Shen, Jin-Song; Meng, Xing-Li; Yokoo, Takashi; Sakurai, Ken; Watabe, Kazuhiko; Ohashi, Toya; Eto, Yoshikatsu
2005-05-01
Brain-directed prenatal gene therapy may benefit some lysosomal storage diseases that affect the central nervous system (CNS) before birth. Our previous study showed that intrauterine introduction of recombinant adenoviruses into cerebral ventricles results in efficient gene transfer to the CNS in the mouse. However, transgene expression decreased with time due to the non-integrative property of adenoviral vectors. In this study, in order to obtain permanent gene transduction, we investigated the feasibility of retrovirus-mediated in utero gene transduction. Concentrated retrovirus encoding the LacZ gene was injected into the cerebral ventricles of the embryos of normal and twitcher mice (a murine model of Krabbe disease) at embryonic day 12. The distribution and maintenance of the transgene expression in the recipient brain were analyzed histochemically, biochemically and by the quantitative polymerase chain reaction method pre- and postnatally. Efficient and highly persistent gene transduction to the brain was achieved both in normal and the twitcher mouse. Transduced neurons, astrocytes and oligodendrocytes were distributed throughout the brain. The transduced LacZ gene, its transcript and protein expression in the brain were maintained for 14 months without decrement. In addition, gene transduction to multiple tissues other than the brain was also detected at low levels. This study suggests that brain-directed in utero gene transfer using retrovirus vector may be beneficial to the treatment of lysosomal storage diseases with severe brain damage early in life, such as Krabbe disease. Copyright (c) 2005 John Wiley & Sons, Ltd.
Kagitani-Shimono, Kuriko; Mohri, Ikuko; Yagi, Takashi; Taniike, Masako; Suzuki, Kinuko
2008-05-01
Globoid cell leukodystrophy (GLD; Krabbe's disease), caused by a genetic galactosylceramidase deficiency, affects both the central and peripheral nervous systems (CNS and PNS). Allogenic hematopoietic stem-cell transplantation (HSCT) has been beneficial for clinical improvement of this disease. However, recent reports by Siddiqi et al. suggested that none of their transplanted patients achieved complete normalization of their peripheral nerve function, despite the well-documented remyelination of the CNS and PNS in the treated patients. We hypothesized that the PNS dysfunction in GLD is due to altered Schwann cell-axon interactions, resulting in structural abnormalities of the node of Ranvier and aberrant expression of ion channels caused by demyelination and that the persistence of this altered interaction is responsible for the dysfunction of the PNS after HSCT. Since there has not been any investigation of the Schwann cell-axonal relationship in twitcher mice, an authentic model of GLD, we first investigated structural abnormalities, focusing on the node of Ranvier in untreated twitcher mice, and compared the results with those obtained after receiving bone marrow transplantation (BMT). As expected, we found numerous supernumerary Schwann cells that formed structurally abnormal nodes of Ranvier. Similar findings, though at somewhat variable extent, were detected in mice treated with BMT. Activated supernumerary Schwann cells expressed GFAP immunoreactivity and generated Alcian blue-positive extracellular matrix (ECM) in the endoneurial space. The processes of these supernumerary Schwann cells often covered and obliterated the nodal regions. Furthermore, the distribution of Na(+) channel immunoreactivity was diffuse without the concentration at the nodes of Ranvier as seen in wild-type mice. Neither K(+) channels nor Neurexin IV/ Caspr/ Paranoidin (NCP-1) were detected in the twi/twi sciatic nerve. The results of our study suggest the importance of normalization of the Schwann cell-axon relationship for the functional recovery of peripheral nerves, when one considers therapeutic strategies for PNS pathology in GLD.
Reddy, Adarsh S.; Patel, Jigisha R.; Vogler, Carole; Klein, Robyn S.; Sands, Mark S.
2013-01-01
Globoid-cell Leukodystrophy (GLD; Krabbe’s disease) is a rapidly progressing inherited demyelinating disease caused by a deficiency of the lysosomal enzyme Galactosylceramidase (GALC). Deficiency of GALC leads to altered catabolism of galactosylceramide and the cytotoxic lipid, galactosylsphingosine (psychosine). This leads to a rapidly progressive fatal disease with spasticity, cognitive disability and seizures. The murine model of GLD (Twitcher; GALC−/−) lacks the same enzyme and has similar clinical features. The deficiency of GALC leads to oligodendrocyte death, profound neuroinflammation, and the influx of activated macrophages into the CNS. We showed previously that keratinocyte chemoattractant factor (KC) is highly elevated in the CNS of untreated Twitcher mice and significantly decreases after receiving a relatively effective therapy (bone marrow transplantation combined with gene therapy). The action of KC is mediated through the CXCR2 receptor and is a potent chemoattractant for macrophages and microglia. KC is also involved in oligodendrocyte migration and proliferation. Based on the commonalities between the disease presentation and the functions of KC, we hypothesized that KC and/or CXCR2 contribute to the pathogenesis of GLD. Interestingly, the course of the disease is not significantly altered in KC- or CXCR2-deficient Twitcher mice. There is also no alteration in inflammation or demyelination patterns in these mice. Furthermore, transplantation of CXCR2-deficient bone marrow does not alter the progression of the disease as it does in other models of demyelination. This study highlights the role of multiple redundant cytokines and growth factors in the pathogenesis of GLD. PMID:23755134
Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur
2010-01-01
Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration. Copyright 2010 Elsevier B.V. All rights reserved.
Marshall, Michael S; Issa, Yazan; Jakubauskas, Benas; Stoskute, Monika; Elackattu, Vince; Marshall, Jeffrey N; Bogue, Wil; Nguyen, Duc; Hauck, Zane; Rue, Emily; Karumuthil-Melethil, Subha; Zaric, Violeta; Bosland, Maarten; van Breemen, Richard B; Givogri, Maria I; Gray, Steven J; Crocker, Stephen J; Bongarzone, Ernesto R
2018-03-07
We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Inhibition of angiogenesis by β-galactosylceramidase deficiency in globoid cell leukodystrophy
Belleri, Mirella; Ronca, Roberto; Coltrini, Daniela; Nico, Beatrice; Ribatti, Domenico; Poliani, Pietro L.; Giacomini, Arianna; Alessi, Patrizia; Marchesini, Sergio; Santos, Marta B.; Bongarzone, Ernesto R.
2013-01-01
Globoid cell leukodystrophy (Krabbe disease) is a neurological disorder of infants caused by genetic deficiency of the lysosomal enzyme β-galactosylceramidase leading to accumulation of the neurotoxic metabolite 1-β-d-galactosylsphingosine (psychosine) in the central nervous system. Angiogenesis plays a pivotal role in the physiology and pathology of the brain. Here, we demonstrate that psychosine has anti-angiogenic properties by causing the disassembling of endothelial cell actin structures at micromolar concentrations as found in the brain of patients with globoid cell leukodystrophy. Accordingly, significant alterations of microvascular endothelium were observed in the post-natal brain of twitcher mice, an authentic model of globoid cell leukodystrophy. Also, twitcher endothelium showed a progressively reduced capacity to respond to pro-angiogenic factors, defect that was corrected after transduction with a lentiviral vector harbouring the murine β-galactosylceramidase complementary DNA. Finally, RNA interference-mediated β-galactosylceramidase gene silencing causes psychosine accumulation in human endothelial cells and hampers their mitogenic and motogenic response to vascular endothelial growth factor. Accordingly, significant alterations were observed in human microvasculature from brain biopsy of a globoid cell leukodystrophy case. Together these data demonstrate that β-galactosylceramidase deficiency induces significant alterations in endothelial neovascular responses that may contribute to central nervous system and systemic damages that occur in globoid cell leukodystrophy. PMID:23983033
Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian
2013-03-01
To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.
Manna, Shyamshree S S; Umathe, Sudhir N
2012-06-15
The present study investigated the influence of transient receptor vanilloid type 1 (TRPV1) channel agonist (capsaicin) and antagonist (capsazepine) either alone or in combination with traditional antidepressant drug, fluoxetine; or a serotonin hydroxylase inhibitor, para-chlorophenylalanine; or a glutamate N-methyl-D-aspartate (NMDA) receptor agonist, NMDA on the forced swim test and tail suspension test using male Swiss mice. Results revealed that intracerebroventricular injections of capsaicin (200 and 300 μg/mouse) and capsazepine (100 and 200 μg/mouse) reduced the immobility time, exhibiting antidepressant-like activity that was comparable to the effects of fluoxetine (2.5-10 μg/mouse) in both the tests. However, in the presence of inactive dose (10 μg/mouse) of capsazepine, capsaicin (300 μg/mouse) had no influence on the indices of both tests, signifying that the effects are TRPV1-mediated. Further, the antidepressant-like effects of both the TRPV1 ligands were neutralized in mice-pretreated with NMDA (0.1 μg/mouse), suggestive of the fact that decreased glutamatergic transmission might contribute to the antidepressant-like activity. In addition, co-administration of sub-threshold dose of capsazepine (10 μg/mouse) and fluoxetine (1.75 μg/mouse) produced a synergistic effect in both the tests. In contrast, inactive doses of capsaicin (10 and 100 μg/mouse) partially abolished the antidepressant effect of fluoxetine (10 μg/mouse), while its effect was potentiated by active dose of capsaicin (200 μg/mouse). Moreover, pretreatment of mice with para-chlorophenylalanine (300 mg/kg/day × 3 days, i.p.) attenuated the effects of capsaicin and capsazepine, demonstrating a probable interplay between serotonin and TRPV1, at least in parts. Thus, our data indicate a possible role of TRPV1 in depressive-like symptoms. Copyright © 2012 Elsevier B.V. All rights reserved.
Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan
2017-01-01
Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.
Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh
2017-02-01
The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.
Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes
2013-01-01
Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847
Effect of potassium channel modulators in mouse forced swimming test
Galeotti, Nicoletta; Ghelardini, Carla; Caldari, Bernardetta; Bartolini, Alessandro
1999-01-01
The effect of intracerebroventricular (i.c.v.) administration of different potassium channel blockers (tetraethylammonium, apamin, charybdotoxin, gliquidone), potassium channel openers (pinacidil, minoxidil, cromakalim) and aODN to mKv1.1 on immobility time was evaluated in the mouse forced swimming test, an animal model of depression. Tetraethylammonium (TEA; 5 μg per mouse i.c.v.), apamin (3 ng per mouse i.c.v.), charybdotoxin (1 μg per mouse i.c.v.) and gliquidone (6 μg per mouse i.c.v.) administered 20 min before the test produced anti-immobility comparable to that induced by the tricyclic antidepressants amitriptyline (15 mg kg−1 s.c.) and imipramine (30 mg kg−1 s.c.). By contrast pinacidil (10–20 μg per mouse i.c.v.), minoxidil (10–20 μg per mouse i.c.v.) and cromakalim (20–30 μg per mouse i.c.v.) increased immobility time when administered in the same experimental conditions. Repeated administration of an antisense oligonucleotide (aODN) to the mKv1.1 gene (1 and 3 nmol per single i.c.v. injection) produced a dose-dependent increase in immobility time of mice 72 h after the last injection. At day 7, the increasing effect produced by aODN disappeared. A degenerate mKv1.1 oligonucleotide (dODN), used as control, did not produce any effect in comparison with saline- and vector-treated mice. At the highest effective dose, potassium channels modulators and the mKv1.1 aODN did not impair motor coordination, as revealed by the rota rod test, nor did they modify spontaneous motility as revealed by the Animex apparatus. These results suggest that modulation of potassium channels plays an important role in the regulation of immobility time in the mouse forced swimming test. PMID:10323599
Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K
2017-02-01
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Nembo, Erastus Nembu; Atsamo, Albert Donatien; Nguelefack, Télesphore Benoît; Kamanyi, Albert; Hescheler, Jürgen; Nguemo, Filomain
2015-05-13
Erythrina senegalensis DC (Fabaceae) bark is commonly used in sub-Saharan traditional medicine for the treatment of many diseases including gastrointestinal disorders and cardiovascular diseases. In this study, we investigated the effect of the aqueous extract of the stem bark of Erythrina senegalensis on the contractile properties of mouse ventricular slices and human induced pluripotent stem (hiPS) cell-derived cardiomyocytes. We also investigated the cytotoxic effect of the extract on mouse embryonic stem (ES) cells differentiating into cardiomyocytes (CMs). We used well-established electrophysiological technologies to assess the effect of Erythrina senegalensis aqueous extract (ESAE) on the beating activity of mouse ventricular slices, mouse ES and hiPS cell-derived CMs. To study the cytotoxic effect of our extract, differentiating mouse ES cells were exposed to different concentrations of ESAE. EB morphology was assessed by microscopy at different stages of differentiation whereas cell viability was measured by flow cytometry, fluorometry and immunocytochemistry. The electrical activity of CMs and heart slices were respectively captured by the patch clamp technique and microelectrode array (MEA) method following ESAE acute exposure. Our findings revealed that ESAE exhibits a biphasic chronotropic activity on mouse ventricular slices with an initial low dose (0.001 and 0.01 µg/mL) decrease in beating activity followed by a corresponding significant increase in chronotropic activity at higher doses above 10 µg/mL. The muscarinic receptor blocker, atropine abolished the negative chronotropic activity of ESAE, while propranolol successfully blocked its positive chronotropic activity. ESAE showed a significant dose-dependent positive chronotropic activity on hiPS cell-derived CMs. Also, though not significantly, ESAE decreased cell viability and increased total caspase-3/7 activity of mouse ES cells in a concentration-dependent manner. Erythrina senegalensis aqueous extract exhibits a biphasic chronotropic effect on mouse heart and a positive chronotropic activity on hiPS cell-derived CMs, suggesting a possible mechanism through muscarinic and β-adrenergic receptor pathways. Also, ESAE is not cytotoxic on mouse ES cells at concentrations up to 100 µg/mL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J.; Stebbings, Lucy A.; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A.; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.; Carter, Nigel P.
2013-01-01
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439. PMID:23596509
Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair
2017-08-01
We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kamysz, Elżbieta; Sałaga, Maciej; Sobczak, Marta; Kamysz, Wojciech; Fichna, Jakub
2013-03-01
Opiorphin and sialorphin are two recently discovered endogenous enkephalin-degrading enzyme inhibitors. Our aim was to characterize their effect on the mouse ileum motility and to investigate the role of glutamine in position 1. Opiorphin, sialorphin, and their analogs substituted in position 1 with pyroglutamic acid (pGlu) were synthesized by the solid-phase method using Fmoc chemistry. The effect of peptides on gastrointestinal (GI) motility was characterized using in vitro assays and in mouse model of upper GI transit. Opiorphin and sialorphin, but not their analogs, significantly increased electrical field-stimulated contractions in the mouse ileum in a δ-opioid receptor-dependent manner. Opiorphin, sialorphin, and their analogs did not influence the effect of [Met(5)]enkephalin on smooth muscle contractility in the mouse ileum in vitro. [Met(5)]enkephalin and sialorphin, but not opiorphin injected intravenously (1 mg/kg), significantly inhibited the upper GI transit. The intraperitoneal administration of peptides (3 mg/kg) did not change the mouse upper GI transit. In conclusion, this is the first study investigating the effect of opiorphin and sialorphin on the mouse ileum motility and demonstrating that glutamine in position 1 is crucial for their pharmacological action. Our results may be important for further structure-activity relationship studies on opiorphin and sialorphin and future development of potent clinical therapeutics aiming at the enkephalinergic system. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.
Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.
2015-01-01
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226
Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M
2015-01-01
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Cheng, Cuilin; Baranenko, Denis; Wang, Jiaping; Li, Yongzhi; Lu, Weihong
2018-01-01
The active compounds in Acanthopanax senticosus (AS) have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS) were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC) of mouse brain included tubulin protein family (α-, β-tubulin subunits), dihydropyrimidinase-related protein 2 (CRMP2), γ-actin, 14-3-3 protein family (14-3-3ζ, ε), heat shock protein 90β (HSP90β), and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B), Neurotrophin, Rap1 (Ras-related protein RAP-1A), gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1) signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could be effective through the blood–brain barrier in the future. PMID:29342911
The effect of CA1 dopaminergic system on amnesia induced by harmane in mice.
Nasehi, Mohammad; Hasanvand, Simin; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza
2018-05-16
In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.
Icotinib inhibits EGFR signaling and alleviates psoriasis-like symptoms in animal models.
Tan, Fenlai; Yang, Guiqun; Wang, Yanping; Chen, Haibo; Yu, Bo; Li, He; Guo, Jing; Huang, Xiaoling; Deng, Yifang; Yu, Pengxia; Ding, Lieming
2018-02-01
To investigate the effects of icotinib hydrochloride and a derivative cream on epidermal growth factor receptor (EGFR) signaling and within animal psoriasis models, respectively. The effect of icotinib on EGFR signaling was examined in HaCaT cells, while its effect on angiogenesis was tested in chick embryo chorioallantoic membranes (CAM). The effectiveness of icotinib in treating psoriasis was tested in three psoriasis models, including diethylstilbestrol-treated mouse vaginal epithelial cells, mouse tail granular cell layer formation, and propranolol-induced psoriasis-like features in guinea pig ear skin. Icotinib treatment blocked EGFR signaling and reduced HaCaT cell viability as well as suppressed CAM angiogenesis. Topical application of icotinib ameliorated psoriasis-like histological characteristics in mouse and guinea pig psoriasis models. Icotinib also significantly inhibited mouse vaginal epithelium mitosis, promoted mouse tail squamous epidermal granular layer formation, and reduced the thickness of the horny layer in propranolol treated auricular dorsal surface of guinea pig. We conclude that icotinib can effectively inhibit psoriasis in animal models. Future clinical studies should be conducted to explore the therapeutic effects of icotinb in humans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kotagale, Nandkishor R; Tripathi, Sunil J; Aglawe, Manish M; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G
2013-06-01
Although bupropion has been widely used in the treatment of depression, the precise mechanism of its therapeutic actions is not fully understood. The present study investigated the role of agmatine in an antidepressant like effect of bupropion in mouse forced swim test. The antidepressant like effect of bupropion was potentiated by pretreatment with agmatine (10-20mg/kg, ip) and by the drugs known to increase endogenous agmatine levels in brain viz., l-arginine (40 μg/mouse, icv), an agmatine biosynthetic precursor, ornithine decarboxylase inhibitor, dl-α-difluoromethyl ornithine hydrochloride, DFMO (12.5 μg/mouse, icv), diamine oxidase inhibitor, aminoguanidine (6.5 μg/mouse, icv) and agmatinase inhibitor, arcaine (50 μg/mouse, icv) as well as imidazoline I1 receptor agonists, moxonidine (0.25mg/kg, ip) and clonidine (0.015 mg/kg, ip) and imidazoline I2 receptor agonist, 2-(2-benzofuranyl)-2-imidazoline hydrochloride, 2-BFI (5mg/kg, ip). Conversely, prior administration of I1 receptor antagonist, efaroxan (1mg/kg, ip) and I2 receptor antagonist, idazoxan (0.25mg/kg, ip) blocked the antidepressant like effect of bupropion and its synergistic combination with agmatine. These results demonstrate involvement of agmatine in the antidepressant like effect of bupropion and suggest agmatine and imidazoline receptors as a potential therapeutic target for the treatment of depressive disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Liao, S B; Cheung, K H; O, W S; Tang, Fai
2014-08-01
Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.
Gaudez, Clarisse; Cail, François
2016-11-01
This study compared muscular and postural stresses, performance and subject preference in women aged 18-40 years using a standard mouse, a vertical mouse and a slanted mouse in three different computer workstation positions. Four tasks were analysed: pointing, pointing-clicking, pointing-clicking-dragging and grasping-pointing the mouse after typing. Flexor digitorum superficialis (FDS) and extensor carpi radialis (ECR) activities were greater using the standard mouse compared to the vertical or slanted mouse. In all cases, the wrist position remained in the comfort zone recommended by standard ISO 11228-3. The vertical mouse was less comfortable and more difficult to use than the other two mice. FDS and ECR activities, shoulder abduction and wrist extension were greater when the mouse was placed next to the keyboard. Performance and subject preference were better with the unrestricted mouse positioning on the desktop. Grasping the mouse after typing was the task that caused the greatest stress. Practitioner Summary: In women, the slanted mouse and the unrestricted mouse positioning on the desktop provide a good blend of stresses, performance and preference. Unrestricted mouse positioning requires no keyboard, which is rare in practice. Placing the mouse in front of the keyboard, rather than next to it, reduced the physical load.
Tracking hand movements captures the response dynamics of the evaluative priming effect.
Kawakami, Naoaki; Miura, Emi
2018-06-08
We tested the response dynamics of the evaluative priming effect (i.e. facilitation of target responses following evaluatively congruent compared with evaluatively incongruent primes) using a mouse tracking procedure that records hand movements during the execution of categorisation tasks. In Experiment 1, when participants performed the evaluative categorisation task but not the non-evaluative semantic categorisation task, their mouse trajectories for evaluatively incongruent trials curved more toward the opposite response than those for evaluatively congruent trials, indicating the emergence of evaluative priming effects based on response competition. In Experiment 2, implementing a task-switching procedure in which evaluative and non-evaluative categorisation tasks were intermixed, we obtained reliable evaluative priming effects in the non-evaluative semantic categorisation task as well as in the evaluative categorisation task when participants assigned attention to the evaluative stimulus dimension. Analyses of hand movements revealed that the evaluative priming effects in the evaluative categorisation task were reflected in the mouse trajectories, while evaluative priming effects in the non-evaluative categorisation tasks were reflected in initiation times (i.e. the time elapsed between target onset and first mouse movement). Based on these findings, we discuss the methodological benefits of the mouse tracking procedure and the underlying processes of evaluative priming effects.
Gao, Zhonghong; Xu, Huibi; Huang, Kaixun
2002-09-01
The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.
MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS
Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...
Nakagawa, Shinichiro; Matsuoka, Yusuke; Ichihara, Hideaki; Yoshida, Hitoji; Yoshida, Kenshi; Ueoka, Ryuichi
2013-01-01
Trastuzumab (TTZ) is molecular targeted drug used for metastatic breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Therapeutic effects of lymphocytes activated with TTZ (TTZ-LAK) using xenograft mouse models of human breast cancer (MDA-MB-453) cells were examined in vivo. Remarkable reduction of tumor volume in a xenograft mouse models intravenously treated with TTZ-LAK cells after the subcutaneously inoculated of MDA-MB-453 cells was verified in vivo. The migration of TTZ-LAK cells in tumor of mouse models subcutaneously inoculated MDA-MB-453 cells was observed on the basis of histological analysis using immunostaining with CD-3. Induction of apoptosis in tumor of xenograft mice treated with TTZ-LAK cells was observed in micrographs using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. It was noteworthy that the therapeutic effects of TTZ-LAK cells along with apoptosis were obtained for xenograft mouse models of human breast tumor in vivo.
Hur, S J; Lee, S J; Kim, D H; Chun, S C; Lee, S K
2013-12-01
This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.
Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru
2006-01-01
An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.
New Mouse Model May Aid in Developing Effective Therapies for Ovarian Cancer | Poster
By Frank Blanchard, Staff Writer A new genetically engineered mouse model appears promising as an effective tool for preclinical testing of novel therapies for ovarian cancer, which tends to be diagnosed in late stage. There are few effective treatments for the disease.
Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...
Mouse Vocal Communication System: Are Ultrasounds Learned or Innate?
ERIC Educational Resources Information Center
Arriaga, Gustavo; Jarvis, Erich D.
2013-01-01
Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production.…
Assas, B M; Levison, S E; Little, M; England, H; Battrick, L; Bagnall, J; McLaughlin, J T; Paszek, P; Else, K J; Pennock, J L
2017-02-01
Infliximab (IFX) has been used repeatedly in mouse preclinical models with associated claims that anti-inflammatory effects are due to inhibition of mouse tumour necrosis factor (TNF)-α. However, the mechanism of action in mice remains unclear. In this study, the binding specificity of IFX for mouse TNF-α was investigated ex vivo using enzyme-linked immunosorbent assay (ELISA), flow cytometry and Western blot. Infliximab (IFX) did not bind directly to soluble or membrane-bound mouse TNF-α nor did it have any effect on TNF-α-induced nuclear factor kappa B (NF-κB) stimulation in mouse fibroblasts. The efficacy of IFX treatment was then investigated in vivo using a TNF-α-independent Trichuris muris-induced infection model of chronic colitis. Infection provoked severe transmural colonic inflammation by day 35 post-infection. Colonic pathology, macrophage phenotype and cell death were determined. As predicted from the in-vitro data, in-vivo treatment of T. muris-infected mice with IFX had no effect on clinical outcome, nor did it affect macrophage cell phenotype or number. IFX enhanced apoptosis of colonic immune cells significantly, likely to be driven by a direct effect of the humanized antibody itself. We have demonstrated that although IFX does not bind directly to TNF-α, observed anti-inflammatory effects in other mouse models may be through host cell apoptosis. We suggest that more careful consideration of xenogeneic responses should be made when utilizing IFX in preclinical models. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.
Shin, Jun-Wan; Kundu, Joydeb Kumar
2012-01-01
Abstract The present study investigated the effect of phloretin [2′,4′,6′-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)–induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis. PMID:22181070
Shin, Jun-Wan; Kundu, Joydeb Kumar; Surh, Young-Joon
2012-03-01
The present study investigated the effect of phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis.
IN VIVO ANTI-INFLAMMATORY EFFECTS OF TARAXASTEROL AGAINST ANIMAL MODELS
Wang, Ying; Li, Guan-Hao; Liu, Xin-Yu; Xu, Lu; Wang, Sha-Sha; Zhang, Xue-Mei
2017-01-01
Background: Traditional Chinese medicine Taraxacum officinale has been widely used to treat various inflammatory diseases. Taraxasterol is one of the main active components isolated from Taraxacum officinale. Recently, we have demonstrated that taraxasterol has the in vitro anti-inflammatory effects. This study aims to determine the in vivo anti-inflammatory effects of taraxasterol against animal models. Materials and Methods: Anti-inflammatory effects were assessed in four animal models by using dimethylbenzene-induced mouse ear edema, carrageenan-induced rat paw edema, acetic acid-induced mouse vascular permeability and cotton pellet-induced rat granuloma tests. Results: Our results demonstrated that taraxasterol dose-dependently attenuated dimethylbenzene-induced mouse ear edema and carrageenan-induced rat paw edema, decreased acetic acid-induced mouse vascular permeability and inhibited cotton pellet-induced rat granuloma formation. Conclusion: Our finding indicates that taraxasterol has obvious in vivo anti-inflammatory effects against animal models. It will provide experimental evidences for the traditional use of Taraxacum officinale and taraxasterol in inflammatory diseases. PMID:28480383
Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars
2015-01-01
Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633
Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars
2015-08-07
Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.
Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K
2016-06-01
Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032.
Rat astrocytes are more supportive for mouse OPC self-renewal than mouse astrocytes in culture.
Cheng, Xuejun; Xie, Binghua; Qi, Jiajun; Zhao, Xiaofeng; Zhang, Zunyi; Qiu, Mengsheng; Yang, Junlin
2017-09-01
Mouse primary oligodendrocyte precursor cells (OPCs) are increasingly used to study the molecular mechanisms underlying the phenotype changes in oligodendrocyte differentiation and axonal myelination observed in transgenic or mutant mouse models. However, mouse OPCs are much more difficult to be isolated by the simple dissociation culture of brain tissues than their rat counterparts. To date, the mechanisms underlying the species difference in OPC preparation remain obscure. In this study, we showed that astrocytes from rats have a stronger effect than those from mouse in promoting OPC proliferation and survival in vitro. Mouse astrocytes displayed significantly weaker viability in culture and reduced potential in maintaining OPC self-renewal, as confirmed by culturing OPCs with conditioned media from rat or mouse astrocytes. These results explained the reason for why stratified cultures of OPCs and astrocytes are difficult to be achieved in mouse CNS tissues. Based on these findings, we adopted inactivated rat astrocytes as feeder cells to support the self-renewal of mouse cortical OPCs and preparation of high-purity mouse OPCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 907-916, 2017. © 2016 Wiley Periodicals, Inc.
Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang
2014-04-01
Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.
Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R
2013-05-22
Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Protective effects of black rice bran against chemically-induced inflammation of mouse skin
USDA-ARS?s Scientific Manuscript database
We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...
Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.
2011-01-01
Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.
Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo
Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang
2010-01-01
Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1α expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033
Musante, Veronica; Summa, Maria; Neri, Elisa; Puliti, Aldamaria; Godowicz, Tomasz T; Severi, Paolo; Battaglia, Giuseppe; Raiteri, Maurizio; Pittaluga, Anna
2010-08-01
Human immunodeficiency virus-1 (HIV-1)-encoded transactivator of transcription (Tat) potentiated the depolarization-evoked exocytosis of [(3)H]D-aspartate ([(3)H]D-ASP) from human neocortical terminals. The metabotropic glutamate (mGlu) 1 receptor antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented this effect, whereas the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) was ineffective. Western blot analysis showed that human neocortex synaptosomes possess mGlu1 and mGlu5 receptors. Tat potentiated the K(+)-evoked release of [(3)H]D-ASP or of endogenous glutamate from mouse neocortical synaptosomes in a CPCCOEt-sensitive and MPEP-insensitive manner. Deletion of mGlu1 receptors (crv4/crv4 mice) or mGlu5 receptors (mGlu5(-/-)mouse) silenced Tat effects. Tat enhanced inositol 1,4,5-trisphosphate production in human and mouse neocortical synaptosomes, consistent with the involvement of group I mGlu receptors. Tat inhibited the K(+)-evoked release of [(3)H]gamma-aminobutyric acid ([(3)H]GABA) from human synaptosomes and that of endogenous GABA or [(3)H]GABA from mouse nerve terminals; the inhibition was insensitive to CPCCOEt or MPEP. Tat-induced effects were retained by Tat(37-72) but not by Tat(48-85). In mouse neocortical slices, Tat facilitated the K(+)- and the veratridine-induced release of [(3)H]D-ASP in a CPCCOEt-sensitive manner and was ineffective in crv4/crv4 mouse slices. These observations are relevant to the comprehension of the pathophysiological effects of Tat in central nervous system and may suggest new potential therapeutic approaches to the cure of HIV-1-associated dementia.
Kong, Zi-Qing; Han, Min; Yang, Wen-Le; Zhao, You-Li; Fu, Cai-Yun; Tao, Yan; Chen, Qiang; Wang, Rui
2009-06-01
Rat/mouse hemokinin-1 (r/m HK-1) has been identified as a member of the tachykinin family and its effect in colonic contractile activity remains unknown. We investigated the effects and mechanisms of actions of r/m HK-1 on the mouse colonic contractile activity in vitro by comparing it with that of substance P (SP). R/m HK-1 induced substantial contractions on the circular muscle of mouse colon. The maximal contractile responses to r/m HK-1 varied significantly among proximal-, mid- and distal-colon, suggesting that the action of r/m HK-1 was region-specific in mouse colon. The contractile response induced by r/m HK-1 is primarily via activation of tachykinin NK(1) receptors leading to activation of cholinergic excitatory pathways and with a minor contribution of NK(2) receptors, which may be on the smooth muscle itself. A direct action on colonic smooth muscles may be also involved. In contrast, SP induced biphasic colonic responses (contractile and relaxant responses) on the circular muscle, in which the contractile action of SP was equieffective with r/m HK-1. SP exerted its contractile effect predominantly through neural and muscular tachykinin NK(1) receptors, but unlike r/m HK-1 did not appear to act via NK(2) receptors. The relaxation induced by SP was largely due to release of nitric oxide (NO) produced via an action on neural NK(1) receptors. These results indicate that the receptors and the activation properties involved in r/m HK-1-induced mouse colonic contractile activity are different from those of SP.
Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha.
Doki, Tomoyoshi; Takano, Tomomi; Hohdatsu, Tsutomu
2016-10-01
Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2-4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2-4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2-4) by fusing the variable region of mouse mAb 2-4 to the constant region of feline antibody. The chimeric mAb 2-4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2-4 and chimeric mAb 2-4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2-4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2-4 was reduced. In contrast, in cats treated with chimeric mAb 2-4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2-4-treated cats.
Kelliher, Kevin R; Wersinger, Scott R
2009-01-01
In many species, chemical compounds emitted by conspecifics exert profound effects on reproductive physiology and sexual behavior. This is particularly true in the mouse, where such cues advance and delay puberty, suppress and facilitate estrous cycles, and cause the early termination of pregnancy. They also facilitate sexual behavior and inform mate selection. The mouse has a rich and complex repertoire of social behaviors. The technologies of molecular genetics are well developed in the mouse. Gene expression can be experimentally manipulated in the mouse relatively easily and in a time- and tissue-specific manner. Thus, the mouse is an excellent model in which to investigate the genetic, neural, and hormonal bases by which chemical compounds released by other mice affect physiology and behavior. These chemical cues are detected and processed by the olfactory system and other specialized but less well characterized sensory organs. The sensory information reaches brain regions that regulate hormone levels as well as those that are involved in behavior and alters the function of these brain regions. The effects of these chemical compounds have important implications for the laboratory animal facility as well as for researchers. We begin with an overview of the basic structure and function of the olfactory system and of the connections among brain regions that receive olfactory stimuli. We discuss the effects of chemosensory cues on the behavior and physiology of the organism along with what is known about the neural and hormonal mechanisms underlying these effects. We also describe some of the implications for the laboratory animal facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan
2013-09-06
Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2more » (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.« less
Cunha, Mauricio P; Budni, Josiane; Ludka, Fabiana K; Pazini, Francis L; Rosa, Julia Macedo; Oliveira, Ágatha; Lopes, Mark W; Tasca, Carla I; Leal, Rodrigo B; Rodrigues, Ana Lúcia S
2016-07-01
Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 μg/mouse, icv, PI3K inhibitor), ZnPP (10 μg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 μg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 μg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.
Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes
Petrosino, Jennifer M.; Heiss, Valerie J.; Maurya, Santosh K.; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A.; Wilson, Jacob M.; Simonetti, Orlando P.; Ziouzenkova, Ouliana
2016-01-01
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics. PMID:26859763
Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes.
Petrosino, Jennifer M; Heiss, Valerie J; Maurya, Santosh K; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A; Wilson, Jacob M; Simonetti, Orlando P; Ziouzenkova, Ouliana
2016-01-01
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.
Haines, Corinne; Elcombe, Barbara M; Chatham, Lynsey R; Vardy, Audrey; Higgins, Larry G; Elcombe, Clifford R; Lake, Brian G
2018-03-01
Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators. Copyright © 2018 Elsevier B.V. All rights reserved.
The Effectiveness of Gaze-Contingent Control in Computer Games.
Orlov, Paul A; Apraksin, Nikolay
2015-01-01
Eye-tracking technology and gaze-contingent control in human-computer interaction have become an objective reality. This article reports on a series of eye-tracking experiments, in which we concentrated on one aspect of gaze-contingent interaction: Its effectiveness compared with mouse-based control in a computer strategy game. We propose a measure for evaluating the effectiveness of interaction based on "the time of recognition" the game unit. In this article, we use this measure to compare gaze- and mouse-contingent systems, and we present the analysis of the differences as a function of the number of game units. Our results indicate that performance of gaze-contingent interaction is typically higher than mouse manipulation in a visual searching task. When tested on 60 subjects, the results showed that the effectiveness of gaze-contingent systems over 1.5 times higher. In addition, we obtained that eye behavior stays quite stabile with or without mouse interaction. © The Author(s) 2015.
Chauderlier, Alban; Delattre, Lucie; Buée, Luc; Galas, Marie-Christine
2017-01-01
Oxidative damage is an early event in neurodegenerative disorders such as Alzheimer disease. To increase oxidative stress in AD-related mouse models is essential to study early mechanisms involved in the physiopathology of these diseases. In this chapter, we describe an experimental mouse model of transient and acute hyperthermic stress to induce in vivo an increase of oxidative stress in the brain of any kind of wild-type or transgenic mouse.
Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis
von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.
2017-01-01
Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529
Effects of Computer Skill on Mouse Move and Click Performance
ERIC Educational Resources Information Center
Panagiotakopoulos, Chris; Sarris, Menelaos
2008-01-01
This study focuses on the use of computers in the field of education. It reports a series of experimental mouse move and click tasks on constant and moving stimuli. These experiments attempt to explore the efficiency with which individuals of different skill level and age group perform using a mouse. Differences in performance between high-skill…
EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE
Title:
Effects Of Perfluorooctanoic Acid Exposure During Pregnancy In The Mouse
Authors & affiliations:
Lau, C., J.R. Thibodeaux*, R.G. Hanson* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC
Abstract:<...
[Preliminary study on molecular mechanism of curcumine anti-mouse melanoma].
Gui, Fei; Ma, Wei-Feng; Cai, Shao-Hui; Li, Xiao-Kun; Tan, Yi; Zhou, Chun-Ling; Chen, Hong-Yuan
2008-11-01
To investigate the effects of curcumine on mouse B16 melanoma growth and possible mechanism of Bcl-2, P53 and glutathione in tumor cells. The inhibitory effect on growth of melanoma in vivo were examined by mice melanoma models transplanted B16 cells to C57BL/6J mice. MTT method was used to assay the contribution of curcumine to B16 cells in vitro. The apoptosis and expression of Bcl-2, P53 gene of B16 cells were analyzed by flow cytometry, and HPLC assay was used to detect the change of GSH in B16 melanom tissues of C57BL/6J mouse caused by curcumine. Curcumine had obvious inhibitory effect on the growth of mouse B16 melanoma in time and dose dependent manner and the gene expression of bcl-2 in B16 cells decreased after 24 hours supplied with curcumine, whereas P53 protein expression increased; Curcumine depressed the GSH quantity in melanoma tissues. The growth inhibitory effect of curcumine on mouse melanom is proved in vivo and in vitro respectively. Curcumine can induce some cells to apoptosis which may be relevant to downregulation of bcl-2 expression and upregulation of P53 expression as well as exhaustion of GSH in tumor organization.
Lu, Gang; Su, Rui-Bin; Li, Jin; Qin, Bo-Yi
2003-10-08
The effects of alpha-difluoromethyl-ornithine (DFMO) and aminoguanidine, which might influence the metabolism of endogenous agmatine, on pain threshold, morphine analgesia and tolerance were investigated in mice. In the mouse acetic acid writhing test, intracerebroventricular (i.c.v.) injection of DFMO or aminoguanidine significantly elevated the pain threshold as indicated by a decrease in the number of writhings. DFMO or aminoguanidine obviously increased the analgesic effect of morphine in the mouse acetic acid writhing test and the mouse heat radiation tail-flick assay. These effects of DFMO and aminoguanidine were antagonized by idazoxan (3 mg/kg, i.p.), which is a selective antagonist of the imidazoline receptor. In the mouse heat radiation tail-flick assay, aminoguanidine significantly prolonged the tail-flick latency of animals, suggesting that the pain threshold was elevated. Furthermore, both DFMO and aminoguanidine enhanced morphine analgesia and inhibited acute morphine tolerance in the mouse heat radiation tail-flick assay. Neither DFMO nor aminoguanidine inhibited the activity of nitric oxide synthase in different brain areas in mice in vivo. These results indicate that the substances involved in the metabolism of endogenous agmatine could modulate the pain threshold, morphine analgesia and tolerance, indicating the possible role of endogenous agmatine in the pharmacological effects of morphine.
Avgustinovich, D F; Fomina, M K; Sorokina, I V; Tolstikova, T G
2014-09-01
The effects of chronic administration of a new substance lambertianic acid amide and previously synthesized methyl ester of this acid were compared in female mice living under conditions of social discomfort. For modeling social discomfort, female mouse was housed for 30 days in a cage with aggressive male mouse kept behind a transparent perforated partition and observed its confrontations with another male mouse daily placed to the cage. The new agent more effectively than lambertianic acid methyl ester improved communicativeness and motor activity of animals, reduced hypertrophy of the adrenal glands, and enhanced catalase activity in the blood. These changes suggest that lambertianic acid amide produces a pronounced stress-protective effect under conditions of social discomfort.
Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon
2011-01-01
The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641
CCL11 promotes migration and proliferation of mouse neural progenitor cells.
Wang, Feifei; Baba, Nobuyasu; Shen, Yuan; Yamashita, Tatsuyuki; Tsuru, Emi; Tsuda, Masayuki; Maeda, Nagamasa; Sagara, Yusuke
2017-02-07
Neonatal hypoxia-ischemia induces massive brain damage during the perinatal period, resulting in long-term consequences to central nervous system structural and functional maturation. Although neural progenitor cells (NPCs) migrate through the parenchyma and home in to injury sites in the rodent brain, the molecular mechanisms are unknown. We examined the role of chemokines in mediating NPC migration after neonatal hypoxic-ischemic brain injury. Nine-day-old mice were exposed to a 120-minute hypoxia following unilateral carotid occlusion. Chemokine levels were quantified in mouse brain extract. Migration and proliferation assays were performed using embryonic and infant mouse NPCs. The neonatal hypoxic-ischemic brain injury resulted in an ipsilateral lesion, which was extended to the cortical and striatal areas. NPCs migrated toward an injured area, where a marked increase of CC chemokines was detected. In vitro studies showed that incubation of NPCs with recombinant mouse CCL11 promoted migration and proliferation. These effects were partly inhibited by a CCR3 antagonist, SB297006. Our data implicate an important effect of CCL11 for mouse NPCs. The effective activation of NPCs may offer a promising strategy for neuroregeneration in neonatal hypoxic-ischemic brain injury.
USDA-ARS?s Scientific Manuscript database
Human gamma delta T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 m...
Weed-biocontrol insects reduce native-plant recruitment through second-order apparent competition.
Pearson, Dean E; Callaway, Ragan M
2008-09-01
Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea maculosa). These mice also consume the biological-control insects Urophora spp. introduced to control C. maculosa, and this food resource substantially increases deer mouse populations. Thus, mice may play an important role in the invasion and management of C. maculosa through food-web interactions. We examined deer mouse seed predation and its effects on seedling emergence and establishment of a dominant native grass, Pseudoroegneria spicata, and forb, Balsamorhiza sagittata, in C. maculosa-invaded grasslands that were treated with herbicide to suppress C. maculosa or left untreated as controls. Deer mice readily took seeds of both native plants but removed 2-20 times more of the larger B. sagittata seeds than the smaller P. spicata seeds. Seed predation reduced emergence and establishment of both species but had greater impacts on B. sagittata. The intensity of seed predation corresponded with annual and seasonal changes in deer mouse abundance, suggesting that abundance largely determined mouse impacts on native-plant seeds. Accordingly, herbicide treatments that reduced mouse abundance by suppressing C. maculosa and its associated biocontrol food subsidies to mice also reduced seed predation and decreased the impact of deer mice on B. sagittata establishment. These results provide evidence that Urophora biocontrol agents may exacerbate the negative effects of C. maculosa on native plants through a form of second-order apparent competition-a biocontrol indirect effect that has not been previously documented. Herbicide suppressed C. maculosa and Urophora, reducing mouse populations and moderating seed predation on native plants, but the herbicide's direct negative effects on native forb seedlings overwhelmed the indirect positive effect of reducing deer mouse seed predation. By manipulating this four-level food chain, we illustrate that host-specific biological control agents may impact nontarget plant species through food-web interactions, and herbicides may influence management outcomes through indirect trophic interactions in addition to their direct effects on plants.
Blangy, A; Léopold, P; Vidal, F; Rassoulzadegan, M; Cuzin, F
1991-01-01
We have reported previously (1) two unexpected consequences of the microinjection into fertilized mouse eggs of a recombinant plasmid designated p12B1, carrying a 343 bp insert of non-repetitive mouse DNA. Injected at very low concentrations, this plasmid could be established as an extrachromosomal genetic element. When injected in greater concentration, an early arrest of embryonic development resulted. In the present work, we have studied this toxic effect in more detail by microinjecting short synthetic oligonucleotides with sequences from the mouse insert. Lethality was associated with the nucleotide sequence GTCACATG, identical with the CDEl element of yeast centromeres. Development of injected embryos was arrested between the one-cell and the early morula stages, with abnormal structures and DNA contents. Electrophoretic mobility shift and DNAse foot-printing assays demonstrated the binding of mouse nuclear protein(s) to the CDEl-like box. Base changes within the CDEl sequence prevented both the toxic effects in embryos and the formation of protein complex in vitro, suggesting that protein binding at such sites in chromosomal DNA plays an important role in early development. Images PMID:1766880
Ahmad, Bashir; Rizwan, Muhammad; Rauf, Abdur; Raza, Muslim; Bashir, Shumaila; Molnar, Joseph; Csonka, Akos; Szabo, Diana; Mubarak, Mohammad S; Noor, Mah; Siddiqui, Bina S
2017-01-01
Fungi performing a wide range of function in soil by secreting low molecular weight compound known as secondary metabolites. S. rolfsii is a soil borne phytopathogenic fungi was used for the production of bioactive compounds. The present study belongs to evaluate the anticancer potentials of a secondary metabolites isolated from S. rolfsii, their multidrug resistance (MDR), and molecular docking study. (1S,3R,4R,5R,E)-3-(3-(3,4-Dihydroxyphenyl)acryloyloxy)-1,4,5 trihydroxycyclohexanecarboxylic acid (1), or best known as chlorogenic acid, was isolated from the ethyl acetate fraction of crude secondary metabolites produced by the soil borne Fungus Screlotium rolfsii. Structure of chlorogenic acid (1) was confirmed by means of FT-IR, 1H NMR, 13C NMR, and mass spectrometry as well as by melting point. Effect of compound 1 on the reversion of multidrug resistant (MDR) mediated by Pglycoprotein (P-gp) against cancer cells was evaluated with a rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma. Compound 1 was also evaluated for Anti-proliferative effect on the L5178 mouse Tcell lymphoma cell line. Results from the present investigation revealed that compound 1 exhibits excellent MDR reversing effect in a dose-dependent manner against mouse T-lymphoma cell line. Compound 1 also showed anti-proliferative effect on L5178Y mouse T-lymphoma cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Predominant effect of host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut.
Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Kashi, Yechezkel
2011-09-01
The gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines. Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, the L. johnsonii level decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance of L. johnsonii levels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similar L. johnsonii levels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence of L. johnsonii in the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach.
Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders.
Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I
2014-01-01
Overactivation of the mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of syndromic forms of autism spectrum disorders (ASDs), such as tuberous sclerosis complex, neurofibromatosis 1, and fragile X syndrome. Administration of mTORC1 (mTOR complex 1) inhibitors (e.g. rapamycin) in syndromic mouse models of ASDs improved behavior, cognition, and neuropathology. However, since only a minority of ASDs are due to the effects of single genes (∼10%), there is a need to explore inhibition of mTOR activity in mouse models that may be more relevant to the majority of nonsyndromic presentations, such as the genetically inbred BTBR T(+)Itpr3(tf)/J (BTBR) mouse model of ASDs. BTBR mice have social impairment and exhibit increased stereotypic behavior. In prior work, d-cycloserine, a partial glycineB site agonist that targets the N-methyl-d-aspartate (NMDA) receptor, was shown to improve sociability in both Balb/c and BTBR mouse models of ASDs. Importantly, NMDA receptor activation regulates mTOR signaling activity. The current study investigated the ability of rapamycin (10mg/kg, i.p.×four days), an mTORC1 inhibitor, to improve sociability and stereotypic behavior in BTBR mice. Using a standard paradigm to assess mouse social behavior, rapamycin improved several measures of sociability in the BTBR mouse, suggesting that mTOR overactivation represents a therapeutic target that mediates or contributes to impaired sociability in the BTBR mouse model of ASDs. Interestingly, there was no effect of rapamycin on stereotypic behaviors in this mouse model. Copyright © 2013 Elsevier Inc. All rights reserved.
Mouse homologues of human hereditary disease.
Searle, A G; Edwards, J H; Hall, J G
1994-01-01
Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633
Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori
2017-12-01
Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.
Signaling pathways underlying the antidepressant-like effect of inosine in mice.
Gonçalves, Filipe Marques; Neis, Vivian Binder; Rieger, Débora Kurrle; Lopes, Mark William; Heinrich, Isabella A; Costa, Ana Paula; Rodrigues, Ana Lúcia S; Kaster, Manuella P; Leal, Rodrigo Bainy
2017-06-01
Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A 1 and A 2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca 2+ /calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine in a preclinical test of depression.
Khosla, Nidhi; Marsteller, Jill A; Holtgrave, David R
2013-11-01
We examined whether mandated collaboration reflected in memoranda of understanding (MOUs) developed by health agencies to meet funder expectations is effective in fostering inter-agency collaboration. We conducted 22 semi-structured interviews from late 2010 to early 2012 in Baltimore, USA, with representatives of 17 HIV service agencies, three local health department units, and one agency that closed in 2008 (two interviews). While there was no consensus, most respondents perceived MOUs negatively, mainly because the process of obtaining signed MOUs was time consuming; frontline staff was mostly unaware of MOUs, agencies did not necessarily work with agencies they signed MOUs with and MOUs were rarely evaluated after being signed. A few agencies reported that MOUs could keep agencies focused and set mutual expectations. The local health department acknowledged shortcomings in MOUs but emphasized that MOUs could help agencies plan for referring clients when their own capacity was full. Although many agencies acknowledged the importance of collaboration, most respondents found that MOUs lacked practical utility. Grant-makers should consult sub-grantees to develop alternative means of fostering collaboration that would be perceived as relevant by both parties. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Zhang, Guo-Liang; Song, Jun-Lin; Zhou, Yi; Zhang, Rui-Qian; Cheng, Shun-Feng; Sun, Xiao-Feng; Qin, Guo-Qing; Shen, Wei; Li, Lan
2018-07-01
Zearalenone (ZEA), a natural contaminant found in feed, has been shown to have a negative impact on domestic animal reproduction, particularly in pigs. There are species-specific differences in the ZEA-induced toxicity pattern. Here, we investigated the different biological effects of ZEA exposure on porcine and mouse granulosa cells, using RNA-seq analysis. We treated murine and porcine granulosa cells with 10 μM and 30 μM ZEA during 72 h of culturing, in vitro. The results showed that 10 μM ZEA exposure significantly altered mitosis associated genes in porcine granulosa cells, while the same treatment significantly altered the steroidogenesis associated genes in mouse granulosa cells. Exposure to 30 μM ZEA resulted in significantly up-regulated expression of inflammatory related genes in porcine granulosa cells as well as the cancer related genes in mouse granulosa cells. Similarly, 30 μM ZEA exposure significantly decreased the expression of tumor suppressor factors in the mouse granulosa cells. Furthermore, immunofluorescence, RT-qPCR as well as western-blot analysis verified the different expression of related genes in ZEA exposed porcine and mouse granulosa cells. Collectively, these results illustrate the presence of species differences with regards to ZEA effects between porcine and mouse ovarian granulosa cells, in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.
A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects linked to liver cancer through the nuclear recep...
A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects related to liver carcinogenesis through the nucle...
Quantitation of aberrant interlocus T-cell receptor rearrangements in mouse thymocytes and the effect of the herbicide 2,4- Dichlorophenoxyacetic acid
Small studies in human populations have suggested a correlation between the frequency of errors in antigen receptor gene a...
Wöhr, Markus
2015-01-01
An important diagnostic criterion for social communication deficits in autism spectrum disorders (ASD) are difficulties in adjusting behavior to suit different social contexts. While the BTBR T+tf/J (BTBR) inbred strain of mice is one of the most commonly used mouse models for ASD, little is known about whether BTBR mice display deficits in detecting changes in social context and their ability to adjust to them. Here, it was tested therefore whether the emission of isolation-induced ultrasonic vocalizations (USV) in BTBR mouse pups is affected by the social odor context, in comparison to the standard control strain with high sociability, C57BL/6J (B6). It is known that the presence of odors from mothers and littermates leads to a calming of the isolated mouse pup, and hence to a reduction in isolation-induced USV emission. In accordance with their behavioral phenotypes with relevance to all diagnostic core symptoms of ASD, it was predicted that BTBR mouse pups would not display a calming response when tested under soiled bedding conditions with home cage bedding material containing maternal odors, and that similar isolation-induced USV emission rates would be seen in BTBR mice tested under clean and soiled bedding conditions. Unexpectedly, however, the present findings show that BTBR mouse pups display such a calming response and emit fewer isolation-induced USV when tested under soiled as compared to clean bedding conditions, similar to B6 mouse pups. Yet, in contrast to B6 mouse pups, which emitted isolation-induced USV with shorter call durations and lower levels of frequency modulation under soiled bedding conditions, social odor context had no effect on acoustic call features in BTBR mouse pups. This indicates that the BTBR mouse model for ASD does not display deficits in detecting changes in social context, but has a limited ability and/or reduced motivation to adjust to them. PMID:25852455
Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A
2016-11-01
Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.
Koopmans, Bastijn; Smit, August B; Verhage, Matthijs; Loos, Maarten
2017-04-04
Systematic, standardized and in-depth phenotyping and data analyses of rodent behaviour empowers gene-function studies, drug testing and therapy design. However, no data repositories are currently available for standardized quality control, data analysis and mining at the resolution of individual mice. Here, we present AHCODA-DB, a public data repository with standardized quality control and exclusion criteria aimed to enhance robustness of data, enabled with web-based mining tools for the analysis of individually and group-wise collected mouse phenotypic data. AHCODA-DB allows monitoring in vivo effects of compounds collected from conventional behavioural tests and from automated home-cage experiments assessing spontaneous behaviour, anxiety and cognition without human interference. AHCODA-DB includes such data from mutant mice (transgenics, knock-out, knock-in), (recombinant) inbred strains, and compound effects in wildtype mice and disease models. AHCODA-DB provides real time statistical analyses with single mouse resolution and versatile suite of data presentation tools. On March 9th, 2017 AHCODA-DB contained 650 k data points on 2419 parameters from 1563 mice. AHCODA-DB provides users with tools to systematically explore mouse behavioural data, both with positive and negative outcome, published and unpublished, across time and experiments with single mouse resolution. The standardized (automated) experimental settings and the large current dataset (1563 mice) in AHCODA-DB provide a unique framework for the interpretation of behavioural data and drug effects. The use of common ontologies allows data export to other databases such as the Mouse Phenome Database. Unbiased presentation of positive and negative data obtained under the highly standardized screening conditions increase cost efficiency of publicly funded mouse screening projects and help to reach consensus conclusions on drug responses and mouse behavioural phenotypes. The website is publicly accessible through https://public.sylics.com and can be viewed in every recent version of all commonly used browsers.
Gordeeva, O F; Nikonova, T M
2013-01-01
Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intraperitoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (10(3) vs. 10(5) and 10(4) vs. 10(6), respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 10(3), 10(4), and 10(5) mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility and efficiency of tumor growth after transplantation of pluripotent stem cells. This information allows one to predict and possibly prevent the possible risks of tumorigenicity that could arise from stem cell therapeutics.
Corbin, JM.; Overcash, RF.; Wren, JD.; Coburn, A.; Tipton, GJ.; Ezzell, JA.; McNaughton, KK.; Fung, KM; Kosanke, SD.; Ruiz-Echevarria, MJ
2015-01-01
BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel™ cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. PMID:26417683
Corbin, Joshua M; Overcash, Ryan F; Wren, Jonathan D; Coburn, Anita; Tipton, Greg J; Ezzell, Jennifer A; McNaughton, Kirk K; Fung, Kar-Ming; Kosanke, Stanley D; Ruiz-Echevarria, Maria J
2016-01-01
Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. © 2015 Wiley Periodicals, Inc.
[Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].
Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing
2010-10-01
This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.
Wu, Feng-Rui; Ding, Biao; Qi, Bin; Shang, Ming-Bao; Yang, Xun-Xun; Liu, Yong; Li, Wen-Yong
2012-10-10
Ifrg15 is a newly identified interferon alpha responsive gene and is implicated in a wide variety of physiological roles in mammals. In the present study, multiple alignments of the deduced amino acids of 10 eutherian mammalian IFRG15/Ifrg15s isolated from open genomic database revealed that they were highly conserved. Real-time PCR showed that mouse Ifrg15 mRNA was expressed in MII stage oocytes and preimplantation embryos, and its highest value peaked at the stage of mouse blastocysts. To understand the effect of three development-related genes on the promoter activity of mouse Ifrg15, promoter analysis using luciferase assays in COS-7 cells were performed. The results showed that the transcription of mouse Ifrg15 was suppressed by Oct4 and Nanog when transfected with the longest Ifrg15 promoter reporter gene. After the relatively shorter promoters were co-transfected with Oct4, c-Myc and Nanog, the relative luciferase activities of Ifrg15 were gradually increased. These in vitro results data and expression profiles of Ifrg15 as revealed by real-time PCR partly indicated that Ifrg15 transcription might be either potentially regulated or dependent on the post-transcriptional effects of IFN-α mediated by the three genes indirectly. Our data suggested that the mouse Ifrg15 might interact with these key development-related genes and play significant roles on the mouse preimplantation embryos development, especially for the development of mouse blastocysts. Copyright © 2012 Elsevier B.V. All rights reserved.
The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.
Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J
2017-11-01
Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.
Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I
2005-01-01
As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069
Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya
2016-07-01
We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.
Vora, Shreya R; Patil, Rahul B; Pillai, Meena M
2009-05-01
With an aim to examine the effect of ethanolic extract of P. crispum (Parsley) leaves on the D-galactose-induced oxidative stress in the brain of mouse, the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) involved in oxygen radical (OR)-detoxification and antiperoxidative defense were measured in conjunction with an index of lipid peroxidation in mitochondrial fraction of various regions of the mouse brain. A significant decrease in superoxide dismutase and glutathione peroxidase activity was observed in D-galactose-stressed mice, while catalase activity was increased. Treatment of D-galactose-stressed mice with the ethanolic extract of P. crispum showed protection against the induced oxidative stress in brain regions. Concentration of thiobarbituric acid-reactive product was greatly elevated in D-galactose stress-induced mice and was significantly reduced in the brain regions of these mice upon treatment with P. crispum. It is postulated that parsley shows a protective effect against mitochondrial oxidative damage in the mouse brain.
[Inhibitory effect of taspine on mouse S180 sarcoma and its mechanism].
Zhang, Yan-Min; He, Lang-Chong; Wang, Hong-Ying
2007-05-01
To study the inhibition effect of taspine on mouse S180 sarcoma and its mechanism. The mouse S180 sarcoma model was established and used to observe the antitumor activity of taspine. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were measured by immunohistochemistry. Taspine showed antitumor activity on the mouse S180 sarcoma in a good dose-dependent manner. The inhibition rates on tumor of taspine at low, middle and high concentrations were 39.08% , 43.99% and 48.60%, respectively. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were decreased compared with the negative control. The ratio of Bax to Bcl-2 was increased. Taspine has antitumor effect on the S180 sarcoma, and the mechanism may be through the way of decreasing the expressing of the VEGF, bFGF, Bcl-2 and Bax and inducing the vascular endothelial cell apoptosis.
Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay
NASA Astrophysics Data System (ADS)
Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong
2005-12-01
In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.
Effects of chalcone derivatives on lipoxygenase and cyclooxygenase activities of mouse epidermis.
Nakadate, T; Aizu, E; Yamamoto, S; Kato, R
1985-09-01
The effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis were investigated. The chalcone derivatives which have 3,4-dihydroxycinnamoyl structure in the molecule, such as 3,4-dihydroxychalcone, 3,4,2'-trihydroxychalcone, 3,4,4'-trihydroxychalcone and 3,4,2'4'-tetrahydroxychalcone, potently inhibited epidermal 12-lipoxygenase activity. Although some of them also inhibited cyclooxygenase activity at relatively high concentrations, the inhibitory effects of these chalcone derivatives on 12-lipoxygenase were 10 times or more potent than their effects on cyclooxygenase. The chalcone derivatives which have cinnamoyl or 4-hydroxycinnamoyl structure, instead of 3,4-dihydroxycinnamoyl structure, in the molecule, showed little or no inhibitory effects on either 12-lipoxygenase or cyclooxygenase activities. The inhibitory effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis are dependent on the particular structure, i.e. 3,4-dihydroxycinnamoyl structure, of the chalcone derivatives.
Lu, Yi-Yu; Ao, Zong-Hua; Lu, Zhen-Ming; Xu, Hong-Yu; Zhang, Xiao-Mei; Dou, Wen-Fang; Xu, Zheng-Hong
2008-12-08
The objectives of this study were to investigate the analgesic and anti-inflammatory effects of the dry matter of culture broth (DMCB) of Termitomyces albuminosus in submerged culture and its crude saponin extract (CSE) and crude polysaccharide extract (CPE). The analgesic effects of DMCB, CSE and CPE were evaluated with models of acetic acid-induced writhing response and formalin test in mouse. The anti-inflammatory effects of DMCB, CSE and CPE were evaluated by using models of xylene-induced mouse ear swelling and carrageen-induced mouse paw edema. The DMCB, CSE and CPE significantly decreased the acetic acid-induced writhing response and the licking time on the late phase in the formalin test. Treatment of DMCB (1000mg/kg), CSE (200mg/kg) or CPE (200mg/kg) inhibited the mouse ear swelling by 61.8%, 79.0% and 81.6%, respectively. In the carrageen-induced mouse paw edema test, the group treated with indomethacin showed the strongest inhibition of edema formation by 77.8% in the third hour after carrageenan administration, while DMCB (1000mg/kg), CSE (200mg/kg) and CPE (200mg/kg) showed 48.4%, 55.6% and 40.5%, respectively. The results suggested that DMCB of Termitomyces albuminosus possessed the analgesic and anti-inflammatory activities. Saponins and polysaccharides were proposed to be the major active constituents of Termitomyces albuminosus in submerged culture.
Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Freeman, Linnea R; Pepping, Jennifer K; Beckett, Tina L; Murphy, M Paul; Keller, Jeffrey N
2013-09-01
Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease. Copyright © 2012. Published by Elsevier B.V.
Visser, Bart; De Looze, Michiel; De Graaff, Matthijs; Van Dieën, Jaap
2004-02-05
The objective of the present study was to gain insight into the effects of precision demands and mental pressure on the load of the upper extremity. Two computer mouse tasks were used: an aiming and a tracking task. Upper extremity loading was operationalized as the myo-electric activity of the wrist flexor and extensor and of the trapezius descendens muscles and the applied grip- and click-forces on the computer mouse. Performance measures, reflecting the accuracy in both tasks and the clicking rate in the aiming task, indicated that the levels of the independent variables resulted in distinguishable levels of accuracy and work pace. Precision demands had a small effect on upper extremity loading with a significant increase in the EMG-amplitudes (21%) of the wrist flexors during the aiming tasks. Precision had large effects on performance. Mental pressure had substantial effects on EMG-amplitudes with an increase of 22% in the trapezius when tracking and increases of 41% in the trapezius and 45% and 140% in the wrist extensors and flexors, respectively, when aiming. During aiming, grip- and click-forces increased by 51% and 40% respectively. Mental pressure had small effects on accuracy but large effects on tempo during aiming. Precision demands and mental pressure in aiming and tracking tasks with a computer mouse were found to coincide with increased muscle activity in some upper extremity muscles and increased force exertion on the computer mouse. Mental pressure caused significant effects on these parameters more often than precision demands. Precision and mental pressure were found to have effects on performance, with precision effects being significant for all performance measures studied and mental pressure effects for some of them. The results of this study suggest that precision demands and mental pressure increase upper extremity load, with mental pressure effects being larger than precision effects. The possible role of precision demands as an indirect mental stressor in working conditions is discussed.
Al-Romaiyan, A; Liu, B; Docherty, R; Huang, G-C; Amiel, S; Persaud, S J; Jones, P M
2012-12-01
Traditional plant-based remedies such as Gymnema sylvestre (GS) extracts have been used to treat diabetes mellitus for many centuries. We have shown previously that a novel GS extract, OSA®, has a direct effect on insulin secretion but its mode of action has not been studied in detail Thus this study investigated the possible underlying mechanism(s) by which OSA® exerts its action. The effects of OSA® on [Ca(2+)]i and K(+) conductances were assessed by Ca(2+) microfluorimetry and electrophysiology in dispersed mouse islets and MIN6 β-cells, respectively. Isolated mouse (from 20 to 25 mice) and human (from 3 donors) islets, and MIN6 β-cells, were used to investigate whether the stimulatory effect of OSA® on insulin secretion was dependent on the presence of extracellular calcium and protein kinase activation. OSA ®-induced insulin secretion from mouse islets and MIN6 β-cells was inhibited by nifedipine, a voltage-gated Ca(2+) channel blocker, and by the removal of extracellular Ca(2+), respectively. OSA® did not affect the activities of KATP channels or voltage-dependent K(+) channels in MIN6 β-cells but it caused an increase in intracellular Ca(2+) ([Ca(2+)]i) concentrations in Fura-2-loaded mouse islet cells. The insulin secretagogue effect of OSA® was dependent, in part, on protein kinase activation since incubating mouse or human islets with staurosporine, a general protein kinase inhibitor, resulted in partial inhibition of OSA®-induced insulin secretion. Experiments using permeabilized, Ca(2+)-clamped MIN6 β-cells revealed a Ca(2+)-independent component action of OSA® at a late stage in the stimulus-response coupling pathway. OSA®-induced insulin secretion was unexpectedly associated with a decrease in intracellular cAMP levels. These data indicate that the GS isolate OSA® stimulates insulin secretion from mouse and human islets in vitro, at least in part as a consequence of Ca(2+) influx and protein kinase activation. © 2012 Blackwell Publishing Ltd.
Mouse Models for Down Syndrome-Associated Developmental Cognitive Disabilities
Liu, Chunhong; Belichenko, Pavel V.; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M.; Baldini, Antonio; Antonarakis, Stylianos E.; Mobley, William C.; Yu, Y. Eugene
2011-01-01
Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. PMID:21865664
Zielińska, Marta; Jarmuż, Agata; Wasilewski, Andrzej; Cami-Kobeci, Gerta; Husbands, Stephen; Fichna, Jakub
2017-04-01
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional disorder of the gastrointestinal (GI) tract. The major IBS-D symptoms include diarrhea, abdominal pain and discomfort. High density of opioid receptors (ORs) in the GI tract and their participation in the maintenance of GI homeostasis make ORs ligands an attractive option for developing new anti-IBS-D treatments. The aim of this study was to characterize the effect of methyl-orvinol on the GI motility and secretion and in mouse models mimicking symptoms of IBS-D. In vitro, the effects of methyl-orvinol on electrical field stimulated smooth muscle contractility and epithelial ion transport were characterized in the mouse colon. In vivo, the following tests were used to determine methyl-orvinol effect on mouse GI motility: colonic bead expulsion, whole GI transit and fecal pellet output. An antinociceptive action of methyl-orvinol was assessed in the mouse model of visceral pain induced by mustard oil. Methyl-orvinol (10 -10 to 10 -6 M) inhibited colonic smooth muscle contractions in a concentration-dependent manner. This effect was reversed by naloxone (non-selective opioid antagonist) and β-funaltrexamine (selective MOP antagonist). Experiments with a selective KOP receptor agonist, U50488 revealed that methyl-orvinol is a KOP receptor antagonist in the GI tract. Methyl-orvinol enhanced epithelial ion transport. In vivo, methyl-orvinol inhibited colonic bead expulsion and prolonged GI transit. Methyl-orvinol improved hypermotility and reduced abdominal pain in the mouse models mimicking IBS-D symptoms. Methyl-orvinol could become a promising drug candidate in chronic therapy of functional GI diseases such as IBS-D. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Scott, L F; Sundaram, S G; Smith, S
1993-09-01
To define both the limits of a mouse embryo bioassay for quality control in an assisted reproductive technology (ART) program and the areas where it can be effectively used. Embryos at the pronuclear and two-cell stage from three different strains of mice were used to assess the effectiveness of this assay for media quality control using five different media routinely used in ART. Pronuclear and two-cell embryos from CD-1 mice were used to test the ability of a mouse embryo bioassay to control for water quality, contaminants in the culture system, and fluctuations in the environmental conditions using a medium, culture system, and scoring technique that were optimized for this strain. The mouse embryo bioassay is not effective in differentiating media appropriate for supporting human embryo development since the development of mouse embryos in vitro is strain, stage, and media related. However, CD-1 embryos were shown to be sensitive to variations in water quality, pH, temperature, incubator conditions, and contaminants in the system when grown in a protein-free medium optimized for their development. Both total blastocyst number and the cell count in the blastocysts were affected. Pronuclear embryos were more sensitive to perturbations in the culture system than two-cell embryos. A mouse embryo bioassay can be effectively used as a means of quality control of water, chemicals, and contact materials and for technique standardization and training in an assisted reproduction program. All the conditions of the test should be defined, pronuclear embryos should be used, and the end point should be fully expanded blastocysts and/or cell numbers in these blastocysts where appropriate.
Koppe, Tiago; Patchen, Bonnie; Cheng, Aaron; Bhasin, Manoj; Vulpe, Chris; Schwartz, Robert E.; Moreno‐Navarrete, Jose Maria; Fernandez‐Real, Jose Manuel
2017-01-01
Iron overload causes the generation of reactive oxygen species that can lead to lasting damage to the liver and other organs. The goal of this study was to identify genes that modify the toxicity of iron overload. We studied the effect of iron overload on the hepatic transcriptional and metabolomic profile in mouse models using a dietary model of iron overload and a genetic model, the hemojuvelin knockout mouse. We then evaluated the correlation of nicotinamide N‐methyltransferase (NNMT) expression with body iron stores in human patients and the effect of NNMT knockdown on gene expression and viability in primary mouse hepatocytes. We found that iron overload induced significant changes in the expression of genes and metabolites involved in glucose and nicotinamide metabolism and that NNMT, an enzyme that methylates nicotinamide and regulates hepatic glucose and cholesterol metabolism, is one of the most strongly down‐regulated genes in the liver in both genetic and dietary iron overload. We found that hepatic NNMT expression is inversely correlated with serum ferritin levels and serum transferrin saturation in patients who are obese, suggesting that body iron stores regulate human liver NNMT expression. Furthermore, we demonstrated that adenoviral knockdown of NNMT in primary mouse hepatocytes exacerbates iron‐induced hepatocyte toxicity and increases expression of transcriptional markers of oxidative and endoplasmic reticulum stress, while overexpression of NNMT partially reversed these effects. Conclusion: Iron overload alters glucose and nicotinamide transcriptional and metabolic pathways in mouse hepatocytes and decreases NNMT expression, while NNMT deficiency worsens the toxic effect of iron overload. For these reasons, NNMT may be a drug target for the prevention of iron‐induced hepatotoxicity. (Hepatology Communications 2017;1:803–815) PMID:29404495
Predominant Effect of Host Genetics on Levels of Lactobacillus johnsonii Bacteria in the Mouse Gut▿†
Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Kashi, Yechezkel
2011-01-01
The gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines. Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, the L. johnsonii level decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance of L. johnsonii levels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similar L. johnsonii levels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence of L. johnsonii in the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach. PMID:21803912
Energy harvesting from mouse click of robot finger using piezoelectrics
NASA Astrophysics Data System (ADS)
Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon
2017-04-01
In this paper, we investigate the feasibility of energy harvesting from the mouse click motion using a piezoelectric energy transducer. Specifically, we use a robotic finger to realize repeatable mouse click motion. The robotic finger wears a glove with a pocket for including the piezoelectric material as an energy transducer. We propose a model for the energy harvesting system through the inverse kinematic framework of parallel joints in the finger and the electromechanical coupling equations of the piezoelectric material. Experiments are performed to elucidate the effect of the load resistance and the mouse click motion on energy harvesting.
HBV life cycle is restricted in mouse hepatocytes expressing human NTCP.
Li, Hanjie; Zhuang, Qiuyu; Wang, Yuze; Zhang, Tianying; Zhao, Jinghua; Zhang, Yali; Zhang, Junfang; Lin, Yi; Yuan, Quan; Xia, Ningshao; Han, Jiahuai
2014-03-01
Recent studies have revealed that human sodium taurocholate cotransporting polypeptide (SLC10A1 or NTCP) is a functional cellular receptor for hepatitis B virus (HBV). However, whether human NTCP can support HBV infection in mouse hepatocyte cell lines has not been clarified. Because an HBV-permissible mouse model would be helpful for the study of HBV pathogenesis, it is necessary to investigate whether human NTCP supports the susceptibility of mouse hepatocyte cell lines to HBV. The results show that exogenous human NTCP expression can render non-susceptible HepG2 (human), Huh7 (human), Hepa1-6 (mouse), AML-12 (mouse) cell lines and primary mouse hepatocyte (PMH) cells susceptible to hepatitis D virus (HDV) which employs HBV envelope proteins. However, human NTCP could only introduce HBV susceptibility in human-derived HepG2 and Huh7 cells, but not in mouse-derived Hepa1-6, AML-12 or PMH cells. These data suggest that although human NTCP is a functional receptor that mediates HBV infection in human cells, it cannot support HBV infection in mouse hepatocytes. Our study indicated that the restriction of HBV in mouse hepatocytes likely occurs after viral entry but prior to viral transcription. We have excluded the role of mouse hepatocyte nuclear factors in the restriction of the HBV life cycle and showed that knockdown or inhibition of Sting, TBK1, IRF3 or IRF7, the components of the anti-viral signaling pathways, had no effect on HBV infection in mouse hepatocytes. Therefore, murine restriction factors that limit HBV infection need to be identified before a HBV-permissible mouse line can be created.
ERIC Educational Resources Information Center
Joels, Marian; Krugers, Harm; Wiegert, Olof
2006-01-01
Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…
Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), produces hydronephrosis by altering the differentiation and proliferation of ureteric epithelial cells in the embryonic C57BL/6N mouse urinary tract. This study examines the effects of TCDD on late gestation fetal urinary tract cells u...
Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y
2014-12-23
Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.
Response of a mouse hybridoma cell line to heat shock, agitation, and sparging
NASA Technical Reports Server (NTRS)
Passini, Cheryl A.; Goochee, Charles F.
1989-01-01
A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.
Regulation of hepatic bile acid transporters Ntcp and Bsep expression.
Cheng, Xingguo; Buckley, David; Klaassen, Curtis D
2007-12-03
Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.
Comparing speech and nonspeech context effects across timescales in coarticulatory contexts.
Viswanathan, Navin; Kelty-Stephen, Damian G
2018-02-01
Context effects are ubiquitous in speech perception and reflect the ability of human listeners to successfully perceive highly variable speech signals. In the study of how listeners compensate for coarticulatory variability, past studies have used similar effects speech and tone analogues of speech as strong support for speech-neutral, general auditory mechanisms for compensation for coarticulation. In this manuscript, we revisit compensation for coarticulation by replacing standard button-press responses with mouse-tracking responses and examining both standard geometric measures of uncertainty as well as newer information-theoretic measures that separate fast from slow mouse movements. We found that when our analyses were restricted to end-state responses, tones and speech contexts appeared to produce similar effects. However, a more detailed time-course analysis revealed systematic differences between speech and tone contexts such that listeners' responses to speech contexts, but not to tone contexts, changed across the experimental session. Analyses of the time course of effects within trials using mouse tracking indicated that speech contexts elicited fewer x-position flips but more area under the curve (AUC) and maximum deviation (MD), and they did so in the slower portions of mouse-tracking movements. Our results indicate critical differences between the time course of speech and nonspeech context effects and that general auditory explanations, motivated by their apparent similarity, be reexamined.
Effects of in utero retinoic acid exposure on mouse pelage hair follicle development.
García-Fernández, Rosa A; Pérez-Martínez, Claudia; Escudero-Diez, Alfredo; García-Iglesias, Maria J
2002-06-01
We investigated in vivo the histological and immunohistochemical responses of mouse hair pelage follicle morphogenesis to prenatal exposure to a potentially nonteratogenic dose of all-trans-retinoic acid (RA), as a basis studying the preventive effect of RA on adult mouse skin carcinogenesis. In pregnant mice, a single oral dose of RA at 30 mg kg-1 body weight given on day 11.5 of gestation caused no RA-induced changes in the morphology or temporal expression patterns of keratins during pelage hair follicle morphogenesis. The only differential effect of RA was a statistically significant increase in the number of BrdU-positive nuclei in hair bulbs from RA exposed fetuses compared with nonexposed mice. The absence of adverse RA effects suggests that this experimental design may represent a valuable protocol for use in studies on the in vivo effects of this retinoid on different skin diseases.
Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse
Vrooman, Lisa A.; Bartolomei, Marisa S.
2016-01-01
Millions of children have been born worldwide though assisted reproductive technologies (ART). Consistent with the Developmental Origins of Health and Disease hypothesis, there is concern that ART can induce adverse effects, especially because procedures coincide with epigenetic reprogramming events. Although the majority of studies investigating the effects of ART have focused on perinatal outcomes, more recent studies demonstrate that ART-conceived children may be at increased risk for postnatal effects. Here, we present the current epidemiological evidence that ART-conceived children have detectable differences in blood pressure, body composition, and glucose homeostasis. Similar effects are observed in the ART mouse model, which have no underlying infertility, suggesting that cardiometabolic effects are likely caused by ART procedures and not due to reasons related to infertility. We propose that the mouse system can, consequently, be used to adequately study, modify, and improve outcomes for ART children. PMID:27474254
Shurlygina, A V; Mel'nikova, E V; Trufakin, V A
2015-02-01
We studied the chronodependent effect of IL-2 in the experimental model of immunodeficiency, cyclophosphamide-induced immunosuppression in mice. IL-2 in a dose of 100 U/ mouse was administered at 10.00 and 16.00 for 3 days after injection of cyclophosphamide. In contrast to the morning treatment with the cytokine, evening administration produced antiapoptotic effect on splenocytes and stimulated proliferation to a greater extent. This was accompanied by an increase in the number of CD4(+), CD25(+) and CD4(+)25(+) cells in the spleen to a level of intact mice. More pronounced effect of the evening mode of IL-2 administration on the proliferation and subpopulation composition of mouse spleen cells in the studied model can be associated with high blood level of CD25(+) cells at this time of the day.
APOPTOSIS IN WHOLE MOUSE OVARIES
Apoptosis in Whole Mouse Ovaries
Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.
Effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier.
Hou, Wu-Gang; Zhao, Jie; Li, Zhen; Li, Wei; Li, Teng; Xiong, Li-Ze; Zhang, Yuan-Qiang
2012-07-01
To investigate the effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier (BTB) and spermatogenesis. After whole body irradiation with 400 kV/m electromagnetic pulse irradiation, the mouse testicles and BTB permeability were observed using hematoxylin-eosin, Evans blue, and lanthanum nitrate as tracers. The expression of the BTB tight junction protein occludin was examined using real-time polymerase chain reaction and Western blotting. At 1, 7, and 14 days after irradiation, the BTB structure was damaged, the BTB permeability was significantly increased, numerous apoptotic or necrotic spermatogenic cells were found in the lumen, and the mRNA and protein expression levels of occludin were markedly decreased. The BTB structure and occludin expression levels had gradually recovered by 21 and 28 days after irradiation. Electromagnetic pulse irradiation damaged the structure and function of mouse BTB, resulting in apoptosis or necrosis of the spermatogenic cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Wolf, Cynthia J; Takacs, Margy L; Schmid, Judith E; Lau, Christopher; Abbott, Barbara D
2008-11-01
Perfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects. This study evaluated the ability of numerous PFAAs to induce mouse and human PPARalpha activity in a transiently transfected COS-1 cell assay. COS-1 cells were transfected with either a mouse or human PPARalpha receptor-luciferase reporter plasmid. After 24 h, cells were exposed to either negative controls (water or dimethyl sulfoxide, 0.1%); positive control (WY-14643, PPARalpha agonist); perfluorooctanoic acid or perfluorononanoic acid at 0.5-100 microM; perfluorobutanoic acid, perfluorohexanoic acid, perfluorohexane sulfonate, or perfluorodecanoic acid (PFDA) at 5-100 microM; or perfluorobutane sulfonate or perfluorooctane sulfonate at 1-250 microM. After 24 h of exposure, luciferase activity from the plasmid was measured. Each PFAA activated both mouse and human PPARalpha in a concentration-dependent fashion, except PFDA with human PPARalpha. Activation of PPARalpha by PFAA carboxylates was positively correlated with carbon chain length, up to C9. PPARalpha activity was higher in response to carboxylates compared to sulfonates. Activation of mouse PPARalpha was generally higher compared to that of human PPARalpha. We conclude that, in general, (1) PFAAs of increasing carbon backbone chain lengths induce increasing activity of the mouse and human PPARalpha with a few exceptions, (2) PFAA carboxylates are stronger activators of mouse and human PPARalpha than PFAA sulfonates, and (3) in most cases, the mouse PPARalpha appears to be more sensitive to PFAAs than the human PPARalpha in this model.
Goldfarb, Ilona Telefus; Adeli, Sharareh; Berk, Tucker; Phillippe, Mark
2018-05-01
While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.
Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1+/- mice.
Bai, Shanshan; Li, Dong; Xu, Liang; Duan, Huichuan; Yuan, Jie; Wei, Min
2018-04-17
Saethre-Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre-Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre-Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients. We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1 +/- mice (a mouse model of Saethre-Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1 +/- mice were also injected with recombinant mouse periostin to verify the treatment effects. Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1 +/- mice showed patent coronal sutures in comparison with non-treated Twist1 +/- mice which have coronal craniosynostosis. Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1 +/- mice.
Khavinson, V Kh; Rybakina, E G; Malinin, V V; Pivanovich, I Yu; Shanin, S N; Korneva, E A
2002-05-01
Immunomodulating effects of synthetic peptides Vilon (Lys-Glu), Epithalon (Ala-Glu-Asp-Gly), and Cortagen (Ala-Glu-Asp-Pro) and possible involvement of the sphingomyelin signal transduction pathway in their effects in mouse thymocytes were studied. Vilon produced the most potent comitogenic effect on thymocyte proliferation and modulated comitogenic activity of interleukin-1b. Epithalon was less potent, while Cortagen produced no such effects. Vilon produced a more pronounced stimulatory effect on sphingomyelinase activity in mouse thymocyte membranes compared to Epithalon and Cortagen.
Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction
Dvorkin, Anna; Benjamini, Yoav; Golani, Ilan
2008-01-01
Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually. PMID:18463701
Franchini, Paolo; Colangelo, Paolo; Meyer, Axel; Fruciano, Carmelo
2016-03-01
The Western European house mouse, Mus musculus domesticus, is well-known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.
Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K; Dehaen, Wim; de Witte, Peter A M; Esguerra, Camila V
2013-01-01
In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.
Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K.; Dehaen, Wim; de Witte, Peter A. M.; Esguerra, Camila V.
2013-01-01
In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application. PMID:24349101
Effects of Dai-kenchu-to on spontaneous activity in the mouse small intestine.
Kito, Yoshihiko; Suzuki, Hikaru
2006-12-01
The effects of Dai-kenchu-to (DKT), a Chinese medicine, on spontaneous activity of mouse small intestine were investigated. Experiments were carried out with tension recording and intracellular recording. DKT contracted mouse longitudinal smooth muscles in a dose dependent manner (0.1-10 mg/ml). Low concentration of DKT (0.1 mg/ml) did not contract the longitudinal muscles of mouse small intestine. DKT (0.1 mg/ml) inhibited contraction elicited by transmural nerve stimulation (TNS). DKT (1 mg/ml) evoked relaxation before contraction. The initial relaxation was abolished by Nomega-nitro-L-arginine (L-NNA). DKT (10 mg/ml)-induced contraction had two components: a transient rapid contraction and a following slow contraction. Atropine inhibited DKT (1 mg/ml)-induced contraction to about 50% of control. In the presence of atropine, tetrodotoxin (TTX) inhibited the contraction elicited by DKT (1 mg/ml) to about 80%. DKT depolarized the membrane and decreased the amplitude of pacemaker potentials recorded from in situ myenteric interstitial cells of Cajal (ICC-MY) with no alteration to the frequency, duration and maximum rates of rise in the presence of nifedipine and TTX. The same results were obtained in slow waves recorded from circular smooth muscle cells. These results indicate that DKT evoked both contraction and relaxation by releasing acetylcholine, nitric oxide and other excitatory neurotransmitters in mouse small intestine. DKT had no effects on pacemaker mechanisms and electrical coupling between ICC-MY and smooth muscle cells in mouse small intestine. The results also suggest that DKT may contract smooth muscles by depolarizing the membrane directly.
Stress-Induced Neurodegeneration: Mechanisms and Interventions.
2000-01-01
exacerbates the effect of excitatory amino acids. We have successfully characterized acute social defeat in the mouse as a model for eliciting high plasma...In addition, we will (3) compare the effects of SD to those of repeated restraint on memory and HC morphology. Finally we will (4) examine the...modified resident-intruder test; the validity of repeated Y-maze testing in the SD mouse; the effects of treatment with pharmacological (e.g. anxiolytic
A protocol to study ex vivo mouse working heart at human-like heart rate.
Feng, Han-Zhong; Jin, Jian-Ping
2018-01-01
Genetically modified mice are widely used as experimental models to study human heart function and diseases. However, the fast rate of normal mouse heart at 400-600bpm limits its capacity of assessing kinetic parameters that are important for the physiology and pathophysiology of human heart that beats at a much slower rate (75-180bpm). To extend the value of mouse models, we established a protocol to study ex vivo mouse working hearts at a human-like heart rate. In the presence of 300μM lidocaine to lower pacemaker and conductive activities and prevent arrhythmia, a stable rate of 120-130bpm at 37°C is achieved for ex vivo mouse working hearts. The negative effects of decreased heart rate on force-frequency dependence and lidocaine as a myocardial depressant on intracellular calcium can be compensated by using a higher but still physiological level of calcium (2.75mM) in the perfusion media. Multiple parameters were studied to compare the function at the human-like heart rate with that of ex vivo mouse working hearts at the standard rate of 480bpm. The results showed that the conditions for slower heart rate in the presence of 300μM lidocaine did not have depressing effect on left ventricular pressure development, systolic and diastolic velocities and stroke volume with maintained positive inotropic and lusitropic responses to β-adrenergic stimulation. Compared with that at 480bpm, the human-like heart rate increased ventricular filling and end diastolic volume with enhanced Frank-Starling responses. Coronary perfusion was increased from longer relaxation time and interval between beats whereas cardiac efficiency was significantly improved. Although the intrinsic differences between mouse and human heart remain, this methodology for ex vivo mouse hearts to work at human-like heart rate extends the value of using genetically modified mouse models to study cardiac function and human heart diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.
Koyanagi, Sayaka; Hamasaki, Hiroko; Sekiguchi, Satoshi; Hara, Kenshiro; Ishii, Yoshiyuki; Kyuwa, Shigeru; Yoshikawa, Yasuhiro
2012-03-01
Maternal proteins are rapidly degraded by the ubiquitin-proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficient gad. Furthermore, we assessed morphological features in gad mouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the 'maternal antigen that embryos require' (NLRP5 (MATER)) protein level increased significantly in gad mouse ova compared with that in wild-type mice. In an ultrastructural study, gad mouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.
Takeo, Toru; Nakagata, Naomi
2011-11-01
Sperm cryopreservation is useful for the effective storage of genomic resources derived from genetically engineered mice. However, freezing the sperm of C57BL/6 mice, the most commonly used genetic background for genetically engineered mice, considerably reduces its fertility. We previously reported that methyl-beta-cyclodextrin dramatically improved the fertility of frozen/thawed C57BL/6 mouse sperm. Recently, it was reported that exposing sperm to reduced glutathione may alleviate oxidative stress in frozen/thawed mouse sperm, thereby enhancing in vitro fertilization (IVF); however, the mechanism underlying this effect is poorly understood. In the present study, we examined the combined effects of methyl-beta-cyclodextrin and reduced glutathione on the fertilization rate of IVF with frozen/thawed C57BL/6 mouse sperm and the characteristic changes in the zona pellucida induced by reduced glutathione. Adding reduced glutathione to the fertilization medium increased the fertilization rate. Methyl-beta-cyclodextrin and reduced glutathione independently increased fertilization rates, and their combination produced the strongest effect. We found that reduced glutathione increased the amount of free thiols in the zona pellucida and promoted zona pellucida enlargement. Finally, 2-cell embryos produced by IVF with the addition of reduced glutathione developed normally and produced live offspring. In summary, we have established a novel IVF method using methyl-beta-cyclodextrin during sperm preincubation and reduced glutathione during the IVF procedure to enhance fertility of frozen/thawed C57BL/6 mouse sperm.
Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G
1999-05-01
The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.
Folate supplementation differently affects uracil content in DNA in the mouse colon and liver
USDA-ARS?s Scientific Manuscript database
High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C5...
Driving Neurofibroma Formation in Mice
2006-08-01
pirfenidone . Ratner, Nancy DAMD17-02-1-0679 5 BODY Task 1: Analysis of EGFR-expressing mouse. a. Define abnormalities in...EGFR-overexpressing mouse nerves (Year 1). b. Evaluate effects of: a specific EGFR receptor antagonist and c. an anti-fibrotic drug, pirfenidone ...considered significant. Task 1c, In Progress: Evaluate effects of an anti-fibrotic drug, pirfenidone . Our move to the Children’s Hospital Research
USDA-ARS?s Scientific Manuscript database
Digestion of starch requires four mucosal maltases; sucrase and isomaltase (Si) and maltase and glucoamylase (Mgam). We ablated Mgam to study its roles. The in vitro effect was a slowing of null mucosal activity to 10% of WT. Here we report in vivo effects of Mgam KO on mouse glucose metabolism. alp...
Sex effects in mouse prion disease incubation time.
Akhtar, Shaheen; Wenborn, Adam; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E
2011-01-01
Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were seen in endogenous PrP(C) levels nor in the neuropathological markers of prion disease: PrP(Sc) distribution, spongiosis, neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as testing the effects of modifier genes or therapeutics, single sex groups should be used.
Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson's disease.
Shin, Keon Sung; Zhao, Ting Ting; Choi, Hyun Sook; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo
2014-06-03
Ethanol extract (GP-EX) of Gynostemma pentaphyllum (GP) ameliorates chronic stress-induced anxiety in mice. The present study investigated the effects of gypenoside-enriched components (GPS), GP-EX and water extract of GP (GP-WX) on MPTP lesion-induced affective disorders in C57BL/6 mice. GPS (50mg/kg) and GP-EX (50mg/kg) for 21 day-treatment period improved the symptom of anxiety disorders in the MPTP-lesioned mouse model of PD with or without L-DOPA treatment, which was examined by the elevated plus-maze and marble burying tests. In these states, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) significantly increased the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. In addition, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) showed protective effects on dopaminergic neurons in MPTP-lesioned mouse model of PD with or without L-DOPA treatment. In contrast, GPS (30 mg/kg) and GP-WX (50mg/kg) showed anxiolytic effects in the same animal models, but it was not significant. These results suggest that GPS (50mg/kg) and GP-EX (50mg/kg) showed anxiolytic effects on affective disorders and protective effects on dopaminergic neurons by modulating the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. Clinical trials of GPS and GP-EX need to be conducted further so as to develop adjuvant therapeutic agents for PD patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong
2016-02-01
We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD. Copyright © 2015 Elsevier Inc. All rights reserved.
CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES
Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...
NASA Astrophysics Data System (ADS)
Cao, Lina
Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that population density was one of the most important parameters affecting the SNV dynamics. The results also indicated that habitat disturbance could increase hantavirus transmission likely by increasing the movement and consequently contact rates. However, the model suggested that habitat disturbance had a much stronger effect on prevalence by decreasing population density than by increasing mice movement. Therefore, overall habitat disturbance reduces SNV prevalence.
Brandt, Michael P.; Kloos, Richard T.; Shen, Daniel H.; Zhang, Xiaoli; Liu, Yu-Yu
2012-01-01
Background Micro–single-photon emission computed tomography (SPECT) provides a noninvasive way to evaluate the effects of genetic and/or pharmacological modulation on sodium-iodide symporter (NIS)–mediated radionuclide accumulation in mouse thyroid and salivary glands. However, parameters affecting image acquisition and analysis of mouse thyroids and salivary glands have not been thoroughly investigated. In this study, we investigated the effects of region-of-interest (ROI) selection, collimation, scan time, and imaging orbit on image acquisition and quantification of thyroidal and salivary radionuclide accumulation in mice. Methods The effects of data window minima and maxima on thyroidal and salivary ROI selection using a visual boundary method were examined in SPECT images acquired from mice injected with 123I NaI. The effects of collimation, scan time, and imaging orbit on counting linearity and signal intensity were investigated using phantoms filled with various activities of 123I NaI or Tc-99m pertechnetate. Spatial resolution of target organs in whole-animal images was compared between circular orbit with parallel-hole collimation and spiral orbit with five-pinhole collimation. Lastly, the inter-experimental variability of the same mouse scanned multiple times was compared with the intra-experimental variability among different mice scanned at the same time. Results Thyroid ROI was separated from salivary glands by empirically increasing the data window maxima. Counting linearity within the range of 0.5–14.2 μCi was validated by phantom imaging using single- or multiple-pinhole collimators with circular or spiral imaging orbit. Scanning time could be shortened to 15 minutes per mouse without compromising counting linearity despite proportionally decreased signal intensity. Whole-animal imaging using a spiral orbit with five-pinhole collimators achieved a high spatial resolution and counting linearity. Finally, the extent of inter-experimental variability of NIS-mediated radionuclide accumulation in the thyroid and salivary glands by SPECT imaging in the same mouse was less than the magnitude of variability among the littermates. Conclusions The impacts of multiple variables and experimental designs on micro-SPECT imaging and quantification of radionuclide accumulation in mouse thyroid and salivary glands can be minimized. This platform will serve as an invaluable tool to screen for pharmacologic reagents that differentially modulate thyroidal and salivary radioiodine accumulation in preclinical mouse models. PMID:22540327
Zhang, Jinchao; Liu, Cuilian; Sun, Jing; Liu, Dandan; Wang, Peng
2010-01-01
The effects of water extract of Cajanus cajan (Linn.) Millsp. (Leguminosae) leaves (WECML) on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipocytic trans-differentiation of mouse primary osteoblasts (OBs) were studied. The results indicated that WECML promoted the proliferation of BMSCs and OBs at most concentrations. WECML promoted the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentrations of 0.1, 1, and 10 microg/mL, but inhibited the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentration of 0.01 microg/mL. WECML inhibited the adipogenic differentiation of BMSCs and adipocytic trans-differentiation of OBs at concentrations of 0.001, 0.1, 1, 10, and 100 microg/mL, but had no effects at concentration of 0.01 microg/mL. The results suggest that WECML has protective effects on bone and these protective effects may be mediated by decreasing adipocytic cell formation from BMSCs, which may promote the proliferation, differentiation, and mineralization function of OBs. The defined active ingredients in the WECML and the active mechanism need to be further studied.
[Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].
Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun
2010-10-01
To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.
Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro
2011-01-01
Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807
TRANSGENIC MOUSE MODELS AND PARTICULATE MATTER (PM)
The hypothesis to be tested is that metal catalyzed oxidative stress can contribute to the biological effects of particulate matter. We acquired several transgenic mouse strains to test this hypothesis. Breeding of the mice was accomplished by Duke University. Particles employed ...
Effect of human alpha 2HS glycoprotein on mouse macrophage function.
Lewis, J G; André, C M
1980-01-01
alpha 2HS glycoprotein was isolated from normal adult serum. The ability of alpha 2HS glycoprotein to promote the endocytosis of radiolabelled DNA and radiolabelled latex particles by mouse macrophages was investigated. The results using both radiolabelled latex particles and radiolabelled DNA show that alpha 2HS glycoprotein enhances the ability of mouse macrophages to take up these radiolabelled substrates as compared to control cells. Images Figure 1 Figure 2 PMID:7439929
Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min
2017-01-01
Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.
Hunsaker, Michael R.
2013-01-01
It has become increasingly important that the field of behavioral genetics identifies not only the gross behavioral phenotypes associated with a given mutation, but also the behavioral endophenotypes that scale with the dosage of the particular mutation being studied. Over the past few years, studies evaluating the effects of the polymorphic CGG trinucleotide repeat on the FMR1 gene underlying Fragile X-Associated Disorders have reported preliminary evidence for a behavioral endophenotype in human Fragile X Premutation carrier populations as well as the CGG knock-in (KI) mouse model. More recently, the behavioral experiments used to test the CGG KI mouse model have been extended to the Fmr1 knock-out (KO) mouse model. When combined, these data provide compelling evidence for a clear neurocognitive endophenotype in the mouse models of Fragile X-Associated Disorders such that behavioral deficits scale predictably with genetic dosage. Similarly, it appears that the CGG KI mouse effectively models the histopathology in Fragile X-Associated Disorders across CGG repeats well into the full mutation range, resulting in a reliable histopathological endophenotype. These endophenotypes may influence future research directions into treatment strategies for not only Fragile X Syndrome, but also the Fragile X Premutation and Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). PMID:24627796
Zhu, Xin-Hua; Liao, Bing; Xu, Yi; Liu, Ke; Huang, Yun; Huang, Quan-Long; Liu, Yue-Hui
2017-02-01
RNA interference has been considered as an effective gene silencing method in basic and preclinical investigations. The aims of the present study were to construct a lentiviral vector expressing a short hairpin RNA (shRNA) targeting the murine CC chemokine receptor 3 (mCCR3), and to investigate its effects on the proliferation and apoptosis of mouse eosinophils. A recombinant lentiviral vector expressing four fragments of mouse CCR3 shRNA (pLVX‑mCCR3‑1+2+3+4‑shRNA) was constructed using subcloning techniques. This novel lentivirus was then packaged into 293T cells by co‑transduction with plasmids, including Baculo p35, pCMV R8.2 and VSV. The interference effects of the vector were verified using polymerase chain reaction (PCR) and western blot analyses. The effects of the interference on the proliferation and apoptosis of mouse eosinophils were investigated using 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium and terminal deoxynucleotidyl transferase dUTP nick end labeling methods, respectively. The results of the PCR and western blot analyses confirmed that the novel recombinant vector, pLVX‑mCCR3‑1+2+3+4‑shRNA, had high efficiency in inhibiting the mRNA and protein expression levels of mCCR3 in mouse eosinophils. The downregulation of mCCR3 significantly inhibited proliferation of the eosinophils. Furthermore, the present study found that the downregulation of mCCR3 significantly promoted apoptosis of the eosinophils. Therefore, the downregulation of mCCR3 led to the inhibition of proliferation and induction of apoptosis in mouse eosinophils. The predominant characteristics of allergic rhinitis are eosinophil infiltration and release of inflammatory mediators, which appear in a variety of clinical manifestations. The results of the present study indicate that mCCR3 silencing may serve as a putative approach for the treatment of allergic rhinitis.
Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.
Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H
2009-04-01
The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the effects of these strategies on experimental outcomes.
Tang, Tao; He, Bixiu
2013-01-01
We evaluated the effects of Lycium barbarum polysaccharides LBP) on D-galactose aging model mouse, and explored its possible mechanism. Kunming mice were randomly divided into the control group, the model group, the high-dose LBP group, and the low-dose LBP group. Except the control group, D-galactose was used for modelling. The drug was administrated when modelling. Mouse behavioural, learning and memory changes were observed, and the contents of lipid peroxidation (LPO), lipofuscin (LF) and monoamine oxidase B (MAO-B) in mouse brain tissue and the weight of immune organs were measured after 6 weeks. Compared with the control group, mouse weight gain in the model group reduced significantly. Compared with model group, after mice drank LBP, the times of electric shock was less than aging mice (in which, the high-dose LBP group, P<0.05), and electric shock incubation period was longer (P<0.01). On Day 45 after modelling and drug administration, the contents of LPO, LF and MAO-B in mouse brain tissue in the model group increased significantly, while those in the drug administration groups decreased significantly. The thymus index in the aging model group decreased significantly; the thymus index and the spleen index in the high-dose LBP group and the low-dose LBP group rebounded significantly (P<0.01). We concluded that LBP has an anti-aging effect on D-galactose induced aging model mouse, and its mechanism may be related with the alleviation of glucose metabolism disorder and the resistance of the generation of lipid peroxide and other substances, which damage cell membrane lipid.
Stanley, Joanna L; Lincoln, Rachael J; Brown, Terry A; McDonald, Louise M; Dawson, Gerard R; Reynolds, David S
2005-05-01
The mouse rotarod test of motor coordination/sedation is commonly used to predict clinical sedation caused by novel drugs. However, past experience suggests that it lacks the desired degree of sensitivity to be predictive of effects in humans. For example, the benzodiazepine, bretazenil, showed little impairment of mouse rotarod performance, but marked sedation in humans. The aim of the present study was to assess whether the mouse beam walking assay demonstrates: (i) an increased sensitivity over the rotarod and (ii) an increased ability to predict clinically sedative doses of benzodiazepines. The study compared the effects of the full benzodiazepine agonists, diazepam and lorazepam, and the partial agonist, bretazenil, on the mouse rotarod and beam walking assays. Diazepam and lorazepam significantly impaired rotarod performance, although relatively high GABA-A receptor occupancy was required (72% and 93%, respectively), whereas beam walking performance was significantly affected at approximately 30% receptor occupancy. Bretazenil produced significant deficits at 90% and 53% receptor occupancy on the rotarod and beam walking assays, respectively. The results suggest that the mouse beam walking assay is a more sensitive tool for determining benzodiazepine-induced motor coordination deficits than the rotarod. Furthermore, the GABA-A receptor occupancy values at which significant deficits were determined in the beam walking assay are comparable with those observed in clinical positron emission tomography studies using sedative doses of benzodiazepines. These data suggest that the beam walking assay may be able to more accurately predict the clinically sedative doses of novel benzodiazepine-like drugs.
Muro-Neuro-Urodynamics; a Review of the Functional Assessment of Mouse Lower Urinary Tract Function.
Ito, Hiroki; Pickering, Anthony E; Igawa, Yasuhiko; Kanai, Anthony J; Fry, Christopher H; Drake, Marcus J
2017-01-01
Background: Mouse urodynamic tests are fundamental to understanding normal lower urinary tract (LUT) function. These experiments also contribute to our understanding of neurological dysfunction, pathophysiological processes, and potential mechanisms of therapy. Objectives: Systematic assessment of published evidence on urodynamics, advantages and limitations of different urodynamic measurements in mice, and consideration of potential implications for the clinical field. Methods: A search using specific search-terms for urodynamic studies and mice was conducted on PubMed (from inception to 1 July 2016). Results: We identified 55 studies examining or describing mouse neuro-urodynamics. We summarize reported features of mouse urodynamic function deriving from frequency-volume chart (FVC) measurements, voiding spot assays, filling cystometry, and pressure-flow studies. Similarly, an influence of the diurnal cycle on voiding is observed in mice and should be considered when interpreting rodent urodynamic studies, especially FVC measurements and voiding spot assays. Anaesthesia, restraint conditions, or filling rate influence mouse neuro-urodynamics. Mouse cystometric studies have observed intravesical pressure oscillations that accompany urine flow, attributed to high frequency opening and closing of the urethra. This characterization is not seen in other species, except rats. In contrast to human clinical urodynamics, the terminology of these examinations has not been standardized although many rodent urodynamic studies have been described. Conclusion: Mice have many anatomical and physiological similarities to humans and they are generally cost effective, and allow investigation of the effects of aging because of their short lifespan. There are some differences between mouse and human urodynamics. These must be considered when interpreting LUT function in mice, and translational value of murine disease models.
Maki, Katsuyuki; Holmes, Ann R; Watabe, Etsuko; Iguchi, Yumi; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro
2007-01-01
The aim of this study was to compare the pharmacodynamics of the azole antifungal drugs fluconazole, itraconazole and ketoconazole, and the polyene antifungal amphotericin B, in a mouse model of disseminated Candida albicans infection. In order to directly compare effective serum concentrations of these antifungals, drug concentrations were assayed microbiologically by measuring inhibition of C. albicans mycelial growth (mMIC) in a mouse serum-based assay (serum antifungal titer). Efficacy in the mouse infection model was determined using an organ-based (kidney burden) endpoint. For all four drugs, the serum antifungal titers, 8 hr after administration of single doses of drugs at a range of drug concentrations, correlated closely with C. albicans kidney fungal burden in the mouse model. The results showed that determining serum antifungal titer may be used to accurately represent kidney fungal burden in a mouse model of disseminated candidiasis and allowed direct comparison of the pharmacodynamics of differing classes of antifungal drugs.
Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin
2011-02-01
Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.
Rapamycin inhibits anal carcinogenesis in two preclinical animal models.
Stelzer, Marie K; Pitot, Henry C; Liem, Amy; Lee, Denis; Kennedy, Gregory D; Lambert, Paul F
2010-12-01
The incidence of anal cancer is increasing especially among HIV-infected persons in the HAART era. Treatment of this cancer is based upon traditional chemoradiotherapeutic approaches, which are associated with high morbidity and of limited effectiveness for patients with high-grade disease. The mammalian target of rapamycin (mTOR) pathway has been implicated in several human cancers, and is being investigated as a potential therapeutic target. In archival human anal cancers, we observed mTOR pathway activation. To assess response of anal cancer to mTOR inhibition, we utilized two newly developed mouse models, one in which anal cancers are induced to arise in HPV16 transgenic mice and the second a human anal cancer xenograft model. Using the transgenic mouse model, we assessed the preventative effect of rapamycin on neoplastic disease. We saw significant changes in the overall incidence of tumors, and tumor growth rate was also reduced. Using both the transgenic mouse and human anal xenograft mouse models, we studied the therapeutic effect of rapamycin on preexisting anal cancer. Rapamycin was found to significantly slow, if not stop, the growth of both mouse and human anal cancers. As has been seen in other cancers, rapamycin treatment led to an activation of the MAPK pathway. These results provide us cause to pursue further the evaluation of rapamycin as a therapeutic agent in the control of anal cancer. ©2010 AACR.
Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin
2016-12-25
Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.
Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin
2016-01-01
Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect. PMID:28029143
Fortoul, T. I.; Rodriguez-Lara, V.; Gonzalez-Villalva, A.; Rojas-Lemus, M.; Cano-Gutierrez, G.; Ustarroz-Cano, M.; Colin-Barenque, L.; Montaño, L. F.; García-Pelez, I.; Bizarro-Nevares, P.; Lopez-Valdez, N.; Falcon-Rodriguez, C. I.; Jimenez-Martínez, R. S.; Ruiz-Guerrero, M. L.; López-Zepeda, L. S.; Morales-Rivero, A.; Muñiz-Rivera-Cambas, A.
2011-01-01
There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature. PMID:21716674
2010-04-01
mouse macrophage nucleofector kit (Program-Y-01) was used. For EL4 cells mouse cell transfection kit (Program-C-09) was used. As controls...direct synergy between immunotherapy and chemotherapy in vitro. We found that pre-treatment of tumor target cells with doxorubicin or paclitaxel...significantly increased cytotoxic effect of T-lymphocytes. Importantly, that effect was antigen-specific, since it was observed only in tumor cells loaded
Kiszonas, Alecia M; Fuerst, E Patrick; Morris, Craig F
2015-07-01
Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. Potential flavor differences among varieties can be examined using consumption discrimination of the house mouse (Mus musculus L.) as a model system. This study examines consistency and repeatability of the mouse model and potentially, wheat grain flavor. A single elimination tournament design was used to measure relative consumption preference for hard red spring and hard white spring varieties across all 3 experiments in combination with 2 mouse cohorts. Fifteen replicate mice were used in 24-h trials to examine differences in preference among paired wheat varieties until an overall "winner" was established as the most highly preferred variety of wheat. In all 3 experiment-cohort combinations, the same varieties were preferred as the "winner" of both the hard red spring and hard white spring wheat varieties, Hollis and BR 7030, respectively. Despite the consistent preference for these varieties across experiments, the degree (magnitude) to which the mice preferred these varieties varied across experiments. For the hard white spring wheat varieties, the small number of varieties and confounding effects of experiment and cohort limited our ability to accurately gauge repeatability. Conversely, for the hard red spring wheat varieties, consumption preferences were consistent across experiments and mice cohorts. The single-elimination tournament model was effective in providing repeatable results in an effort to more fully understand the mouse model system and possible flavor differences among wheat varieties. The mouse model system used here is effective in identifying wheat varieties that may be more or less desirable to humans in whole wheat foods. The system identifies consistent differences across different mouse cohorts and crop years. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
N-hexane alters the maturation of oocytes and induces apoptosis in mice.
Liu, Jin; Huang, Lei; Sun, Yan; Li, Yu Chen; Zhu, Jian Lin; Wang, Wen Xiang; Zhang, Wen Chang
2013-09-01
This study was aimed to determine the effects of n-hexane on the maturation of mouse oocytes. Cell culture was used to observe the maturation of mouse oocytes and CLSM was employed to determine their apoptosis. Germinal vesicle breakdown (GVBD) and extrusion of the first polar body in mouse oocytes were significantly inhibited by n-hexane. After fertilization, the number of eggs in the mouse was significantly reduced by n-hexane. Mitochondrial membrane potentials (ΔΨm) were altered in mouse oocytes that were leading to apoptosis of the oocytes. N-hexane might have affected the maturation of oocytes, causing alteration of ΔΨm and leading to apoptosis which maybe one of the most important mechanisms. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
EFFECT OF DOSE ON THE EXCRETION AND METABOLISM OF MONOMETHYLARSONIC ACID IN THE MOUSE
EFFECT OF DOSE ON THE EXCRETION AND METABOLISM OF MONOMETHYLARSONIC ACID IN THE MOUSE
M F Hughes1, V Devesa2, B C Edwards1, C T Mitchell1, E M Kenyon1, and D J Thomas1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC; 2UNC-CH, CEMALB, Chapel Hill, NC
Monomethylar...
Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Mirosław; Luszczki, Jarogniew J
2014-01-01
The aim of this study was to characterize the anticonvulsant effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ) in combination with clobazam (CLB) in the mouse maximal electroshock-induced seizure (MES) model. The anticonvulsant interaction profile between 1-MeTHIQ and CLB in the mouse MES model was determined using an isobolographic analysis for parallel dose-response relationship curves. Electroconvulsions were produced in albino Swiss mice by a current (sine wave, 25 mA, 500 V, 50 Hz, 0.2-second stimulus duration) delivered via auricular electrodes by a Hugo Sachs generator. There was an additive effect of the combination of 1-MeTHIQ with CLB (at the fixed ratios of 1:3, 1:1 and 3:1) in the mouse MES-induced tonic seizure model. The additive interaction of the combination of 1-MeTHIQ with CLB (at fixed-ratios of 1:3, 1:1 and 3:1) in the mouse MES model seems to be pharmacodynamic in nature and worth of considering in further clinical practice. © 2014 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-05-01
Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.
CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE AND RAT OVARIES
Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse and Rat Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research ...
Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali
2016-08-01
The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory.
Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K
2012-07-12
The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Arita, Minetaro; Ami, Yasushi; Wakita, Takaji; Shimizu, Hiroyuki
2008-02-01
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.
Ruz-Maldonado, Inmaculada; Pingitore, Attilio; Liu, Bo; Atanes, Patricio; Huang, Guo Cai; Baker, David; Alonso, Francisco José; Bermúdez-Silva, Francisco Javier; Persaud, Shanta J
2018-04-01
To examine the effects of Abn-CBD (GPR55 agonist) and LH-21 (CB1 antagonist) on human and mouse islet function, and to determine signalling via GPR55 using islets from GPR55 -/- mice. Islets isolated from human organ donors and mice were incubated in the absence or presence of Abn-CBD or LH-21, and insulin secretion, [Ca 2+ ] i, cAMP , apoptosis, β-cell proliferation and CREB and AKT phosphorylation were examined using standard techniques. Abn-CBD potentiated glucose-stimulated insulin secretion and elevated [Ca 2+ ] i in human islets and islets from both GPR55 +/+ and GPR55 -/- mice. LH-21 also increased insulin secretion and [Ca 2+ ] i in human islets and GPR55 +/+ mouse islets, but concentrations of LH-21 up to 0.1 μM were ineffective in islets from GPR55 -/- mice. Neither ligand affected basal insulin secretion or islet cAMP levels. Abn-CBD and LH-21 reduced cytokine-induced apoptosis in human islets and GPR55 +/+ mouse islets, and these effects were suppressed after GPR55 deletion. They also increased β-cell proliferation: the effects of Abn-CBD were preserved in islets from GPR55 -/- mice, while those of LH-21 were abolished. Abn-CBD and LH-21 increased AKT phosphorylation in mouse and human islets. This study showed that Abn-CBD and LH-21 improve human and mouse islet β-cell function and viability. Use of islets from GPR55 -/- mice suggests that designation of Abn-CBD and LH-21 as a GPR55 agonist and a CB1 antagonist, should be revised. © 2017 John Wiley & Sons Ltd.
Mohos, Steven C.; Kidd, John G.
1957-01-01
Immune serums prepared in rabbits with antigens made from normal mouse organs and tissues that were presumably devoid of large numbers of lymphocytic cells (notably kidney, liver, brain, whole embryos, and erythrocytes) proved lethal for the cells of several transplanted mouse lymphomas in vitro in the presence of complement; but these immune serums, when given intraperitoneally in large amounts to susceptible mice that had been implanted subcutaneously with lymphoma cells of one or another of several types, failed entirely to inhibit growth of the lymphoma cells in vivo. In contrast, immune serums made with cells procured from transplanted mouse lymphomas as antigens, and those made with cells from normal mouse thymus or lymph nodes, acted even more powerfully upon the several types of lymphoma cells in vitro than did the immune serums prepared with normal mouse organs, and when given intraperitoneally to implanted mice they brought about death of the lymphoma cells in vivo, the effect being to a considerable extent specific and referable to an antibody that reacts with neoplastic and non-neoplastic lymphocytic cells of mice, as absorption experiments disclosed. In comparative tests, furthermore, the anti-lymphoma serums acted more powerfully upon the lymphoma cells in vivo than did such chemotherapeutic agents as amethopterin, azaguanine, ethionine, azaserine, and 6-mercaptopurine, given singly or in various combinations in maximal tolerated amounts, though their effects were not so powerful as those exerted by normal guinea pig serum on lymphoma cells of two types that are susceptible to its action in vivo. The significance of the findings was briefly discussed. PMID:13406182
Fatehi, M; Rowan, E G; Harvey, A L
2002-01-01
The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.
In vitro fertilization of mouse ova by spermatozoa exposed isothermally to radio-frequency radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, S.F.; Liu, L.M.; Graham, R.
Mouse spermatozoa were exposed in vitro for 1 h to 27- or 2,450-MHz CW RF radiation at SARs of 0 to 90 W/kg under isothermal (37 +/- 0.2 degrees C) conditions. Exposure at either frequency to RF radiation at SARs of 50 W/kg or greater resulted in a statistically significant reduction in the ability of irradiated sperm to fertilize mouse ova in vitro (P less than .05). Over the range of SARs there was no apparent difference in the effects of 27- vs. 2,450-MHz RF radiation. There were no readily detectable exposure effects on spermatozoan morphology, ultrastructure, or capacitation. Themore » reduction of in vitro fertilization is attributed to a direct effect of RF radiation on spermatozoa rather than to heating.« less
The effects of aging on the BTBR mouse model of autism spectrum disorder
Jasien, Joan M.; Daimon, Caitlin M.; Wang, Rui; Shapiro, Bruce K.; Martin, Bronwen; Maudsley, Stuart
2014-01-01
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including “Neural synaptic plasticity regulation” and “Neurotransmitter secretion regulation.” Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype. PMID:25225482
Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer.
Chen, Ke; Qian, Weikun; Jiang, Zhengdong; Cheng, Liang; Li, Jie; Sun, Liankang; Zhou, Cancan; Gao, Luping; Lei, Meng; Yan, Bin; Cao, Junyu; Duan, Wanxing; Ma, Qingyong
2017-07-24
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-associated mortality worldwide with an overall five-year survival rate less than 7%. Accumulating evidence has revealed the cancer preventive and therapeutic effects of metformin, one of the most widely prescribed medications for type 2 diabetes mellitus. However, its role in pancreatic cancer is not fully elucidated. Herein, we aimed to further study the preventive and therapeutic effects of metformin in genetically engineered mouse models of pancreatic cancer. LSL-Kras G12D/+ ; Pdx1-Cre (KC) mouse model was established to investigate the effect of metformin in pancreatic tumorigenesis suppression; LSL-Kras G12D/+ ; Trp53 fl/+ ; Pdx1-Cre (KPC) mouse model was used to evaluate the therapeutic efficiency of metformin in PDAC. Chronic pancreatitis was induced in KC mice by peritoneal injection of cerulein. Following metformin treatment, pancreatic acinar-to-ductal metaplasia (ADM) and mouse pancreatic intraepithelial neoplasia (mPanIN) were decreased in KC mice. Chronic pancreatitis induced a stroma-rich and duct-like structure and increased the formation of ADM and mPanIN lesions, in line with an increased cytokeratin 19 (CK19)-stained area. Metformin treatment diminished chronic pancreatitis-mediated ADM and mPanIN formation. In addition, it alleviated the percent area of Masson's trichrome staining, and decreased the number of Ki67-positive cells. In KPC mice, metformin inhibited tumor growth and the incidence of abdominal invasion. More importantly, it prolonged the overall survival. Metformin inhibited pancreatic cancer initiation, suppressed chronic pancreatitis-induced tumorigenesis, and showed promising therapeutic effect in PDAC.
Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury
Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.
2015-01-01
Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387
Xenoestrogenic chemicals effectively alter sperm functional behavior in mice.
Park, Yoo-Jin; Mohamed, El-Sayed A; Kwon, Woo-Sung; You, Young-Ah; Ryu, Buom-Yong; Pang, Myung-Geol
2011-12-01
Xenoestrogenic compounds (XCs) can disrupt endogenous hormone function and affect sperm function by binding to receptors on sperm membrane. Albeit spermatozoa are potentially a useful model for screening estrogenic activities of endocrine disruptors, high-quality in vitro test system that examination of the XCs effects on sperm function is required. The objective of this study was to compare the effects of XCs (genistein and 4-tert-octylphenol) to those of steroids (estrogen and progesterone) and heparin on in vitro capacitation and acrosome reaction (AR) in mouse spermatozoa. Mouse spermatozoa were incubated with various concentrations (0.001-100 μM) of each chemical for 15 or 30 min, and then capacitation and AR were assessed using chlortetracycline. All chemicals studied effectively alter capacitation and/or AR in mouse spermatozoa with different manner. Therefore, we believed that our system will provide a good in vitro model system to characterize the physiological effect of XCs especially when compared with steroids. Copyright © 2011 Elsevier Inc. All rights reserved.
Mice Expressing RHAG and RHD Human Blood Group Genes
Goossens, Dominique; da Silva, Nelly; Metral, Sylvain; Cortes, Ulrich; Callebaut, Isabelle; Picot, Julien; Mouro-Chanteloup, Isabelle; Cartron, Jean-Pierre
2013-01-01
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously. PMID:24260394
An extended Kalman filter for mouse tracking.
Choi, Hongjun; Kim, Mingi; Lee, Onseok
2018-05-19
Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.
EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE
Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...
BROMOCHLORO-HALOACETIC ACIDS: EFFECTS ON MOUSE EMBRYOS IN VITRO AND QSAR CONSIDERATIONS
The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids altered embryonic development when mouse conceptuses were directly exposed to these xenobiotics in whole embryo culture...
Effects of aqueous crude extract of Echeveria gibbiflora on mouse sperm function.
Cordero-Martínez, Joaquín; Aguirre-Alvarado, Charmina; Guzmán-Soriano, Jessica Gabriela; Sánchez-Arroyo, Cinthia Erika; Flores-Alonso, Juan Carlos; Rodríguez-Páez, Lorena
2016-10-01
The present study evaluates the possible antifertility effect of aqueous crude extract (OBACE) of Echeveria gibbiflora, a plant that belongs to the crassulaceae family, used in traditional Mexican medicine as a vaginal post coital rinse to prevent pregnancy and shown to have an immobilization/agglutination effect on sperm of different mammal species. We evaluated the effect of OBACE on functional parameters of mouse sperm, such as viability, capacitation, and acrosome reaction. In addition, due to the high concentrations of calcium bis-(hydrogen-1-malate) hexahydrate [Ca (C4H5O5)2•6H2O] present in this plant extract, we evaluated its effect on Ca(2+) influx in mouse sperm under capacitating conditions. Moreover, we determined the acute toxicity of OBACE and its in vivo effect in mouse sperm motility administering a single daily dose of 50 and 100 mg/kg during seven days, intraperitoneally. The sperm viability was not affected by the presence of different concentrations of OBACE, however, the capacitation and acrosome reaction suffered a significant decrease in a concentration-dependent manner, coinciding with the reduction of Ca(2+) influx. Furthermore, OBACE displayed an LD50 of 3,784.42 mg/kg and can be classified as a low toxic substance. Also, in vivo OBACE showed an inhibition of total and progressive motility on mouse sperm alongside a significant decrease of motility kinematic parameters and IVF rates. The results confirm the antifertility effect of this plant used in Mexican folk medicine. Further study on OBACE as a possible contraceptive treatment is warranted because of its activity and low in vivo toxicity. ALH: lateral amplitude; AP: acid phosphatase; BCF: beat frequency; BSA: bovine serum albumine; CTC: chlortetracycline; FDA: fluorescein diacetate; Fura-2 AM: fura-2-acetoxymethyl ester; HIV: human immunodeficiency virus; IVF: in vitro fertilization; OBACE: aqueous crude extract of Echeveria gibbiflora; PI: propidum iodide; SN: supernatant; VAP: average path velocity; VCL: track speed; VSL: straight line velocity.
Yarlett, Nigel; Waters, W. Ray; Harp, James A.; Wannemuehler, Michael J.; Morada, Mary; Bellcastro, Josephine; Upton, Steve J.; Marton, Laurence J.; Frydman, Benjamin J.
2007-01-01
The in vivo effectiveness of a series of conformationally restricted polyamine analogues alone and selected members in combination with dl-α-difluoromethylarginine against Cryptosporidium parvum infection in a T-cell receptor alpha-deficient mouse model was tested. Polyamine analogues were selected from the extended bis(ethyl)-sym-homospermidine or bis(ethyl)-spermine backbone having cis or trans double bonds at the center of the molecule. The cis isomers were found to have significantly greater efficacy in both preventing and curing infection in a mouse model than the trans polyamine analogues when tested in a T-cell receptor alpha-deficient mouse model. When tested in combination with dl-α-difluoromethylarginine, the cis-restricted analogues were found to be more effective in preventing oocyst shedding. This study demonstrates the potential of polyamine analogues as anticryptosporidial agents and highlights the presence of multiple points in polyamine synthesis by this parasite that are susceptible to inhibition resulting in growth inhibition. PMID:17242149
Clark, Jordan; Nasrallah, Rania; Hébert, Richard L
2009-01-01
The collecting duct (CD) expresses considerable amounts of PPARδ. While its role is unknown in the CD, in other renal cells it has been shown to regulate both growth and apoptosis. We thus hypothesized that PPARδ reduces apoptotic responses and stimulates cell growth in the mouse CD, and examined the effect of GW501516, a synthetic PPARδ ligand, on these responses in mouse IMCD-K2 cells. High doses of GW501516 decreased both DNA and protein synthesis in these cells by 80%, but had no overall effect on cell viability. Although anisomycin treatment resulted in an increase of caspase-3 levels of about 2.59-fold of control, GW501516 did not affect anisomycin-induced changes in active caspase-3 levels. These results show that a PPARδ ligand inhibits growth but does not affect anisomycin-apoptosis in a mouse IMCD cell line. This could have therapeutic implications for renal diseases associated with increased CD growth responses.
Condie, Brian G; Urbanski, William M
2014-01-01
Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.
Hu, Jie-Lun; Nie, Shao-Ping; Wu, Qi-Meng; Li, Chang; Fu, Zhi-Hong; Gong, Joshua; Cui, Steve W; Xie, Ming-Yong
2014-01-08
Polysaccharide from the seeds of Plantago asiatica L. was given via oral administration to mice (0.4 g/kg body weight, 30 days) to observe its effects on mouse nutrient metabolism and colon microbiota. It was found the polysaccharide intake could lower the apparent absorption of lipid. Total triglyceride, cholesterol, and atherogenic index in blood serum with total lipid and cholesterol levels in liver of polysaccharide group mice were all significantly lower than those of the control group (p < 0.05). Furthermore, the effect of the polysaccharide intake on mouse colon bacterial communities was investigated. Mice from the polysaccharide group showed a higher colon bacterial diversity than the control group. Bacteroides sp., Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probiotics Bifidobacterium bifidum , Lactobacillus fermentum , and Lactobacillus reuteri in mouse colon were all increased after polysaccharide intake. These indicated that the intake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolism and colon microbiota.
Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma
Hettmer, Simone; Schinzel, Anna C; Tchessalova, Daria; Schneider, Michaela; Parker, Christina L; Bronson, Roderick T; Richards, Nigel GJ; Hahn, William C; Wagers, Amy J
2015-01-01
Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and disruption of Cdkn2a. ASNS silencing in mouse and human sarcoma cell lines reduced the percentage of S phase cells and impeded new polypeptide synthesis. These effects of ASNS silencing were reversed by exogenous supplementation with asparagine. Also, asparagine depletion via the ASNS inhibitor amino sulfoximine 5 (AS5) or asparaginase inhibited mouse and human sarcoma growth in vitro, and genetic silencing of ASNS in mouse sarcoma cells combined with depletion of plasma asparagine inhibited tumor growth in vivo. Asparagine reliance of sarcoma cells may represent a metabolic vulnerability with potential anti-sarcoma therapeutic value. DOI: http://dx.doi.org/10.7554/eLife.09436.001 PMID:26499495
Yang, Liu; Lu, Jian-wei; An, Jing; Jiang, Xuan
2006-12-01
To observe the effect of Tribulus terrestris extract on melanocyte stimulating hormone (MSH) expression in C57BL/6J mouse hair follicles, and investigate the role of Tribulus terrestris extract in activation, proliferation, epidermal migration of dormant hair follicle melanocytes. The aqueous extract of Tribulus terrestris was administered orally in specific pathogen-free C57BL/6J mouse at the daily dose equivalent to 1 g/1 kg in adult human, and the expression and distribution of MSH in the mouse hair follicles was observed with immunohistochemistry. The positivity rate of MSH expression in the hair follicle melanocytes was 75% in mice treated with the extract, significantly higher than the rate of only 18.75% in the control group (P<0.01). The aqueous extract of Tribulus terrestris can significantly increase MSH expression in the hair follicle melanocytes by activating tyrosinase activity and promoting melanocyte proliferation, melanine synthesis, and epidermal migration of dormant melanocytes.
NASA Technical Reports Server (NTRS)
Lindberg, R. G.; Hayden, P.
1974-01-01
Three areas of inquiry are reported for the Skylab Experiment S-071 whose objective was to study the circadian system of a mammal during space flight. The thermoregulatory behavior of the Perognathus longimembris, or little pocket mouse, was studied under conditions of constant dark and constant temperature in the prolonged weightless environment of Skylab. The following specific questions were studied: (1) the effects of weightlessness on circadian periodicity in the little pocket mouse; (2) stability of the free-running circadian period of body temperature of the little pocket mouse exposed to simulated launch stress; and (3) characteristics of the circadian rhythm of body temperature in the little pocket mouse. Diagrams of the electronic circuitry and hardware used in the experiment are shown and results are given in both graphical and tabular form. The methods used in the experiment are fully documented, along with conclusions and recommendations for future research.
[The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].
Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun
2007-03-01
To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.
Zhang, Ding; Zhang, Zheyu; Liu, Yayun; Chu, Maoquan; Yang, Chengyu; Li, Wenhao; Shao, Yuxiang; Yue, Yan; Xu, Rujiao
2015-11-01
Reduced graphene oxide (rGO), a carbon-based nanomaterial, has enormous potential in biomedical research, including in vivo cancer therapeutics. Concerns over the toxicity remain outstanding and must be investigated before clinical application. The effect of rGO exposure on animal behaviors, such as learning and memory abilities, has not been clarified. Herein, we explored the short- and long-term effects of orally administered rGO on mouse behaviors, including general locomotor activity level, balance and neuromuscular coordination, exploratory and anxiety behaviors, and learning and memory abilities using open-field, rotarod, and Morris water maze tests. Compared with mice administered buffer-dispersed mouse chow or buffer alone, mice receiving a high dose of small or large rGO nanosheets showed little change in exploratory, anxiety-like, or learning and memory behaviors, although general locomotor activity, balance, and neuromuscular coordination were initially affected, which the mechanisms (e.g. the influence of rGO exposure on the activity of superoxide dismutase in mouse serum) were discussed. The results presented in this work look to provide a deep understanding of the in vivo toxicity of rGO to animals, especially its effect on learning and memory and other behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, Zhen; Marks, Eileen; Chen, Jianfang; Moline, Jenna; Barrows, Lorraine; Raisbeck, Merl; Volitakis, Irene; Cherny, Robert A; Chopra, Vanita; Bush, Ashley I; Hersch, Steven; Fox, Jonathan H
2014-11-01
Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.
Shijun, Xu; Junsheng, Mu; Jianqun, Zhang; Ping, Bo
2016-03-01
Identifying a suitable polymeric biomaterial for myocardial patch repair following myocardial infarction, cerebral infarction, and cartilage injury is essential. This study aimed to investigate the effect of the novel polymer material, poly3-hydroxybutyrate-co-3-hydroxyhexanoate, on the adhesion, proliferation, and differentiation of mouse-induced pluripotent stem cells in vitro. Mouse-induced pluripotent stem cells were isolated, expanded, and cultured on either two-dimensional or three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films (membranes were perforated to imitate three-dimensional space). Following attachment onto the films, mouse-induced pluripotent stem cell morphology was visualized using scanning electron microscopy. Cell vitality was detected using the Cell Counting Kit-8 assay and cell proliferation was observed using fluorescent 4',6-diamidino-2-phenylindole (DAPI) staining. Mouse-induced pluripotent stem cells were induced into cardiomyocytes by differentiation medium containing vitamin C. A control group in the absence of an inducer was included. Mouse-induced pluripotent stem cell survival and differentiation were observed using immunofluorescence and flow cytometry, respectively. Mouse-induced pluripotent stem cells growth, proliferation, and differentiation were observed on both two-dimensional and three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Vitamin C markedly improved the efficiency of mouse-induced pluripotent stem cells differentiation into cardiomyocytes on poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Three-dimensional culture was better at promoting mouse-induced pluripotent stem cell proliferation and differentiation compared with two-dimensional culture. © The Author(s) 2016.
[Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].
Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin
2008-02-01
To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.
Chen, S; Blanck, G; Pollack, R E
1983-09-01
We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation.
Chen, S; Blanck, G; Pollack, R E
1983-01-01
We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation. Images PMID:6310588
Okada, Muneyoshi; Noma, Chihiro; Yamawaki, Hideyuki; Hara, Yukio
2013-01-01
Interaction between acetylcholine receptor-operated potassium channel (K.ACh channel) and GTP binding protein was examined by an immunoprecipitation-Western blotting system in mouse isolated atrium. The carbachol-induced negative inotropic action in indomethacin-pretreated mouse atrium was significantly inhibited by a K.ACh channel blocker, tertiapin or atropine. Kir3.1 K.ACh channel (Kir3.1) was immunoprecipitated with a mouse anti-Kir3.1 antibody. Coprecipitating Gβ with Kir3.1, detected by Western blotting, was significantly augmented by carbachol. Atropine, but not tertiapin, significantly inhibited the carbachol-induced coprecipitating Gβ with Kir3.1. The data indicate that immunoprecipitation with Kir3.1 and Western blotting of Gβ system is a useful method for assessing interaction between K.ACh channel and GTP binding protein in mouse atrium.
Transgenic and gene knockout mice in gastric cancer research
Jiang, Yannan; Yu, Yingyan
2017-01-01
Mouse models are useful tool for carcinogenic study. They will greatly enrich the understanding of pathogenesis and molecular mechanisms for gastric cancer. However, only few of mice could develop gastric cancer spontaneously. With the development and improvement of gene transfer technology, investigators created a variety of transgenic and knockout/knockin mouse models of gastric cancer, such as INS-GAS mice and gastrin knockout mice. Combined with helicobacter infection and carcinogens treatment, these transgenic/knockout/knockin mice developed precancerous or cancerous lesions, which are proper for gene function study or experimental therapy. Here we review the progression of genetically engineered mouse models on gastric cancer research, and emphasize the effects of chemical carcinogens or infectious factors on carcinogenesis of genetically modified mouse. We also emphasize the histological examination on mouse stomach. We expect to provide researchers with some inspirations on this field. PMID:27713138
Ohyama, K; Kikuchi, H; Oda, Y; Moritake, K; Yamasaki, T
1993-06-01
We studied the effects of mouse IFN-gamma on the cytotoxic activity of murine activated macrophages (M phi) against mouse VM-Glioma cells (H-2b). Activated M phi were obtained from peritoneal exudate cells of mice from four strains, C57BL/6 (H-2b), C3H/He(H-2k), DBA/2 (H-2d), and BALB/c (H-2d), following intraperitoneal injection of (1) LPS 200 micrograms, (2) BCG 200 micrograms, (3) C. parvum 200 micrograms, or (4) MDP 350 micrograms 7 days prior to 20-hr 51Cr release-assay. Of the various combination of mouse strains and activating agents tested, that of activated M phi of the C3H/He mouse with induction by LPS had the most tumoricidal effect against the glioma cells, which was not MHC restricted. Although LPS-activated M phi underwent marked loss of cytotoxicity following initiation of in vitro culture, this 24 hr pretreatment with IFN-gamma inhibited this reduction in tumoricidal effects in a dose-dependent fashion. On the other hand, 24 hr pretreatment of target cells with IFN-gamma did not increase their susceptibility to lysis by activated M phi. These findings suggest that IFN-gamma augments the in vitro tumoricidal activation of M phi; This effect appears to be unrelated to any influence of IFN-gamma on target sensitivity to lysis by macrophages.
4D MEMRI atlas of neonatal FVB/N mouse brain development.
Szulc, Kamila U; Lerch, Jason P; Nieman, Brian J; Bartelle, Benjamin B; Friedel, Miriam; Suero-Abreu, Giselle A; Watson, Charles; Joyner, Alexandra L; Turnbull, Daniel H
2015-09-01
The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Mouse assay for determination of arsenic bioavailability in contaminated soils.
Bradham, Karen D; Diamond, Gary L; Scheckel, Kirk G; Hughes, Michael F; Casteel, Stan W; Miller, Bradley W; Klotzbach, Julie M; Thayer, William C; Thomas, David J
2013-01-01
A mouse assay for measuring the relative bioavailability (RBA) of arsenic (As) in soil was developed. In this study, results are presented of RBA assays of 16 soils, including multiple assays of the same soils, which provide a quantitative assessment of reproducibility of mouse assay results, as well as a comparison of results from the mouse assay with results from a swine and monkey assay applied to the same test soils. The mouse assay is highly reproducible; three repeated assays on the same soils yielded RBA estimates that ranged from 1 to 3% of the group mean. The mouse, monkey, and swine models yielded similar results for some, but not all, test materials. RBA estimates for identical soils (nine test soils and three standard reference materials [SRM]) assayed in mice and swine were significantly correlated (r = 0.70). Swine RBA estimates for 6 of the 12 test materials were higher than those from the mouse assay. RBA estimates for three standard reference materials (SRM) were not statistically different (mouse/swine ratio ranged from 0.86-1). When four test soils from the same orchard were assessed in the mouse, monkey, and swine assays, the mean soil As RBA were not statistically different. Mouse and swine models predicted similar steady state urinary excretion fractions (UEF) for As of 62 and 74%, respectively, during repeated ingestion doses of sodium arsenate, the water-soluble As form used as the reference in the calculation of RBA. In the mouse assay, the UEF for water soluble As(V) (sodium arsenate) and As(III) (sodium [meta] arsenite) were 62% and 66%, respectively, suggesting similar absolute bioavailabilities for the two As species. The mouse assay can serve as a highly cost-effective alternative or supplement to monkey and swine assays for improving As risk assessments by providing site-specific assessments of RBA of As in soils.
Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi
2011-07-01
The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.
Studies on the Development of Mouse Embyros in Vitro
Brinster, Ralph L.
2016-01-01
The effect of various possible energy sources on the development in vitro of two-cell mouse ova into blastocysts was examined. Energy for development of two-cell mouse ova could be supplied by lactate, pyruvate, oxaloacetate, or phosphoenolpyruvate. Compounds such as glucose, fructose, ribose, glucose-6-phosphate, fructose-1, 6-phosphate, acetate, citrate, α-ketoglutarate, succinate, fumarate, and malate could not provide energy for development of two-cell mouse ova. The optimum concentrations at pH 7.38 for those compounds which would supply energy was 5.00 × 10−2 M lactate, 3.16 × 10−4 M pyruvate, 3.16 × 10−4 M oxaloacetate, and 1.00 × 10−2 M phosphoenolpyruvate. The possibility that interactions existed between the effects of osmolarity, pH, and energy source was examined in several experiments. There was no interaction between the effects of osmolarity and pH or osmolarity and the four possible energy sources. However, there was a significant interaction between energy source and pH. The result of this is that an increase in pH of the medium results in an increase in the optimum concentration of the compound supplying energy to the developing ova. PMID:14299682
In vitro effects of triiodothyronine on gene expression in mouse trophoblast cells.
Silva, J F; Ocarino, N M; Serakides, R
2015-01-01
The objective of the present study was to evaluate the effects of different doses of T3 (10(-4) M, 10(-7) M, 10(-9) M) on the in vitro gene expression of Tpbp, Prl3b1, VEGF, PGF, PL-1, and INFy in mouse trophoblast cells by real-time RT-PCR. Doses of 10(-7) and 10(-9) M T3 increased the mRNA levels of Tpbp, Pl3b1, VEGF, PGF, INFy and PL-1. In contrast, the dose of 10(-4) M reduced the gene expression of PL-1 and VEGF. T3 affected the gene expression of differentiation, hormonal, immune and angiogenic factors in mouse trophoblast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor ¿ (PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun
2012-01-01
Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.
Dual effects of fluoxetine on mouse early embryonic development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chang-Woon; Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723; Choe, Changyong
2012-11-15
Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetinemore » (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from CaMKII activation. ► Long-term exposure of 2-cells to fluoxetine decreases mouse blastocyst formation. ► The inhibitory effect of fluoxetine is mediated through TREK channel gating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, H; Jing, J; Xie, C
Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results:more » The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.« less
The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo.
Levinger, I; Lin, X; Zhang, X; Brennan-Speranza, T C; Volpato, B; Hayes, A; Jerums, G; Seeman, E; McConell, G
2016-02-01
We tested whether GPRC6A, the putative receptor of undercarboxylated osteocalcin (ucOC), is present in mouse muscle and whether ucOC increases insulin sensitivity following ex vivo muscle contraction. GPPRC6A is expressed in mouse muscle and in the mouse myotubes from a cell line. ucOC potentiated the effect of ex vivo contraction on insulin sensitivity. Acute exercise increases skeletal muscle insulin sensitivity. In humans, exercise increases circulating ucOC, a hormone that increases insulin sensitivity in rodents. We tested whether GPRC6A, the putative receptor of ucOC, is present in mouse muscle and whether recombinant ucOC increases insulin sensitivity in both C2C12 myotubes and whole mouse muscle following ex vivo muscle contraction. Glucose uptake was examined in C2C12 myotubes that express GPRC6A following treatment with insulin alone or with insulin and increasing ucOC concentrations (0.3, 3, 10 and 30 ng/ml). In addition, glucose uptake, phosphorylated (p-)AKT and p-AS160 were examined ex vivo in extensor digitorum longus (EDL) dissected from C57BL/6J wild-type mice, at rest, following insulin alone, after muscle contraction followed by insulin and after muscle contraction followed by recombinant ucOC then insulin exposure. We observed protein expression of the likely receptor for ucOC, GPRC6A, in whole muscle sections and differentiated mouse myotubes. We observed reduced GPRC6A expression following siRNA transfection. ucOC significantly increased insulin-stimulated glucose uptake dose-dependently up to 10 ng/ml, in differentiated mouse C2C12 myotubes. Insulin increased EDL glucose uptake (∼30 %, p < 0.05) and p-AKT and p-AKT/AKT compared with rest (all p < 0.05). Contraction prior to insulin increased muscle glucose uptake (∼25 %, p < 0.05), p-AKT, p-AKT/AKT, p-AS160 and p-AS160/AS160 compared with contraction alone (all p < 0.05). ucOC after contraction increased insulin-stimulated muscle glucose uptake (∼12 % p < 0.05) and p-AS160 (<0.05) more than contraction plus insulin alone but without effect on p-AKT. In the absence of insulin and/or of contraction, ucOC had no significant effect on muscle glucose uptake. GPRC6A, the likely receptor of osteocalcin (OC), is expressed in mouse muscle. ucOC treatment augments insulin-stimulated skeletal muscle glucose uptake in C2C12 myotubes and following ex vivo muscle contraction. ucOC may partly account for the insulin sensitizing effect of exercise.
Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard
2017-03-01
Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.
Sakurada, C; Watanabe, C; Sakurada, T
2004-04-01
Substance P (SP), which is known as a pain transmitter or modulator in the spinal cord, was degraded by the synaptic membranes of the mouse spinal cord. The major metabolites of SP were phenylalanine, SP(1-6), SP(1-7), SP(1-9), SP(8-9) and SP(10-11). Degradation of SP was inhibited by a metal chelator, o-phenanthroline, and also by specific inhibitors of endopeptidase-24.11, thiorphan and phosphoramidon. In contrast, captopril (a specific inhibitor of angiotensin-converting enzyme), bestatin (a specific inhibitor of aminopeptidase) and Z-321 (a specific inhibitor of prolylendopeptidase) showed little effect on the degradation of SP. The accumulation of the major cleavage products was strongly inhibited by phosphoramidon and thirophan, as well as the initial cleavage of SP. Thus, endopeptidase-24.11 plays a major role in SP degradation in the mouse spinal cord. Additional in vivo experiments were performed to investigate the antinociceptive effect of SP(1-7), a major product of SP that was detected after incubation with spinal synaptic membranes. In the mouse tail-flick test, the intrathecal administration of SP(1-7) (1.0-4.0 pmol) increased tail-flick latency in a dose-dependent manner. These results suggest that degradation of SP by spinal endopeptidase-24.11 may lead to the formation of SP(1-7), which has an ability to produce antinociceptive effects at the mouse spinal cord level.
MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil
NASA Astrophysics Data System (ADS)
Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin
2015-07-01
Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.
Cunha, Mauricio P; Pazini, Francis L; Lieberknecht, Vicente; Budni, Josiane; Oliveira, Ágatha; Rosa, Júlia M; Mancini, Gianni; Mazzardo, Leidiane; Colla, André R; Leite, Marina C; Santos, Adair R S; Martins, Daniel F; de Bem, Andreza F; Gonçalves, Carlos Alberto S; Farina, Marcelo; Rodrigues, Ana Lúcia S
2017-10-01
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces motor and nonmotor dysfunctions resembling Parkinson's disease (PD); however, studies investigating the effects of 1-methyl-4-phenylpyridinium (MPP + ), an active oxidative product of MPTP, are scarce. This study investigated the behavioral and striatal neurochemical changes (related to oxidative damage, glial markers, and neurotrophic factors) 24 h after intracerebroventricular administration of MPP + (1.8-18 μg/mouse) in C57BL6 mice. MPP + administration at high dose (18 μg/mouse) altered motor parameters, since it increased the latency to leave the first quadrant and reduced crossing, rearing, and grooming responses in the open-field test and decreased rotarod latency time. MPP + administration at low dose (1.8 μg/mouse) caused specific nonmotor dysfunctions as it produced a depressive-like effect in the forced swim test and tail suspension test, loss of motivational and self-care behavior in the splash test, anxiety-like effect in the elevated plus maze test, and short-term memory deficit in the step-down inhibitory avoidance task, without altering ambulation. MPP + at doses of 1.8-18 μg/mouse increased tyrosine hydroxylase (TH) immunocontent and at 18 μg/mouse increased α-synuclein and decreased parkin immunocontent. The astrocytic calcium-binding protein S100B and glial fibrillary acidic protein (GFAP)/S100B ratio was decreased following MPP + administration (18 μg/mouse). At this highest dose, MPP + increased the ionized calcium-binding adapter molecule 1 (Iba-1) immunocontent, suggesting microglial activation. Also, MPP + at a dose of 18 μg/mouse increased thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels and increased glutathione peroxidase (GPx) and hemeoxygenase-1 (HO-1) immunocontent, suggesting a significant role for oxidative stress in the MPP + -induced striatal damage. MPP + (18 μg/mouse) also increased striatal fibroblast growth factor 2 (FGF-2) and brain-derived neurotrophic factor (BDNF) levels. Moreover, MPP + decreased tropomyosin receptor kinase B (TrkB) immunocontent. Finally, MPP + (1.8-18 μg/mouse) increased serum corticosterone levels and did not alter acetylcholinesterase (AChE) activity in the striatum but increased it in cerebral cortex and hippocampus. Collectively, these results indicate that MPP + administration at low doses may be used as a model of emotional and memory/learning behavioral deficit related to PD and that MPP + administration at high dose could be useful for analysis of striatal dysfunctions associated with motor deficits in PD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McChesney, D.G.; Landauer, M.R.; Davis, H.D.
The biological response modifier, S-TDM, administered in doses of 100, 200, 400 and 800 ug/mouse 24 hours before a LD80/30 dose (5.6 Gy at 0.4 Gy-MLT/minute) of radiation (neutron:gamma {double bond} 1) resulted in survival of 100%, 60%, 89% and 20% respectively. Because of the radioprotective efficacy of this immunomodulator, the behavioral effects of S-TDM were investigated. Locomotor activity, food intake, water consumption, and body weight were examined using female B6D2F1 mice. At doses of 100-400 ug/mouse locomotor activity decreased within 4 hours of administration and returned to control values by 2.5 days postinjection. Food and water intake were significantlymore » depressed at doses of 100, 200, and 400 ug/mouse on the day following drug administration and recovered in 1 day. Body weight was significantly decreased in the 100 and 200 ug/mouse groups for 2 days and in the 400 ug/mouse for 3 days following injection of S-TDM. These results indicate that there is short-term reversible toxicity in mice administered S-TDM at doses of 100, 200, and 400 ug/mouse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, H.; Masuhara, K.; Takaoka, K.
1985-01-01
The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less
N-ethylmaleimide activates a Cl−-independent component of K+ flux in mouse erythrocytes
Shmukler, Boris E.; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B.; Hubner, Christian A.; Rivera, Alicia; Alper, Seth L.
2013-01-01
The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K+ efflux that lacks Cl−-dependence. The NEM-sensitivity of Cl−-independent K+ efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl−-independent K+ efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl−-independent K+ efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl−-independent K+ efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) is independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl−-independent K+ efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH 6.0, but not significantly altered at pH 8.0, and abolished at 0°C. Although the molecular identity of this little-studied K+ efflux pathway of mouse erythrocytes remains unknown, it’s potential role in the pathophysiology of sickle red cell dehydration will be important for extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia. PMID:23481459
Ratelade, Julien; Verkman, A S
2014-11-01
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
N-ethylmaleimide activates a Cl(-)-independent component of K(+) flux in mouse erythrocytes.
Shmukler, Boris E; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B; Hubner, Christian A; Rivera, Alicia; Alper, Seth L
2013-06-01
The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K(+) efflux that lacks Cl(-)-dependence. The NEM-sensitivity of Cl(-)-independent K(+) efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl(-)-independent K(+) efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl(-)-independent K(+) efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl(-)-independent K(+) efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) are independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl(-)-independent K(+) efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH6.0 but not significantly altered at pH8.0, and is abolished at 0°C. Although the molecular identity of this little-studied K(+) efflux pathway of mouse erythrocytes remains unknown, its potential role in the pathophysiology of sickle red cell dehydration will be important for the extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia. Copyright © 2013 Elsevier Inc. All rights reserved.
Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora.
Sun, Qingshen; Shi, Yue; Wang, Fuying; Han, Dequan; Lei, Hong; Zhao, Yao; Sun, Quan
2015-01-01
To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.
Toxoplasma gondii strain-dependent effects on mouse behaviour.
Kannan, Geetha; Moldovan, Krisztina; Xiao, Jian-Chun; Yolken, Robert H; Jones-Brando, Lorraine; Pletnikov, Mikhail V
2010-06-01
Toxoplasma gondii reportedly manipulates rodent behaviour to increase transmission to its definitive feline host. We compared the effects of mouse infection by two Type II strains of T. gondii, Prugniaud (PRU) and ME49, on attraction to cat odour, locomotor activity, anxiety, sensorimotor gating, and spatial working and recognition memory 2 months post-infection (mpi). Attraction to cat odour was reassessed 7 mpi. At 2 mpi, mice infected with either strain exhibited significantly more attraction to cat odour than uninfected animals did, but only PRU-infected mice exhibited this behaviour 7 mpi. PRU-infected mice had significantly greater body weights and hyperactivity, while ME49-infected mice exhibited impaired spatial working memory. No differences in parasite antibody titres were seen between PRU- and ME49-infected mice. The present data suggest the effect of T. gondii infection on mouse behaviour is parasite strain-dependent.
Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease.
Lin, Lan; Fu, Zhenrong; Xu, Xiaoting; Wu, Shuicai
2015-05-01
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials. © 2015 Wiley Periodicals, Inc.
Behavioural phenotyping assays for mouse models of autism
Silverman, Jill L.; Yang, Mu; Lord, Catherine; Crawley, Jacqueline N.
2011-01-01
Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100–150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of austism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders. PMID:20559336
Advances in understanding paternally transmitted Chromosomal Abnormalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, F; Sloter, E; Wyrobek, A J
2001-03-01
Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less
King, Trevor K; Severin, Colette N; Van Eerd, Dwayne; Ibrahim, Selahadin; Cole, Donald; Amick, Ben; Steenstra, Ivan A
2013-01-01
A pilot study examined the effectiveness of a biofeedback mouse in reducing upper extremity pain and discomfort in office workers; in addition, relative mouse use (RMU), satisfaction and the feasibility of running a randomised controlled trial (RCT) in a workplace setting were evaluated. The mouse would gently vibrate if the hand was idle for more than 12 s. The feedback reminded users to rest the arm in neutral, supported postures. Analysis showed a statistically significant reduction in shoulder pain and discomfort for the intervention group at T2 (38.7% lower than controls). Statistically significant differences in RMU time between groups were seen post intervention (-7% at T1 and +15% at T2 for the intervention group). Fifty-five percent of the intervention group was willing to continue using the mouse. It appears feasible to perform an RCT for this type of intervention in a workplace setting. Further study including more participants is suggested. The study findings support the feasibility of conducting randomised control trials in office settings to evaluate ergonomics interventions. The intervention resulted in reduced pain and discomfort in the shoulder. The intervention could be a relevant tool in the reduction of upper extremity musculoskeletal disorder. Further research will better explain the study's preliminary findings.
Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza
2017-01-01
Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.
QI, Xiaonan; LI, Huatao; CONG, Xia; WANG, Xin; JIANG, Zhongling; CAO, Rongfeng; TIAN, Wenru
2016-01-01
Scutellaria baicalensis has been effectively used in Chinese traditional medicine to prevent miscarriages. However, little information is available on its mechanism of action. This study is designed specifically to reveal how baicalin, the main effective ingredient of S. baicalensis, improves developmental competence of embryos in vitro, using the mouse as a model. Mouse pronuclear embryos were cultured in KSOM medium supplemented with (0, 2, 4 and 8 μg/ml) baicalin. The results demonstrated that in vitro culture conditions significantly decreased the blastocyst developmental rate and blastocyst quality, possibly due to increased cellular stress and apoptosis. Baicalin (4 µg/ml) significantly increased 2- and 4-cell cleavage rates, morula developmental rate, and blastocyst developmental rate and cell number of in vitro-cultured mouse embryos. Moreover, baicalin increased the expression of Gja1, Cdh1, Bcl-2, and Dnmt3a genes, decreased the expression of Dnmt1 gene, and decreased cellular stress and apoptosis as it decreased the expression of HSP70, CASP3, and BAX and increased BCL-2 expression in blastocysts cultured in vitro. In conclusion, baicalin improves developmental competence of in vitro-cultured mouse embryos through inhibition of cellular apoptosis and HSP70 expression, and improvement of DNA methylation. PMID:27478062
Human IgG1 antibodies suppress angiogenesis in a target-independent manner
Bogdanovich, Sasha; Kim, Younghee; Mizutani, Takeshi; Yasuma, Reo; Tudisco, Laura; Cicatiello, Valeria; Bastos-Carvalho, Ana; Kerur, Nagaraj; Hirano, Yoshio; Baffi, Judit Z; Tarallo, Valeria; Li, Shengjian; Yasuma, Tetsuhiro; Arpitha, Parthasarathy; Fowler, Benjamin J; Wright, Charles B; Apicella, Ivana; Greco, Adelaide; Brunetti, Arturo; Ruvo, Menotti; Sandomenico, Annamaria; Nozaki, Miho; Ijima, Ryo; Kaneko, Hiroki; Ogura, Yuichiro; Terasaki, Hiroko; Ambati, Balamurali K; Leusen, Jeanette HW; Langdon, Wallace Y; Clark, Michael R; Armour, Kathryn L; Bruhns, Pierre; Verbeek, J Sjef; Gelfand, Bradley D; De Falco, Sandro; Ambati, Jayakrishna
2016-01-01
Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world’s population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in mice. Here we show bevacizumab suppressed angiogenesis in three mouse models not via Vegfa blockade but rather Fc-mediated signaling through FcγRI (CD64) and c-Cbl, impairing macrophage migration. Other approved humanized or human IgG1 antibodies without mouse targets (adalimumab, alemtuzumab, ofatumumab, omalizumab, palivizumab and tocilizumab), mouse IgG2a, and overexpression of human IgG1-Fc or mouse IgG2a-Fc, also inhibited angiogenesis in wild-type and FcγR humanized mice. This anti-angiogenic effect was abolished by Fcgr1 ablation or knockdown, Fc cleavage, IgG-Fc inhibition, disruption of Fc-FcγR interaction, or elimination of FcRγ-initated signaling. Furthermore, bevacizumab’s Fc region potentiated its anti-angiogenic activity in humanized VEGFA mice. Finally, mice deficient in FcγRI exhibited increased developmental and pathological angiogenesis. These findings reveal an unexpected anti-angiogenic function for FcγRI and a potentially concerning off-target effect of hIgG1 therapies. PMID:26918197
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, J.; Baker, R.C.; Deitrich, R.
1990-02-26
Ethanol (E) sensitive (LS) and insensitive (SS) mouse strains are distinguished by their sleeping time to a given dose of E and the locus for this difference is at the level of the neuron. In attempts to understand the neuropharmacological basis of insecticide action and to further define the differences in these mouse lines, LS and SS mice were dosed with type I (kadethrine, K) and II (deltamethrin, D) pyrethroids and lindane (L). These compounds were selected because their proposed modes of action are on the Na+ channel (K and D) and/or the GABA receptor ionophore (D and L). Nomore » consistent differences in the effects of K, D or L in the SS and LS mouse lines were evident. In preliminary studies both SS and LS mice dosed with 50 or 100 {mu}g/brain of L (intracerebroventricularly) but not D slept much longer (2-3X) than when dosed with E alone, an effect opposite of that predicted from L's known excitatory action. These data indicate that as far as can be distinguished by pyrethroids and L, the Na+ channel and GABA receptor/ionophore complex are similar in both the LS and SS mouse lines.« less
Yun, Xiang; Shang, Yunxiao; Li, Miao
2015-01-01
Bronchial asthma is a chronic airway inflammatory disease that involves T lymphocytes. In order to explore the effect of Lactobacillus salivarius on Th1/Th2 cytokines and the number of spleen CD4(+) CD25(+) Foxp3(+) Treg in asthma Balb/c mouse, we constructed acute asthma model with ovalbumin to observe the mouse behavior change in Balb/c mice. The expression of GATA-3 mRNA and T-bet mRNA was measured by real-time PCR. The proportion of CD4(+) CD25(+) Foxp3(+) Treg/CD4(+) was determined by flow cytometry. The results demonstrated that oral gavage with Lactobacillus salivarius before sensitization could alleviate the clinical symptoms, airway hyper-reactivity and airway inflammation in asthma mouse to some extent; Lactobacillus salivarius may improve the imbalance of Th1/Th2 in asthma mouse through increasing the expression of T-bet mRNA at the transcriptional level and inhibiting the expression of GATA-3 mRNA simultaneously. CD4(+) CD25(+) Foxp3(+) Treg cells may be involved in the pathogenesis of bronchial asthma, and may be the upstream regulatory mechanism of the improvement of Th1/Th2 imbalance by Lactobacillus salivarius.
The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2
Assessment of a 42 metal salts chemical library in mouse embryonic stem cells
The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...
Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...
Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay
The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...
Perfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated recep...
Perfluorononanoic acid (PFNA) is one ofthe perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated recept...
Vocal development and auditory perception in CBA/CaJ mice
NASA Astrophysics Data System (ADS)
Radziwon, Kelly E.
Mice are useful laboratory subjects because of their small size, their modest cost, and the fact that researchers have created many different strains to study a variety of disorders. In particular, researchers have found nearly 100 naturally occurring mouse mutations with hearing impairments. For these reasons, mice have become an important model for studies of human deafness. Although much is known about the genetic makeup and physiology of the laboratory mouse, far less is known about mouse auditory behavior. To fully understand the effects of genetic mutations on hearing, it is necessary to determine the hearing abilities of these mice. Two experiments here examined various aspects of mouse auditory perception using CBA/CaJ mice, a commonly used mouse strain. The frequency difference limens experiment tested the mouse's ability to discriminate one tone from another based solely on the frequency of the tone. The mice had similar thresholds as wild mice and gerbils but needed a larger change in frequency than humans and cats. The second psychoacoustic experiment sought to determine which cue, frequency or duration, was more salient when the mice had to identify various tones. In this identification task, the mice overwhelmingly classified the tones based on frequency instead of duration, suggesting that mice are using frequency when differentiating one mouse vocalization from another. The other two experiments were more naturalistic and involved both auditory perception and mouse vocal production. Interest in mouse vocalizations is growing because of the potential for mice to become a model of human speech disorders. These experiments traced mouse vocal development from infant to adult, and they tested the mouse's preference for various vocalizations. This was the first known study to analyze the vocalizations of individual mice across development. Results showed large variation in calling rates among the three cages of adult mice but results were highly consistent across all infant vocalizations. Although the preference experiment did not reveal significant differences between various mouse vocalizations, suggestions are given for future attempts to identify mouse preferences for auditory stimuli.
Catuara-Solarz, Silvina; Espinosa-Carrasco, Jose; Erb, Ionas; Langohr, Klaus; Gonzalez, Juan Ramon; Notredame, Cedric; Dierssen, Mara
2016-01-01
Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.
Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola
2015-12-16
Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.
Gonzalez, Juan Ramon; Notredame, Cedric
2016-01-01
Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus. PMID:27844057
Effects of American Ginseng on Preimplantation Development and Pregnancy in Mice.
Belanger, Danyka; Calder, Michele D; Gianetto-Berruti, Alessandra; Lui, Edmund M; Watson, Andrew J; Feyles, Valter
2016-01-01
In North America, a high proportion of pregnant women use herbal medications including North American ginseng. This medicinal plant contains high amounts of triterpene saponins (ginsenosides), which are the main bioactive compounds. It is important to assess ginseng's impact on all reproductive functions to ensure the safety of pregnant women and fetuses. In this study, we defined the concentration-responsive effects of North American alcoholic and aqueous ginseng extracts on preimplantation development in vitro and on pregnancy and post-partum development in the mouse. Two-cell mouse embryos were cultured with 5 different concentrations of whole ginseng root extracts, or ginsenosides Rb1, Rg1 and Re alone, a combinatorial ginsenoside solution and a crude polysaccharide fraction solution. Embryonic development and recovery from each treatment was assessed. To investigate the in vivo effects of ginseng extracts, female mice were gavaged with 50[Formula: see text]mg/kg/day, 500[Formula: see text]mg/kg/day or 2000[Formula: see text]mg/kg/day of either extract (treatment) or water (sham) for 2 weeks prior to mating and throughout gestation. Gestation period, litter size, pup growth and pup sex ratio were evaluated. Oral ginseng consumption did not significantly affect fertility or pregnancy in the mouse. High doses of ginseng (2000[Formula: see text]mg/kg/day) decreased maternal weight gain. Direct treatment of preimplantation embryos in vitro demonstrated that ALC and AQ extract treatment reduced development in a concentration responsive manner, while only ALC extract effects were largely reversible. Treatments with individual or combinatorial ginsenosides, or the polysaccharide fraction solution alone did not impair preimplantation development, in vitro. In conclusion, maternal oral consumption of ginseng has little negative impact on pregnancy in the mouse, however, direct exposure to ginseng extract during mouse preimplantation development in vitro is detrimental.
Jiang, Haihong; Abel, Peter W; Toews, Myron L; Deng, Caishu; Casale, Thomas B; Xie, Yan; Tu, Yaping
2010-09-01
Phosphoinositide 3-kinase gamma (PI3Kgamma) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kgamma can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kgamma protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kgamma inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 muM. In contrast, inhibitors of PI3Kalpha, PI3Kbeta, or PI3Kdelta, at concentrations 40-fold higher than their reported IC(50) values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kgamma inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kgamma-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca(2+) transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca(2+) oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kgamma directly controls contractility of airways through regulation of Ca(2+) oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kgamma inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness.
Jiang, Haihong; Abel, Peter W.; Toews, Myron L.; Deng, Caishu; Casale, Thomas B.; Xie, Yan
2010-01-01
Phosphoinositide 3-kinase γ (PI3Kγ) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kγ can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kγ protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kγ inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 μM. In contrast, inhibitors of PI3Kα, PI3Kβ, or PI3Kδ, at concentrations 40-fold higher than their reported IC50 values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kγ inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kγ-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca2+ transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca2+ oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kγ directly controls contractility of airways through regulation of Ca2+ oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kγ inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness. PMID:20501633
Popnikolov, N; Yang, J; Liu, A; Guzman, R; Nandi, S
2001-03-01
The proliferation of normal human breast epithelial cells in women is highest during the first trimester of pregnancy. In an attempt to analyze this hormonal environment in a model system, the effect of host mouse pregnancy and the administration of human chorionic gonadotropin (hCG) were assessed in normal human breast epithelial cells transplanted into athymic nude mice. Human breast epithelial cells, dissociated from reduction mammoplasty specimens and embedded inside the extracellular matrices comprised of collagen gel and Matrigel, were transplanted into nude mice. Proliferation was measured in vivo by BrdU labeling followed by immunostaining of sections from recovered gels in response to an altered hormonal environment of the host animal. The host animal was mated to undergo pregnancy and the complex hormonal environment of the host animal pregnancy stimulated growth of transplanted human cells. This effect increased with progression of pregnancy and reached the maximum during late pregnancy prior to parturition. In order to determine whether additional stimulation could be achieved, the transplanted human cells were exposed to a second cycle of host mouse pregnancy by immediately mating the animal after parturition. This additional exposure of host mouse pregnancy did not result in further increase of proliferation. The effect of hCG administration on transplanted human cells was also tested, since hCG level is highest during the first trimester of human pregnancy and coincides with the maximal breast cell proliferation. Administration of hCG alone stimulated proliferation of human cells in a dose-dependent manner, and could further enhance stimulation achieved with estrogen. The host mouse mammary gland also responded to hCG treatment resulting in increased branching and lobulo-alveolar development. However, the hCG effect on both human and mouse cells was dependent on intact ovary since the stimulation did not occur in ovariectomized animals. Although hCG receptor transcripts were detected in human breast epithelial cells, raising the possibility of a direct mitogenic action, the hCG effect observed in this study may have been mediated via the ovary by increased secretion of ovarian steroids. In summary, using our in vivo nude mice system, the proliferation of normal human breast epithelial cells could be stimulated by host mouse pregnancy and by administration of hCG.
NASA Technical Reports Server (NTRS)
Sekiguchi, M.; Abe, H.; Moriya, M.; Tanaka, O.; Nowakowski, R. S.
1998-01-01
The Snell dwarf mouse (Pit1dw-J homozygote) has a mutation in the Pit1 gene that prevents the normal formation of the anterior pituitary. In neonates and adults there is almost complete absence of growth hormone (GH), prolactin (PRL), thyroxin (T4), and thyroid-stimulating hormone (TSH). Since these hormones have been suggested to play a role in normal development of the central nervous system (CNS), we have investigated the effects of the Pit1dw-J mutation on the cerebellum and hippocampal formation. In the cerebellum, there were abnormalities of both foliation and lamination. The major foliation anomalies were 1) changes in the relative size of specific folia and also the proportional sizes of the anterior vs posterior cerebellum; and 2) the presence of between one and three microfolia per half cerebellum. The microfolia were all in the medial portion of the hemisphere in the caudal part of the cerebellum. Each microfolium was just rostral to a normal fissure and interposed between the fissure and a normal gyrus. Lamination abnormalities included an increase in the number of single ectopic granule cells in the molecular layer in both cerebellar vermis (86%) and hemisphere (40%) in comparison with the wild-type mouse. In the hippocampus of the Pit1dw-J homozygote mouse, the number of pyramidal cells was decreased, although the width of the pyramidal cell layer throughout areas CA1-CA3 appeared to be normal, but less densely populated than in the wild-type mouse. Moreover, the number of granule cells that form the granule cell layer was decreased from the wild-type mouse and some ectopic granule cells (occurring both as single cells and as small clusters) were observed in the innermost portion of the molecular layer. The abnormalities observed in the Pit1dw-J homozygote mouse seem to be caused by both direct and indirect effects of the deficiency of TSH (or T4), PRL, or GH rather than by a direct effect of the deletion of Pit1.
Role of muscarinic receptor subtypes in central antinociception.
Bartolini, A.; Ghelardini, C.; Fantetti, L.; Malcangio, M.; Malmberg-Aiello, P.; Giotti, A.
1992-01-01
1. The ability to modify the pain threshold by the two M1-muscarinic agonists: McN-A-343 and AF-102B and by the specific M2-agonist arecaidine was examined in mice and rats by using three different noxious stimuli: chemical (writhing test), thermic (hot-plate test) and mechanical (paw pressure test). 2. In the mouse hot-plate test McN-A-343 (20-50 micrograms per mouse i.c.v.) and AF-102B (1-10 mg kg-1 i.p.) produced significant antinociception which was prevented by atropine (1 microgram per mouse i.c.v.) and by the two selective M1 antagonists: pirenzepine (0.01 micrograms per mouse i.c.v.) and dicyclomine (0.08 micrograms per mouse i.c.v. or 10 mg kg-1 i.p.) but not by the specific M2-antagonist AFDX-116 (0.1 micrograms per mouse i.c.v.), naloxone (1 mg kg-1 i.p.) or by the acetylcholine (ACh) depletor hemicholinium-3 (HC-3) (1 micrograms per mouse i.c.v.). McN-A-343 and AF-102B were able to increase the pain threshold also in the mouse acetic acid writhing test and in rat paw pressure test. These antinociceptive effects were completely prevented by dicyclomine (0.08 micrograms per mouse i.c.v. or 10 mg kg-1 i.p.) but not by AFDX-116 (0.1 microgram per mouse or rat i.c.v.). 3. In contrast with the M1-agonists, the M2-agonist arecaidine (0.1-2 micrograms per mouse or rat i.c.v.) did not induce antinociception in all three analgesic tests. However, arecaidine, at the same i.c.v. doses, was able to reduce the pain threshold in the hot-plate and paw pressure tests.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1375858
Disrupting the male germ line to find infertility and contraception targets.
Archambeault, Denise R; Matzuk, Martin M
2014-05-01
Genetically-manipulated mouse models have become indispensible for broadening our understanding of genes and pathways related to male germ cell development. Until suitable in vitro systems for studying spermatogenesis are perfected, in vivo models will remain the gold standard for inquiry into testicular function. Here, we discuss exciting advances that are allowing researchers faster, easier, and more customizable access to their mouse models of interest. Specifically, the trans-NIH Knockout Mouse Project (KOMP) is working to generate knockout mouse models of every gene in the mouse genome. The related Knockout Mouse Phenotyping Program (KOMP2) is performing systematic phenotypic analysis of this genome-wide collection of knockout mice, including fertility screening. Together, these programs will not only uncover new genes involved in male germ cell development but also provide the research community with the mouse models necessary for further investigations. In addition to KOMP/KOMP2, another promising development in the field of mouse models is the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-Cas technology. Utilizing 20 nucleotide guide sequences, CRISPR/Cas has the potential to introduce sequence-specific insertions, deletions, and point mutations to produce null, conditional, activated, or reporter-tagged alleles. CRISPR/Cas can also successfully target multiple genes in a single experimental step, forgoing the multiple generations of breeding traditionally required to produce mouse models with deletions, insertions, or mutations in multiple genes. In addition, CRISPR/Cas can be used to create mouse models carrying variants identical to those identified in infertile human patients, providing the opportunity to explore the effects of such mutations in an in vivo system. Both the KOMP/KOMP2 projects and the CRISPR/Cas system provide powerful, accessible genetic approaches to the study of male germ cell development in the mouse. A more complete understanding of male germ cell biology is critical for the identification of novel targets for potential non-hormonal contraceptive intervention. Copyright © 2014. Published by Elsevier Masson SAS.
Lichius, J J; Muth, C
1997-08-01
Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.
Studies on Typhus and Spotted Fever.
1980-02-01
prowazekii-infected human somatic (fibroblast, endothelia)), but not chick, mouse or monkey , cells in culture: (a) intracellular antirickettsial action...that of the controls. No such effect on growth was apparent in CE cells, Nu E % o0 M Ŕ ZOO - .0 E 00 (1 CI - 4D W = .) C ~ o r- -!NBI Go !N 21501,,o o...human origin transformed or malignant cells, monkey primary or diploid and primary mouse embryo fibroblasts will permit expression of these effects to
Protective effects of papaverine salicylate in mouse ear dermatitis and PAF-induced rat paw oedema.
de Bernardis, E; Leonardi, G; Caruso, A; Cutuli, V M; Amico-Roxas, M
1994-08-01
Papaverine salicylate (MR-800) has been tested as a topical antiinflammatory agent in several models of skin inflammation in rodents, such as mouse ear dermatitis induced by croton oil, cantharidin or zymosan, and rat paw oedema induced by PAF. MR-800 exerted a dose-dependent inhibitory activity in all assays, when equimolar doses of sodium salicylate or papaverine were less effective, suggesting the existence of a favourable synergism between salicylate and papaverine.
Chen, Y P; Lee, T Y; Hong, W S; Hsieh, H H; Chen, M J
2013-01-01
A potential probiotic strain, Lactobacillus kefiranofaciens M1, was previously isolated from kefir grains, which are used to manufacture the traditional fermented drink kefir. The aim of this study was to investigate the effects of Lb. kefiranofaciens M1 on enterohemorrhagic Escherichia coli (EHEC) infection, using mice and intestinal cell models. BALB/c mice were daily administrated with either phosphate buffered saline or Lb. kefiranofaciens M1 at 2×10(8) cfu/mouse per day intragastrically for 7 d. Intragastric challenges with EHEC (2×10(9) cfu/mouse) were conducted on d 0, 4, and 7 after treatment. Administration of Lb. kefiranofaciens M1 was able to prevent EHEC infection-induced symptoms, intestinal damage, renal damage, bacterial translocation, and Shiga toxin penetration. Furthermore, the mucosal EHEC-specific IgA responses were increased after Lb. kefiranofaciens M1 administration in the EHEC-infected mouse system. Additionally, in vitro, Lb. kefiranofaciens M1 was shown to have a protective effect on Caco-2 intestinal epithelial cells and Caco-2 intestinal epithelial cell monolayers; the bacteria limited EHEC-induced cell death and reduced the loss of epithelial integrity. These findings support the potential of Lb. kefiranofaciens M1 treatment as an approach to preventing EHEC infection and its effects. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chen, Chia-Chi; Chan, Wen-Hsiung
2012-01-01
Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.
Flores-Herrera, Héctor; Díaz-Cervantes, Paola; De la Mora, Gustavo; Zaga-Clavellina, Verónica; Uribe-Salas, Felipe; Castro, Ivone
2008-12-01
The contraceptive effect of the progestogen norethisterone (NET) and its main metabolites 5alpha-NET and 3beta,5alpha-NET has been demonstrated in several species, and most studies have focused on the effects of these compounds in the uterus. We previously reported that 5alpha-NET inhibits the progesterone (P(4))-induced acrosome reaction in pig and mouse spermatozoa and induces severe morphological damage in two-cell fertilized mouse oocytes. The main goal of this study was to analyze the possible role of P(4) receptor (PR) in the effects of NET and 5alpha-NET on the oocyte fertilization process. Different steroid treatments were used with or without cumulus-enclosed oocytes. It was demonstrated that NET increases the percentage of fertilized oocytes in the same manner as P(4) does, while 5alpha-NET reduces the percentage of fertilized oocytes. This effect was not reversed by P(4) in the same concentrations. A possible molecular mechanism for the effects of 5alpha-NET may be through a PR localized in the oocyte plasma membrane.
Rodríguez-Nogales, Alba; Algieri, Francesca; Garrido-Mesa, Jose; Vezza, Teresa; Utrilla, M Pilar; Chueca, Natalia; Garcia, Federico; Olivares, Mónica; Rodríguez-Cabezas, M Elena; Gálvez, Julio
2017-11-01
To compare the intestinal anti-inflammatory effects of two probiotics Lactobacillus fermentum and Lactobacillus salivarius in mouse colitis, focusing on their impact on selected miRNAs and microbiota composition. Male C57BL/6J mice were randomly assigned to four groups (n = 10): non-colitic, DSS colitic and two colitic groups treated with probiotics (5 × 10 8 CFU/mouse/day). Both probiotics ameliorated macroscopic colonic damage. They improved the colonic expression of markers involved in the immune response, and the expression of miR-155 and miR-223. L. fermentum also restored miR-150 and miR-143 expression, also linked to the preservation of the intestinal barrier function. Besides, these beneficial effects were associated with the amelioration of the microbiota dysbiosis and a recovery of the SCFAs- and lactic acid-producing bacterial populations, although only L. fermentum improved Chao richness, Pielou evenness and Shannon diversity. Moreover, L. fermentum also restored the Treg cell population in MLNs and the Th1/Th2 cytokine balance. Both probiotics exerted intestinal anti-inflammatory effects in DSS-mouse colitis, maybe due to their ability to restore the intestinal microbiota homeostasis and modulate the immune response. L. fermentum showed a greater beneficial effect compared to L. salivarius, which makes it more interesting for future studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-Pore Channels: Lessons from Mutant Mouse Models
Ruas, Margarida; Galione, Antony; Parrington, John
2016-01-01
Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869
Fetal DNA does not induce preeclampsia-like symptoms when delivered in late pregnancy in the mouse.
Čonka, Jozef; Konečná, Barbora; Lauková, Lucia; Vlková, Barbora; Celec, Peter
2017-04-01
The etiology of preeclampsia is unclear. Fetal DNA is present in higher concentrations in the plasma of pregnant women suffering from preeclampsia than in the plasma of healthy pregnant women. A previously published study has shown that human fetal DNA injected into pregnant mice induces preeclampsia-like symptoms when administered between gestation days 10-14. The aim of our experiment was to determine whether or not similar effects would be induced by administration of human and mouse fetal DNA, as well as mouse adult DNA and lipopolysaccharide during late pregnancy in the mouse. Experimental animals were injected daily intraperitoneally during gestation days 14-18 with either saline - negative control, lipopolysaccharide - positive control, or various types of DNA. On gestation day 19, blood pressure and proteinuria were measured, and placental and fetal weights were recorded. Fetal and placental hypotrophy were induced only by lipopolysaccharide (p < 0.001). Neither fetal nor adult DNA induced changes in fetal/placental weight. None of the experimental groups had higher blood pressure or urinary protein in comparison to saline treated animals. In our experiment, we found that there was no effect from intraperitoneally injected human fetal DNA, mouse fetal DNA, or mouse adult DNA on pregnant mice. Additionally, relatively high doses of various types of DNA did not induce preeclampsia-like symptoms in mice when administered in late pregnancy. Our negative results support the hypothesis that the increase of fetal DNA circulating in maternal circulation during the third trimester is rather a consequence than a cause of preeclampsia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automating mouse weighing in group homecages with Raspberry Pi micro-computers.
Noorshams, Omid; Boyd, Jamie D; Murphy, Timothy H
2017-06-15
Operant training systems make use of water or food restriction and make it necessary to weigh animals to ensure compliance with experimental endpoints. In other applications periodic weighing is necessary to assess drug side-effects, or as an endpoint in feeding experiments. Periodic weighing while essential can disrupt animal circadian rhythms and social structure. Automatic weighing system within paired mouse homecages. Up to 10 mice freely move between two cages (28×18×9cm) which were connected by a weighing chamber mounted on a load cell. Each mouse was identified using an RFID tag placed under the skin of the neck. A single-board computer (Raspberry Pi; RPi) controls the task, logging RFID tag, load cell weights, and time stamps from each RFID detection until the animal leaves the chamber. Collected data were statistically analyzed to estimate mouse weights. We anticipate integration with tasks where automated imaging or behaviour is assessed in homecages. Mice frequently move between the two cages, an average of 42+-16 times/day/mouse at which time we obtained weights. We report accurate determination of mouse weight and long term monitoring over 53days. Comparison with existing methods Although commercial systems are available for automatically weighing rodents, they only work with single animals, or are not open source nor cost effective for specific custom application. This automated system permits automated weighing of mice ∼40 times per day. The system employs inexpensive hardware and open-source Python code. Copyright © 2017 Elsevier B.V. All rights reserved.
Short-term molecular profiles are a central component of strategies to model health effects of environmental chemicals. In this study, a 7 day mouse assay was used to evaluate transcriptomic and proliferative responses in the liver for a hepatocarcinogenic phthalate, di (2-ethylh...
USDA-ARS?s Scientific Manuscript database
Whole wheat products provide critical nutrients for human health, though differences in wheat flavor are not well understood. Using the house mouse as a model system, flavor was examined using a two-choice feeding system and the Student’s t statistic. To eliminate the confounding effect of processin...
Ion transport regulation by prostaglandins in mouse macrophages.
Braquet, P; Diez, J; Garay, R
1985-01-01
Although the prostaglandins PGE1, PGE2 and PGF2 alpha had no effect on ion transport in isolated human erythrocytes, they modulated ion transport in isolated mouse macrophages, apparently through the mediation of cAMP, by inhibiting the NA+, K+ cotransport system, stimulating the Na+, K+ pump, and stimulating the Na+: Ca++ exchange mechanism.
Altered Signal Transduction in Renal Cell Injury Following Hemorrhagic Shock or Anoxia
1989-07-01
Camal ter, R. F. ; Saffiotti, U. Effects of serum and serum-derved factors on growth and differentiation of mouse keratinocytes. In Vitro 22: 423-428...growth and differentiation of mouse epidermal cells in culture. Cell 19: 245-254; 1980. 19. Kaighn, M. E.; Camaller , R. F.; Bertolero, F.; SaffLotti, U
Antitumor-promoting activity of oligomeric proanthocyanidins in mouse epidermis in vivo
Xiao Mei Gao; Elisabeth M. Perchellet; Hala U. Gali; Limarie Rodriguez; Richard W. Hemingway; Jean-Pierre Perchellet
1994-01-01
The flavanoid catechin and heterogenous samples of oligomeric proanthocyanidins extracted from various sources were compared for their ability to inhibit the biochemical and biological effects of l2-0-tetradecanoylphorbol-13-acetate (TPA) in mouse epidermis in vivo. Topical applications of catechin fail to alter the hydroperoxide response to TPA but...
An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...
2002-12-01
mouse (Onychomys torridus), little pocket mouse (Perognathus longimembris), Merriam’s kangaroo rat (Dipodymus merriami), and desert woodrat (Neotoma...mild, such as an increase in heart rate, to more severe, such as effects on metabolism and hormone balance. Behavioral responses can also be mild
Determining UV Inactivation of Toxoplasma gondii Oocysts by Using Cell Culture and a Mouse Bioassay
The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated UV irradiated oocysts by three assays: a SCID mouse bioassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reve...
Ahmad, Bashir; Rizwan, Muhammad; Rauf, Abdur; Raza, Muslim; Azam, Sadiq; Bashir, Shumaila; Molnar, Joseph; Csonka, Akos; Szabo, Diana
2016-01-01
A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.
Faleo, Gaetano; Lee, Karim; Nguyen, Vinh; Tang, Qizhi
2016-01-01
Background Embryonic-stem-cell (ESC)-derived islets hold the promise of providing a renewable source of tissue for the treatment of insulin-dependent diabetes. Encapsulation may allow ESC-derived islets to be transplanted without immunosuppression, thus enabling wider application of this therapy. Methods In this study, we investigated the immunogenicity of mouse pancreatic progenitor cells and efficacy of a new macroencapsulation device in protecting these cells against alloimmune and autoimmune responses in mouse models. Results Mouse pancreatic progenitor cells activated the indirect but not the direct pathway of alloimmune response and were promptly rejected in immune competent hosts. The new macroencapsulation device abolished T cell activation induced by allogeneic splenocytes and protected allogeneic MIN6 β cells and pancreatic progenitors from rejection even in pre-sensitized recipients. In addition, the device was effective in protecting MIN6 cells in spontaneously diabetic non-obese diabetic recipients against both alloimmune and recurring autoimmune responses. Conclusion Our results demonstrate that macroencapsulation can effectively prevent immune sensing and rejection of allogeneic pancreatic progenitor cells in fully sensitized and autoimmune hosts. PMID:26982952
Zhu, Lian; Zhou, Wei; Kong, Peng-Cheng; Wang, Mei-Shan; Zhu, Yan; Feng, Li-Xin; Chen, Xue-Jin; Jiang, Man-Xi
2015-06-01
Round spermatid injection (ROSI) into mammalian oocytes can result in the development of viable embryos and offspring. One current limitation to this technique is the identification of suitable round spermatids. In the current paper, round spermatids were selected from testicular cells with phase contrast microscopy (PCM) and fluorescence-activated cell sorting (FACS), and ROSI was performed in two strains of mice. The rates of fertilization, embryonic development and offspring achieved were the same in all strains. Significantly, round spermatids selected by PCM and FACS were effectively used to rescue the infertile Pten-null mouse. The current results indicate that FACS selection of round spermatids can not only provide high-purity and viable round spermatids for use in ROSI, but also has no harmful effects on the developmental capacity of subsequently fertilized embryos. It was concluded that round spermatids selected by FACS are useful for mouse strain rederivation and rescue of infertile males; ROSI should be considered as a powerful addition to the armamentarium of assisted reproduction techniques applicable in the mouse.
Rett syndrome treatment in mouse models: searching for effective targets and strategies.
Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni
2013-05-01
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cotinine administration improves impaired cognition in the mouse model of Fragile X syndrome.
Pardo, Marta; Beurel, Eleonore; Jope, Richard S
2017-02-01
Cotinine is the major metabolite of nicotine and has displayed some capacity for improving cognition in mouse models following chronic administration. We tested if acute cotinine treatment is capable of improving cognition in the mouse model of Fragile X syndrome, Fmr1 -/- knockout mice, and if this is related to inhibition by cotinine treatment of glycogen synthase kinase-3β (GSK3β), which is abnormally active in Fmr1 -/- mice. Acute cotinine treatment increased the inhibitory serine-phosphorylation of GSK3β and the activating phosphorylation of AKT, which can mediate serine-phosphorylation of GSK3β, in both wild-type and Fmr1 -/- mouse hippocampus. Acute cotinine treatment improved cognitive functions of Fmr1 -/- mice in coordinate and categorical spatial processing, novel object recognition, and temporal ordering. However, cotinine failed to restore impaired cognition in GSK3β knockin mice, in which a serine9-to-alanine9 mutation blocks the inhibitory serine phosphorylation of GSK3β, causing GSK3β to be hyperactive. These results indicate that acute cotinine treatment effectively repairs impairments of these four cognitive tasks in Fmr1 -/- mice, and suggest that this cognition-enhancing effect of cotinine is linked to its induction of inhibitory serine-phosphorylation of GSK3. Taken together, these results show that nicotinic receptor agonists can act as cognitive enhancers in a mouse model of Fragile X syndrome and highlight the potential role of inhibiting GSK3β in mediating the beneficial effects of cotinine on memory. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Chandrasekaran, Chinampudur V.; Sundarajan, Kannan; Edwin, Jothie R.; Gururaja, Giligar M.; Mundkinajeddu, Deepak; Agarwal, Amit
2013-01-01
Background: While curcuminoids have been reported to possess diverse biological activities, the anti-inflammatory activity of polar extracts (devoid of curcuminoids) of Curcuma longa (C. longa) has seldom been studied. In this study, we have investigated immune-stimulatory and anti-inflammatory activities of an aqueous based extract of C. longa (NR-INF-02) and its fractions in presence and absence of mitogens. Materials and Methods: Effects of NR-INF-02 (Turmacin™, Natural Remedies Pvt. Ltd., Bangalore, India) on proliferation, nitric oxide (NO), monocyte chemotactic protein-1 (MCP-1), interleukins (ILs) and prostaglandin (PGE2) levels of mouse splenocytes and mouse macrophage (RAW264.7) cells were determined. Results: NR-INF-02 increased splenocytes number in presence and absence of lipopolysaccharide (LPS) or concanavalin A. Treatment of NR-INF-02 showed a significant increase of NO, IL-2, IL-6, IL-10, IL-12, interferon (IFN) gamma, tumor necrosis factor (TNF) alpha and MCP-1 production in unstimulated mouse splenocytes and mouse macrophages. Interestingly, NR-INF-02 showed potent inhibitory effect towards release of PGE2 and IL-12 levels in LPS stimulated mouse splenocytes. Further, NR-INF-02 was fractionated into polysaccharide fraction (F1) and mother liquor (F2) to study their immune-modulatory effects. F1 was found to be more potent than F2 toward inhibiting PGE2 and IL-12 in LPS stimulated splenocytes. Conclusion: Present findings revealed the novel anti-inflammatory property of NR-INF-02 and its polysaccharide fraction by inhibiting the secretion of IL-12 and PGE2 in vitro. PMID:23798880
Eladak, Soria; Grisin, Tiphany; Moison, Delphine; Guerquin, Marie-Justine; N'Tumba-Byn, Thierry; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Rouiller-Fabre, Virginie; Habert, René
2015-01-01
Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical, and one of the major new issues is the safe replacement of this commonly used compound. Bisphenol S (BPS) and bisphenol F (BPF) are already or are planned to be used as BPA alternatives. With the use of a culture system that we developed (fetal testis assay [FeTA]), we previously showed that 10 nmol/L BPA reduces basal testosterone secretion of human fetal testis explants and that the susceptibility to BPA is at least 100-fold lower in rat and mouse fetal testes. Here, we show that addition of LH in the FeTA system considerably enhances BPA minimum effective concentration in mouse and human but not in rat fetal testes. Then, using the FeTA system without LH (the experimental conditions in which mouse and human fetal testes are most sensitive to BPA), we found that, as for BPA, 10 nmol/L BPS or BPF is sufficient to decrease basal testosterone secretion by human fetal testes with often nonmonotonic dose-response curves. In fetal mouse testes, the dose-response curves were mostly monotonic and the minimum effective concentrations were 1,000 nmol/L for BPA and BPF and 100 nmol/L for BPS. Finally, 10,000 nmol/L BPA, BPS, or BPF reduced Insl3 expression in cultured mouse fetal testes. This is the first report describing BPS and BPF adverse effects on a physiologic function in humans and rodents. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
Kodamullil, Alpha Tom; Iyappan, Anandhi; Karki, Reagon; Madan, Sumit; Younesi, Erfan; Hofmann-Apitius, Martin
2017-01-01
Perturbance in inflammatory pathways have been identified as one of the major factors which leads to neurodegenerative diseases (NDD). Owing to the limited access of human brain tissues and the immense complexity of the brain, animal models, specifically mouse models, play a key role in advancing the NDD field. However, many of these mouse models fail to reproduce the clinical manifestations and end points of the disease. NDD drugs, which passed the efficacy test in mice, were repeatedly not successful in clinical trials. There are numerous studies which are supporting and opposing the applicability of mouse models in neuroinflammation and NDD. In this paper, we assessed to what extend a mouse can mimic the cellular and molecular interactions in humans at a mechanism level. Based on our mechanistic modeling approach, we investigate the failure of a neuroinflammation targeted drug in the late phases of clinical trials based on the comparative analyses between the two species.
Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus
Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting
2017-01-01
Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391
Non-target effects of an introduced biological control agent on deer mouse ecology.
Pearson, D E; McKelvey, K S; Ruggiero, L F
2000-01-01
Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-central Montana infested with spotted knapweed (Centaurea maculosa) to examine the effects of knapweed invasion and two gall flybiological control agents (Urophora affinis and U. quadrifasciata) on the native deer mouse (Peromyscus maniculatus). Stomach-content analysis revealed that Urophora were the primary food item in Peromyscus diets for most of the year and made up 84-86% of the winter diet. Stomach contents indicated that wild-caught mice consumed on average up to 247 Urophora larvae mouse -1 day -1 , while feeding trials revealed that deer mice could depredate nearly 5 times as many larvae under laboratory conditions. In feeding trials, deer mice selected knapweed seedheads with greater numbers of galls while avoiding uninfested seedheads. When Urophora larvae were present in knapweed seedheads, deer mice selected microhabitats with moderately high (31-45% cover) and high knapweed infestation (≥46% cover). After Urophora emerged and larvae were unavailable to Peromyscus, mice reversed habitat selection to favor sites dominated by native-prairie with low knapweed infestation (0-15%). Establishment of the biological control agent, Urophora spp., has altered deer mouse diets and habitat selection by effecting changes in foraging strategies. Deer mice and other predators may reduce Urophora populations below a threshold necessary to effectively control spotted knapweed.
Four factors underlying mouse behavior in an open field
Tanaka, Shoji; Young, Jared W.; Halberstadt, Adam L.; Masten, Virginia L.; Geyer, Mark A.
2012-01-01
The observation of the locomotor and exploratory behaviors of rodents in an open field is one of the most fundamental methods used in the field of behavioral pharmacology. A variety of behaviors can be recorded automatically and can readily generate a multivariate pattern of pharmacological effects. Nevertheless, the optimal ways to characterize observed behaviors and concomitant drug effects are still under development. The aim of this study was to extract meaningful behavioral factors that could explain variations in the observed variables from mouse exploration. Behavioral data were recorded from male C57BL/6J mice (n = 268) using the Behavioral Pattern Monitor (BPM). The BPM data were subjected to the exploratory factor analysis. The factor analysis extracted four factors: activity, sequential organization, diversive exploration, and inspective exploration. The activity factor and the two types of exploration factors correlated positively with one another, while the sequential organization factor negatively correlated with the remaining factors. The extracted factor structure constitutes a behavioral model of mouse exploration. This model will provide a platform on which one can assess the effects of psychoactive drugs and genetic manipulations on mouse exploratory behavior. Further studies are currently underway to examine the factor structure of similar multivariate data sets from humans tested in a human BPM. PMID:22569582
Four factors underlying mouse behavior in an open field.
Tanaka, Shoji; Young, Jared W; Halberstadt, Adam L; Masten, Virginia L; Geyer, Mark A
2012-07-15
The observation of the locomotor and exploratory behaviors of rodents in an open field is one of the most fundamental methods used in the field of behavioral pharmacology. A variety of behaviors can be recorded automatically and can readily generate a multivariate pattern of pharmacological effects. Nevertheless, the optimal ways to characterize observed behaviors and concomitant drug effects are still under development. The aim of this study was to extract meaningful behavioral factors that could explain variations in the observed variables from mouse exploration. Behavioral data were recorded from male C57BL/6J mice (n=268) using the Behavioral Pattern Monitor (BPM). The BPM data were subjected to the exploratory factor analysis. The factor analysis extracted four factors: activity, sequential organization, diversive exploration, and inspective exploration. The activity factor and the two types of exploration factors correlated positively with one another, while the sequential organization factor negatively correlated with the remaining factors. The extracted factor structure constitutes a behavioral model of mouse exploration. This model will provide a platform on which one can assess the effects of psychoactive drugs and genetic manipulations on mouse exploratory behavior. Further studies are currently underway to examine the factor structure of similar multivariate data sets from humans tested in a human BPM. Copyright © 2012 Elsevier B.V. All rights reserved.
Pan, Qiuhui; Fichna, Jakub; Zheng, Lijun; Wang, Kesheng; Yu, Zhen; Li, Yongyu; Li, Kun; Song, Aihong; Liu, Zhongchen; Song, Zhenshun; Kreis, Martin
2015-01-01
Background and Aims Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests. Methods The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms. Then the opioidantagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons. Results In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR) and delta- (DOR) opioidreceptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons. Conclusion Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions. PMID:26700862
Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality
Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo
2015-01-01
Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298
Jin, Chunhua; Cleveland, Joseph C; Ao, Lihua; Li, Jilin; Zeng, Qingchun; Fullerton, David A; Meng, Xianzhong
2014-01-01
The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27. PMID:24918749
Jin, Chunhua; Cleveland, Joseph C; Ao, Lihua; Li, Jilin; Zeng, Qingchun; Fullerton, David A; Meng, Xianzhong
2014-06-09
The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27.
Jafari-Sabet, Majid; Khodadadnejad, Mohammad-Amin; Ghoraba, Saeed; Ataee, Ramin
2014-02-01
In the present study, the effects of intra-dorsal hippocampal (intra-CA1) injections of nitric oxide (NO) agents on muscimol state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retrieval in adult male NMRI mice. Post-training intra-CA1 administration of a GABAA receptor agonist, muscimol (0.05 and 0.1 μg/mouse) dose dependently induced impairment of memory retention. Pre-test injection of muscimol (0.05 and 0.1 μg/mouse) induced state-dependent retrieval of the memory acquired under post-training muscimol (0.1 μg/mouse, intra-CA1) influence. Pre-test injection of a NO precursor, L-arginine (1 and 2 μg/mouse, intra-CA1) improved memory retention, although the low dose of the drug (0.5 μg/mouse) did not affect memory retention. Pre-test injection of an inhibitor of NO-synthase, L-NAME (0.5 and 1 μg/mouse, intra-CA1) impaired memory retention, although the low dose of the drug (0.25 μg/mouse) did not affect memory retention. In other series of experiments, pre-test intra-CA1 injection of L-arginine (0.25 and 0.5 μg/mouse) 5 min before the administration of muscimol (0.1 μg/mouse, intra-CA1) dose dependently inhibited muscimol state-dependent memory. Pre-test intra-CA1 administration of L-arginine (0.125, 0.25 and 0.5 μg/mouse) by itself cannot affect memory retention. Pre-test intra-CA1 injection of L-NAME (0.25 μg/mouse, intra-CA1) reversed the memory impairment induced by post-training administration of muscimol (0.1 μg/mouse, intra-CA1). Moreover, pre-test administration of L-NAME (0.125 and 0.25 μg/mouse, intra-CA1) with an ineffective dose of muscimol (0.025 μg/mouse, intra-CA1) significantly restored the retrieval and induced muscimol state-dependent memory. Pre-test intra-CA1 administration of L-NAME (0.0625, 0.125 and 0.25 μg/mouse) by itself cannot affect memory retention. It may be suggested that the nitric oxide in the dorsal hippocampal area play an important role in muscimol state-dependent memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse.
Wang, Lingwei; Li, Jie; Zhang, Jian; He, Qi; Weng, Xuanwen; Huang, Yanmei; Guan, Minjie; Qiu, Chen
2017-02-26
Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) -5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNA and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Suzuki, N; Nadano, D; Paria, B C; Kupriyanov, S; Sugihara, K; Fukuda, M N
2000-11-01
Trophinin mediates apical cell adhesion between two human cell lines, trophoblastic teratocarcinoma and endometrial adenocarcinoma. In humans, trophinin is specifically expressed in cells involved in implantation and early placentation. The present study was undertaken to establish trophinin expression by the mouse uterus. In the pregnant mouse uterus, trophinin transcripts are expressed during the time which coincides with the timing of blastocyst implantation. Trophinin is also expressed in the nonpregnant mouse uterus at estrus stage. Uteri from ovariectomized mice did not express trophinin, whereas strong expression was induced by estrogen but not by progesterone. Trophinin transcripts and protein were found in the pseudopregnant mouse uterus. No differences were detected in trophinin expression by the uteri in the pregnant, pseudopregnant, and pseudopregnant received blastocysts. In delayed implantation model, trophinin proteins were found in both luminal and glandular epithelium, whereas dormant blastocysts were negative for trophinin. Upon activation with estrogen, however, no significant changes were detected either in the blastocyst or in the uterus. These results indicate that ovarian hormones regulate trophinin expression by the mouse uterus, and that an implanting blastocyst has no effect on trophinin expression in the surrounding endometrial luminal epithelial cells.
NASA Astrophysics Data System (ADS)
Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-01-01
Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.
Chemically-induced Mouse Lung Tumors: Applications to ...
A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan
Effect of Culture Conditions on Viability of Mouse and Rat Embryos Developed in Vitro
Popova, Elena; Bader, Michael; Krivokharchenko, Alexander
2011-01-01
Currently in vitro culture of mouse preimplantation embryos has become a very important technique to investigate different mechanisms of early embryogenesis. However, there is a big difference in the preimplantation development between mammalian species. Despite close relatedness to mice, in vitro cultivation of rat preimplantation embryos is still delicate and needs further investigation and optimizations. In this study we have compared the in vitro developmental potential of mouse and rat embryos cultured at different culture conditions in parallel experiments. Interestingly, mouse zygotes developed in vitro until blastocyst stage even in inadequate medium without any phosphates and with low osmolarity which was formulated especially for cultivation of rat embryos. Rat parthenotes and zygotes developed in M16 medium formulated for mouse embryos only till 2-cell stage and further development is blocked completely at this stage. Moreover, developmental ability of rat embryos in vitro was significantly lower in comparison with mouse even in special rat mR1ECM medium. Mouse and rat embryos at 2-cell stage obtained in vivo developed until blastocyst stages significantly more efficiently compared to zygotes. Culture of mouse zygotes in glass capillaries resulted in a significantly higher rate of morula and blastocyst development compared with dishes. The Well-of-the-Well system resulted in a significant improvement when compared with dishes for the culture of rat zygotes only until morula stage. Reduced oxygen tension increased the developmental rate of rat but not mouse zygotes until blastocyst stage. This study demonstrates that development of early preimplantation embryos is altered by different culture conditions and show strong differences even between two related species such as mice and rats. Therefore, for understanding the fundamental mechanisms of early mammalian development it is very important to use embryos of various species. PMID:24710194
Enomoto, Hirayuki; Tao, Lihua; Eguchi, Ryoji; Sato, Ayuko; Honda, Masao; Kaneko, Shuichi; Iwata, Yoshinori; Nishikawa, Hiroki; Imanishi, Hiroyasu; Iijima, Hiroko; Tsujimura, Tohru; Nishiguchi, Shuhei
2017-09-22
Type I-interferon (IFN) is considered to exert antitumor effects through the inhibition of cancer cell proliferation and angiogenesis. Based on the species-specific biological activity of IFN, we evaluated each antitumor mechanism separately. We further examined the antitumor effects of type I-IFN combined with sorafenib. Human IFN (hIFN) significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) Hep3B cells and the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Although mouse IFN (mIFN) did not inhibit the proliferation of Hep3B cells in vitro, mIFN, as well as hIFN, showed significant antitumor effects in mouse Hep3B cell-xenograft model. Furthermore, mIFN treatment amplified the antitumor effects of sorafenib in vivo with the suppression of angiogenesis. The DNA chip analysis showed that the mIFN treatment promoted the antitumor signal pathways of sorafenib, including anti-angiogenic effects. Unlike the effects observed in in vitro experiments, mIFN showed an antitumor effect in the mouse Hep3B cell-xenograft model, suggesting a role of the anti-angiogenic activity in the in vivo tumoricidal effects of type I-IFN. In addition, our findings suggested the clinical utility of combination therapy with type І-IFN and sorafenib for HCC.
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
Mousseau, D D; Larson, A A
1994-09-01
We have previously observed similarities in the behavioral effects produced by the NH2-terminus of the undecapeptide substance P (SP) and by 1,3-di(2-tolyl)-guanidine (DTG) in the adult mouse. The present series of experiments indicate differences in the rank-order of potency of sigma ligands [DTG; haloperidol (HAL)], SP analogs [SP; SP(1-7); SP(5-11); [D-Pro2, D-Phe7]-SP(1-7) (D-SP(1-7))] and miscellaneous compounds [morphine (MOR), naloxone (NAL)] at competing for [3H]-DTG binding sites in the mouse brain and spinal cord in vitro: Brain; DTG = HAL > SP = MOR = NAL > SP(1-7) > D-SP(1-7) > SP(5-11): Spinal cord; DTG = HAL > SP(1-7) = MOR = NAL > SP > D-SP(1-7) = SP(5-11). The observed difference in the rank-order potencies of the displacing ligands at these same binding sites supports the notion of two distinct populations of sigma binding sites in these tissues in the adult mouse. Given the low (micromolar) potency of SP analogs at displacing [3H]-DTG binding in the present series of experiments, it is unlikely that the similar behavioral effects we have previously observed elicited by SP(1-7) and DTG in the adult mouse are a result of a direct action of SP(1-7) at the sigma binding site.
Okumura, Masaki; Ichihara, Hideaki; Matsumoto, Yoko
2018-11-01
Hybrid liposomes (HLs) can be prepared by simply sonicating a mixture of vesicular and micellar molecules in a buffer solution. This study aimed to elucidate the therapeutic effects and ability of HLs to detect (diagnosis) cancer in an orthotopic graft mouse model of colorectal cancer with HCT116 cells for the use of HLs as theranostic agents. In the absence of a chemotherapeutic drug, HLs exhibited therapeutic effects by inhibiting the growth of HCT116 colorectal cancer cells in vitro, possibly through an increase in apoptosis. Intravenously administered HLs also caused a remarkable reduction in the relative cecum weight in an orthotopic graft mouse model of colorectal cancer. A decrease in tumor size in the cecal sections was confirmed by histological analysis using HE staining. TUNEL staining indicated an induction of apoptosis in HCT116 cells in the orthotopic graft mouse model of colorectal cancer. For the detection (diagnosis) of colorectal cancer by HLs, the accumulation of HLs encapsulating a fluorescent probe (ICG) was observed in HCT116 cells in the in vivo colorectal cancer model following intravenous administration. These data indicate that HLs can accumulate in tumor cells in the cecum of the orthotopic graft mouse model of colorectal cancer for a prolonged period of time, and inhibit the growth of HCT116 cells.
Terrien, J; Perret, M; Aujard, F
2010-11-02
Age and gender are known to significantly modulate thermoregulatory capacities in mammals, suggesting strong impacts on behavioral adjustments, which are used to minimize the energy costs of thermoregulation. We tested the effects of sex and age on spontaneous choice of ambient temperature (Ta) in a non-human primate species, the mouse lemur (Microcebus murinus). The animals acclimated to both winter and summer photoperiods, two seasons significantly modifying thermoregulation function, were experimented in a thermal gradient device. During winter, adult males did not show preference for warm Tas whereas old males did. In contrast, female mouse lemurs of both age categories exhibited great preferences for warm Tas. Acclimation to summer revealed that males selected colder Ta for the day than during the night. Such behavior did not exist in females. Old females explored and selected warmer nests than adult ones. This study raised novel issues on the effect of gender on thermoregulatory capacities in the mouse lemur. Females probably use behavioral adjustments to limit energy expenditure and might prefer to preserve energy for maternal investment by anticipation of and during the breeding season. Further experiments focusing on female thermoregulatory capacities are needed to better understand the energy challenge that may occur during winter and summer in female mouse lemurs, and whether this trade-off changes during aging. Copyright © 2010 Elsevier Inc. All rights reserved.
Bruner-Tran, Kaylon L; Osteen, Kevin G; Taylor, Hugh S; Sokalska, Anna; Haines, Kaitlin; Duleba, Antoni J
2011-01-01
Endometriosis is a common gynecologic disorder characterized by ectopic attachment and growth of endometrial tissues. Resveratrol is a natural polyphenol with antiproliferative and anti-inflammatory properties. Our objective was to study the effects of resveratrol on human endometriotic implants in a nude mouse model and to examine its impact on human endometrial stromal (HES) cell invasiveness in vitro. Human endometrial tissues were obtained from healthy donors. Endometriosis was established in oophorectomized nude mice by intraperitoneal injection of endometrial tissues. Mice were treated with 17β-estradiol (8 mg, silastic capsule implants) alone (n = 16) or with resveratrol (6 mg/mouse; n = 20) for 10-12 and 18-20 days beginning 1 day after tissue injection. Mice were killed and endometrial implants were evaluated. A Matrigel invasion assay was used to examine the effects of resveratrol on HES cells. We assessed number and size of endometriotic implants in vivo and Matrigel invasion in vitro. Resveratrol decreased the number of endometrial implants per mouse by 60% (P < 0.001) and the total volume of lesions per mouse by 80% (P < 0.001). Resveratrol (10-30 μM) also induced a concentration-dependent reduction of invasiveness of HES by up to 78% (P < 0.0001). Resveratrol inhibits development of endometriosis in the nude mouse and reduces invasiveness of HES cells. These observations may aid in the development of novel treatments of endometriosis.
α-Synuclein aggregation, seeding and inhibition by scyllo-inositol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Tarek; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON; McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca
2016-01-15
Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synucleinmore » aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.« less
Gregory, Ellyn; Soderman, Melinda; Ward, Christy; Beukelman, David R; Hux, Karen
2006-06-01
This study investigated the accuracy with which 30 young adults without disabilities learned abbreviation expansion codes associated with specific vocabulary items that were stored in an AAC device with two accessing methods: mouse access and keyboard access. Both accessing methods utilized a specialized computer application, called AAC Menu, which allowed for errorless practice. Mouse access prompted passive learning, whereas keyboard access prompted active learning. Results revealed that participants who accessed words via a keyboard demonstrated significantly higher mastery of abbreviation-expansion codes than those who accessed words via a computer mouse.
Singh, Shalini; Pan, Chunliu; Wood, Ronald; Yeh, Chiuan-Ren; Yeh, Shuyuan; Sha, Kai; Krolewski, John J; Nastiuk, Kent L
2015-09-21
Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n = ) are also demonstrated. Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image-guided implantation of orthotopic tumor xenografts and monitoring of subsequent tumor growth from ~10 to ~750 mm(3) volume. High frequency ultrasound imaging allows precise determination of normal, neoplastic and hyperplastic mouse prostate. Low cost and small image size allows incorporation of this imaging modality inside clean animal facilities, and thereby imaging of immunocompromised models. 3D reconstruction for volume determination is easily mastered, and both small and large relative changes in volume are accurately visualized. Ultrasound imaging does not rely on penetration of exogenous imaging agents, and so may therefore better measure poorly vascularized or necrotic diseased tissue, relative to bioluminescent imaging (IVIS). Our method is precise and reproducible with very low inter- and intra-observer variability. Because it is non-invasive, mouse models of prostatic disease states can be imaged serially, reducing inter-animal variability, and enhancing the power to detect small volume changes following therapeutic intervention.
Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping
2017-08-07
The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (p<0.01). The hyaluronic acid hydrogel-containing microemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Inhibition of Acid Sensing Ion Channel Currents by Lidocaine in Cultured Mouse Cortical Neurons
Lin, Jun; Chu, Xiangping; Maysami, Samaneh; Li, Minghua; Si, Hongfang; Cottrell, James E.; Simon, Roger P.; Xiong, Zhigang
2012-01-01
BACKGROUND Lidocaine is a local anesthetic that has multiple pharmacological effects including antiarrhythmia, antinociception, and neuroprotection. Acid sensing ion channels (ASICs) are proton-gated cation channels that belong to the epithelial sodium channel/degenerin superfamily. Activation of ASICs by protons results in sodium and calcium influx. ASICs have been implicated in various physiological processes including learning/memory, nociception, and in acidosis-mediated neuron injury. In this study, we examined the effect of lidocaine on ASICs in cultured mouse cortical neurons. METHODS ASIC currents were activated and recorded using a whole-cell patch-clamp technique in cultured mouse cortical neurons. The effects of lidocaine at different concentrations were examined. To determine whether the inhibition of lidocaine on ASIC currents is subunit specific, we examined the effect of lidocaine on homomeric ASIC1a and ASIC2a currents expressed in Chinese hamster ovary cells. RESULTS Lidocaine significantly inhibits the ASIC currents in mouse cortical neurons. The inhibition was reversible and dose dependent. A detectable effect was noticed at a concentration of 0.3 mM lidocaine. At 30 mM, ASIC current was inhibited by approximately 90%. Analysis of the complete dose-response relationship yielded a half-maximal inhibitory concentration of 11.79 ± 1.74 mM and a Hill coefficient of 2.7 ± 0.5 (n = 10). The effect is rapid and does not depend on pH. In Chinese hamster ovary cells expressing different ASIC subunits, lidocaine inhibits the ASIC1a current without affecting the ASIC2a current. CONCLUSION ASIC currents are significantly inhibited by lidocaine. Our finding reveals a new pharmacological effect of lidocaine in neurons. PMID:21385979
Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto
2015-01-01
Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845
Mouse vocal communication system: are ultrasounds learned or innate?
Arriaga, Gustavo; Jarvis, Erich D.
2013-01-01
Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad set of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning. PMID:23295209
Harmon, Andrew W.; Moitra, Rituparna; Xu, Zhili
2018-01-01
Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors. PMID:29401488
Serine protease activity in m-1 cortical collecting duct cells.
Liu, Lian; Hering-Smith, Kathleen S; Schiro, Faith R; Hamm, L Lee
2002-04-01
An apical serine protease, channel-activating protease 1 (CAP1), augments sodium transport in A6 cells. Prostasin, a novel serine protease originally purified from seminal fluid, has been proposed to be the mammalian ortholog of CAP1. We have recently found functional evidence for a similar protease activity in the M-1 cortical collecting duct cell line. The purposes of the present studies were to determine whether prostasin (or CAP1) is present in collecting duct cells by use of mouse M-1 cells, to sequence mouse prostasin, and to further characterize the identity of the serine protease activity and additional functional features in M-1 cells. Using mouse expressed sequence tag sequences that are highly homologous to the published human prostasin sequence as templates, reverse transcription-polymerase chain reaction and RACE (rapid amplification of cDNA ends) were used to sequence mouse prostasin mRNA, which shows 99% identical to published mouse CAP1 sequence. A single 1800-bp transcript was found by Northern analysis, and this was not altered by aldosterone. Equivalent short-circuit current (I(eq)), which represents sodium transport in these cells, dropped to 59+/-3% of control value within 1 hour of incubation with aprotinin, a serine protease inhibitor. Trypsin increased the I(eq) in aprotinin-treated cells to the value of the control group within 5 minutes. Application of aprotinin not only inhibited amiloride sensitive I(eq) but also reduced transepithelial resistance (R(te)) to 43+/-2%, an effect not expected with simple inhibition of sodium channels. Trypsin partially reversed the effect of aprotinin on R(te). Another serine protease inhibitor, soybean trypsin inhibitor (STI), decreased I(eq) in M-1 cells. STI inhibited I(eq) gradually over 6 hours, and the inhibition of I(eq) by 2 inhibitors was additive. STI decreased transepithelial resistance much less than did aprotinin. Neither aldosterone nor dexamethasone significantly augmented protease activity or prostasin mRNA levels, and in fact, dexamethasone decreased prostasin mRNA expression. In conclusion, although prostasin is present in M-1 cells and probably augments sodium transport in these cells, serine proteases probably have other effects (eg, resistance) in the collecting duct in addition to effects on sodium channels. Steroids do not alter these effects in M-1 cells. Additional proteases are likely also present in mouse collecting duct cells.
Nimura, Masayuki; Udagawa, Jun; Otani, Hiroki
2008-06-01
Adrenocorticotropic hormone (ACTH) has been suggested to have possible roles in the fetal testes, one of the organs that express its specific receptors, melanocortin type 2 and 5 receptors (MC2R and MC5R), during the fetal period. We investigated the effect of ACTH on the cells in the testis cord of the fetal mouse testis by inducing ACTH-secreting AtT20 tumor cells in mouse fetuses. We first identified that mouse testicular germ cells at embryonic day (E) 16.5 and E18.5 spermatogonia were entirely CDH1 (E-cadherin)-positive by immunohistochemistry. We next performed AtT20-cell transplantation into the mouse fetus at E12.5, and analyzed ACTH effects on the development of fetal male mouse germ cells that express MC2R and MC5R at E16.5 and E18.5. The spermatogonia in the testis of AtT20-implanted embryos exhibited morphological changes, including pyknotic nuclei and swollen cytoplasm. In the AtT20-implanted embryos, the number of spermatogonia per unit area of the testis cord was significantly lower, but there were more pyknotic spermatogonia than in the controls. Single-stranded DNA-positive (apoptotic) and histone H3-positive (mitotic) spermatogonia were rarely observed and their numbers did not significantly differ in the two groups. Anti-Müllerian hormone (AMH)-positive Sertoli cells, another cell type that constitutes the fetal testis cord but does not express MC2R or MC5R, showed no apparent morphological changes compared with controls, nor were their numbers in the two groups significantly different between the two groups. These results suggest that ACTH, via MC2R and/or MC5R, may be involved in the nonapoptotic cell death of fetal mouse spermatogonia that is observed during the normal perinatal period.
Sepulveda, M S; Rojas, M; Zambrano, F
1992-07-01
1. A soluble toxin, purified from the algae bloom of an eutrophic lake dominated by Microcystis, is a very effective inhibitor of early embryo development in a dose-response relationship. 2. Two- and 8-cell mouse embryos under the influence of Microcystis toxin do not reach the developmental stages of morula and blastocyst, respectively. 3. Actin cortex is disorganized without change in the microtubules structure. 4. Results are discussed in terms of the possible mechanisms by which the toxin arrests development considering, specifically, effects on the cytoskeleton and/or on voltage-insensitive transmembrane Ca2+ channels.
King, D K; Shapiro, B H
1981-09-01
1 Normal males of the testicular feminized strain of mice (Tfm) had longer hexobarbitone-induced sleeping times than females, and hepatic hexobarbitone hydroxylase activity different in that the Km was higher and the Vmax lower in the male. 2 Castration and androgen replacement studies indicated that testicular androgens were responsible for the sexual differences in drug metabolism found in this mouse strain. 3 Hepatic hexobarbitone metabolism and action were feminized in the intact, androgen-insensitive, genetically male Tfm mouse. Furthermore, hexobarbitone hydroxylase activities were less responsive to large doses of testosterone in Tfm mice than in normal males. 4 The Tfm mouse with a deficiency in androgen receptors responded to the enzyme-inductive effects of phenobarbitone and softwood bedding, indicating that these inducers do not act through the androgen receptors.
USDA-ARS?s Scientific Manuscript database
The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated irradiated oocysts by three assays: a SCID mouse biassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reverse-transcriptase real-t...
USDA-ARS?s Scientific Manuscript database
We had tried to evaluate antibody production against food allergens in mouse models. Some food allergens, which were beta-lactoglobulin, ovalbumin, and peanut allergen Ara h 1, were used as immunoges in this experiment. Under the same conditions these allergens were immunized as emulsion with freund...
USDA-ARS?s Scientific Manuscript database
Barbering, where a “barber” mouse plucks hair from its cagemates or itself, is both a spontaneously occurring abnormal behavior in mice and a well validated model of Trichotillomania (TTM). N-Acetylcysteine, (NAC) a cysteine derived food additive, is remarkably effective in treating TTM patients, bu...
Comparative Exposure to Soy Biodiesel Emissions in an Allergic Mouse Model
We assessed the immunological effects following inhalation of emissions from 100% Soy biodiesel (S100) or a 20% mix with conventional petrodiesel (S20), in a house dust mite (HDM) allergic Balb/cJ mouse model. Female mice (8/group) were exposed whole body (4 hr/d, 5 d/wk, 4wk) to...
ERIC Educational Resources Information Center
Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin
2013-01-01
The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…
Antitumor-promoting activity of oligomeric proanthocyanidins in mouse epidermis in vivo
Mei Xiao Gao; Elisabeth M. Perchellet; Hala U. Gali; Limarie Rodriguez; Richard W. Hemingway; Jean-Pierre Perchellet
1994-01-01
The flavanoid catechin and heterogenous samples of oligomeric proanthocyanidins extracted from various sources were compared for their ability to inhibit the biochemical and biological effects of 12-o-tertra-decanoylphorbol-13-acetate (TPA) in mouse epidermis in vivo. Topical applications of catechin fail to alter the hydroperoxide response to TPA but inhibit the...
Sugawara, Saiko; Ito, Toshihiko; Sato, Shiori; Sato, Yuki; Kasuga, Kano; Kojima, Ikuo; Kobayashi, Masayuki
2014-05-01
In mice, fibroblast growth factor 4 (Fgf4) is a crucial gene for the generation of trophectoderm, progenitor cells of the placenta. Therefore, exogenous FGF4 promotes the isolation and maintenance of trophoblast stem cells from preimplantation embryos. We previously produced a 6× histidine (His)-tagged, mouse FGF4 (Pro(31)-Leu(202)) without a secretory signal peptide at the amino-terminus, referred to as HismFGF4, in Escherichia coli. Here, we found that HismFGF4 was unstable, such as in phosphate-buffered saline. In these conditions, site-specific cleavage between Ser(50) and Leu(51) was identified. In order to generate stable mouse FGF4 derivatives, a 6× His-tagged mouse FGF4 (Leu(51)-Leu(202)), termed HismFGF4L, was expressed in E. coli. HismFGF4L could be purified from the supernatant of cell lysates by heparin column chromatography. In phosphate-buffered saline, HismFGF4L was relatively stable. HismFGF4L exerted significant mitogenic activities at concentrations as low as 0.01 nM (P < 0.01) in mouse embryonic fibroblast Balb/c 3T3 cells expressing FGF receptor 2. In the presence of PD173074, an FGF receptor inhibitor, the growth-promoting activity of HismFGF4L was abolished. Taken together, we suggest that aminoterminally truncated HismFGF4L is capable of promoting the proliferation of mouse-derived cells via an authentic FGF signaling pathway. We consider that HismFGF4L is useful as a derivative of mouse FGF4 protein for analyzing the effects of mouse FGF4 and for stimulating cell growth of mouse-derived cells, such as trophoblast stem cells. Our study provides a simple method for the production of a bioactive, stable mouse FGF4 derivative in E. coli. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei
2012-07-05
The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.
A metabolomics and mouse models approach to study inflammatory and immune responses to radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornace, Albert J.; Li, Henghong
2013-12-02
The three-year project entitled "A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation" was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects ofmore » low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims.« less
Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi
2016-01-01
Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636
Komatsu, Eiji; Yamaguchi, Fuminori; Eguchi, Masahiro; Watanabe, Mineo
2010-06-17
Bordetella parapertussis causes typical whooping cough, as does Bordetella pertussis. However, current commercial vaccines are ineffective against B. parapertussis. In an effort to develop vaccines that are effective in protecting against both B. pertussis and B. parapertussis, we examined the protective effects of vaccines prepared from whole-cells and from recombinant proteins derived from B. parapertussis in a mouse intranasal challenge model. We confirmed current pertussis vaccines did not induce protective immunity against B. parapertussis in the mouse model. A whole-cell vaccine prepared from B. parapertussis induced protective immunity against B. parapertussis but not against B. pertussis, suggesting a combination of a current pertussis vaccine with a whole-cell parapertussis vaccine might prevent whooping cough caused by both species of Bordetella. We also found that filamentous hemagglutinin was a protective antigen of B. parapertussis. Our observations should lead to the development of new pertussis vaccines that can control the two prevalent forms of whooping cough.
Fujii, Takashi; Ikeda, Katsumi; Saito, Morio
2011-01-01
The compounds present in rose hips exerting an inhibitory action against melanogenesis in B16 mouse melanoma cells were investigated by dividing an aqueous extract of rose hips (RE) into four fractions. The 50% ethanol eluate from a DIAION HP-20 column significantly reduced the production of melanin and was mainly composed of procyanidin glycosides. We also found that this 50% ethanol eluate reduced the intracellular tyrosinase activity and also had a direct inhibitory effect on tyrosinase obtained as a protein mixture from the melanoma cell lysate. We also investigated the effect of orally administering RE on skin pigmentation in brown guinea pigs, and found that the pigmentation was inhibited together with the tyrosinase activity in the skin. These data collectively suggest that proanthocyanidins from RE inhibited melanogenesis in mouse melanoma cells and guinea pig skin, and could be useful as a skin-whitening agent when taken orally.
De Schryver, Marjorie; Cappoen, Davie; Elewaut, Dirk; Nauwynck, Hans J; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L
2017-02-01
Sialoadhesin (Sn) is a surface receptor expressed on macrophages in steady state conditions, but during inflammation, Sn can be upregulated both on macrophages and on circulating monocytes. It was shown for different species that Sn becomes internalized after binding with monoclonal antibodies. These features suggest that Sn is a potential target for immunotherapies. In this study, human and mouse macrophages were treated with anti-Sn monoclonal antibodies or F(ab') 2 fragments and the effect of their binding to Sn on phagocytosis was analyzed. Binding of antibodies to Sn resulted in delayed and reduced phagocytosis of fluorescent beads. No effect was observed on Fc-mediated phagocytosis or phagocytosis of bacteria by human macrophages. In contrast, an enhanced phagocytosis of bacteria by mouse macrophages was detected. These results showed that stimulation of Sn could have different effects on macrophage phagocytosis, depending both on the type of phagocytosis and cellular background. Copyright © 2016 Elsevier Inc. All rights reserved.
Beneficial Effects of Prebiotic Saccharomyces cerevisiae Mannan on Allergic Asthma Mouse Models.
Lew, D Betty; Michael, Christie F; Overbeck, Tracie; Robinson, W Scout; Rohman, Erin L; Lehman, Jeffrey M; Patel, Jennifer K; Eiseman, Brandi; LeMessurier, Kim S; Samarasinghe, Amali E; Gaber, M Waleed
2017-01-01
One of the unmet needs for asthma management is a new therapeutic agent with both anti-inflammatory and anti-smooth muscle (ASM) remodeling effects. The mannose receptor (MR) family plays an important role in allergen uptake and processing of major allergens Der p 1 and Fel d 1. We have previously reported that ASM cells express a mannose receptor (ASM-MR) and that mannan derived from Saccharomyces cerevisiae (SC-MN) inhibits mannosyl-rich lysosomal hydrolase-induced bovine ASM cell proliferation. Using a humanized transgenic mouse strain (huASM-MRC2) expressing the human MRC2 receptor in a SM tissue-specific manner, we have demonstrated that ASM hyperplasia/hypertrophy can occur as early as 15 days after allergen challenge in this mouse model and this phenomenon is preventable with SC-MN treatment. This proof-of-concept study would facilitate future development of a potential asthma therapeutic agent with dual function of anti-inflammatory and anti-smooth muscle remodeling effects.
Dynamic Determination of Oxygenation and Lung Compliance in Murine Pneumonectomy
Gibney, Barry; Lee, Grace S.; Houdek, Jan; Lin, Miao; Miele, Lino; Chamoto, Kenji; Konerding, Moritz A.; Tsuda, Akira; Mentzer, Steven J.
2012-01-01
Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, we investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55–82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10ml/kg. Sustained inflation pressures, referred to as a "recruitment maneuver," improved lung volumes, lung compliance and arterial oxygenation. In contrast, positive end expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. Our results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation. PMID:21574875
Shimojo, Yosuke; Kosaka, Kunio; Noda, Yoshihiro; Shimizu, Takahiko; Shirasawa, Takuji
2010-03-01
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease affecting motor neurons. About 2% of patients with the disease are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). The purpose of this study is to assess the effect of rosemary extract and its major constituents, rosmarinic acid (RA) and carnosic acid (CA), in human SOD1 G93A transgenic mice, which are well-established mouse models for ALS. The present study demonstrates that intraperitoneal administration of rosemary extract or RA from the presymptomatic stage significantly delayed motor dysfunction in paw grip endurance tests, attenuated the degeneration of motor neurons, and extended the life span of ALS model mice. In addition, RA administration significantly improved the clinical score and suppressed body weight loss compared with a vehicle-treated group. In conclusion, this study provides the first report that rosemary extract and, especially, RA have preventive effects in the mouse model of ALS.
Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng
2011-01-01
Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170
Ryan, Sinéad M; Kelly, Áine M
2016-05-01
It is now well established, at least in animal models, that exercise elicits potent pro-cognitive and pro-neurogenic effects. Alzheimer's disease (AD) is one of the leading causes of dementia and represents one of the greatest burdens on healthcare systems worldwide, with no effective treatment for the disease to date. Exercise presents a promising non-pharmacological option to potentially delay the onset of or slow down the progression of AD. Exercise interventions in mouse models of AD have been explored and have been found to reduce amyloid pathology and improve cognitive function. More recent studies have expanded the research question by investigating potential pro-neurogenic and anti-inflammatory effects of exercise. In this review we summarise studies that have examined exercise-mediated effects on AD pathology, cognitive function, hippocampal neurogenesis and neuroinflammation in transgenic mouse models of AD. Furthermore, we attempt to identify the optimum exercise conditions required to elicit the greatest benefits, taking into account age and pathology of the model, as well as type and duration of exercise. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Tzu-Hsien
2005-12-01
This study examined the effects of operating a built-in touch-pad pointing device and a trackball mouse on participants' completion times, hand positions during operation, postural angles, and muscle activities. 8 young men were asked to perform a cursor travel task on a notebook computer using both 60- and 80-cm high table conditions. Analysis showed that the trackball mouse significantly decreased completion times. Participants selected a hand position farther from the table edge and larger elbow angle for the trackball mouse than for the built-in touch-pad pointing device. Participants' neck, thoracic, and arm angles, or splenius capitis, trapezius, deltoid, and erector spinae muscle activities were not significantly affected by the devices, but table height significantly affected participants' completion times, hand positions, and postural angles.
Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling
2013-04-01
This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P < 0.01). On days 1 and 7 of the electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P < 0.01) or the model + hydergine group (both P < 0.01). On days 1 and 7 of the hydergine treatment, BDNF mRNA expression in the mouse hippocampus of the model + hydergine group tended to increase compared with the model group; however, statistical significance was not achieved (both P > 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.
Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.
2012-01-01
Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011
Standardization of a spinal cord lesion model and neurologic evaluation using mice
Borges, Paulo Alvim; Cristante, Alexandre Fogaça; de Barros-Filho, Tarcísio Eloy Pessoa; Natalino, Renato Jose Mendonça; dos Santos, Gustavo Bispo; Marcon, Raphael Marcus
2018-01-01
OBJECTIVE: To standardize a spinal cord lesion mouse model. METHODS: Thirty BALB/c mice were divided into five groups: four experimental groups and one control group (sham). The experimental groups were subjected to spinal cord lesion by a weight drop from different heights after laminectomy whereas the sham group only underwent laminectomy. Mice were observed for six weeks, and functional behavior scales were applied. The mice were then euthanized, and histological investigations were performed to confirm and score spinal cord lesion. The findings were evaluated to prove whether the method of administering spinal cord lesion was effective and different among the groups. Additionally, we correlated the results of the functional scales with the results from the histology evaluations to identify which scale is more reliable. RESULTS: One mouse presented autophagia, and six mice died during the experiment. Because four of the mice that died were in Group 5, Group 5 was excluded from the study. All the functional scales assessed proved to be significantly different from each other, and mice presented functional evolution during the experiment. Spinal cord lesion was confirmed by histology, and the results showed a high correlation between the Basso, Beattie, Bresnahan Locomotor Rating Scale and the Basso Mouse Scale. The mouse function scale showed a moderate to high correlation with the histological findings, and the horizontal ladder test had a high correlation with neurologic degeneration but no correlation with the other histological parameters evaluated. CONCLUSION: This spinal cord lesion mouse model proved to be effective and reliable with exception of lesions caused by a 10-g drop from 50 mm, which resulted in unacceptable mortality. The Basso, Beattie, Bresnahan Locomotor Rating Scale and Basso Mouse Scale are the most reliable functional assessments, and but the horizontal ladder test is not recommended. PMID:29561931
Quinn, L P; Crook, B; Hows, M E; Vidgeon-Hart, M; Chapman, H; Upton, N; Medhurst, A D; Virley, D J
2008-05-01
The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist pioglitazone has previously been shown to attenuate dopaminergic cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease, an effect attributed to its anti-inflammatory properties. In the present investigation, we provide evidence that pioglitazone is effective in the MPTP mouse model, not via an anti-inflammatory action, but through inhibition of MAO-B, the enzyme required to biotransform MPTP to its active neurotoxic metabolite 1-methyl-4-phenylpyridinium (MPP+). Mice were treated with pioglitazone (20 mg kg(-1) b.i.d. (twice a day), p.o., for 7 days), prior and post or post-MPTP (30 mg kg(-1) s.c.) treatment. Mice were then assessed for motor impairments on a beam-walking apparatus and for reductions in TH immunoreactivity in the substantia nigra and depletions in striatal dopamine. The effects of pioglitazone on striatal MPP+ levels and MAO-B activity were also assessed. Mice treated with MPTP showed deficits in motor performance, marked depletions in striatal dopamine levels and a concomitant reduction in TH immunoreactivity in the substantia nigra. Pretreatment with pioglitazone completely prevented these effects of MPTP. However, pretreatment with pioglitazone also significantly inhibited the MPTP-induced production of striatal MPP+ and the activity of MAO-B in the striatum. The neuroprotection observed with pioglitazone pretreatment in the MPTP mouse model was due to the blockade of the conversion of MPTP to its active toxic metabolite MPP+, via inhibition of MAO-B.
Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H
2007-09-01
Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. We tested the effect of HC on platelet aggregation, thromboxane B(2) (TXB(2)) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB(2) production. HC inhibited the thrombin-induced TXB(2) production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB(2) production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca(2+) mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB(2) production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions.
Fichna, J; Sobczak, M; Mokrowiecka, A; Cygankiewicz, A I; Zakrzewski, P K; Cenac, N; Sałaga, M; Timmermans, J-P; Vergnolle, N; Małecka-Panas, E; Krajewska, W M; Storr, M
2014-11-01
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, defined by the presence of loose stools and abdominal pain. In search for a novel anti-IBS-D therapy, here we investigated the nociceptin receptor (NOP)-dependent effects in the GI tract. A novel potent and selective NOP agonist SCH 221510 was used in the study. The effect of NOP activation on mouse intestinal motility was characterized in vitro and in vivo, in physiological conditions and in animal models of hypermotility and diarrhea. Well-established mouse models of visceral pain were used to characterize the antinociceptive effect of the NOP activation. To provide additional evidence that the endogenous nociceptin system is a relevant target for IBS, NOP expression and nociceptin levels were quantified in serum and colonic biopsies from IBS-D patients. SCH 221510 produced a potent NOP-mediated inhibitory effect on mouse intestinal motility in vitro and in vivo in physiological conditions. The NOP agonist displayed an antidiarrheal and analgesic action after oral administration in animal models mimicking the symptoms of IBS-D. Studies on human samples revealed a strong decrease in endogenous nociceptin system expression in IBS-D patients compared with healthy controls. Collectively, mouse and human data suggest that the endogenous nociceptin system is involved in IBS-D and may become a target for anti-IBS-D treatments using potent and selective synthetic NOP agonists. © 2014 John Wiley & Sons Ltd.
THE INFLUENCE OF HYDROCORTISONE ON THE ACTION OF EXCESS VITAMIN A ON LIMB BONE RUDIMENTS IN CULTURE
Fell, Honor B.; Thomas, Lewis
1961-01-01
The effect of hydrocortisone has been studied in organ cultures of the cartilaginous long bone rudiments from 7-day chick embryos and of the well ossified limb bones from late fetal mice. In the chick rudiments, which grow rapidly in culture, the growth rate was much reduced by hydrocortisone, less intercellular material was formed, and the hypertrophic cells of the shaft were much smaller than in the controls in normal medium. In the late fetal mouse bones, which grow very little in culture, hydrocortisone had no obvious effect on growth but arrested resorption of the cartilage. These effects resemble those described by others in the skeleton of animals treated with cortisone or hydrocortisone. The influence of hydrocortisone on the response of the chick and mouse explants to excess vitamin A was investigated. In the presence of excess vitamin A, cartilage (chick, mouse) and bone (mouse) rapidly disintegrated, but when hydrocortisone also was added to the medium, this dissolution of the intercellular material was much retarded, though not suppressed. The retardative action of hydrocortisone on the changes produced by excess vitamin A in skeletal tissue in culture, contrasts sharply with the strongly additive effect of the two agents on the skeleton in the intact animal (Selye, 1958). It is suggested that this discrepancy between the results obtained in vitro and in vivo is probably due to systemic factors that operate in the body but are eliminated in organ cultures. PMID:13698768
Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T
1999-09-01
It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.
Seo, Ji Yeon; Lim, Soon Sung; Kim, Jiyoung; Lee, Ki Won; Kim, Jong-Sang
2017-05-01
Given the evidence for detoxifying/antioxidant enzyme-inducing activities by alantolactone (AL) and isoalantolactone (IAL), the purpose of this study was to investigate the effects of AL and IAL on Aβ 25-35 -induced cell death in mouse cortical neuron cells and to determine their effects on scopolamine-induced amnesia in mice. Our data demonstrated that both compounds effectively attenuated the cytotoxicity of Aβ 25-35 (10 μM) in neuronal cells derived from the mouse cerebral cortex. It was also found that the production of intracellular reactive oxygen species, including superoxide anion induced by Aβ 25-35 , was inhibited. Moreover, the administration of the sesquiterpenes reversed scopolamine-induced cognitive impairments as assessed by Morris water, Y-maze, and the passive avoidance tests, and the compounds decreased acetylcholinesterase (AChE) activities in a dose-dependent manner. Interestingly, AL and IAL did not improve scopolamine-induced cognitive deficit in Nrf2 -/- mice, suggesting that memory improvement by sesquiterpenes was mediated not only by the activation of the Nrf2 signaling pathway but also by their inhibitory activity against AChE. In conclusion, our results showed that AL and IAL had neuroprotective effects and reversed cognitive impairments induced by scopolamine in a mouse model. Therefore, AL and IAL deserve further study as potential therapeutic agents for reactive oxygen species-related neurodegenerative diseases. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Effects of anti-glare particles on sedation in mice
NASA Astrophysics Data System (ADS)
Wang, Hongyu; Hao, Shaojun; Liu, Xiaobin; Kong, Xuejun; Wang, Xidong; Li, Wenjun; Zhang, Zhengchen
2018-04-01
To investigate the effect of anti-glare particles on sedation of mice, 60 mice were randomly divided into 5 groups, were fed by Ant-dizzy Granule Suspension, saline, Yang Xue Qing Nao Granule suspension and the same volume of saline, and administered 1 times daily, for 7 days. The mice in the wilderness box, hang - 150W light bulbs in the box above, the light recording activities within 2 minutes. The wilderness box into the box after the number of mice, mice with limbs went to the 1 squares is around 1 in the same case, mouse location and method of wilderness case; each group was placed in the turn/bar with rotating speed of 40RPM, each time 5 Parallel experiment recorded the mouse stay time on the rotating rod, if the mouse fell within 2 minutes, immediately put it on the rotating rod to continue the experiment, recorded the mouse on the rotating rod accumulated stay time. If 10 minutes did not drop, press 10 minutes; eighty mice were divided into 5 groups. The number of each rat injected subthreshold dose of pentobarbital sodium in mice. The sleep recording liquid were recorded sleep latency and sleep time. The anti-vertigo granule can obviously reduce the spontaneous activity of mice (P<0.05), can significantly increase the residence time of mice on the rotating rod (P<0.05) have obvious synergistic effect (P<0.05). Anti-glare particles have good sedative effect.
Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang
2015-02-01
Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.
Abdala, Ana P; Lioy, Daniel T; Garg, Saurabh K; Knopp, Sharon J; Paton, Julian F R; Bissonnette, John M
2014-06-01
Disturbances in respiration are common and debilitating features of Rett syndrome (RTT). A previous study showed that the 5-HT1a receptor agonist (R)-(+)-8-hydroxy-dipropyl-2-aminotetralin hydrobromide (8-OH-DPAT) significantly reduced the incidence of apnea and the irregular breathing pattern in a mouse model of the disorder. 8-OH-DPAT, however, is not available for clinical practice. Sarizotan, a full 5-HT1a agonist and a dopamine D2-like agonist/partial agonist, has been used in clinical trials for the treatment of l-dopa-induced dyskinesia. The purpose of this study was to evaluate the effects of sarizotan on respiration and locomotion in mouse models of RTT. Studies were performed in Bird and Jaenisch strains of methyl-CpG-binding protein 2--deficient heterozygous female and Jaenisch strain Mecp2 null male mice and in knock-in heterozygous female mice of a common nonsense mutation (R168X). Respiratory pattern was determined with body plethysmography, and locomotion was determined with open-field recording. Sarizotan or vehicle was administered 20 minutes before a 30-minute recording of respiratory pattern or motor behavior. In separate studies, a crossover design was used to administer the drug for 7 and for 14 days. Sarizotan reduced the incidence of apnea in all three RTT mouse models to approximately 15% of their pretreatment levels. The irregular breathing pattern was corrected to that of wild-type littermates. When administered for 7 or 14 days, apnea decreased to 25 to 33% of the incidence seen with vehicle. This study indicates that the clinically approved drug sarizotan is an effective treatment for respiratory disorders in mouse models of RTT.
Abdala, Ana P.; Lioy, Daniel T.; Garg, Saurabh K.; Knopp, Sharon J.; Paton, Julian F. R.
2014-01-01
Disturbances in respiration are common and debilitating features of Rett syndrome (RTT). A previous study showed that the 5-HT1a receptor agonist (R)-(+)-8-hydroxy-dipropyl-2-aminotetralin hydrobromide (8-OH-DPAT) significantly reduced the incidence of apnea and the irregular breathing pattern in a mouse model of the disorder. 8-OH-DPAT, however, is not available for clinical practice. Sarizotan, a full 5-HT1a agonist and a dopamine D2–like agonist/partial agonist, has been used in clinical trials for the treatment of l-dopa–induced dyskinesia. The purpose of this study was to evaluate the effects of sarizotan on respiration and locomotion in mouse models of RTT. Studies were performed in Bird and Jaenisch strains of methyl-CpG–binding protein 2-–deficient heterozygous female and Jaenisch strain Mecp2 null male mice and in knock-in heterozygous female mice of a common nonsense mutation (R168X). Respiratory pattern was determined with body plethysmography, and locomotion was determined with open-field recording. Sarizotan or vehicle was administered 20 minutes before a 30-minute recording of respiratory pattern or motor behavior. In separate studies, a crossover design was used to administer the drug for 7 and for 14 days. Sarizotan reduced the incidence of apnea in all three RTT mouse models to approximately 15% of their pretreatment levels. The irregular breathing pattern was corrected to that of wild-type littermates. When administered for 7 or 14 days, apnea decreased to 25 to 33% of the incidence seen with vehicle. This study indicates that the clinically approved drug sarizotan is an effective treatment for respiratory disorders in mouse models of RTT. PMID:24351104
Li, Xiaoyan; Zhou, Huanfen; Tang, Weiqiang; Guo, Qing; Zhang, Yan
2015-01-01
Purpose: Chemical burn in cornea may cause permanent visual problem or complete blindness. In the present study, we investigated the role of microRNA 206 (miR-206) in relieving chemical burn in mouse cornea. Method: An alkali burn model was established in C57BL/6 mice to induce chemical corneal injury. Within 72 hours, the transient inflammatory responses in alkali-treated corneas were measured by opacity and corneal neovascularization (CNV) levels, and the gene expression profile of miR-206 was measured by quantitative real-time PCR (qPCR). Inhibitory oligonucleotides of miR-206, miR-206-I, were intrastromally injected into alkali-burned corneas. The possible protective effects of down-regulating miR-206 were assessed by both in vivo measurements of inflammatory responses and in vitro histochemical examinations of corneal epithelium sections. The possible binding of miR-206 on its molecular target, connexin43 (Cx43), was assessed by luciferase reporter (LR) and western blot (WB) assays. Cx43 was silenced by siRNA to examine its effect on regulating miR-206 modulation in alkali-burned cornea. Results: Opacity and CNV levels, along with gene expression of miR-206, were all transiently elevated within 72 hours of alkali-burned mouse cornea. Intrastromal injection of miR-206-I into alkali-burned cornea down-regulated miR-206 and ameliorated inflammatory responses both in vivo and in vitro. LR and WB assays confirmed that Cx43 was directly targeted by miR-206 in mouse cornea. Genetic silencing of Cx43 reversed the protective effect of miR-206 down-regulation in alkali-burned cornea. Conclusion: miR-206, associated with Cx43, is a novel molecular modulator in alkali burn in mouse cornea. PMID:26045777
Vale-Costa, Sílvia; Gomes-Pereira, Sandra; Teixeira, Carlos Miguel; Rosa, Gustavo; Rodrigues, Pedro Nuno; Tomás, Ana; Appelberg, Rui; Gomes, Maria Salomé
2013-01-01
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host's iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host's oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.
Yoon, Taek Joon; Yoo, Yung Choon; Kang, Tae Bong; Song, Seong Kyu; Lee, Kyung Bok; Her, Erk; Song, Kyung Sik; Kim, Jong Bae
2003-10-01
Inhibitory effect of the lectins (KML-C) isolated from Korean mistletoe (KM; Viscum album coloratum) on tumor metastases produced by murine tumor cells (B16-BL6 melanoma, colon 26-M3.1 carcinoma and L5178Y-ML25 lymphoma cells) was investigated in syngeneic mice. An intravenous (i.v.) administration of KML-C (20-50 ng/mouse) 2 days before tumor inoculation significantly inhibited lung metastases of both B16-BL6 and colon 26-M3.1 cells. The prophylactic effect of 50 ng/mouse of KML-C on lung metastasis was almost the same with that of 100 microg/mouse of KM. Treatment with KML-C 1 day after tumor inoculation induced a significant inhibition of not only the experimental lung metastasis induced by B16-BL6 and colon 26-M3.1 cells but also the liver and spleen metastasis of L5178Y-ML25 cells. Furthermore, multiple administration of KML-C given at 3 day-intervals after tumor inoculation led to a significant reduction of lung metastasis and suppression of the growth of B16-BL6 melanoma cells in a spontaneous metastasis model. In an assay for natural killer (NK) cell activity, i.v. administration of KML-C (50 ng/mouse) significantly augmented NK cytotoxicity against Yac-1 tumor cells 2 days after KML-C treatment. In addition, treatment with KML-C (50 ng/mouse) induced tumoricidal activity of peritoneal macrophages against B16-BL6 and 3LL cells. These results suggest that KML-C has an immunomodulating activity to enhance the host defense system against tumors, and that its prophylactic and therapeutic effect on tumor metastasis is associated with the activation of NK cells and macrophages.
Li, Mo-lin; Li, Chuan-gang; Shu, Xiao-hong; Jia, Yu-jie; Qin, Zhi-hai
2006-03-01
To establish mouse lymphoma EL4 tumor-bearing mouse models in wild type C57BL/6 mice and nude C57BL/6 mice respectively, and to further investigate the immunological mechanisms of anti-tumor effect of melphalan. Mouse lymphoma EL4 cells were inoculated subcutaneously into wild type C57BL/6 mice (immune-competent mice). Twelve days later, melphalan of different doses were administered intraperitoneally to treat these wild type C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded subsequently to find out the minimal dose of melphalan that could cure the tuomr-bearing mice. Then the same amount of EL4 tumor cells were inoculated subcutaneously into wild type C57BL/6 mice and nude C57BL/6 mice (T cell-deficient mice) simultaneously, which had the same genetic background of C57BL/6. Twelve days later, melphalan of the minimal dose was given intraperitoneally to treat both the wild type and nude C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded in these two different types of mice subsequently. A single dose of melphalan (7.5 mg/kg) could cure EL4 tumor-bearing wild type C57BL/6 mice, but could not induce tumor regression in EL4 tumor-bearing nude C57BL/6 mice. A single dose of melphalan has obvious anti-tumor effect on mouse lymphoma EL4 tumor-bearing wild type C57BL/6mice, which requires the involvement of T lymphocytes in the host probably related to their killing functions.
Pepper, Andrew R; Bruni, Antonio; Pawlick, Rena; Wink, John; Rafiei, Yasmin; Gala-Lopez, Boris; Bral, Mariusz; Abualhassan, Nasser; Kin, Tatsuya; Shapiro, A M James
2017-10-01
Islet transplantation is an effective therapy in type 1 diabetes and recalcitrant hypoglycemia. However, there is an ongoing need to circumvent islet loss posttransplant. We explore herein the potential of the pan-caspase inhibitor F573 to mitigate early apoptosis-mediated islet death within portal and extrahepatic portal sites in mice. Mouse or human islets were cultured in standard media ±100 μM F573 and subsequently assessed for viability and apoptosis via terminal deoxynucleotidyl transferase dUTP nick end labeling staining and caspase-3 activation. Diabetic mice were transplanted with syngeneic islets placed under the kidney capsule (KC) or into the subcutaneous deviceless (DL) site at a marginal islet dose (150 islets), or into the portal vein (PV) at a full dose (500 islets). Human islets were transplanted under the KC of diabetic immunodeficient mice at a marginal dose (500 islet equivalents). Islets were cultured in the presence of F573, and F573 was administered subcutaneously on days 0 to 5 posttransplant. Control mice were transplanted with nontreated islets and were injected with saline. Graft function was measured by nonfasting blood glucose and glucose tolerance testing. F573 markedly reduced human and mouse islet apoptosis after in vitro culture (P < 0.05 and P < 0.05, respectively). Furthermore, F573 improved human islet function when transplanted under the KC (P < 0.05); whereas F573 did not enhance murine islet marginal KC transplants. Conversely, F573 significantly improved mouse islet engraftment in the PV and DL site (P < 0.05 and P < 0.05, respectively). The pan-caspase inhibitor F573 markedly reduces human and mouse islet apoptosis and improves engraftment most effectively in the portal and DL subcutaneous sites.
Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru
2014-01-01
Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-κB (NF-κB) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-κB decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-κB decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-κB decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-κB decoy into TAMs effectively. When the NF-κB decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-α, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-κB decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-κB decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment. PMID:24850474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti
2008-01-01
Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax andmore » subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.« less
Vale-Costa, Sílvia; Gomes-Pereira, Sandra; Teixeira, Carlos Miguel; Rosa, Gustavo; Rodrigues, Pedro Nuno; Tomás, Ana; Appelberg, Rui; Gomes, Maria Salomé
2013-01-01
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host's iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host's oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs. PMID:23459556
Hilton, Jacob K; Salehpour, Taraneh; Sisco, Nicholas J; Rath, Parthasarathi; Van Horn, Wade D
2018-06-15
Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative Western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites. © 2018 Hilton et al.
Effect of Sildenafil on Pre-Eclampsia-Like Mouse Model Induced By L-Name.
Motta, C; Grosso, C; Zanuzzi, C; Molinero, D; Picco, N; Bellingeri, R; Alustiza, F; Barbeito, C; Vivas, A; Romanini, M C
2015-08-01
N(omega)-nitro-L-arginine methyl ester (L-NAME) decreases the vasodilator effect of nitric oxide (NO) and induces pre-eclampsia in mouse. Sildenafil inhibits the degradation of nitric oxide and increases vasodilation. This study aimed to determine the effects of sildenafil citrate on angiogenesis and oxidative stress at the maternal foetal interface on pre-eclampsia-like mouse model induced by L-NAME. Twenty pregnant mice were divided into four groups: (i) vehicle control; (ii) L-NAME; (iii) sildenafil; (4) L-NAME+sildenafil. L-NAME was administered from day 7 of pregnancy and sildenafil from day 8 until day 16; animals were euthanized on day 17. Placental and foetal sizes and weights were measured; lipid peroxide levels and catalase activity in placental homogenates were determined, and placental vascular endothelia were identified by lectin-histochemistry using BSA-I lectin. Western blot analysis was used to determine VEGF expression in placental homogenates. No changes were seen in placental and foetal development in mice with normal pregnancies treated with sildenafil. Treatments with L-NAME reduced significantly the placental weight and average height and decreased the percentage of the endothelial surface. These alterations may be mediated by the reduction of NO levels in trophoblastic cells, due to the inhibitory effect of L-NAME on nitric oxide synthase (NOS) synthesis. This effect was offset by the treatment with sildenafil, with an increase in the percentage of the endothelial surface. In conclusion, our results indicate that treatment with sildenafil on pre-eclampsia mouse model can be used without adverse effects on the concept and its use in the treatment of pre-eclampsia is promising. © 2015 Blackwell Verlag GmbH.
Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Orlicky, David J; White, Carl W; Agarwal, Rajesh
2014-03-01
Sulfur mustard (SM) is a vesicant warfare agent which causes severe skin injuries. Currently, we lack effective antidotes against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for efficacy studies in laboratory settings to identify effective therapies. Therefore, to develop a relevant mouse skin injury model, we examined the effects of nitrogen mustard (NM), a primary vesicant and a bifunctional alkylating agent that induces toxic effects comparable to SM. Specifically, we conducted histopathological and immunohistochemical evaluation of several applicable cutaneous pathological lesions following skin NM (3.2mg) exposure for 12-120h in SKH-1 and C57BL/6 mice. NM caused a significant increase in epidermal thickness, incidence of microvesication, cell proliferation, apoptotic cell death, inflammatory cells (neutrophils, macrophages and mast cells) and myleoperoxidase activity in the skin of both mouse strains. However, there was a more prominent NM-induced increase in epidermal thickness, and macrophages and mast cell infiltration, in SKH-1 mice relative to what was seen in C57BL/6 mice. NM also caused collagen degradation and edema at early time points (12-24h); however, at later time points (72 and 120h), dense collagen staining was observed, indicating either water loss or start of integument repair in both the mouse strains. This study provides quantitative measurement of NM-induced histopathological and immunohistochemical cutaneous lesions in both hairless and haired mouse strains that could serve as useful tools for screening and identification of effective therapies for treatment of skin injuries due to NM and SM. Copyright © 2013 Elsevier GmbH. All rights reserved.
Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung
2012-01-01
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process. PMID:23203041
Bohlen, Martin; Hayes, Erika R.; Bohlen, Benjamin; Bailoo, Jeremy; Crabbe, John C.; Wahlsten, Douglas
2016-01-01
Eight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed. PMID:24933191
Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung
2012-10-29
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20-40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process.
Bohlen, Martin; Hayes, Erika R; Bohlen, Benjamin; Bailoo, Jeremy D; Crabbe, John C; Wahlsten, Douglas
2014-10-01
Eight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime
2014-08-01
Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.
Hays, Kimberly A; Breshears, Melanie A
2011-01-01
Laboratory experiments have documented the effects of hormones and endocrine-disrupting compounds on mammary development in mammals. However, few observations of mammary hyperplasia have been presented for wild rodents. We describe hyperplastic mammary glands in a wild-caught white-footed mouse (Peromyscus leucopus) from an area contaminated with heavy metals.
First Things First: Similar List Length and Output Order Effects for Verbal and Nonverbal Stimuli
ERIC Educational Resources Information Center
Cortis, Cathleen; Dent, Kevin; Kennett, Steffan; Ward, Geoff
2015-01-01
When participants are presented with a short list of unrelated words and they are instructed that they may recall in any order, they nevertheless show a very strong tendency to recall in forward serial order. Thus, if asked to recall "in any orde"r: "hat, mouse, tea, stairs," participants often respond "hat, mouse, tea,…
Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation
The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated ...
Uto, Yoshihiro; Yamamoto, Syota; Mukai, Hirotaka; Ishiyama, Noriko; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Hori, Hitoshi
2012-06-01
The 1f1f subtype of the group-specific component (Gc) protein is converted into Gc protein-derived macrophage-activating factor (GcMAF) by enzymatic processing with β-galactosidase and sialidase. We previously demonstrated that preGc(1f1f)MAF, a full Gc(1f1f) protein otherwise lacking a galactosyl moiety, can be converted to GcMAF by treatment with mouse peritoneal fluid. Here, we investigated the effects of the β-galactosidase-treated 1s1s and 22 subtypes of Gc protein (preGc(1s1s)MAF and preGc₂₂MAF) on the phagocytic activation of mouse peritoneal macrophages. We demonstrated the presence of Gal-GalNAc disaccharide sugar structures in the Gc(1s1s) protein by western blotting using peanut agglutinin and Helix pomatia agglutinin lectin. We also found that preGc(1s1s)MAF and preGc₂₂MAF significantly enhanced the phagocytic activity of mouse peritoneal macrophages in the presence and absence of mouse peritoneal fluid. We demonstrate that preGc(1s1s)MAF and preGc₂₂MAF proteins can be used as effective macrophage activators.
Clark, SP; Bollag, WB; Westlund, KN; Ma, F; Falls, G; Xie, D; Johnson, M; Isales, CM; Bhattacharyya, MH
2013-01-01
A commercial resin-based pine oil derived from Pinus palustris and Pinus elliottii was the major focus of this investigation. Extracts of pine resins, needles and bark are folk medicines commonly used to treat skin ailments, including burns. The American Burn Association estimates that 500,000 people with burn injuries receive medical treatment each year; one-half of US burn victims are children, most with scald burns. This systematic study was initiated as follow-up to personal anecdotal evidence acquired over more than 10 years by MH Bhattacharyya regarding pine oil’s efficacy for treating burns. The results demonstrate that pine oil counteracted dermal inflammation in both a mouse ear model of contact irritant-induced dermal inflammation and a 2nd degree scald burn to the mouse paw. Furthermore, pine oil significantly counteracted the tactile allodynia and soft tissue injury caused by the scald burn. In mouse dorsal root ganglion (DRG) neuronal cultures, pine oil added to the medium blocked ATP-activated, but not capsaicin-activated, pain pathways, demonstrating specificity. These results together support the hypothesis that a pine-oil-based treatment can be developed to provide effective in-home care for 2nd degree burns. PMID:23595692
Zhou, Zhiping; Ho, Sharon L; Singh, Ranjodh; Pisapia, David J; Souweidane, Mark M
2015-04-01
Diffuse intrinsic pontine gliomas (DIPGs) are inoperable and lethal high-grade gliomas lacking definitive therapy. Platelet-derived growth factor receptor (PDGFR) and its downstream signaling molecules are the most commonly overexpressed oncogenes in DIPG. This study tested the effective concentration of PDGFR pathway inhibitors in cell culture and then toxicity of these small-molecule kinase inhibitors delivered to the mouse brainstem via convection-enhanced delivery (CED) for potential clinical application. Effective concentrations of small-molecule kinase inhibitors were first established in cell culture from a mouse brainstem glioma model. Sixteen mice underwent CED, a local drug delivery technique, of saline or of single and multidrug combinations of dasatinib (2 M), everolimus (20 M), and perifosine (0.63 mM) in the pons. Animals were kept alive for 3 days following the completion of infusion. No animals displayed any immediate or delayed neurological deficits postoperatively. Histological analysis revealed edema, microgliosis, acute inflammation, and/or axonal injury in the experimental animals consistent with mild acute drug toxicity. Brainstem CED of small-molecule kinase inhibitors in the mouse did not cause serious acute toxicities. Future studies will be necessary to evaluate longer-term safety to prepare for potential clinical application.
Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice
Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.
2015-01-01
The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833
An Immunocompetent Mouse Model of Zika Virus Infection.
Gorman, Matthew J; Caine, Elizabeth A; Zaitsev, Konstantin; Begley, Matthew C; Weger-Lucarelli, James; Uccellini, Melissa B; Tripathi, Shashank; Morrison, Juliet; Yount, Boyd L; Dinnon, Kenneth H; Rückert, Claudia; Young, Michael C; Zhu, Zhe; Robertson, Shelly J; McNally, Kristin L; Ye, Jing; Cao, Bin; Mysorekar, Indira U; Ebel, Gregory D; Baric, Ralph S; Best, Sonja M; Artyomov, Maxim N; Garcia-Sastre, Adolfo; Diamond, Michael S
2018-05-09
Progress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1 -/- mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-β production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA. To generate a fully immunocompetent mouse model of ZIKV infection, human STAT2 was introduced into the mouse Stat2 locus (hSTAT2 KI). Subcutaneous inoculation of pregnant hSTAT2 KI mice with ZIKV-Dak-MA resulted in spread to the placenta and fetal brain. An immunocompetent mouse model of ZIKV infection may prove valuable for evaluating countermeasures to limit disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Mishra, Amrita
2014-01-01
Abstract Omics research infrastructure such as databases and bio-repositories requires effective governance to support pre-competitive research. Governance includes the use of legal agreements, such as Material Transfer Agreements (MTAs). We analyze the use of such agreements in the mouse research commons, including by two large-scale resource development projects: the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotyping Consortium (IMPC). We combine an analysis of legal agreements and semi-structured interviews with 87 members of the mouse model research community to examine legal agreements in four contexts: (1) between researchers; (2) deposit into repositories; (3) distribution by repositories; and (4) exchanges between repositories, especially those that are consortium members of the IKMC and IMPC. We conclude that legal agreements for the deposit and distribution of research reagents should be kept as simple and standard as possible, especially when minimal enforcement capacity and resources exist. Simple and standardized legal agreements reduce transactional bottlenecks and facilitate the creation of a vibrant and sustainable research commons, supported by repositories and databases. PMID:24552652
Juorio, A V
1980-11-01
1 The concentrations of p- and m-tyramine, dopamine, 3,4-dihydroxyphenylacetic acid and homo-vanillic acid were measured in the mouse or rat striatum following the subcutaneous injection of molindone or fluphenazine. The mouse hypothalamic levels of the m- or p-isomers of octopamine were also analysed. 2 Endogenous concentrations of p- and m-tyramine in the mouse striatum and p- and m-octopamine in the mouse hypothalamus were 20.6, 5.7, 9.4 and 1.2 ng/g respectively. The rat striatum concentrations of p- and m-tyramine were 12.8 and 3.8 ng/g. 3 The administration of low doses of molindone (1 to 10 mg/kg) produced a reduction in striatal p-tyramine, an increase in m-tyramine and an increase in dopamine turnover. Similar effects were produced by all doses of fluphenazine (0.1 to 5 mg/kg) employed. These findings are consistent with those observed after blockade of dopamine postsynaptic receptors. 4 With high doses of molindone (100 mg/kg) the effects on both tyramines and on dopamine metabolism were reversed. These results can be interpreted as molindone acting as a partial agonist. 5 The concentrations of hypothalamic p- and m-octopamine were increased by the higher doses of molindone (20 to 100 mg/kg) employed while lower doses produced no significant effects. All doses of fluphenazine reduced hypothalamic p-octopamine. These changes seem to depend on differences in the availability of p-tyramine to be converted into p-octopamine. 6 These results suggest that molindone acts as a blocker or a partial agonist of dopamine receptor sites and fit well with the proposal of a reciprocal relation between dopamine and tyramine. It is not possible yet to ascertain whether tyramine controls dopamine or vice versa or if it is a direct or a more remote relation.
Juorio, A. V.
1980-01-01
1 The concentrations of p- and m-tyramine, dopamine, 3,4-dihydroxyphenylacetic acid and homo-vanillic acid were measured in the mouse or rat striatum following the subcutaneous injection of molindone or fluphenazine. The mouse hypothalamic levels of the m- or p-isomers of octopamine were also analysed. 2 Endogenous concentrations of p- and m-tyramine in the mouse striatum and p- and m-octopamine in the mouse hypothalamus were 20.6, 5.7, 9.4 and 1.2 ng/g respectively. The rat striatum concentrations of p- and m-tyramine were 12.8 and 3.8 ng/g. 3 The administration of low doses of molindone (1 to 10 mg/kg) produced a reduction in striatal p-tyramine, an increase in m-tyramine and an increase in dopamine turnover. Similar effects were produced by all doses of fluphenazine (0.1 to 5 mg/kg) employed. These findings are consistent with those observed after blockade of dopamine postsynaptic receptors. 4 With high doses of molindone (100 mg/kg) the effects on both tyramines and on dopamine metabolism were reversed. These results can be interpreted as molindone acting as a partial agonist. 5 The concentrations of hypothalamic p- and m-octopamine were increased by the higher doses of molindone (20 to 100 mg/kg) employed while lower doses produced no significant effects. All doses of fluphenazine reduced hypothalamic p-octopamine. These changes seem to depend on differences in the availability of p-tyramine to be converted into p-octopamine. 6 These results suggest that molindone acts as a blocker or a partial agonist of dopamine receptor sites and fit well with the proposal of a reciprocal relation between dopamine and tyramine. It is not possible yet to ascertain whether tyramine controls dopamine or vice versa or if it is a direct or a more remote relation. PMID:6777007
Genomic analysis of wig-1 pathways.
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P
2012-01-01
Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer.
Rodríguez Cruz, Yamila; Strehaiano, Manon; Rodríguez Obaya, Teresita; García Rodríguez, Julío César; Maurice, Tangui
2017-01-01
Erythropoietin (EPO) is a cytokine known to have effective cytoprotective action in the brain, particularly in ischemic, traumatic, inflammatory, and neurodegenerative conditions. We previously reported the neuroprotective effect of a low sialic form of EPO, Neuro-EPO, applied intranasally in rodent models of stroke or cerebellar ataxia and in a non-transgenic mouse model of Alzheimer's disease (AD). Here we analyzed the protective effect of Neuro-EPO in APPSwe mice, a reference transgenic mouse model of AD. Mice were administered 3 times a day, 3 days in the week with Neuro-EPO (125, 250 μg/kg) intranasally, between 12 and 14 months of age. Motor responses, general activity, and memory responses were analyzed during and after treatment. The deficits in spontaneous alternation, place learning in the water-maze, and novel object recognition observed in APPSwe mice were alleviated by the low dose of Neuro-EPO. Oxidative stress, neuroinflammation, trophic factor levels, and a synaptic marker were analyzed in the hippocampus or cortex of the animals. The increases in lipid peroxidation or in GFAP and Iba-1 contents in APPSwe mice were significantly reduced after Neuro-EPO. Activation of intrinsic and extrinsic apoptotic pathways was analyzed. The increases in Bax/Bcl-2 ratio, TNFα, or Fas ligand levels observed in APPSwe mice were reduced by Neuro-EPO. Finally, immunohistochemical and ELISA analyses of Aβ1-42 levels in the APPSwe mouse cortex and hippocampus showed a marked reduction in Aβ deposits and in soluble and insoluble Aβ1-42 forms. This study therefore confirmed the neuroprotective activity of EPO, particularly for an intranasally deliverable formulation, devoid of erythropoietic side effects, in a transgenic mouse model of AD. Neuro-EPO alleviated memory alterations, oxidative stress, neuroinflammation, apoptosis induction, and amyloid load in 14-month-old APPSwe mice.
Tomatsu, Shunji; Orii, Koji O.; Vogler, Carole; Grubb, Jeffrey H.; Snella, Elizabeth M.; Gutierrez, Monica; Dieter, Tatiana; Holden, Christopher C.; Sukegawa, Kazuko; Orii, Tadao; Kondo, Naomi; Sly, William S.
2006-01-01
Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by β-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5–26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues. PMID:12700165
Long-term exposure to intranasal oxytocin in a mouse autism model
Bales, K L; Solomon, M; Jacob, S; Crawley, J N; Silverman, J L; Larke, R H; Sahagun, E; Puhger, K R; Pride, M C; Mendoza, S P
2014-01-01
Oxytocin (OT) is a neuropeptide involved in mammalian social behavior. It is currently in clinical trials for the treatment of autism spectrum disorder (ASD). Previous studies in healthy rodents (prairie voles and C57BL/6J mice) have shown that there may be detrimental effects of long-term intranasal administration, raising the questions about safety and efficacy. To investigate the effects of OT on the aspects of ASD phenotype, we conducted the first study of chronic intranasal OT in a well-validated mouse model of autism, the BTBR T+ Itpr3tf/J inbred strain (BTBR), which displays low sociability and high repetitive behaviors. BTBR and C57BL/6J (B6) mice (N=94) were administered 0.8 IU/kg of OT intranasally, daily for 30 days, starting on day 21. We ran a well-characterized set of behavioral tasks relevant to diagnostic and associated symptoms of autism, including juvenile reciprocal social interactions, three-chambered social approach, open-field exploratory activity, repetitive self-grooming and fear-conditioned learning and memory, some during and some post treatment. Intranasal OT did not improve autism-relevant behaviors in BTBR, except for female sniffing in the three-chambered social interaction test. Male saline-treated BTBR mice showed increased interest in a novel mouse, both in chamber time and sniffing time, whereas OT-treated male BTBR mice showed a preference for the novel mouse in sniffing time only. No deleterious effects of OT were detected in either B6 or BTBR mice, except possibly for the lack of a preference for the novel mouse's chamber in OT-treated male BTBR mice. These results highlight the complexity inherent in understanding the effects of OT on behavior. Future investigations of chronic intranasal OT should include a wider dose range and early developmental time points in both healthy rodents and ASD models to affirm the efficacy and safety of OT. PMID:25386957
Murray, Lyndsay M.; Beauvais, Ariane; Kothary, Rashmi
2014-01-01
Spinal muscular atrophy is an autosomal recessive neuromuscular disease characterized by the progressive loss of alpha motor neurons in the spinal cord. Trichostatin A (TSA) is a histone deacetylase inhibitor with beneficial effects in spinal muscular atrophy mouse models that carry the human SMN2 transgene. It is currently unclear whether TSA specifically targets the SMN2 gene or whether other genes respond to TSA and in turn provide neuroprotection in SMA mice. We have taken advantage of the Smn2B/- mouse model that does not harbor the human SMN2 transgene, to test the hypothesis that TSA has its beneficial effects through a non-SMN mediated pathway. TSA increased the median lifespan of Smn2B/- mice from twenty days to eight weeks. As well, there was a significant attenuation of weight loss and improved motor behavior. Pen test and righting reflex both showed significant improvement, and motor neurons in the spinal cord of Smn2B/- mice were protected from degeneration. Both the size and maturity of neuromuscular junctions were significantly improved in TSA treated Smn2B/- mice. Of interest, TSA treatment did not increase the levels of Smn protein in mouse embryonic fibroblasts or myoblasts obtained from the Smn2B/- mice. In addition, no change in the level of Smn transcripts or protein in the brain or spinal cord of TSA-treated SMA model mice was observed. Furthermore, TSA did not increase Smn protein levels in the hind limb muscle, heart, or liver of Smn2B/- mice. We therefore conclude that TSA likely exerts its effects independent of the endogenous mouse Smn gene. As such, identification of the pathways regulated by TSA in the Smn2B/- mice could lead to the development of novel therapeutics for treating SMA. PMID:24984019
Genomic Analysis of wig-1 Pathways
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P.
2012-01-01
Background Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Conclusion Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer. PMID:22347364
Mo, Christina; Renoir, Thibault; Hannan, Anthony J
2016-05-30
The mechanistic understanding of lifestyle contributions to disease has been largely driven by work in laboratory rodent models using environmental interventions. These interventions show an array of methodologies and sometimes unclear collective conclusions, hampering clinical interpretations. Here we discuss environmental enrichment, exercise and stress interventions to illustrate how different protocols can affect the interpretations of environmental factors in disease. We use Huntington's disease (HD) as an example because its mouse models exhibit excellent validity and HD was the first genetic animal model in which environmental stimulation was found to be beneficial. We make a number of observations and recommendations. Firstly, environmental enrichment and voluntary exercise generally show benefits across laboratories and mouse models. However, the extent to which these environmental interventions have beneficial effects depends on parameters such as the structural complexity of the cage in the case of enrichment, the timing of the intervention and the nature of the control conditions. In particular, clinical interpretations should consider deprived control living conditions and the ethological relevance of the enrichment. Secondly, stress can have negative effects on the phenotype in mouse models of HD and other brain disorders. When modeling stress, the effects of more than one type of experimental stressor should be investigated due to the heterogeneity and complexity of stress responses. With stress in particular, but ideally in all studies, both sexes should be used and the randomized group sizes need to be sufficiently powered to detect any sex effects. Opportunities for clinical translation will be guided by the 'environmental construct validity' of the preclinical data, including the culmination of complementary protocols across multiple animal models. Environmental interventions in mouse models of HD provide illustrative examples of how valid preclinical studies can lead to conclusions relevant to clinical populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Dashdorj, Amarjargal; Jyothi, K R; Lim, Sangbin; Jo, Ara; Nguyen, Minh Nam; Ha, Joohun; Yoon, Kyung-Sik; Kim, Hyo Jong; Park, Jae-Hoon; Murphy, Michael P; Kim, Sung Soo
2013-08-06
MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease.
2013-01-01
Background MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Methods Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Results Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Conclusion Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease. PMID:23915129
Matsuda, Manabu; Kurosaki, Keiko; Okamura, Naomichi
2014-01-01
Exposure of mice to a high dose of estrogens including diethylstilbestrol (DES) during the neonatal period modifies the developmental plan of the genital tract, which leads to various permanent changes in physiology, morphology and gene expression. These changes include development of an abnormal vaginal epithelium lined with hyperplastic mucinous cells accompanied by Tff1 gene expression in mice. Here, the influence of vitamin D on the direct effect of estrogen on the developing mouse vagina was examined. The mid-vagina of neonatal mice was cultured in a serum-free medium containing estradiol-17β (E2) and various concentrations of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) ex vivo and then was transplanted under the renal capsule of ovariectomized host mice for 35 days. Exposure to E2 alone caused the vaginal tissue to develop estrogen-independent epithelial hyperplasia and to express TFF1 mRNA, while addition of a low nanomolar amount of 1,25(OH)2D added at the same time as E2 to the culture medium attenuated the effects of estrogen. Expression of vitamin D receptor was also evident in the neonatal mouse vagina. Interestingly, addition of 25-hydroxyvitamin D3, a pro-activated form of vitamin D, at the micromolar level was found to be potent in disrupting the developmental effects of E2, while cholecalciferol was not at least at the dose examined. Correspondingly, expression of Cyp27B1, a kidney-specific 25-hydroxyvitamin D hydroxylase, was evident in the neonatal mouse vagina when examined by RT-PCR. In addition, simultaneous administration of 1,25(OH)2D successfully attenuated DES-induced ovary-independent hyperplasia in the vagina in neonatal mice in vivo. Thus, manipulation of vitamin D influenced the harmful effects of estrogens on mouse vaginal development.
MATSUDA, Manabu; KUROSAKI, Keiko; OKAMURA, Naomichi
2014-01-01
Exposure of mice to a high dose of estrogens including diethylstilbestrol (DES) during the neonatal period modifies the developmental plan of the genital tract, which leads to various permanent changes in physiology, morphology and gene expression. These changes include development of an abnormal vaginal epithelium lined with hyperplastic mucinous cells accompanied by Tff1 gene expression in mice. Here, the influence of vitamin D on the direct effect of estrogen on the developing mouse vagina was examined. The mid-vagina of neonatal mice was cultured in a serum-free medium containing estradiol-17β (E2) and various concentrations of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) ex vivo and then was transplanted under the renal capsule of ovariectomized host mice for 35 days. Exposure to E2 alone caused the vaginal tissue to develop estrogen-independent epithelial hyperplasia and to express TFF1 mRNA, while addition of a low nanomolar amount of 1,25(OH)2D added at the same time as E2 to the culture medium attenuated the effects of estrogen. Expression of vitamin D receptor was also evident in the neonatal mouse vagina. Interestingly, addition of 25-hydroxyvitamin D3, a pro-activated form of vitamin D, at the micromolar level was found to be potent in disrupting the developmental effects of E2, while cholecalciferol was not at least at the dose examined. Correspondingly, expression of Cyp27B1, a kidney-specific 25-hydroxyvitamin D hydroxylase, was evident in the neonatal mouse vagina when examined by RT-PCR. In addition, simultaneous administration of 1,25(OH)2D successfully attenuated DES-induced ovary-independent hyperplasia in the vagina in neonatal mice in vivo. Thus, manipulation of vitamin D influenced the harmful effects of estrogens on mouse vaginal development. PMID:24769840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abel, E.L.; Boulware, S.; Fields, T.
Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase,more » GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.« less
Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru
2016-01-01
Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.
Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells
Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo
2013-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607
Chemically-induced mouse lung tumors: applications to ...
A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism
Mouse Sperm Cryopreservation and Recovery using the I·Cryo Kit
Liu, Ling; Sansing, Steven R.; Morse, Iva S.; Pritchett-Corning, Kathleen R.
2011-01-01
Thousands of new genetically modified (GM) strains of mice have been created since the advent of transgenesis and knockout technologies. Many of these valuable animals exist only as live animals, with no backup plan in case of emergency. Cryopreservation of embryos can provide this backup, but is costly, can be a lengthy procedure, and generally requires a large number of animals for success. Since the discovery that mouse sperm can be successfully cryopreserved with a basic cryoprotective agent (CPA) consisting of 18% raffinose and 3% skim milk, sperm cryopreservation has become an acceptable and cost-effective procedure for archiving, distributing and recovery of these valuable strains. Here we demonstrate a newly developed I•Cryo kit for mouse sperm cryopreservation. Sperm from five commonly-used strains of inbred mice were frozen using this kit and then recovered. Higher protection ratios of sperm motility (> 60%) and rapid progressive motility (> 45%) compared to the control (basic CPA) were seen for sperm frozen with this kit in 5 inbred mouse strains. Two cell stage embryo development after IVF with the recovered sperm was improved consistently in all 5 mouse strains examined. Over a 1.5 year period, 49 GM mouse lines were archived by sperm cryopreservation with the I•Cryo kit and later recovered by IVF. PMID:22214993
Histological and reference system for the analysis of mouse intervertebral disc.
Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny
2018-01-01
A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
2009-04-01
Untreated and TAX treated EL4 targets were labeled with DDAO-SE and loaded with control (C.P.) or specific (S.P.) peptide. The tumor cells were...C ell Vehicle treated EL4 cells 100 101 102 103 104 FL4-H: anti mouse granzyme B alexa647 0 100 200 300 400 500 # Cells 2.5297.5 100 101 102 103...mouse granzyme B alexa647 0 100 200 300 400 500 # Cells 7.292.8 Taxol treated EL4 cells 100 101 102 103 104 FL4-H: anti mouse granzyme B alexa647 0
Ariyasu, Hiroyuki; Akamizu, Takashi
2015-01-01
Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.
Schwarzer, Caroline; Esteves, Telma Cristina; Araúzo-Bravo, Marcos J; Le Gac, Séverine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele
2012-09-01
Do different human ART culture protocols prepare embryos differently for post-implantation development? The type of ART culture protocol results in distinct cellular and molecular phenotypes in vitro at the blastocyst stage as well as subsequently during in vivo development. It has been reported that ART culture medium affects human development as measured by gestation rates and birthweights. However, due to individual variation across ART patients, it is not possible as yet to pinpoint a cause-effect relationship between choice of culture medium and developmental outcome. In a prospective study, 13 human ART culture protocols were compared two at a time against in vivo and in vitro controls. Superovulated mouse oocytes were fertilized in vivo using outbred and inbred mating schemes. Zygotes were cultured in medium or in the oviduct and scored for developmental parameters 96 h later. Blastocysts were either analyzed or transferred into fosters to measure implantation rates and fetal development. In total, 5735 fertilized mouse oocytes, 1732 blastocysts, 605 fetuses and 178 newborns were examined during the course of the study (December 2010-December 2011). Mice of the B6C3F1, C57Bl/6 and CD1 strains were used as oocyte donors, sperm donors and recipients for embryo transfer, respectively. In vivo fertilized B6C3F1 oocytes were allowed to cleave in 13 human ART culture protocols compared with mouse oviduct and optimized mouse medium (KSOM(aa)). Cell lineage composition of resultant blastocysts was analyzed by immunostaining and confocal microscopy (trophectoderm, Cdx2; primitive ectoderm, Nanog; primitive endoderm, Sox17), global gene expression by microarray analysis, and rates of development to midgestation and to term. Mouse zygotes show profound variation in blastocyst (49.9-91.9%) and fetal (15.7-62.0%) development rates across the 13 ART culture protocols tested (R(2)= 0.337). Two opposite protocols, human tubal fluid/multiblast (high fetal rate) and ISM1/ISM2 (low fetal rate), were analyzed in depth using outbred and inbred fertilization schemes. Resultant blastocysts show imbalances of cell lineage composition; culture medium-specific deviation of gene expression (38 genes, ≥ 4-fold) compared with the in vivo pattern; and produce different litter sizes (P ≤ 0.0076) after transfer into fosters. Confounding effects of subfertility, life style and genetic heterogeneity are reduced to a minimum in the mouse model compared with ART patients. This is an animal model study. Mouse embryo responses to human ART media are not transferable 1-to-1 to human development due to structural and physiologic differences between oocytes of the two species. Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the market has been optimized for human embryo development. The mouse embryo assay (MEA), which requires ART media to support at least 80% blastocyst formation, is in need of reform and should be extended to include post-implantation development.
Berenguer, J A; Gonzalez, L; Jimenez, I; Legarda, T M; Olmedo, J B; Burdaspal, P A
1993-01-01
A study was undertaken to determine if any reduction in contamination of Acanthocardia tuberculatum L. (Mediterranean cockle) by paralytic shellfish poisons (PSP) could be enhanced by operations carried out during the industrial canning process, allowing contaminated raw material to be commercially marketed in safe conditions for edible purposes. A general decrease in PSP levels was consistently observed when comparing raw materials and their corresponding final products, these dropping to acceptable levels. PSP levels were determined by mouse bioassay and a fluorometric method, and saxitoxin was determined by HPLC. The detoxifying effects averaged over 71.7% and 81.8% (mouse bioassay), 70.6% and 90.9% (fluorometric method), 77.9% and 83.5% (HPLC), for boiling and sterilizing operations respectively. The highest level detected in raw material was 800 micrograms/100 g by mouse bioassay.
Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis.
Kitz, Jenna; Lowes, Lori E; Goodale, David; Allan, Alison L
2018-04-28
The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch ® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.
Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models.
Dabrowska, Krystyna; Opolski, Adam; Wietrzyk, Joanna; Switala-Jelen, Kinga; Godlewska, Joanna; Boratynski, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Gorski, Andrzej
2004-01-01
Previously, we have shown the ability of the bacteriophage T4 and its substrain HAP1 (selected for a higher affinity to melanoma cells) to reveal antimetastatic activity in a mouse melanoma model. Here, we investigated the potential phage anticancer activity in primary tumour models. Mice were inoculated subcutaneously with B16 or LLC cells (collected from in vitro culture). Bacteriophages T4 and HAP1 were injected intraperitoneally daily (8 x 10(8)pfu/mouse, except the experiment concerning the dose-dependence). Treatment with purified preparations of bacteriophage T4 resulted in significant reduction of tumour size, the effect being dose-dependent. HAP1 was more effective than T4 and its activity was also dose-dependent. Parallel experiments with non-purified bacteriophage lysates resulted in significant stimulation of tumour growth. These data suggest that purified bacteriophages may inhibit tumour growth, a phenomenon with potentially important clinical implications in oncology.
Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia
2014-01-01
Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296
Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu
2007-09-01
To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.
Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.
Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean
2015-03-01
High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leduc, Renee Y M; Rauw, Gail; Baker, Glen B; McDermid, Heather E
2017-01-01
Environmental enrichment items such as running wheels can promote the wellbeing of laboratory mice. Growing evidence suggests that wheel running simulates exercise effects in many mouse models of human conditions, but this activity also might change other aspects of mouse behavior. In this case study, we show that the presence of running wheels leads to pronounced and permanent circling behavior with route-tracing in a proportion of the male mice of a genetically distinct cohort. The genetic background of this cohort includes a mutation in Arhgap19, but genetic crosses showed that an unknown second-site mutation likely caused the induced circling behavior. Behavioral tests for inner-ear function indicated a normal sense of gravity in the circling mice. However, the levels of dopamine, serotonin, and some dopamine metabolites were lower in the brains of circling male mice than in mice of the same genetic background that were weaned without wheels. Circling was seen in both singly and socially housed male mice. The additional stress of fighting may have exacerbated the predisposition to circling in the socially housed animals. Singly and socially housed male mice without wheels did not circle. Our current findings highlight the importance and possibly confounding nature of the environmental and genetic background in mouse behavioral studies, given that the circling behavior and alterations in dopamine and serotonin levels in this mouse cohort occurred only when the male mice were housed with running wheels. PMID:28315651
Sałaga, M; Polepally, P R; Sobczak, M; Grzywacz, D; Kamysz, W; Sibaev, A; Storr, M; Do Rego, J C; Zjawiony, J K; Fichna, J
2014-07-01
The opioid and cannabinoid systems play a crucial role in multiple physiological processes in the central nervous system and in the periphery. Selective opioid as well as cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain. In this study, we examined (in vitro and in vivo) whether PR-38 (2-O-cinnamoylsalvinorin B), a novel analog of salvinorin A, can interact with both systems and demonstrate therapeutic effects. We used mouse models of hypermotility, diarrhea, and abdominal pain. We also assessed the influence of PR-38 on the central nervous system by measurement of motoric parameters and exploratory behaviors in mice. Subsequently, we investigated the pharmacokinetics of PR-38 in mouse blood samples after intraperitoneal and oral administration. PR-38 significantly inhibited mouse colonic motility in vitro and in vivo. Administration of PR-38 significantly prolonged the whole GI transit time, and this effect was mediated by µ- and κ-opioid receptors and the CB1 receptor. PR-38 reversed hypermotility and reduced pain in mouse models mimicking functional GI disorders. These data expand our understanding of the interactions between opioid and cannabinoid systems and their functions in the GI tract. We also provide a novel framework for the development of future potential treatments of functional GI disorders. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Effective PCR-based detection of Naegleria fowleri from cultured sample and PAM-developed mouse.
Kang, Heekyoung; Seong, Gi-Sang; Sohn, Hae-Jin; Kim, Jong-Hyun; Lee, Sang-Eun; Park, Mi Yeoun; Lee, Won-Ja; Shin, Ho-Joon
2015-10-01
Increasing numbers of Primary Amoebic Meningoencephalitis (PAM) cases due to Naegleria fowleri are becoming a serious issue in subtropical and tropical countries as a Neglected Tropical Disease (NTD). To establish a rapid and effective diagnostic tool, a PCR-based detection technique was developed based on previous PCR methods. Four kinds of primer pairs, Nfa1, Nae3, Nf-ITS, and Naegl, were employed in the cultured amoebic trophozoites and a mouse with PAM experimentally developed by N. fowleri inoculation (PAM-mouse). For the extraction of genomic DNA from N. fowleri trophozoites (1×10(6)), simple boiling with 10μl of PBS (pH 7.4) at 100°C for 30min was found to be the most rapid and efficient procedure, allowing amplification of 2.5×10(2) trophozoites using the Nfa-1 primer. The primers Nfa1 and Nae3 amplified only N. fowleri DNA, whereas the ITS primer detected N. fowleri and N. gruberi DNA. Using the PAM-mouse brain tissue, the Nfa1 primer was able to amplify the N. fowleri DNA 4 days post infection with 1ng/μl of genomic DNA being detectable. Using the PAM-mouse CSF, amplification of the N. fowleri DNA with the Nae3 primer was possible 5 days post infection showing a better performance than the Nfa1 primer at day 6. Copyright © 2015 Elsevier GmbH. All rights reserved.
Bruner-Tran, Kaylon L.; Osteen, Kevin G.; Taylor, Hugh S.; Sokalska, Anna; Haines, Kaitlin; Duleba, Antoni J.
2010-01-01
Endometriosis is a common gynecologic disorder characterized by ectopic attachment and growth of endometrial tissues. Resveratrol is a natural polyphenol with antiproliferative and anti-inflammatory properties. Our objective was to study the effects of resveratrol on human endometriotic implants in a nude mouse model and to examine its impact on human endometrial stromal (HES) cell invasiveness in vitro. Human endometrial tissues were obtained from healthy donors. Endometriosis was established in oophorectomized nude mice by intraperitoneal injection of endometrial tissues. Mice were treated with 17β-estradiol (8 mg, silastic capsule implants) alone (n = 16) or with resveratrol (6 mg/mouse; n = 20) for 10–12 and 18–20 days beginning 1 day after tissue injection. Mice were killed and endometrial implants were evaluated. A Matrigel invasion assay was used to examine the effects of resveratrol on HES cells. We assessed number and size of endometriotic implants in vivo and Matrigel invasion in vitro. Resveratrol decreased the number of endometrial implants per mouse by 60% (P < 0.001) and the total volume of lesions per mouse by 80% (P < 0.001). Resveratrol (10–30 μM) also induced a concentration-dependent reduction of invasiveness of HES by up to 78% (P < 0.0001). Resveratrol inhibits development of endometriosis in the nude mouse and reduces invasiveness of HES cells. These observations may aid in the development of novel treatments of endometriosis. PMID:20844278
A pilot study comparing mouse and mouse-emulating interface devices for graphic input.
Kanny, E M; Anson, D K
1991-01-01
Adaptive interface devices make it possible for individuals with physical disabilities to use microcomputers and thus perform many tasks that they would otherwise be unable to accomplish. Special equipment is available that purports to allow functional access to the computer for users with disabilities. As technology moves from purely keyboard applications to include graphic input, it will be necessary for assistive interface devices to support graphics as well as text entry. Headpointing systems that emulate the mouse in combination with on-screen keyboards are of particular interest to persons with severe physical impairment such as high level quadriplegia. Two such systems currently on the market are the HeadMaster and the Free Wheel. The authors have conducted a pilot study comparing graphic input speed using the mouse and two headpointing interface systems on the Macintosh computer. The study used a single subject design with six able-bodied subjects, to establish a baseline for comparison with persons with severe disabilities. Results of these preliminary data indicated that the HeadMaster was nearly as effective as the mouse and that it was superior to the Free Wheel for graphics input. This pilot study, however, demonstrated several experimental design problems that need to be addressed to make the study more robust. It also demonstrated the need to include the evaluation of text input so that the effectiveness of the interface devices with text and graphic input could be compared.
Priceless GEMMs: genetically engineered mouse models for colorectal cancer drug development.
Roper, Jatin; Hung, Kenneth E
2012-08-01
To establish effective drug development for colorectal cancer (CRC), preclinical models that are robust surrogates for human disease are crucial. Mouse models are an attractive platform because of their relatively low cost, short life span, and ease of use. There are two main categories of mouse CRC models: xenografts derived from implantation of CRC cells or tumors in immunodeficient mice; and genetically engineered mouse models (GEMMs) derived from modification of human cancer predisposition genes, resulting in spontaneous tumor formation. Here, we review xenografts and GEMMs and focus on their potential application in translational research. Furthermore, we describe newer GEMMs for sporadic CRC that are particularly suitable for drug testing. Finally, we discuss recent advances in small-animal imaging, such as optical colonoscopy, which allow in vivo assessment of tumors. With the increasing sophistication of GEMMs, our preclinical armamentarium provides new hope for the ongoing war against CRC. Copyright © 2012. Published by Elsevier Ltd.
Sukoff Rizzo, Stacey J; Crawley, Jacqueline N
2017-02-08
Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.
Ma, Jie; Wang, Yu; Yang, Jianhua; Yang, Min; Chang, Keun-A; Zhang, Linhua; Jiang, Feng; Li, Yi; Zhang, Zhonggong; Heo, Chaejeong; Suh, Yoo-Hun
2007-07-01
A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.
Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T
NASA Astrophysics Data System (ADS)
Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.
2017-02-01
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome
Simoes de Souza, Fabio M.; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N.; Restrepo, Diego
2011-01-01
Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities. PMID:22355654
Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.
de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego
2011-01-01
Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
A Genetically Engineered Mouse Model of Sporadic Colorectal Cancer.
Betzler, Alexander M; Kochall, Susan; Blickensdörfer, Linda; Garcia, Sebastian A; Thepkaysone, May-Linn; Nanduri, Lahiri K; Muders, Michael H; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian
2017-07-06
Despite the advantages of easy applicability and cost-effectiveness, colorectal cancer mouse models based on tumor cell injection have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Genetically engineered mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in large organs such as the colon in which only a single tumor is desired. As a result, an immunocompetent, genetically engineered mouse model of colorectal cancer was developed which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor development is initiated by surgical, segmental infection of the distal colon with adeno-cre virus in compound conditionally mutant mice. The tumors can be easily detected and monitored via colonoscopy. We here describe the surgical technique of segmental adeno-cre infection of the colon, the surveillance of the tumor via high-resolution colonoscopy and present the resulting colorectal tumors.
Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos
2013-08-14
This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented.
Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos
2013-01-01
This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented. PMID:23948873
Generation and Characterization of a New Monoclonal Antibody Against CXCL4.
Gao, Jing; Wu, Mingyuan; Gao, Jin; Wang, Xia; Zhang, Yang; Zhu, Shunying; Yu, Yan; Han, Wei
2015-04-01
CXCL4 plays important roles in numerous disease processes, which makes the CXCL4 signaling pathway a potential therapeutic target. In this study, we aimed to develop a neutralizing antibody against both human and mouse CXCL4. Rats were immunized with recombinant human CXCL4 (rhCXCL4). Hybridoma clones were created by fusion of the immunized rat spleen cells with mouse myeloma SP2/0 cells and screened using recombinant mouse CXCL4 (rmCXCL4) and rhCXCL4. The CXCL4 monoclonal antibody (CXCL4 MAb) produced by the 16D6-3 hybridoma clone was sequenced and characterized by Western blot and Biacore assays. It recognized both human and mouse CXCL4 with high affinity and neutralized the effect of rhCXCL4 in vitro. Thus, the antibody may be used in the studies of CXCL4 in murine disease models and as a template in the antibody humanization for clinical developments.
Mapping Sub-Second Structure in Mouse Behavior
Wiltschko, Alexander B.; Johnson, Matthew J.; Iurilli, Giuliano; Peterson, Ralph E.; Katon, Jesse M.; Pashkovski, Stan L.; Abraira, Victoria E.; Adams, Ryan P.; Datta, Sandeep Robert
2015-01-01
Summary Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that three-dimensional (3D) mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously-hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. PMID:26687221
A candidate model for Angelman syndrome in the mouse.
Cattanach, B M; Barr, J A; Beechey, C V; Martin, J; Noebels, J; Jones, J
1997-07-01
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are well-recognized examples of imprinting in humans. They occur most commonly with paternal and maternal 15q11-13 deletions, but also with maternal and paternal disomy. Both syndromes have also occurred more rarely in association with smaller deletions seemingly causing abnormal imprinting. A putative mouse model of PWS, occurring with maternal duplication (partial maternal disomy) for the homologous region, has been described in a previous paper but, although a second imprinting effect that could have provided a mouse model of AS was found, it appeared to be associated with a slightly different region of the chromosome. Here, we provide evidence that the same region is in fact involved and further demonstrate that animals with paternal duplication for the region exhibit characteristics of AS patients. A mouse model of AS is, therefore, strongly indicated.
Gao, Rong-Bao; Li, Yan-Qiu; Wang, Ming-Li
2006-06-01
To construct eucaryotic expression recombinant vector containing vivo truncated region of UL83 gene of human cytomegalovirus, realize its steady expression in Hep-2 cell, and study sheltered effect of the eucaryotic expression recombinant vector as DNA vaccine. A vivo truncated UL83 gene fragment encoding for truncated HCMV pp65 was obtained by PCR from human cytomegalovirus AD169 stock genome. By gene recombinant ways, the truncated UL83 gene fragment was cloned into eucaryotic expression vector pEGFP-C1 with reported gene coding GFP to construct recombinant vector pEGFP-C1-UL83. The recombinant vector pEGFP-C1-UL83 was tested by different methods including PCR, restriction digestion and gene sequencing. Test results showed the recombinant vector was constructed successfully. After pEGFP-C1-UL83 was transfected into Hep-2 cell by lipofectin mediation, expression of GFP and truncated pp65 fusion protein in Hep-2 cell was observed at different time points by fluorescence microscope. Results showed that quantity of fusion protein expression was the highest at 36h point. Then, Hep-2 cell was cultured selectively by RPMI-1640 containing G418 (200 microg/mL) to obtain a new cell stock of expressing truncated UL83 Gene fragment steadily. RT-PCR and Western blot results showed the truncated fragment of UL83 gene could be expressed steadily in Hep-2 cell. The result showed a new cell stock of expressing Tpp65 was established. This cell stock could be useful in some HCMV research fields, for example, it could be a tool in study of pp65 and HCMV infection, and it could provide a platform for the research into the therapy of HCMV infection. Immune sheltered effect of pEGFP-C1-UL83 as DNA vaccine was studied in vivo of HCMV congenital infection mouse model. The mouse model was immunized solely by pEGFP-C1-UL83, and was immunized jointly by pEGFP-C1-UL83 and its expression product. When the mouse was pregnant and brought to bed, differential antibody of anti-HCMV pp65 was tested by indirect ELISA in mother mouse, the infectious virus was separated with the method of virus separation, and pp65 antigen was checked up by indirect immunofluorescence staining in fetal mouse. Results showed differential antibody of anti-HCMV pp65 was produced in mouse model. Tilter of the antibody was from 1:2.51 to 1:50.79. Results of virus separation and pp65 checkup of fetal mouse brain tissue were negative. So the conclusion can be reached that pEGFP-C1-UL83 as DNA vaccine in vivo has sheltered effect which can prevent HCMV vertical transmission from mother mouse to her fetus.
NASA Technical Reports Server (NTRS)
Wolegemuth, D. J.; Grills, G. S.
1984-01-01
The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.
Michalopoulos, Ioannis; Sideridou, Maria; Tsimaratou, Katerina; Christodoulou, Ioannis; Pyrillou, Katerina; Gorgoulis, Vassilis; Vlahopoulos, Spiros; Zoumpourlis, Vassilis
2012-01-01
Estrogen receptors (ER), namely ERα and ERβ, are hormone-activated transcription factors with an important role in carcinogenesis. In the present study, we aimed at elucidating the implication of ERα in skin cancer, using chemically-induced mouse skin tumours, as well as cell lines representing distinct stages of mouse skin oncogenesis. First, using immunohistochemical staining we showed that ERα is markedly increased in aggressive mouse skin tumours in vivo as compared to the papilloma tumours, whereas ERβ levels are low and become even lower in the aggressive spindle tumours of carcinogen-treated mice. Then, using the multistage mouse skin carcinogenesis model, we showed that ERα gradually increases during promotion and progression stages of mouse skin carcinogenesis, peaking at the most aggressive stage, whereas ERβ levels only slightly change throughout skin carcinogenesis. Stable transfection of the aggressive, spindle CarB cells with a dominant negative form of ERα (dnERα) resulted in reduced ERα levels and reduced binding to estrogen responsive elements (ERE)-containing sequences. We characterized two highly conserved EREs on the mouse ERα promoter through which dnERα decreased endogenous ERα levels. The dnERα-transfected CarB cells presented altered protein levels of cytoskeletal and cell adhesion molecules, slower growth rate and impaired anchorage-independent growth in vitro, whereas they gave smaller tumours with extended latency period of tumour onset in vivo. Our findings suggest an implication of ERα in the aggressiveness of spindle mouse skin cancer cells, possibly through regulation of genes affecting cell shape and adhesion, and they also provide hints for the effective targeting of spindle cancer cells by dnERα. PMID:22870269
Zhou, Ping; Wu, Yan-Guang; Wei, De-Li; Li, Qing; Wang, Gang; Zhang, Jie; Luo, Ming-Jiu; Tan, Jing-He
2010-04-01
Our objectives were to study how cysteamine, cystine, and cumulus cells (CCs), as well as oocytes interact to increase oocyte intracellular glutathione (GSH) and thereby to establish an efficient in vitro maturation system for cumulus-denuded oocytes (DOs). Using M16 that contained no thiol as maturation medium, we showed that when supplemented alone, neither cystine nor cysteamine promoted GSH synthesis of mouse DOs, but they did when used together. Although goat CCs required either cysteamine or cystine to promote GSH synthesis, mouse CCs required both. In the presence of cystine, goat CCs produced cysteine but mouse CCs did not. Cysteamine reduced cystine to cysteine in cell-free M16. When TCM-199 that contained 83 microM cystine was used as maturation medium, supplementation with cysteamine alone had no effect, but supplementation with 100 microM cysteamine and 200 microM cystine increased blastulation of DOs matured with CC coculture to a level as high as achieved in cumulus-surrounded oocytes (COCs). Similar numbers of young were produced after two-cell embryos from mouse COCs or CC-cocultured DOs matured with optimal thiol supplementation were transferred to pseudopregnant recipients. It is concluded that 1) mouse CCs can use neither cysteamine nor cystine to promote GSH synthesis, but goat CCs can use either one; 2) goat CCs promote mouse oocyte GSH synthesis by reducing cystine to cysteine, but how they use cysteamine requires further investigation; and 3) mouse DOs can use neither cystine nor cysteamine for GSH synthesis, but they restore developmental capacity completely when matured in the presence of optimum supplementation of cysteamine, cystine, and CCs.
Matsumoto, T; Ogata, M; Koga, K; Shigematsu, A
1994-01-01
To investigate the effect of peripheral and central benzodiazepine receptor ligands on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) activity in mouse macrophages, three types of ligands, 4'-chlorodiazepam (pure peripheral), midazolam (mixed), and clonazepam (pure central), were compared. Midazolam and 4'-chlorodiazepam significantly suppressed LPS (1-microgram/ml)-induced TNF activity in thioglycolate-elicited mouse macrophages. In every concentration examined (0.001 to 100 microM), 4'-chlorodiazepam was the most effective agent, clonazepam was the least effective agent, and midazolam had an effect intermediate between those of the other two ligands. The peripheral benzodiazepine receptor ligands had a dose-dependent suppressive effect, and the 50% inhibitory concentrations were 0.01 microM for 4'-chlorodiazepam and 5 microM for midazolam. Concomitant use of PK 11195 (10 microM), an antagonist of the peripheral benzodiazepine receptor, reversed this suppressive effect with 4'-chlorodiazepam (10 microM) or midazolam (10 microM). PK 11195 showed this antagonistic effect in a dose-dependent manner. Intravenous 4'-chlorodiazepam (5 mg/kg of body weight) significantly suppressed LPS (100-micrograms)-induced TNF activity of sera (2 h postchallenge with LPS) from thioglycolate-treated mice. The present findings suggest that the peripheral benzodiazepine receptor plays an important role in modulating LPS-induced TNF activity in mouse macrophages. PMID:8031051
USDA-ARS?s Scientific Manuscript database
Prader-Willi syndrome (PWS) is a genetic disease characterized by persistent hunger and hyperphagia. The lack of the Snord116 small nucleolar RNA cluster has been identified as the major contributor to PWS symptoms. The Snord116 deletion (Snord116del) mouse model manifested a subset of PWS symptoms ...
Gene silencing techniques are widely used to control gene expression and have potential for RNAi-based therapeutics. In this report, transgenic mouse lines were created for conditional knockdown of Srsf3 (SRp20) expression in liver and mammary gland tissues by expressing Srsf3-specific shRNAs driven by a U6 promoter.
ERIC Educational Resources Information Center
Gardiner, Katheleen
2009-01-01
Mouse models are a standard tool in the study of many human diseases, providing insights into the normal functions of a gene, how these are altered in disease and how they contribute to a disease process, as well as information on drug action, efficacy and side effects. Our knowledge of human genes, their genetics, functions, interactions and…
Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar
2017-01-01
Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322
Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu
2014-01-01
BACKGROUND AND PURPOSE Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. EXPERIMENTAL APPROACH Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by elisa. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. KEY RESULTS Incubation of INS-1E cells and rat islets with HG (30 mmol·L−1; 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m+ mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. CONCLUSIONS AND IMPLICATIONS Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. PMID:24588674
Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu
2014-07-01
Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by ELISA. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. Incubation of INS-1E cells and rat islets with HG (30 mmol·L(-1); 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m(+) mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. © 2014 The British Pharmacological Society.
Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H
2007-01-01
Background and purpose: Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. Experimental approach: We tested the effect of HC on platelet aggregation, thromboxane B2 (TXB2) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. Key results: HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB2 production. HC inhibited the thrombin-induced TXB2 production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB2 production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca2+ mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. Conclusions and implications: HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB2 production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions. PMID:17641677
Luan, Jing; Zhang, Kui; Yang, Peng; Zhang, Yang; Feng, Fei; Zhu, Yu-Meng; Zhu, Ping; Chen, Zhi-Nan
2018-05-25
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, and excessive T lymphocyte activation plays a critical role in the development of inflammation. CD147 is an antigen related to T cell activation, CD147 blockade exerts beneficial effects on RA. FK506, also known as tacrolimus, exerts strong immunosuppressive effects by inhibiting T cell activation. In this study, RL73 (an anti-mouse CD147 functional-grade purified antibody) and FK506 were co-administered to mice with collagen-induced arthritis (CIA). As expected, the combination of these two drugs produced superior therapeutic effects than either drug alone and enabled the administration of each drug at a lower dose. Moreover, joint damage and destruction were significantly improved in mice injected with both FK506 and RL73 compared with mice injected with either agent alone. These effects might have been observed because the proportions of CD4 + T and CD8 + T cells in the mouse spleen of the combination regimen were clearly decreased compared with each monotherapy. In addition, the proportions of Th2 subsets in the mouse spleen and peripheral blood were clearly increased, and the serum levels of the cytokines interleukin 4 (IL-4) and IL-10 were markedly increased in mice treated with the combination therapy compared with the other groups of mice. The splenic total number of T lymphocytes also showed that the inhibition of T lymphocytes was the most obvious in the combined treatment group. Based on the results from the present study, combining FK506 and the anti-CD147 mAb might be a new practical therapeutic option for the treatment of RA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fynes, Kate; Tostoes, Rui; Ruban, Ludmila; Weil, Ben; Mason, Christopher; Veraitch, Farlan S
2014-08-15
A major challenge facing the development of effective cell therapies is the efficient differentiation of pluripotent stem cells (PSCs) into pure populations. Lowering oxygen tension to physiological levels can affect both the expansion and differentiation stages. However, to date, there are no studies investigating the knock-on effect of culturing PSCs under low oxygen conditions on subsequent lineage commitment at ambient oxygen levels. PSCs were passaged three times at 2% O2 before allowing cells to spontaneously differentiate as embryoid bodies (EBs) in high oxygen (20% O2) conditions. Maintenance of mouse PSCs in low oxygen was associated with a significant increase in the expression of early differentiation markers FGF5 and Eomes, while conversely we observed decreased expression of these genes in human PSCs. Low oxygen preconditioning primed mouse PSCs for their subsequent differentiation into mesodermal and endodermal lineages, as confirmed by increased gene expression of Eomes, Goosecoid, Brachyury, AFP, Sox17, FoxA2, and protein expression of Brachyury, Eomes, Sox17, FoxA2, relative to high oxygen cultures. The effects extended to the subsequent formation of more mature mesodermal lineages. We observed significant upregulation of cardiomyocyte marker Nkx2.5, and critically a decrease in the number of contaminant pluripotent cells after 12 days using a directed cardiomyocyte protocol. However, the impact of low oxygen preconditioning was to prime human cells for ectodermal lineage commitment during subsequent EB differentiation, with significant upregulation of Nestin and β3-tubulin. Our research demonstrates the importance of oxygen tension control during cell maintenance on the subsequent differentiation of both mouse and human PSCs, and highlights the differential effects.
Lv, Zhi; Peng, Guoli; Liu, Weihua; Xu, Hufeng; Su, JianRong
2015-07-01
Vancomycin is a preferred antibiotic for treating Clostridium difficile infection (CDI) and has been associated with a rate of recurrence of CDI of as high as 20% in treated patients. Recent studies have suggested that berberine, an alternative medical therapy for gastroenteritis and diarrhea, exhibits several beneficial effects, including induction of anti-inflammatory responses and restoration of the intestinal barrier function. This study investigated the therapeutic effects of berberine on preventing CDI relapse and restoring the gut microbiota in a mouse model. Berberine was administered through gavage to C57BL/6 mice with established CDI-induced intestinal injury and colitis. The disease activity index (DAI), mean relative weight, histopathology scores, and levels of toxins A and B in fecal samples were measured. An Illumina sequencing-based analysis of 16S rRNA genes was used to determine the overall structural change in the microbiota in the mouse ileocecum. Berberine administration significantly promoted the restoration of the intestinal microbiota by inhibiting the expansion of members of the family Enterobacteriaceae and counteracting the side effects of vancomycin treatment. Therapy consisting of vancomycin and berberine combined prevented weight loss, improved the DAI and the histopathology scores, and effectively decreased the mortality rate. Berberine prevented CDIs from relapsing and significantly improved survival in the mouse model of CDI. Our data indicate that a combination of berberine and vancomycin is more effective than vancomycin alone for treating CDI. One of the possible mechanisms by which berberine prevents a CDI relapse is through modulation of the gut microbiota. Although this conclusion was generated in the case of the mouse model, use of the combination of vancomycin and berberine and represent a novel therapeutic approach targeting CDI. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wang, Shiow Y; Feng, Rentian; Lu, Yongju; Bowman, Linda; Ding, Min
2005-05-18
The inhibitory effects of strawberry (Fragaria x ananassa Duch.) antioxidant enzymes on tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB) induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) were studied. The inhibitory effects of strawberry extracts on the proliferation and transformation of human and mouse cancer cells were also evaluated. Strawberries had high activities of glutathione peroxidase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. Strawberry extracts inhibited the proliferation of human lung epithelial cancer cell line A549 and decreased TPA-induced neoplastic transformation of JB6 P+ mouse epidermal cells. Pretreatment of JB6 P+ mouse epidermal cells with strawberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 and NF-kappaB transactivation. Furthermore, strawberry extract also blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) and UVB-induced phosphorylation of ERKs and JNK kinase in JB6 P+ mouse epidermal cell culture. These results suggest that the ability of strawberries to block UVB- and TPA-induced AP-1 and NF-kappaB activation may be due to their antioxidant properties and their ability to reduce oxidative stress. The oxidative events that regulate AP-1 and NF-kappaB transactivation can be important molecular targets for cancer prevention. The strawberries may be highly effective as a chemopreventive agent that acts by targeting the down-regulation of AP-1 and NF-kappaB activities, blocking MAPK signaling, and suppressing cancer cell proliferation and transformation.
Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai
2013-09-01
Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Poggi, Andreina; Rossi, Cosmo; Casella, Nicola; Bruno, Cristiana; Sturiale, Luisella; Dossi, Carla; Naggi, Annamaria
2002-08-01
Heparin (H), heparan sulfate (HS), and related glycosaminoglycans can inhibit cancer cell invasion, possibly due to their ability to interact with vascular growth factors, adhesion molecules, endoglycosidases, and signaling proteins, in addition to the well-known effects on the clotting system. We evaluated the antitumor activity of a series of semisynthetic sulfaminoheparosan sulfates (SAHSs) with different degree and distribution of sulfates, obtained by chemical modifications of the E. coli K5 polysaccharide, namely type A, B, and C compounds. B16-BL6 melanoma cells (10 5 cells/mouse) were injected intravenously (i.v.) in a lateral tail vein of C57BL6 mice at a dose of 0.5 mg/ mouse together with test compounds. Tumor lung nodules were significantly reduced as compared with controls only by H (95.5 +/- 1.0% inhibition), SAHS-2 (84.2 +/- 5.0% inhibition), and SAHS-4 (91.1 +/- 4.2% inhibition), among compounds tested. SAHS-2 and SAHS-4 are type B compounds, with a sulfate/carboxylate ratio similar to that of H. A typical mammalian HS showed only 54.8% inhibition. Supersulfated low-molecular-weight heparin and heparan sulfate (ssLMWH and ssLMWHS) showed an activity similar to that of unfractionated compounds. H and SAHS-4 inhibited dose dependently B16-BL6 lung colonies, with IC-50 values of 0.05 and 0.1 mg/mouse, respectively. The relationship with ex vivo anticoagulant potency was evaluated by activated partial thromboplastin time (aPTT) on mouse plasma at different time intervals after i.v. injection (0.1 to 0.5 mg/mouse) of the compound. H showed a dose-dependent anticoagulant activity lasting up to 2 hours, whereas SAHS-4 showed a potent anticoagulant effect only at a dose of 0.5 mg/mouse. Accordingly, H but not SAHS-4 consistently inhibited B16-BL6 lung colonies when given 1 hour before tumor cells. SAHS-4 derivatives, with different size and/or affinity depleted of AT binding sites, showed an inhibitory effect on B16-BL6 melanoma similar to that of SAHS-4, suggesting that the greater antitumor effect of H was not due to AT-mediated inhibition of blood clotting. Interactions with other blood inhibitors, such as heparin cofactor II or tissue factor pathway inhibitory protein cannot be ruled out. The better effect of H may be due to persistence in the circulation and/or ability to inhibit tumor neoangiogenesis.
Luo, Ming-Jiu; Liu, Na; Miao, De-Qiang; Lan, Guo-Cheng; Suo-Feng; Chang, Zhong-Le; Tan, Jing-He
2005-09-01
Although ethylene glycol (EG) has been widely used for embryo cryopreservation in domestic animals, few attempts were made to use this molecule to freeze mouse and human embryos. In the few studies that used EG for slow-freezing of mouse and human embryos, complicated protocols for human embryos were used, and the protocols need to be simplified. Besides, freezing mouse morula with EG as a cryoprotectant has not been reported. In this paper, we studied the effects of embryo stages, EG concentration, duration and procedure of equilibration, sucrose supplementation and EG removal after thawing on the development of thawed mouse embryos, using the simple freezing and thawing procedures for bovine embryos. The blastulation and hatching rates (81.92% +/- 2.24% and 68.56% +/- 2.43%, respectively) of the thawed late compact morulae were significantly (P < 0.05) higher than those of embryos frozen-thawed at other stages. When mouse late compact morulae were frozen with different concentrations of EG, the highest rates of blastocyst formation and hatching were obtained with 1.8mol/L EG. The blastulation rate was significantly higher when late morulae were equilibrated in 1.8 mol/L EG for 10 min prior to freezing than when they were equilibrated for 30 min, and the hatching rate of embryos exposed to EG for 10 min was significantly higher than that of embryos exposed for 20 and 30 min. Both rates of blastocyst formation and hatching obtained with two-step equilibration were higher (P < 0.05) than with one-step equilibration in 1.8 mol/L EG. Addition of sucrose to the EG-based solution had no beneficial effects. On the contrary, an increased sucrose level (0.4 mol/L) in the solution impaired the development of the frozen-thawed embryos. In contrast, addition of 0.1 mol/L sucrose to the propylene glycol (PG)-based solution significantly improved the development of the frozen-thawed embryos. Elimination of the cryoprotectant after thawing did not improve the development of the thawed embryos. The cell numbers were less (P < 0.05) in blastocysts developed from the thawed morulae than in the in vivo derived ones. In summary, embryo stage, EG concentration, duration and procedure of equilibration and sucrose supplementation had marked effects on development of the thawed mouse embryos, and a protocol for cryopreservation of mouse embryos is recommended in which the late morulae are frozen in 1.8 mol/L EG using the simple freezing and thawing procedures of bovine embryos after a two-step equilibration and the embryos can be cultured or transferred without EG removal after thawing.
Therapeutic Effects of S-Petasin on Disease Models of Asthma and Peritonitis
Lee, Kyoung-Pil; Kang, Saeromi; Noh, Min-Soo; Park, Soo-Jin; Kim, Jung-Min; Chung, Hae Young; Je, Nam Kyung; Lee, Young-Geun; Choi, Young-Whan; Im, Dong-Soon
2015-01-01
To explore the anti-allergic and anti-inflammatory effects of extracts of Petasites genus, we studied the effects of s-petasin, a major sesquiterpene from Petasites formosanus (a butterbur species) on asthma and peritonitis models. In an ovalbumin-induced mouse asthma model, s-petasin significantly inhibited the accumulations of eosinophils, macrophages, and lymphocytes in bronchoalveolar fluids. S-petasin inhibited the antigen-induced degranulation of β-hexosamidase but did not inhibit intracellular Ca2+ increase in RBL-2H3 mast cells. S-petasin inhibited the LPS induction of iNOS at the RNA and protein levels in mouse peritoneal macrophages. Furthermore, s-petasin inhibited the production of NO (the product of iNOS) in a concentration-dependent manner in the macrophages. Furthermore, in an LPS-induced mouse model of peritonitis, s-petasin significantly inhibited the accumulation of polymorpho nuclear and mononuclear leukocytes in peritoneal cavity. This study shows that s-petasin in Petasites genus has therapeutic effects on allergic and inflammatory diseases, such as, asthma and peritonitis through degranulation inhibition in mast cells, suppression of iNOS induction and production of NO in macrophages, and suppression of inflammatory cell accumulation. PMID:25593643
Research Resource: Aorta- and Liver-Specific ERα-Binding Patterns and Gene Regulation by Estrogen
Gordon, Francesca K.; Vallaster, Caroline S.; Westerling, Thomas; Iyer, Lakshmanan K.; Brown, Myles
2014-01-01
Estrogen has vascular protective effects in premenopausal women and in women younger than 60 years who are receiving hormone replacement therapy. However, estrogen also increases the risks of breast and uterine cancers and of venous thromboses linked to up-regulation of coagulation factors in the liver. In mouse models, the vasculoprotective effects of estrogen are mediated by the estrogen receptor α (ERα) transcription factor. Here, through next-generation sequencing approaches, we show that almost all of the genes regulated by 17β-estradiol (E2) differ between mouse aorta and mouse liver, ex vivo, and that this difference is associated with a distinct genomewide distribution of ERα on chromatin. Bioinformatic analysis of E2-regulated promoters and ERα binding site sequences identify several transcription factors that may determine the tissue specificity of ERα binding and E2-regulated genes, including the enrichment of NF-κB, AML1, and AP1 sites in the promoters of E2 down-regulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggest ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. PMID:24992180
Cao, Heping; Graves, Donald J; Anderson, Richard A
2010-11-01
Cinnamon extracts (CE) are reported to have beneficial effects on people with normal and impaired glucose tolerance, the metabolic syndrome, type 2 diabetes, and insulin resistance. However, clinical results are controversial. Molecular characterization of CE effects is limited. This study investigated the effects of CE on gene expression in cultured mouse adipocytes. Water-soluble CE was prepared from ground cinnamon (Cinnamomum burmannii). Quantitative real-time PCR was used to investigate CE effects on the expression of genes coding for adipokines, glucose transporter (GLUT) family, and insulin-signaling components in mouse 3T3-L1 adipocytes. CE (100 μg/ml) increased GLUT1 mRNA levels 1.91±0.15, 4.39±0.78, and 6.98±2.18-fold of the control after 2-, 4-, and 16-h treatments, respectively. CE decreased the expression of further genes encoding insulin-signaling pathway proteins including GSK3B, IGF1R, IGF2R, and PIK3R1. This study indicates that CE regulates the expression of multiple genes in adipocytes and this regulation could contribute to the potential health benefits of CE. Published by Elsevier GmbH.
Breast Milk Enhances Growth of Enteroids: An Ex Vivo Model of Cell Proliferation.
Lanik, Wyatt E; Xu, Lily; Luke, Cliff J; Hu, Elise Z; Agrawal, Pranjal; Liu, Victoria S; Kumar, Rajesh; Bolock, Alexa M; Ma, Congrong; Good, Misty
2018-02-15
Human small intestinal enteroids are derived from the crypts and when grown in a stem cell niche contain all of the epithelial cell types. The ability to establish human enteroid ex vivo culture systems are important to model intestinal pathophysiology and to study the particular cellular responses involved. In recent years, enteroids from mice and humans are being cultured, passaged, and banked away for future use in several laboratories across the world. This enteroid platform can be used to test the effects of various treatments and drugs and what effects are exerted on different cell types in the intestine. Here, a protocol for establishing primary stem cell-derived small intestinal enteroids derived from neonatal mice and premature human intestine is provided. Moreover, this enteroid culture system was utilized to test the effects of species-specific breast milk. Mouse breast milk can be obtained efficiently using a modified human breast pump and expressed mouse milk can then be used for further research experiments. We now demonstrate the effects of expressed mouse, human, and donor breast milk on the growth and proliferation of enteroids derived from neonatal mice or premature human small intestine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, C.E.; Slaga, T.J.; Hennings, H.
1979-08-01
The effects of a vitamin A analog, TMMP ethyl retinoate (abbreviated Ro 10-9359), and an anti-inflammatory steroid, fluocinoione acetonide (abbreviated FA), given alone or together were studied in a two-stage carcinogenesis system. the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was used as the tumor promoter in a DMBA-initiated mouse skin system. Two stocks of female mice, which differ in their degrees of sensitivity to skin carcinogenesis, were used. A dose-dependent inhibition of carcinogenic expression, as determined by a decreased number of papillomas per animal, was observed in each mouse stock with the use of both FA and Ro 10-9359 were given alone.more » When FA and RO 10-9359 were given together, an enhanced effect on the lowering of tumor incidence was noted. FA effectively inhibited tumor formation in the sensitive mouse stock even when the steroid was given 1 day prior to TPA treatment under conditions of unusually high doses of initiator (DMBA) and/or promoter (TPA). These results suggest that both anti-inflammatory steroids and retinoids inhibit tumor promotion and can be effectively used as a combination regimen for increased chemopreventive response.« less
Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice.
Cao, Rongfeng; Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Zhang, Naisheng
2014-10-01
Kaempferol isolated from the root of Zingiberaceae plants galangal and other Chinese herbal medicines have been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of kaempferol on lipopolysaccharide (LPS)-induced mastitis are unknown and their underlying molecular mechanisms remain to be explored. The aim of this study was to evaluate the effects of kaempferol on LPS-induced mouse mastitis. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Kaempferol was injected 1 h before and 12 h after induction of LPS intraperitoneally. The present results showed that kaempferol markedly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner, which were increased in LPS-induced mouse mastitis. Furthermore, kaempferol suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All results suggest that anti-inflammatory effects of kaempferol against the LPS-induced mastitis possibly through inhibition of the NF-κB signaling pathway. Kaempferol may be a potential therapeutic agent for mastitis.
Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models
Willis, Sarah; Stoll, James; Sweetman, Lawrence; Borges, Karin
2010-01-01
We hypothesized that in epileptic brains citric acid cycle intermediate levels may be deficient leading to hyperexcitability. Anaplerosis is the metabolic refilling of deficient metabolites. Our goal was to determine the anticonvulsant effects of feeding triheptanoin, the triglyceride of anaplerotic heptanoate. CF1 mice were fed 0-35% calories from triheptanoin. Body weights and dietary intake were similar in mice fed triheptanoin vs. standard diet. Triheptanoin feeding increased blood propionyl-carnitine levels, signifying its metabolism. 35%, but not 20%, triheptanoin delayed development of corneal kindled seizures. After pilocarpine-induced status epilepticus (SE), triheptanoin feeding increased the pentylenetetrazole tonic seizure threshold during the chronically epileptic stage. Mice in the chronically epileptic stage showed various changes in brain metabolite levels, including a reduction in malate. Triheptanoin feeding largely restored a reduction in propionyl-CoA levels and increased methylmalonyl-CoA levels in SE mice. In summary, triheptanoin was anticonvulsant in two chronic mouse models and increased levels of anaplerotic precursor metabolites in epileptic mouse brains. The mechanisms of triheptanoin's effects and its efficacy in humans suffering from epilepsy remain to be determined. PMID:20691264
Prasad, Bibin; Kim, Subin; Cho, Woong; Kim, Suzy; Kim, Jung Kyung
2018-05-01
Computational techniques can enhance personalized hyperthermia-treatment planning by calculating tissue energy absorption and temperature distribution. This study determined the effect of tumor properties on energy absorption, temperature mapping, and thermal dose distribution in mild radiofrequency hyperthermia using a mouse xenograft model. We used a capacitive-heating radiofrequency hyperthermia system with an operating frequency of 13.56 MHz for in vivo mouse experiments and performed simulations on a computed tomography mouse model. Additionally, we measured the dielectric properties of the tumors and considered temperature dependence for thermal properties, metabolic heat generation, and perfusion. Our results showed that dielectric property variations were more dominant than thermal properties and other parameters, and that the measured dielectric properties provided improved temperature-mapping results relative to the property values taken from previous study. Furthermore, consideration of temperature dependency in the bio heat-transfer model allowed elucidation of precise thermal-dose calculations. These results suggested that this method might contribute to effective thermoradiotherapy planning in clinics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Naito, Yuki; Yoshikawa, Yutaka; Yoshizawa, Katsuhiko; Takenouchi, Akiko; Yasui, Hiroyuki
2017-01-01
Metabolic syndrome-induced lifestyle-related diseases include diabetes mellitus (DM) and hypertension, and Zn-based compounds have effects on DM. We aimed to investigate the ameliorating effects of bis(hinokitiolato)Zn, [Zn(hkt) 2 ] on lipid metabolism in the liver and kidney, histopathologically. We used a high-fat diet (HFD)-fed C57BL/6J mouse model and administered a diet containing 10-20 mg Zn/kg body weight (BW) or 20 mg pioglitazone/kg BW as the positive control. After the treatments, we collected blood, liver, and kidney samples and morphologically evaluated the mouse organs for fat accumulation. After a 4-month HFD administration, ectopic fat deposition was detected in the liver and kidney. Furthermore, Zn accumulation in the liver and kidney increased following [Zn(hkt) 2 ] treatment, that reduced lipid accumulations and lipid toxicity in these tissues. The results of this study suggest that [Zn(hkt) 2 ] could be a novel anti-dyslipidaemia compound for treating diet-induced obesity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Effects of silk fibroin in murine dry eye
NASA Astrophysics Data System (ADS)
Kim, Chae Eun; Lee, Ji Hyun; Yeon, Yeung Kyu; Park, Chan Hum; Yang, Jaewook
2017-03-01
The study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2b mice exposing them to 30-40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye.
A light therapy for treating Alzheimer's disease
NASA Astrophysics Data System (ADS)
Wang, Xue; Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin
2017-02-01
It is generally believed that there are some connections between Alzheimer's disease and amyloid protein plaques in the brain. The typical symptoms of Alzheimer's disease are memory loss, language disorders, mood swings, loss of motivation and behavioral issues. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. Infrared light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research we have studied the effect of infrared light on Alzheimer's disease through transgenic mouse model. We designed an experimental apparatus for treating mice, which primarily included a therapeutic box and a LED array, which emitted infrared light. After the treatment, we assessed the effects of infrared light by performing two tests: cognitive performance of mice in Morris water maze, and plaque load by immunofluorescence analysis. Immunofluorescence analysis was based on measuring the quantity of plaques in mouse brain slices. Our results show that infrared therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.
Genes and Alcohol Consumption: Studies with Mutant Mice
Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.
2017-01-01
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617
Zhu, Ji-Xiao; Wen, Le; Zhong, Wei-Jin; Xiong, Li; Liang, Jian; Wang, Hong-Ling
2018-05-26
Elaeagnus pungens (E. pungens) leaf was documented to be very effective to treat asthma and chronic bronchitis both as traditional Chinese medicine and minority traditional medicine; yet the actual effective components still remain unknown. This work is to investigate the anti-inflammatory, antalgic and antitussive activities of E. pungens leaf, quercetin and kaempferol, and their contents in E. pungens leaf. Pharmacological experiments showed they could considerably reduce ear-swelling of mouse and relieve writhing reaction of mouse; they could also prevent mouse from coughing, significantly. These findings suggested quercetin and kaempferol are major effective components treating asthma and chronic bronchitis. Quantitative analysis results indicated the levels of quercetin, kaempferol and isorhamnetin varied greatly in different species of Elaeagnus and in different plant parts: E. pungens leaf is more similar to Elaeagnus umbellate leaf chemically; quercetin level is exceptionally high in Elaeagnus oldhami leaf; E. pungens leaf is a better medical part for treating asthma and chronic bronchitis in comparison with other parts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Bandaruk, Yauhen; Mukai, Rie; Kawamura, Tomoyuki; Nemoto, Hisao; Terao, Junji
2012-10-17
Quercetin, a typical dietary flavonoid, is thought to exert antidepressant effects by inhibiting the monoamine oxidase-A (MAO-A) reaction, which is responsible for regulation of the metabolism of the neurotransmitter 5-hydroxytryptamine (5-HT) in the brain. This study compared the MAO-A inhibitory activity of quercetin with those of O-methylated quercetin (isorhamnetin, tamarixetin), luteolin, and green tea catechins ((-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate) by measuring the formation of the oxidative deamination product of 5-HT, 5-hydroxyindole aldehyde (5-HIAL), in mouse brain mitochondria. Quercetin was inferior to luteolin in the inhibition of MAO-A activity, whereas isorhamnetin, tamarixetin, and tea catechins scarcely exerted inhibitory activity. Quercetin did not affect MAO-A activity in mouse intestinal mitochondria, indicating that it does not evoke side effects on the metabolism of dietary monoamines in the gut. These data suggest that quercetin is a weak (but safe) MAO-A inhibitor in the modulation of 5-HT levels in the brain.
2014-01-01
Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669
Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18.
Hu, Biliang; Ren, Jiangtao; Luo, Yanping; Keith, Brian; Young, Regina M; Scholler, John; Zhao, Yangbing; June, Carl H
2017-09-26
The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR) T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE) CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors. Copyright © 2017. Published by Elsevier Inc.
Mouse Models as Predictors of Human Responses: Evolutionary Medicine.
Uhl, Elizabeth W; Warner, Natalie J
Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.
Miyazaki, Kouji; Hanamizu, Tomoko; Sone, Toshiro; Chiba, Katsuyoshi; Kinoshita, Takashi; Yoshikawa, Satoshi
2004-01-01
The authors examined the effects of Bifidobacterium-fermented soy milk extract (BE) containing genistein and daidzein on the hyaluronic acid (HA) content and rheological and physiological properties of hairless mouse and/or human skin. Topical application of BE for six weeks significantly restored changes in the elasticity and viscoelasticity of mouse skin, increased the HA content, and hydrated and thickened mouse skin. Also, topical application of a gel formula containing 10% BE to the human forearm for three months significantly lessened the decrease in skin elasticity. Therefore, BE is expected to become a new cosmetic ingredient to prevent the loss of skin elasticity through enhancement of HA production.
Tang, Wei; Tian, Jingjing; Zheng, Qiang; Yan, Lin; Wang, Jiangxue; Li, Zhou; Wang, Zhong Lin
2015-08-25
Bone remodeling or orthodontic treatment is usually a long-term process. It is highly desirable to speed up the process for effective medical treatment. In this work, a self-powered low-level laser cure system for osteogenesis is developed using the power generated by the triboelectric nanogenerator. It is found that the system significantly accelerated the mouse embryonic osteoblasts' proliferation and differentiation, which is essential for bone and tooth healing. The system is further demonstrated to be driven by a living creature's motions, such as human walking or a mouse's breathing, suggesting its practical use as a portable or implantable clinical cure for bone remodeling or orthodontic treatment.
NASA Technical Reports Server (NTRS)
Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.
1994-01-01
An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.
Autism Spectrum Disorders: Translating human deficits into mouse behavior.
Pasciuto, E; Borrie, S C; Kanellopoulos, A K; Santos, A R; Cappuyns, E; D'Andrea, L; Pacini, L; Bagni, C
2015-10-01
Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.
STUDIES ON THE DEVELOPMENT OF MOUSE EMBRYOS IN VITRO
BRINSTER, RALPH L.
2016-01-01
Summary The interactions of a number of possible energy sources for in-vitro development of 2-cell mouse ova were examined using statistical experimental designs. These experiments indicated that glucose has no beneficial effect on development when employed with the optimum concentration of pyruvate. Optimum concentrations of pyruvate and oxaloacetate when employed together resulted in a significantly lower response than when either compound was employed alone. It was found that the best medium for the development of 2-cell mouse ova into blastocysts contained 2·5 to 5·0 × 10−4 M-pyruvate + 2·5 to 5·0 × 10−2 M-lactate. PMID:5836270
The menopausal mouse: a new neural paradigm of a distressing human condition.
Danilovich, Natalia; Sairam, M Ram; Maysinger, Dusica
2003-08-26
Progressive and long-term sex hormone imbalance in the FSH-R haploinsufficient menopausal mouse leads to degenerative changes in the CNS associated with increased anxiety. The brain region most affected by aging in these mice is the hippocampus. Choline acetyltransferase (ChAT) enzymatic activity and synapsin immunoreactivity are reduced at 20 months of age. Neurons in the dentate gyrus show signs of progressive degenerative changes, hypertrophy and glyosis, and subsequent cell shrinkage and death. These results suggest that the menopausal mouse mimics degenerative changes in the hippocampus of hormonally imbalanced aging humans. We propose using this animal model to test the effectiveness of potential therapeutics in paradigms of accelerated aging.
Ayissi Mbomo, Rigobert; Gartside, Sasha; Ngo Bum, Elizabeth; Njikam, Njifutie; Okello, Ed; McQuade, Richard
2012-04-01
Mimosa pudica (Linn.) (M. pudica L.) is a plant used in some countries to treat anxiety and depression. In the present study we investigated the effects of an aqueous extract of M. pudica L. on mouse anxiety-like behaviour using the elevated T maze, and on regulation of dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT) neuronal activity using an in-vitro mouse brain slice preparation. Acute treatment with M. pudica L. extract had an anxiolytic effect on behaviour in the elevated T maze, specifically on inhibitory avoidance behaviour. Acute application of the extract alone had no effect on the activity of DRN 5-HT neurones. However, when co-applied with the GABA(A) receptor agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), the extract enhanced the inhibitory effect of the THIP on DRN 5-HT neurones. These observed effects of M. pudica L. on both behaviour and GABA modulation of 5-HT neuronal activity are similar to the effects of diazepam, the established anxiolytic and positive modulator of the GABA(A) receptor. This study suggests that the aqueous extract of M. pudica L. contains a positive modulator of GABA(A) receptor function and provides impetus for further investigation of the neuropharmacologically active constituents of the extract.
Effect of Fetal Mouse Lung Tissue Co-Culture on In Vitro Maturation of Mouse Immature Oocytes.
Belbasi, Masomeh; Jorsaraei, Seyed Gholam Ali; Gholamitabar Tabari, Maryam; Khanbabaei, Ramzan
2017-10-01
The aim of this study was to evaluate the fetal mouse lung tissue co-culture on in vitro maturation (IVM) of mouse immature oocytes. In this experimental study, germinal vesicle (GV) oocytes from ovaries of a group of 25 female mice, 6-8 weeks of age, were dissected after being stimulated by 7.5 IU pregnant mare serum gonadotropin (PMSG) through an intraperitoneal (IP) injection. The fetal lung tissues were then prepared and cultured individually. A total number of 300 oocytes were cultured in the following three groups for 24 hours: control group (n=100) containing only base medium, group I (n=100) containing base medium co-cultured with 11.5- to 12.5-day old fetal mouse lung tissues, and group II (n=100) containing base medium co-cultured with 12.5- to 13.5-day old fetal mouse lung tissues. The proportion of GV and metaphase І (MI) oocytes matured into MІІ oocytes were compared among the three groups using analysis of variance (ANOVA). Correlation test were also used to evaluate the successful rate of IVM oocytes. The proportions of GV oocytes reaching MІІ stage were 46, 65, and 56%, in control, I and II groups, respectively (P<0.05). The percentage of the oocytes remaining at the GV stage were higher in control group as compared with two treatment groups (P<0.05). This study indicated that fetal mouse lung tissue co-culture method increased the percentage of GV oocytes reaching MII stage. Copyright© by Royan Institute. All rights reserved.
Response, use and habituation to a mouse house in C57BL/6J and BALB/c mice.
Wirz, Annarita; Mandillo, Silvia; D'Amato, Francesca R; Giuliani, Alessandro; Riviello, M Cristina
2015-01-01
Animal welfare depends on the possibility to express species-specific behaviours and can be strongly compromised in socially and environmentally deprived conditions. Nesting materials and refuges are very important resources to express these behaviours and should be considered as housing supplementation items. We evaluated the effects of one item of housing supplementation in standard settings in laboratory mice. C57BL/6JOlaHsd (B6) and BALB/cOlaHsd (BALB) young male and female mice, upon arrival, were housed in groups of four in standard laboratory cages and after 10 days of acclimatization, a red transparent plastic triangular-shaped Mouse House™ was introduced into half of the home cages. Animals with or without a mouse house were observed in various contexts for more than one month. Body weight gain and food intake, home cage behaviours, emotionality and response to standard cage changing procedures were evaluated. The presence of a mouse house in the home cage did not interfere with main developmental and behavioural parameters or emotionality of BALB and B6 male and female mice compared with controls. Both strains habituated to the mouse house in about a week, but made use of it differently, with BALB mice using the house more than the B6 strain. Our results suggest that mice habituated to the mouse house rather quickly without disrupting their home cage activities. Scientists can thus be encouraged to use mouse houses, also in view of the implementation of the EU Directive (2010/63/EU).
Luo, Ke-Wang; Yue, Grace Gar-Lee; Ko, Chun-Hay; Lee, Julia Kin-Ming; Gao, Si; Li, Long-Fei; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San
2014-01-01
Coriolus versicolor (CV), a medicinal mushroom widely consumed in Asian countries, has been demonstrated to be effective in stimulation of immune system and inhibition of tumor growth. The present study aimed to investigate the anti-tumor and anti-metastasis effects of CV aqueous extract in mouse mammary carcinoma 4T1 cells and in 4T1-tumor bearing mouse model. Our results showed that CV aqueous extract (0.125-2 mg/ml) did not inhibit 4T1 cell proliferation while the non-cytotoxic dose of CV extract (1-2 mg/ml) significantly inhibited cell migration and invasion (p<0.05). Besides, the enzyme activities and protein levels of MMP-9 were suppressed by CV extract significantly. Animal studies showed that CV aqueous extract (1 g/kg, orally-fed daily for 4 weeks) was effective in decreasing the tumor weight by 36%, and decreased the lung metastasis by 70.8% against untreated control. Besides, micro-CT analysis of the tumor-bearing mice tibias indicated that CV extract was effective in bone protection against breast cancer-induced bone destruction as the bone volume was significantly increased. On the other hand, CV aqueous extract treatments resulted in remarkable immunomodulatory effects, which was reflected by the augmentation of IL-2, 6, 12, TNF-α and IFN-γ productions from the spleen lymphocytes of CV-treated tumor-bearing mice. In conclusion, our results demonstrated for the first time that the CV aqueous extract exhibited anti-tumor, anti-metastasis and immunomodulation effects in metastatic breast cancer mouse model, and could protect the bone from breast cancer-induced bone destruction. These findings provided scientific evidences for the clinical application of CV aqueous extract in breast cancer patients. Copyright © 2014 Elsevier GmbH. All rights reserved.
Smith, Sheryl S; Ruderman, Yevgeniy; Frye, Cheryl; Homanics, Gregg; Yuan, Maoli
2006-06-01
3alpha-OH-5alpha[beta]-pregnan-20-one (THP) is a positive modulator of the GABAA receptor (GABAR), which underlies its reported anxiolytic effect. However, there are conditions such as premenstrual dysphoric disorder (PMDD) where increases in THP levels can be associated with adverse mood. In order to test for conditions where THP might be anxiogenic, we developed a mouse model of THP withdrawal. Because delta-containing GABAR are highly sensitive to THP modulation, results were compared in wild-type and delta knockout mice. Finasteride, a 5alpha-reductase blocker, was administered for 3 days to female wild-type or delta knockout mice. Then, animals were tested in the elevated plus maze, following acute administration of THP, lorazepam, flumazenil, or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), and results compared to vehicle-injected controls. CA1 hippocampal GABAR alpha4 subunit levels were assessed by Western blot. After THP withdrawal, THP produced anxiogenic effects, decreasing open arm entries on the elevated plus maze, following a brief shock, in contrast to its expected anxiolytic effects. As we have shown in rats, THP withdrawal also resulted in increased expression of the alpha4 subunit in mouse CA1 hippocampus. As expected for increases in alpha4-containing GABAR, THP withdrawn mice were relatively insensitive to the benzodiazepine (BDZ) lorazepam and had atypical responses to the BDZ antagonist flumazenil when tested on the plus maze. In contrast, they showed a greater anxiolytic response to THIP, which has greater efficacy at alpha4betadelta than other GABAR. Although THP withdrawal in delta knockout mice also increased the alpha4 GABAR subunit, the anxiogenic effects of THP and the anxiolytic effects of THIP were not observed, implicating alpha4betadelta GABAR in these effects. Based on these behavioral and pharmacological findings, we suggest that THP withdrawal in the mouse may serve as a rodent model of PMDD.
Hydrocortisone Diffusion Through Synthetic Membrane, Mouse Skin, and Epiderm™ Cultured Skin
Christensen, John Mark; Chuong, Monica Chang; Le, Hang; Pham, Loan; Bendas, Ehab
2011-01-01
Objectives The penetration of hydrocortisone (HC) from six topical over-the-counter products along with one prescription cream through cultured normal human-derived epidermal keratinocytes (Epiderm™), mouse skin and synthetic nylon membrane was performed as well as the effect hydrating the skin by pre-washing was explored using the Upright Franz Cell. Method and Results Permeation of HC through EpiDerm™, mouse skin and synthetic membrane was highest with the topical HC gel formulation with prewash treatment of the membranes among seven products evaluated, 198 ± 32 µg/cm2, 746.32 ± 12.43 µg/cm2, and 1882 ± 395.18 µg/cm2, respectively. Pre-washing to hydrate the skin enhanced HC penetration through EpiDerm™ and mouse skin. The 24-hour HC released from topical gel with prewash treatment was 198.495 ± 32 µg/cm2 and 746.32 ± 12.43 µg/cm2 while without prewash, the 24-h HC released from topical gel was 67.2 ± 7.41 µg/cm2 and 653.43 ± 85.62 µg/cm2 though EpiDerm™ and mouse skin, respectively. HC penetration through synthetic membrane was ten times greater than through mouse skin and EpiDerm™. Generally, the shape, pattern, and rank order of HC diffusion from each commercial product was similar through each membrane. PMID:21572515
A novel phantom model for mouse tumor dose assessment under MV beams
Gossman, Michael S.; Das, Indra J.; Sharma, Subhash C.; Lopez, Jeffrey P.; Howard, Candace M.; Claudio, Pier P.
2011-01-01
Purpose In order to determine a mouse’s dose accurately and prior to engaging in live mouse radiobiological research, a tissue-equivalent tumor-bearing phantom mouse was constructed and bored to accommodate detectors. Methods and Materials Comparisons were made between four different types of radiation detectors, each inserted into the phantom mouse for radiation measurement under a 6 MV linear accelerator beam. Dose detection response from a diode, thermoluminescent dosimeters, metal-oxide semiconductor field-effect transistors were used and compared to that of a reference pin-point ionization chamber. Likewise, a computerized treatment planning system was also directly compared. Results Each detector system demonstrated results similar to the dose computed by the therapeutic treatment planning system, although some differences were noted. The average disagreement from a accelerator calibrated output dose prescription in the range of 200–400 cGy were −0.4% ± 0.5σ for the diode, −2.4% ± 2.6σ for the TLD, −2.9% ± 5.0σ for the MOSFET and +1.3% ± 1.4σ for the treatment planning system. Conclusions This phantom mouse design is unique, simple, reproducible and therefore recommended as a standard approach to dosimetry for radiobiological mouse studies by means of any of the detectors used in this study. We fully advocate for treatment planning modeling when possible prior to linac-based dose delivery. PMID:22048493
Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia.
Nasehi, Mohammad; Mashaghi, Elham; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza
2013-11-27
A number of tremorogenic β-carboline alkaloids such as harmane are naturally present in the human food chain. They are derived from medicinal plants such as Peganum harmala that have been used as folk medicine in anticancer therapy. In the present study, effects of the histaminergic system of the dorsal hippocampus (CA1) on harmane-induced amnesia were examined. One-trial step-down was used to assess memory retention in adult male mice. The results showed that pre-training intra-CA1 administration of histamine (5μg/mouse), ranitidine (H2 receptor antagonist; at the doses of 0.25 and 0.5μg/mouse) and pyrilamine (H1 receptor antagonist; at the dose of 5μg/mouse) decreased memory formation. Pre-training intraperitoneal (i.p.) administration of harmane (12mg/kg) also decreased memory formation. Moreover, pre-training intra-CA1 injection of a sub-threshold dose of histamine (2.5μg/mouse) could reverse harmane (12mg/kg, i.p.)-induced impairment of memory. On the other hand, pre-training intra-CA1 injection of sub-threshold doses of ranitidine (0.0625μg/mouse) and pyrilamine (2.5μg/mouse) increased harmane-induced impairment of memory. In conclusion, the present findings suggest the involvement of the CA1 histaminergic system in harmane-induced impairment of memory formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Mouse embryo attachment to substratum and interaction of trophoblast with cultured cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, R.H.; Spindle, A.I.; Pedersen, R.A.
1979-06-01
Hatching, attachment, and trophoblast outgrowth of mouse embryos in vitro were examined as a model for implantation. Mouse embryos attached and grew out on glass cover slips that were partially covered with cultured mouse cells (L cells, liver cells, transformed JLS-V11 cells, and teratocarcinoma cells). Scanning electron microscopy showed that processes of these cells made contact with trophoblast, but there was no evidence of cell lysis or of phagocytosis of the cells by trophoblast. Time-lapse cinematography showed that after contact the cultured mouse cells retracted from the trophoblast, which then spread into the areas vacated by those cells. This suggestsmore » a means by which the trophoblast gains entry into the endometrium without destruction of maternal cells. Neuraminidase (100 or 250 units/ml) had no effect on attachment of mouse embryos to glass. However, attachment was inhibited by trypsin at concentrations of 0.25%, 0.025%, and 0.0025%. Treatment of early blastocysts with diazooxo-norleucine, an inhibitor of glycoprotein synthesis, decreased the number of embryos hatching from the zona pellucida; treatment at the late blastocyst stage decreased hatching to a lesser extent. Among the late blastocysts that did hatch, the number forming trophoblast outgrowths was lower than in controls. These results suggest that glycoproteins may be of importance for embryo hatching, attachment, and outgrowth.« less
Combined effects of social stress and liver fluke infection in a mouse model.
Avgustinovich, Damira F; Marenina, Mariya K; Zhanaeva, Svetlana Ya; Tenditnik, Mikhail V; Katokhin, Alexey V; Pavlov, Konstantin S; Sivkov, Anton Yu; Vishnivetskaya, Galina B; Lvova, Maria N; Tolstikova, Tatiana G; Mordvinov, Viatcheslav A
2016-03-01
The effects of two influences, social stress and acute opisthorchiasis, were investigated in inbred C57BL/6J male mice. In the model of social stress, mice were repeatedly attacked and defeated by aggressive outbred ICR male mice and were in continuous sensory contact with an aggressive conspecific mouse in their home cage for 20 days. Acute opisthorchiasis was provoked by invasion of Opisthorchis felineus (50 larvae per animal) on the fourth day after the social stress was induced. Simultaneous action of both factors caused the hypertrophy of adrenal glands, as well as elevated the activity of cathepsins B and L in the spleen. This effect on the activity of the cysteine proteases in the hippocampus and hypothalamus following O. felineus invasion was the predominant result of simultaneous action with social stress. Acute opisthorchiasis, social stress, and their combination caused an increase in the level of blood IL-6 in approximately 30% of the animals. Social stress induced a more pronounced effect on mouse plus-maze behavior than O. felineus invasion. Our results suggest a more severe negative effect of the simultaneous influence of both factors on most of the parameters that were investigated. Copyright © 2016 Elsevier Inc. All rights reserved.
In Vitro Anti-inflammatory Effects of the Phenylbutyric Acid Metabolite Phenylacetyl Glutamine.
Hazekawa, Mai; Ono, Kazuhiko; Nishinakagawa, Takuya; Kawakubo-Yasukochi, Tomoyo; Nakashima, Manabu
2018-06-01
Sodium 4-phenylbutyrate (PBA), which exerts a wide range of anti-inflammatory effects, is rapidly cleared from the body (approximately 98%) by urinary excretion by 24 h after oral treatment in humans. PBA was almost entirely excreted to urine as phenylacetyl glutamine (PAGln). However, no data describe the potential anti-inflammatory effects of PAGln. The purpose of this study was to evaluate the anti-inflammatory effects of PAGln on mouse spleen cells and peritoneal cavity cells, and explore the potential mechanism underlying this effect. PAGln was added to mouse spleen cell cultures stimulated by concanavalin A, or mouse peritoneal cavity cell cultures stimulated by lipopolysaccharide. After 72 h of culture, levels of inflammatory cytokines in culture supernatants were measured using a sandwich enzyme-linked immunosorbent assay system, and levels of inflammatory proteins were assessed by Western blotting. PAGln significantly inhibited inflammatory cytokine (interferon-γ, interleukin-6, and tumor necrosis factor-α) production, decrease of cell number in the spleen cell, and suppressed the expression of inflammatory proteins (nuclear factor κB, and inducible nitric oxide synthase). These results suggest that PAGln possesses anti-inflammatory activity via inhibition of T cell activation and Toll-like receptor 4 signaling. This study of the anti-inflammatory mechanism of PAGln provides useful information about its potential for therapeutic applications.
Hara, Yuta; Ago, Yukio; Higuchi, Momoko; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro
2017-11-01
Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model. Copyright © 2017 Elsevier Inc. All rights reserved.
Nasehi, Mohammad; Morteza-Zadeh, Parastoo; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza
2016-12-17
In the current study, we examined the effect of bilateral intra-dorsal hippocampal (intra-CA1) microinjections of GABA A receptor agents on amnesia induced by a β-carboline alkaloid, harmane in mice. We used a single-trial step-down passive avoidance task to assess memory retention and then, open-field test to assess locomotor activity. The results indicated that post-training intra-CA1 injections of bicuculline - a GABA A receptor antagonist - had no significant effect, while muscimol (0.01 and 0.1μg/mouse) - a GABA A receptor agonist - impaired memory consolidation. Post-training intra-peritoneal (i.p.) infusion of harmane (3 and 5mg/kg) decreased memory consolidation. Furthermore, post-training intra-CA1 administration of sub-threshold dose of bicuculline (0.001μg/mouse) restored, whereas muscimol (0.001μg/mouse) potentiated impairment of memory consolidation induced by harmane. The isobologram analysis revealed that there is an additive effect between harmane and muscimol on impairment of memory consolidation. Moreover, all above doses of drugs did not alter locomotor activity. These findings suggest that GABA A receptors of the CA1 area, at least partly, play a role in modulating the effect of harmane on memory consolidation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Bee Venom and Its Component Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model
Vulinović, Franca; Grünewald, Anne; Chevarin, Caroline; Klein, Christine; Oertel, Wolfgang H.; Hirsch, Etienne C.; Michel, Patrick P.; Hartmann, Andreas
2013-01-01
Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide. PMID:23637888
Estrogen receptor-mediated effects of a xenoestrogen, bisphenol A, on preimplantation mouse embryos.
Takai, Y; Tsutsumi, O; Ikezuki, Y; Hiroi, H; Osuga, Y; Momoeda, M; Yano, T; Taketani, Y
2000-04-21
The effects of bisphenol A, a xenoestrogen widely used in industry and dentistry, were studied in early preimplantation mouse embryos. Two-cell mouse embryos were cultured with 100 pM to 100 microM bisphenol A with or without 100 nM tamoxifen and evaluated at 24-h intervals for their development to eight-cell and blastocyst stages. At 72 h, blastocysts were cultured for another 48 h without bisphenol A, and surface areas of trophoblast spread were measured. At 24 h, more embryos exposed to 3 nM bisphenol A than to controls had reached the eight-cell stage. At 48 h, more embryos exposed to 1 nM and 3 nM bisphenol A than to controls had become blastocysts. At 100 microM, bisphenol A decreased frequency of development to blastocysts. Tamoxifen counteracted both stimulatory and inhibitory effects of bisphenol A on blastocyst formation. Although bisphenol A did not alter blastocyst morphology or cell number, early exposure to 100 microM bisphenol A increased subsequent trophoblast areas. These findings suggest that bisphenol A may not only effect early embryonic development via estrogen receptors even at low, environmentally relevant doses, but also exert some late effects on subsequent development of these embryos. Copyright 2000 Academic Press.
Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation.
Grimm, Marcus O W; Thiel, Andrea; Lauer, Anna A; Winkler, Jakob; Lehmann, Johannes; Regner, Liesa; Nelke, Christopher; Janitschke, Daniel; Benoist, Céline; Streidenberger, Olga; Stötzel, Hannah; Endres, Kristina; Herr, Christian; Beisswenger, Christoph; Grimm, Heike S; Bals, Robert; Lammert, Frank; Hartmann, Tobias
2017-12-19
Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D₂ and D₃ analogues decreased Aβ-production and increased Aβ-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aβ-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased β-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.
Effects of chlorogenic acid on carbachol-induced contraction of mouse urinary bladder.
Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa
2018-01-01
Chlorogenic acid (CGA) is a polyphenol found in coffee and medicinal herbs such as Lonicera japonica. In this study, the effect of CGA-induced relaxation on carbachol (CCh)-induced contraction of mouse urinary bladder was investigated. CGA (30-300 μg/ml) inhibited CCh- or U46619-induced contraction in a concentration-dependent manner. SQ22536 (adenylyl cyclase inhibitor) recovered CGA-induced relaxation of CCh-induced contraction; however, ODQ (guanylyl cyclase inhibitor) did not have the same effect. In addition, 3-isobutyl-1-methylxanthine (IBMX) enhanced CGA-induced relaxation; however, forskolin or sodium nitroprusside did not have the same effect. Moreover, Ro 20-1724, a selective phosphodiesterase (PDE) 4 inhibitor, enhanced CGA-induced relaxation, but vardenafil, a selective PDE5 inhibitor, did not have the same effect. In the presence of CCh, CGA increased cyclic adenosine monophosphate (cAMP) level, whereas SQ22536 inhibited the increase of cAMP levels. Moreover, higher cAMP levels were obtained with CGA plus IBMX treatment than the total cAMP levels obtained with separate CGA and IBMX treatments. In conclusion, these results suggest that CGA inhibited CCh-induced contraction of mouse urinary bladder by partly increasing cAMP levels via adenylyl cyclase activation. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Di Lorenzo, Arianna; Nabavi, Seyed Fazel; Sureda, Antoni; Moghaddam, Akbar Hajizadeh; Khanjani, Sedigheh; Arcidiaco, Patrizia; Nabavi, Seyed Mohammad; Daglia, Maria
2016-03-01
Growing evidence suggests that oxidative stress plays a role in the development of chronic diseases such as cardiovascular disease and some psychiatric disorders. Tea consumption exerts beneficial effects against damage induced by cerebral ischemia-reperfusion in ischemic stroke and depressive symptoms in depression. The aim of this study was to evaluate, in vivo, the protective activity of green tea (GT) and GABA green tea (GGT) against post-stroke depression (PSD), a common consequence of stroke. The antidepressive-like effects of GT and GGT were determined by behavioral tests in a mouse model of post-stroke depression. The antioxidant activity was evaluated by GSH, SOD, and TBARS measurements on mouse brain. The chemical composition of tea extracts was characterized through chromatographic methods. GGT and GT resulted active in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior, and at least in part, antioxidant endogenous defenses. The higher polyphenol, theanine, glutamine, and caffeine content may justify the higher activity found in GGT. This work represents the first attempt to demonstrate the positive effect of tea, and especially GGT, on post-stroke depression and to correlate this effect with the antioxidant activity and phytochemical composition of tea. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi
2018-01-01
Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.
Starbuck, John M; Dutka, Tara; Ratliff, Tabetha S; Reeves, Roger H; Richtsmeier, Joan T
2014-08-01
Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16)1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional micro-computed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. © 2014 Wiley Periodicals, Inc.
Ratliff, Tabetha S.; Reeves, Roger H.; Richtsmeier, Joan T.
2014-01-01
Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16) 1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional microcomputed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. PMID:24788405
Comparison of excitation wavelengths for in vivo deep imaging of mouse brain
NASA Astrophysics Data System (ADS)
Wang, Mengran; Wu, Chunyan; Li, Bo; Xia, Fei; Sinefeld, David; Xu, Chris
2018-02-01
The attenuation of excitation power reaching the focus is the main issue that limits the depth penetration of highresolution imaging of biological tissue. The attenuation is caused by a combination of tissue scattering and absorption. Theoretical model of the effective attenuation length for in vivo mouse brain imaging has been built based on the data of the absorption of water and blood and the Mie scattering of a tissue-like phantom. Such a theoretical model has been corroborated at a number of excitation wavelengths, such as 800 nm, 1300 nm , and 1700 nm ; however, the attenuation caused by absorption is negligible when compared to tissue scattering at all these wavelength windows. Here we performed in vivo three-photon imaging of Texas Red-stained vasculature in the same mouse brain with different excitation wavelengths, 1700 nm, 1550 nm, 1500 nm and 1450 nm. In particular, our studies include the wavelength regime where strong water absorption is present (i.e., 1450 nm), and the attenuation by water absorption is predicted to be the dominant contribution in the excitation attenuation. Based on the experimental results, we found that the effective attenuation length at 1450 nm is significantly shorter than those at 1700 nm and 1300 nm. Our results confirm that the theoretical model based on tissue scattering and water absorption is accurate in predicting the effective attenuation lengths for in vivo imaging. The optimum excitation wavelength windows for in vivo mouse brain imaging are at 1300 nm and 1700 nm.
Different modes of herpes simplex virus type 1 spread in brain and skin tissues.
Tsalenchuck, Yael; Tzur, Tomer; Steiner, Israel; Panet, Amos
2014-02-01
Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.
Host Genetic and Environmental Effects on Mouse Cecum Microbiota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A
2012-01-01
The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived frommore » a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.« less
Obesity genetics in mouse and human: back and forth, and back again
Yazdi, Fereshteh T.; Clee, Susanne M.
2015-01-01
Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide. PMID:25825681
Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism Phenotypes
2015-11-01
knockdown mouse. We have also evaluated one synthetic oxytocin agonist, Compound 39, and one oxytocin metabolite, for efficacy against social deficits in...BALB/cByJ mice, and we are currently evaluating a second oxytocin metabolite for prosocial effects. Overall, we have successfully validated three...secondly, evaluate the therapeutic efficacy of the top molecules in the characterized mouse lines (compound 39, carbetocin, and the oxytocin derivatives OT
USDA-ARS?s Scientific Manuscript database
Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...
Jin, Huali; Yan, Zhipeng; Prabhakar, Bellur S; Feng, Zongdi; Ma, Yijie; Verpooten, Dustin; Ganesh, Balaji; He, Bin
2010-02-01
Ebola virus causes rapidly progressive haemorrhagic fever, which is associated with severe immuosuppression. In infected dendritic cells (DCs), Ebola virus replicates efficiently and inhibits DC maturation without inducing cytokine expression, leading to impaired T-cell proliferation. However, the underlying mechanism remains unclear. In this study, we report that Ebola virus VP35 impairs the maturation of mouse DCs. When expressed in mouse immature DCs, Ebola virus VP35 prevents virus-stimulated expression of CD40, CD80, CD86 and major histocompatibility complex class II. Further, it suppresses the induction of cytokines such as interleukin (IL)-6, IL-12, tumour necrosis factor alpha and alpha/beta interferon (IFN-alpha/beta). Notably, Ebola VP35 attenuates the ability of DCs to stimulate the activation of CD4(+) T cells. Addition of type I IFN to mouse DCs only partially reverses the inhibitory effects of VP35. Moreover, VP35 perturbs mouse DC functions induced by lipopolysaccharide, an agonist of Toll-like receptor 4. Deletion of the amino terminus abolishes its activity, whereas a mutation in the RNA binding motif has no effect. Our work highlights a critical role of VP35 in viral interference in DC function with resultant deficiency in T-cell function, which may contribute to the profound virulence of Ebola virus infection.
Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier
2016-05-01
Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.
Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.
Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun
2017-09-01
Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.
Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture
2015-01-01
The risk of cardiovascular events in humans increases in the presence of type 1 or type 2 diabetes mellitus, in large part due to exacerbated atherosclerosis. Genetically engineered mouse models have begun to elucidate cellular and molecular mechanisms responsible for diabetes-exacerbated atherosclerosis. Research on these mouse models has revealed that diabetes independently accelerates initiation and progression of lesions of atherosclerosis and also impairs the regression of lesions following aggressive lipid lowering. Myeloid cell activation in combination with proatherogenic changes allowing for increased monocyte recruitment into arteries of diabetic mice has emerged as an important mediator of the effects of diabetes on the three stages of atherosclerosis. The effects of diabetes on atherosclerosis appear to be dependent on an interplay between glucose and lipids, as well as other factors, and result in increased recruitment of monocytes into both progressing and regressing lesions of atherosclerosis. Importantly, some of the mechanisms revealed by mouse models are now being studied in human subjects. This Perspective highlights new mechanistic findings based on mouse models of diabetes-exacerbated atherosclerosis and discusses the relevance to humans and areas in which more research is urgently needed in order to lessen the burden of macrovascular complications of type 1 and type 2 diabetes mellitus. PMID:26207031
Abrin Toxicity and Bioavailability after Temperature and pH Treatment.
Tam, Christina C; Henderson, Thomas D; Stanker, Larry H; He, Xiaohua; Cheng, Luisa W
2017-10-13
Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin's toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin's ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin's ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays.
Abrin Toxicity and Bioavailability after Temperature and pH Treatment
Tam, Christina C.; Henderson, Thomas D.; Stanker, Larry H.; He, Xiaohua; Cheng, Luisa W.
2017-01-01
Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin’s toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin’s ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin’s ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays. PMID:29027937
Jain, Anil K.; Tewari-Singh, Neera; Orlicky, David J.; White, Carl W; Agarwal, Rajesh
2011-01-01
Sulfur mustard (HD) is a vesicating agent that has been used as a chemical warfare agent in a number of conflicts, posing a major threat in both military conflict and chemical terrorism situations. Currently, we lack effective therapies to rescue skin injuries by HD, in part, due to the lack of appropriate animal models, which are required for conducting laboratory studies to evaluate the therapeutic efficacy of promising agents that could potentially be translated in to real HD-caused skin injury. To address this challenge, the present study was designed to assess whether microvesication could be achieved in mouse skin by an HD analog 2-chloroethyl ethyl sulfide (CEES) exposure; notably, microvesication is a key component of HD skin injury in humans. We found that skin exposure of male SKH-1 hairless mice to CEES caused epidermal-dermal separation indicating microvesication. In other studies, CEES exposure also caused an increase in skin bi-fold thickness, wet/dry weight ratio, epidermal thickness, apoptotic cell death, cell proliferation, and infiltration of macrophages, mast cells and neutrophils in male SKH-1 hairless mouse skin. Taken together, these results establish CEES-induced microvesication and inflammation-related histopathological changes in mouse skin, providing a potentially relevant laboratory model for developing effective countermeasures against HD skin injury in humans. PMID:21295104
The concentration-dependent effect of progesterone on follicle growth in the mouse ovary.
Komatsu, Kouji; Masubuchi, Satoru
2017-06-21
Follicle growth in the mammalian ovary is coordinately controlled by multiple factors to sustain periodic ovulation. In this study, we investigated the role of progesterone on follicle growth in the mouse ovary. As the concentration of progesterone changes during the estrus cycle, we cultured the sliced mouse ovary in a medium containing 10 ng/ml, 100 ng/ml, and 1 μg/ml progesterone. Progesterone promoted the growth of primordial to primary follicles at 100 ng/ml, while it suppressed the growth of secondary follicles at 1 μg/ml. Follicles at other developmental stages in the cultured ovary were unaffected with different concentrations of progesterone. The number of ovulated oocytes increased in the medium containing 100 ng/ml progesterone but decreased in the presence of 1 μg/ml progesterone. Follicles expressed two types of progesterone receptors, progesterone receptor (PGR) and PGR membrane component 1 (PGRMC1). While PGR shows transient expression on granulosa cells of Graafian follicles, PGRMC1 expresses in granulosa cells of developing follicles. These results suggest that progesterone controls the growth of developing follicles through PGRMC1. Our study shows that the effect of progesterone on ovulation and follicle growth in mouse ovary is dependent on the concentration of progesterone and the follicle stage.
Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud
2013-01-01
We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974
Are word-of-mouth communications contributing to a shortage of nephrology nurses?
Wolfe, William A
2014-01-01
Nephrology nurse shortages have historically been viewed as a subset of the overall nursing supply in the United States. Not-here-to-fore considered as a contributing factor are the effects of word-of-mouth and Internet-based word-of-mouth communications from nurses who have had disappointing work experiences in hemodialysis clinics. This article discusses the potential effects of word-of-mouse communications and posits that negative word-of-mouse communications may discourage new and experienced nurses from considering the specialty of nephrology nursing, thus contributing to a nephrology nursing shortage.
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David
2017-11-10
Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.
Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
Szibor, Marten; Dhandapani, Praveen K.; Dufour, Eric; Holmström, Kira M.; Zhuang, Yuan; Salwig, Isabelle; Wittig, Ilka; Heidler, Juliana; Gizatullina, Zemfira; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Nandania, Jatin; Velagapudi, Vidya; Wietelmann, Astrid; Rustin, Pierre; Gellerich, Frank N.; Braun, Thomas
2017-01-01
ABSTRACT Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOXRosa26 mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOXRosa26 mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo. PMID:28067626
Mouse genotypes drive the liver and adrenal gland clocks
NASA Astrophysics Data System (ADS)
Košir, Rok; Prosenc Zmrzljak, Uršula; Korenčič, Anja; Juvan, Peter; Ačimovič, Jure; Rozman, Damjana
2016-08-01
Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark - dark (DD) and light - dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression.
Chatel, Benjamin; Messonnier, Laurent A; Bendahan, David
2017-06-01
While sickle cell disease (SCD) is characterized by frequent vaso-occlusive crisis (VOC), no direct observation of such an event in skeletal muscle has been performed in vivo. The present study reported exacerbated in vivo metabolic changes suggestive of a spontaneous muscular VOC in exercising muscle of a sickle cell mouse. Using magnetic resonance spectroscopy of phosphorus 31, phosphocreatine and inorganic phosphate concentrations and intramuscular pH were measured throughout two standardized protocols of rest - exercise - recovery at two different intensities in ten SCD mice. Among these mice, one single mouse presented divergent responses. A statistical analysis (based on confidence intervals) revealed that this single mouse presented slower phosphocreatine resynthesis and inorganic phosphate disappearance during the post-stimulation recovery of one of the protocols, what could suggest an ischemia. This study described, for the first time in a sickle cell mouse in vivo, exacerbated metabolic changes triggered by an exercise session that would be suggestive of a live observation of a muscular VOC. However, no evidence of a direct cause-effect relationship between exercise and VOC has been put forth. Copyright © 2017 Elsevier Inc. All rights reserved.
Predicted outcomes of vaccinating wildlife to reduce human risk of Lyme disease.
Tsao, Kimberly; Fish, Durland; Galvani, Alison P
2012-07-01
Vaccination efforts for Lyme disease prevention in humans have focused on wildlife reservoirs to target the causative agent, Borrelia burgdorferi, for elimination in vector ticks. Multiple host species are involved in the transmission and maintenance of the bacterium, but not all host species can be vaccinated effectively. To evaluate vaccinating a subset of hosts in the context of host-tick interactions, we constructed and evaluated a dynamic model of B. burgdorferi transmission in mice. Our analyses indicate that on average, a mouse-targeted vaccine is expected to proportionally reduce infection prevalence among ticks by 56%. However, relative to mouse vaccination, human risk of exposure is dominated by the number of tick bites received per person, the proportion of tick blood meals taken from the highly reservoir-competent white-footed mouse relative to other hosts, and the average number of tick bites per mouse. Variation in these factors reduces the predictability of vaccination outcomes. Additionally, contributions of nonmouse hosts to pathogen maintenance preclude elimination of B. burgdorferi through mouse vaccination alone. Our findings indicate that to increase the impact of wildlife vaccination, reducing tick populations by acaricide application, in addition to targeting additional reservoir-competent host species, should be employed.
Castillo-Pichardo, Linette; Dharmawardhane, Suranganie; Rodríguez-Orengo, José F
2014-12-01
The objective of this study was to develop a rapid and sensitive method for the quantification of resveratrol, a polyphenolic compound with multiple health beneficial effects, in mouse plasma. We used reversed-phase ultra high pressure-liquid chromatography with tandem mass spectrometry detection for the determination of resveratrol levels in mouse plasma. An Agilent Zorbax Eclipse Plus C18 column (2.1 mm x 50 mm, 1.8 μm) was used as the stationary phase. The mobile phase consisted of a gradient formed using 1 mM ammonium fluoride and methanol. Using this improved method, we obtained a retention time of 2.2 min and a total run time of 5 min, for resveratrol. The calibration curve for resveratrol showed a linear range from 0.5 to 100 ng/mL. The average coefficient of variation was 6% for interday variation and 4% for intraday variation. The recovery for resveratrol in mouse plasma was 85 ± 10% (mean ± standard deviation). The method presented herein allows a rapid and very sensitive quantification of resveratrol in mouse plasma at concentrations as low as 500 ppt.
Narahara, Hiroki; Sakai, Eri; Katayama, Masafumi; Ohtomo, Yukiko; Yamamoto, Kanako; Takemoto, Miki; Aso, Hisashi; Ohwada, Shyuichi; Mohri, Yasuaki; Nishimori, Katsuhiko; Isogai, Emiko; Yamaguchi, Takahiro; Fukuda, Tomokazu
2012-05-01
Genetic improvement of resistance to infectious diseases is a challenging goal in animal breeding. Infection resistance involves multiple immunological characteristics, including natural and acquired immunity. In the present study, we developed an experimental model based on genetic selection, to improve immunological phenotypes. We selectively established three mouse lines based on phagocytic activity, antibody production and the combination of these two phenotypes. We analyzed the immunological characteristics of these lines using a lipopolysaccharide (LPS), which is one of the main components of Gram-negative bacteria. An intense immunological reaction was induced in each of the three mouse lines. Severe loss of body weight and liver damage were observed, and a high level of cytokine messenger RNA was detected in the liver tissue. The mouse line established using a combination of the two selection standards showed unique characteristics relative to the mouse lines selected on the basis of a single phenotype. Our results indicate that genetic selection and breeding is effective, even for immunological phenotypes with a relatively low heritability. Thus, it may be possible to improve resistance to infectious diseases by means of genetic selection. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria
Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi
2015-01-01
Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548