing airfoil concept based on variable bending-twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests weremore » performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)« less
Rasti, Arezoo; Madjd, Zahra; Abolhasani, Maryam; Mehrazma, Mitra; Janani, Leila; Saeednejad Zanjani, Leili; Asgari, Mojgan
2018-05-01
Twist1 is a key transcription factor, which confers tumor cells with cancer stem cell (CSC)-like characteristics and enhances epithelial-mesenchymal transition in pathological conditions including tumor malignancy and metastasis. This study aimed to evaluate the expression patterns and clinical significance of Twist1 in renal cell carcinoma (RCC). The cytoplasmic and nuclear expression of Twist1 were examined in 252 well-defined renal tumor tissues, including 173 (68.7%) clear cell renal cell carcinomas (ccRCC), 45 (17.9%) papillary renal cell carcinomas (pRCC) and 34 (13.5%) chromophobe renal cell carcinoma, by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters and survival outcomes were then analyzed. Twist1 was mainly localized to the cytoplasm of tumor cells (98.8%). Increased cytoplasmic expression of Twist1 was associated with higher grade tumors (P = 0.045), renal vein invasion (P = 0.031) and microvascular invasion (P = 0.044) in RCC. It was positively correlated with higher grade tumors (P = 0.026), shorter progression-free survival time (P = 0.027) in patients with ccRCC, and also with higher stage in pRCC patients (P = 0.036). Significantly higher cytoplasmic expression levels of Twist1 were found in ccRCC and pRCC subtypes, due to their more aggressive tumor behavior. Increased cytoplasmic expression of Twist1 had a critical role in worse prognosis in ccRCC. These findings suggest that cytoplasmic, rather than nuclear expression of Twist1 can be considered as a prognostic and therapeutic marker for targeted therapy of RCC, especially for ccRCC patients.
Sanabria, Charlos; Lee, Peter J.; Starch, William; ...
2015-10-14
Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less
Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew
1998-01-01
Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a single blast cell (M) is responsible for all nongonadal mesoderm formation during postembryonic development. Using immunofluorescence and reporter fusions, we determined the activity pattern of the gene encoding CeTwist. No activity was observed during specification of mesodermal lineages in the early embryo; instead, the gene was active within the M lineage and in a number of mesodermal cells with nonstriated muscle fates. A role for CeTwist in postembryonic mesodermal cell fate specification was indicated by ectopic expression and genetic interference assays. These experiments showed that CeTwist was responsible for activating two target genes normally expressed in specific subsets of nonstriated muscles derived from the M lineage. In vitro and in vivo assays suggested that CeTwist cooperates with the C. elegans E/Daughterless homolog in directly activating these targets. The two target genes that we have studied, ceh-24 and egl-15, encode an NK-2 class homeodomain and an FGF receptor (FGFR) homolog, respectively. Twist activates FGFR and NK-homeodomain target genes during mesodermal patterning of Drosophila and similar target interactions have been proposed to modulate mesenchymal growth during closure of the vertebrate skull. These results suggest the possibility that a conserved pathway may be used for diverse functions in mesodermal specification. PMID:9716413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanabria, Charlos; Lee, Peter J.; Starch, William
Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less
van Mil, Anke C C M; Pearson, James; Drane, Aimee L; Cockcroft, John R; McDonnell, Barry J; Stöhr, Eric J
2016-04-01
What is the central question of this study? Left ventricular (LV) twist is reduced when afterload is increased, but the meaning of this specific heart muscle response and its impact on cardiac output are not well understood. What is the main finding and its importance? This study shows that LV twist responds even when arterial haemodynamics are altered only locally, and without apparent change in metabolic (i.e. heat-induced) demand. The concurrent decline in cardiac output and LV twist during partial arterial occlusion despite the increased peripheral demand caused by heat stress suggests that LV twist may be involved in the protective sensing of heart muscle stress that can override the provision of the required cardiac output. Whether left ventricular (LV) twist and untwisting rate (LV twist mechanics) respond to localised, peripheral, non-metabolic changes in arterial haemodynamics within an individual's normal afterload range is presently unknown. Furthermore, previous studies indicate that LV twist mechanics may override the provision of cardiac output, but this hypothesis has not been examined purposefully. Therefore, we acutely altered local peripheral arterial haemodynamics in 11 healthy humans (women/men n = 3/8; age 26 ± 5 years) by bilateral arm heating (BAH). Ultrasonography was used to examine arterial haemodynamics, LV twist mechanics and the twist-to-shortening ratio (TSR). To determine the arterial function-dependent contribution of LV twist mechanics to cardiac output, partial blood flow restriction to the arms was applied during BAH (BAHBFR ). Bilateral arm heating increased arm skin temperatures [change (Δ) +6.4 ± 0.9°C, P < 0.0001] but not core temperature (Δ -0.0 ± 0.1°C, P > 0.05), concomitant to increases in brachial artery blood flow (Δ 212 ± 77 ml, P < 0.0001), cardiac output (Δ 495 ± 487 l min(-1) , P < 0.05), LV twist (Δ 3.0 ± 3.5 deg, P < 0.05) and TSR (Δ 3.3 ± 1.3, P < 0.05) but maintained carotid artery blood flow (Δ 18 ± 147 ml, P > 0.05). Subsequently, BAHBFR reduced all parameters to preheating levels, except for TSR and heart rate, which remained at BAH levels. In conclusion, LV twist mechanics responded to local peripheral arterial haemodynamics within the normal afterload range, in part independent of TSR and heart rate. The findings suggest that LV twist mechanics may be more closely associated with intrinsic sensing of excessive pressure stress rather than being associated with the delivery of adequate cardiac output. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Fermion number of twisted kinks in the NJL2 model revisited
NASA Astrophysics Data System (ADS)
Thies, Michael
2018-03-01
As a consequence of axial current conservation, fermions cannot be bound in localized lumps in the massless Nambu-Jona-Lasinio model. In the case of twisted kinks, this manifests itself in a cancellation between the valence fermion density and the fermion density induced in the Dirac sea. To attribute the correct fermion number to these bound states requires an infrared regularization. Recently, this has been achieved by introducing a bare fermion mass, at least in the nonrelativistic regime of small twist angles and fermion numbers. Here, we propose a simpler regularization using a finite box which preserves integrability and can be applied at any twist angle. A consistent and physically plausible assignment of fermion number to all twisted kinks emerges.
An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles
NASA Astrophysics Data System (ADS)
Ni, Zao; Su, Tsung-chow; Dhanak, Manhar
2018-04-01
Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.
"Twisted Beam" SEE Observations of Ionospheric Heating from HAARP
NASA Astrophysics Data System (ADS)
Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.
2015-10-01
Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.
Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2016-10-04
Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fujiwara, Shohei; Komamura, Kazuo; Nakabo, Ayumi; Masaki, Mitsuru; Fukui, Miho; Sugahara, Masataka; Itohara, Kanako; Soyama, Yuko; Goda, Akiko; Hirotani, Shinichi; Mano, Toshiaki; Masuyama, Tohru
2016-02-01
Left ventricular (LV) dyssynchrony is a causal factor in LV dysfunction and thought to be associated with LV twisting motion. We tested whether three-dimensional speckle tracking (3DT) can be used to evaluate the relationship between LV twisting motion and dyssynchrony. We examined 25 patients with sick sinus syndrome who had received dual chamber pacemakers. The acute effects of ventricular pacing on LV wall motion after the switch from atrial to ventricular pacing were assessed. LV twisting motion and dyssynchrony during each pacing mode were measured using 3DT. LV dyssynchrony was calculated from the time to the minimum peak systolic area strain of 16 LV imaging segments. Ventricular pacing increased LV dyssynchrony and decreased twist and torsion. A significant correlation was observed between changes in LV dyssynchrony and changes in torsion (r = -0.65, p < 0.01). Evaluation of LV twisting motion can potentially be used for diagnosing LV dyssynchrony.
Twisted electron-acoustic waves in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Department of Physics and Applied Mathematics; Ali, S.
2016-08-15
In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q{sub eff} accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping ratemore » of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.« less
Kinetic study of ion acoustic twisted waves with kappa distributed electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Mahmood, Shahzad, E-mail: shahzadm100@gmail.com
2016-05-15
The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions aremore » also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.« less
Modeling and development of a twisting wing using inductively heated shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Saunders, Robert N.; Hartl, Darren J.; Boyd, James G.; Lagoudas, Dimitris C.
2015-04-01
Wing twisting has been shown to improve aircraft flight performance. The potential benefits of a twisting wing are often outweighed by the mass of the system required to twist the wing. Shape memory alloy (SMA) actuators repeatedly demonstrate abilities and properties that are ideal for aerospace actuation systems. Recent advances have shown an SMA torsional actuator that can be manufactured and trained with the ability to generate large twisting deformations under substantial loading. The primary disadvantage of implementing large SMA actuators has been their slow actuation time compared to conventional actuators. However, inductive heating of an SMA actuator allows it to generate a full actuation cycle in just seconds rather than minutes while still . The aim of this work is to demonstrate an experimental wing being twisted to approximately 10 degrees by using an inductively heated SMA torsional actuator. This study also considers a 3-D electromagnetic thermo-mechanical model of the SMA-wing system and compare these results to experiments to demonstrate modeling capabilities.
Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice
NASA Astrophysics Data System (ADS)
Garcia, J. C.; Justo, J. F.
2014-11-01
Nanowires have been considered for a number of applications in nanometrology. In such a context, we have explored the possibility of using ultrathin twisted nanowires as torsion nanobalances to probe forces and torques at molecular level with high precision, a nanoscale system analogous to the Coulomb's torsion balance electrometer. In order to achieve this goal, we performed a first-principles investigation on the structural and electronic properties of twisted silicon nanowires, in their pristine and hydrogenated forms. The results indicated that wires with pentagonal and hexagonal cross-sections are the thinnest stable silicon nanostructures. Additionally, all wires followed a Hooke's law behavior for small twisting deformations. Hydrogenation leads to spontaneous twisting, but with angular spring constants considerably smaller than the ones for the respective pristine forms. We observed considerable changes on the nanowire electronic properties upon twisting, which allows to envision the possibility of correlating the torsional angular deformation with the nanowire electronic transport. This could ultimately allow a direct access to measurements on interatomic forces at molecular level.
Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon
2000-01-01
Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.
Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier
2006-08-03
We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.
Enhanced intersystem crossing in core-twisted aromatics.
Nagarajan, Kalaivanan; Mallia, Ajith R; Muraleedharan, Keerthi; Hariharan, Mahesh
2017-03-01
We describe the design, bottom-up synthesis and X-ray single crystal structure of systematically twisted aromatics 1c and 2d for efficient intersystem crossing. Steric congestion at the cove region creates a nonplanar geometry that induces a significant yield of triplet excited states in the electron-poor core-twisted aromatics 1c and 2d . A systematic increase in the number of twisted regions in 1c and 2d results in a concomitant enhancement in the rate and yield of intersystem crossing, monitored using femtosecond and nanosecond transient absorption spectroscopy. Time-resolved absorption spectroscopic measurements display enhanced triplet quantum yields ( Φ T = 10 ± 1% for 1c and Φ T = 30 ± 2% for 2d ) in the twisted aromatics when compared to a negligible Φ T (<1%) in the planar analog 3c . Twist-induced spin-orbit coupling via activated out-of-plane C-H/C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vibrations can facilitate the formation of triplet excited states in twisted aromatics 1c and 2d , in contrast to the negligible intersystem crossing in the planar analog 3c . The ease of synthesis, high solubility, access to triplet excited states and strong electron affinity make such imide functionalized core-twisted aromatics desirable materials for organic electronics such as solar cells.
Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.
Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M
2018-03-20
Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.
Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites
NASA Astrophysics Data System (ADS)
Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu
2011-01-01
The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.
Kronert, William A; Melkani, Girish C; Melkani, Anju; Bernstein, Sanford I
2010-05-21
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (V(max)) by approximately 60% compared to wild-type myosin, but there is no change in apparent actin affinity (K(m)). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by approximately 15% or approximately 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by approximately 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional "cracking" of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle. (c) 2010 Elsevier Ltd. All rights reserved.
Twist-3 contributions to wide-angle photoproduction of pions
NASA Astrophysics Data System (ADS)
Kroll, P.; Passek-Kumerički, K.
2018-04-01
We investigate wide-angle π0 photoproduction within the handbag approach to twist-3 accuracy. In contrast to earlier work both the 2-particle as well as the 3-particle twist-3 contributions are taken into account. It is shown that both are needed for consistent results that respect gauge invariance and crossing properties. The numerical studies reveal the dominance of the twist-3 contribution. With it fair agreement with the recent CLAS measurement of the π0 cross section is obtained. We briefly comment also on wide-angle photoproduction of other pseudoscalar mesons.
Moiré edge states in twisted graphene nanoribbons
NASA Astrophysics Data System (ADS)
Fleischmann, M.; Gupta, R.; Weckbecker, D.; Landgraf, W.; Pankratov, O.; Meded, V.; Shallcross, S.
2018-05-01
The edge physics of graphene based systems is well known to be highly sensitive to the atomic structure at the boundary, with localized zero mode edge states found only on the zigzag-type termination of the lattice. Here we demonstrate that the graphene twist bilayer supports an additional class of edge states, that (i) are found for all edge geometries and thus are robust against edge roughness, (ii) occur at energies coinciding with twist induced Van Hove singularities in the bulk and (iii) possess an electron density strongly modulated by the moiré lattice. Interestingly, these "moiré edge states" exist only for certain lattice commensurations and thus the edge physics of the twist bilayer is, in dramatic contrast to that of the bulk, not uniquely determined by the twist angle.
Composite material bend-twist coupling for wind turbine blade applications
NASA Astrophysics Data System (ADS)
Walsh, Justin M.
Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.
Formation of Twisted Elephant Trunks in the Rosette Nebula
NASA Astrophysics Data System (ADS)
Carlqvist, P.; Gahm, G. F.; Kristen, H.
New observations show that dark elephant trunks in the Rosette nebula are often built up by thin filaments. In several of the trunks the filaments seem to form a twisted pattern. This pattern is hard to reconcile with current theory. We propose a new model for the formation of twisted elephant trunks in which electromagnetic forces play an important role. The model considers the behaviour of a twisted magnetic filament in a molecular cloud, where a cluster of hot stars has been recently born. As a result of stellar winds, and radiation pressure, electromagnetic forces, and inertia forces part of the filament can develop into a double helix pointing towards the stars. The double helix represents the twisted elephant trunk. A simple analogy experiment visualizes and supports the trunk model.
Slug, Twist, and E-Cadherin as Immunohistochemical Biomarkers in Meningeal Tumors
Nagaishi, Masaya; Nobusawa, Sumihito; Tanaka, Yuko; Ikota, Hayato; Yokoo, Hideaki; Nakazato, Yoichi
2012-01-01
The overexpression of Twist and Slug and subsequent down-regulation of E-cadherin facilitate the acquirement of invasive growth properties in cancer cells. It is unclear which of these molecules are expressed in mesenchymal tumors in the central nervous system. Here, we investigated 10 cases each of hemangiopericytoma, solitary fibrous tumor, meningothelial, fibrous, angiomatous, and atypical meningiomas, and 5 cases of anaplastic meningioma for Slug, Twist, E-cadherin, and N-cadherin immunoexpression. Nuclear Slug expression was observed in 9/10 (90%) hemangiopericytomas and 5/10 (50%) solitary fibrous tumors, but not in any meningiomas, except for 1 case. Similarly, nuclear Twist expression was more extensive in hemangiopericytomas and solitary fibrous tumors than meningiomas. In contrast to Slug and Twist, the positive expression of E-cadherin was observed in 39/45 (87%) meningiomas, but not in any hemangiopericytomas or solitary fibrous tumors (P<0.0001). The fraction of tumor cells expressing E-cadherin in meningeal tumors was negatively correlated to those of Twist (P = 0.004) and Slug (P<0.0001). The overexpression of Slug and Twist with down-regulation of E-cadherin was characteristic findings in hemangiopericytomas and solitary fibrous tumors, but not in meningiomas. The immunohistochemical profiles of the two tumor groups may be useful as diagnostic markers in cases that present a differential diagnosis challenge. PMID:23029385
Full action of two deformation operators in the D1D5 CFT
NASA Astrophysics Data System (ADS)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
2017-11-01
We are interested in thermalization in the D1D5 CFT, since this process is expected to be dual to black hole formation. We expect that the lowest order process where thermalization occurs will be at second order in the perturbation that moves us away from the orbifold point. The operator governing the deformation off of the orbifold point consists of a twist operator combined with a supercharge operator acting on this twist. In a previous paper we computed the action of two twist operators on an arbitrary state of the CFT. In the present work we compute the action of the supercharges on these twist operators, thereby obtaining the full action of two deformation operators on an arbitrary state of the CFT. We show that the full amplitude can be related to the amplitude with just the twists through an action of the supercharge operators on the initial and final states. The essential part of this computation consists of moving the contours from the twist operators to the initial and final states; to do this one must first map the amplitude to a covering space where the twists are removed, and then map back to the original space on which the CFT is defined.
Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.
Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing
2017-06-08
In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe 74 B 13 Si 11 C 2 , glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.
NASA Astrophysics Data System (ADS)
Le, H. Anh; Do, V. Nam
2018-03-01
We investigate the electronic and optical properties of twisted bilayer graphene with arbitrary twist angles θ . Our results are based on a method of evolving in time quantum states in lattice space. We propose an efficient scheme of sampling lattice nodes that helps to reduce significantly computational cost, particularly for tiny twist angles. We demonstrate the continuous variation of the density of states and the optical conductivity with respect to the twist angle. It indicates that the commensurability between the two graphene layers does not play an essential role in governing the electronic and optical properties. We point out that, for the twist angles roughly in the range 0 .1∘<θ <3∘ , the density of states in the vicinity of the Fermi energy exhibits the typical W shape with a small peak locating at the Fermi energy. This peak is formed as the merging of two van Hove peaks and reflects the appearance of states strongly localized in the AA-like region of moiré zones. When decreasing the twist angle to zero, the W shape is gradually transformed to the U shape, which is seen as the behavior of the density of states in the limit of θ →0∘ .
NASA Astrophysics Data System (ADS)
González Manrique, S. J.; Bello González, N.; Denker, C.
2017-04-01
Context. Emerging flux regions mark the first stage in the accumulation of magnetic flux eventually leading to pores, sunspots, and (complex) active regions. These flux regions are highly dynamic, show a variety of fine structure, and in many cases live only for a short time (less than a day) before dissolving quickly into the ubiquitous quiet-Sun magnetic field. Aims: The purpose of this investigation is to characterize the temporal evolution of a minute emerging flux region, the associated photospheric and chromospheric flow fields, and the properties of the accompanying arch filament system. We aim to explore flux emergence and decay processes and investigate if they scale with structure size and magnetic flux contents. Methods: This study is based on imaging spectroscopy with the Göttingen Fabry-Pérot Interferometer at the Vacuum Tower Telescope, Observatorio del Teide, Tenerife, Spain on 2008 August 7. Photospheric horizontal proper motions were measured with Local correlation tracking using broadband images restored with multi-object multi-frame blind deconvolution. Cloud model (CM) inversions of line scans in the strong chromospheric absorption Hαλ656.28 nm line yielded CM parameters (Doppler velocity, Doppler width, optical thickness, and source function), which describe the cool plasma contained in the arch filament system. Results: The high-resolution observations cover the decay and convergence of two micro-pores with diameters of less than one arcsecond and provide decay rates for intensity and area. The photospheric horizontal flow speed is suppressed near the two micro-pores indicating that the magnetic field is already sufficiently strong to affect the convective energy transport. The micro-pores are accompanied by a small arch filament system as seen in Hα, where small-scale loops connect two regions with Hα line-core brightenings containing an emerging flux region with opposite polarities. The Doppler width, optical thickness, and source function reach the largest values near the Hα line-core brightenings. The chromospheric velocity of the cloud material is predominantly directed downwards near the footpoints of the loops with velocities of up to 12 km s-1, whereas loop tops show upward motions of about 3 km s-1. Some of the loops exhibit signs of twisting motions along the loop axis. Conclusions: Micro-pores are the smallest magnetic field concentrations leaving a photometric signature in the photosphere. In the observed case, they are accompanied by a miniature arch filament system indicative of newly emerging flux in the form of Ω-loops. Flux emergence and decay take place on a time-scale of about two days, whereas the photometric decay of the micro-pores is much more rapid (a few hours), which is consistent with the incipient submergence of Ω-loops. Considering lifetime and evolution timescales, impact on the surrounding photospheric proper motions, and flow speed of the chromospheric plasma at the loop tops and footpoints, the results are representative for the smallest emerging flux regions still recognizable as such.
NASA Astrophysics Data System (ADS)
Nandy, Dibyendu
2006-12-01
Magnetic helicity, a conserved topological parameter in ideal MHD systems, conditions close to which are realized in the solar plasma, is intimately connected to the creation and subsequent dynamics of magnetic flux tubes in the solar interior. It can therefore be used as a tool to probe such dynamics. In this paper we show how photospheric observations of magnetic helicity of isolated magnetic flux tubes, manifested as the twist and writhe of solar active regions, can constrain the creation and dynamics of flux tubes in the solar convection zone and the nature of convective turbulence itself. We analyze the observed latitudinal distribution of twists in photospheric active regions, derived from solar vector magnetograms, in the largest such sample studied till-date. We confirm and put additional constraints on the hemispheric twist helicity trend and find that the dispersion in the active region twist distribution is latitude-independent, implying that the amplitude of turbulent fluctuations does not vary with latitude in the convection zone. Our data set also shows that the amplitude and dispersion of twist decreases with increasing magnetic size of active regions, supporting the conclusion that larger flux tubes are less affected by turbulence. Among the various theoretical models that have been proposed till-date to explain the origin of twist, our observations best match the Σ effect model, which invokes helical turbulent buffeting of rising flux tubes as the mechanism for twist creation. Finally, we complement our analysis of twists with past observations of tilts in solar active regions and tie them in with theoretical modeling studies, to build up a comprehensive picture of the dynamics of twisted magnetic flux tubes throughout the solar convection zone. This general framework, binding together theory and observations, suggests that flux tubes have a wide range of twists in the solar convection zone, with some as high as to make them susceptible to the kink instability mechanism that results in the formation of δ spot or non-Hale active regions.
Performance of twist-coupled blades on variable speed rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobitz, D.W.; Veers, P.S.; Laino, D.J.
1999-12-07
The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software ismore » also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.« less
Using 4th order Runge-Kutta method for solving a twisted Skyrme string equation
NASA Astrophysics Data System (ADS)
Hadi, Miftachul; Anderson, Malcolm; Husein, Andri
2016-03-01
We study numerical solution, especially using 4th order Runge-Kutta method, for solving a twisted Skyrme string equation. We find numerically that the value of minimum energy per unit length of vortex solution for a twisted Skyrmion string is 20.37 × 1060 eV/m.
Yamamoto, Fernanda-Paula; Corrêa Pontes, Flávia-Sirotheau; Cury, Sérgio-Elias; Fonseca, Felipe-Paiva; Rebelo-Pontes, Hélder; Pinto-Júnior, Décio-dos Santos
2012-01-01
Objectives: The aim of this study was to evaluate the immunoexpression of TWIST and p-Akt proteins in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC), correlating their expressions with the histological features of the lesions. Study design: Immunohistochemical studies were carried out on 10 normal oral epithelium, 30 OL and 20 OSCC formalin-fixed, paraffin-embedded tissue samples. Immunoperoxidase reactions for TWIST and p-Akt proteins were applied on the specimens and the positivity of the reactions was calculated for 1000 epithelial cells. Results: Kruskal-Wallis and Dunn’s post tests revealed a significant difference in TWIST and p-Akt immunoexpression among normal oral mucosa, OL and OSCC. In addition, a significant positive correlation was found between TWIST and p-Akt expressions according to the Pearson’s correlation test. Conclusions: The results obtained in the current study suggest that TWIST and p-Akt may participate of the multi-step process of oral carcinogenesis since its early stages. Key words: Oral cancer, oral leukoplakia, dysplasia, immunohistochemistry. PMID:21743395
Torsional mechanics of DNA are regulated by small-molecule intercalation.
Celedon, Alfredo; Wirtz, Denis; Sun, Sean
2010-12-23
Whether the bend and twist mechanics of DNA molecules are coupled is unclear. Here, we report the direct measurement of the resistive torque of single DNA molecules to study the effect of ethidium bromide (EtBr) intercalation and pulling force on DNA twist mechanics. DNA molecules were overwound and unwound using recently developed magnetic tweezers where the molecular resistive torque was obtained from Brownian angular fluctuations. The effect of EtBr intercalation on the twist stiffness was found to be significantly different from the effect on the bend persistence length. The twist stiffness of DNA was dramatically reduced at low intercalator concentration (<10 nM); however, it did not decrease further when the intercalator concentration was increased by 3 orders of magnitude. We also determined the dependence of EtBr intercalation on the torque applied to DNA. We propose a model for the elasticity of DNA base pairs with intercalated EtBr molecules to explain the abrupt decrease of twist stiffness at low EtBr concentration. These results indicate that the bend and twist stiffnesses of DNA are independent and can be differently affected by small-molecule binding.
NASA Astrophysics Data System (ADS)
Langeroudi, H. G.; Javaherdeh, K.
2018-07-01
In present paper the effects of using typical twisted tape (TT) and V-cut twisted tape (VTT) on Nusselt number (Nu), friction factor (f) and thermal performance factor (η) inside corrugated tube in the turbulent flow are experimentally investigated despite the fact that the wall is under uniform heat flux. The experiments are conducted by twisted tapes with different twist ratio (y = 4.5, 6.07), depth and width ratios ranging (0.285-0.5) and Reynolds number varied from 5300 to 25,700 and water was as a working fluid. The obtained results show that the Nusselt number for corrugated tube that equipped with twisted tapes increases with increasing Reynolds number and is remarkable at high Reynolds Number while the friction factor is low. Moreover, the thermal performance factor for fluid increases with increasing Reynolds number and also the thermal performance factor for all states of VTT are higher than of TT. The new empirical correlations for Nusselt number, friction factor and thermal performance factor are predicted and compared with experimental data.
Twist1-positive epithelial cells retain adhesive and proliferative capacity throughout dissemination
Shamir, Eliah R.; Coutinho, Kester; Georgess, Dan; Auer, Manfred
2016-01-01
ABSTRACT Dissemination is the process by which cells detach and migrate away from a multicellular tissue. The epithelial-to-mesenchymal transition (EMT) conceptualizes dissemination in a stepwise fashion, with downregulation of E-cadherin leading to loss of intercellular junctions, induction of motility, and then escape from the epithelium. This gain of migratory activity is proposed to be mutually exclusive with proliferation. We previously developed a dissemination assay based on inducible expression of the transcription factor Twist1 and here utilize it to characterize the timing and dynamics of intercellular adhesion, proliferation and migration during dissemination. Surprisingly, Twist1+ epithelium displayed extensive intercellular junctions, and Twist1– luminal epithelial cells could still adhere to disseminating Twist1+ cells. Although proteolysis and proliferation were both observed throughout dissemination, neither was absolutely required. Finally, Twist1+ cells exhibited a hybrid migration mode; their morphology and nuclear deformation were characteristic of amoeboid cells, whereas their dynamic protrusive activity, pericellular proteolysis and migration speeds were more typical of mesenchymal cells. Our data reveal that epithelial cells can disseminate while retaining competence to adhere and proliferate. PMID:27402962
NASA Astrophysics Data System (ADS)
Andelković, M.; Covaci, L.; Peeters, F. M.
2018-03-01
The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
A quality-of-life-oriented endpoint for comparing therapies.
Gelber, R D; Gelman, R S; Goldhirsch, A
1989-09-01
An endpoint, time without symptoms of disease and toxicity of treatment (TWiST), is defined to provide a single measure of length and quality of survival. Time with subjective side effects of treatment and time with unpleasant symptoms of disease are subtracted from overall survival time to calculate TWiST for each patient. The purpose of this paper is to describe the construction of this endpoint, and to elaborate on its interpretation for patient care decision-making. Estimating the distribution of TWiST using actuarial methods is shown by simulation studies to be biased as a result of induced dependency between TWiST and its censoring distribution. Considering the distribution of TWiST accumulated within a specified time from start of therapy, L, allows one to reduce this bias by substituting estimated TWiST for censored values and provides a method to evaluate the "payback" period for early toxic effects. Quantile distance plots provide graphical representations for treatment comparisons. The analysis of Ludwig Trial III evaluating toxic adjuvant therapies versus a no-treatment control group for postmenopausal women with node-positive breast cancer illustrates the methodology.
Far-Infrared and Raman Spectra and The Ring-Twisting Potential Energy Function of 1,3-Cyclohexadiene
NASA Astrophysics Data System (ADS)
Autrey, Daniel; Choo, Jaebum; Laane, Jaan
2001-10-01
The nu19 (A2) ring-twisting vibration of 1,3-cyclohexadiene has been analyzed from the vapor-phase Raman and infrared spectra. The Raman spectrum shows nine ring-twisting transitions in the 116 - 199 cm-1 region. The far-infrared spectrum confirms five of these transitions, despite the fact that the vibration is infrared forbidden in the C2v (planar) approximation. Other Raman and infrared combination bands verify the assignments and provide information on the vibrational coupling. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function, which has a barrier to planarity of 1132 cm-1 and energy minima corresponding to twisting angles of 9.1º and 30.1º. Ab initio calculations were also carried out using Moller-Plesset perturbation theory (MP2) with a large number of different basis sets. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range and calculated vibrational frequencies in excellent agreement with the experimental values.
High performance twisted and coiled soft actuator with spandex fiber for artificial muscles
NASA Astrophysics Data System (ADS)
Yang, Sang Yul; Cho, Kyeong Ho; Kim, Youngeun; Song, Min-Geun; Jung, Ho Sang; Yoo, Ji Wang; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-do; Ryeol Choi, Hyouk
2017-10-01
This paper reports the twisted and coiled soft actuator (abbreviated with STCA) with spandex fiber. The STCA exhibits higher actuation strain at lower temperature than the previous nylon twisted and coiled soft actuators (abbreviated with NTCAs). While NTCAs are fabricated using a twist-insertion process until coils are formed, a new method is developed to fabricate the STCA using the ultra-stretch of spandex, whereby the STCA is twisted again after the coil has been formed. A 6-gear-twist-insertion device that increases the stability and the fabrication speed is developed to fabricate the STCA. The superior performance exhibited by the STCA is due to the 14% contraction strain of the bare spandex (bare nylon: 4%) and the low spring constant of 0.0115 N mm-1. The maximum tensile actuation strain of STCA was 45% at 130 °C, and the maximum specific work was 1.523 kJ kg-1 at 130 °C. STCA could repeatedly actuate 100 times with a strain change of less than 0.4%.
New collinear twist-3 analysis of transverse SSA: Toward a resolution for the sign-mismatch problem
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...
2014-10-19
We present a new collinear twist-3 analysis of the transverse SSA A N at RHIC. We use the TMD Sivers/Collins function to fix some of the relevant collinear twist-3 functions and perform a fit of the RHIC data with other parameterized twist-3 functions. This allows us to keep the consistency among descriptions in pp collision, SIDIS, and e +e – annihilation and thus could provide a unified description of the spin asymmetries in the low- and high-P T processes. In conclusion, by taking into account the twist-3 fragmentation contribution, we show for the first time this contribution could be themore » main source of A N in pp ↑ → hX and its inclusion could provide a solution for the sign-mismatch problem.« less
Napiorkowski, Maciej; Urbanczyk, Waclaw
2018-04-30
We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.
Williams, Alexandra Mackenzie; Shave, Robert E; Coulson, James M; White, Harriet; Rosser-Stanford, Bryn; Eves, Neil Derek
2018-06-01
Left ventricular (LV) twist mechanics differ between males and females during acute physiological stress, which may be partly mediated by sex differences in autonomic control. While males appear to have greater adrenergic control of LV twist, the potential contribution of vagal modulation to sex differences in LV twist remains unknown. Therefore, this study examined the role of vagal control on sex differences in LV twist during graded lower body negative pressure (LBNP) and supine cycling. On two separate visits, LV mechanics were assessed using 2-dimensional speckle-tracking echocardiography in 18 males (22{plus minus}2yr) and 17 females (21{plus minus}4yr) during -40 and -60 mmHg LBNP and 25% and 50% of peak supine cycling workload, with and without glycopyrrolate (vagal blockade). LV twist was not different at baseline but was greater in females during -60 mmHg in both control (F:16.0{plus minus}3.4º, M:12.9{plus minus}2.3º, p=0.004) and glycopyrrolate trials (F:17.7{plus minus}5.9{degree sign}, M:13.9{plus minus}3.3{degree sign}, p<0.001) due to greater apical rotation during control (F:11.9{plus minus}3.6º, M:7.8{plus minus}1.5º, p<0.001) and glycopyrrolate (F:11.6{plus minus}4.9{degree sign}, M:7.1{plus minus}3.6{degree sign}, p=0.009). These sex differences in LV twist consistently coincided with a greater LV sphericity index (i.e. ellipsoid geometry) in females compared to males. In contrast, LV twist did not differ between the sexes during exercise, with or without glycopyrrolate. Females have augmented LV twist compared to males during large reductions to preload, even during vagal blockade. As such, differences in vagal control do not appear to contribute to sex differences in the LV twist responses to physiological stress, but may be related to differences in ventricular geometry.
Bend-Twist Coupled Carbon-Fiber Laminate Beams: Fundamental Behavior and Applications
NASA Astrophysics Data System (ADS)
Babuska, Pavel
Material-induced bend-twist coupling in laminated composite beams has seen applications in engineered structures for decades, ranging from airplane wings to turbine blades. Symmetric, unbalanced, carbon fiber laminates which exhibit bend-twist coupling can be difficult to characterize and exhibit unintuitive deformation states which may pose challenges to the engineer. In this thesis, bend-twist coupled beams are investigated comprehensively, by experimentation, numerical modeling, and analytical methods. Beams of varying fiber angle and amount of coupling were manufactured and physically tested in both linear and nonlinear static and dynamic settings. Analytical mass and stiffness matrices were derived for the development of a beam element to use in the stiffness matrix analysis method. Additionally, an ABAQUS finite element model was used in conjunction with the analytical methods to predict and further characterize the behavior of the beams. The three regimes, experimental, analytical, and numerical, represent a full-field characterization of bend-twist coupling in composite beams. A notable application of bend-twist coupled composites is for passively adaptive turbine blades whereby the deformation coupling can be built into the blade structure to simultaneously bend and twist, thus pitching the blade into or away from the fluid flow, changing the blade angle of attack. Passive pitch adaptation has been implemented successfully in wind turbine blades, however, for marine turbine blades, the technology is still in the development phase. Bend-twist coupling has been shown numerically to be beneficial to the tidal turbine performance, however little validation has been conducted in the experimental regime. In this thesis, passively adaptive experiment scale tidal turbine blades were designed, analyzed, manufactured, and physically tested, validating the foundational numerical work. It was shown that blade forces and root moments as well as turbine thrust and power coefficients can be manipulated by inclusion of passive pitch adaption by bend-twist coupling.
Senol, Serkan; Sayar, Ilyas; Ceyran, Ayse B; Ibiloglu, Ibrahim; Akalin, Ibrahim; Firat, Ugur; Kosemetin, Duygu; Engin Zerk, Pinar; Aydin, Abdullah
2016-05-01
Epithelial-stroma interactions in the endometrium are known to be responsible for physiological functions and emergence of several pathologic lesions. Periglandular stromal cells act on endometrial cells in a paracrine manner through sex hormones. In this study, we immunohistochemically evaluated the expression of epithelial-mesenchymal transition regulators (SNAIL/SLUG, TWIST, ZEB1), adhesion molecules (β-catenin and E-cadhenin), estrogen (ER)-progesterone (PR) receptor and their correlation with each other in 30 benign, 148 hyperplastic (EH), and 101 endometrioid-type endometrial carcinoma (EC) endometria. In the epithelial component, loss of expression in E-cadherin, ER and PR, and overexpression of TWIST and ZEB1 were significantly higher in EC than in EH (P<0.01). In the periglandular stromal component, β-catenin and SNAIL/SLUG expression were significantly higher in normal endometrium and simple without atypical EH compared with complex atypical EH and EC (P<0.01). In addition, periglandular stromal TWIST expression was significantly higher in EH group compared with EC (P<0.05). There was significantly negative correlation between β-catenin and ER, TWIST and ER, and TWIST and PR in hyperplastic and carcinomatous glandular epithelium, whereas there was a significantly positive correlation between β-catenin and SNAIL-SLUG, β-catenin and TWIST, β-catenin and ER, β-catenin and PR, SNAIL-SLUG and ER, SNAIL-SLUG and PR, TWIST and ER, TWIST and PR, in periglandular/cancer-associated stromal cells (P<0.01). In conclusion, the pattern of positive and negative correlations in the expression of epithelial-mesenchymal transition regulators (SNAIL-SLUG and TWIST), sex hormone receptors (ER and PR), and β-catenin between ECs and hyperplasia, as well as between epithelium and stroma herein, is suggestive of a significant role for these proteins and their underlying molecular processes in the development of endometrial carcinomas.
Sayar, Ilyas; Ceyran, Ayse B.; Ibiloglu, Ibrahim; Akalin, Ibrahim; Firat, Ugur; Kosemetin, Duygu; Engin Zerk, Pinar; Aydin, Abdullah
2016-01-01
Epithelial-stroma interactions in the endometrium are known to be responsible for physiological functions and emergence of several pathologic lesions. Periglandular stromal cells act on endometrial cells in a paracrine manner through sex hormones. In this study, we immunohistochemically evaluated the expression of epithelial-mesenchymal transition regulators (SNAIL/SLUG, TWIST, ZEB1), adhesion molecules (β-catenin and E-cadhenin), estrogen (ER)-progesterone (PR) receptor and their correlation with each other in 30 benign, 148 hyperplastic (EH), and 101 endometrioid-type endometrial carcinoma (EC) endometria. In the epithelial component, loss of expression in E-cadherin, ER and PR, and overexpression of TWIST and ZEB1 were significantly higher in EC than in EH (P<0.01). In the periglandular stromal component, β-catenin and SNAIL/SLUG expression were significantly higher in normal endometrium and simple without atypical EH compared with complex atypical EH and EC (P<0.01). In addition, periglandular stromal TWIST expression was significantly higher in EH group compared with EC (P<0.05). There was significantly negative correlation between β-catenin and ER, TWIST and ER, and TWIST and PR in hyperplastic and carcinomatous glandular epithelium, whereas there was a significantly positive correlation between β-catenin and SNAIL-SLUG, β-catenin and TWIST, β-catenin and ER, β-catenin and PR, SNAIL-SLUG and ER, SNAIL-SLUG and PR, TWIST and ER, TWIST and PR, in periglandular/cancer-associated stromal cells (P<0.01). In conclusion, the pattern of positive and negative correlations in the expression of epithelial-mesenchymal transition regulators (SNAIL-SLUG and TWIST), sex hormone receptors (ER and PR), and β-catenin between ECs and hyperplasia, as well as between epithelium and stroma herein, is suggestive of a significant role for these proteins and their underlying molecular processes in the development of endometrial carcinomas. PMID:26367784
High-order orbital angular momentum mode generator based on twisted photonic crystal fiber.
Fu, Cailing; Liu, Shen; Wang, Ying; Bai, Zhiyong; He, Jun; Liao, Changrui; Zhang, Yan; Zhang, Feng; Yu, Bin; Gao, Shecheng; Li, Zhaohui; Wang, Yiping
2018-04-15
High-order orbital angular momentum (OAM) modes, namely, OAM +5 and OAM +6 , were generated and demonstrated experimentally by twisting a solid-core hexagonal photonic crystal fiber (PCF) during hydrogen-oxygen flame heating. Leaky orbital resonances in the cladding depend strongly on the twist rate and length of the helical PCF. Moreover, the generated high-order OAM mode could be a polarized mode. The secret of the successful observation of high-order modes is that leaky orbital resonances in the twisted PCF cladding have a high coupling efficiency of more than -20 dB.
Trapping of ultracold polar molecules with a thin-wire electrostatic trap.
Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P
2007-10-05
We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.
Origin of chiral interactions in cellulose supra-molecular microfibrils.
Khandelwal, Mudrika; Windle, Alan
2014-06-15
The formation of a chiral-nematic phase from cellulose nanowhiskers has been frequently reported in the literature. The most popular theory used to explain the chiral interactions is that of twisted morphology of cellulose nanowhiskers. Two possible origins of twist have been suggested: the intrinsic chirality of cellulose chains and result of interaction of chiral surfaces. High resolution SEM and AFM have been used to locate twists in cellulose microfibrils and nanowhiskers. The origin of the twisted morphology in cellulose microfibrils has been studied with reference to the protein aggregation theory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Twirling and Whirling: Viscous Dynamics of Rotating Elastica
NASA Astrophysics Data System (ADS)
Powers, Thomas R.; Wolgemuth, Charles W.; Goldstein, Raymond E.
1999-11-01
Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced filament with twist and bend elasticity. The competition between twist diffusion and writhing instabilities is described by a novel pair of coupled PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist-bend coupling and reveal two dynamical regimes separated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. The consequences of these phenomena for self-propulsion are investigated, and experimental tests proposed.
Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA.
Dans, Pablo Daniel; Faustino, Ignacio; Battistini, Federica; Zakrzewska, Krystyna; Lavery, Richard; Orozco, Modesto
2014-10-01
We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3'-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Twist-induced Magnetosphere Reconfiguration for Intermittent Pulsars
NASA Astrophysics Data System (ADS)
Huang, Lei; Yu, Cong; Tong, Hao
2016-08-01
We propose that the magnetosphere reconfiguration induced by magnetic twists in the closed field line region can account for the mode switching of intermittent pulsars. We carefully investigate the properties of axisymmetric force-free pulsar magnetospheres with magnetic twists in closed field line regions around the polar caps. The magnetosphere with twisted closed lines leads to enhanced spin-down rates. The enhancement in spin-down rate depends on the size of the region with twisted closed lines. Typically, it is increased by a factor of ˜2, which is consistent with the intermittent pulsars’ spin-down behavior during the “off” and “on” states. We find that there is a threshold of maximal twist angle {{Δ }}{φ }{{thres}}˜ 1. The magnetosphere is stable only if the closed line twist angle is less than {{Δ }}{φ }{{thres}}. Beyond this value, the magnetosphere becomes unstable and gets untwisted. The spin-down rate would reduce to its off-state value. The quasi-periodicity in spin-down rate change can be explained by long-term activities in the star’s crust and the untwisting induced by MHD instability. The estimated duration of on-state is about 1 week, consistent with observations. Due to the MHD instability, there exists an upper limit for the spin-down ratio (f˜ 3) between the on-state and the off-state, if the Y-point remains at the light cylinder.
Twisting short dsDNA with applied tension
NASA Astrophysics Data System (ADS)
Zoli, Marco
2018-02-01
The twisting deformation of mechanically stretched DNA molecules is studied by a coarse grained Hamiltonian model incorporating the fundamental interactions that stabilize the double helix and accounting for the radial and angular base pair fluctuations. The latter are all the more important at short length scales in which DNA fragments maintain an intrinsic flexibility. The presented computational method simulates a broad ensemble of possible molecule conformations characterized by a specific average twist and determines the energetically most convenient helical twist by free energy minimization. As this is done for any external load, the method yields the characteristic twist-stretch profile of the molecule and also computes the changes in the macroscopic helix parameters i.e. average diameter and rise distance. It is predicted that short molecules under stretching should first over-twist and then untwist by increasing the external load. Moreover, applying a constant load and simulating a torsional strain which over-twists the helix, it is found that the average helix diameter shrinks while the molecule elongates, in agreement with the experimental trend observed in kilo-base long sequences. The quantitative relation between percent relative elongation and superhelical density at fixed load is derived. The proposed theoretical model and computational method offer a general approach to characterize specific DNA fragments and predict their macroscopic elastic response as a function of the effective potential parameters of the mesoscopic Hamiltonian.
Effect of the cross sectional aspect ratio on the flow past a twisted cylinder
NASA Astrophysics Data System (ADS)
Jung, Jae Hwan; Yoon, Hyun Sik
2013-11-01
The cross-flow around twisted cylinders of cross sectional aspect ratio (A/B) from 1 to 2.25 is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation (LES). The flow past a corresponding smooth and wavy cylinder is also calculated for comparison and validation against experimental data. The effect of twisted surface assessed in terms of the mean drag and root-mean-square (RMS) value of fluctuating lift. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the smooth and the wavy cylinder. The maximum drag reduction of up to 13% compared with a smooth cylinder is obtained at a certain cross sectional aspect ratio. The fluctuating lift coefficient of the twisted cylinder is also significantly suppressed. We found that the cross sectional cross sectional aspect ratio (A/B) plays an essential role in determining the vortical structures behind the twisted cylinder which has a significant effect on the reduction of the fluctuating lift and suppression of flow-induced vibration. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).
HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov
We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edgemore » resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.« less
PLASMA JETS AND ERUPTIONS IN SOLAR CORONAL HOLES: A THREE-DIMENSIONAL FLUX EMERGENCE EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno-Insertis, F.; Galsgaard, K.
2013-07-01
A three-dimensional (3D) numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into a coronal hole. We explore the evolution of the emerging magnetically dominated plasma dome surmounted by a current sheet and the ensuing pattern of reconnection. A hot and fast coronal jet with inverted-Y shape is produced that shows properties comparable to those frequently observed with EUV and X-ray detectors. We analyze its 3D shape, its inhomogeneous internal structure, andmore » its rise and decay phases, lasting for some 15-20 minutes each. Particular attention is devoted to the field line connectivities and the reconnection pattern. We also study the cool and high-density volume that appears to encircle the emerged dome. The decay of the jet is followed by a violent phase with a total of five eruptions. The first of them seems to follow the general pattern of tether-cutting reconnection in a sheared arcade, although modified by the field topology created by the preceding reconnection evolution. The two following eruptions take place near and above the strong-field concentrations at the surface. They show a twisted, {Omega}-loop-like rope expanding in height, with twist being turned into writhe, thus hinting at a kink instability (perhaps combined with a torus instability) as the cause of the eruption. The succession of a main jet ejection and a number of violent eruptions that resemble mini-CMEs and their physical properties suggest that this experiment may provide a model for the blowout jets recently proposed in the literature.« less
Ardiani, Andressa; Farsaci, Benedetto; Rogers, Connie J.; Protter, Andy; Guo, Zhimin; King, Thomas H.; Apelian, David; Hodge, James W.
2013-01-01
Purpose Enzalutamide, a second-generation androgen antagonist, was approved by the FDA for castration-resistant prostate cancer (CRPC) treatment. Immunotherapy has been shown to be a promising strategy for prostate cancer. This study is performed to provide data to support the combination of enzalutamide and immunotherapy for CRPC treatment. Experimental Design Male C57BL/6 or TRAMP prostate cancer model mice were exposed to enzalutamide and/or a therapeutic vaccine targeting Twist, an antigen involved in epithelial-to-mesenchymal transition and metastasis. The physiological and immunological effects of enzalutamide were characterized. The generation of Twist-specific immunity by Twist-vaccine was evaluated. Finally, the combination of enzalutamide and Twist-vaccine to improve TRAMP mice overall survival was evaluated. Results Enzalutamide mediated immunogenic modulation in TRAMP-C2 cells. In vivo, enzalutamide mediated reduced genitourinary tissue weight, enlargement of the thymus, and increased levels of T-cell excision circles. Because no changes were seen in T-cell function, as determined by CD4+ T-cell proliferation and Treg functional assays, enzalutamide was determined to be immune inert. Enzalutamide did not diminish the Twist-vaccine’s ability to generate Twist-specific immunity. Twist was confirmed as a valid tumor antigen in TRAMP mice by immunohistochemistry. The combination of enzalutamide and Twist-vaccine resulted in significantly increased overall survival of TRAMP mice compared to other treatment groups (27.5 vs. 10.3 weeks). Notably, the effectiveness of the combination therapy increased with disease stage, i.e., the greatest survival benefit was seen in mice with advanced-stage prostate tumors. Conclusions These data support the combination of enzalutamide and immunotherapy as a promising treatment strategy for CRPC. PMID:24048332
Exact special twist method for quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro
2016-12-01
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Yi; Jiang, Yunchun; Yang, Jiayan
The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolationsmore » using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope.« less
Le, Yuan; Kroeker, Randall; Kipfer, Hal D; Lin, Chen
2012-08-01
To develop a new pulse sequence called time-resolved angiography with stochastic trajectories (TWIST) Dixon for dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). The method combines dual-echo Dixon to generate separated water and fat images with a k-space view-sharing scheme developed for 3D TWIST. The performance of TWIST Dixon was compared with a volume interpolated breathhold examination (VIBE) sequence paired with spectrally selective adiabatic inversion Recovery (SPAIR) and quick fat-sat (QFS) fat-suppression techniques at 3.0T using quantitative measurements of fat-suppression accuracy and signal-to-noise ratio (SNR) efficiency, as well as qualitative breast image evaluations. The water fraction of a uniform phantom was calculated from the following images: 0.66 ± 0.03 for TWIST Dixon; 0.56 ± 0.23 for VIBE-SPAIR, and 0.53 ± 0.14 for VIBE-QFS, while the reference value is 0.70 measured by spectroscopy. For phantoms with contrast (Gd-BOPTA) concentration ranging from 0-6 mM, TWIST Dixon also provides consistently higher SNR efficiency (3.2-18.9) compared with VIBE-SPAIR (2.8-16.8) and VIBE-QFS (2.4-12.5). Breast images acquired with TWIST Dixon at 3.0T show more robust and uniform fat suppression and superior overall image quality compared with VIBE-SPAIR. The results from phantom and volunteer evaluation suggest that TWIST Dixon outperforms conventional methods in almost every aspect and it is a promising method for DCE-MRI and contrast-enhanced perfusion MRI, especially at higher field strength where fat suppression is challenging. Copyright © 2012 Wiley Periodicals, Inc.
New dualities and misleading anomaly matchings from outer-automorphism twists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Sridip; Song, Jaewon
We study four-dimensional N=1, 2 superconformal theories in class S obtained by compactifying the 6d N=(2, 0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomaliesmore » as the ones without the twist line, whereas the superconformal indices differ. As a result, this provides a large set of examples where the anomaly matching is insufficient to test dualities.« less
New dualities and misleading anomaly matchings from outer-automorphism twists
Pal, Sridip; Song, Jaewon
2017-03-29
We study four-dimensional N=1, 2 superconformal theories in class S obtained by compactifying the 6d N=(2, 0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomaliesmore » as the ones without the twist line, whereas the superconformal indices differ. As a result, this provides a large set of examples where the anomaly matching is insufficient to test dualities.« less
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel
2017-12-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.
Axial flow positive displacement worm gas generator
NASA Technical Reports Server (NTRS)
Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor); Murrow, Kurt David (Inventor)
2010-01-01
An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.
Dynamics of Scroll Wave in a Three-Dimensional System with Changing Gradient.
Yuan, Xiao-Ping; Chen, Jiang-Xing; Zhao, Ye-Hua; Liu, Gui-Quan; Ying, He-Ping
2016-01-01
The dynamics of a scroll wave in an excitable medium with gradient excitability is studied in detail. Three parameter regimes can be distinguished by the degree of gradient. For a small gradient, the system reaches a simple rotating synchronization. In this regime, the rigid rotating velocity of spiral waves is maximal in the layers with the highest filament twist. As the excitability gradient increases, the scroll wave evolutes into a meandering synchronous state. This transition is accompanied by a variation in twisting rate. Filament twisting may prevent the breakup of spiral waves in the bottom layers with a low excitability with which a spiral breaks in a 2D medium. When the gradient is large enough, the twisted filament breaks up, which results in a semi-turbulent state where the lower part is turbulent while the upper part contains a scroll wave with a low twisting filament.
NASA Astrophysics Data System (ADS)
Dogic, Z.; Didonna, B.; Bryning, M.; Lubensky, T. C.; Yodh, A. G.; Janmey, P. A.
2003-03-01
We are investigating the behavior of mixtures of monodisperse fd-virus rods and non-adsorbing polymer. We observe the formation of isolated smectic disks. The single smectic disk is of a monolayer of aligned rods while its thickness equal to the length of a single rod. As disks coalesce they undergo shape transformations from flat structures to elongated twisted ribbons. A theoretical model is formulated wherein the chirality of the molecule favors the formation of the elongated ribbon structure while the line tension favors formation of untwisted disks. To check the validity of the theoretical model line tension and twist constants are experimentally measured. The line tension is deduced from thermal fluctuations of the interface. The twist constant is determined by unwinding the twisted ribbons using optical tweezers. This work is partially supported by NSF grants DMR-0203378, the PENN MRSEC, DMR-0079909, and NASA grant NAG8-2172.
A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes
NASA Astrophysics Data System (ADS)
Wang, Meng; Lin, Bao-Ping; Yang, Hong
2016-12-01
In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices.
A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes.
Wang, Meng; Lin, Bao-Ping; Yang, Hong
2016-12-22
In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices.
Mini-CME eruptions in a flux emergence event in a coronal hole environment
NASA Astrophysics Data System (ADS)
Galsgaard, K.; Moreno-Insertis, F.
2016-10-01
Small scale jets are observed to take place at the interface between the open magnetic field in coronal holes and bipolar magnetic field concentrations. A fraction of these shows an eruptive behavior, where a combination of cold dense and hot light plasma has been observed to propagate out along the jet region, combining traditional jets with what looks like the eruption of mini-CMEs. Here we discuss a simple model scenario for the explosive energy release process that leads to a mixture of hot and cold plasma being accelerated upwards simultaneously. The model explains both the typical steady state inverted-Y jet and the subsequent mini-CME eruptions found in blowout jets. The numerical experiment consists of a buoyant unstable flux rope that emerges into an overlying slanted coronal field, thereby creating a bipolar magnetic field distribution in the photosphere with coronal loops linking the polarities. Reconnection between the emerged and preexisting magnetic systems including the launching of a classical inverted-Y jet. The experiment shows that this simple model provides for a very complicated dynamical behavior in its late phases. Five independent mini-CME eruptions follow the initial near steady-state jet phase. The first one is a direct consequence of the reconnection of the emerged magnetic flux, is mediated by the formation of a strongly sheared arcade followed by a tether-cutting reconnection process, and leads to the eruption of a twisted flux rope. The final four explosive eruptions, instead, are preceded by the formation of a twisted torus-like flux rope near the strong magnetic concentrations at the photosphere. As the tube center starts emerging an internal current sheet is formed below it. This sheet experiences a tether cutting process that provides the important upwards kick of the newly formed mini-CME structure. As the fast rising cold and dense tube interacts with the overlying magnetic field, it reconnects at different spatial locations, either through a null region or through a local strong shear region without nulls. The restructuring of the magnetic field lines generate magneto-acoustic waves that transport twist and cold plasma out along the less stressed parts of the newly reconnected field lines. The emphasis of the talk will be on the physical forces responsible for the initial flux tube rising and the effects and reasons for the following destruction of the mini-CMEs.
Designing Polyamide Inhibitors of TWIST 1 for Prosenescence Therapy
2014-09-01
Pyrrole -Imidazole Polyamides; TWIST1; KRAS; non-small cell lung cancer (NSCLC); senescence 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... Pyrrole -Imidazole Polyamides (PIP) are a class of cell permeable programmable small-molecule heterocyclic amino acid oligomers that can be designed...The original specific aims are below: Specific Aim#1. Design and synthesize a TWIST1-inhibitory specific Pyrrole -Imidazole Polyamides (PIP
Mechanism of Twist1-Induced Invasion in Breast Cancer Metastasis
2012-01-01
Breast Cancer Metastasis PRINCIPAL INVESTIGATOR: Mark Adam Eckert CONTRACTING...2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanism of Twist1-Induced Invasion in Breast Cancer Metastasis 5b. GRANT NUMBER W81XWH-09-1...an important mediator of breast cancer metastasis by driving the epithelial-mesenchymal transition. We find that Twist1 promotes metastasis by
AHPCRC - Army High Performance Computing Research Center
2008-01-01
University) Birds and insects use complex flapping and twisting wing motions to maneuver, hover, avoid obstacles, and maintain or regain their...vehicles for use in sensing, surveillance, and wireless communications. HPC simulations examine plunging, pitching, and twisting motions of aeroelastic...wings, to optimize the amplitudes and frequencies of flapping and twisting motions for the maximum amount of thrust. Several methods of calculation
Trace of the Twisted Heisenberg Category
NASA Astrophysics Data System (ADS)
Oğuz, Can Ozan; Reeks, Michael
2017-12-01
We show that the trace decategorification, or zeroth Hochschild homology, of the twisted Heisenberg category defined by Cautis and Sussan is isomorphic to a quotient of {W^-}, a subalgebra of W_{1+∞} defined by Kac, Wang, and Yan. Our result is a twisted analogue of that by Cautis, Lauda, Licata, and Sussan relating W_{1+∞} and the trace decategorification of the Heisenberg category.
Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities.
Alencar, Thonimar V; von Dreifus, Driele; Gabriela Cota Moreira, Maria; Eliel, Gomes S N; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A; Malard, Leandro M; Maria de Paula, Ana
2018-05-02
We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.
Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities
NASA Astrophysics Data System (ADS)
Alencar, Thonimar V.; von Dreifus, Driele; Cota Moreira, Maria Gabriela; Eliel, Gomes S. N.; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A.; Malard, Leandro M.; de Paula, Ana Maria
2018-05-01
We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.
Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams
NASA Astrophysics Data System (ADS)
Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria
2018-05-01
We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.
Wing Twist Measurements at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Burner, Alpheus W.; Wahls, Richard A.; Goad, William K.
1996-01-01
A technique for measuring wing twist currently in use at the National Transonic Facility is described. The technique is based upon a single camera photogrammetric determination of two dimensional coordinates with a fixed (and known) third dimensional coordinate. The wing twist is found from a conformal transformation between wind-on and wind-off 2-D coordinates in the plane of rotation. The advantages and limitations of the technique as well as the rationale for selection of this particular technique are discussed. Examples are presented to illustrate run-to-run and test-to-test repeatability of the technique in air mode. Examples of wing twist in cryogenic nitrogen mode are also presented.
Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review.
Budinski, Vedran; Donlagic, Denis
2017-02-23
Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.
Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review †
Budinski, Vedran; Donlagic, Denis
2017-01-01
Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Ramnarayan, R; Arulmurugan, B; Wilson, Paul M; Nayar, Rani
2008-09-01
Chronic subdural haematoma is a disease of the elderly and surgery in these patients carries a much higher risk. The common surgical procedures for chronic subdural haematoma include twist drill craniostomy, burr hole evacuation or craniotomy. The aim of this study was to analyse the results of twist drill craniostomy with drainage in elderly patients with chronic subdural haematoma. Forty-two elderly patients (>65 years) with radiologically proven chronic subdural haematoma were analysed. All the patients underwent twist drill craniostomy and continuous drainage of the haematoma under local anaesthesia and total intravenous anaesthesia (TIVA). There were 24 males and 18 females. Headache and cognitive decline was seen in 50% and weakness of limbs in 60% of patients. CT scan was done in all cases. All patients underwent twist drill 2-3 cm in front of the parietal eminence under local anaesthesia. The drain was left for 24-72 h depending on the drainage. At 1 week, 88% of patients had a good outcome. Twist drill craniostomy with drainage under local anaesthesia is a safe and effective procedure for chronic subdural haematoma in the elderly and could be used as the first and only option in these people.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2009-09-15
Measurement of strain, curvature, and twist of a deformed object play an important role in deformation analysis. Strain depends on the first order displacement derivative, whereas curvature and twist are determined by second order displacement derivatives. This paper proposes a pseudo-Wigner-Ville distribution based method for measurement of strain, curvature, and twist in digital holographic interferometry where the object deformation or displacement is encoded as interference phase. In the proposed method, the phase derivative is estimated by peak detection of pseudo-Wigner-Ville distribution evaluated along each row/column of the reconstructed interference field. A complex exponential signal with unit amplitude and the phasemore » derivative estimate as the argument is then generated and the pseudo-Wigner-Ville distribution along each row/column of this signal is evaluated. The curvature is estimated by using peak tracking strategy for the new distribution. For estimation of twist, the pseudo-Wigner-Ville distribution is evaluated along each column/row (i.e., in alternate direction with respect to the previous one) for the generated complex exponential signal and the corresponding peak detection gives the twist estimate.« less
A Geometric Construction of Cyclic Cocycles on Twisted Convolution Algebras
NASA Astrophysics Data System (ADS)
Angel, Eitan
2010-09-01
In this thesis we give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. In his seminal book, Connes constructs a map from the equivariant cohomology of a manifold carrying the action of a discrete group into the periodic cyclic cohomology of the associated convolution algebra. Furthermore, for proper étale groupoids, J.-L. Tu and P. Xu provide a map between the periodic cyclic cohomology of a gerbe twisted convolution algebra and twisted cohomology groups. Our focus will be the convolution algebra with a product defined by a gerbe over a discrete translation groupoid. When the action is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial notions related to ideas of J. Dupont to construct a simplicial form representing the Dixmier-Douady class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial Dixmier-Douady form to the mixed bicomplex of certain matrix algebras. Finally, we define a morphism from this complex to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.
SET8 promotes epithelial–mesenchymal transition and confers TWIST dual transcriptional activities
Yang, Fen; Sun, Luyang; Li, Qian; Han, Xiao; Lei, Liandi; Zhang, Hua; Shang, Yongfeng
2012-01-01
SET8 is implicated in transcriptional regulation, heterochromatin formation, genomic stability, cell-cycle progression, and development. As such, it is predicted that SET8 might be involved in the development and progression of tumour. However, whether and how SET8 might be implicated in tumourigenesis is currently unknown. Here, we report that SET8 is physically associated with TWIST, a master regulator of epithelial–mesenchymal transition (EMT). We demonstrated that SET8 and TWIST are functionally interdependent in promoting EMT and enhancing the invasive potential of breast cancer cells in vitro and in vivo. We showed that SET8 acts as a dual epigenetic modifier on the promoters of the TWIST target genes E-cadherin and N-cadherin via its H4K20 monomethylation activity. Significantly, in breast carcinoma samples, SET8 expression is positively correlated with metastasis and the expression of TWIST and N-cadherin and negatively correlated with E-cadherin. Together, our experiments revealed a novel role for SET8 in tumour invasion and metastasis and provide a molecular mechanism underlying TWIST-promoted EMT, suggesting SET8 as a potential target for intervention of the metastasis of breast cancer. PMID:21983900
AKT-ions with a TWIST between EMT and MET.
Tang, Huifang; Massi, Daniela; Hemmings, Brian A; Mandalà, Mario; Hu, Zhengqiang; Wicki, Andreas; Xue, Gongda
2016-09-20
The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.
[Expression and mechanism of Twist2 in glioma].
Wang, L Z; Wang, W J; Xiong, Y F; Xu, S; Wang, S S; Tu, Y; Wang, Z Y; Yan, X L; Mei, J H; Wang, C L
2017-12-08
Objective: To investigate the significance of Twist2 in glioma and whether it is involved in the malignant transformation of glioma by epithelial-mesenchymal transition (EMT). Methods: Using immunohistochemical method detected the expression level of Twist2 in 60 cases of gliomas (including WHO grades Ⅱ, Ⅲ and Ⅳ, each for 20 cases) and 20 cases of non-tumor brain tissues. Real-time fluorescence quantitative PCR and Western blot were used to detect the expression level of Twist2 mRNA and protein in 61 cases of fresh glioma tissue (WHO grade Ⅱ 16 cases, Ⅲ 21 cases, Ⅳ 24 cases) and 12 cases of adjacent tissues, and the expression levels of E-cadherin, N-cadherin and vimentin were also investigated in fresh glioma tissue. Results: Immunohistochemistry results showed that the percentages of Twist2 expression in glioma was 90%(54/60) compared with 30%(6/20) in non-tumor brain tissues( P <0.01). The percentages of Twist2 expression were 75% (15/20), 95% (19/20), and 100% (20/20) in the WHO gradesⅡ, Ⅲ and Ⅳ gliomas, respectively. WHO grades Ⅳ and Ⅲ were significantly higher than that of WHO grade Ⅱ ( P <0.01). There was no significant difference between WHO grade Ⅳand WHO Ⅲ glioma ( P >0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expression level of Twist 2 in gliomas was significantly higher than that in para-cancerous tissues ( P <0.01), and those in WHO grades Ⅳ and Ⅲ gliomas were significantly higher than that in WHO grade Ⅱ glioma ( P <0.01). There was no significant difference between WHO grade Ⅳand grade Ⅲ glioma ( P >0.05). Detection of key protein expression in EMT by Western blot displayed that the expression of E-cadherin was negatively associated with Twist2 in glioma ( r =-0.972, P <0.01). The expression of N-cadherin and vimentin was positively associated with Twist2 in glioma( r =0.971, P <0.01; r =0.968, P <0.01). Conclusions: The expression of Twist2 in human glioma is positively correlated with the malignant grade of glioma, which may be involved in the malignant progression of glioma by EMT.
Tian, Zhen; Yuan, Jingqi; Xu, Liang; Zhang, Xiang; Wang, Jingcheng
2018-05-25
As higher requirements are proposed for the load regulation and efficiency enhancement, the control performance of boiler-turbine systems has become much more important. In this paper, a novel robust control approach is proposed to improve the coordinated control performance for subcritical boiler-turbine units. To capture the key features of the boiler-turbine system, a nonlinear control-oriented model is established and validated with the history operation data of a 300 MW unit. To achieve system linearization and decoupling, an adaptive feedback linearization strategy is proposed, which could asymptotically eliminate the linearization error caused by the model uncertainties. Based on the linearized boiler-turbine system, a second-order sliding mode controller is designed with the super-twisting algorithm. Moreover, the closed-loop system is proved robustly stable with respect to uncertainties and disturbances. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves excellent tracking performance, strong robustness and chattering reduction. Copyright © 2018. Published by Elsevier Ltd.
Intrauterine midgut volvulus without malrotation: Diagnosis from the ‘coffee bean sign’
Park, Jun Seok; Cha, Seong Jae; Kim, Beom Gyu; Kim, Yong Seok; Choi, Yoo Shin; Chang, In Taik; Kim, Gwang Jun; Lee, Woo Seok; Kim, Gi Hyeon
2008-01-01
Fetal midgut volvulus is quite rare, and most cases are associated with abnormalities of intestinal rotation or fixation. We report a case of midgut volvulus without malrotation, associated with a meconium pellet, during the gestation period. This 2.79 kg, 33-wk infant was born via a spontaneous vaginal delivery caused by preterm labor. Prenatal ultrasound showed dilated bowel loops with the appearance of a ‘coffee bean sign’. This patient had an unusual presentation with a distended abdomen showing skin discoloration. An emergency laparotomy revealed a midgut volvulus and a twisted small bowel, caused by complicated meconium ileus. Such nonspecific prenatal radiological signs and a low index of suspicion of a volvulus during gestation might delay appropriate surgical management and result in ischemic necrosis of the bowel. Preterm labor, specific prenatal sonographic findings (for example, the coffee bean sign) and bluish discoloration of the abdominal wall could suggest intrauterine midgut volvulus requiring prompt surgical intervention. PMID:18322966
Parametric Transformation Analysis
NASA Technical Reports Server (NTRS)
Gary, G. Allan
2003-01-01
Because twisted coronal features are important proxies for predicting solar eruptive events, and, yet not clearly understood, we present new results to resolve the complex, non-potential magnetic field configurations of active regions. This research uses free-form deformation mathematics to generate the associated coronal magnetic field. We use a parametric representation of the magnetic field lines such that the field lines can be manipulated to match the structure of EUV and SXR coronal loops. The objective is to derive sigmoidal magnetic field solutions which allows the beta greater than 1 regions to be included, aligned and non-aligned electric currents to be calculated, and the Lorentz force to be determined. The advantage of our technique is that the solution is independent of the unknown upper and side boundary conditions, allows non-vanishing magnetic forces, and provides a global magnetic field solution, which contains high- and low-beta regimes and is consistent with all the coronal images of the region. We show that the mathematical description is unique and physical.
Sun, Y J; Chou, C C; Chen, W S; Wu, R T; Meng, M; Hsiao, C D
1999-05-11
Phosphoglucose isomerase (PGI) plays a central role in both the glycolysis and the gluconeogenesis pathways. We present here the complete crystal structure of PGI from Bacillus stearothermophilus at 2.3-A resolution. We show that PGI has cell-motility-stimulating activity on mouse colon cancer cells similar to that of endogenous autocrine motility factor (AMF). PGI can also enhance neurite outgrowth on neuronal progenitor cells similar to that observed for neuroleukin. The results confirm that PGI is neuroleukin and AMF. PGI has an open twisted alpha/beta structural motif consisting of two globular domains and two protruding parts. Based on this substrate-free structure, together with the previously published biological, biochemical, and modeling results, we postulate a possible substrate-binding site that is located within the domains' interface for PGI and AMF. In addition, the structure provides evidence suggesting that the top part of the large domain together with one of the protruding loops might participate in inducing the neurotrophic activity.
2017-12-08
NASA image acquired May 1, 2010. As an active region rotated into view, it blew out three relatively small eruptions over about two days (Apr. 30 - May 2) as STEREO (Ahead) observed in extreme UV light. The first one was the largest and exhibited a pronounced twisting motion (shown in the still from May 1, 2010). The plasma, not far above the Sun's surface in these images, is ionized Helium heated to about 60,000 degrees. Note, too, the movement of plasma flowing along magnetic field lines that extend out beyond and loop back into the Sun's surface. Such activity occurs every day and is part of the dynamism of the changing Sun. Credit: NASA/GSFC/STEREO To learn more about STEREO go to: soho.nascom.nasa.gov/home.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Standardized technique for single port laparoscopic ileostomy and colostomy.
Shah, A; Moftah, M; Hadi Nahar Al-Furaji, H; Cahill, R A
2014-07-01
Single site laparoscopic techniques and technology exploit maximum usefulness from confined incisions. The formation of an ileostomy or colostomy seems very applicable for this modality as the stoma occupies the solitary incision obviating any additional wounds. Here we detail the principles of our approach to defunctioning loop stoma formation using single port laparoscopic access in a stepwise and standardized fashion along with the salient specifics of five illustrative patients. No specialized instrumentation is required and the single access platform is established table-side using the 'glove port' technique. The approach has the intra-operative advantage of excellent visualization of the correct intestinal segment for exteriorization along with direct visual control of its extraction to avoid twisting. Postoperatively, abdominal wall trauma has been minimal allowing convalescence and stoma care education with only one parietal incision. Single incision stoma siting proves a ready, robust and reliable technique for diversion ileostomy and colostomy with a minimum of operative trauma for the patient. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.
Chern-Simons-Rozansky-Witten topological field theory
NASA Astrophysics Data System (ADS)
Kapustin, Anton; Saulina, Natalia
2009-12-01
We construct and study a new topological field theory in three dimensions. It is a hybrid between Chern-Simons and Rozansky-Witten theory and can be regarded as a topologically-twisted version of the N=4d=3 supersymmetric gauge theory recently discovered by Gaiotto and Witten. The model depends on a gauge group G and a hyper-Kähler manifold X with a tri-holomorphic action of G. In the case when X is an affine space, we show that the model is equivalent to Chern-Simons theory whose gauge group is a supergroup. This explains the role of Lie superalgebras in the construction of Gaiotto and Witten. For general X, our model appears to be new. We describe some of its properties, focusing on the case when G is simple and X is the cotangent bundle of the flag variety of G. In particular, we show that Wilson loops are labeled by objects of a certain category which is a quantum deformation of the equivariant derived category of coherent sheaves on X.
Gine, Carlos; Santiago, Saioa; Lara, Alba; Laín, Ana; Lane, Victoria Alison; Wood, Richard J; Levitt, Marc
2016-10-01
Introduction We describe a two-port laparoscopic technique to create a colostomy in the descending colon with separated stomas for newborns with anorectal malformations. Material and Methods Six patients with an anorectal malformation underwent this procedure in the early-neonatal period. The surgical technique was performed with two ports, which allows for an accurate inspection of the abdominal contents. The first loop of the sigmoid colon is grasped through the first port and exteriorized while the attachments to the left retroperitoneum and direction of the loop are checked with the scope introduced in the second port. The division of the colon is performed extracorporally, the colon irrigated of meconium, and the distal colon moved to the second port incision. Both stomas are then fixed to the abdominal wall. Results The time of the procedure ranged from 50 to 90 minutes. A Mullerian duplication was noted in one case. Oral intake was started during the first 12 to 24 hours. No complications were seen during or after the procedure. Conclusions This technique allows for the precise localization of the colostomy with direct visualization, provides for the inspection of the internal genitalia, eliminates the incision between the two stomas and its complications, allows for painless stoma bag changes immediately after surgery, avoids twisting of the colostomy, and permits a cosmetically pleasing incision at the colostomy closure. Georg Thieme Verlag KG Stuttgart · New York.
Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2018-01-17
Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.
Design and simulation of the micromixer with chaotic advection in twisted microchannels.
Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi
2003-05-01
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.
Wear characteristics of UHMW polyethylene by twist method
NASA Astrophysics Data System (ADS)
Chișiu, G.; Popescu, A. M.; Tudor, A.; Petrescu, A. M.; Stoica, G. F.; Subhi, K. A.
2018-01-01
A wear test of the twist movement was performed as a new method to estimate the in vivo wear behavior of an acetabular cup material for total knee replacements. A series of UHMWPE samples was used to evaluate the dynamic coefficient of friction in twist movement in contact with steel. The experimental data were conducted to validate the related theoretical model developed in the present study.
Study of Spin through Gluon Poles
NASA Astrophysics Data System (ADS)
Anikin, I. V.; Szymanowski, L.; Teryaev, O. V.; Volchanskiy, N.
2017-12-01
Based on the use of contour gauge and collinear factorization, we propose a new set of single spin asymmetry which can be measured in polarized Drell-Yan process by SPD@NICA. We stress that all of discussed single spin asymmetries exist owing to the gluon poles manifesting in the twist-3 or twist-2⊗twist-3 parton distributions related to the transverse-polarized Drell-Yan process.
Twisted Radio Waves and Twisted Thermodynamics
Kish, Laszlo B.; Nevels, Robert D.
2013-01-01
We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta ‘twisted wave’ mode, to the far field in free space is therefore not possible. PMID:23424647
Deformed D1D5 CFT: A Holographic Probe of Quantum Gravity
NASA Astrophysics Data System (ADS)
Jardine, Ian Theodore
One of the big unsolved questions in gravity research is the black hole information problem. This problem, which pits the unitarity of quantum field theory against smooth classical spacetime, must have a solution in a complete theory of quantum gravity. This thesis will explore aspects of one approach to this problem in the context of string theory. The approach imagines black hole microstates as string theoretic objects. We look at a prototype system, the D1D5 system, and exploit holography to examine the dual conformal field theory (CFT). Specifically, we examine the CFT deformed from the free orbifold point, dual to a very stringy bulk, using a twisted operator that will take us towards the point with the supergravity description. The effects of twisted operators in the CFT are key to understanding physical processes such as emission and thermalization in black hole microstates. We will propose a component twist method for examining the effects of bare twist operators for higher twists in the continuum limit. Our method builds higher twists from simple 2-cycle twists, whose effects are known. We will find that, in this limit, the coefficients describing general states will follow a conjectured general functional form. We then explore the deformed CFT directly by examining operator mixing for untwisted operators. We will exploit the operator product expansion on the covering space, where twist operators of the orbifold are resolved. We use this to examine the mixing of a general supergravity operator, specifically examine the dilaton, and finish with the mixing of a non-supersymmetric candidate operator. We conjecture that this method could be extended to include twisted operators. We will also examine the mixing of the non-supersymmetric candidate operator by examining three point functions. To automate the lengthy and repetitive computations, we wrote a Mathematica package to compute correlation functions and OPEs in the D1D5 CFT. We will explain some of the main functions of this package and how it can be applied to computations. Finally, we will end with a short discussion on future directions.
Implications of the dependence of the elastic properties of DNA on nucleotide sequence.
Olson, Wilma K; Swigon, David; Coleman, Bernard D
2004-07-15
Recent advances in structural biochemistry have provided evidence that not only the geometric properties but also the elastic moduli of duplex DNA are strongly dependent on nucleotide sequence in a way that is not accounted for by classical rod models of the Kirchhoff type. A theory of sequence-dependent DNA elasticity is employed here to calculate the dependence of the equilibrium configurations of circular DNA on the binding of ligands that can induce changes in intrinsic twist at a single base-pair step. Calculations are presented of the influence on configurations of the assumed values and distribution along the DNA of intrinsic roll and twist and a modulus coupling roll to twist. Among the results obtained are the following. For minicircles formed from intrinsically straight DNA, the distribution of roll-twist coupling strongly affects the dependence of the total elastic energy Psi on the amount alpha of imposed untwisting, and that dependence can be far from quadratic. (In fact, for a periodic distribution of roll-twist coupling with a period equal to the intrinsic helical repeat length, Psi can be essentially independent of alpha for -90 degrees < alpha <90 degrees.) When the minicircle is homogeneous and without roll-twist coupling, but with uniform positive intrinsic roll, the point at which Psi attains its minimum value shifts towards negative values of alpha. It is remarked that there are cases in which one can relate graphs of Psi versus alpha to the 'effective values' of bending and twisting moduli and helical repeat length obtained from measurements of equilibrium distributions of topoisomers and probabilities of ring closure. For a minicircle formed from DNA that has an 'S' shape when stress-free, the graphs of Psi versus alpha have maxima at alpha = 0. As the binding of a twisting agent to such a minicircle results in a net decrease in Psi, the affinity of the twisting agent for binding to the minicircle is greater than its affinity for binding to unconstrained DNA with the same sequence.
Tilted-ring models of the prolate spiral galaxies NGC 5033 and 5055
NASA Technical Reports Server (NTRS)
Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.
1988-01-01
Observations of the kinematics of H I in the disks of spiral galaxies have shown that isovelocity contours often exhibit a twisted pattern. The shape of a galaxy's gravitational potential well (whether due to luminous matter or dark matter) can be determined from the direction of the twist. If this twist is a manifestation of the precession of a nonsteady-state disk, it is shown that the twists of NGC 5033 and 5055 imply an overall prolate shape, with the major axis of the potential well aligned along the rotation axis of the disk. Therefore, the luminous disks of these galaxies must be embedded in dark halos that are prolate spheroids or prolatelike triaxial figures.
Optics of twisted nematic and supertwisted nematic liquid-crystal displays
NASA Astrophysics Data System (ADS)
Leenhouts, F.; Schadt, M.
1986-11-01
For the first time calculations of the off-state transmission of twisted nematic liquid-crystal displays (LCD's) are presented which exhibit twist angles greater than the conventional 90 °. The transmission has been calculated using a treatment introduced by Priestley. In addition, the CIE (Commission Internationale d'Eclairage) color coordinates were evaluated which, together with the brightness, determine the optical appearance of an LCD. The finite efficiency of the polarizers was taken into account. The results are compared with those obtained for conventional 90 ° twisted nematic LCD's. From the calculations follow the conditions required to obtain optimal contrast and steep electro-optical characteristics in 180 ° supertwisted LCD's designed for high information content applications.
Mechanical strain energy shuttle for aircraft morphing via wing twist or structural deformation
NASA Astrophysics Data System (ADS)
Clingman, Dan J.; Ruggeri, Robert T.
2004-07-01
Direct structural deformation to achieve aerodynamic benefit is difficult because large actuators must supply energy for structural strain and aerodynamic loads. This ppaer presents a mechanism that allows most of the energy required to twist or deform a wing to be stored in descrete springs. When this device is used, only sufficient energy is provided to control the position of the wing. This concept allows lightweight actuators to perform wing twisting and other structural distortions, and it reduces the onboard mass of the wing-twist system. The energy shuttle can be used with any actuator and it has been adapted for used with shape memory alloy, piezoelectric, and electromagnetic actuators.
Computer simulations of liquid crystals: Defects, deformations and dynamics
NASA Astrophysics Data System (ADS)
Billeter, Jeffrey Lee
1999-11-01
Computer simulations play an increasingly important role in investigating fundamental issues in the physics of liquid crystals. Presented here are the results of three projects which utilize the unique power of simulations to probe questions which neither theory nor experiment can adequately answer. Throughout, we use the (generalized) Gay-Berne model, a widely-used phenomenological potential which captures the essential features of the anisotropic mesogen shapes and interactions. First, we used a Molecular Dynamics simulation with 65536 Gay-Berne particles to study the behaviors of topological defects in a quench from the isotropic to the nematic phase. Twist disclination loops were the dominant defects, and we saw evidence for dynamical scaling. We observed the loops separating, combining and collapsing, and we also observed numerous non-singular type-1 lines which appeared to be intimately involved with many of the loop processes. Second, we used a Molecular Dynamics simulation of a sphere embedded in a system of 2048 Gay-Berne particles to study the effects of radial anchoring of the molecules at the sphere's surface. A saturn ring defect configuration was observed, and the ring caused a driven sphere (modelling the falling ball experiment) to experience an increased resistance as it moved through the nematic. Deviations from a linear relationship between the driving force and the terminal speed are attributed to distortions of the saturn ring which we observed. The existence of the saturn ring confirms theoretical predictions for small spheres. Finally, we constructed a model for wedge-shaped molecules and used a linear response approach in a Monte Carlo simulation to investigate the flexoelectric behavior of a system of 256 such wedges. Novel potential models as well as novel analytical and visualization techniques were developed for these projects. Once again, the emphasis throughout was to investigate questions which simulations alone can adequately answer.
Defects in crystalline packings of twisted filament bundles. I. Continuum theory of disclinations.
Grason, Gregory M
2012-03-01
We develop the theory of the coupling between in-plane order and out-of-plane geometry in twisted, two-dimensionally ordered filament bundles based on the nonlinear continuum elasticity theory of columnar materials. We show that twisted textures of filament backbones necessarily introduce stresses into the cross-sectional packing of bundles and that these stresses are formally equivalent to the geometrically induced stresses generated in thin elastic sheets that are forced to adopt spherical curvature. As in the case of crystalline order on curved membranes, geometrically induced stresses couple elastically to the presence of topological defects in the in-plane order. We derive the effective theory of multiple disclination defects in the cross section of bundle with a fixed twist and show that above a critical degree of twist, one or more fivefold disclinations is favored in the elastic energy ground state. We study the structure and energetics of multidisclination packings based on models of equilibrium and nonequilibrium cross-sectional order.
NASA Technical Reports Server (NTRS)
Bobbitt, P. J.; Manro, M. E.; Kulfan, R. M.
1980-01-01
Wind tunnel tests of an arrow wing body configuration consisting of flat, twisted, and cambered twisted wings were conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. A variety of leading and trailing edge control surface deflections were included in these tests, and in addition, the cambered twisted wing was tested with an outboard vertical fin to determine its effect on wing and control surface loads. Theory experiment comparisons show that current state of the art linear and nonlinear attached flow methods were adequate at small angles of attack typical of cruise conditions. The incremental effects of outboard fin, wing twist, and wing camber are most accurately predicted by the advanced panel method PANAIR. Results of the advanced panel separated flow method, obtained with an early version of the program, show promise that accurate detailed pressure predictions may soon be possible for an aeroelasticity deformed wing at high angles of attack.
Quantification of a Helical Origami Fold
NASA Astrophysics Data System (ADS)
Dai, Eric; Han, Xiaomin; Chen, Zi
2015-03-01
Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has served as a source of inspiration for innovations in science and engineering. Here, we present the geometric and mechanical properties of a twisting origami fold. The origami structure created by the fold exhibits several interesting properties, including rigid foldibility, local bistability and finely tunable helical coiling, with control over pitch, radius and handedness of the helix. In addition, the pattern generated by the fold closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. We use six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. Finally, we present a mathematical model of the local bistability of the twisting origami fold. Our study elucidates the mechanisms behind the helical coiling and local bistability of the twisting origami fold, with potential applications in robotics and deployable structures. Acknowledgment to Branco Weiss Fellowship for funding.
Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope.
Feng, Zhilin; Fei, Juntao
2018-01-01
This paper proposes a novel adaptive Super-Twisting sliding mode control for a microgyroscope under unknown model uncertainties and external disturbances. In order to improve the convergence rate of reaching the sliding surface and the accuracy of regulating and trajectory tracking, a high order Super-Twisting sliding mode control strategy is employed, which not only can combine the advantages of the traditional sliding mode control with the Super-Twisting sliding mode control, but also guarantee that the designed control system can reach the sliding surface and equilibrium point in a shorter finite time from any initial state and avoid chattering problems. In consideration of unknown parameters of micro gyroscope system, an adaptive algorithm based on Lyapunov stability theory is designed to estimate the unknown parameters and angular velocity of microgyroscope. Finally, the effectiveness of the proposed scheme is demonstrated by simulation results. The comparative study between adaptive Super-Twisting sliding mode control and conventional sliding mode control demonstrate the superiority of the proposed method.
Zhu, T; Rao, Y J; Wang, J L
2007-01-20
A novel dynamic gain equalizer for flattening Er-doped fiber amplifiers based on a twisted long-period fiber grating (LPFG) induced by high-frequency CO(2) laser pulses is reported for the first time to our knowledge. Experimental results show that its transverse-load sensitivity is up to 0.34 dB/(g.mm(-1)), while the twist ratio of the twisted LPFG is approximately 20 rad/m, which is 7 times higher than that of a torsion-free LPFG. In addition, it is found that the strong orientation dependence of the transverse-load sensitivity of the torsion-free LPFG reported previously has been weakened considerably. Therefore such a dynamic gain equalizer based on the unique transverse-load characteristics of the twisted LPFG provides a much larger adjustable range and makes packaging of the gain equalizer much easier. A demonstration has been carried out to flatten an Er-doped fiber amplifier to +/-0.5 dB over a 32 nm bandwidth.
Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun
2018-06-01
This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device
NASA Astrophysics Data System (ADS)
Lachenal, X.; Daynes, S.; Weaver, P. M.
2013-06-01
This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.
Structural and electronic transformation in low-angle twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Gargiulo, Fernando; Yazyev, Oleg V.
2018-01-01
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
Photo-switchable bistable twisted nematic liquid crystal optical switch.
Wang, Chun-Ta; Wu, Yueh-Chi; Lin, Tsung-Hsien
2013-02-25
This work demonstrates a photo-switchable bistable optical switch that is based on an azo-chiral doped liquid crystal (ACDLC). The photo-induced isomerization of the azo-chiral dopant can change the chirality of twisted nematic liquid crystal and the gap/pitch ratio of an ACDLC device, enabling switching between 0° and 180° twist states in a homogeneous aligned cell. The bistable 180° and 0° twist states of the azo-chiral doped liquid crystal between crossed polarizers correspond to the ON and OFF states of a light shutter, respectively, and they can be maintained stably for tens of hours. Rapid switching between 180° and 0° twist states can be carried out using 408 and 532 nm addressing light. Such a photo-controllable optical switch requires no specific asymmetric alignment layer or precise control of the cell gap/pitch ratio, so it is easily fabricated and has the potential for use in optical systems.
Left ventricular twisting mechanics and exercise in healthy individuals: a systematic review
Drury, C Taylor; Bredin, Shannon SD; Phillips, Aaron A; Warburton, Darren ER
2012-01-01
The aim of this study was to review systematically the effects of exercise on left ventricular (LV) twisting mechanics in healthy individuals. Literature searches were conducted in electronic databases for articles reporting measures of LV twisting mechanics in healthy individuals before and during/after exercise. Upon review, 18 articles were analyzed. Studies were separated by exercise type into the following four categories to allow for detailed comparisons: submaximal, prolonged endurance, maximal, and chronic endurance. Despite an overall methodological quality of low to moderate and within-group variations in exercise intensity, duration, and subject characteristics, important trends in the literature emerged. Most important, the coupling of LV systolic twisting and diastolic untwisting was present in all exercise types, as both were either improved or impaired concomitantly, highlighting the linkage between systole and diastole provided through LV twist. In addition, trends regarding the effects of age, training status, and cardiac loading also became apparent within different exercise types. Furthermore, a potential dose-response relationship between exercise duration and the degree of impairment to LV twisting mechanics was found. Although some disagreement existed in results, the observed trends provide important directions for future research. Future investigations should be of higher methodological quality and should include consistent exercise protocols and subject populations in order to minimize the variability between investigations. PMID:24198592
The effect of twisted-tape width on heat transfer and pressure drop for fully developed laminar flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun, W.M.; Al-Fahed, S.F.
1996-07-01
A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number andmore » the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.« less
Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; ...
2016-01-14
Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan
Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less
Eckert, Mark A.; Santiago-Medina, Miguel; Lwin, Thinzar M.; Kim, Jihoon; Courtneidge, Sara A.
2017-01-01
ABSTRACT The Twist1 transcription factor promotes tumor invasion and metastasis by inducing epithelial–mesenchymal transition (EMT) and invadopodia-mediated extracellular matrix (ECM) degradation. The critical transcription targets of Twist1 for mediating these events remain to be uncovered. Here, we report that Twist1 strongly induces expression of a disintegrin and metalloproteinase 12 (ADAM12). We observed that the expression levels of Twist1 mRNA and ADAM12 mRNA are tightly correlated in human breast tumors. Knocking down ADAM12 blocked cell invasion in a 3D mammary organoid culture. Suppression of ADAM12 also inhibited Twist1-induced tumor invasion and metastasis in human breast tumor xenografts, without affecting primary tumor formation. Mechanistically, knockdown of ADAM12 in breast cancer cells significantly reduced invadopodia formation and matrix degradation, and simultaneously increased overall cell adhesion to the ECM. Live-imaging analysis showed that knockdown of ADAM12 significantly inhibited focal adhesion turnover. Mechanistically, both the disintegrin and metalloproteinase domains of ADAM12 are required for its function at invadopodia, whereas the metalloproteinase domain is dispensable for its function at focal adhesions. Taken together, these data suggest that ADAM12 plays a crucial role in tumor invasion and metastasis by regulating both invadopodia and focal adhesions. PMID:28468988
On exact correlation functions of chiral ring operators in 2 d N=(2, 2) SCFTs via localization
NASA Astrophysics Data System (ADS)
Chen, Jin
2018-03-01
We study the extremal correlation functions of (twisted) chiral ring operators via superlocalization in N=(2, 2) superconformal field theories (SCFTs) with central charge c ≥ 3, especially for SCFTs with Calabi-Yau geometric phases. We extend the method in arXiv: 1602.05971 with mild modifications, so that it is applicable to disentangle operators mixing on S 2 in nilpotent (twisted) chiral rings of 2 d SCFTs. With the extended algorithm and technique of localization, we compute exactly the extremal correlators in 2 d N=(2, 2) (twisted) chiral rings as non-holomorphic functions of marginal parameters of the theories. Especially in the context of Calabi-Yau geometries, we give an explicit geometric interpretation to our algorithm as the Griffiths transversality with projection on the Hodge bundle over Calabi-Yau complex moduli. We also apply the method to compute extremal correlators in Kähler moduli, or say twisted chiral rings, of several interesting Calabi-Yau manifolds. In the case of complete intersections in toric varieties, we provide an alternative formalism for extremal correlators via localization onto Higgs branch. In addition, as a spinoff we find that, from the extremal correlators of the top element in twisted chiral rings, one can extract chiral correlators in A-twisted topological theories.
How Well Can the Observed Flux Ropes in the Solar Wind be Fitted by a Uniform-twist Flux Rope Model?
NASA Astrophysics Data System (ADS)
Wang, Y.
2015-12-01
In the solar wind, flux ropes, e.g., magnetic clouds (MCs), are a frequently observational phenomenon. Their magnetic field configuration or the way that the field lines wind around the flux rope axis is one of the most important information to understand the formation and evolution of the observed flux ropes. Most MCs are believed to be in the force-free state, and widely modeled by the Lundquist force-free solution, in which the twist of the field line increases from zero at the axis to infinity at the boundary. However, Lundquist solution is not the only form of a force-free magnetic field. Some studies based on suprathermal electron observations and models have shown that MCs may carry magnetic field lines more likely to be uniformly twisted. The nonlinear force-free field extrapolation of solar magnetic field also suggests that the field lines of a flux rope twist limitedly. In this study, we have developed a velocity-modified uniform-twist force-free flux rope model, and fit observed MCs with this model. By using this approach, we test how well the observed MCs can be fitted into a uniform-twist flux rope. Some interesting results will be given in this presentation.
Chuang, Hui-Yu; Jiang, Jeng-Kae; Yang, Muh-Hwa; Wang, Hsei-Wei; Li, Ming-Chun; Tsai, Chan-Yen; Jhang, Yau-Yun; Huang, Jason C.
2017-01-01
Metastasis accounts for the high mortality rate associated with colorectal cancer (CRC), but metastasis regulators are not fully understood. To identify a novel gene involved in tumor metastasis, we used oligonucleotide microarrays, transcriptome distance analyses, and machine learning algorithms to determine links between primary and metastatic colorectal cancers. Aminopeptidase A (APA; also known as ENPEP) was selected as our focus because its relationship with colorectal cancer requires clarification. Higher APA mRNA levels were observed in patients in advanced stages of cancer, suggesting a correlation between ENPEP and degree of malignancy. Our data also indicate that APA overexpression in CRC cells induced cell migration, invasion, anchorage-independent capability, and mesenchyme-like characteristics (e.g., EMT markers). We also observed TWIST induction in APA-overexpressing SW480 cells and TWIST down-regulation in HT29 cells knocked down with APA. Both APA silencing and impaired APA activity were found to reduce migratory capacity, cancer anchorage, stemness properties, and drug resistance in vitro and in vivo. We therefore suggest that APA enzymatic activity affects tumor initiation and cancer malignancy in a TWIST-dependent manner. Results from RT-qPCR and the immunohistochemical staining of specimens taken from CRC patients indicate a significant correlation between APA and TWIST. According to data from SurvExpress analyses of TWIST1 and APA mRNA expression profiles, high APA and TWIST expression are positively correlated with poor CRC prognosis. APA may act as a prognostic factor and/or therapeutic target for CRC metastasis and recurrence. PMID:28177885
Left ventricular rotation and torsion in patients with perimembranous ventricular septal defect.
Zhuang, Yan; Yong, Yong-hong; Yao, Jing; Ji, Ling; Xu, Di
2014-03-01
Assessment of left ventricular (LV) rotation has become an important approach for quantifying LV function. In this study, we sought to analyze LV rotation and twist using speckle tracking imaging (STI) in adult patients with isolated ventricular septal defects. Using STI, the peak rotation and time to peak rotation of 6 segments in basal and apical short-axis were measured, respectively, in 32 patients with ventricular septal defect and 30 healthy subjects as controls. The global rotation of the 6 segments in basal and apical and LV twist versus time profile were drawn, the peak rotation and twist of LV were calculated. All the time to peak rotation/twist were expressed as a percentage of end-systole (end-systole = 100%). Left ventricular ejection fraction was measured by biplane Simpson method. In patients group, the peak rotation of posterior, inferior, and postsept wall in basal was higher(P ≤ 0.05) and LV twist was also higher (P ≤ 0.05) than healthy controls. There were no significant differences between 2 groups in the peak rotation of the other 9 segments and left ventricular ejection fraction. Different from the control group, the time to peak rotation of the 6 segments in basal were delayed and the global rotation of the base was delayed (P ≤ 0.05) in ventricular septal defect group. Left ventricular volume overload due to ventricular septal defect has significant effect on LV rotation and twist, and LV rotation and twist may be a new index predicting LV systolic function. © 2013, Wiley Periodicals, Inc.
Evidence of quasi-partonic higher-twist effects in deep inelastic scattering at HERA at moderate Q^2
NASA Astrophysics Data System (ADS)
Motyka, Leszek; Sadzikowski, Mariusz; Słomiński, Wojciech; Wichmann, Katarzyna
2018-01-01
The combined HERA data for the inclusive deep inelastic scattering (DIS) cross sections for the momentum transfer Q^2 > 1 GeV^2 are fitted within the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) framework at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) accuracy, complemented by a QCD-inspired parameterisation of twist 4 corrections. A modified form of the input parton density functions is also included, motivated by parton saturation mechanism at small Bjorken x and at a low scale. These modifications lead to a significant improvement of the data description in the region of low Q^2. For the whole data sample, the new benchmark NNLO DGLAP fit yields χ ^2/d.o.f. ˜eq 1.19 to be compared to 1.46 resulting from the standard NNLO DGLAP fit. We discuss the results in the context of the parton saturation picture and describe the impact of the higher-twist corrections on the derived parton density functions. The resulting description of the longitudinal proton structure function FL is consistent with the HERA data. Our estimates of higher-twist contributions to the proton structure functions are comparable to the leading-twist contributions at low Q^2 ˜eq 2 GeV^2 and x ˜eq 10^{-5}. The x-dependence of the twist 4 corrections obtained from the best fit is consistent with the leading twist 4 quasi-partonic operators, corresponding to an exchange of four interacting gluons in the t-channel.
Large-N solution of the heterotic CP(N-1) model with twisted masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolokhov, Pavel A.; Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1; Shifman, Mikhail
2010-07-15
We address a number of unanswered questions in the N=(0,2)-deformed CP(N-1) model with twisted masses. In particular, we complete the program of solving the CP(N-1) model with twisted masses in the large-N limit. In A. Gorsky, M. Shifman, and A. Yung, Phys. Rev. D 73, 065011 (2006), a nonsupersymmetric version of the model with the Z{sub N} symmetric twisted masses was analyzed in the framework of Witten's method. In M. Shifman and A. Yung, Phys. Rev. D 77, 125017 (2008), this analysis was extended: the large-N solution of the heterotic N=(0,2) CP(N-1) model with no twisted masses was found. Heremore » we solve this model with the twisted masses switched on. Dynamical scenarios at large and small m are studied (m is the twisted-mass scale). We found three distinct phases and two phase transitions on the m plane. Two phases with the spontaneously broken Z{sub N} symmetry are separated by a phase with unbroken Z{sub N}. This latter phase is characterized by a unique vacuum and confinement of all U(1) charged fields (''quarks''). In the broken phases (one of them is at strong coupling) there are N degenerate vacua and no confinement, similarly to the situation in the N=(2,2) model. Supersymmetry is spontaneously broken everywhere except a circle |m|={Lambda} in the Z{sub N}-unbroken phase. Related issues are considered. In particular, we discuss the mirror representation for the heterotic model in a certain limiting case.« less
Vogt, Florian M; Theysohn, Jens M; Michna, Dariusz; Hunold, Peter; Neudorf, Ulrich; Kinner, Sonja; Barkhausen, Jörg; Quick, Harald H
2013-09-01
To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 ± 0.6 vs 3.4 ± 0.6, P < 0.05) and artefacts (3.8 ± 0.4 vs 3.3 ± 0.5, P < 0.05); no difference in diagnostic value was found (4.2 ± 0.4 vs 4.0 ± 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. • New magnetic resonance angiography (MRA) techniques are increasingly introduced for congenital cardiovascular problems. • Time-resolved angiography with interleaved stochastic trajectories (TWIST) is an example. • Four-dimensional TWIST MRA provided inferior image quality compared to 3D FLASH MRA but without significant difference in vessel sharpness. • Four-dimensional TWIST MRA gave added diagnostic value.
Nagarajan, Kalaivanan; Mallia, Ajith R.; Muraleedharan, Keerthi
2017-01-01
We describe the design, bottom-up synthesis and X-ray single crystal structure of systematically twisted aromatics 1c and 2d for efficient intersystem crossing. Steric congestion at the cove region creates a nonplanar geometry that induces a significant yield of triplet excited states in the electron-poor core-twisted aromatics 1c and 2d. A systematic increase in the number of twisted regions in 1c and 2d results in a concomitant enhancement in the rate and yield of intersystem crossing, monitored using femtosecond and nanosecond transient absorption spectroscopy. Time-resolved absorption spectroscopic measurements display enhanced triplet quantum yields (Φ T = 10 ± 1% for 1c and Φ T = 30 ± 2% for 2d) in the twisted aromatics when compared to a negligible Φ T (<1%) in the planar analog 3c. Twist-induced spin–orbit coupling via activated out-of-plane C–H/C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vibrations can facilitate the formation of triplet excited states in twisted aromatics 1c and 2d, in contrast to the negligible intersystem crossing in the planar analog 3c. The ease of synthesis, high solubility, access to triplet excited states and strong electron affinity make such imide functionalized core-twisted aromatics desirable materials for organic electronics such as solar cells. PMID:28694952
Development of an active twist rotor blade with distributed actuation and orthotropic material
NASA Astrophysics Data System (ADS)
Wierach, Peter; Riemenschneider, Johannes; Keye, Stefan
2005-05-01
Individual blade control (IBC) as well as higher harmonic control (HHC) for helicopter rotors promises to be a method to increase flight performance and to reduce vibration and noise. For those controls, an additional twist actuation of the rotor blade is needed. The developed concept comprises the implementation of distributed piezoelectric actuation into the rotor blade skin. In order to maximize the twist within given constraints, as torsional rigidity and given actuator design, the concept takes advantage of an orthotropic rotor blade skin. That way, a combination of shear actuation with orthotropic coupling generates more twist than each one of these effects alone. Previous approaches with distributed actuation used actuators operating in +/-45° direction with quasi-isotropic composites. A FE-Model of the blade was developed and validated using a simplified demonstrator. The objective of this study was to identify the effects of various geometric and material parameters to optimize the active twist performance of the blades. The whole development was embedded in an iterative process followed by an objective assessment. For this purpose a detailed structural model on the basis of the BO105 model rotor blade was developed, to predict the performance with respect to rotor dynamics, stability, aerodynamics and acoustics. Rotor dynamic simulations provided an initial overview of the active twist rotor performance. In comparison to the BO105 baseline rotor a noise reduction of 3 dB was predicted for an active twist of 0.8° at the blade tip. Additionally, a power reduction of 2.3% at 87m/s based on a 2.5 to BO105 was computed. A demonstrator blade with a rotor radius of 2m has been designed and manufactured. This blade will be tested to prove, that the calculated maximum twist can also be achieved under centrifugal loads.
Methods and apparatus for twist bend coupled (TCB) wind turbine blades
Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee
2006-10-10
A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.
New Epigenetic Therapeutic Intervention for Metastatic Breast Cancer
2016-04-01
transcription factor Twist are markedly over-expressed in TNBC but not luminal breast cancer cells. We also discovered that constitutively activated NF -kB in...transcription factors Twist and NF -kB in gene activation require lysine acetylation, which signs to activate the transcriptional machinery in chromatin...including Twist, NF -kB and STAT3. b. Define the molecular basis of the BET BrDs’ selective interactions with effector proteins through structure-guided
Active-Twist Rotor Control Applications for UAVs
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.; Wilkie, W. Keats
2004-01-01
The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.
Nucleon distribution amplitudes from lattice QCD.
Göckeler, Meinulf; Horsley, Roger; Kaltenbrunner, Thomas; Nakamura, Yoshifumi; Pleiter, Dirk; Rakow, Paul E L; Schäfer, Andreas; Schierholz, Gerrit; Stüben, Hinnerk; Warkentin, Nikolaus; Zanotti, James M
2008-09-12
We calculate low moments of the leading-twist and next-to-leading-twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS[over ] scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Emily; Ramirez, Emilio; Ruggles, Art E.
The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1986-01-01
Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.
Magnetic field twist driven by remote convective motions: Characteristics and twist rates
NASA Technical Reports Server (NTRS)
Wang, Zheng-Zhi; Hassam, A. B.
1987-01-01
It is generally believed that convective motions below the solar photosphere induce a twist in the coronal magnetic field as a result of frozen-in physics. A question of interest is how much twist can one expect from a persistent convective motion, given the fact that dissipative effects will eventually figure. This question is examined by considering a model problem: two conducting plates, with finite resistivity, are set in sheared motion and forced at constant relative speed. A resistive plasma is between the plates and an initially vertical magnetic field connects the plates. The time rate of tilt experienced by the field is obtained as a function of Hartmann number and the resistivity ratio. Both analytical and numerical approaches are considered.
Design of Restoration Method Based on Compressed Sensing and TwIST Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Fei; Piao, Yan
2018-04-01
In order to improve the subjective and objective quality of degraded images at low sampling rates effectively,save storage space and reduce computational complexity at the same time, this paper proposes a joint restoration algorithm of compressed sensing and two step iterative threshold shrinkage (TwIST). The algorithm applies the TwIST algorithm which used in image restoration to the compressed sensing theory. Then, a small amount of sparse high-frequency information is obtained in frequency domain. The TwIST algorithm based on compressed sensing theory is used to accurately reconstruct the high frequency image. The experimental results show that the proposed algorithm achieves better subjective visual effects and objective quality of degraded images while accurately restoring degraded images.
Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; ...
2015-08-18
The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less
NASA Astrophysics Data System (ADS)
Rezaie-Dereshgi, Amir; Mohammad-Rafiee, Farshid
2018-04-01
The electrostatic interactions play a crucial role in biological systems. Here we consider an impermeable dielectric molecule in the solvent with a different dielectric constant. The electrostatic free energy in the problem is studied in the Debye-Hückel regime using the analytical Green function that is calculated in the paper. Using this electrostatic free energy, we study the electrostatic contribution to the twist rigidity of a double stranded helical molecule such as a DNA and an actin filament. The dependence of the electrostatic twist rigidity of the molecule to the dielectric inhomogeneity, structural parameters, and the salt concentration is studied. It is shown that, depending on the parameters, the electrostatic twist rigidity could be positive or negative.
Twisted waves and instabilities in a permeating dusty plasma
NASA Astrophysics Data System (ADS)
Bukhari, S.; Ali, S.; Khan, S. A.; Mendonca, J. T.
2018-04-01
New features of the twisted dusty plasma modes and associated instabilities are investigated in permeating plasmas. Using the Vlasov-Poisson model equations, a generalized dispersion relation is obtained for a Maxwellian distributed plasma to analyse the dust-acoustic and dust-ion-acoustic waves with finite orbital angular momentum (OAM) states. Existence conditions for damping/growth rates are discussed and showed significant modifications in twisted dusty modes as compared to straight propagating dusty modes. Numerically, the instability growth rate, which depends on particle streaming and twist effects in the wave potential, is significantly modified due to the Laguerre-Gaussian profiles. Relevance of the study to wave excitations due to penetration of solar wind into cometary clouds or interstellar dusty plasmas is discussed.
Joint research effort on vibrations of twisted plates, phase 1: Final results
NASA Technical Reports Server (NTRS)
Kielb, R. E.; Leissa, A. W.; Macbain, J. C.; Carney, K. S.
1985-01-01
The complete theoretical and experimental results of the first phase of a joint government/industry/university research study on the vibration characteristics of twisted cantilever plates are given. The study is conducted to generate an experimental data base and to compare many different theoretical methods with each other and with the experimental results. Plates with aspect ratios, thickness ratios, and twist angles representative of current gas turbine engine blading are investigated. The theoretical results are generated by numerous finite element, shell, and beam analysis methods. The experimental results are obtained by precision matching a set of twisted plates and testing them at two laboratories. The second and final phase of the study will concern the effects of rotation.
NASA Technical Reports Server (NTRS)
Holbrook, G. T.; Dunham, D. M.
1985-01-01
Detailed pressure distribution measurements were made for 11 twist configurations of a unique, multisegmented wing model having an aspect ratio of 7 and a taper ratio of 1. These configurations encompassed span loads ranging from that of an untwisted wing to simple flapped wings both with and without upper-surface spoilers attached. For each of the wing twist configurations, electronic scanning pressure transducers were used to obtain 580 surface pressure measurements over the wing in about 0.1 sec. Integrated pressure distribution measurements compared favorably with force-balance measurements of lift on the model when the model centerbody lift was included. Complete plots and tabulations of the pressure distribution data for each wing twist configuration are provided.
Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour
NASA Astrophysics Data System (ADS)
Prior, C.; Yeates, A. R.
2016-06-01
Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Huaize; Wang, Han; Liu, Xiaoxiao
Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased whilemore » ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.« less
Females have greater left ventricular twist mechanics than males during acute reductions to preload.
Williams, Alexandra M; Shave, Rob E; Stembridge, Mike; Eves, Neil D
2016-07-01
Compared to males, females have smaller left ventricular (LV) dimensions and volumes, higher ejection fractions (EF), and higher LV longitudinal and circumferential strain. LV twist mechanics determine ventricular function and are preload-dependent. Therefore, the sex differences in LV structure and myocardial function may result in different mechanics when preload is altered. This study investigated sex differences in LV mechanics during acute challenges to preload. With the use of conventional and speckle-tracking echocardiography, LV structure and function were assessed in 20 males (24 ± 6.2 yr) and 20 females (23 ± 3.1 yr) at baseline and during progressive levels of lower body negative pressure (LBNP). Fourteen participants (8 males, 6 females) were also assessed following a rapid infusion of saline. LV end-diastolic volume, end-systolic volume, stroke volume (SV), and EF were reduced in both groups during LBNP (P < 0.001). While males had greater absolute volumes (P < 0.001), there were no sex differences in allometrically scaled volumes at any stage. Sex differences were not detected at baseline in basal rotation, apical rotation, or twist. Apical rotation and twist increased in both groups (P < 0.001) with LBNP. At -60 mmHg, females had greater apical rotation (P = 0.009), twist (P = 0.008), and torsion (P = 0.002) and faster untwisting velocity (P = 0.02) than males. There were no differences in mechanics following saline infusion. Females have larger LV twist and a faster untwisting velocity than males during large reductions to preload, supporting that females have a greater reliance on LV twist mechanics to maintain SV during severe reductions to preload. Copyright © 2016 the American Physiological Society.
Twisting microfluidics in a planetary centrifuge.
Yasuda, Shoya; Hayakawa, Masayuki; Onoe, Hiroaki; Takinoue, Masahiro
2017-03-15
This paper reports a twisting microfluidic method utilising a centrifuge-based fluid extruding system in a planetary centrifuge which simultaneously generates an orbital rotation and an axial spin. In this method, fluid extrusion from a micro-scale capillary to an 'open-space' solution or air enables release of the fluid from the capillary-based microchannel, which physically means that there is a release of fluids from a confined low-Reynolds-number environment to an open non-low-Reynolds-number environment. As a result, the extruded fluids are separated from the axial spin of the capillary, and the difference in the angular rates of the axial spin between the capillary and the extruded fluids produces the 'twisting' of the fluid. In this study, we achieve control of the twist of highly viscous fluids, and we construct a simple physical model for the fluid twist. In addition, we demonstrate the formation of twisted hydrogel microstructures (stripe-patterned microbeads and multi-helical microfibres) with control over the stripe pattern and the helical pitch length. We believe that this method will enable the generation of more sophisticated microstructures which cannot easily be formed by usual channel-based microfluidic devices. This method can also provide advanced control of microfluids, as in the case of rapid mixing of highly viscous fluids. This method can contribute to a wide range of applications in materials science, biophysics, biomedical science, and microengineering in the future.
The Wastewater Information System Tool (TWIST) is downloadable, user-friendly management tool that will allow state and local health departments to effectively inventory and manage small wastewater treatment systems in their jurisdictions.
Elastic continuum theory: towards understanding of the twist-bend nematic phases.
Barbero, G; Evangelista, L R; Rosseto, M P; Zola, R S; Lelidis, I
2015-09-01
The twist-bend nematic phase, N_{TB}, may be viewed as a heliconical molecular arrangement in which the director n precesses uniformly about an extra director field, t. It corresponds to a nematic ground state exhibiting nanoscale periodic modulation. To demonstrate the stability of this phase from the elastic point of view, a natural extension of the Frank elastic energy density is proposed. The elastic energy density is built in terms of the elements of symmetry of the new phase in which intervene the components of these director fields together with the usual Cartesian tensors. It is shown that the ground state corresponds to a deformed state for which K_{22}>K_{33}. In the framework of the model, the phase transition between the usual and the twist-bend nematic phase is of second order with a finite wave vector. The model does not require a negative K_{33} in agreement with recent experimental data that yield K_{33}>0. A threshold is predicted for the molecular twist power below which no transition to a twist-bend nematic may occur.
An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents.
Lin, Jing; Guidoin, Robert; Du, Jia; Wang, Lu; Douglas, Graeham; Zhu, Danjie; Nutley, Mark; Perron, Lygia; Zhang, Ze; Douville, Yvan
2016-02-16
Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting.
An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents
Lin, Jing; Guidoin, Robert; Du, Jia; Wang, Lu; Douglas, Graeham; Zhu, Danjie; Nutley, Mark; Perron, Lygia; Zhang, Ze; Douville, Yvan
2016-01-01
Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting. PMID:28787913
On the small angle twist sub-grain boundaries in Ti3AlC2.
Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun
2016-04-01
Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al-Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.
Analysis of Snail1 function and regulation by Twist1 in palatal fusion.
Yu, Wenli; Zhang, Yanping; Ruest, L Bruno; Svoboda, Kathy K H
2013-01-01
Palatal fusion is a tightly controlled process which comprises multiple cellular events, including cell movement and differentiation. Midline epithelial seam (MES) degradation is essential to palatal fusion. In this study, we analyzed the function of Snail1 during the degradation of the MES. We also analyzed the mechanism regulating the expression of the Snail1 gene in palatal shelves. Palatal explants treated with Snail1 siRNA did not degrade the MES and E-cadherin was not repressed leading to failure of palatal fusion. Transforming growth factor beta 3 (Tgfβ3) regulated Snail1 mRNA, as Snail1 expression decreased in response to Tgfβ3 neutralizing antibody and a PI-3 kinase (PI3K) inhibitor. Twist1, in collaboration with E2A factors, regulated the expression of Snail1. Twist1/E47 dimers bond to the Snail1 promoter to activate expression. Without E47, Twist1 repressed Snail1 expression. These results support the hypothesis that Tgfβ3 may signal through Twist1 and then Snail1 to downregulate E-cadherin expression during palatal fusion.
Making the most of time in quantum metrology: concurrent state preparation and sensing
NASA Astrophysics Data System (ADS)
Hayes, Anthony J.; Dooley, Shane; Munro, William J.; Nemoto, Kae; Dunningham, Jacob
2018-07-01
A quantum metrology protocol for parameter estimation is typically comprised of three stages: probe state preparation, sensing and then readout, where the time required for the first and last stages is usually neglected. In the present work we consider non-negligible state preparation and readout times, and the tradeoffs in sensitivity that come when a limited time resource τ must be divided between the three stages. To investigate this, we focus on the problem of magnetic field sensing with spins in one-axis twisted or two-axis twisted states. We find that (accounting for the time necessary to prepare a twisted state) no advantage is gained unless the time τ is sufficiently long or the twisting sufficiently strong. However, we also find that the limited time resource is used more effectively if we allow the twisting and the magnetic field to be applied concurrently, which possibly represents a more realistic sensing scenario. We extend this result into an optical setting by utilising the exact correspondence between a spin system and a bosonic field mode as given by the Holstein–Primakoff transformation.
Effect of Intrinsic Twist on Length of Crystalline and Disordered Regions in Cellulose Microfibrils
NASA Astrophysics Data System (ADS)
Nili, Abdolmadjid; Shklyaev, Oleg; Zhao, Zhen; Zhong, Linghao; Crespi, Vincent
2013-03-01
Cellulose is the most abundant biological material in the world. It provides mechanical reinforcement for plant cell wall, and could potentially serve as renewable energy source for biofuel. Native cellulose forms a non-centrosymmetric chiral crystal due to lack of roto-inversion symmetry of constituent glucose chains. Chirality of cellulose crystal could result in an overall twist. Competition between unwinding torsional/extensional and twisting energy terms leads to twist induced frustration along fibril's axis. The accumulated frustration could be the origin of periodic disordered regions observed in cellulose microfibrils. These regions could play significant role in properties of cellulose bundles and ribbons as well as biological implications on plant cell walls. We propose a mechanical model based on Frenkel-Kontorova mechanism to investigate effects of radius dependent twist on crystalline size in cellulose microfibrils. Parameters of the model are adjusted according to all-atom molecular simulations. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center
Single meson production in photon-photon collisions and infrared renormalons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadov, A. I.; Department of Theoretical Physics, Baku State University, Z. Khalilov Street 23, AZ-1148, Baku; Aydin, Coskun
2010-03-01
In this article, we investigate the contribution of the higher-twist Feynman diagrams to the large-p{sub T} inclusive single meson production cross section in photon-photon collisions and present the general formulas for the higher-twist differential cross sections in case of the running coupling and frozen coupling approaches. The structure of infrared renormalon singularities of the higher-twist subprocess cross section and the resummed expression (the Borel sum) for it are found. We compared the resummed higher-twist cross sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross section. We obtain, that ratio R=({Sigma}{sub M}{sup +HT}){sup res}/({Sigma}{submore » M}{sup +HT}){sup 0}, for all values of the transverse momentum p{sub T} of the meson identically equivalent to ratio r=({Delta}{sub M}{sup HT}){sup res}/({Delta}{sub M}{sup HT}){sup 0}. It is shown that the resummed result depends on the choice of the meson wave functions used in calculation. Phenomenological effects of the obtained results are discussed.« less
Infrared renormalons and single meson production in proton-proton collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadov, A. I.; Aydin, Coskun; Hakan, Yilmaz A.
2009-07-01
In this article, we investigate the contribution of the higher-twist Feynman diagrams to the large-p{sub T} inclusive pion production cross section in proton-proton collisions and present the general formulas for the higher-twist differential cross sections in the case of the running coupling and frozen coupling approaches. The structure of infrared renormalon singularities of the higher-twist subprocess cross section and the resummed expression (the Borel sum) for it are found. We compared the resummed higher-twist cross sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross section. We obtain, that ratio R=({sigma}{sub {pi}{sup +}}{sup HT}){supmore » res}/({sigma}{sub {pi}{sup +}}{sup HT}){sup 0}, for all values of the transverse momentum p{sub T} of the pion identically equivalent to ratio r=({delta}{sub {pi}}{sup HT}){sup res}/({delta}{sub {pi}}{sup HT}){sup 0}. It is shown that the resummed result depends on the choice of the meson wave functions used in calculation. Phenomenological effects of the obtained results are discussed.« less
NASA Astrophysics Data System (ADS)
Shishkin, A. V.; Tarasevich, S. E.
2018-03-01
The paper presents the results of experimental study of heat transfer for the refrigerant R134a flow in the channels with finned twisted tape inserts at bubble boiling. The flow regimes implemented under the given conditions are shown. The stable cord-like flows appear at boiling in channels with twisted tape inserts and high vapor content when the liquid phase moves in the form of a stream (cord) along the central part of the tape, which is not an active heat exchange surface. At boiling this can lead to an increase in the length required for complete liquid evaporation. Existing geometric modifications of twisted tapes are used in the heat-exchange equipment at forced convection of the coolant and do not solve the problem of cord-like flows elimination. The present work discusses the experimental study of heat transfer at boiling of refrigerant R134a in the channels with twisted tape inserts that have fins on its surface.
The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha.
Gort, E H; van Haaften, G; Verlaan, I; Groot, A J; Plasterk, R H A; Shvarts, A; Suijkerbuijk, K P M; van Laar, T; van der Wall, E; Raman, V; van Diest, P J; Tijsterman, M; Vooijs, M
2008-03-06
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that play a crucial role in oxygen homeostasis. Intratumoral hypoxia and genetic alterations lead to HIF activity, which is a hallmark of solid cancer and is associated with poor clinical outcome. HIF activity is regulated by an evolutionary conserved mechanism involving oxygen-dependent HIFalpha protein degradation. To identify novel components of the HIF pathway, we performed a genome-wide RNA interference screen in Caenorhabditis elegans, to suppress HIF-dependent phenotypes, like egg-laying defects and hypoxia survival. In addition to hif-1 (HIFalpha) and aha-1 (HIFbeta), we identified hlh-8, gska-3 and spe-8. The hlh-8 gene is homologous to the human oncogene TWIST1. We show that TWIST1 expression in human cancer cells is enhanced by hypoxia in a HIF-2alpha-dependent manner. Furthermore, intronic hypoxia response elements of TWIST1 are regulated by HIF-2alpha, but not HIF-1alpha. These results identify TWIST1 as a direct target gene of HIF-2alpha, which may provide insight into the acquired metastatic capacity of hypoxic tumors.
Rotor Hover Performance and Flowfield Measurements with Untwisted and Highly-Twisted Blades
NASA Technical Reports Server (NTRS)
Ramasamy, Manikandan; Gold, Nili P.; Bhagwat, Mahendra J.
2010-01-01
The flowfield and performance characteristics of highly-twisted blades were analyzed at various thrust conditions to improve the fundamental understanding relating the wake effects on rotor performance. Similar measurements made using untwisted blades served as the baseline case. Twisted blades are known to give better hover performance than untwisted blades at high thrust coefficients typical of those found in full-scale rotors. However, the present experiments were conducted at sufficiently low thrust (beginning from zero thrust), where the untwisted blades showed identical, if not better, performance when compared with the highly-twisted blades. The flowfield measurements showed some key wake differences between the two rotors, as well. These observations when combined with simple blade element momentum theory (also called annular disk momentum theory) helped further the understanding of rotor performance characteristics.
Contribution to the aerodynamics of rotating-wing aircraft
NASA Technical Reports Server (NTRS)
Sissingh, G
1939-01-01
The chief defect of the investigations up to now was the assumption of a more or less arbitrary "mean" drag coefficient for a section of the blade. This defect is remedied through replacement of the constant coefficient by a function of higher order which corresponds to the polar curve of the employed profile. In that way it is possible to extend the theory to include the entire range from "autogyro" without power input to the driven "helicopter" with forward-tilted rotor axis. The treatment includes the twisted rectangular blade and a non-twisted tapered blade. Proceeding from the air flow and stresses on a section of the blade, the formulas for torque, axial and normal thrust of a linearly twisted rectangular blade, and a non-twisted tapered blade, are derived.
Production of yarns composed of oriented nanofibers for ophthalmological implants
NASA Astrophysics Data System (ADS)
Shynkarenko, A.; Klapstova, A.; Krotov, A.; Moucka, M.; Lukas, D.
2017-10-01
Parallelized nanofibrous structures are commonly used in medical sector, especially for the ophthalmological implants. In this research self-fabricated device is tested for improved collection and twisting of the parallel nanofibers. Previously manual techniques are used to collect the nanofibers and then twist is given, where as in our device different parameters can be optimized to obtained parallel nanofibers and further twisting can be given. The device is used to bring automation to the technique of achieving parallel fibrous structures for medical applications.
Role of IKKalpha in the EGFR Signaling Regulation
2012-09-01
Stem Cell Biology Epithelial– Mesenchymal Transition Induced by TNF-a Requires NF-kB–Mediated Transcriptional Upregulation of Twist1 Chia-Wei Li1, Weiya... mesenchymal markers in MCF10A-p65 cells with Twist1 siRNA. D, abrogation of p65- mediated cancer stem cell population by Twist1 suppression. E...Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial- mesenchymal transition generates cells with properties of stem cells . Cell
2017-05-01
contain His tags for purification and streptavidin binding peptide tag for detection (Figure 1). In addition, we have applied recently developed CRISPR ...breast cancer cells MDA-MB-578 and SUM-1315, and selected single cell colony with Twist knockout. We chose CRISPR -gRNA over the shRNA system which was...originally proposed, as CRISPR provides higher specificity and fewer off-target effects. To verify knockout of Twist, we first performed mismatch
The topological basis expression of four-qubit XXZ spin chain with twist boundary condition
NASA Astrophysics Data System (ADS)
Du, Guijiao; Xue, Kang; Zhou, Chengcheng; Sun, Chunfang; Wang, Gangcheng
2013-07-01
We investigate the XXZ model's characteristic with the twisted boundary condition and the topological basis expression. Owing to twist boundary condition, the ground state energy will changing back and forth between E_{13} and E_{15} by modulate the parameter φ . By using TLA generators, the XXZ model's Hamiltonian can be constructed. All the eigenstates can be expressed by topological basis, and the whole of eigenstates' entanglement are maximally entangle states (Q(|φ _i> )=1).
2016-06-08
A close-up of twisting plasma above the Sun's surface produced a nice display of turbulence by caused combative magnetic forces (June 7-8, 2016) over a day and a half. The plasma does not break away, but just spins and twists the entire period. Images were taken in extreme ultraviolet light. The mass we observed is part of a longer, darkish filament angling down from the upper left of the frame. Filaments are unstable clouds of plasma suspended above the Sun by magnetic forces. http://photojournal.jpl.nasa.gov/catalog/PIA20739
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...
Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas
NASA Astrophysics Data System (ADS)
Arshad, K.; Poedts, S.; Lazar, M.
2017-12-01
The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and non-planar (azimuthal) components. The modified Vlasov and Poisson equations are solved to obtain the dielectric function for quasi-electrostatic twisted modes the non-gyrotropic dusty plasmas. Some numerical and graphical analysis is also illustrated for the better understanding of the twisted non-gyrotropic plasmas.
[Intrauterine intestinal volvulus].
Gawrych, Elzbieta; Chojnacka, Hanna; Wegrzynowski, Jerzy; Rajewska, Justyna
2009-07-01
Intrauterine intestinal volvulus is an extremely rare case of acute congenital intestinal obstruction. The diagnosis is usually possible in the third trimester of a pregnancy. Fetal midgut volvulus is most likely to be recognized by observing a typical clockwise whirlpool sign during color Doppler investigation. Multiple dilated intestinal loops with fluid levels are usually visible during the antenatal ultrasound as well. Physical and radiographic findings in the newborn indicate intestinal obstruction and an emergency surgery is required. The authors describe intrauterine volvulus in 3 female newborns in which surgical treatment was individualized. The decision about primary or delayed anastomosis after resection of the gangrenous part of the small bowel was made at the time of the surgery and depended on the general condition of the newborn, as well as presence or absence of meconium peritonitis. Double loop jejunostomy was performed in case of two newborns, followed by a delayed end-to-end anastomosis. In case of the third newborn, good blood supply of the small intestine after untwisting and 0.25% lignocaine injections into mesentery led to the assumption that the torsion was not complete and ischemia was reversible. In the two cases of incomplete rotation the cecum was sutured to the left abdominal wall to prevent further twisting. The postoperative course was uneventful and oral alimentation caused no problems. Physical development of all these children has been normal (current age: 1-2 years) and the parents have not observed any disorders or problems regarding passage of food through the alimentary canal. Prompt antenatal diagnosis of this surgical emergency and adequate choice of intervention may greatly reduce mortality due to intrauterine volvulus.
Double Arc Instability in the Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiguro, N.; Kusano, K., E-mail: n-ishiguro@isee.nagoya-u.ac.jp
The stability of the magnetic field in the solar corona is important for understanding the causes of solar eruptions. Although various scenarios have been suggested to date, the tether-cutting reconnection scenario proposed by Moore et al. is one of the widely accepted models to explain the onset process of solar eruptions. Although the tether-cutting reconnection scenario proposes that the sigmoidal field formed by internal reconnection is the magnetic field in the pre-eruptive state, the stability of the sigmoidal field has not yet been investigated quantitatively. In this paper, in order to elucidate the stability problem of the pre-eruptive state, wemore » developed a simple numerical analysis in which the sigmoidal field is modeled by a double arc electric current loop and its stability is analyzed. As a result, we found that the double arc loop is more easily destabilized than the axisymmetric torus, and it becomes unstable even if the external field does not decay with altitude, which is in contrast to the axisymmetric torus instability. This suggests that tether-cutting reconnection may well work as the onset mechanism of solar eruptions, and if so, the critical condition for eruption under a certain geometry may be determined by a new type of instability rather than by the torus instability. Based on them, we propose a new type of instability called double arc instability (DAI). We discuss the critical conditions for DAI and derive a new parameter κ , defined as the product of the magnetic twist and the normalized flux of the tether-cutting reconnection.« less
Chisholm, Leslie A; Whittington, Ian D
2012-06-01
Three new species of Merizocotyle Cerfontaine, 1894 (Monogenea: Monocotylidae) are described from the nasal tissues of stingrays collected off Borneo. Merizocotyle macrostrobus n. sp. is described from the dwarf whipray Himantura walga (Müller & Henle) collected in shallow waters off Sematan, Sarawak, Malaysia. This species can be distinguished from the other members of the genus by the morphology of the sclerotised male copulatory organ, which is long with many twists and loops. The vaginae of this species are also long and looped. Merizocotyle papillae n. sp. is described from the roughnose stingray Pastinachus solocirostris Last, Manjaji & Yearsley collected off Sematan and Mukah, Sarawak, Malaysia. It is distinguished from the other species of Merizocotyle by the morphology of the male copulatory organ, which is a sclerotised tube that expands slightly and then tapers at the distal end, and by the presence of papillae on the dorsal edge of the haptor. Merizocotyle rhadinopeos n. sp. is described from the whitenose whip ray Himantura uarnacoides (Bleeker) collected off Manggar, East Kalimantan, Indonesia. It can be differentiated by the male copulatory organ, which is a short, narrow, curved, sclerotised tube tapering distally, and the path of the ovary, which runs anteriorly to the base of the oötype. We also provide details of new host and/or locality records for M. australensis (Beverley-Burton & Williams, 1989) Chisholm, Wheeler & Beverley-Burton, 1995, M. icopae Beverley-Burton & Williams, 1989 and M. pseudodasybatis (Hargis, 1955) Chisholm, Wheeler & Beverley-Burton, 1995.
Cieply, Benjamin; Farris, Joshua; Denvir, James; Ford, Heide; Frisch, Steven M.
2013-01-01
Epithelial-mesenchymal transition (EMT) in carcinoma cells enhances malignant progression by promoting invasion and survival. EMT is induced by microenvironmental factors including TGF-β and Wnt agonists, and by the E-box-binding transcription factors Twist, Snail and ZEB. Grainyhead-like-2 (GRHL2), a member of the mammalian Grainyhead family of wound healing regulatory transcription factors, suppresses EMT and restores sensitivity to anoikis by repressing ZEB1 expression and inhibiting TGF-β signaling. In this study, we elucidate the functional relationship between GRHL2 and ZEB1 in EMT/MET and tumor biology. At least three homeodomain proteins, Six1, LBX1, and HoxA5, transactivated the ZEB1 promoter, in the case of Six1, through direct protein-promoter interaction. GRHL2 altered the Six1-DNA complex, inhibiting this transactivation. Correspondingly, GRHL2 expression prevented tumor initiation in xenograft assays, sensitized breast cancer cells to paclitaxel and suppressed the emergence of CD44highCD24low cells (defining the cancer stem cell phenotype in the cell type studied). GRHL2 was down-regulated in recurrent mouse tumors that had evolved to an oncogene-independent, EMT-like state, supporting a role for GRHL2 down-regulation in this phenotypic transition, modeling disease recurrence. The combination of TGF-β and Wnt activation repressed GRHL2 expression by direct interaction of ZEB1 with the GRHL2 promoter, inducing EMT. Together, our observations indicate that a reciprocal feedback loop between GRHL2 and ZEB1 controls epithelial vs. mesenchymal phenotypes and EMT-driven tumor progression. PMID:23943797
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...
... Prevent Falls (News) A Dangerous New Twist on Cyberbullying (News) Electrical Pulses May Ease Pain From 'Slipped' ... Falls News HealthDay A Dangerous New Twist on Cyberbullying News HealthDay Electrical Pulses May Ease Pain From ' ...