Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality
NASA Astrophysics Data System (ADS)
Yoshida, Z.; Morrison, P. J.
2017-12-01
While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.
Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B
2014-12-01
To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.
NASA Astrophysics Data System (ADS)
Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria
2017-07-01
In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.
Data Visualization for ESM and ELINT: Visualizing 3D and Hyper Dimensional Data
2011-06-01
technique to present multiple 2D views was devised by D. Asimov . He assembled multiple two dimensional scatter plot views of the hyper dimensional...Viewing Multidimensional Data”, D. Asimov , DIAM Journal on Scientific and Statistical Computing, vol.61, pp.128-143, 1985. [2] “High-Dimensional
Yang, Yi; Qian, Ke-Yuan; Luo, Yi
2006-07-20
A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.
Two-dimensional displacement measurement based on two parallel gratings
NASA Astrophysics Data System (ADS)
Wei, Peipei; Lu, Xi; Qiao, Decheng; Zou, Limin; Huang, Xiangdong; Tan, Jiubin; Lu, Zhengang
2018-06-01
In this paper, a two-dimensional (2-D) planar encoder based on two parallel gratings, which includes a scanning grating and scale grating, is presented. The scanning grating is a combined transmission rectangular grating comprised of a 2-D grating located at the center and two one-dimensional (1-D) gratings located at the sides. The grating lines of the two 1-D gratings are perpendicular to each other and parallel with the 2-D grating lines. The scale grating is a 2-D reflective-type rectangular grating placed in parallel with the scanning grating, and there is an angular difference of 45° between the grating lines of the two 2-D gratings. With the special structural design of the scanning grating, the encoder can measure the 2-D displacement in the grating plane simultaneously, and the measured interference signals in the two directions are uncoupled. Moreover, by utilizing the scanning grating to modulate the phase of the interference signals instead of the prisms, the structure of the encoder is compact. Experiments were implemented, and the results demonstrate the validity of the 2-D planar grating encoder.
Unusual two-dimensional behavior of iron-based superconductors with low anisotropy
NASA Astrophysics Data System (ADS)
Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.
2017-10-01
We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.
NASA Technical Reports Server (NTRS)
Truong, T. K.; Lipes, R.; Reed, I. S.; Wu, C.
1980-01-01
A fast algorithm is developed to compute two dimensional convolutions of an array of d sub 1 X d sub 2 complex number points, where d sub 2 = 2(M) and d sub 1 = 2(m-r+) for some 1 or = r or = m. This algorithm requires fewer multiplications and about the same number of additions as the conventional fast fourier transform method for computing the two dimensional convolution. It also has the advantage that the operation of transposing the matrix of data can be avoided.
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
Arnela, Marc; Guasch, Oriol
2014-01-01
Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e., using the same radius function, wall impedance, glottal flow, and radiation losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer functions. In this work, a four step methodology is proposed to match the behavior of 2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned to match the 3D model following an optimization process. The procedure is tested for vowels /a/, /i/, and /u/ and the obtained results are compared with those of a full 3D simulation, a conventional 2D approach, and a 1D chain matrix model.
Hsieh, K S; Lin, C C; Liu, W S; Chen, F L
1996-01-01
Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.
Young Infants' Perception of the Trajectories of Two- and Three-Dimensional Objects
ERIC Educational Resources Information Center
Johnson, Scott P.; Bremner, J. Gavin; Slater, Alan M.; Shuwairi, Sarah M.; Mason, Uschi; Spring, Jo; Usherwood, Barrie
2012-01-01
We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye…
Data processing from lobster eye type optics
NASA Astrophysics Data System (ADS)
Nentvich, Ondrej; Stehlikova, Veronika; Urban, Martin; Hudec, Rene; Sieger, Ladislav
2017-05-01
Wolter I optics are commonly used for imaging in X-Ray spectrum. This system uses two reflections, and at higher energies, this system is not so much efficient but has a very good optical resolution. Here is another type of optics Lobster Eye, which is using also two reflections for focusing rays in Schmidt's or Angel's arrangement. Here is also possible to use Lobster eye optics as two one dimensional independent optics. This paper describes advantages of one dimensional and two dimensional Lobster Eye optics in Schmidt's arrangement and its data processing - find out a number of sources in wide field of view. Two dimensional (2D) optics are suitable to detect the number of point X-ray sources and their magnitude, but it is necessary to expose for a long time because a 2D system has much lower transitivity, due to double reflection, compared to one dimensional (1D) optics. Not only for this reason, two 1D optics are better to use for lower magnitudes of sources. In this case, additional image processing is necessary to achieve a 2D image. This article describes of approach an image reconstruction and advantages of two 1D optics without significant losses of transitivity.
NASA Astrophysics Data System (ADS)
Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi
2018-02-01
We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Arijit K., E-mail: akde@lbl.gov; Fleming, Graham R., E-mail: grfleming@lbl.gov; Department of Chemistry, University of California at Berkeley, Berkeley, California 94702
2014-05-21
We present a novel experimental scheme for two-dimensional fluorescence-detected coherent spectroscopy (2D-FDCS) using a non-collinear beam geometry with the aid of “confocal imaging” of dynamic (population) grating and 27-step phase-cycling to extract the signal. This arrangement obviates the need for distinct experimental designs for previously developed transmission detected non-collinear two-dimensional coherent spectroscopy (2D-CS) and collinear 2D-FDCS. We also describe a novel method for absolute phasing of the 2D spectrum. We apply this method to record 2D spectra of a fluorescent dye in solution at room temperature and observe “spectral diffusion.”.
Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet
NASA Astrophysics Data System (ADS)
Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.
2004-11-01
The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less
NASA Technical Reports Server (NTRS)
Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward
1989-01-01
The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
2-dimensional implicit hydrodynamics on adaptive grids
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2007-12-01
We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.
Burning invariant manifolds for reaction fronts in three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Solomon, Tom
2017-11-01
The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.
On the current drive capability of low dimensional semiconductors: 1D versus 2D
Zhu, Y.; Appenzeller, J.
2015-10-29
Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.
Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung
2013-04-01
To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.
Three-dimensional macro-structures of two-dimensional nanomaterials.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng
2016-10-21
If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.
Universal Fermi Gases in Mixed Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Yusuke; Tan, Shina
2008-10-24
We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.0351
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less
Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A
2014-02-01
We report the results of experimental studies of the short-time-long-wavelength behavior of collective particle displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results are reported via the q → 0 behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient D(e)(q), with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D(0): H(q) ≡ D(e)(q)S(q)/D(0). We find an apparent divergence of H(q) as q → 0 with the form H(q) ∝ q(-γ) (1.7 < γ < 1.9) for both q1D and q2D colloid suspensions. Given that S(q) does not diverge as q → 0 we infer that D(e)(q) does. This behavior is qualitatively different from that of the three-dimensional H(q) and D(e)(q) as q → 0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one-component one-dimensional and two-dimensional fluids not subject to boundary conditions that define the dimensionality of the system. We provide support for the contention that the boundary conditions that define a confined system play a very important role in determining the long-wavelength behavior of the collective diffusion coefficient from two sources: (i) the results of simulations of H(q) and D(e)(q) in quasi-1D and quasi-2D systems and (ii) verification, using data from the work of Lin, Rice and Weitz [Phys. Rev. E 51, 423 (1995)], of the prediction by Bleibel et al., arXiv:1305.3715, that D(e)(q) for a monolayer of colloid particles constrained to lie in the interface between two fluids diverges as q(-1) as q → 0.
NASA Astrophysics Data System (ADS)
Stark, David; Yin, Lin; Albright, Brian; Guo, Fan
2017-10-01
The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.
Wang, Qiushuang; Huang, Dangsheng; Zhang, Liwei; Shen, Dong; Ouyang, Qiaohong; Duan, Zhongxiang; An, Xiuzhi; Zhang, Meiqing; Zhang, Chunhong; Yang, Feifei; Zhi, Guang
2015-10-01
To compare three-dimensional (3D) and two-dimensional (2D) speckle tracking echocardiography (STE) techniques in the assessment of left ventricular function and myocardial infarct size (MIS). Thirty-two patients diagnosed with ST elevation myocardial infarction and 18 healthy control patients underwent 2D echocardiography, 3D echocardiography, and single photon emission computed tomography (SPECT). 3D left ventricular global area strain (GAS), 2D and 3D global longitudinal strain (GLS), global radial strain (GRS) as well as global circumferential strain (GCS) were analyzed to correlate with myocardial infarct size detected by SPECT. 2D and 3D left ventricular ejection fraction (LVEF) as well as 2D and 3D wall motion score index (WMSI) also were measured using conventional echocardiography. The 2D-GLS values were significantly higher than that of 3D-GLS, while 2D-GCS and GRS were significantly lower than 3D-GCS and GRS, respectively. However, no significant differences in LVEF and WMSI could be observed between 2D and 3D echocardiography. Myocardial strain indices, LVEF, and WMSI using 2D and 3D echocardiography also had good correlations with MIS as measured by SPECT. ROC curve analysis showed that the 3D and 2D myocardial indices, LVEF, and WMSI could distinguish between small and large MIS, while 2D-GLS had the highest AUC. The 2D and 3D myocardial strain indices correlated well with MIS by SPECT. Among them, the 2D-GLS showed the highest diagnostic value, while 3D-GRS and GCS had better diagnostic value than 2D-GRS and GCS. © 2015, Wiley Periodicals, Inc.
Are Young Children's Drawings Canonically Biased?
ERIC Educational Resources Information Center
Picard, Delphine; Durand, Karine
2005-01-01
In a between-subjects design, 4-to 6-year-olds were asked to draw from three-dimensional (3D) models, two-and-a-half-dimensional (212D) models with or without depth cues, or two-dimensional (2D) models of a familiar object (a saucepan) in noncanonical orientations (handle at the back or at the front). Results showed that canonical errors were…
Echocardiography Comparison Between Two and Three Dimensional Echocardiograms
NASA Technical Reports Server (NTRS)
2003-01-01
Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.
NASA Astrophysics Data System (ADS)
Edler, J.; Hamm, P.
2003-08-01
Two-dimensional infrared (2D-IR) spectroscopy is applied to investigate acetanilide, a molecular crystal consisting of quasi-one-dimensional hydrogen bonded peptide units. The amide-I band exhibits a double peak structure, which has been attributed to different mechanisms including vibrational self-trapping, a Fermi resonance, or the existence of two conformational substates. The 2D-IR spectrum of crystalline acetanilide is compared with that of two different molecular systems: (i) benzoylchloride, which exhibits a strong symmetric Fermi resonance and (ii) N-methylacetamide dissolved in methanol which occurs in two spectroscopically distinguishable conformations. Both 2D-IR spectra differ significantly from that of crystalline acetanilide, proving that these two alternative mechanisms cannot account for the anomalous spectroscopy of crystalline acetanilide. On the other hand, vibrational self-trapping of the amide-I band can naturally explain the 2D-IR response.
Current status of one- and two-dimensional numerical models: Successes and limitations
NASA Technical Reports Server (NTRS)
Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.
1985-01-01
The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.
NASA Astrophysics Data System (ADS)
Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken
2018-04-01
In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido
2017-04-01
By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.
Optical second-harmonic-generation probe of two-dimensional ferroelectricity.
Aktsipetrov, O A; Misuryaev, T V; Murzina, T V; Blinov, L M; Fridkin, V M; Palto, S P
2000-03-15
Optical second-harmonic generation (SHG) is used as a noninvasive probe of two-dimensional (2D) ferroelectricity in Langmuir-Blodgett (LB) films of the copolymer vinylidene fluoride with trifluoroethylene. The surface 2D ferroelectric-paraelectric phase transition in the topmost layer of the LB films and a thickness-independent (almost 2D) transition in the bulk of these films are observed in temperature studies of SHG.
NASA Astrophysics Data System (ADS)
Heizler, Shay I.; Kessler, David A.
2017-06-01
Mode-I fracture exhibits microbranching in the high velocity regime where the simple straight crack is unstable. For velocities below the instability, classic modeling using linear elasticity is valid. However, showing the existence of the instability and calculating the dynamics postinstability within the linear elastic framework is difficult and controversial. The experimental results give several indications that the microbranching phenomenon is basically a three-dimensional (3D) phenomenon. Nevertheless, the theoretical effort has been focused mostly on two-dimensional (2D) modeling. In this paper we study the microbranching instability using three-dimensional atomistic simulations, exploring the difference between the 2D and the 3D models. We find that the basic 3D fracture pattern shares similar behavior with the 2D case. Nevertheless, we exhibit a clear 3D-2D transition as the crack velocity increases, whereas as long as the microbranches are sufficiently small, the behavior is pure 3D behavior, whereas at large driving, as the size of the microbranches increases, more 2D-like behavior is exhibited. In addition, in 3D simulations, the quantitative features of the microbranches, separating the regimes of steady-state cracks (mirror) and postinstability (mist-hackle) are reproduced clearly, consistent with the experimental findings.
USDA-ARS?s Scientific Manuscript database
The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...
Kulsing, Chadin; Nolvachai, Yada; Wong, Yong Foo; Glouzman, Melissa I; Marriott, Philip J
2018-04-20
Real-time interconversion processes produce unconventional peak broadening in gas chromatography (GC), and can be used to generate kinetic and thermodynamic data. In this study, an unusual separation situation in comprehensive two dimensional GC where two dimensional interconversion (i.e. a raised plateau in both first and second dimension, 1 D and 2 D) was observed in analysis of oxime isomers. This resulted in a characteristic and unusual rectangular peak shape in the two dimensional result. A related theoretical approach was introduced to explain the peak shape supported by simulation results which can be varied depending on concentration profiles and kinetics of the process. The simulated results were supported by experimental results obtained by a comprehensive heart-cut multidimensional GC (H/C MDGC) approach which was developed to clearly investigate isomerisation of E/Z oxime molecules in both 1 D and 2 D separations under different isothermal conditions. The carrier gas flow and oven temperature were selected according to initial results for 1D interconversion on a poly(ethyleneglycol) stationary phase, which was further used in both 1 D and 2 D separations to result in broad zones of oxime interconversion in both dimensions. The method involved repetitive injections of oxime sample, then sampling contiguous fractions of sample into a long 2 D column which is intended to promote considerable interconversion. Comprehensiveness arises from the fact that the whole sample is sampled from the 1 D to the 2 D column, with the long 2 D column replacing the short 2 D column used in classical comprehensive two-dimensional gas chromatography, where the latter will not promote sufficient interconversion. Data processing and presentation permits a 'rectangular' distribution corresponding to the separated compounds, characteristic of this experiment. Copyright © 2018 Elsevier B.V. All rights reserved.
Andrade, Carla Maria Araujo; Araujo Júnior, Edward; Torloni, Maria Regina; Moron, Antonio Fernandes; Guazzelli, Cristina Aparecida Falbo
2016-02-01
To compare the rates of success of two-dimensional (2D) and three-dimensional (3D) sonographic (US) examinations in locating and adequately visualizing levonorgestrel intrauterine devices (IUDs) and to explore factors associated with the unsuccessful viewing on 2D US. Transvaginal 2D and 3D US examinations were performed on all patients 1 month after insertion of levonorgestrel IUDs. The devices were considered adequately visualized on 2D US if both the vertical (shadow, upper and lower extremities) and the horizontal (two echogenic lines) shafts were identified. 3D volumes were also captured to assess the location of levonorgestrel IUDs on 3D US. Thirty women were included. The rates of adequate device visualization were 40% on 2D US (95% confidence interval [CI], 24.6; 57.7) and 100% on 3D US (95% CI, 88.6; 100.0). The device was not adequately visualized in all six women who had a retroflexed uterus, but it was adequately visualized in 12 of the 24 women (50%) who had a nonretroflexed uterus (95% CI, -68.6; -6.8). We found that 3D US is better than 2D US for locating and adequately visualizing levonorgestrel IUDs. Other well-designed studies with adequate power should be conducted to confirm this finding. © 2015 Wiley Periodicals, Inc.
Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L
2017-01-01
There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.
Chen, Tien-En; Kwon, Susan H; Enriquez-Sarano, Maurice; Wong, Benjamin F; Mankad, Sunil V
2013-10-01
Three-dimensional (3D) color Doppler echocardiography (CDE) provides directly measured vena contracta area (VCA). However, a large comprehensive 3D color Doppler echocardiographic study with sufficiently severe tricuspid regurgitation (TR) to verify its value in determining TR severity in comparison with conventional quantitative and semiquantitative two-dimensional (2D) parameters has not been previously conducted. The aim of this study was to examine the utility and feasibility of directly measured VCA by 3D transthoracic CDE, its correlation with 2D echocardiographic measurements of TR, and its ability to determine severe TR. Ninety-two patients with mild or greater TR prospectively underwent 2D and 3D transthoracic echocardiography. Two-dimensional evaluation of TR severity included the ratio of jet area to right atrial area, vena contracta width, and quantification of effective regurgitant orifice area using the flow convergence method. Full-volume breath-hold 3D color data sets of TR were obtained using a real-time 3D echocardiography system. VCA was directly measured by 3D-guided direct planimetry of the color jet. Subgroup analysis included the presence of a pacemaker, eccentricity of the TR jet, ellipticity of the orifice shape, underlying TR mechanism, and baseline rhythm. Three-dimensional VCA correlated well with effective regurgitant orifice area (r = 0.62, P < .0001), moderately with vena contracta width (r = 0.42, P < .0001), and weakly with jet area/right atrial area ratio. Subgroup analysis comparing 3D VCA with 2D effective regurgitant orifice area demonstrated excellent correlation for organic TR (r = 0.86, P < .0001), regular rhythm (r = 0.78, P < .0001), and circular orifice (r = 0.72, P < .0001) but poor correlation in atrial fibrillation rhythm (r = 0.23, P = .0033). Receiver operating characteristic curve analysis for 3D VCA demonstrated good accuracy for severe TR determination. Three-dimensional VCA measurement is feasible and obtainable in the majority of patients with mild or greater TR. Three-dimensional VCA measurement is also feasible in patients with atrial fibrillation but performed poorly even with <20% cycle length variation. Three-dimensional VCA has good cutoff accuracy in determining severe TR. This simple, straightforward 3D color Doppler measurement shows promise as an alternative for the quantification of TR. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Two-dimensional Dirac fermions in thin films of C d3A s2
NASA Astrophysics Data System (ADS)
Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne
2018-03-01
Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.
Two-dimensional limit of crystalline order in perovskite membrane films
Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.
2017-01-01
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822
Two-dimensional limit of crystalline order in perovskite membrane films
Hong, Seung Sae; Yu, Jung Ho; Lu, Di; ...
2017-11-17
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
FireStem2D A two-dimensional heat transfer model for simulating tree stem injury in fires
Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...
Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment
Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng
2018-01-01
Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981
Efficient two-dimensional compressive sensing in MIMO radar
NASA Astrophysics Data System (ADS)
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Malomed, Boris A.
2017-10-01
We analyze the possibility of macroscopic quantum effects in the form of coupled structural oscillations and shuttle motion of bright two-component spin-orbit-coupled striped (one-dimensional, 1D) and semivortex (two-dimensional, 2D) matter-wave solitons, under the action of linear mixing (Rabi coupling) between the components. In 1D, the intrinsic oscillations manifest themselves as flippings between spatially even and odd components of striped solitons, while in 2D the system features periodic transitions between zero-vorticity and vortical components of semivortex solitons. The consideration is performed by means of a combination of analytical and numerical methods.
Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.W.
1979-01-04
Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less
Thermal distributions of first, second and third quantization
NASA Astrophysics Data System (ADS)
McGuigan, Michael
1989-05-01
We treat first quantized string theory as two-dimensional gravity plus matter. This allows us to compute the two-dimensional density of one string states by the method of Darwin and Fowler. One can then use second quantized methods to form a grand microcanonical ensemble in which one can compute the density of multistring states of arbitrary momentum and mass. It is argued that modelling an elementary particle as a d-1-dimensional object whose internal degrees of freedom are described by a massless d-dimensional gas yields a density of internal states given by σ d(m)∼m -aexp((bm) {2(d-1)}/{d}) . This indicates that these objects cannot be in thermal equilibrium at any temperature unless d⩽2; that is for a string or a particle. Finally, we discuss the application of the above ideas to four-dimensional gravity and introduce an ensemble of multiuniverse states parameterized by second quantized canonical momenta and particle number.
Two-dimensional simple proportional feedback control of a chaotic reaction system
NASA Astrophysics Data System (ADS)
Mukherjee, Ankur; Searson, Dominic P.; Willis, Mark J.; Scott, Stephen K.
2008-04-01
The simple proportional feedback (SPF) control algorithm may, in principle, be used to attain periodic oscillations in dynamic systems exhibiting low-dimensional chaos. However, if implemented within a discrete control framework with sampling frequency limitations, controller performance may deteriorate. This phenomenon is illustrated using simulations of a chaotic autocatalytic reaction system. A two-dimensional (2D) SPF controller that explicitly takes into account some of the problems caused by limited sampling rates is then derived by introducing suitable modifications to the original SPF method. Using simulations, the performance of the 2D-SPF controller is compared to that of a conventional SPF control law when implemented as a sampled data controller. Two versions of the 2D-SPF controller are described: linear (L2D-SPF) and quadratic (Q2D-SPF). The performance of both the L2D-SPF and Q2D-SPF controllers is shown to be superior to the SPF when controller sampling frequencies are decreased. Furthermore, it is demonstrated that the Q2D-SPF controller provides better fixed point stabilization compared to both the L2D-SPF and the conventional SPF when concentration measurements are corrupted by noise.
NASA Astrophysics Data System (ADS)
Christ, John A.; Lemke, Lawrence D.; Abriola, Linda M.
2005-01-01
The influence of reduced dimensionality (two-dimensional (2-D) versus 3-D) on predictions of dense nonaqueous phase liquid (DNAPL) infiltration and entrapment in statistically homogeneous, nonuniform permeability fields was investigated using the University of Texas Chemical Compositional Simulator (UTCHEM), a 3-D numerical multiphase simulator. Hysteretic capillary pressure-saturation and relative permeability relationships implemented in UTCHEM were benchmarked against those of another lab-tested simulator, the Michigan-Vertical and Lateral Organic Redistribution (M-VALOR). Simulation of a tetrachloroethene spill in 16 field-scale aquifer realizations generated DNAPL saturation distributions with approximately equivalent distribution metrics in two and three dimensions, with 2-D simulations generally resulting in slightly higher maximum saturations and increased vertical spreading. Variability in 2-D and 3-D distribution metrics across the set of realizations was shown to be correlated at a significance level of 95-99%. Neither spill volume nor release rate appeared to affect these conclusions. Variability in the permeability field did affect spreading metrics by increasing the horizontal spreading in 3-D more than in 2-D in more heterogeneous media simulations. The assumption of isotropic horizontal spatial statistics resulted, on average, in symmetric 3-D saturation distribution metrics in the horizontal directions. The practical implication of this study is that for statistically homogeneous, nonuniform aquifers, 2-D simulations of saturation distributions are good approximations to those obtained in 3-D. However, additional work will be needed to explore the influence of dimensionality on simulated DNAPL dissolution.
An existence criterion for low-dimensional materials
NASA Astrophysics Data System (ADS)
Chen, Jiapeng; Wang, Biao; Hu, Yangfan
2017-10-01
The discovery of graphene and other two-dimensional (2-D) materials has stimulated a general interest in low-dimensional (low-D) materials. Whereas long time ago, Peierls (1935) and Landau's (1937) theoretical work demonstrated that any one- and two-dimensional materials could not exist in any finite temperature environment. Then, two basic issues became a central concern for many researchers: How can stable low-D materials exist? What kind of low-D materials are stable? Here, we establish an energy stability criterion for low-D materials, which seeks to provide a clear answer to these questions. For a certain kind of element, the stability of its specific low-D structure is determined by several derivatives of its interatomic potential. This atomistic-based approach is then applied to study any straight/planar, low-D, equal-bond-length elemental materials. We found that 1-D monatomic chains, 2-D honeycomb lattices, square lattices, and triangular lattices are the only four permissible structures, and the stability of these structures can only be understood by assuming multi-body interatomic potentials. Using this approach, the stable existence of graphene, silicene and germanene can be explained.
Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E
2010-01-01
Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.
Bagan, Patrick; De Dominicis, Florence; Hernigou, Jacques; Dakhil, Bassel; Zaimi, Rym; Pricopi, Ciprian; Le Pimpec Barthes, Françoise; Berna, Pascal
2015-06-01
Common video systems for video-assisted thoracic surgery (VATS) provide the surgeon a two-dimensional (2D) image. This study aimed to evaluate performances of a new three-dimensional high definition (3D-HD) system in comparison with a two-dimensional high definition (2D-HD) system when conducting a complete thoracoscopic lobectomy (CTL). This multi-institutional comparative study trialled two video systems: 2D-HD and 3D-HD video systems used to conduct the same type of CTL. The inclusion criteria were T1N0M0 non-small-cell lung carcinoma (NSCLC) in the left lower lobe and suitable for thoracoscopic resection. The CTL was performed by the same surgeon using either a 3D-HD or 2D-HD system. Eighteen patients with NSCLC were included in the study between January and December 2013: 14 males, 4 females, with a median age of 65.6 years (range: 49-81). The patients were randomized before inclusion into two groups: to undergo surgery with the use of a 2D-HD or 3D-HD system. We compared operating time, the drainage duration, hospital stay and the N upstaging rate from the definitive histology. The use of the 3D-HD system significantly reduced the surgical time (by 17%). However, chest-tube drainage, hospital stay, the number of lymph-node stations and upstaging were similar in both groups. The main finding was that 3D-HD system significantly reduced the surgical time needed to complete the lobectomy. Thus, future integration of 3D-HD systems should improve thoracoscopic surgery, and enable more complex resections to be performed. It will also help advance the field of endoscopically assisted surgery. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot
2013-01-01
Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.
Two-dimensional multiferroics in monolayer group IV monochalcogenides
NASA Astrophysics Data System (ADS)
Wang, Hua; Qian, Xiaofeng
2017-03-01
Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.
Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene
2018-04-01
To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.
NASA Astrophysics Data System (ADS)
Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.
2008-10-01
A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.
Dashti-Naserabadi, H; Najafi, M N
2017-10-01
We present extensive numerical simulations of Bak-Tang-Wiesenfeld (BTW) sandpile model on the hypercubic lattice in the upper critical dimension D_{u}=4. After re-extracting the critical exponents of avalanches, we concentrate on the three- and two-dimensional (2D) cross sections seeking for the induced criticality which are reflected in the geometrical and local exponents. Various features of finite-size scaling (FSS) theory have been tested and confirmed for all dimensions. The hyperscaling relations between the exponents of the distribution functions and the fractal dimensions are shown to be valid for all dimensions. We found that the exponent of the distribution function of avalanche mass is the same for the d-dimensional cross sections and the d-dimensional BTW model for d=2 and 3. The geometrical quantities, however, have completely different behaviors with respect to the same-dimensional BTW model. By analyzing the FSS theory for the geometrical exponents of the two-dimensional cross sections, we propose that the 2D induced models have degrees of similarity with the Gaussian free field (GFF). Although some local exponents are slightly different, this similarity is excellent for the fractal dimensions. The most important one showing this feature is the fractal dimension of loops d_{f}, which is found to be 1.50±0.02≈3/2=d_{f}^{GFF}.
NASA Technical Reports Server (NTRS)
Dorosz, Jennifer L.; Bolson, Edward L.; Waiss, Mary S.; Sheehan, Florence H.
2003-01-01
Three-dimensional guidance programs have been shown to increase the reproducibility of 2-dimensional (2D) left ventricular volume calculations, but these systems have not been tested in 2D measurements of the right ventricle. Using magnetic fields to identify the probe location, we developed a new 3-dimensional guidance system that displays the line of intersection, the plane of intersection, and the numeric angle of intersection between the current image plane and previously saved scout views. When used by both an experienced and an inexperienced sonographer, this guidance system increases the accuracy of the 2D right ventricular volume measurements using a monoplane pyramidal model. Furthermore, a reconstruction of the right ventricle, with a computed volume similar to the calculated 2D volume, can be displayed quickly by tracing a few anatomic structures on 2D scans.
Numerical modelling techniques of soft soil improvement via stone columns: A brief review
NASA Astrophysics Data System (ADS)
Zukri, Azhani; Nazir, Ramli
2018-04-01
There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.
Equations of state and diagrams of two-dimensional liquid dusty plasmas
NASA Astrophysics Data System (ADS)
Feng, Yan; Lin, Wei; Li, Wei; Wang, Qiaoling
2016-09-01
Recently, the pressure of two-dimensional (2D) Yukawa liquids has been calculated from the simulations of isochores [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016)], which is applicable to 2D dusty plasmas. Thus, the equation of state for 2D strongly coupled liquid dusty plasmas is obtained. Isobars and isotherms of 2D liquid dusty plasmas are derived from this equation of state. For 2D liquid dusty plasmas, the surface corresponding to this equation of state has also been obtained in the 3D space of the pressure, the temperature, and the screening parameter which is related to the volume in the equilibrium state.
Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L.
2017-01-01
There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy. PMID:29238513
ERIC Educational Resources Information Center
Zacharis, Georgios K.; Mikropoulos, Tassos Anastasios; Kalyvioti, Katerina
2016-01-01
Studies showed that two-dimensional (2D) and three-dimensional (3D) educational content contributes to learning. Although there were many studies with 3D stereoscopic learning environments, only a few studies reported on the differences between real, 2D, and 3D scenes, as far as cognitive load and attentional demands were concerned. We used…
Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E
2016-02-01
Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.
NASA Astrophysics Data System (ADS)
Luo, Yuan; Tan, Meng-Chwan; Vasko, Petr; Zhao, Qin
2017-05-01
We perform a series of dimensional reductions of the 6d, \\mathcal{N} = (2, 0) SCFT on S 2 × Σ × I × S 1 down to 2d on Σ. The reductions are performed in three steps: (i) a reduction on S 1 (accompanied by a topological twist along Σ) leading to a supersymmetric Yang-Mills theory on S 2 × Σ × I, (ii) a further reduction on S 2 resulting in a complex Chern-Simons theory defined on Σ × I, with the real part of the complex Chern-Simons level being zero, and the imaginary part being proportional to the ratio of the radii of S 2 and S 1, and (iii) a final reduction to the boundary modes of complex Chern-Simons theory with the Nahm pole boundary condition at both ends of the interval I, which gives rise to a complex Toda CFT on the Riemann surface Σ. As the reduction of the 6d theory on Σ would give rise to an \\mathcal{N} = 2 supersymmetric theory on S 2 × I × S 1, our results imply a 4d-2d duality between four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary and two-dimensional complex Toda theory.
NASA Astrophysics Data System (ADS)
Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke
2018-02-01
Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.
Coherent backscattering enhancement in cavities. Highlights of the role of symmetry.
Gallot, Thomas; Catheline, Stefan; Roux, Philippe
2011-04-01
Through experiments and simulations, the consequences of symmetry on coherent backscattering enhancement (CBE) are studied in cavities. Three main results are highlighted. First, the CBE outside the source is observed: (a) on a single symmetric point in a one-dimensional (1-D) cavity, in a disk and in a symmetric chaotic plate; (b) on three symmetric points in a two-dimensional (2-D) rectangle; and (c) on seven symmetric points in a three-dimensional (3-D) parallelepiped cavity. Second, the existence of enhanced intensity lines and planes in 2-D and 3-D simple-shape cavities is demonstrated. Third, it is shown how the anti-symmetry caused by the special boundary conditions is responsible for the existence of a coherent backscattering decrement with a dimensional dependence of R = (½)(d), with d = 1,2,3 as the dimensionality of the cavity.
From Flatland to Spaceland: Higher Dimensional Patterning with Two-Dimensional Materials.
Chen, Po-Yen; Liu, Muchun; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y
2017-06-01
The creation of three-dimensional (3D) structures from two-dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out-of-plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
(d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States
NASA Astrophysics Data System (ADS)
Song, Zhida; Fang, Zhong; Fang, Chen
2017-12-01
We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.
Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2012-02-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.
Three-dimensional scene reconstruction from a two-dimensional image
NASA Astrophysics Data System (ADS)
Parkins, Franz; Jacobs, Eddie
2017-05-01
We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
ERIC Educational Resources Information Center
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Kinoshita, Hidefumi; Nakagawa, Ken; Usui, Yukio; Iwamura, Masatsugu; Ito, Akihiro; Miyajima, Akira; Hoshi, Akio; Arai, Yoichi; Baba, Shiro; Matsuda, Tadashi
2015-08-01
Three-dimensional (3D) imaging systems have been introduced worldwide for surgical instrumentation. A difficulty of laparoscopic surgery involves converting two-dimensional (2D) images into 3D images and depth perception rearrangement. 3D imaging may remove the need for depth perception rearrangement and therefore have clinical benefits. We conducted a multicenter, open-label, randomized trial to compare the surgical outcome of 3D-high-definition (HD) resolution and 2D-HD imaging in laparoscopic radical prostatectomy (LRP), in order to determine whether an LRP under HD resolution 3D imaging is superior to that under HD resolution 2D imaging in perioperative outcome, feasibility, and fatigue. One-hundred twenty-two patients were randomly assigned to a 2D or 3D group. The primary outcome was time to perform vesicourethral anastomosis (VUA), which is technically demanding and may include a number of technical difficulties considered in laparoscopic surgeries. VUA time was not significantly shorter in the 3D group (26.7 min, mean) compared with the 2D group (30.1 min, mean) (p = 0.11, Student's t test). However, experienced surgeons and 3D-HD imaging were independent predictors for shorter VUA times (p = 0.000, p = 0.014, multivariate logistic regression analysis). Total pneumoperitoneum time was not different. No conversion case from 3D to 2D or LRP to open RP was observed. Fatigue was evaluated by a simulation sickness questionnaire and critical flicker frequency. Results were not different between the two groups. Subjective feasibility and satisfaction scores were significantly higher in the 3D group. Using a 3D imaging system in LRP may have only limited advantages in decreasing operation times over 2D imaging systems. However, the 3D system increased surgical feasibility and decreased surgeons' effort levels without inducing significant fatigue.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1995-01-01
This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.
Yunus, Rozan Mohamad; Endo, Hiroko; Tsuji, Masaharu; Ago, Hiroki
2015-10-14
Heterostructures of two-dimensional (2D) layered materials have attracted growing interest due to their unique properties and possible applications in electronics, photonics, and energy. Reduction of the dimensionality from 2D to one-dimensional (1D), such as graphene nanoribbons (GNRs), is also interesting due to the electron confinement effect and unique edge effects. Here, we demonstrate a bottom-up approach to grow vertical heterostructures of MoS2 and GNRs by a two-step chemical vapor deposition (CVD) method. Single-layer GNRs were first grown by ambient pressure CVD on an epitaxial Cu(100) film, followed by the second CVD process to grow MoS2 over the GNRs. The MoS2 layer was found to grow preferentially on the GNR surface, while the coverage could be further tuned by adjusting the growth conditions. The MoS2/GNR nanostructures show clear photosensitivity to visible light with an optical response much higher than that of a 2D MoS2/graphene heterostructure. The ability to grow a novel 1D heterostructure of layered materials by a bottom-up CVD approach will open up a new avenue to expand the dimensionality of the material synthesis and applications.
Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors.
Ye, Changhui; Meng, Guowen; Jiang, Zhi; Wang, Yinhai; Wang, Guozhong; Zhang, Lide
2002-12-25
Synthesis of Bi2S3 nanotubes from rolling of the quasi-two-dimensional (2-D) layered precursor represents new progress in the synthetic approach and adds new members to the present inorganic fullerene family. These nanotubes display multiwalled structures that resemble that of a multiwalled carbon nanotube. The successful synthesis of Bi2S3 nanotubes highlights the feasibility of inorganic fullerene-like structures from other chemicals that possess layered crystalline structures, not only the well-known 2-D family, but possibly also those quasi-2-D members.
Differentiating two- from three-dimensional mental rotation training effects.
Moreau, David
2013-01-01
Block videogame training has consistently demonstrated transfer effects to mental rotation tasks, yet how variations in training influence performance with different stimuli remains unclear. In this study, participants took mental rotation assessments before and after a 3-week training programme based on 2D or 3D block videogames. Assessments varied in terms of dimensionality (2D or 3D) and stimulus type (polygon or body). Increases in videogame scores throughout training were correlated with mental rotation improvements. In particular, 2D training led to improvements in 2D tasks, whereas 3D training led to improvements in both 2D and 3D tasks. This effect did not depend on stimulus type, demonstrating that training can transfer to different stimuli of identical dimensionality. Interestingly, traditional gender differences in 3D mental rotation tasks vanished after 3D videogame training, highlighting the malleability of mental rotation ability given adequate training. These findings emphasize the influence of dimensionality in transfer effects and offer promising perspectives to reduce differences in mental rotation via designed training programmes.
Zhou, Hui-li; Xiang, Hong; Duan, Li; Shahai, Gulinaer; Liu, Hui; Li, Xiang-hong; Mou, Rui-xue
2015-01-01
Objective. The goal of this study was to explore the clinical value of combining two-dimensional (2D) and three-dimensional (3D) transvaginal contrast-enhanced ultrasounds (CEUS) in diagnosis of endometrial carcinoma (EC). Methods. In this prospective diagnostic study, transvaginal 2D and 3D CEUS were performed on 68 patients with suspected EC, and the results of the obtained 2D-CEUS and 3D-CEUS images were compared with the gold standard for statistical analysis. Results. 2D-CEUS benign endometrial lesions showed the normal uterine perfusion phase while EC cases showed early arrival and early washout of the contrast agent and nonuniform enhancement. The 3D-CEUS images differed in central blood vessel manifestation, blood vessel shape, and vascular pattern between benign and malignant endometrial lesions (P < 0.05). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of transvaginal 2D-CEUS and 2D-CEUS combined with 3D-CEUS for diagnosis of benign and malignant endometrial lesions were 76.9%, 73.8%, 64.5%, 83.8%, and 75.0% and 84.6%, 83.3%, 75.9%, 89.7%, and 83.8%, respectively. Conclusion. 3D-CEUS is a useful supplement to 2D-CEUS and can clearly reveal the angioarchitecture spatial relationships between vessels and depth of myometrial invasion in EC. The combined use of 2D and 3D-CEUS can offer direct, accurate, and comprehensive diagnosis of early EC. PMID:26090396
van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B
2015-12-01
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-11-19
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-01-01
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595
NASA Astrophysics Data System (ADS)
Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming
2017-05-01
Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
Li, Sikun; Wang, Xiangzhao; Su, Xianyu; Tang, Feng
2012-04-20
This paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed. We propose a new 2D daughter wavelet definition for reliability-guided phase unwrapping of optical fringe pattern. The modulus of the advanced 2D WT coefficients, obtained by using a daughter wavelet under this new daughter wavelet definition, includes not only modulation information but also local frequency information of the deformed fringe pattern. Therefore, it can be treated as a good parameter that represents the reliability of the retrieved phase data. Computer simulation and experimentation show the validity of the proposed method.
ERIC Educational Resources Information Center
Ip, Horace H. S.; Lai, Candy Hoi-Yan; Wong, Simpson W. L.; Tsui, Jenny K. Y.; Li, Richard Chen; Lau, Kate Shuk-Ying; Chan, Dorothy F. Y.
2017-01-01
Previous research has illustrated the unique benefits of three-dimensional (3-D) Virtual Reality (VR) technology in Autism Spectrum Disorder (ASD) children. This study examined the use of 3-D VR technology as an assessment tool in ASD children, and further compared its use to two-dimensional (2-D) tasks. Additionally, we aimed to examine…
Dixon, Melissa W; Proffitt, Dennis R
2002-01-01
One important aspect of the pictorial representation of a scene is the depiction of object proportions. Yang, Dixon, and Proffitt (1999 Perception 28 445-467) recently reported that the magnitude of the vertical-horizontal illusion was greater for vertical extents presented in three-dimensional (3-D) environments compared to two-dimensional (2-D) displays. However, because all of the 3-D environments were large and all of the 2-D displays were small, the question remains whether the observed magnitude differences were due solely to the dimensionality of the displays (2-D versus 3-D) or to the perceived distal size of the extents (small versus large). We investigated this question by comparing observers' judgments of vertical relative to horizontal extents on a large but 2-D display compared to the large 3-D and the small 2-D displays used by Yang et al (1999). The results confirmed that the magnitude differences for vertical overestimation between display media are influenced more by the perceived distal object size rather than by the dimensionality of the display.
NASA Technical Reports Server (NTRS)
Dixon, Melissa W.; Proffitt, Dennis R.; Kaiser, M. K. (Principal Investigator)
2002-01-01
One important aspect of the pictorial representation of a scene is the depiction of object proportions. Yang, Dixon, and Proffitt (1999 Perception 28 445-467) recently reported that the magnitude of the vertical-horizontal illusion was greater for vertical extents presented in three-dimensional (3-D) environments compared to two-dimensional (2-D) displays. However, because all of the 3-D environments were large and all of the 2-D displays were small, the question remains whether the observed magnitude differences were due solely to the dimensionality of the displays (2-D versus 3-D) or to the perceived distal size of the extents (small versus large). We investigated this question by comparing observers' judgments of vertical relative to horizontal extents on a large but 2-D display compared to the large 3-D and the small 2-D displays used by Yang et al (1999). The results confirmed that the magnitude differences for vertical overestimation between display media are influenced more by the perceived distal object size rather than by the dimensionality of the display.
NASA Astrophysics Data System (ADS)
Zhao, Jiong; Deng, Qingming; Ly, Thuc Hue; Han, Gang Hee; Sandeep, Gorantla; Rümmeli, Mark H.
2015-11-01
The great application potential for two-dimensional (2D) membranes (MoS2, WSe2, graphene and so on) aroused much effort to understand their fundamental mechanical properties. The out-of-plane bending rigidity is the key factor that controls the membrane morphology under external fields. Herein we provide an easy method to reconstruct the 3D structures of the folded edges of these 2D membranes on the atomic scale, using high-resolution (S)TEM images. After quantitative comparison with continuum mechanics shell model, it is verified that the bending behaviour of the studied 2D materials can be well explained by the linear elastic shell model. And the bending rigidities can thus be derived by fitting with our experimental results. Recall almost only theoretical approaches can access the bending properties of these 2D membranes before, now a new experimental method to measure the bending rigidity of such flexible and atomic thick 2D membranes is proposed.
Hoyek, Nady; Collet, Christian; Di Rienzo, Franck; De Almeida, Mickael; Guillot, Aymeric
2014-01-01
Three-dimensional (3D) digital animations were used to teach the human musculoskeletal system to first year kinesiology students. The purpose of this study was to assess the effectiveness of this method by comparing two groups from two different academic years during two of their official required anatomy examinations (trunk and upper limb assessments). During the upper limb section, the teacher used two-dimensional (2D) drawings embedded into PowerPoint(®) slides and 3D digital animations for the first group (2D group) and the second (3D group), respectively. The same 3D digital animations were used for both groups during the trunk section. The only difference between the two was the multimedia used to present the information during the upper limb section. The 2D group surprisingly outperformed the 3D group on the trunk assessment. On the upper limb assessment no difference in the scores on the overall anatomy examination was found. However, the 3D group outperformed the 2D group in questions requiring spatial ability. Data supported that 3D digital animations were effective instructional multimedia material tools in teaching human anatomy especially in recalling anatomical knowledge requiring spatial ability. The importance of evaluating the effectiveness of a new instructional material outside laboratory environment (e.g., after a complete semester and on official examinations) was discussed. © 2014 American Association of Anatomists.
Sim, Sook Young; Kim, Hyun Gi; Yoon, Soo Han; Choi, Jong Wook; Cho, Sung Min; Choi, Mi Sun
2017-12-01
Diastatic skull fractures (DSFs) in children are difficult to detect in skull radiographs before they develop into growing skull fractures; therefore, little information is available on this topic. However, recent advances in 3-dimensional (3D) computed tomography (CT) imaging technology have enabled more accurate diagnoses of almost all forms of skull fracture. The present study was undertaken to document the clinical characteristics of DSFs in children and to determine whether 3D CT enhances diagnostic accuracy. Two hundred and ninety-two children younger than 12 years with skull fractures underwent simple skull radiography, 2-dimensional (2D) CT, and 3DCT. Results were compared with respect to fracture type, location, associated lesions, and accuracy of diagnosis. DSFs were diagnosed in 44 (15.7%) of children with skull fractures. Twenty-two patients had DSFs only, and the other 22 had DSFs combined with compound or mixed skull fractures. The most common fracture locations were the occipitomastoid (25%) and lambdoid (15.9%). Accompanying lesions consisted of subgaleal hemorrhages (42/44), epidural hemorrhages (32/44), pneumocephalus (17/44), and subdural hemorrhages (3/44). A total of 17 surgical procedures were performed on 15 of the 44 patients. Fourteen and 19 patients were confirmed to have DSFs by skull radiography and 2D CT, respectively, but 3D CT detected DSFs in 43 of the 44 children (P < 0.001). 3D CT was found to be markedly superior to skull radiography or 2D CT for detecting DSFs. This finding indicates that 3D CT should be used routinely rather than 2D CT for the assessment of pediatric head trauma. Copyright © 2017 Elsevier Inc. All rights reserved.
Phonon thermal conduction in novel 2D materials.
Xu, Xiangfan; Chen, Jie; Li, Baowen
2016-12-07
Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS 2 , black phosphorous and silicene.
ERIC Educational Resources Information Center
Popelka, Susan R.; Langlois, Joshua
2018-01-01
"Flatland: A Romance of Many Dimensions" is an 1884 novella written by English schoolmaster Edwin Abbott. He describes what it would be like to live in a two-dimensional (2D) world--Flatland. It is fascinating reading that underscores the challenge of teaching three-dimensional (3D) mathematics using 2D tools. Real-world applications of…
A 2.5-D Representation of the Human Hand
ERIC Educational Resources Information Center
Longo, Matthew R.; Haggard, Patrick
2012-01-01
Primary somatosensory maps in the brain represent the body as a discontinuous, fragmented set of two-dimensional (2-D) skin regions. We nevertheless experience our body as a coherent three-dimensional (3-D) volumetric object. The links between these different aspects of body representation, however, remain poorly understood. Perceiving the body's…
A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure.
Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Xu, Dongdong; Wu, Peng; Terasaki, Osamu; Han, Lu; Che, Shunai
2018-01-15
A conceptual design and synthesis of ordered mesoporous zeolites is a challenging research subject in material science. Several seminal articles report that one-dimensional (1D) mesostructured lamellar zeolites are possibly directed by sheet-assembly of surfactants, which collapse after removal of intercalated surfactants. However, except for one example of two-dimensional (2D) hexagonal mesoporous zeolite, no other zeolites with ordered 2D or three-dimensional (3D) mesostructures have been reported. An ordered 2D mesoporous zeolite can be templated by a cylindrical assembly unit with specific interactions in the hydrophobic part. A template molecule with azobenzene in the hydrophobic tail and diquaternary ammonium in the hydrophilic head group directs hierarchical MFI zeolite with a 2D square mesostructure. The material has an elongated octahedral morphology, and quaternary, ordered, straight, square channels framed by MFI thin sheets expanded along the a-c planes and joined with 90° rotations. The structural matching between the cylindrical assembly unit and zeolite framework is crucial for mesostructure construction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical Studies of Excitonic Effects at Two-Dimensional Nanostructure Interfaces
NASA Astrophysics Data System (ADS)
Ajayi, Obafunso Ademilolu
Atomically thin two-dimensional nanomaterials such as graphene and transition metal dichalcogenides (TMDCs) have seen a rapid growth of exploration since the isolation of monolayer graphene. These materials provide a rich field of study for physics and optoelectronics applications. Many applications seek to combine a two dimensional (2D) material with another nanomaterial, either another two dimensional material or a zero (0D) or one dimensional (1D) material. The work in this thesis explores the consequences of these interactions from 0D to 2D. We begin in Chapter 2 with a study of energy transfer at 0D-2D interfaces with quantum dots and graphene. In our work we seek to maximize the rate of energy transfer by reducing the distance between the materials. We observe an interplay with the distance-dependence and surface effects from our halogen terminated quantum dots that affect our observed energy transfer. In Chapter 3 we study supercapacitance in composite graphene oxide-carbon nanotube electrodes. At this 2D-1D interface we observe a compounding effect between graphene oxide and carbon nanotubes. Carbon nanotubes increase the accessible surface area of the supercapacitors and improve conductivity by forming a conductive pathway through electrodes. In Chapter 4 we investigate effective means of improving sample quality in TMDCs and discover the importance of the monolayer interface. We observe a drastic improvement in photoluminescence when encapsulating our TMDCs with Boron Nitride. We measure spectral linewidths approaching the intrinsic limit due to this 2D-2D interface. We also effectively reduce excess charge and thus the trion-exciton ratio in our samples through substrate surface passivation. In Chapter 5 we briefly discuss our investigations on chemical doping, heterostructures and interlayer decoupling in ReS2. We observe an increase in intensity for p-doped MoS2 samples. We investigated the charge transfer exciton previously identified in heterostructures. Spectral observation of this interlayer exciton remained elusive in our work but provided the motivation for our work in Chapter 4. We also discuss our preliminary results on interlayer decoupling in ReS2.
Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice
ERIC Educational Resources Information Center
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…
2D and 3D Traveling Salesman Problem
ERIC Educational Resources Information Center
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…
3D annotation and manipulation of medical anatomical structures
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim
2009-02-01
Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.
NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces
NASA Astrophysics Data System (ADS)
Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.
1987-07-01
Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.
Chirality Made Simple: A 1 - and 2-Dimensional Introduction to Stereochemistry
ERIC Educational Resources Information Center
Gawley, Robert E.
2005-01-01
The introduction of chirality in one and two dimensions, along with the concepts of internal and external reflection, can be combined with concepts familiar to all students. Once familiar with 1-Dimensional and 2-Dimensional chirality, the same concepts can be extended to 3-Dimensional and by projecting 3-D back to two, it is possible to interpret…
Shading of a computer-generated hologram by zone plate modulation.
Kurihara, Takayuki; Takaki, Yasuhiro
2012-02-13
We propose a hologram calculation technique that enables reconstructing a shaded three-dimensional (3D) image. The amplitude distributions of zone plates, which generate the object points that constitute a 3D object, were two-dimensionally modulated. Two-dimensional (2D) amplitude modulation was determined on the basis of the Phong reflection model developed for computer graphics, which considers the specular, diffuse, and ambient reflection light components. The 2D amplitude modulation added variable and constant modulations: the former controlled the specular light component and the latter controlled the diffuse and ambient components. The proposed calculation technique was experimentally verified. The reconstructed image showed specular reflection that varied depending on the viewing position.
A novel method to acquire 3D data from serial 2D images of a dental cast
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin
2007-05-01
This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.
Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian
2017-12-13
Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
GPU-accelerated two dimensional synthetic aperture focusing for photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Liu, Siyu; Feng, Xiaohua; Gao, Fei; Jin, Haoran; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin
2018-02-01
Acoustic resolution photoacoustic microscopy (AR-PAM) generally suffers from limited depth of focus, which had been extended by synthetic aperture focusing techniques (SAFTs). However, for three dimensional AR-PAM, current one dimensional (1D) SAFT and its improved version like cross-shaped SAFT do not provide isotropic resolution in the lateral direction. The full potential of the SAFT remains to be tapped. To this end, two dimensional (2D) SAFT with fast computing architecture is proposed in this work. Explained by geometric modeling and Fourier acoustics theories, 2D-SAFT provide the narrowest post-focusing capability, thus to achieve best lateral resolution. Compared with previous 1D-SAFT techniques, the proposed 2D-SAFT improved the lateral resolution by at least 1.7 times and the signal-to-noise ratio (SNR) by about 10 dB in both simulation and experiments. Moreover, the improved 2D-SAFT algorithm is accelerated by a graphical processing unit that reduces the long period of reconstruction to only a few seconds. The proposed 2D-SAFT is demonstrated to outperform previous reported 1D SAFT in the aspects of improving the depth of focus, imaging resolution, and SNR with fast computational efficiency. This work facilitates future studies on in vivo deeper and high-resolution photoacoustic microscopy beyond several centimeters.
NASA Astrophysics Data System (ADS)
Wang, Juven C.; Wen, Xiao-Gang
2015-01-01
String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.
A binary motor imagery tasks based brain-computer interface for two-dimensional movement control
NASA Astrophysics Data System (ADS)
Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels
2017-12-01
Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.
NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy
ERIC Educational Resources Information Center
Alonso, David E.; Warren, Steven E.
2005-01-01
A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Pengjie; Wang, Huan; Qu, Shiwei
Two polymers with fully two-dimensional (2D) conjugated side chains, 2D-PTB-Th and 2D-PTB-TTh, were synthesized and characterized through simultaneously integrating the 2D-TT and the 2D-BDT monomers onto the polymer backbone. Resulting from the synergistic effect from the conjugated side chains on both monomers, the two polymers showed remarkably efficient absorption of the sunlight and improved pi-pi intermolecular interactions for efficient charge carrier transport. The optimized bulk heterojunction device based on 2D-PTB-Th and PC71BM shows a higher PCE of 9.13% compared to PTB7-Th with a PCE of 8.26%, which corresponds to an approximately 10% improvement in solar energy conversion. The fully 2D-conjugatedmore » side-chain concept reported here developed a new molecular design strategy for polymer materials with enhanced sunlight absorption and efficient solar energy conversion.« less
Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures
NASA Astrophysics Data System (ADS)
Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.
2005-08-01
We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.
NASA Astrophysics Data System (ADS)
Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.
2015-05-01
A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.
Solution of the two-dimensional spectral factorization problem
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Yang, Pei-Yin; Wu, Ching-Hua; Yeh, Guang-Perng; Hsieh, Charles Tsung-Che
2015-12-01
Here, we report a case of parapagus diprosopus twins with spina bifida diagnosed in the first trimester of pregnancy using two-dimensional (2D) and three-dimensional (3D) ultrasound. A 28-year-old Taiwanese woman, gravid 1, para 0, visited our hospital due to an abnormal fetal head shape discovered by 2D ultrasound at 11-weeks gestation. Parapagus diprosopus twins with spina bifida were diagnosed after ultrasound examination. The characteristics of parapagus diprosopus twins are more illustrative in 3D ultrasound than in 2D ultrasound. After counseling, termination of pregnancy was chosen by the couple. Although necropsy was declined, the gross appearance and radiograph of the abortus confirmed our diagnosis. With the help of 3D ultrasound, we made an early and definitive diagnosis of conjoined twins. Copyright © 2015. Published by Elsevier B.V.
Three-dimensional imaging technology offers promise in medicine.
Karako, Kenji; Wu, Qiong; Gao, Jianjun
2014-04-01
Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.
Zhu, S; Yang, Y; Khambay, B
2017-03-01
Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Lingyun; Lin, Zekai; Shi, Wenjie
The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3''-nitro-4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through themore » 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.« less
Moreno, Joel; Pérez de Isla, Leopoldo; Campos, Nellys; Guinea, Juan; Domínguez-Perez, Laura; Saltijeral, Adriana; Lennie, Vera; Quezada, Maribel; de Agustín, Alberto; Marcos-Alberca, Pedro; Mahía, Patricia; García-Fernández, Miguel Ángel; Macaya, Carlos
2013-07-01
Current guidelines do not recommend routine assessment of right atrial volume due to the lack of standardized data. Three-dimensional wall-motion tracking (3D-WMT) is a new technology that allows us to calculate volumes without any geometric assumptions. The aim of this study was to define the indexed reference values for two-dimensional echocardiography (2D-echo) and 3D-WMT in adult healthy population and to assess the intermethod, intra- and interobserver agreement. Prospective study. Nonselected healthy subjects were enrolled. Every patient underwent a 2D-echo and a 3D-WMT examination. 2D-echo right atrial volume was obtained by using the area-length method (A-L) from four- and two-chamber view. 3D-echo volumes were assessed by 3D-WMT. Values were indexed by the patient's body surface area. Sixty consecutive healthy subjects were enrolled. Mean age was 57 ± 12-years old and 27 patients (45%) were male. Average indexed right atrial volume obtained by 2D-echo and 3D-echo was 16.76 ± 8.15 mL/m(2) and 19.05 ± 6.87 mL/m(2) , respectively. Univariate linear regression analysis between 2D-echo and 3D-echo right atrial volumes shows a weak correlation between right atrial volume obtained with 2D-echo compared with 3D-WMT (r = 0.29, CI 95% 0.029-0.66, P = 0.033). The agreement analysis shows a similar result (intraclass correlation coefficient [ICC] = 0.28). The intra- and interobserver agreement analysis showed a better agreement when using 3D-WMT. This is the first study that reports the reference indexed right atrial volume values by means of 2D-echo and 3D-echo in healthy population. 3D-WMT is a feasible and reproducible method to determine right atrial volume. © 2013, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
Fractal Dimensionality of Pore and Grain Volume of a Siliciclastic Marine Sand
NASA Astrophysics Data System (ADS)
Reed, A. H.; Pandey, R. B.; Lavoie, D. L.
Three-dimensional (3D) spatial distributions of pore and grain volumes were determined from high-resolution computer tomography (CT) images of resin-impregnated marine sands. Using a linear gradient extrapolation method, cubic three-dimensional samples were constructed from two-dimensional CT images. Image porosity (0.37) was found to be consistent with the estimate of porosity by water weight loss technique (0.36). Scaling of the pore volume (Vp) with the linear size (L), V~LD provides the fractal dimensionalities of the pore volume (D=2.74+/-0.02) and grain volume (D=2.90+/-0.02) typical for sedimentary materials.
A new hyperchaotic map and its application for image encryption
NASA Astrophysics Data System (ADS)
Natiq, Hayder; Al-Saidi, N. M. G.; Said, M. R. M.; Kilicman, Adem
2018-01-01
Based on the one-dimensional Sine map and the two-dimensional Hénon map, a new two-dimensional Sine-Hénon alteration model (2D-SHAM) is hereby proposed. Basic dynamic characteristics of 2D-SHAM are studied through the following aspects: equilibria, Jacobin eigenvalues, trajectory, bifurcation diagram, Lyapunov exponents and sensitivity dependence test. The complexity of 2D-SHAM is investigated using Sample Entropy algorithm. Simulation results show that 2D-SHAM is overall hyperchaotic with the high complexity, and high sensitivity to its initial values and control parameters. To investigate its performance in terms of security, a new 2D-SHAM-based image encryption algorithm (SHAM-IEA) is also proposed. In this algorithm, the essential requirements of confusion and diffusion are accomplished, and the stochastic 2D-SHAM is used to enhance the security of encrypted image. The stochastic 2D-SHAM generates random values, hence SHAM-IEA can produce different encrypted images even with the same secret key. Experimental results and security analysis show that SHAM-IEA has strong capability to withstand statistical analysis, differential attack, chosen-plaintext and chosen-ciphertext attacks.
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn 2O 4
Disseler, S. M.; Chen, Y.; Yeo, S.; ...
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn 2O 4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions aroundmore » Mn 3+ ions on the spinel lattice.« less
A quasi two-dimensional model for sound attenuation by the sonic crystals.
Gupta, A; Lim, K M; Chew, C H
2012-10-01
Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound propagation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on the Webster horn equation is used to obtain sound attenuation through the SC. This model is compared with two-dimensional (2D) finite element simulation and experiment. The 1D model prediction of frequency band for sound attenuation is found to be shifted by around 500 Hz with respect to the finite element simulation. The reason for this shift is due to the assumption involved in the 1D model. A quasi 2D model is developed for sound propagation through the waveguide. Sound pressure profiles from the quasi 2D model are compared with the finite element simulation and the 1D model. The result shows significant improvement over the 1D model and is in good agreement with the 2D finite element simulation. Finally, sound attenuation through the SC is computed based on the quasi 2D model and is found to be in good agreement with the finite element simulation. The quasi 2D model provides an improved method to calculate sound attenuation through the SC.
Abdelrahman, M; Belramman, A; Salem, R; Patel, B
2018-05-01
To compare the performance of novices in laparoscopic peg transfer and intra-corporeal suturing tasks in two-dimensional (2D), three-dimensional (3D) and ultra-high definition (4K) vision systems. Twenty-four novices were randomly assigned to 2D, 3D and 4K groups, eight in each group. All participants performed the two tasks on a box trainer until reaching proficiency. Their performance was assessed based on completion time, number of errors and number of repetitions using the validated FLS proficiency criteria. Eight candidates in each group completed the training curriculum. The mean performance time (in minutes) for the 2D group was 558.3, which was more than that of the 3D and 4K groups of 316.7 and 310.4 min respectively (P < 0.0001). The mean number of repetitions was lower for the 3D and 4K groups versus the 2D group: 125.9 and 127.4 respectively versus 152.1 (P < 0.0001). The mean number of errors was lower for the 4K group versus the 3D and 2D groups: 1.2 versus 26.1 and 50.2 respectively (P < 0.0001). The 4K vision system improved accuracy in acquiring laparoscopic skills for novices in complex tasks, which was shown in significant reduction in number of errors compared to the 3D and the 2D vision systems. The 3D and the 4K vision systems significantly improved speed and accuracy when compared to the 2D vision system based on shorter performance time, fewer errors and lesser number of repetitions. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Doping-stabilized two-dimensional black phosphorus.
Xuan, Xiaoyu; Zhang, Zhuhua; Guo, Wanlin
2018-05-03
Two-dimensional (2D) black phosphorus (BP) has attracted broad interests but remains to be synthesized. One of the issues lies in its large number of 2D allotropes with highly degenerate energies, especially 2D blue phosphorus. Here, we show that both nitrogen and hole-carrier doping can lift the energy degeneracy and locate 2D BP in a deep global energy minimum, while arsenic doping favours the formation of 2D blue phosphorus, attributed to a delicate interplay between s-p overlapping and repulsion of lone pairs. Chemically inert substrates, e.g. graphene and hexagonal boron nitride, can be synergic with carrier doping to stabilize the BP further over other 2D allotropes, while frequently used metal substrates severely reduce the stability of 2D BP. These results not only offer new insight into the structural stability of 2D phosphorus but also suggest a promising pathway towards the chemical synthesis of 2D BP.
ERIC Educational Resources Information Center
Lackovic, Natasa; Crook, Charles; Cobb, Sue; Shalloe, Sally; D'Cruz, Mirabelle
2015-01-01
Background: There is much to be realised in the educational potential of national and world heritage sites. Such sites need to be supported in sharing their resources with a wide and international public, especially within formal education. Two-dimensional (2D) and three-dimensional (3D) heritage site visualisations could serve this need. Our…
NASA Astrophysics Data System (ADS)
Wang, Bao-Zong; Lu, Yue-Hui; Sun, Wei; Chen, Shuai; Deng, Youjin; Liu, Xiong-Jun
2018-01-01
We propose a hierarchy set of minimal optical Raman lattice schemes to pave the way for experimental realization of high-dimensional spin-orbit (SO) couplings for ultracold atoms, including two-dimensional (2D) Dirac type, 2D Rashba type, and three-dimensional (3D) Weyl type. The proposed Dirac-type SO coupling exhibits precisely controllable high symmetry, for which a large topological phase region is predicted. The generation of 2D Rashba and 3D Weyl types requires that two sources of laser beams have distinct frequencies of factor 2 difference. Surprisingly, we find that 133Cs atoms provide an ideal candidate for the realization. A common and essential feature is of high controllability and absent of any fine-tuning in the realization, and the resulting SO coupled ultracold atoms have a long lifetime. In particular, a long-lived topological Bose gas of 2D Dirac SO coupling has been proved in the follow-up experiment. These schemes essentially improve over the current experimental accessibility and controllability, and open a realistic way to explore novel high-dimensional SO physics, particularly quantum many-body physics and quantum far-from-equilibrium dynamics with novel topology for ultracold atoms.
NASA Astrophysics Data System (ADS)
Savin, A. V.; Zubova, E. A.; Manevitch, L. I.
2005-06-01
We investigate a two-dimensional (2D) strongly anisotropic crystal (2D SAC) on substrate: 2D system of coupled linear chains of particles with strong intrachain and weak interchain interactions, each chain being subjected to the sine background potential. Nonlinear dynamics of one of these chains when the rest of them are fixed is reduced to the well known Frenkel-Kontorova (FK) model. Depending on strengh of the substrate, the 2D SAC models a variety of physical systems: polymer crystals with identical chains having light side groups, an array of inductively coupled long Josephson junctions, anisotropic crystals having light and heavy sublattices. Continuum limit of the FK model, the sine-Gordon (sG) equation, allows two types of soliton solutions: topological solitons and breathers. It is known that the quasi-one-dimensional topological solitons can propagate also in a chain of 2D system of coupled chains and even in a helix chain in a three-dimensional model of polymer crystal. In contrast to this, numerical simulation shows that the long-living breathers inherent to the FK model do not exist in the 2D SAC with weak background potential. The effect changes scenario of kink-antikink collision with small relative velocity: at weak background potential the collision always results only in intensive phonon radiation while kink-antikink recombination in the FK model results in long-living low-frequency sG breather creation. We found the survival condition for breathers in the 2D SAC on substrate depending on breather frequency and strength of the background potential. The survival condition bears no relation to resonances between breather frequency and frequencies of phonon band—contrary to the case of the FK model.
Wang, Qi; Gao, Chunfeng; Zhou, Jian; Wei, Guo; Nie, Xiaoming; Long, Xingwu
2018-05-01
In the field of land navigation, a laser Doppler velocimeter (LDV) can be used to provide the velocity of a vehicle for an integrated navigation system with a strapdown inertial navigation system. In order to suppress the influence of vehicle jolts on a one-dimensional (1D) LDV, this paper designs a split-reuse two-dimensional (2D) LDV. The velocimeter is made up of two 1D velocimeter probes that are mirror-mounted. By the different effects of the vertical vibration on the two probes, the velocimeter can calculate the forward velocity and the vertical velocity of a vehicle. The results of the vehicle-integrated navigation experiments show that the 2D LDV not only can actually suppress the influence of vehicle jolts and greatly improve the navigation positioning accuracy, but also can give high-precision altitude information. The maximum horizontal position errors of the two experiments are 2.6 m and 3.2 m in 1.9 h, and the maximum altitude errors are 0.24 m and 0.22 m, respectively.
Two-dimensional topological insulators with large bulk energy gap
NASA Astrophysics Data System (ADS)
Yang, Z. Q.; Jia, Jin-Feng; Qian, Dong
2016-11-01
Two-dimensional (2D) topological insulators (TIs, or quantum spin Hall insulators) are special insulators that possess bulk 2D electronic energy gap and time-reversal symmetry protected one-dimensional (1D) edge state. Carriers in the edge state have the property of spin-momentum locking, enabling dissipation-free conduction along the 1D edge. The existence of 2D TIs was confirmed by experiments in semiconductor quantum wells. However, the 2D bulk gaps in those quantum wells are extremely small, greatly limiting potential application in future electronics and spintronics. Despite this limitation, 2D TIs with a large bulk gap attracted plenty of interest. In this paper, recent progress in searching for TIs with a large bulk gap is reviewed briefly. We start by introducing some theoretical predictions of these new materials and then discuss some recent important achievements in crystal growth and characterization. Project supported by the National Natural Science Foundation of China (Grant Nos. U1632272, 11574201, and 11521404). D. Q. acknowledges support from the Changjiang Scholars Program, China and the Program for Professor of Special Appointment (Eastern Scholar), China.
Chang, Po-Hsun; Tsai, Hsieh-Chih; Chen, Yu-Ren; Chen, Jian-Yu; Hsiue, Ging-Ho
2008-10-21
In this study, two nonlinear optic hybrid materials with different dimensional alkoxysilane dyes were prepared and characterized. One NLO silane (Cz2PhSO 2OH- TES), a two-dimensional structure based on carbazole, had a larger rotational volume than the other (DR19-TES). Second harmonic ( d 33) analysis verified there is an optimum heating process for the best poling efficiency. The maximum d 33 value of NLO hybrid film containing Cz2PhSO 2OH was obtained for 10.7 pm/V after precuring at 150 degrees C for 3 h and poling at 210 degrees C for 60 min. The solid-state (29)Si NMR spectrum shows that the main factor influencing poling efficiency and thermal stability was cross-linking degree of NLO silane, but not that of TMOS. In particular, the two-dimensional sol-gel system has a greater dynamic and temporary stability than the one-dimensional system due to Cz2PhSO 2OH-TES requiring a larger volume to rotate in the hybrid matrix after cross-linking.
ERIC Educational Resources Information Center
Claxton, Laura J.
2011-01-01
Previous studies have found that preschoolers are confused about the relationship between two-dimensional (2D) symbols and their referents. Preschoolers report that 2D images (e.g. televised images and photographs) share some of the characteristics of the objects they are representing. A novel Comparison Task was created to test what might account…
NASA Astrophysics Data System (ADS)
Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing
2017-07-01
Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.
Symmetries, holography, and quantum phase transition in two-dimensional dilaton AdS gravity
NASA Astrophysics Data System (ADS)
Cadoni, Mariano; Ciulu, Matteo; Tuveri, Matteo
2018-05-01
We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d +2 )-dimensional theories exhibiting hyperscaling violation is briefly discussed.
Shin, Yonghee; Lee, Chiwon; Yang, Myung-Seok; Jeong, Sunil; Kim, Dongchul; Kang, Taewook
2014-08-26
Two-dimensional (2D) gold nanoparticles can possess novel physical and chemical properties, which will greatly expand the utility of gold nanoparticles in a wide variety of applications ranging from catalysis to biomedicine. However, colloidal synthesis of such particles generally requires sophisticated synthetic techniques to carefully guide anisotropic growth. Here we report that 2D hyper-branched gold nanoparticles in the lateral size range of about 50 ~ 120 nm can be synthesized selectively on a 2D immiscible oil/water interface in a few minutes at room temperature without structure-directing agents. An oleic acid/water interface can provide diffusion-controlled growth conditions, leading to the structural evolution of a smaller gold nucleus to 2D nanodendrimer and nanourchin at the interface. Simulations based on the phase field crystal model match well with experimental observations on the 2D branching of the nucleus, which occurs at the early stage of growth. Branching results in higher surface area and stronger near-field enhancement of 2D gold nanoparticles. This interfacial synthesis can be scaled up by creating an emulsion and the recovery of oleic acid is also achievable by centrifugation.
On the three-dimensional instability of strained vortices
NASA Technical Reports Server (NTRS)
Waleffe, Fabian
1990-01-01
The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.
NASA Astrophysics Data System (ADS)
Bagnaninchi, Pierre O.; Holmes, Christina; Drummond, Nicola; Daoud, Jamal; Tabrizian, Maryam
2011-08-01
Cell viability assays are essential tools for cell biology. They assess healthy cells in a sample and enable the quantification of cellular responses to reagents of interest. Noninvasive and label-free assays are desirable in two-dimensional (2D) and three-dimensional (3D) cell culture to facilitate time-course viability studies. Cellular micromotion, emanating from cell to substrate distance variations, has been demonstrated as a marker of cell viability with electric cell-substrate impedance sensing (ECIS). In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be associated with cellular micromotion. An OCPM has been developed around a Thorlabs engine (λo = 930 nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC micromotion was confirmed by ECIS analysis. Live and fixed ADSCs were then investigated in 2D and 3D with OCPM. Significant differences were found in phase fluctuations between the different conditions. This study indicated that OCPM could potentially assess cell vitality in 2D and in 3D microstructures.
A system for extracting 3-dimensional measurements from a stereo pair of TV cameras
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.; Cunningham, R.
1976-01-01
Obtaining accurate three-dimensional (3-D) measurement from a stereo pair of TV cameras is a task requiring camera modeling, calibration, and the matching of the two images of a real 3-D point on the two TV pictures. A system which models and calibrates the cameras and pairs the two images of a real-world point in the two pictures, either manually or automatically, was implemented. This system is operating and provides three-dimensional measurements resolution of + or - mm at distances of about 2 m.
Gyftopoulos, Soterios; Beltran, Luis S; Gibbs, Kevin; Jazrawi, Laith; Berman, Phillip; Babb, James; Meislin, Robert
2016-01-01
The purpose of this study was to see if 3-dimensional (3D) magnetic resonance imaging (MRI) could improve our understanding of rotator cuff tendon tear shapes. We believed that 3D MRI would be more accurate than two-dimensional (2D) MRI for classifying tear shapes. We performed a retrospective review of MRI studies of patients with arthroscopically proven full-thickness rotator cuff tears. Two orthopedic surgeons reviewed the information for each case, including scope images, and characterized the shape of the cuff tear into crescent, longitudinal, U- or L-shaped longitudinal, and massive type. Two musculoskeletal radiologists reviewed the corresponding MRI studies independently and blind to the arthroscopic findings and characterized the shape on the basis of the tear's retraction and size using 2D MRI. The 3D reconstructions of each cuff tear were reviewed by each radiologist to characterize the shape. Statistical analysis included 95% confidence intervals and intraclass correlation coefficients. The study reviewed 34 patients. The accuracy for differentiating between crescent-shaped, longitudinal, and massive tears using measurements on 2D MRI was 70.6% for reader 1 and 67.6% for reader 2. The accuracy for tear shape characterization into crescent and longitudinal U- or L-shaped using 3D MRI was 97.1% for reader 1 and 82.4% for reader 2. When further characterizing the longitudinal tears as massive or not using 3D MRI, both readers had an accuracy of 76.9% (10 of 13). The overall accuracy of 3D MRI was 82.4% (56 of 68), significantly different (P = .021) from 2D MRI accuracy (64.7%). Our study has demonstrated that 3D MR reconstructions of the rotator cuff improve the accuracy of characterizing rotator cuff tear shapes compared with current 2D MRI-based techniques. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Two dimensional topological insulator in quantizing magnetic fields
NASA Astrophysics Data System (ADS)
Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.
2018-05-01
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.
25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua
2014-04-09
Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs
NASA Astrophysics Data System (ADS)
Iwanaga, Masanobu
2010-02-01
It has been experimentally and numerically shown that transmission at near infrared wavelengths is selectively controlled by polarizations in two-dimensional complementary plasmonic crystal slabs (2D c-PlCSs) of stacked unit cell. This feature is naturally derived by taking account of Babinet's principle. Moreover, the slight structural modification of the unit cell has been found to result in a drastic change in linear optical responses of stacked 2D c-PlCSs. These results substantiate the feasibility of 2D c-PlCSs for producing efficient polarizers with subwavelength thickness.
Wave-front singularities for two-dimensional anisotropic elastic waves.
NASA Technical Reports Server (NTRS)
Payton, R. G.
1972-01-01
Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
NASA Astrophysics Data System (ADS)
Wen, Yan-Ni; Gao, Peng-Fei; Xia, Ming-Gang; Zhang, Sheng-Li
2018-03-01
Half-metallic ferromagnetism (HMFM) has great potential application in spin filter. However, it is extremely rare, especially in two-dimensional (2D) materials. At present, 2D materials have drawn international interest in spintronic devices. Here, we use ab initio density functional theory (DFT) calculations to study the structural stability and electrical and magnetic properties of the MoS2-based 2D superlattice formed by inserting graphene hexagonal ring in 6 × 6 × 1 MoS2 supercell. Two kinds of structures with hexagonal carbon ring were predicted with structural stability and were shown HMFM. The two structures combine the spin transport capacity of graphene with the magnetism of the defective 2D MoS2. And they have strong covalent bonding between the C and S or Mo atoms near the interface. This work is very useful to help us to design reasonable MoS2-based spin filter.
NASA Astrophysics Data System (ADS)
Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace
2012-03-01
A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.
Mittal, Yogesh; Varghese, K George; Mohan, S; Jayakumar, N; Chhag, Somil
2016-03-01
Three dimensional titanium plating system was developed by Farmand in 1995 to meet the requirements of semi rigid fixation with lesser complication. The purpose of this in vivo prospective study was to evaluate and compare the clinical effectiveness of three dimensional and two dimensional Titanium miniplates for open reduction and fixation of mandibular parasymphysis fracture. Thirty patients with non-comminuted mandibular parasymphysis fractures were divided randomly into two equal groups and were treated with 2 mm 3D and 2D miniplate system respectively. All patients were systematically monitored at 1st, 2nd, 3rd, 6th week, 3rd and 6th month postoperatively. The outcome parameters recorded were severity of pain, infection, mobility, occlusion derangement, paresthesia and implant failure. The data so collected was analyzed using independent t test and Chi square test (α = .05). The results showed that one patient in each group had post-operative infection, occlusion derangement and mobility (p > .05). In Group A, one patient had paresthesia while in Group B, two patients had paresthesia (p > .05). None of the patients in both the groups had implant failure. There was no statistically significant difference between 3D and 2D miniplate system in all the recorded parameters at all the follow-ups (p > .05). 3D miniplates were found to be better than 2D miniplates in terms of cost, ease of surgery and operative time. However, 3D miniplates were unfavorable for cases where fracture line was oblique and in close proximity to mental foramen, where they were difficult to adapt and more chances for tooth-root damage and inadvertent injury to the mental nerve due to traction.
Two-dimensional confinement of 3d{1} electrons in LaTiO_{3}/LaAlO{3} multilayers.
Seo, S S A; Han, M J; Hassink, G W J; Choi, W S; Moon, S J; Kim, J S; Susaki, T; Lee, Y S; Yu, J; Bernhard, C; Hwang, H Y; Rijnders, G; Blank, D H A; Keimer, B; Noh, T W
2010-01-22
We report spectroscopic ellipsometry measurements of the anisotropy of the interband transitions parallel and perpendicular to the planes of (LaTiO3)n(LaAlO3)5 multilayers with n=1-3. These provide direct information about the electronic structure of the two-dimensional (2D) 3d{1} state of the Ti ions. In combination with local density approximation, including a Hubbard U calculation, we suggest that 2D confinement in the TiO2 slabs lifts the degeneracy of the t{2g} states leaving only the planar d{xy} orbitals occupied. We outline that these multilayers can serve as a model system for the study of the t{2g} 2D Hubbard model.
Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S
2014-02-25
Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.
How the World Changes By Going from One- to Two-Dimensional Polymers in Solution.
Schlüter, A Dieter; Payamyar, Payam; Öttinger, Hans Christian
2016-10-01
Scaling behavior of one-dimensional (1D) and two-dimensional (2D) polymers in dilute solution is discussed with the goal of stimulating experimental work by chemists, physicists, and material scientists in the emerging field of 2D polymers. The arguments are based on renormalization-group theory, which is explained for a general audience. Many ideas and methods successfully applied to 1D polymers are found not to work if one goes to 2D polymers. The role of the various states exhibiting universal behavior is turned upside down. It is expected that solubility will be a serious challenge for 2D polymers. Therefore, given the crucial importance of solutions in characterization and processing, synthetic concepts are proposed that allow the local bending rigidity and the molar mass to be tuned and the long-range interactions to be engineered, all with the goal of preventing the polymer from falling into flat or compact states. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional inverse opal hydrogel for pH sensing.
Xue, Fei; Meng, Zihui; Qi, Fenglian; Xue, Min; Wang, Fengyan; Chen, Wei; Yan, Zequn
2014-12-07
A novel hydrogel film with a highly ordered macropore monolayer on its surface was prepared by templated photo-polymerization of hydrogel monomers on a two-dimensional (2D) polystyrene colloidal array. The 2D inverse opal hydrogel has prominent advantages over traditional three-dimensional (3D) inverse opal hydrogels. First, the formation of the 2D array template through a self-assembly method is considerably faster and simpler. Second, the stable ordering structure of the 2D array template makes it easier to introduce the polymerization solution into the template. Third, a simple measurement, a Debye diffraction ring, is utilized to characterize the neighboring pore spacing of the 2D inverse opal hydrogel. Acrylic acid was copolymerized into the hydrogel; thus, the hydrogel responded to pH through volume change, which resulted from the formation of the Donnan potential. The 2D inverse opal hydrogel showed that the neighboring pore spacing increased by about 150 nm and diffracted color red-shifted from blue to red as the pH increased from pH 2 to 7. In addition, the pH response kinetics and ionic strength effect of this 2D mesoporous polymer film were also investigated.
NASA Astrophysics Data System (ADS)
Coelho, Flávio S.; Sampaio, Marco O. P.
2016-05-01
We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg-Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter-Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
NASA Astrophysics Data System (ADS)
Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.
2017-11-01
Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.
Nonlinear dynamics of two-dimensional electron plasma
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.; Servidio, S.; Rodgers, D.; Montgomery, D. C.; Mitchell, T.; Aziz, T.
2008-12-01
The turbulent relaxation of a magnetized two dimensional (2D) electron plasma experiment has been investigated. The nonlinear dynamics of this kind of plasma can be approximated in leading order as a 2D guiding center fluid, which behaves in complete analogy to the 2D Euler equations. Departures form this analogy include dissipative and three dimensional effects. Here we examine the characteristics of the experimental data and compare these to solutions of 2D dissipative Navier Stokes equations. We find, perhaps remarkably, that the two systems show similar time histories, including increase of entropy and decrease of the ratio of enstrophy-to-energy. Attempts to re-examine the theories of selective decay and maximum entropy are reviewed, including difficulties that are peculiar to the one species case. Distinguishing between these possibilities has potentially important implications for self organizing systems in space and astrophysical plasmas, including the ionosphere and solar corona. Research supported by DOE grant DE- FG02-06ER54853.
NASA Astrophysics Data System (ADS)
Noda, Isao
2018-05-01
Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.
NASA Astrophysics Data System (ADS)
Stark, D. J.; Yin, L.; Albright, B. J.; Guo, F.
2017-05-01
A particle-in-cell study of laser-ion acceleration mechanisms in the transparency regime illustrates how two-dimensional (2D) S and P simulations (laser polarization in and out of the simulation plane, respectively) capture different physics characterizing these systems, visible in their entirety often in cost-prohibitive three-dimensional (3D) simulations. The electron momentum anisotropy induced in the target by a laser pulse is dramatically different in the two 2D cases, manifested in differences in target expansion timescales, electric field strengths, and density thresholds for the onset of relativistically induced transparency. In particular, 2D-P simulations exhibit dramatically greater electron heating in the simulation plane, whereas 2D-S ones show a much more isotropic energy distribution, similar to 3D. An ion trajectory analysis allows one to isolate the fields responsible for ion acceleration and to characterize the acceleration regimes in time and space. The artificial longitudinal electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration into its dominant acceleration mechanism throughout the laser-plasma interaction, whereas 2D-S and 3D both have sizable populations accelerated preferentially during transparency.
Design of efficient circularly symmetric two-dimensional variable digital FIR filters.
Bindima, Thayyil; Elias, Elizabeth
2016-05-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.
Design of efficient circularly symmetric two-dimensional variable digital FIR filters
Bindima, Thayyil; Elias, Elizabeth
2016-01-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, David James; Yin, Lin; Albright, Brian James
2017-05-03
A particle-in-cell study of laser-ion acceleration mechanisms in the transparency regime illustrates how two-dimensional (2D) S and P simulations (laser polarization in and out of the simulation plane, respectively) capture different physics characterizing these systems, visible in their entirety in often cost-prohibitive three-dimensional (3D) simulations. The electron momentum anisotropy induced in the target by the laser pulse is dramatically different in the two 2D cases, manifested in differences in target expansion timescales, electric field strengths, and density thresholds for the onset of relativistically induced transparency. In particular, 2D-P simulations exhibit dramatically greater electron heating in the simulation plane, whereas 2D-Smore » ones show a much more isotropic energy distribution, similar to 3D. An ion trajectory analysis allows one to isolate the fields responsible for ion acceleration and to characterize the acceleration regimes in time and space. The artificial longitudinal electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration into its dominant acceleration mechanism throughout the laser-plasma interaction, whereas 2D-S and 3D both have sizable populations accelerated preferentially during transparency.« less
NASA Astrophysics Data System (ADS)
Fan, Le-Qing; Chen, Yuan; Wu, Ji-Huai; Huang, Yun-Fang
2011-04-01
Two new 4 d-4 f Ln-Ag heterometallic coordination polymers, {[ Ln3Ag 5(IN) 10(H 2O) 7]·4(ClO 4)·4(H 2O)} n ( Ln=Eu ( 1) and Sm ( 2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions by reactions of Ln2O 3, AgNO 3, HIN and HClO 4, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. It is proved that HClO 4 not only adjusts the pH value of the reaction mixture, but also acts as anion template. The structure determination reveals that 1 and 2 are isostructural and feature a novel two-dimensional (2D) layered hetrometallic structure constructed from one-dimensional Ln-carboxylate chains and pillared Ag(IN) 2 units. The 2D layers are further interlinked through Ag⋯Ag and Ag⋯O(ClO 4-) multiple weak interactions, which form a rare Ag-ClO 4 ribbon in lanthanide-transition metal coordination polymers, to give rise to a three-dimensional supramolecular architecture. Moreover, the luminescent properties of these two compounds have also been investigated at room temperature.
Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Tashiro, Yasutaka; Nakahara, Hiroyuki; Iwamoto, Yukihide
2016-01-01
The first purpose of this study was to compare the reproducibility of two-dimensional (2D) and three-dimensional (3D) measurements for preoperative planning of the femoral side in total knee arthroplasty (TKA). The second purpose was to evaluate the factors affecting the differences between the 2D and 3D measurements. Two-dimensional and 3D measurements for preoperative planning of the femoral side in TKA were evaluated in 75 varus knees with osteoarthritis. The femoral valgus angle, defined as the angle between the mechanical and anatomical axes of the femur, and the clinical rotation angle and surgical rotation angle, defined by the angles between the posterior condylar line and the clinical or surgical transepicondylar axes, respectively, were analysed using 2D (radiographs and axial CT slices) and 3D (3D bone models reconstructed from CT images) measurements. For all variables, 3D measurements were more reliable and reproducible than 2D measurements. The medians and ranges of the clinical rotation angle and surgical rotation angle were 6.6° (-1.7° to 12.1°) and 2.3° (-2.5° to 8.6°) in 2D, and 7.1° (2.7° to 11.4°) and 3.0° (-2.0° to 7.5°) in 3D. Varus/valgus alteration of the CT scanning direction relative to the mechanical axis affected the difference in clinical rotation angles between 2D and 3D measurements. Significantly, smaller values of the clinical rotation angle and surgical rotation angle were obtained by 2D compared to 3D measurements, which could result in internal rotation of the femoral component even if the surgeon performs the bone cutting precisely. Regarding clinical relevance, first, this study confirmed the reliability of 3D measurements. Second, it underscored the risk of internal rotation of the femoral component when using 2D measurement, even with precise bone cutting technique. These results will help surgeons avoid malpositioning of the femoral component if 2D measurements are used for preoperative planning in TKA. Prospective comparative study, Level Ш.
Thermoelastic damping in microrings with circular cross-section
NASA Astrophysics Data System (ADS)
Li, Pu; Fang, Yuming; Zhang, Jianrun
2016-01-01
Predicting thermoelastic damping (TED) is crucial in the design of high Q micro-resonators. Microrings are often critical components in many micro-resonators. Some analytical models for TED in microrings have already been developed in the past. However, the previous works are limited to the microrings with rectangular cross-section. The temperature field in the rectangular cross-section is one-dimensional. This paper deals with TED in the microrings with circular cross-section. The temperature field in the circular cross-section is two-dimensional. This paper first presents a 2-D analytical model for TED in the microrings with circular cross-section. Only the two-dimensional heat conduction in the circular cross-section is considered. The heat conduction along the circumferential direction of the microring is neglected in the 2-D model. Then the 2-D model has been extended to cover the circumferential heat conduction, and a 3-D analytical model for TED has been developed. The analytical results from the present 2-D and 3-D models show good agreement with the numerical results of FEM model. The limitations of the present 2-D analytical model are assessed.
Computationally Driven Two-Dimensional Materials Design: What Is Next?
Pan, Jie; Lany, Stephan; Qi, Yue
2017-07-17
Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. Additionally, we discuss challenges and opportunities to boost the power of computation formore » the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.« less
NASA Astrophysics Data System (ADS)
Dashti-Naserabadi, H.; Najafi, M. N.
2017-10-01
We present extensive numerical simulations of Bak-Tang-Wiesenfeld (BTW) sandpile model on the hypercubic lattice in the upper critical dimension Du=4 . After re-extracting the critical exponents of avalanches, we concentrate on the three- and two-dimensional (2D) cross sections seeking for the induced criticality which are reflected in the geometrical and local exponents. Various features of finite-size scaling (FSS) theory have been tested and confirmed for all dimensions. The hyperscaling relations between the exponents of the distribution functions and the fractal dimensions are shown to be valid for all dimensions. We found that the exponent of the distribution function of avalanche mass is the same for the d -dimensional cross sections and the d -dimensional BTW model for d =2 and 3. The geometrical quantities, however, have completely different behaviors with respect to the same-dimensional BTW model. By analyzing the FSS theory for the geometrical exponents of the two-dimensional cross sections, we propose that the 2D induced models have degrees of similarity with the Gaussian free field (GFF). Although some local exponents are slightly different, this similarity is excellent for the fractal dimensions. The most important one showing this feature is the fractal dimension of loops df, which is found to be 1.50 ±0.02 ≈3/2 =dfGFF .
Ou, Jian Zhen; Chrimes, Adam F; Wang, Yichao; Tang, Shi-yang; Strano, Michael S; Kalantar-zadeh, Kourosh
2014-02-12
Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.
Wang, Zhiping; Chen, Jinyu; Yu, Benli
2017-02-20
We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.
NASA Astrophysics Data System (ADS)
Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius
2013-07-01
We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.
Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas
NASA Astrophysics Data System (ADS)
Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.
2017-10-01
Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.
Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongfeng; Qu, Shaobo; Wang, Jiafu
2014-06-02
Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.
Generating a 2D Representation of a Complex Data Structure
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M
2016-04-29
Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage.
Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays
NASA Astrophysics Data System (ADS)
Chang-Hasnain, Connie
1994-04-01
Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.
Intrinsic two-dimensional features as textons
NASA Technical Reports Server (NTRS)
Barth, E.; Zetzsche, C.; Rentschler, I.
1998-01-01
We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.
Memory and visual search in naturalistic 2D and 3D environments
Li, Chia-Ling; Aivar, M. Pilar; Kit, Dmitry M.; Tong, Matthew H.; Hayhoe, Mary M.
2016-01-01
The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769
Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.
NASA Astrophysics Data System (ADS)
Jariwala, Deep
The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.
Effects of anisotropy on the two-dimensional inversion procedure
NASA Astrophysics Data System (ADS)
Heise, Wiebke; Pous, Jaume
2001-12-01
In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.
A computational approach for coupled 1D and 2D/3D CFD modelling of pulse Tube cryocoolers
NASA Astrophysics Data System (ADS)
Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.
2017-12-01
The physics behind Stirling-type cryocoolers are complicated. One dimensional (1D) simulation tools offer limited details and accuracy, in particular for cryocoolers that have non-linear configurations. Multi-dimensional Computational Fluid Dynamic (CFD) methods are useful but are computationally expensive in simulating cyrocooler systems in their entirety. In view of the fact that some components of a cryocooler, e.g., inertance tubes and compliance tanks, can be modelled as 1D components with little loss of critical information, a 1D-2D/3D coupled model was developed. Accordingly, one-dimensional - like components are represented by specifically developed routines. These routines can be coupled to CFD codes and provide boundary conditions for 2D/3D CFD simulations. The developed coupled model, while preserving sufficient flow field details, is two orders of magnitude faster than equivalent 2D/3D CFD models. The predictions show good agreement with experimental data and 2D/3D CFD model.
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.
2013-12-01
Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches
Bloch, Edward; Uddin, Nabil; Gannon, Laura; Rantell, Khadija; Jain, Saurabh
2015-01-01
Background Stereopsis is believed to be advantageous for surgical tasks that require precise hand-eye coordination. We investigated the effects of short-term and long-term absence of stereopsis on motor task performance in three-dimensional (3D) and two-dimensional (2D) viewing conditions. Methods 30 participants with normal stereopsis and 15 participants with absent stereopsis performed a simulated surgical task both in free space under direct vision (3D) and via a monitor (2D), with both eyes open and one eye covered in each condition. Results The stereo-normal group scored higher, on average, than the stereo-absent group with both eyes open under direct vision (p<0.001). Both groups performed comparably in monocular and binocular monitor viewing conditions (p=0.579). Conclusions High-grade stereopsis confers an advantage when performing a fine motor task under direct vision. However, stereopsis does not appear advantageous to task performance under 2D viewing conditions, such as in video-assisted surgery. PMID:25185439
2d affine XY-spin model/4d gauge theory duality and deconfinement
NASA Astrophysics Data System (ADS)
Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat
2012-04-01
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.
van Stee, Leo L P; Brinkman, Udo A Th
2011-10-28
A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.
Hwang, Jae-Yeol; Kim, Young-Min; Lee, Kyu Hyoung; Ohta, Hiromichi; Kim, Sung Wng
2017-10-11
Demands on high-quality layer structured two-dimensional (2D) thin films such as pnictogen chalcogenides and transition metal dichalcogenides are growing due to the findings of exotic physical properties and potentials for device applications. However, the difficulties in controlling epitaxial growth and the unclear understanding of van der Waals epitaxy (vdWE) for a 2D chalcogenide film on a three-dimensional (3D) substrate have been major obstacles for the further advances of 2D materials. Here, we exploit the spontaneous vdWE of a high-quality 2D chalcogenide (Bi 0.5 Sb 1.5 Te 3 ) film by the chalcogen-driven surface reconstruction of a conventional 3D sapphire substrate. It is verified that the in situ formation of a pseudomorphic Te atomic monolayer on the surface of sapphire, which results in a dangling bond-free surface, allows the spontaneous vdWE of 2D chalcogenide film. Since this route uses the natural surface reconstruction of sapphire with chalcogen under vacuum condition, it can be scalable and easily utilized for the developments of various 2D chalcogenide vdWE films through conventional thin-film fabrication technologies.
Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.
Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin
2014-07-22
Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.
Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.
Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A
2017-05-19
We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.
Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan
2017-09-29
Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Waterlike anomalies in a two-dimensional core-softened potential
NASA Astrophysics Data System (ADS)
Bordin, José Rafael; Barbosa, Marcia C.
2018-02-01
We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.
Wu, Ting-Yu; Lin, Hsiu-Hsia; Lo, Lun-Jou; Ho, Cheng-Ting
2017-08-01
Compared with conventional two-dimensional (2D) planning, three-dimensional (3D) planning in orthognathic surgery yields more accurate anatomical information and enables the precise positioning of maxillary and mandibular segments, particularly for patients with facial asymmetry. Accordingly, surgical outcomes achieved using 3D planning should be superior. This study determined the differences between the 2D and 3D planning techniques by comparing their surgical outcomes. In this retrospective study, patients who underwent surgery following the traditional 2D planning technique were classified into the 2D planning group. Patients in whom the 2D plan was transferred to a 3D system after surgical simulation were classified into the 3D planning group. Surgical outcomes were compared using cephalometric measurements and patient perception of the results. In the 3D planning group, more favorable results were observed in frontal symmetry, change in the angle between the orbital and occlusal lines, frontal ramus inclination, and the distances from the mandibular central incisor and menton to the midsagittal line. No significant differences were observed in the lateral profiles (SNA, SNB, ANB, and angle convexity) of the two groups. Patient satisfaction was favorable in the two groups, but more patients in the 3D planning group reported being very satisfied. The 3D planning technique provided superior overall outcomes. The study findings can be used to augment clinical planning and surgical execution when using a conventional approach. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral
2002-01-01
An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.
Anomalous Quasiparticle Reflection from the Surface of a ^{3}He-^{4}He Dilute Solution.
Ikegami, Hiroki; Kim, Kitak; Sato, Daisuke; Kono, Kimitoshi; Choi, Hyoungsoon; Monarkha, Yuriy P
2017-11-10
A free surface of a dilute ^{3}He-^{4}He liquid mixture is a unique system where two Fermi liquids with distinct dimensions coexist: a three-dimensional (3D) ^{3}He Fermi liquid in the bulk and a two-dimensional (2D) ^{3}He Fermi liquid at the surface. To investigate a novel effect generated by the interaction between the two Fermi liquids, the mobility of a Wigner crystal of electrons formed on the free surface of the mixture is studied. An anomalous enhancement of the mobility, compared with the case where the 3D and 2D systems do not interact with each other, is observed. The enhancement is explained by the nontrivial reflection of 3D quasiparticles from the surface covered with the 2D ^{3}He system.
Nanostructures having high performance thermoelectric properties
Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
2015-12-22
The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
Nanostructures having high performance thermoelectric properties
Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz
2014-05-20
The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
Park, Jongho; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Kim, Seong-Gon; Lee, Kimoon; Kim, Sung Wng
2017-12-06
We report that the spin-alignment of interstitial anionic electrons (IAEs) in two-dimensional (2D) interlayer spacing can be tuned by chemical pressure that controls the magnetic properties of 2D electrides. It was clarified from the isovalent Sc substitution on the Y site in the 2D Y 2 C electride that the localization degree of IAEs at the interlayer becomes stronger as the unit cell volume and c-axis lattice parameter were systematically reduced by increasing the Sc contents, thus eventually enhancing superparamagnetic behavior originated from the increase in ferromagnetic particle concentration. It was also found that the spin-aligned localized IAEs dominated the electrical conduction of heavily Sc-substituted Y 2 C electride. These results indicate that the physcial properties of 2D electrides can be tailored by adjusting the localization of IAEs at interlayer spacing via structural modification that controls the spin instability as found in three-dimensional elemental electrides of pressurized potassium metals.
Lifting business process diagrams to 2.5 dimensions
NASA Astrophysics Data System (ADS)
Effinger, Philip; Spielmann, Johannes
2010-01-01
In this work, we describe our visualization approach for business processes using 2.5 dimensional techniques (2.5D). The idea of 2.5D is to add the concept of layering to a two dimensional (2D) visualization. The layers are arranged in a three-dimensional display space. For the modeling of the business processes, we use the Business Process Modeling Notation (BPMN). The benefit of connecting BPMN with a 2.5D visualization is not only to obtain a more abstract view on the business process models but also to develop layering criteria that eventually increase readability of the BPMN model compared to 2D. We present a 2.5D Navigator for BPMN models that offers different perspectives for visualization. Therefore we also develop BPMN specific perspectives. The 2.5D Navigator combines the 2.5D approach with perspectives and allows free navigation in the three dimensional display space. We also demonstrate our tool and libraries used for implementation of the visualizations. The underlying general framework for 2.5D visualizations is explored and presented in a fashion that it can easily be used for different applications. Finally, an evaluation of our navigation tool demonstrates that we can achieve satisfying and aesthetic displays of diagrams stating BPMN models in 2.5D-visualizations.
Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kevin
2015-12-08
A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.
Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.
Ishii, Kunihiko; Tahara, Tahei
2013-10-03
In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.
Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.
Shin, Sungchul; Hyun, Jinho
2017-08-09
A cellulose nanofiber (CNF), one of the most attractive green bioresources, was adopted for construction of microfluidic devices using matrix-assisted three-dimensional (3D) printing. CNF hydrogels can support structures printed using CAD design in a 3D hydrogel environment with the appropriate combination of rheological properties between the CNF hydrogel and ink materials. Amazingly, the structure printed freely in the bulky CNF hydrogels was able to retain its highly resolved 3D features in an ultrathin two-dimensional (2D) paper using a simple drying process. The dimensional change in the CNF hydrogels from 3D to 2D resulted from simple dehydration of the CNFs and provided transparent, stackable paper-based 3D channel devices. As a proof of principle, the rheological properties of the CNF hydrogels, the 3D structure of the ink, the formation of channels by evacuation of the ink, and the highly localized selectivity of the devices are described.
A 3D Polymer Based Printed Two-Dimensional Laser Scanner
NASA Astrophysics Data System (ADS)
Oyman, H. A.; Gokdel, Y. D.; Ferhanoglu, O.; Yalcinkaya, A. D.
2016-10-01
A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm.
2017-07-01
ER D C/ EL T R- 17 -1 0 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...default. ERDC/EL TR-17-10 July 2017 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...Sacramento River, smaller winter- run Chinook and larger late-fall- run Chinook salmon were tagged and released into a 2D telemetry array dur- ing the
NASA Astrophysics Data System (ADS)
Hidema, R.
2014-08-01
In order to study the effects of extensional viscosities on turbulent drag reduction, experimental studies using two-dimensional turbulence have been made. Anisotropic structures and variations of energy transfer induced by polymers are considered. Polyethyleneoxide and hydroxypropyl cellulose having different flexibility, which is due to different characteristics of extensional viscosity, are added to 2D turbulence. Variations of the turbulence were visualized by interference patterns of 2D flow, and were analysed by an image processing. The effects of polymers on turbulence in the streamwise and normal directions were also analysed by 2D Fourier transform. In addition, characteristic scales in 2D turbulence were analysed by wavelet transform.
Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes.
Liu, Gongping; Jin, Wanqin; Xu, Nanping
2016-10-17
Two-dimensional (2D) materials of atomic thickness have emerged as nano-building blocks to develop high-performance separation membranes that feature unique nanopores and/or nanochannels. These 2D-material membranes exhibit extraordinary permeation properties, opening a new avenue to ultra-fast and highly selective membranes for water and gas separation. Summarized in this Minireview are the latest ground-breaking studies in 2D-material membranes as nanosheet and laminar membranes, with a focus on starting materials, nanostructures, and transport properties. Challenges and future directions of 2D-material membranes for wide implementation are discussed briefly. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2-D Animation's Not Just for Mickey Mouse.
ERIC Educational Resources Information Center
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Betti, R.; Sanz, J.
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
A new series of two-dimensional silicon crystals with versatile electronic properties
NASA Astrophysics Data System (ADS)
Chae, Kisung; Kim, Duck Young; Son, Young-Woo
2018-04-01
Silicon (Si) is one of the most extensively studied materials owing to its significance to semiconductor science and technology. While efforts to find a new three-dimensional (3D) Si crystal with unusual properties have made some progress, its two-dimensional (2D) phases have not yet been explored as much. Here, based on a newly developed systematic ab initio materials searching strategy, we report a series of novel 2D Si crystals with unprecedented structural and electronic properties. The new structures exhibit perfectly planar outermost surface layers of a distorted hexagonal network with their thicknesses varying with the atomic arrangement inside. Dramatic changes in electronic properties ranging from semimetal to semiconducting with indirect energy gaps and even to one with direct energy gaps are realized by varying thickness as well as by surface oxidation. Our predicted 2D Si crystals with flat surfaces and tunable electronic properties will shed light on the development of silicon-based 2D electronics technology.
Two-dimensional crystals: managing light for optoelectronics.
Eda, Goki; Maier, Stefan A
2013-07-23
Semiconducting two-dimensional (2D) crystals such as MoS2 and WSe2 exhibit unusual optical properties that can be exploited for novel optoelectronics ranging from flexible photovoltaic cells to harmonic generation and electro-optical modulation devices. Rapid progress of the field, particularly in the growth area, is beginning to enable ways to implement 2D crystals into devices with tailored functionalities. For practical device performance, a key challenge is to maximize light-matter interactions in the material, which is inherently weak due to its atomically thin nature. Light management around the 2D layers with the use of plasmonic nanostructures can provide a compelling solution.
NASA Astrophysics Data System (ADS)
Lebed, A. G.
2018-04-01
We theoretically study the orbital destructive effect against superconductivity in a parallel magnetic field in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) phase at zero temperature in a quasi-two-dimensional (Q2D) conductor. We demonstrate that at zero temperature a special parameter, λ =l⊥(H ) /d , is responsible for strength of the orbital effect, where l⊥(H ) is a typical "size" of the quasiclassical electron orbit in a magnetic field and d is the interplane distance. We discuss applications of our results to the existing experiments on the FFLO phase in the organic Q2D conductors κ -(ET) 2Cu (NCS) 2 and κ -(ET) 2Cu [N (CN) 2] Cl .
DIGE Analysis of Human Tissues.
Gelfi, Cecilia; Capitanio, Daniele
2018-01-01
Two-dimensional difference gel electrophoresis (2-D DIGE) is an advanced and elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2-DE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The two-dye or three-dye systems can be adopted and their choice depends on specific applications. Furthermore, the use of an internal pooled standard makes 2-D DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. The image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Liu, Wenwen; Dai, Zhiqiang; Liu, Yi; Zhu, Anquan; Zhong, Donglin; Wang, Juan; Pan, Jun
2018-05-31
Constructing a two-dimensional/zero-dimensional (2D/0D) composite with matched crystal structure, suitable energy band structure as well as intimate contact interface is an effective way to improve carriers separation for achieving highly photocatalytic performance. In this work, a novel bismuth titanate/bismuth oxychloride (Bi 4 Ti 3 O 12 /BiOCl) composite consisting of 2D Bi 4 Ti 3 O 12 nanosheets and 0D BiOCl nanoparticles was constructed for the first time. Germinating ultrafine BiOCl nanoparticles on Bi 4 Ti 3 O 12 nanosheets can provide abundant contact interface and shorten migration distance of photoinduced carriers via two-step synthesis contained molten salt process and facile chemical transformation process. The obtained Bi 4 Ti 3 O 12 /BiOCl 2D/0D composites exhibited enhanced photocatalytic performance for antibiotic tetracycline hydrochloride degradation. The rate constant of optimal Bi 4 Ti 3 O 12 /BiOCl composite was about 4.4 times higher than that of bare Bi 4 Ti 3 O 12 although Bi 4 Ti 3 O 12 /BiOCl composite appeared lesser photoabsorption. The enhanced photocatalytic performance can be mainly ascribed to matched crystal structure, suitable energy band structure and intimate contact interface between Bi 4 Ti 3 O 12 nanosheets and ultrafine BiOCl nanoparticles as well as unique 2D/0D composite structure. Besides, a probable degradation mechanism on the basis of active species trapping experiments, electrochemical impedance spectroscopy, photocurrent responses and energy band structures was proposed. This work may be stretched to other 2D/0D composite photocatalysts construction, which is inspiring for antibiotic residue treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui
2014-03-14
A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). Copyright © 2014 Elsevier B.V. All rights reserved.
Approaches for Achieving Superlubricity in Two-Dimensional Materials.
Berman, Diana; Erdemir, Ali; Sumant, Anirudha V
2018-03-27
Controlling friction and reducing wear of moving mechanical systems is important in many applications, from nanoscale electromechanical systems to large-scale car engines and wind turbines. Accordingly, multiple efforts are dedicated to design materials and surfaces for efficient friction and wear manipulation. Recent advances in two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, molybdenum disulfide, and other 2D materials opened an era for conformal, atomically thin solid lubricants. However, the process of effectively incorporating 2D films requires a fundamental understanding of the atomistic origins of friction. In this review, we outline basic mechanisms for frictional energy dissipation during sliding of two surfaces against each other, and the procedures for manipulating friction and wear by introducing 2D materials at the tribological interface. Finally, we highlight recent progress in implementing 2D materials for friction reduction to near-zero values-superlubricity-across scales from nano- up to macroscale contacts.
Yao, William C; Regone, Rachel M; Huyhn, Nancy; Butler, E Brian; Takashima, Masayoshi
2014-03-01
Develop a novel three-dimensional (3-D) anatomical model to assist in improving spatial knowledge of the skull base, paranasal sinuses, and adjacent structures, and validate the utilization of 3-D reconstruction to augment two-dimensional (2-D) computed tomography (CT) for the training of medical students and otolaryngology-head and neck surgery residents. Prospective study. A study of 18 subjects studying sinus anatomy was conducted at a tertiary academic center during the 2011 to 2012 academic year. An image processing and 3-D modeling program was used to create a color coded 3-D scalable/layerable/rotatable model of key paranasal and skull base structures from a 2-D high-resolution sinus CT scan. Subjects received instruction of the sinus anatomy in two sessions, first through review of a 2-D CT sinus scan, followed by an educational module of the 3-D reconstruction. After each session, subjects rated their knowledge of the sinus and adjacent structures on a self-assessment questionnaire. Significant improvement in the perceived understanding of the anatomy was noted after the 3-D educational module session when compared to the 2-D CT session alone (P < .01). Every subject believed the addition of 3-D imaging accelerated their education of sinus anatomy and recommended its use to others. The impression of the learners was that a 3-D educational module, highlighting key structures, is a highly effective tool to enhance the education of medical students and otolaryngology residents in sinus and skull base anatomy and its adjacent structures, specifically in conceptualizing the spatial orientation of these structures. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Subscale Fast Cookoff Testing and Modeling for the Hazard Assessment of Large Rocket Motors
2001-03-01
41 LIST OF TABLES Table 1 Heats of Vaporization Parameter for Two-liner Phase Transformation - Complete Liner Sublimation and/or Combined Liner...One-dimensional 2-D Two-dimensional ALE3D Arbitrary-Lagrange-Eulerian (3-D) Computer Code ALEGRA 3-D Arbitrary-Lagrange-Eulerian Computer Code for...case-liner bond areas and in the grain inner bore to explore the pre-ignition and ignition phases , as well as burning evolution in rocket motor fast
Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; ...
2015-03-03
Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to themore » interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.« less
Correlating hydrodynamic radii with that of two-dimensional nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Yuan; Kan, Yuwei; Clearfield, Abraham
2015-12-21
Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correctingmore » factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.« less
Observation of entanglement witnesses for orbital angular momentum states
NASA Astrophysics Data System (ADS)
Agnew, M.; Leach, J.; Boyd, R. W.
2012-06-01
Entanglement witnesses provide an efficient means of determining the level of entanglement of a system using the minimum number of measurements. Here we demonstrate the observation of two-dimensional entanglement witnesses in the high-dimensional basis of orbital angular momentum (OAM). In this case, the number of potentially entangled subspaces scales as d(d - 1)/2, where d is the dimension of the space. The choice of OAM as a basis is relevant as each subspace is not necessarily maximally entangled, thus providing the necessary state for certain tests of nonlocality. The expectation value of the witness gives an estimate of the state of each two-dimensional subspace belonging to the d-dimensional Hilbert space. These measurements demonstrate the degree of entanglement and therefore the suitability of the resulting subspaces for quantum information applications.
NASA Astrophysics Data System (ADS)
Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab
2017-01-01
Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.
Trends in data processing of comprehensive two-dimensional chromatography: state of the art.
Matos, João T V; Duarte, Regina M B O; Duarte, Armando C
2012-12-01
The operation of advanced chromatographic systems, namely comprehensive two-dimensional (2D) chromatography coupled to multidimensional detectors, allows achieving a great deal of data that need special care to be processed in order to characterize and quantify as much as possible the analytes under study. The aim of this review is to identify the main trends, research needs and gaps on the techniques for data processing of multidimensional data sets obtained from comprehensive 2D chromatography. The following topics have been identified as the most promising for new developments in the near future: data acquisition and handling, peak detection and quantification, measurement of overlapping of 2D peaks, and data analysis software for 2D chromatography. The rational supporting most of the data processing techniques is based on the generalization of one-dimensional (1D) chromatography although algorithms, such as the inverted watershed algorithm, use the 2D chromatographic data as such. However, for processing more complex N-way data there is a need for using more sophisticated techniques. Apart from using other concepts from 1D chromatography, which have not been tested for 2D chromatography, there is still room for new improvements and developments in algorithms and software for dealing with 2D comprehensive chromatographic data. Copyright © 2012 Elsevier B.V. All rights reserved.
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
NASA Astrophysics Data System (ADS)
Qiao, Jia-Bin; Gong, Yue; Zuo, Wei-Jie; Wei, Yi-Cong; Ma, Dong-Lin; Yang, Hong; Yang, Ning; Qiao, Kai-Yao; Shi, Jin-An; Gu, Lin; He, Lin
2017-05-01
Assembling different two-dimensional (2D) crystals, covering a very broad range of properties, into van der Waals (vdW) heterostructures enables unprecedented possibilities for combining the best of different ingredients in one objective material. So far, metallic, semiconducting, and insulating 2D crystals have been used successfully in making functional vdW heterostructures with properties by design. Here, we expand 2D superconducting crystals as a building block of vdW hererostructures. One-step growth of large-scale high-quality vdW heterostructures of graphene and 2D superconducting α -M o2C by using chemical vapor deposition is reported. The superconductivity and its 2D nature of the heterostructures are characterized by our scanning tunneling microscopy measurements. This adds 2D superconductivity, the most attractive property of condensed matter physics, to vdW heterostructures.
Raghavan, Chinnambedu Murugesan; Chen, Tzu-Pei; Li, Shao-Sian; Chen, Wei-Liang; Lo, Chao-Yuan; Liao, Yu-Ming; Haider, Golam; Lin, Cheng-Chieh; Chen, Chia-Chun; Sankar, Raman; Chang, Yu-Ming; Chou, Fang-Cheng; Chen, Chun-Wei
2018-05-09
Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA) 2 (MA) n-1 Pb n I 3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.
Zhang, Yanhai; Qibule, Hasi; Jin, Yan; Wang, Jia; Ma, Wenli
2015-03-01
A rapid method for the simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions has been developed using online two-dimensional liquid chromatography (2D-LC). First of all, C8 and polar embedded C18 columns were chosen as the first and second dimensional column respectively according to hydrophobic-subtraction model, which constituted excellent orthogonal separation system. The detection wavelengths were set at 263 nm for vitamin D3, 296 nm for vitamin E and 325 nm for vitamin A. The purification of vitamin D3 and quantifications of vitamins A and E were completed simultaneously in the first dimensional separation using the left pump of Dual Gradient LC (DGLC) with methanol, acetonitrile and water as mobile phases. The heart-cutting time window of vitamin D3 was confirmed according to the retention time of vitamin D3 in the first dimensional separation. The elute from the first dimensional column (1-D column) which contained vitamin D3 was collected by a 500 µL sample loop and then taken into the second dimensional column (2-D column) by the right pump of DGLC with methanol, acetonitrile and water as mobile phases. The quantification of vitamin D3 was performed in the second dimensional separation with vitamin D2 as internal standard. At last, this method was applied for the analysis of the three vitamins in milk powder, cheese and yogurt. The injected sample solution with no further purification was pre-treated by hot-saponification using 1. 25 kg/L KOH solution and extracted by petroleum ether solvent. The recoveries of vitamin D3 spiked in all samples were 75.50%-85.00%. There was no statistically significant difference for the results between this method and standard method through t-test. The results indicate that vitamins A, D3 and E in infant formula and adult fortified dairy can be determined rapidly and accurately with this method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seung Sae; Yu, Jung Ho; Lu, Di
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less
10Gbps 2D MGC OCDMA Code over FSO Communication System
NASA Astrophysics Data System (ADS)
Professor Urmila Bhanja, Associate, Dr.; Khuntia, Arpita; Alamasety Swati, (Student
2017-08-01
Currently, wide bandwidth signal dissemination along with low latency is a leading requisite in various applications. Free space optical wireless communication has introduced as a realistic technology for bridging the gap in present high data transmission fiber connectivity and as a provisional backbone for rapidly deployable wireless communication infrastructure. The manuscript highlights on the implementation of 10Gbps SAC-OCDMA FSO communications using modified two dimensional Golomb code (2D MGC) that possesses better auto correlation, minimum cross correlation and high cardinality. A comparison based on pseudo orthogonal (PSO) matrix code and modified two dimensional Golomb code (2D MGC) is developed in the proposed SAC OCDMA-FSO communication module taking different parameters into account. The simulative outcome signifies that the communication radius is bounded by the multiple access interference (MAI). In this work, a comparison is made in terms of bit error rate (BER), and quality factor (Q) based on modified two dimensional Golomb code (2D MGC) and PSO matrix code. It is observed that the 2D MGC yields better results compared to the PSO matrix code. The simulation results are validated using optisystem version 14.
Zhou, Ruiping; Ostwal, Vaibhav; Appenzeller, Joerg
2017-08-09
The key appeal of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene for electronic applications certainly lies in their atomically thin nature that offers opportunities for devices beyond conventional transistors. It is also this property that makes them naturally suited for a type of integration that is not possible with any three-dimensional (3D) material, that is, forming heterostructures by stacking dissimilar 2D materials together. Recently, a number of research groups have reported on the formation of atomically sharp p/n-junctions in various 2D heterostructures that show strong diode-type rectification. In this article, we will show that truly vertical heterostructures do exhibit much smaller rectification ratios and that the reported results on atomically sharp p/n-junctions can be readily understood within the framework of the gate and drain voltage response of Schottky barriers that are involved in the lateral transport.
ERIC Educational Resources Information Center
Rowe, Jeremy; Razdan, Anshuman
The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…
Development and Assessment of a New 3D Neuroanatomy Teaching Tool for MRI Training
ERIC Educational Resources Information Center
Drapkin, Zachary A.; Lindgren, Kristen A.; Lopez, Michael J.; Stabio, Maureen E.
2015-01-01
A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in…
Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction.
Lou, Shuai; Liu, Yin; Yang, Fuyi; Lin, Shuren; Zhang, Ruopeng; Deng, Yang; Wang, Michael; Tom, Kyle B; Zhou, Fei; Ding, Hong; Bustillo, Karen C; Wang, Xi; Yan, Shancheng; Scott, Mary; Minor, Andrew; Yao, Jie
2018-03-14
Engineering the structure of materials endows them with novel physical properties across a wide range of length scales. With high in-plane stiffness and strength, but low flexural rigidity, two-dimensional (2D) materials are excellent building blocks for nanostructure engineering. They can be easily bent and folded to build three-dimensional (3D) architectures. Taking advantage of the large lattice mismatch between the constituents, we demonstrate a 3D heterogeneous architecture combining a basal Bi 2 Se 3 nanoplate and wavelike Bi 2 Te 3 edges buckling up and down forming periodic ripples. Unlike 2D heterostructures directly grown on substrates, the solution-based synthesis allows the heterostructures to be free from substrate influence during the formation process. The balance between bending and in-plane strain energies gives rise to controllable rippling of the material. Our experimental results show clear evidence that the wavelengths and amplitudes of the ripples are dependent on both the widths and thicknesses of the rippled material, matching well with continuum mechanics analysis. The rippled Bi 2 Se 3 /Bi 2 Te 3 heterojunction broadens the horizon for the application of 2D materials heterojunction and the design and fabrication of 3D architectures based on them, which could provide a platform to enable nanoscale structure generation and associated photonic/electronic properties manipulation for optoelectronic and electromechanic applications.
Atomically thin two-dimensional organic-inorganic hybrid perovskites
NASA Astrophysics Data System (ADS)
Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong
2015-09-01
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.
Maschio, Federico; Pandya, Mirali; Olszewski, Raphael
2016-03-22
The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.
Maschio, Federico; Pandya, Mirali; Olszewski, Raphael
2016-01-01
Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456
Song, Dianmei; Zhu, Jikui; Xuan, Liying; Zhao, Chenglan; Xie, Li; Chen, Lingyun
2018-01-01
Freestanding two dimensional (2D) porous nanostructures have great potential in electrical energy storage. In the present work, we reported the first synthesis of two-dimensional (2D) β-Ni(OH) 2 thin sheets (CQU-Chen-Ni-O-H-1) assembled by 3D nanoflake array as basic building units under acid condition by direct hydrothermal decomposition of the mixed solution of nickel nitrate (Ni(NO 3 ) 2 ) and acetic acid (CH 3 COOH, AA). The unique 3D nanoflake array assembled mesoporous 2D structures endow the thin sheets with a high specific capacitance of 1.78Fcm -2 (1747.5Fg -1 ) at the current density of 1.02mAcm -2 and good rate capability of 67.4% retain from 1.02 to 10.2mAcm -2 . The corresponding assembled asymmetric supercapacitor (ASC) achieves (CQU-Chen-Ni-O-H-1//active carbon (AC)) a high voltage of 1.8V and an energy density of 23.45Whkg -1 with a maximum power density of 9kWkg -1 , as well as cycability with 93.6% capacitance retention after 10,000 cycles. These results show the mesoporous thin sheets have great potential for SCs and other energy storage devices. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Chengliang; Mo, Lili; Ma, Yegang; Peng, Guilin; Ren, Yi; Wang, Wei; Liu, Yongyu
2015-01-01
Background Three-dimensional (3D) vision systems are now available for thoracic surgery. It is unclear whether 3D video-assisted thoracic surgery (VATS) is superior to 2D VATS systems. This study aimed to compare the operative and perioperative data between 2D and 3D VATS lobectomy (VTL) and to identify the actual role of 3D VTL in thoracic surgery. Methods A two-institutional comparative study was conducted from November 2013 to November 2014 at Liaoning Cancer Hospital & Institute and the First Affiliated Hospital of Guangzhou Medical University, China, of 300 patients with resectable non-small cell lung cancer (NSCLC). Patients were assigned to receive either the 3D VATS (n=150) or 2D VATS (n=150) lobectomy. The operative and perioperative data between 2D VATS and 3D VATS were compared. Results Although there was no significant difference between the two groups regarding the incidence of each single complication, a significantly less operative time was found in the 3D VATS group (145 min) than in the 2D VATS group (176 min) (P=0.006). Postoperative mortality rates in 3D VATS and 2D VATS groups were both 0%.No significant difference was found between groups for estimated blood loss (P=0.893), chest drainage tube placement time (P=0.397), length of hospital stay (P=0.199), number of lymph nodes resected (P=0.397), postoperative complications (P=0.882) and cost of care (P=0.913). Conclusions Early results of this study demonstrate that the 3D VATS lobectomy procedure can be performed with less operative time. 3D VATS and 2D VATS lobectomy are both safe procedures in first-line surgical treatment of NSCLC. PMID:26623103
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
NASA Astrophysics Data System (ADS)
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
2D Kac-Moody symmetry of 4D Yang-Mills theory
He, Temple; Mitra, Prahar; Strominger, Andrew
2016-10-25
Scattering amplitudes of any four-dimensional theory with nonabelian gauge group G may be recast as two-dimensional correlation functions on the asymptotic twosphere at null in nity. The soft gluon theorem is shown, for massless theories at the semiclassical level, to be the Ward identity of a holomorphic two-dimensional G-Kac-Moody symmetry acting on these correlation functions. Holomorphic Kac-Moody current insertions are positive helicity soft gluon insertions. Furthermore, the Kac-Moody transformations are a CPT invariant subgroup of gauge transformations which act nontrivially at null in nity and comprise the four-dimensional asymptotic symmetry group.
A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells
NASA Astrophysics Data System (ADS)
Tourani, Abbas; White, Peter; Ivey, Paul
2014-06-01
Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.
Soganci, Gokce; Cinar, Duygu; Caglar, Alper; Yagiz, Ayberk
2018-05-31
The aim of this study was to determine and compare the dimensional changes of polyether and vinyl polyether siloxane impression materials under immersion disinfection with two different disinfectants in three time periods. Impressions were obtained from an edentulous master model. Sodium hypochlorite (5.25%) and glutaraldehyde (2%) were used for disinfection and measurements were done 30 min later after making impression before disinfection, after required disinfection period (10 min), and after 24 h storage at room temperature. Impressions were scanned using 3D scanner with 10 microns accuracy and 3D software was used to evaluate the dimensional changes with superimpositioning. Positive and negative deviations were calculated and compared with master model. There was no significant difference between two elastomeric impression materials (p>0.05). It was concluded that dimensional accuracy and stability of two impression materials were excellent and similar.
NASA Astrophysics Data System (ADS)
Steiner, Christian; Gebhardt, Julian; Ammon, Maximilian; Yang, Zechao; Heidenreich, Alexander; Hammer, Natalie; Görling, Andreas; Kivala, Milan; Maier, Sabine
2017-03-01
The fabrication of nanostructures in a bottom-up approach from specific molecular precursors offers the opportunity to create tailored materials for applications in nanoelectronics. However, the formation of defect-free two-dimensional (2D) covalent networks remains a challenge, which makes it difficult to unveil their electronic structure. Here we report on the hierarchical on-surface synthesis of nearly defect-free 2D covalent architectures with carbonyl-functionalized pores on Au(111), which is investigated by low-temperature scanning tunnelling microscopy in combination with density functional theory calculations. The carbonyl-bridged triphenylamine precursors form six-membered macrocycles and one-dimensional (1D) chains as intermediates in an Ullmann-type coupling reaction that are subsequently interlinked to 2D networks. The electronic band gap is narrowed when going from the monomer to 1D and 2D surface-confined π-conjugated organic polymers comprising the same building block. The significant drop of the electronic gap from the monomer to the polymer confirms an efficient conjugation along the triphenylamine units within the nanostructures.
NASA Astrophysics Data System (ADS)
In, Hai-Jung; Kwon, Oh-Kyong
2012-03-01
A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.
Twelve inequivalent Dirac cones in two-dimensional ZrB2
NASA Astrophysics Data System (ADS)
Lopez-Bezanilla, Alejandro
2018-01-01
Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB2 is presented. Two-dimensional ZrB2 is a mechanically stable d - and p -orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is able to remove selectively the Dirac cones. A rational explanation in terms of d - and p -orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. The versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.
Twelve inequivalent Dirac cones in two-dimensional ZrB 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Bezanilla, Alejandro
Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less
Twelve inequivalent Dirac cones in two-dimensional ZrB 2
Lopez-Bezanilla, Alejandro
2018-01-29
Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less
Murad-Regadas, S M; Regadas, F S P; Barreto, R G L; Rodrigues, L V; de Souza, M H L P
2009-10-01
The aim of this prospective study was to test two-dimensional dynamic anorectal ultrasonography (2D-DAUS) in the assessment of anismus and compare it with echodefecography (ECD). Fifty consecutive female patients with outlet delay were submitted to 2D and 3D-DAUS, measuring the relaxing or contracting puborectalis muscle angle during straining. The patients were assigned to one of two groups based on ECD findings. Group I consisted of 29 patients without anismus and group II included 21 patients diagnosed with anismus. Subsequently 2D-DAUS images were checked for anismus and compared with ECD findings. Upon straining, the angle produced by the movement of the puborectalis muscle decreased in 26 out of the 29 (89.6%) patients of group I and increased 19 out of the 21 (90.4%) patients of group II. The mean angle during straining differed significantly between group I and group II. The index of agreement between the two scanning modes was 89.6% (26/29) for group I (Kappa: 0.796; CI: 95%; range: 0.51-1.0) and 90.4% (19/21) for group II (Kappa: 0.796; CI: 95%; range: 0.51-1.0). Two-dimensional dynamic anal ultrasonography can be used as an alternative method to assess patients with anismus, although the 3-D modality is more precise to evaluate the PR angle as the sphincters integrity as the whole muscle length is clearly visualized.
Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Ake; Winter, Reidar
2009-08-25
Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 +/- 3.7% and -0.2 +/- 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.
Sample Dimensionality Effects on d' and Proportion of Correct Responses in Discrimination Testing.
Bloom, David J; Lee, Soo-Yeun
2016-09-01
Products in the food and beverage industry have varying levels of dimensionality ranging from pure water to multicomponent food products, which can modify sensory perception and possibly influence discrimination testing results. The objectives of the study were to determine the impact of (1) sample dimensionality and (2) complex formulation changes on the d' and proportion of correct response of the 3-AFC and triangle methods. Two experiments were conducted using 47 prescreened subjects who performed either triangle or 3-AFC test procedures. In Experiment I, subjects performed 3-AFC and triangle tests using model solutions with different levels of dimensionality. Samples increased in dimensionality from 1-dimensional sucrose in water solution to 3-dimensional sucrose, citric acid, and flavor in water solution. In Experiment II, subjects performed 3-AFC and triangle tests using 3-dimensional solutions. Sample pairs differed in all 3 dimensions simultaneously to represent complex formulation changes. Two forms of complexity were compared: dilution, where all dimensions decreased in the same ratio, and compensation, where a dimension was increased to compensate for a reduction in another. The proportion of correct responses decreased for both methods when the dimensionality was increased from 1- to 2-dimensional samples. No reduction in correct responses was observed from 2- to 3-dimensional samples. No significant differences in d' were demonstrated between the 2 methods when samples with complex formulation changes were tested. Results reveal an impact on proportion of correct responses due to sample dimensionality and should be explored further using a wide range of sample formulations. © 2016 Institute of Food Technologists®
Electron counting and a large family of two-dimensional semiconductors
NASA Astrophysics Data System (ADS)
Miao, Maosheng; Botana, Jorge; Zurek, Eva; Liu, Jingyao; Yang, Wen
Two-dimensional semiconductors (2DSC) are currently the focus of many studies, thanks to their novel and superior transport properties that may greatly influence future electronic devices. The potential applications of 2DSCs range from low-dimensional electronics, topological insulators and vallytronics all the way to novel photolysis. However, compared with the conventional semiconductors that are comprised of main group elements and cover a large range of band gaps and lattice constants, the choice of 2D materials is very limited. In this work, we propose and demonstrate a large family of 2DSCs, all adopting the same structure and consisting of only main group elements. Using advanced density functional calculations, we demonstrate the attainability of these materials, and show that they cover a large range of lattice constants, band gaps and band edge states, making them good candidate materials for heterojunctions. This family of two dimensional materials may be instrumental in the fabrication of 2DSC devices that may rival the currently employed 3D semiconductors.
NASA Astrophysics Data System (ADS)
Rousson, Johanna; Haar, Jérémy; Santal, Sarah; Kumcu, Asli; Platiša, Ljiljana; Piepers, Bastian; Kimpe, Tom; Philips, Wilfried
2016-03-01
While three-dimensional (3-D) imaging systems are entering hospitals, no study to date has explored the luminance calibration needs of 3-D stereoscopic diagnostic displays and if they differ from two-dimensional (2-D) displays. Since medical display calibration incorporates the human contrast sensitivity function (CSF), we first assessed the 2-D CSF for benchmarking and then examined the impact of two image parameters on the 3-D stereoscopic CSF: (1) five depth plane (DP) positions (between DP: -171 and DP: 2853 mm), and (2) three 3-D inclinations (0 deg, 45 deg, and 60 deg around the horizontal axis of a DP). Stimuli were stereoscopic images of a vertically oriented 2-D Gabor patch at one of seven frequencies ranging from 0.4 to 10 cycles/deg. CSFs were measured for seven to nine human observers with a staircase procedure. The results indicate that the 2-D CSF model remains valid for a 3-D stereoscopic display regardless of the amount of disparity between the stereo images. We also found that the 3-D CSF at DP≠0 does not differ from the 3-D CSF at DP=0 for DPs and disparities which allow effortless binocular fusion. Therefore, the existing 2-D medical luminance calibration algorithm remains an appropriate tool for calibrating polarized stereoscopic medical displays.
Mostaguir, Khaled; Hoogland, Christine; Binz, Pierre-Alain; Appel, Ron D
2003-08-01
The Make 2D-DB tool has been previously developed to help build federated two-dimensional gel electrophoresis (2-DE) databases on one's own web site. The purpose of our work is to extend the strength of the first package and to build a more efficient environment. Such an environment should be able to fulfill the different needs and requirements arising from both the growing use of 2-DE techniques and the increasing amount of distributed experimental data.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
HEC -2 model used during the design and recertification of the Tanana River Levee. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4...ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...approximately 17 miles East of Fairbanks, Alaska, and is part of the Chena River Lakes Flood Control project. The Chena River floodway is designed to
Zhang, Ying; Zhan, Tian-Guang; Zhou, Tian-You; Qi, Qiao-Yan; Xu, Xiao-Na; Zhao, Xin
2016-06-18
A two-dimensional (2D) supramolecular organic framework (SOF) has been constructed through the co-assembly of a triphenylamine-based building block and cucurbit[8]uril (CB[8]). Fluorescence turn-on of the non-emissive building block was observed upon the formation of the 2D SOF, which displayed highly selective and sensitive recognition of picric acid over a variety of nitroaromatics.
Electronic Transport in Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
NASA Astrophysics Data System (ADS)
Wang, Lanning; Chen, Weimin; Li, Lizhen
2017-06-01
This paper is concerned with the problems of dissipative stability analysis and control of the two-dimensional (2-D) Fornasini-Marchesini local state-space (FM LSS) model. Based on the characteristics of the system model, a novel definition of 2-D FM LSS (Q, S, R)-α-dissipativity is given first, and then a sufficient condition in terms of linear matrix inequality (LMI) is proposed to guarantee the asymptotical stability and 2-D (Q, S, R)-α-dissipativity of the systems. As its special cases, 2-D passivity performance and 2-D H∞ performance are also discussed. Furthermore, by use of this dissipative stability condition and projection lemma technique, 2-D (Q, S, R)-α-dissipative state-feedback control problem is solved as well. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Wu, Jun-Chi; Peng, Xu; Guo, Yu-Qiao; Zhou, Hao-Dong; Zhao, Ji-Yin; Ruan, Ke-Qin; Chu, Wang-Sheng; Wu, Changzheng
2018-06-01
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.
Computational Fluid Dynamics of the Boundary Layer Characteristics of a Pacific Bluefin Tuna
2015-09-18
17 LIST OF ABBREVIATIONS AND ACRONYMS 2D Two Dimensional 3D Three Dimensional AUV Autonomous...Finally, this research has the potential to advance technology of various Navy systems, e.g., torpedo and autonomous underwater vehicle ( AUV ) drag
Efficient local representations for three-dimensional palmprint recognition
NASA Astrophysics Data System (ADS)
Yang, Bing; Wang, Xiaohua; Yao, Jinliang; Yang, Xin; Zhu, Wenhua
2013-10-01
Palmprints have been broadly used for personal authentication because they are highly accurate and incur low cost. Most previous works have focused on two-dimensional (2-D) palmprint recognition in the past decade. Unfortunately, 2-D palmprint recognition systems lose the shape information when capturing palmprint images. Moreover, such 2-D palmprint images can be easily forged or affected by noise. Hence, three-dimensional (3-D) palmprint recognition has been regarded as a promising way to further improve the performance of palmprint recognition systems. We have developed a simple, but efficient method for 3-D palmprint recognition by using local features. We first utilize shape index representation to describe the geometry of local regions in 3-D palmprint data. Then, we extract local binary pattern and Gabor wavelet features from the shape index image. The two types of complementary features are finally fused at a score level for further improvements. The experimental results on the Hong Kong Polytechnic 3-D palmprint database, which contains 8000 samples from 400 palms, illustrate the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Lang, Stephen; Hou, Arthur Y.; Zhang, Minghua; Simpson, Joanne
2008-01-01
Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.
Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.
Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing
2016-09-09
In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.
MESH2D Grid generator design and use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].
Electrostatics of two-dimensional lateral junctions.
Chaves, Ferney A; Jiménez, David
2018-07-06
The increasing technological control of two-dimensional (2D) materials has allowed the demonstration of 2D lateral junctions exhibiting unique properties that might serve as the basis for a new generation of 2D electronic and optoelectronic devices. Notably, the chemically doped MoS 2 homojunction, the WSe 2 -MoS 2 monolayer and MoS 2 monolayer/multilayer heterojunctions, have been demonstrated. Here we report the investigation of 2D lateral junction electrostatics, which differs from the bulk case because of the weaker screening, producing a much longer transition region between the space-charge region and the quasi-neutral region, making inappropriate the use of the complete-depletion region approximation. For such a purpose we have developed a method based on the conformal mapping technique to solve the 2D electrostatics, widely applicable to every kind of junctions, giving accurate results for even large asymmetric charge distribution scenarios.
Electrostatics of two-dimensional lateral junctions
NASA Astrophysics Data System (ADS)
Chaves, Ferney A.; Jiménez, David
2018-07-01
The increasing technological control of two-dimensional (2D) materials has allowed the demonstration of 2D lateral junctions exhibiting unique properties that might serve as the basis for a new generation of 2D electronic and optoelectronic devices. Notably, the chemically doped MoS2 homojunction, the WSe2-MoS2 monolayer and MoS2 monolayer/multilayer heterojunctions, have been demonstrated. Here we report the investigation of 2D lateral junction electrostatics, which differs from the bulk case because of the weaker screening, producing a much longer transition region between the space-charge region and the quasi-neutral region, making inappropriate the use of the complete-depletion region approximation. For such a purpose we have developed a method based on the conformal mapping technique to solve the 2D electrostatics, widely applicable to every kind of junctions, giving accurate results for even large asymmetric charge distribution scenarios.
Exact results for quench dynamics and defect production in a two-dimensional model.
Sengupta, K; Sen, Diptiman; Mondal, Shreyoshi
2008-02-22
We show that for a d-dimensional model in which a quench with a rate tau(-1) takes the system across a (d-m)-dimensional critical surface, the defect density scales as n approximately 1/tau(mnu/(znu+1)), where nu and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d = 2 and m = nu = z = 1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model that can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.
NASA Astrophysics Data System (ADS)
Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing
2016-08-01
A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.
Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing
2016-08-16
A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.
Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System
NASA Astrophysics Data System (ADS)
Sepulveda, N.
2007-12-01
An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.
Wang, Qiao
2018-05-25
To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P < 0.05). Compared with BI-RADS alone, both combined sets had significantly (P < 0.05) higher AUCs and specificities, whereas, the two combined sets showed no significant difference in AUC (P > 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.
Since the initial discovery of polychlorinated biphenyls (PCBs) in the environment, the detection and identification of certain PCB congeners using the traditional one dimensional (1-D) chromatographic technique has been very challenging, especially, separating the 46 isomeric pe...
First-Principles Study of Novel Two-Dimensional (C4H9NH3)2PbX4 Perovskites for Solar Cell Absorbers.
Wang, Da; Wen, Bo; Zhu, Ya-Nan; Tong, Chuan-Jia; Tang, Zhen-Kun; Liu, Li-Min
2017-02-16
Low-dimensional perovskites (A 2 BX 4 ), in which the A cations are replaced by different organic cations, may be used for photovoltaic applications. In this contribution, we systematically study the two-dimensional (2D) (C 4 H 9 NH 3 ) 2 PbX 4 (X═Cl, Br and I) hybrid perovskites by density functional theory (DFT). A clear structures-properties relationship, with the photophysical characteristics directly related to the dimensionality and material compositions, was established. The strong s-p antibonding couplings in both bulk and monolayer (C 4 H 9 NH 3 ) 2 PbI 4 lead to low effective masses for both holes (m h *) and electrons (m e *). However, m h * increases in proportion to the decreasing inorganic layer thickness, which eventually leads to a slightly shifted band edge emission found in 2D perovskites. Notably, the 2D (C 4 H 9 NH 3 ) 2 PbX 4 perovskites exhibit strong optical transitions in the visible light spectrum, and the optical absorption tunings can be achieved by varying the compositions and the layer thicknesses. Such work paves an important way to uncover the structures-properties relationship in 2D perovskites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young Tack, E-mail: 023273@kist.re.kr, E-mail: stunalren@gmail.com; Choi, Won Kook; Materials and Life Science Research Division, Korea Institute of Science and Technology
We report on a chemical free one-off imprinting method to fabricate two dimensional (2D) van der Waals (vdWs) materials based transistors. Such one-off imprinting technique is the simplest and effective way to prevent unintentional chemical reaction or damage of 2D vdWs active channel during device fabrication process. 2D MoS{sub 2} nanosheets based transistors with a hexagonal-boron-nitride (h-BN) passivation layer, prepared by one-off imprinting, show negligible variations of transfer characteristics after chemical vapor deposition process. In addition, this method enables the fabrication of all 2D MoS{sub 2} transistors consisting of h-BN gate insulator, and graphene source/drain and gate electrodes without anymore » chemical damage.« less
Long-lived trimers in a quasi-two-dimensional Fermi system
NASA Astrophysics Data System (ADS)
Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper
2018-04-01
We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2018-04-01
Morphological evolution of Ge layers on SiO2 substrates grown by photo-excited chemical vapor deposition from GeH4 was monitored in real time by recording (Ψ, Δ) angles of spectroscopic ellipsometry and ex-situ analyzed by atomic force microscopy (AFM). Distinct Ψ-Δ trajectory shapes were demonstrated to discriminate the two-dimensional (2D) and three-dimensional (3D) growth modes. While the trajectory of 2D growth is characterized by a one-turn spiral, that of 3D growth consisted of three sections corresponding to initial wetting of the SiO2 surface, creation of nucleation centers, and dot growth. The critical point where the system turns into 2D or 3D growth can be in situ identified in terms of the directions of the Ψ-Δ trajectories. AFM images revealed characteristic changes in the microstructure, including self-assembling dots and dots merging with one another. While the root-mean-square surface roughness increased linearly against film thickness, the maximum peak-to-valley height deviated once from linear dependence and later returned back to it, which reflected coarsening of dots and embedding of valleys between dots.
NASA Astrophysics Data System (ADS)
Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan
2017-05-01
Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.
Usta, Taner A; Ozkaynak, Aysel; Kovalak, Ebru; Ergul, Erdinc; Naki, M Murat; Kaya, Erdal
2015-08-01
Two-dimensional (2D) view is known to cause practical difficulties for surgeons in conventional laparoscopy. Our goal was to evaluate whether the new-generation, Three-Dimensional Laparoscopic Vision System (3D LVS) provides greater benefit in terms of execution time and error number during the performance of surgical tasks. This study tests the hypothesis that the use of the new generation 3D LVS can significantly improve technical ability on complex laparoscopic tasks in an experimental model. Twenty-four participants (8 experienced, 8 minimally experienced, and 8 inexperienced) were evaluated for 10 different tasks in terms of total execution time and error number. The 4-point lickert scale was used for subjective assessment of the two imaging modalities. All tasks were completed by all participants. Statistically significant difference was determined between 3D and 2D systems in the tasks of bead transfer and drop, suturing, and pick-and-place in the inexperienced group; in the task of passing through two circles with the needle in the minimally experienced group; and in the tasks of bead transfer and drop, suturing and passing through two circles with the needle in the experienced group. Three-dimensional imaging was preferred over 2D in 6 of the 10 subjective criteria questions on 4-point lickert scale. The majority of the tasks were completed in a shorter time using 3D LVS compared to 2D LVS. The subjective Likert-scale ratings from each group also demonstrated a clear preference for 3D LVS. New 3D LVS has the potential to improve the learning curve, and reduce the operating time and error rate during the performances of laparoscopic surgeons. Our results suggest that the new-generation 3D HD LVS will be helpful for surgeons in laparoscopy (Clinical Trial ID: NCT01799577, Protocol ID: BEHGynobs-4).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaud, Pascale; Brummell, Nicholas
2015-12-10
Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtlmore » number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.« less
Laser Fabrication of Two-Dimensional Rotating-Lattice Single Crystal
Savytskii, Dmytro; Au-Yeung, Courtney; Dierolf, Volkmar; ...
2017-03-09
A rotating lattice single (RLS) crystal is a unique form of solid, which was fabricated recently as one-dimensional architecture in glass via solid state transformation induced by laser irradiation. In these objects, the lattice rotates gradually and predictably about an axis that lies in the plane of the crystal and is normal to the laser scanning direction. This paper reports on the fabrication of Sb 2S 3 two-dimensional (2D) RLS crystals on the surface of 16SbI 3-84Sb 2S 3 glass, as a model example: individual RLS crystal lines are joined together using "stitching" or "rastering" as two successful protocols. Themore » electron back scattered diffraction mapping and scanning Laue X-ray microdiffraction of the 2D RLS crystals show gradual rotation of lattice comprising of two components, one along the length of each line and another normal to this direction. The former component is determined by the rotation of the first line of the 2D pattern, but the relative contribution of the last component depends on the extent of overlap between two successive lines. By the appropriate choice of initial seed orientation and the direction of scanning, it is possible to control the lattice rotation, and even to reduce it down to 5 for a 50 × 50 μm 2 2D pattern of Sb 2S 3 crystal.« less
ERIC Educational Resources Information Center
Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin
2015-01-01
Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…
NASA Astrophysics Data System (ADS)
Wei, Su-Huai; Yang, Ji-Hui; Zhang, Yueyu; Yin, Wan-Jian; Gong, X. G.; Yakobson, Boris I.
Two-dimensional (2D) semiconductors have many unique electronic and optoelectronic properties that is suitable for novel device applications. Most of the current study are focused on group IV or transition metal chalcogenides. In this study, using atomic transmutation and global optimization methods, we identified two group IV-VI 2D materials, Pma2-SiS and silicene sulfide that can overcome shortcomings encountered in conventional 2D semiconducttord. Pma2-SiS is found to be both chemically, energetically, and thermally stable. Most importantly, Pma2-SiS has unique electronic and optoelectronic properties, including direct bandgaps suitable for solar cells, good mobility for nanoelectronics, good flexibility of property tuning by layer thickness and strain appliance, and good air stability as well. Therefore, Pma2-SiS is expected to be a very promising 2D material in the field of 2D electronics and optoelectronics. Silicene sulfide also shows similar properties. We believe that the designing principles and approaches used to identify these materials have great potential to accelerate future finding of new functional materials within the 2D families.
The Airborne Optical Systems Testbed (AOSTB)
2017-05-31
appropriate color to each pixel in and displayed in a two -dimensional array. Another method is to render a 3D model from the data and display the model as if...USA Distribution A: Public Release ALBOTA@LL.MIT.EDU ABSTRACT Over the last two decades MIT Lincoln Laboratory (MITLL) has pioneered the development... two -dimensional (2D) grid of detectors. Rather than measuring intensity, as in a conventional camera, these detectors measure the photon time-of
Ke, Yujie; Balin, Igal; Wang, Ning; Lu, Qi; Tok, Alfred Iing Yoong; White, Timothy J; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi
2016-12-07
Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO 2 ). VO 2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO 2 /VO 2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔT sol = 11.0%) and high solar transmittance (T lum = 49.6%). Experiments show that the color changes of VO 2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO 2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.
Zheng, Changxi; Zhang, Qianhui; Weber, Bent; Ilatikhameneh, Hesameddin; Chen, Fan; Sahasrabudhe, Harshad; Rahman, Rajib; Li, Shiqiang; Chen, Zhen; Hellerstedt, Jack; Zhang, Yupeng; Duan, Wen Hui; Bao, Qiaoliang; Fuhrer, Michael S
2017-03-28
Large-area two-dimensional (2D) heterojunctions are promising building blocks of 2D circuits. Understanding their intriguing electrostatics is pivotal but largely hindered by the lack of direct observations. Here graphene-WS 2 heterojunctions are prepared over large areas using a seedless ambient-pressure chemical vapor deposition technique. Kelvin probe force microscopy, photoluminescence spectroscopy, and scanning tunneling microscopy characterize the doping in graphene-WS 2 heterojunctions as-grown on sapphire and transferred to SiO 2 with and without thermal annealing. Both p-n and n-n junctions are observed, and a flat-band condition (zero Schottky barrier height) is found for lightly n-doped WS 2 , promising low-resistance ohmic contacts. This indicates a more favorable band alignment for graphene-WS 2 than has been predicted, likely explaining the low barriers observed in transport experiments on similar heterojunctions. Electrostatic modeling demonstrates that the large depletion width of the graphene-WS 2 junction reflects the electrostatics of the one-dimensional junction between two-dimensional materials.
Yamada, Kazuki; Endo, Hirosuke; Tetsunaga, Tomonori; Miyake, Takamasa; Sanki, Tomoaki; Ozaki, Toshifumi
2018-01-01
The accuracy of various navigation systems used for total hip arthroplasty has been described, but no publications reported the accuracy of cup orientation in computed tomography (CT)-based 2D-3D (two-dimensional to three-dimensional) matched navigation. In a prospective, randomized controlled study, 80 hips including 44 with developmental dysplasia of the hips were divided into a CT-based 2D-3D matched navigation group (2D-3D group) and a paired-point matched navigation group (PPM group). The accuracy of cup orientation (absolute difference between the intraoperative record and the postoperative measurement) was compared between groups. Additionally, multiple logistic regression analysis was performed to evaluate patient factors affecting the accuracy of cup orientation in each navigation. The accuracy of cup inclination was 2.5° ± 2.2° in the 2D-3D group and 4.6° ± 3.3° in the PPM group (P = .0016). The accuracy of cup anteversion was 2.3° ± 1.7° in the 2D-3D group and 4.4° ± 3.3° in the PPM group (P = .0009). In the PPM group, the presence of roof osteophytes decreased the accuracy of cup inclination (odds ratio 8.27, P = .0140) and the absolute value of pelvic tilt had a negative influence on the accuracy of cup anteversion (odds ratio 1.27, P = .0222). In the 2D-3D group, patient factors had no effect on the accuracy of cup orientation. The accuracy of cup positioning in CT-based 2D-3D matched navigation was better than in paired-point matched navigation, and was not affected by patient factors. It is a useful system for even severely deformed pelvises such as developmental dysplasia of the hips. Copyright © 2017 Elsevier Inc. All rights reserved.
Jiang, Yizhou; Li, Sijie; Li, You; Zeng, Hang; Chen, Qi
2016-07-01
It has been documented that due to limited attentional resources, the size of the attentional focus is inversely correlated with processing efficiency. Moreover, by adopting a variety of two-dimensional size illusions induced by pictorial depth cues (e.g., the Ponzo illusion), previous studies have revealed that the perceived, rather than the retinal, size of an object determines its detection. It remains unclear, however, whether and how the retinal versus perceived size of a cue influences the process of attentional orienting to subsequent targets, and whether the corresponding influencing processes differ between two-dimensional (2-D) and three-dimensional (3-D) space. In the present study, we incorporated the dot probe paradigm with either a 2-D Ponzo illusion, induced by pictorial depth cues, or a virtual 3-D world in which the Ponzo illusion turned into visual reality. By varying the retinal size of the cue while keeping its perceived size constant (Exp. 1), we found that a cue with smaller retinal size significantly facilitated attentional orienting as compared to a cue with larger retinal size, and that the effects were comparable between 2-D and 3-D displays. Furthermore, when the pictorial background was removed and the cue display was positioned in either the farther or the closer depth plane (Exp. 2), or when both the depth and the background were removed (Exp. 3), the retinal size, rather than the depth, of the cue still affected attentional orienting. Taken together, our results suggest that the retinal size of a cue plays the crucial role in the visuospatial orienting of attention in both 2-D and 3-D.
Two-Dimensional Materials as Prospective Scaffolds for Mixed-Matrix Membrane-Based CO2 Separation.
Zhu, Xiang; Tian, Chengcheng; Do-Thanh, Chi-Linh; Dai, Sheng
2017-09-11
Membrane-based CO 2 separation technology plays a significant role in environmental remediation and clean energy. Two-dimensional (2D) materials with atomically precise structures have emerged as prospective scaffolds to develop mixed-matrix membranes (MMMs) for gas separation. Summarized in this perspective review are the latest breakthrough studies in the synthesis of 2D-material-based MMMs to separate CO 2 from gas mixtures. 2D materials including graphene oxide (GO), metal-organic framework (MOF)-derived nanosheets, covalent organic frameworks (COFs), and transition metal dichalcogenides (TMDs), as fascinating building blocks, have been comprehensively summarized, together with a focus on synthetic processes and gas separation properties. Challenges and the latest advances in the manufacture of novel synthetic 2D materials are briefly discussed to foresee emerging opportunities for the development of new generations of 2D-material-based MMMs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Wei; Xu, Qun
2018-04-20
Localized surface plasmon resonances (LSPRs) of ultra-thin two-dimensional (2D) nanomaterials opened a new regime in plasmonics in the last several years. 2D plasmonic materials are yet concentrated on the crystal structure, amorphous materials are hardly reported because of their limited preparation methods rather than undesired plasmonic properties. Taking molybdenum oxides as an example, herein, we elaborate the 2D amorphous plasmons prepared with the assistance of supercritical CO2. In brief, we examine the reported characteristic plasmonic properties of molybdenum oxides, and applications of supercritical CO2 in formations of 2D layer materials as well as introduced phase and disorder engineering based on our researchs. Furthermore, we propose our perspective on the development of 2D plasmons, especially for amorphous layer materials in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Growth and electrical characterization of two-dimensional layered MoS{sub 2}/SiC heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Edwin W.; Nath, Digbijoy N.; Lee, Choong Hee
2014-11-17
The growth and electrical characterization of the heterojunction formed between two-dimensional (2D) layered p-molybdenum disulfide (MoS{sub 2}) and nitrogen-doped 4H silicon carbide (SiC) are reported. The integration of 2D semiconductors with the conventional three-dimensional (3D) substrates could enable semiconductor heterostructures with unprecedented properties. In this work, direct growth of p-type MoS{sub 2} films on SiC was demonstrated using chemical vapor deposition, and the MoS{sub 2} films were found to be high quality based on x-ray diffraction and Raman spectra. The resulting heterojunction was found to display rectification and current-voltage characteristics consistent with a diode for which forward conduction in themore » low-bias region is dominated by multi-step recombination tunneling. Capacitance-voltage measurements were used to determine the built-in voltage for the p-MoS{sub 2}/n-SiC heterojunction diode, and we propose an energy band line up for the heterostructure based on these observations. The demonstration of heterogeneous material integration between MoS{sub 2} and SiC enables a promising new class of 2D/3D heterostructures.« less
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
Aoki, Michio
2018-01-01
Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
NASA Astrophysics Data System (ADS)
Aoki, Michio; Juang, Jia-Yang
2018-02-01
Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.
Development of a global aerosol model using a two-dimensional sectional method: 1. Model design
NASA Astrophysics Data System (ADS)
Matsui, H.
2017-08-01
This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.
Suppression of ITI by array head reading and 2D-equalization
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Suzuto, R.; Osawa, H.; Okamoto, Y.; Kanai, Y.; Muraoka, H.
2017-05-01
Two-dimensional magnetic recording (TDMR) by shingled magnetic recording (SMR) draws attention as a next generation technology to increase the recording density in hard disk drive (HDD). It is shown that the two-dimensional finite impulse response (2D-FIR) filter provides gain the reproducing waveforms from an array head with 3 readers in the TDMR under a specification of 4 Tbit/inch.2 We evaluate the effect of the intertrack interference (ITI) reduction by 2D-FIR using the correlation between the real FIR filter output and the partial response class-I (PR1) signal corresponding to recording sequence by the computer simulation. The results show that the 2D-FIR filter is effective to mitigate ITI and improves the signal-to-noise ratio at the discriminate point by about 0.6 dB.
Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei
2016-11-23
A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.
Spectral properties near the Mott transition in the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Kohno, Masanori
2013-03-01
Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.
Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao
2013-01-01
Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823
Modeling power flow in the induction cavity with a two dimensional circuit simulation
NASA Astrophysics Data System (ADS)
Guo, Fan; Zou, Wenkang; Gong, Boyi; Jiang, Jihao; Chen, Lin; Wang, Meng; Xie, Weiping
2017-02-01
We have proposed a two dimensional (2D) circuit model of induction cavity. The oil elbow and azimuthal transmission line are modeled with one dimensional transmission line elements, while 2D transmission line elements are employed to represent the regions inward the azimuthal transmission line. The voltage waveforms obtained by 2D circuit simulation and transient electromagnetic simulation are compared, which shows satisfactory agreement. The influence of impedance mismatch on the power flow condition in the induction cavity is investigated with this 2D circuit model. The simulation results indicate that the peak value of load voltage approaches the maximum if the azimuthal transmission line roughly matches the pulse forming section. The amplitude of output transmission line voltage is strongly influenced by its impedance, but the peak value of load voltage is insensitive to the actual output transmission line impedance. When the load impedance raises, the voltage across the dummy load increases, and the pulse duration at the oil elbow inlet and insulator stack regions also slightly increase.
2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach.
Floris, Federico; van Agthoven, Maria; Chiron, Lionel; Soulby, Andrew J; Wootton, Christopher A; Lam, Yuko P Y; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B
2016-09-01
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments. Graphical Abstract ᅟ.
Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites.
Guo, Peijun; Stoumpos, Constantinos C; Mao, Lingling; Sadasivam, Sridhar; Ketterson, John B; Darancet, Pierre; Kanatzidis, Mercouri G; Schaller, Richard D
2018-05-22
Two-dimensional Ruddlesden-Popper organic-inorganic hybrid layered perovskites (2D RPs) are solution-grown semiconductors with prospective applications in next-generation optoelectronics. The heat-carrying, low-energy acoustic phonons, which are important for heat management of 2D RP-based devices, have remained unexplored. Here we report on the generation and propagation of coherent longitudinal acoustic phonons along the cross-plane direction of 2D RPs, following separate characterizations of below-bandgap refractive indices. Through experiments on single crystals of systematically varied perovskite layer thickness, we demonstrate significant reduction in both group velocity and propagation length of acoustic phonons in 2D RPs as compared to the three-dimensional methylammonium lead iodide counterpart. As borne out by a minimal coarse-grained model, these vibrational properties arise from a large acoustic impedance mismatch between the alternating layers of perovskite sheets and bulky organic cations. Our results inform on thermal transport in highly impedance-mismatched crystal sub-lattices and provide insights towards design of materials that exhibit highly anisotropic thermal dissipation properties.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Male Fathead Minnow Urine-Based Metabolomics for Assessing Impacts of Chemical Stressors
We have developed the potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures, using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy was us...
Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter
2016-01-01
The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130
Schure, Mark R; Davis, Joe M
2017-11-10
Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions, characterized by mixes of ordered and random retention times, and applied to the experimental datasets. In 2D, the new metric always equals or exceeds the original one. However, results from both the original and new methods are given. Copyright © 2017 Elsevier B.V. All rights reserved.
Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation.
Zhou, Chenkun; Tian, Yu; Wang, Mingchao; Rose, Alyssa; Besara, Tiglet; Doyle, Nicholas K; Yuan, Zhao; Wang, Jamie C; Clark, Ronald; Hu, Yanyan; Siegrist, Theo; Lin, Shangchao; Ma, Biwu
2017-07-24
Hybrid organic-inorganic metal halide perovskites possess exceptional structural tunability, with three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low-dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C 4 N 2 H 14 )SnBr 4 and 0D (C 4 N 2 H 14 Br) 4 SnBr 6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salas, Rosa Ana; Pleite, Jorge
2013-01-01
We propose a specific procedure to compute the inductance of a toroidal ferrite core as a function of the excitation current. The study includes the linear, intermediate and saturation regions. The procedure combines the use of Finite Element Analysis in 2D and experimental measurements. Through the two dimensional (2D) procedure we are able to achieve convergence, a reduction of computational cost and equivalent results to those computed by three dimensional (3D) simulations. The validation is carried out by comparing 2D, 3D and experimental results. PMID:28809283
Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line.
Shima, Ai; Morimoto, Yuya; Sweeney, H Lee; Takeuchi, Shoji
2018-06-18
This paper describes a method to construct three-dimensional (3D) contractile human skeletal muscle tissues from a cell line. The 3D tissue was fabricated as a fiber-based structure and cultured for two weeks under tension by anchoring its both ends. While myotubes from the immortalized human skeletal myocytes used in this study never contracted in the conventional two-dimensional (2D) monolayer culture, myotubes in the 3D tissue showed spontaneous contraction at a high frequency and also reacted to the electrical stimulation. Immunofluorescence revealed that the myotubes in the 3D tissues had sarcomeres and expressed ryanodine receptor (RyR) and sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). In addition, intracellular calcium oscillations in the myotubes in the 3D tissue were observed. These results indicated that the 3D culture enabled the myocyte cell line to reach a more highly matured state compared to 2D culture. Since contraction is the most significant feature of skeletal muscle, we believe that our 3D human muscle tissue with the contractile ability would be a useful tool for both basic biology research and drug discovery as one of the muscle-on-chips. Copyright © 2018. Published by Elsevier Inc.
Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho
2018-06-01
Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes)
Anasori, Babak; Xie, Yu; Beidaghi, Majid; ...
2015-07-24
The higher the chemical diversity and structural complexity of two-dimensional (2D) materials, the higher the likelihood they possess unique and useful properties. In this paper, density functional theory (DFT) is used to predict the existence of two new families of 2D ordered, carbides (MXenes), M' 2M"C 2 and M' 2M" 2C 3, where M' and M" are two different early transition metals. In these solids, M' layers sandwich M" carbide layers. By synthesizing Mo 2TiC 2T x, Mo 2Ti 2C 3T x, and Cr 2TiC 2T x (where T is a surface termination), we validated the DFT predictions. Since themore » Mo and Cr atoms are on the outside, they control the 2D flakes’ chemical and electrochemical properties. The latter was proven by showing quite different electrochemical behavior of Mo 2TiC 2T x and Ti 3C 2T x. Finally, this work further expands the family of 2D materials, offering additional choices of structures, chemistries, and ultimately useful properties.« less
Two-dimensional MoS2: A promising building block for biosensors.
Gan, Xiaorong; Zhao, Huimin; Quan, Xie
2017-03-15
Recently, two-dimensional (2D) layered nanomaterials have trigged intensive interest due to the intriguing physicochemical properties that stem from a quantum size effect connected with their ultra-thin structure. In particular, 2D molybdenum disulfide (MoS 2 ), as an emerging class of stable inorganic graphene analogs with intrinsic finite bandgap, would possibly complement or even surpass graphene in electronics and optoelectronics fields. In this review, we first discuss the historical development of ultrathin 2D nanomaterials. Then, we are concerned with 2D MoS 2 including its structure-property relationships, synthesis methods, characterization for the layer thickness, and biosensor applications over the past five years. Thereinto, we are highlighting recent advances in 2D MoS 2 -based biosensors, especially emphasize the preparation of sensing elements, roles of 2D MoS 2 , and assay strategies. Finally, on the basis of the current achievements on 2D MoS 2 and other ultrathin layered nanomaterials, perspectives on the challenges and opportunities for the exploration of 2D MoS 2 -based biosensors are put forward. Copyright © 2016 Elsevier B.V. All rights reserved.
Lei, Jun-Hui; Zhao, Yu-Qing; Tang, Qiong; Lin, Jian-Guo; Cai, Meng-Qiu
2018-05-16
Organic-inorganic hybrid perovskites are developed to pursue high charge carrier mobility and light absorption coefficient. In this study, we present a detailed comparative research of the atomic and electronic structures of single-layered perovskites (C4H9NH3)2PbBr4 with two-dimensional/three-dimensional (2D/3D) spatial arrangement to predict the in plane charge carrier mobility along with the charge effective mass, elastic constant, and deformation potential. The calculated results reveal that the intrinsic in plane carrier mobilities of 2D single-layered hybrid perovskite (C4H9NH3)2PbBr4 along the 100 and 010 directions are superior to those of the 3D structure. Furthermore, the optical properties are calculated from the electronic structure; it is found that the light absorption spectrum of 2D single-layered perovskite (C4H9NH3)2PbBr4 with a high absorption coefficient is wider than that of the 3D phase. We speculate that the superior mobility and wider absorption spectrum of the 2D mono-layered perovskite are due to high charge density and ferroelectricity originating from structure distortion upon 3D-to-2D structure transformation. These results indicate that the 2D single-layered hybrid perovskite (C4H9NH3)2PbBr4 is a potential candidate for application in the optoelectronic and photovoltaic fields.
Suzuki, Y; Kambara, H; Kadota, K; Tamaki, S; Yamazato, A; Nohara, R; Osakada, G; Kawai, C
1985-08-01
To evaluate the noninvasive detection of shunt flow using a newly developed real-time 2-dimensional color-coded Doppler flow imaging system (D-2DE), 20 patients were examined, including 10 with secundum atrial septal defect (ASD) and 10 control subjects. These results were compared with contrast 2-dimensional echocardiography (C-2DE). Doppler 2DE displayed the blood flow toward the transducer as red and the blood flow away from the transducer as blue in 8 shades, each shade adding green according to the degree of variance in Doppler frequency. In the patients with ASD, D-2DE clearly visualized left-to-right shunt flow in 7 of 10 patients. In 5 of these 7 patients, C-2DE showed a negative contrast effect in the same area of the right atrium. Thus, D-2DE increased the sensitivity over C-2DE for detecting left-to-right shunt flow (from 50% to 70%). However, the specificity was slightly less in D-2DE (90%) than C-2DE (100%). Doppler 2DE could not visualize right-to-left shunt flow in all patients with ASD, though C-2DE showed a positive contrast effect in the left-sided heart in 9 of 10 patients with ASD. Thus, D-2DE is clinically useful for detecting left-to-right shunt flow in patients with ASD.
Atomically thin two-dimensional organic-inorganic hybrid perovskites.
Dou, Letian; Wong, Andrew B; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W; Fu, Anthony; Bischak, Connor G; Ma, Jie; Ding, Tina; Ginsberg, Naomi S; Wang, Lin-Wang; Alivisatos, A Paul; Yang, Peidong
2015-09-25
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials. Copyright © 2015, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.
1991-01-01
In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.
On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2018-03-01
The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.
Excitation basis for (3+1)d topological phases
NASA Astrophysics Data System (ADS)
Delcamp, Clement
2017-12-01
We consider an exactly solvable model in 3+1 dimensions, based on a finite group, which is a natural generalization of Kitaev's quantum double model. The corresponding lattice Hamiltonian yields excitations located at torus-boundaries. By cutting open the three-torus, we obtain a manifold bounded by two tori which supports states satisfying a higher-dimensional version of Ocneanu's tube algebra. This defines an algebraic structure extending the Drinfel'd double. Its irreducible representations, labeled by two fluxes and one charge, characterize the torus-excitations. The tensor product of such representations is introduced in order to construct a basis for (3+1)d gauge models which relies upon the fusion of the defect excitations. This basis is defined on manifolds of the form Σ × S_1 , with Σ a two-dimensional Riemann surface. As such, our construction is closely related to dimensional reduction from (3+1)d to (2+1)d topological orders.
Quantum-interference transport through surface layers of indium-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong
2013-06-01
We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a ‘core-shell-like structure’ in individual IZO NWs, where an outer shell of thickness t (≃15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (
Quantum-interference transport through surface layers of indium-doped ZnO nanowires.
Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong
2013-06-21
We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a 'core-shell-like structure' in individual IZO NWs, where an outer shell of thickness t (~15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (
Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.
Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A
2013-03-01
Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.
Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy
Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.
2014-01-01
Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We find that the features in the 2D COS maps that derive from overlapping bands are determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identify the conditions required to resolve overlapping bands. In particular, 2D COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands. PMID:23452492
Extended quantum jump description of vibronic two-dimensional spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Falge, Mirjam; Keß, Martin
2015-06-07
We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic methodmore » and provides an efficient method for the calculation of the 2D-spectra.« less
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
Zhao, Weixiang; Sankaran, Shankar; Ibáñez, Ana M; Dandekar, Abhaya M; Davis, Cristina E
2009-08-04
This study introduces two-dimensional (2-D) wavelet analysis to the classification of gas chromatogram differential mobility spectrometry (GC/DMS) data which are composed of retention time, compensation voltage, and corresponding intensities. One reported method to process such large data sets is to convert 2-D signals to 1-D signals by summing intensities either across retention time or compensation voltage, but it can lose important signal information in one data dimension. A 2-D wavelet analysis approach keeps the 2-D structure of original signals, while significantly reducing data size. We applied this feature extraction method to 2-D GC/DMS signals measured from control and disordered fruit and then employed two typical classification algorithms to testify the effects of the resultant features on chemical pattern recognition. Yielding a 93.3% accuracy of separating data from control and disordered fruit samples, 2-D wavelet analysis not only proves its feasibility to extract feature from original 2-D signals but also shows its superiority over the conventional feature extraction methods including converting 2-D to 1-D and selecting distinguishable pixels from training set. Furthermore, this process does not require coupling with specific pattern recognition methods, which may help ensure wide applications of this method to 2-D spectrometry data.
Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.
Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan
2018-05-15
A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.
Teleparallel dark energy in a system of D0-branes
NASA Astrophysics Data System (ADS)
Sharma, Umesh Kumar; Sepehri, Alireza; Pradhan, Anirudh
A new model which allows a non-minimal coupling between gravity and quintessence in the configuration of teleparallel gravity was recently proposed by Geng et al. [“Teleparallel” dark energy, Phys. Lett. B 704 (2011) 384-387] and they named it teleparallel dark energy. Now the main problem which arises is to know what is the source of this dark energy? The answer of this question is given by us in M-theory. This type of dark energy may be produced at three stages in our model. First, one six-dimensional universe is formed by combining and expanding D0-branes. We know that this universe-brane is polarized on two circles and our four-dimensional cosmos and two D1-branes are yielded. At third stage, two D1-branes glued to each other and one D2-brane is formed. This D2 connects our universe with another universe, gives its energy to them and causes the production of dark energy. Thus, the D2-brane is unstable and dissolves in our four-dimensional universes and supplies the needed teleparallel dark energy for expansion. These calculations are extended to M-theory and shown that the amount of teleparallel dark energy which is produced by compactification of universe-branes in M-theory is more than string theory.
ERIC Educational Resources Information Center
Oki, Angela Christine
2011-01-01
This dissertation examines the effect of digital multimedia presentations as a method to teach complex concepts in reproductive physiology. The digital presentations developed for this research consisted of two-dimensional (2-D) and three-dimensional (3-D) animations, scriptmessaging and narration. The topics were "Mammalian Ovarian…
The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...
Electrical characterization of two-dimensional materials and their heterostructures
NASA Astrophysics Data System (ADS)
Arora, H.; Schönherr, T.; Erbe, A.
2017-05-01
Two-dimensional (2D) materials have gained enormous attention in recent years owing to their huge potential in future electronics and optics. On the one hand, conventional 2D materials like graphene, MoS2, h-BN are being intensively studied, on the other hand, search for novel 2D materials is at a rapid pace. In this study, we have investigated electrical properties of 2D nanosheets of ultrathin Indium Selenide (InSe), a member of the III-VI chalcogenides’ family. The InSe layers were prepared via micromechanical cleavage of its bulk crystal and were integrated into a field-effect transistor (FET) device as the transport channel. On characterizing the InSe-based FETs, InSe showed n-type conductance with the mobility of 2.1×10-4 cm2V-1s-1.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
NASA Technical Reports Server (NTRS)
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.
NASA Astrophysics Data System (ADS)
Verma, Gaurav; Chawla, Sanjeev; Nagarajan, Rajakumar; Iqbal, Zohaib; Albert Thomas, M.; Poptani, Harish
2017-04-01
Two-dimensional localized correlated spectroscopy (2D L-COSY) offers greater spectral dispersion than conventional one-dimensional (1D) MRS techniques, yet long acquisition times and limited post-processing support have slowed its clinical adoption. Improving acquisition efficiency and developing versatile post-processing techniques can bolster the clinical viability of 2D MRS. The purpose of this study was to implement a non-uniformly weighted sampling (NUWS) scheme for faster acquisition of 2D-MRS. A NUWS 2D L-COSY sequence was developed for 7T whole-body MRI. A phantom containing metabolites commonly observed in the brain at physiological concentrations was scanned ten times with both the NUWS scheme of 12:48 duration and a 17:04 constant eight-average sequence using a 32-channel head coil. 2D L-COSY spectra were also acquired from the occipital lobe of four healthy volunteers using both the proposed NUWS and the conventional uniformly-averaged L-COSY sequence. The NUWS 2D L-COSY sequence facilitated 25% shorter acquisition time while maintaining comparable SNR in humans (+0.3%) and phantom studies (+6.0%) compared to uniform averaging. NUWS schemes successfully demonstrated improved efficiency of L-COSY, by facilitating a reduction in scan time without affecting signal quality.
Bandgap tuning and enhancement of seebeck coefficient in one dimensional GeSe
NASA Astrophysics Data System (ADS)
Kagdada, Hardik L.; Dabhi, Shweta D.; Jha, Prafulla K.
2018-04-01
The first principles based density functional theory is used for tuning the electronic bandgap and thermoelectric properties of bulk, two dimensional (2D) and one dimensional (1D) GeSe. There is an increase in the bandgap going from bulk to 1D with indirect to direct bandgap transition. There is a dramatic change in Seebeck coefficient (S) for GeSe going from bulk to 1D at 300 K. The electrical conductivity and electronic thermal conductivity are lower for 1D GeSe compared to the bulk GeSe due to larger bandgap in the case of 1D GeSe.
Zhang, Na; Wang, Taisheng; Wu, Xing; Jiang, Chen; Zhang, Taiming; Jin, Bangkun; Ji, Hengxing; Bai, Wei; Bai, Ruke
2017-07-25
Recently, investigation on two-dimensional (2D) organic polymers has made great progress, and conjugated 2D polymers already play a dynamic role in both academic and practical applications. However, a convenient, noninterfacial approach to obtain single-layer 2D polymers in solution, especially in aqueous media, remains challenging. Herein, we present a facile, highly efficient, and versatile "1D to 2D" strategy for preparation of free-standing single-monomer-thick conjugated 2D polymers in water without any aid. The 2D structure was achieved by taking advantage of the side-by-side self-assembly of a rigid amphiphilic 1D polymer and following topochemical photopolymerization in water. The spontaneous formation of single-layer polymer sheets was driven by synergetic association of the hydrophobic interactions, π-π stacking interactions, and electrostatic repulsion. Both the supramolecular sheets and the covalent sheets were confirmed by spectroscopic analyses and electron microscope techniques. Moreover, in comparison of the supramolecular 2D polymer, the covalent 2D polymer sheets exhibited not only higher mechanical strength but also higher conductivity, which can be ascribed to the conjugated network within the covalent 2D polymer sheets.
Numerical investigations in three-dimensional internal flows
NASA Technical Reports Server (NTRS)
Rose, William C.
1991-01-01
In previous efforts, a two-dimensional full Navier-Stokes (FNS) code (SCRAM2D) was used in a design process that involved parametric modifications of the inlet geometry to arrive at what appeared to be an optimum inlet flowfield that produced a uniform flow at the exit in a very short distance. In these previous studies, the technologies for determining the contours with a 'man-in-the-loop' approach for both the ramp and cowl of the inlet were demonstrated, and nearly shock-free exiting flowfields were shown to be obtainable. The resulting two-dimensional compression contours were then used with swept sidewalls to form a three-dimensional inlet. Then the three-dimensional Navier-Stokes code (SCRAM3D) was used to investigate the inlet's three-dimensional flow. One of the major difficulties encountered in the previous studies was that associated with the relatively long time required to obtain a solution using even the 2D FNS code in the design process. Since one of the goals of high-speed inlet design is to produce inputs to the overall aircraft design in a timely manner, it was proposed for this year's research to examine 2D and 3D viscous flow solver techniques alternative to the NFS codes used to date. Areas of the inlet particularly identified for code speed up are those associated with the forebody and external flow ramp systems of the inlet. In these areas, parabolized, or space-marched, Navier-Stokes codes were proposed to be investigated for their applicability in the design process developed previously. This report describes the results of an investigation into the use of two other codes for analyzing the forebody and inlet ramp systems of high-speed inlets.
Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data
NASA Astrophysics Data System (ADS)
Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.
2017-10-01
The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.
New infinite-dimensional hidden symmetries for heterotic string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected.
On the reduction of 4d $$ \\mathcal{N}=1 $$ theories on $$ {\\mathbb{S}}^2 $$
Gadde, Abhijit; Razamat, Shlomo S.; Willett, Brian
2015-11-24
Here, we discuss reductions of generalmore » $$ \\mathcal{N}=1 $$ four dimensional gauge theories on $$ {\\mathbb{S}}^2 $$. The effective two dimensional theory one obtains depends on the details of the coupling of the theory to background fields, which can be translated to a choice of R-symmetry. We argue that, for special choices of R-symmetry, the resulting two dimensional theory has a natural interpretation as an $$ \\mathcal{N}(0,2) $$ gauge theory. As an application of our general observations, we discuss reductions of $$ \\mathcal{N}=1 $$ and $$ \\mathcal{N}=2 $$ dualities and argue that they imply certain two dimensional dualities.« less
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Novel two-dimensional ferroelectric PbTe under tension: A first-principles prediction
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Yang, Zongxian; Chen, Yue
2017-08-01
Enhanced ferroelectricity in two-dimensional (2D) SnTe exhibiting a higher transition temperature (Tc) than its bulk counterpart was recently discovered [Chang et al., Science 353(6296), 274-278 (2016)]. Herein, we report that nonferroelectric PbTe can be transformed into a ferroelectric phase by downsizing to two dimensions with suitable equi-biaxial tension. The crystal structure of the ferroelectric phase of 2D PbTe was determined using evolutionary algorithms and density functional theory. The dynamic stabilities of the predicted new phases were investigated using phonon calculations. To validate our results obtained using PbTe, we have also studied the ferroelectricity in GeTe and SnTe at the 2D level and compared them with the literature. The unequal lattice constants and the relative atomic displacements are found to be responsible for ferroelectricity in 2D GeTe, SnTe, and strained PbTe. This study facilitates the development of new 2D ferroelectrics via strain engineering and promotes the integration of ferroelectric devices.
Two-Dimensional Fullerene Assembly from an Exfoliated van der Waals Template.
Lee, Kihong; Choi, Bonnie; Plante, Ilan Jen-La; Paley, Maria V; Zhong, Xinjue; Crowther, Andrew C; Owen, Jonathan S; Zhu, Xiaoyang; Roy, Xavier
2018-05-22
Two-dimensional (2D) materials are commonly prepared by exfoliating bulk layered van der Waals crystals. The creation of synthetic 2D materials from bottom-up methods is an important challenge as their structural flexibility will enable chemists to tune the materials properties. A 2D material was assembled using C 60 as a polymerizable monomer. The C 60 building blocks are first assembled into a layered solid using a molecular cluster as structure director. The resulting hierarchical crystal is used as a template to polymerize its C 60 monolayers, which can be exfoliated down to 2D crystalline nanosheets. Derived from the parent template, the 2D structure is composed of a layer of inorganic cluster, sandwiched between two monolayers of polymerized C 60 . The nanosheets can be transferred onto solid substrates and depolymerized by heating. Electronic absorption spectroscopy reveals an optical gap of 0.25 eV, narrower than that of the bulk parent crystalline solid. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional NMR spectroscopy of 13C methanol at less than 5 μT
NASA Astrophysics Data System (ADS)
Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon-Kyu; Kim, Kiwoong
2014-09-01
Two-dimensional (2D) spectroscopy is one of the most significant applications of nuclear magnetic resonance (NMR). Here, we demonstrate that the 2D NMR can be performed even at a low magnetic field of less than 5 μT, which is ten times less than the Earth’s magnetic field. The pulses used in the experiment were composed of circularly polarized fields for coherent as well as wideband excitations. Since the excitation band covers the entire spectral range, the simplest two-pulse sequence delivered the full 2D spectrum. At 5 μT, methanol with 13C enriched up to 99% belongs to a strongly coupled regime, and thus its 2D spectrum exhibits complicated spectral correlations, which can be exploited as a fingerprint in chemical analysis. In addition, we show that, with compressive sensing, the acquisition of the 2D spectrum can be accelerated to take only 45% of the overall duration.
NASA Astrophysics Data System (ADS)
Luo, Wei; Xu, Ke; Xiang, Hongjun
2017-12-01
Recently, two-dimensional (2D) multiferroics have attracted a lot of attention due to their fascinating properties and promising applications. Although the ferroelectric (FE)-ferroelastic and ferromagnetic (FM)-ferroelastic multiferroics have been observed/predicted in 2D systems, 2D ferromagnetic-ferroelectric (FM-FE) multiferroics remain to be discovered since FM insulators are very rare. Here we proposed the concept of 2D hyperferroelectric metals, with which the insulating prerequisite for the FM-FE multiferroic is no longer required in 2D systems. We validate the concept of 2D hyperferroelectric metals and 2D metallic FM-FE multiferroics by performing first-principle calculations on 2D CrN and Cr B2 systems. The 2D buckled monolayer CrN is found to be a hyperferroelectic metal with the FM ground state, i.e., a 2D FM-FE multiferroic. With the global optimization approach, we find the 2D Cr B2 system has an antiferromagnetic (AFM)/planar ground state and a FM/FE metastable state, suggesting that it can be used to realize electric field control of magnetism. Our analysis demonstrates that the spin-phonon coupling and metal-metal interaction are two mechanisms for stabilizing the out-of-plane electric polarization in 2D systems. Our work not only extends the concept of FE to metallic systems, but also paves a way to search the long-sought high temperature FM-FE multiferroics.
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Madan, Renu; Pathy, Sushmita; Subramani, Vellaiyan; Sharma, Seema; Mohanti, Bidhu Kalyan; Chander, Subhash; Thulkar, Sanjay; Kumar, Lalit; Dadhwal, Vatsla
2014-01-01
Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned . All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Mean doses received by 100% and 90% of the target volume were 4.24 ± 0.63 and 4.9 ± 0.56 Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were 2.88 ± 0.72, 2.5 ± 0.65 and 2.2 ± 0.57 times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were 1.80 ± 0.5, 1.48 ± 0.41 and 1.35 ± 0.37 times higher than ICRU rectal reference point. Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.
Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.
Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A
2009-04-01
Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.
Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Åke; Winter, Reidar
2009-01-01
Background Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Methods Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. Results There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Conclusion Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant. PMID:19706183
Analysis of students’ spatial thinking in geometry: 3D object into 2D representation
NASA Astrophysics Data System (ADS)
Fiantika, F. R.; Maknun, C. L.; Budayasa, I. K.; Lukito, A.
2018-05-01
The aim of this study is to find out the spatial thinking process of students in transforming 3-dimensional (3D) object to 2-dimensional (2D) representation. Spatial thinking is helpful in using maps, planning routes, designing floor plans, and creating art. The student can engage geometric ideas by using concrete models and drawing. Spatial thinking in this study is identified through geometrical problems of transforming a 3-dimensional object into a 2-dimensional object image. The problem was resolved by the subject and analyzed by reference to predetermined spatial thinking indicators. Two representative subjects of elementary school were chosen based on mathematical ability and visual learning style. Explorative description through qualitative approach was used in this study. The result of this study are: 1) there are different representations of spatial thinking between a boy and a girl object, 2) the subjects has their own way to invent the fastest way to draw cube net.
Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A
2010-01-01
A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.
NASA Astrophysics Data System (ADS)
Vilardy, Juan M.; Giacometto, F.; Torres, C. O.; Mattos, L.
2011-01-01
The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.
Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Zhang, Ji-Guang; Shen, Guozhen
2016-02-01
Stretchable/flexible electronics provide a foundation for various emerging applications that beyond the scope of conventional wafer/circuit board technologies due to their unique features that can satisfy a broad range of applications such as wearable devices. Stretchable electronic and optoelectronics devices require the bendable/wearable rechargeable Li-ion batteries, thus these devices can operate without limitation of external powers. Various two-dimensional (2D) nanomaterials are of great interest in flexible energy storage devices, especially Li-ion batteries. This is because 2D materials exhibit much more exposed surface area supplying abundant Li-insertion channels and shortened paths for fast lithium ion diffusion. Here, we will review themore » recent developments on the flexible Li-ion batteries based on two dimensional nanomaterials. These researches demonstrated advancements in flexible electronics by incorporating various 2D nanomaterials into bendable batteries to achieve high electrochemical performance, excellent mechanical flexibility as well as electrical stability under stretching/bending conditions.« less
Cai, Yong; Li, Xiwen; Li, Mei; Chen, Xiaojia; Hu, Hao; Ni, Jingyun; Wang, Yitao
2015-01-01
Chemical fingerprinting is currently a widely used tool that enables rapid and accurate quality evaluation of Traditional Chinese Medicine (TCM). However, chemical fingerprints are not amenable to information storage, recognition, and retrieval, which limit their use in Chinese medicine traceability. In this study, samples of three kinds of Chinese medicines were randomly selected and chemical fingerprints were then constructed by using high performance liquid chromatography. Based on chemical data, the process of converting the TCM chemical fingerprint into two-dimensional code is presented; preprocess and filtering algorithm are also proposed aiming at standardizing the large amount of original raw data. In order to know which type of two-dimensional code (2D) is suitable for storing data of chemical fingerprints, current popular types of 2D codes are analyzed and compared. Results show that QR Code is suitable for recording the TCM chemical fingerprint. The fingerprint information of TCM can be converted into data format that can be stored as 2D code for traceability and quality control.
Two-dimensional grating guided-mode resonance tunable filter.
Kuo, Wen-Kai; Hsu, Che-Jung
2017-11-27
A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts
NASA Astrophysics Data System (ADS)
Haque, Farjana; Daeneke, Torben; Kalantar-zadeh, Kourosh; Ou, Jian Zhen
2018-06-01
Two-dimensional (2D) transition metal oxide and chalcogenide (TMO&C)-based photocatalysts have recently attracted significant attention for addressing the current worldwide challenges of energy shortage and environmental pollution. The ultrahigh surface area and unconventional physiochemical, electronic and optical properties of 2D TMO&Cs have been demonstrated to facilitate photocatalytic applications. This review provides a concise overview of properties, synthesis methods and applications of 2D TMO&C-based photocatalysts. Particular attention is paid on the emerging strategies to improve the abilities of light harvesting and photoinduced charge separation for enhancing photocatalytic performances, which include elemental doping, surface functionalization as well as heterojunctions with semiconducting and conductive materials. The future opportunities regarding the research pathways of 2D TMO&C-based photocatalysts are also presented. [Figure not available: see fulltext.
Scaling ansatz for the ac magnetic response in two-dimensional spin ice
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi; Takatsu, Hiroshi; Goto, Kazuki; Kadowaki, Hiroaki
2014-10-01
A theory for frequency-dependent magnetic susceptibility χ (ω ) is developed for thermally activated magnetic monopoles in a two-dimensional (2D) spin ice. By modeling the system in the vicinity of the ground-state manifold as a 2D Coulomb gas with an entropic interaction, and then as a 2D sine-Gordon model, we have shown that the susceptibility has a scaling form χ (ω ) /χ (0 ) =F (ω /ω1) , where the characteristic frequency ω1 is related to a charge correlation length between diffusively moving monopoles, and to the principal-breather excitation. The dynamical scaling is universal and applicable not only for kagome ice, but also for superfluid and superconducting films and generic 2D ices possibly including the artificial spin ice.
Two-Dimensional Homogeneous Fermi Gases
NASA Astrophysics Data System (ADS)
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Prediction of a two-dimensional S3N2 solid for optoelectronic applications
NASA Astrophysics Data System (ADS)
Xiao, Hang; Shi, Xiaoyang; Liao, Xiangbiao; Zhang, Yayun; Chen, Xi
2018-02-01
Two-dimensional materials have attracted tremendous attention for their fascinating electronic, optical, chemical, and mechanical properties. However, the band gaps of most reported two-dimensional (2D) materials are smaller than 2.0 eV, which has greatly restricted their optoelectronic applications in the blue and ultraviolet range of the spectrum. Here, we propose a stable trisulfur dinitride (S3N2 ) 2D crystal that is a covalent network composed solely of S-N σ bonds. The S3N2 crystal is dynamically, thermally, and chemically stable, as confirmed by the computed phonon spectrum and ab initio molecular dynamics simulations. GW calculations show that the S3N2 crystal is a wide, direct band-gap (3.92 eV) semiconductor with a small-hole effective mass. In addition, the band gap of S3N2 structures can be tuned by forming multilayer S3N2 crystals, S3N2 nanoribbons, and S3N2 nanotubes, expanding its potential applications. The anisotropic optical response of the 2D S3N2 crystal is revealed by GW-Bethe-Salpeter-equation calculations. The optical band gap of S3N2 is 2.73 eV and the exciton binding energy of S3N2 is 1.19 eV, showing a strong excitonic effect. Our result not only marks the prediction of a 2D crystal composed of nitrogen and sulfur, but also underpins potential innovations in 2D electronics and optoelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, R. V.; Cabot, W. H.; Greenough, J. A.
Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number,more » $$A=(\\unicode[STIX]{x1D70C}_{2}-\\unicode[STIX]{x1D70C}_{1})/(\\unicode[STIX]{x1D70C}_{2}+\\unicode[STIX]{x1D70C}_{1})$$, where$$\\unicode[STIX]{x1D70C}_{2}$$and$$\\unicode[STIX]{x1D70C}_{1}$$are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of$A=0.49$$,$$A=0.63$$,$$A=0.82$$and$$A=0.94$$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber,$$k=2\\unicode[STIX]{x03C0}/\\unicode[STIX]{x1D706}=0.247~\\text{mm}^{-1}$$, experiments and simulations, where$$\\unicode[STIX]{x1D706}$is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.« less
Morgan, R. V.; Cabot, W. H.; Greenough, J. A.; ...
2018-01-12
Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number,more » $$A=(\\unicode[STIX]{x1D70C}_{2}-\\unicode[STIX]{x1D70C}_{1})/(\\unicode[STIX]{x1D70C}_{2}+\\unicode[STIX]{x1D70C}_{1})$$, where$$\\unicode[STIX]{x1D70C}_{2}$$and$$\\unicode[STIX]{x1D70C}_{1}$$are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of$A=0.49$$,$$A=0.63$$,$$A=0.82$$and$$A=0.94$$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber,$$k=2\\unicode[STIX]{x03C0}/\\unicode[STIX]{x1D706}=0.247~\\text{mm}^{-1}$$, experiments and simulations, where$$\\unicode[STIX]{x1D706}$is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.« less
Li, Qi; Song, Xiaodong; Wu, Dingjun
2014-05-01
Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.
She, Xiao-Wei; Gu, Yun-Bin; Xu, Chun; Li, Chang; Ding, Cheng; Chen, Jun; Zhao, Jun
2018-02-01
Compared to the pulmonary lobe, the anatomical structure of the pulmonary segment is relatively complex and prone to variation, thus the risk and difficulty of segmentectomy is increased. We compared three-dimensional computed tomography bronchography and angiography (3D-CTBA) combined with 3D video-assisted thoracic surgery (3D-VATS) to perform segmentectomy to conventional two-dimensional (2D)-VATS for the treatment of non-small cell lung cancer (NSCLC). We retrospectively reviewed the data of randomly selected patients who underwent 3D-CTBA combined with 3D-VATS (3D-CTBA-VATS) or 2D-VATS at the Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University Hospital, from January 2014 to May 2017. The operative duration of 3D group was significantly shorter than the 2D group (P < 0.05). There was no significant difference in the number of dissected lymph nodes between the two groups (P > 0.05). The extent of intraoperative bleeding and postoperative drainage in the 3D group was significantly lower than in the 2D group (P < 0.05). Chest tube duration in the 3D group was shorter than in the 2D group (P < 0.05). Incidences of pulmonary infection, atelectasis, and arrhythmia were not statistically different between the two groups (P > 0.05). However, hemoptysis and pulmonary air leakage (>3d) occurred significantly less frequently in the 3D than in the 2D group (P < 0.05). 3D-CTBA-VATS is a more accurate and smooth technique and leads to reduced intraoperative and postoperative complications. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries.
Huang, Jing-Kai; Li, Mengliu; Wan, Yi; Dey, Sukumar; Ostwal, Mayur; Zhang, Daliang; Yang, Chih-Wen; Su, Chun-Jen; Jeng, U-Ser; Ming, Jun; Amassian, Aram; Lai, Zhiping; Han, Yu; Li, Sean; Li, Lain-Jong
2018-01-23
Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn 2 (benzimidazolate) 2 (OH) 2 at the air-water interface. The hydroxyl (-OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li-S battery shows that the Zn 2 (benzimidazolate) 2 (OH) 2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.
NASA Astrophysics Data System (ADS)
Le Floch, Bruno; Turiaci, Gustavo J.
2017-12-01
We relate Liouville/Toda CFT correlators on Riemann surfaces with boundaries and cross-cap states to supersymmetric observables in four-dimensional N=2 gauge theories. Our construction naturally involves four-dimensional theories with fields defined on different ℤ2 quotients of the sphere (hemisphere and projective space) but nevertheless interacting with each other. The six-dimensional origin is a ℤ2 quotient of the setup giving rise to the usual AGT correspondence. To test the correspondence, we work out the ℝℙ4 partition function of four-dimensional N=2 theories by combining a 3d lens space and a 4d hemisphere partition functions. The same technique reproduces known ℝℙ2 partition functions in a form that lets us easily check two-dimensional Seiberg-like dualities on this nonorientable space. As a bonus we work out boundary and cross-cap wavefunctions in Toda CFT.
Universal optimal hole-doping concentration in single-layer high-temperature cuprate superconductors
NASA Astrophysics Data System (ADS)
Honma, T.; Hor, P. H.
2006-09-01
We argue that in cuprate physics there are two types, hole content per CuO2 plane (Ppl) and the corresponding hole content per unit volume (P3D), of hole-doping concentrations for addressing physical properties that are two dimensional (2D) and three dimensional (3D) in nature, respectively. We find that the superconducting transition temperature (Tc) varies systematically with P3D as a superconducting 'dome' with a universal optimal hole-doping concentration of P3Dopt = 1.6 × 1021 cm-3 for single-layer high-temperature superconductors. We suggest that P3Dopt determines the upper bound of the electronic energy of underdoped single-layer high-Tc cuprates.
Optimizing random searches on three-dimensional lattices
NASA Astrophysics Data System (ADS)
Yang, Benhao; Yang, Shunkun; Zhang, Jiaquan; Li, Daqing
2018-07-01
Search is a universal behavior related to many types of intelligent individuals. While most studies have focused on search in two or infinite-dimensional space, it is still missing how search can be optimized in three-dimensional space. Here we study random searches on three-dimensional (3d) square lattices with periodic boundary conditions, and explore the optimal search strategy with a power-law step length distribution, p(l) ∼l-μ, known as Lévy flights. We find that compared to random searches on two-dimensional (2d) lattices, the optimal exponent μopt on 3d lattices is relatively smaller in non-destructive case and remains similar in destructive case. We also find μopt decreases as the lattice length in z direction increases under high target density. Our findings may help us to understand the role of spatial dimension in search behaviors.
Relation between one- and two-dimensional noise power spectra of magnetic resonance images.
Ichinoseki, Yuki; Machida, Yoshio
2017-06-01
Our purpose in this study was to elucidate the relation between the one-dimensional (1D) and two-dimensional (2D) noise power spectra (NPSs) in magnetic resonance imaging (MRI). We measured the 1D NPSs using the slit method and the radial frequency method. In the slit method, numerical slits 1 pixel wide and L pixels long were placed on a noise image (128 × 128 pixels) and scanned in the MR image domain. We obtained the 1D NPS using the slit method (1D NPS_Slit) and the 2D NPS of the noise region scanned by the slit (2D NPS_Slit). We also obtained 1D NPS using the radial frequency method (1D NPS_Radial) by averaging the NPS values on the circumference of a circle centered at the origin of the original 2D NPS. The properties of the 1D NPS_Slits varied with L and the scanning direction in PROPELLER MRI. The 2D NPS_Slit shapes matched that of the original 2D NPS, but were compressed by L/128. The central line profiles of the 2D NPS_Slits and the 1D NPS_Slits matched exactly. Therefore, the 1D NPS_Slits reflected not only the NPS values on the central axis of the original 2D NPS, but also the NPS values around the central axis. Moreover, the measurement precisions of the 1D NPS_Slits were lower than those of the 1D NPS_Radial. Consequently, it is necessary to select the approach applied for 1D NPS measurements according to the data acquisition method and the purpose of the noise evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Junjie; Goddard, Paul A.; Singleton, John
The crystal structures of NiX2(pyz)(2) (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2) (pyz)(2)]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 Kmore » (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Neel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (j(perpendicular to)) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (j(pyz)) within the two-dimensional [Ni(pyz)(2)](2+) square planes. Regardless of X, j(pyz), is similar for the four compounds and is roughly 1 K.« less
Emergence of charge density waves and a pseudogap in single-layer TiTe2.
Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.
Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho
2016-10-27
Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.
Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho
2016-01-01
Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321
Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons.
Alekseev, P S
2016-10-14
At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.
Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons
NASA Astrophysics Data System (ADS)
Alekseev, P. S.
2016-10-01
At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.
Mom's shadow: structure-from-motion in newly hatched chicks as revealed by an imprinting procedure.
Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio
2009-03-01
The ability to recognize three-dimensional objects from two-dimensional (2-D) displays was investigated in domestic chicks, focusing on the role of the object's motion. In Experiment 1 newly hatched chicks, imprinted on a three-dimensional (3-D) object, were allowed to choose between the shadows of the familiar object and of an object never seen before. In Experiments 2 and 3 random-dot displays were used to produce the perception of a solid shape only when set in motion. Overall, the results showed that domestic chicks were able to recognize familiar shapes from 2-D motion stimuli. It is likely that similar general mechanisms underlying the perception of structure-from-motion and the extraction of 3-D information are shared by humans and animals. The present data shows that they occur similarly in birds as known for mammals, two separate vertebrate classes; this possibly indicates a common phylogenetic origin of these processes.
Fazal, Md Abul; Palmer, Vanessa R; Dovichi, Norman J
2006-10-20
Differential detergent fractionation was used to sequentially extract cytosolic, membrane, nuclear, and cytoskeletal fractions from AtT-20 cells. Extracted components were denatured by sodium dodecyl sulfate (SDS) and then labeled with the fluorogenic reagent 3-(2-furoyl) quinoline-1-carboxaldehyde. Both capillary sieving electrophoresis (CSE) and micellar electrokinetic capillary chromatography (MECC) were used to separate labeled components by one-dimensional (1D) electrophoresis. Labeled components were also separated by two-dimensional (2D) capillary electrophoresis; CSE was employed in the first dimension and MECC in the second dimension. Roughly 150 fractions were transferred from the first to the second capillary for this comprehensive analysis in 2.5 h.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes.
Jia, Guo; Shi, Ze-Jiao; Xia, Ying-Dong; Wei, Qi; Chen, Yong-Hua; Xing, Gui-Chuan; Huang, Wei
2018-01-22
Solution processed organic-inorganic hybrid perovskites are emerging as a new generation materials for optoelectronics. However, the electroluminescence is highly limited in light emitting diodes (LED) due to the low exciton binding energy and the great challenge in stability. Here, we demonstrate a super air stable quasi-two dimensional perovskite film employing hydrophobic fluorine-containing organics as barrier layers, which can store in ambient for more than 4 months with no change. The dramatically reduced grain size of the perovskite crystal in contrast to three dimensional (3D) perovskites was achieved. Together with the natural quantum well of quasi-two dimensional perovskite confining the excitons to recombination, the LED exhibited the maximum luminance of 1.2 × 10 3 cd/m 2 and current efficiency up to 0.3 cd/A, which is twenty fold enhancement than that of LED based on 3D analogues under the same condition.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Engineering three-dimensional cell mechanical microenvironment with hydrogels.
Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian
2012-12-01
Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.
Edge-to-center plasma density ratios in two-dimensional plasma discharges
NASA Astrophysics Data System (ADS)
Lucken, R.; Croes, V.; Lafleur, T.; Raimbault, J.-L.; Bourdon, A.; Chabert, P.
2018-03-01
Edge-to-center plasma density ratios—so-called h factors—are important parameters for global models of plasma discharges as they are used to calculate the plasma losses at the reactor walls. There are well-established theories for h factors in the one-dimensional (1D) case. The purpose of this paper is to establish h factors in two-dimensional (2D) systems, with guidance from a 2D particle-in-cell (PIC) simulation. We derive analytical solutions of a 2D fluid theory that includes the effect of ion inertia, but assumes a constant (independent of space) ion collision frequency (using an average ion velocity) across the discharge. Predicted h factors from this 2D fluid theory have the same order of magnitude and the same trends as the PIC simulations when the average ion velocity used in the collision frequency is set equal to the ion thermal velocity. The best agreement is obtained when the average ion velocity varies with pressure (but remains independent of space), going from half the Bohm velocity at low pressure, to the thermal velocity at high pressure. The analysis also shows that a simple correction of the widely-used 1D heuristic formula may be proposed to accurately incorporate 2D effects.
Anisotropic carrier mobility in buckled two-dimensional GaN.
Tong, Lijia; He, Junjie; Yang, Min; Chen, Zheng; Zhang, Jing; Lu, Yanli; Zhao, Ziyuan
2017-08-30
Developing nanoelectronic engineering requires two-dimensional (2d) materials with both usable carrier mobility and proper large band-gap. In this study, we present a detailed theoretical investigation of the intrinsic carrier mobilities of buckled 2d GaN. This buckled 2d GaN is accessed by hydrofluorination (FGaNH) and hydrogenation (HGaNH). We predict that the anisotropic carrier mobilities of buckled 2d GaN can exceed those of 2d MoS 2 and can be altered by an alterable surface chemical bond (convert from a Ga-F-Ga bond of FGaNH to a Ga-H bond of HGaNH). Moreover, converting FGaNH to HGaNH can significantly suppress hole mobility (even close to zero) and result in a transition from a p-type-like semiconductor (FGaNH) to an n-type-like semiconductor (HGaNH). These features make buckled 2d GaN a promising candidate for application in future conductivity-adjustable electronics.
NASA Astrophysics Data System (ADS)
Chen, Huai; Li, Danxun; Bai, Ruonan; Wang, Xingkui
2018-05-01
Swirling strength is an effective vortex indicator in wall turbulence, and it can be determined based on either two-dimensional (2D) or three-dimensional (3D) velocity fields, written as λci2D and λci3D, respectively. A comparison between λci2D and λci3D has been made in this paper in sliced XY, YZ, and XZ planes by using 3D DNS data of channel flow. The magnitude of λci2D in three orthogonal planes differs in the inner region, but the difference tends to diminish in the outer flow. The magnitude of λci3D exceeds each λci2D, and the square of λci3D is greater than the summation of squares of three λci2D. Extraction with λci2D in XY, YZ, and XZ planes yields different population densities and vortex sizes, i.e., in XZ plane, the vortices display the largest population density and the smallest size, and in XY and YZ planes the vortices are similar in size but fewer vortices are extracted in the XY plane in the inner layer. Vortex size increases inversely with the threshold used for growing the vortex region from background turbulence. When identical thresholds are used, the λci3D approach leads to a slightly smaller population density and a greater vortex radius than the λci2D approach. A threshold of 0.8 for the λci3D approach is approximately equivalent to a threshold of 1.5 for the λci2D approach.
NASA Astrophysics Data System (ADS)
Jung, Mi-Hee
2018-01-01
We prepare the transition structure of ZnCo2O4 via transformation from two-dimensional (2D) nanosheets to three-dimensional (3D) microspheres with the solvothermal method. ZnCo2O4 nanocrystallites were produced from the reaction of zinc acetate and cobalt nitrate in the non-aqueous methanol solution. The oriented attachment of ZnCo2O4 nanocrystallites results in the formation of the 2D wrinkled-paper-like structure of ZnCo2O4. The 2D ZnCo2O4 nanosheet agglomerate spontaneously because there is no appropriate surfactant, and they have weak electrical double layers in the precursor solution. As the stacking of 2D ZnCo2O4 nanosheets increased, the aggregate of ZnCo2O4 nanosheet was transformed into the 3D ZnCo2O4 microspheres. The transition structure of the ZnCo2O4 was composed of the interconnected ZnCo2O4 nanoparticles, which results in a porous structure to accommodate the volume expansion of ZnCo2O4 structure during the charge process. The transition structure of ZnCo2O4 exhibits a remarkably high specific capacity and improved cycle performance. At a current density of 100 mA g-1, the transition structure of ZnCo2O4 exhibited excellent initial discharge specific capacity of 2094 mA h g-1. The discharge capacity maintain at 1296.91 mA h g-1 after 200 cycles. Even as current density reached to 2000 mA g-1, the average specific capacity still showed 606.88 mA hg-1.
He, B.; Zherebetskyy, D.; Wang, H.; ...
2016-02-29
We have demonstrated a rational two-dimensional (2D) conjugation approach towards achieving panchromatic absorption of small molecules. Furthermore, by extending the conjugation on two orthogonal axes of an electron acceptor, namely, bay-annulated indigo (BAI), the optical absorptions could be tuned independently in both high- and low-energy regions. The unconventional modulation of the high-energy absorption is rationalized by density functional theory (DFT) calculations. Finally, we determine that a 2D tuning strategy provides novel guidelines for the design of molecular materials with tailored optoelectronic properties.
Recent Advances in Two-Dimensional Materials beyond Graphene.
Bhimanapati, Ganesh R; Lin, Zhong; Meunier, Vincent; Jung, Yeonwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael S; Cooper, Valentino R; Liang, Liangbo; Louie, Steven G; Ringe, Emilie; Zhou, Wu; Kim, Steve S; Naik, Rajesh R; Sumpter, Bobby G; Terrones, Humberto; Xia, Fengnian; Wang, Yeliang; Zhu, Jun; Akinwande, Deji; Alem, Nasim; Schuller, Jon A; Schaak, Raymond E; Terrones, Mauricio; Robinson, Joshua A
2015-12-22
The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
NASA Technical Reports Server (NTRS)
Hoffman, R. N.; Leidner, S. M.; Henderson, J. M.; Atlas, R.; Ardizzone, J. V.; Bloom, S. C.; Atlas, Robert (Technical Monitor)
2001-01-01
In this study, we apply a two-dimensional variational analysis method (2d-VAR) to select a wind solution from NASA Scatterometer (NSCAT) ambiguous winds. 2d-VAR determines a "best" gridded surface wind analysis by minimizing a cost function. The cost function measures the misfit to the observations, the background, and the filtering and dynamical constraints. The ambiguity closest in direction to the minimizing analysis is selected. 2d-VAR method, sensitivity and numerical behavior are described. 2d-VAR is compared to statistical interpolation (OI) by examining the response of both systems to a single ship observation and to a swath of unique scatterometer winds. 2d-VAR is used with both NSCAT ambiguities and NSCAT backscatter values. Results are roughly comparable. When the background field is poor, 2d-VAR ambiguity removal often selects low probability ambiguities. To avoid this behavior, an initial 2d-VAR analysis, using only the two most likely ambiguities, provides the first guess for an analysis using all the ambiguities or the backscatter data. 2d-VAR and median filter selected ambiguities usually agree. Both methods require horizontal consistency, so disagreements occur in clumps, or as linear features. In these cases, 2d-VAR ambiguities are often more meteorologically reasonable and more consistent with satellite imagery.
Anwer, Shoaib; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng
2017-04-05
Low cycling stability and poor rate performance are two of the distinctive drawbacks of most electrode materials for sodium-ion batteries (SIBs). Here, inspired by natural flower structures, we take advantage of the three-dimensional (3D) hierarchical flower-like stable microstructures formed by two-dimensional (2D) nanosheets to solve these problems. By precise control of the hydrothermal synthesis conditions, a novel three-dimensional (3D) flower-like architecture consisting of 2D Na 2 Ti 3 O 7 nanosheets (Na-TNSs) has been successfully synthesized. The arbitrarily arranged but closely interlinked thin nanosheets in carnation-shaped 3D Na 2 Ti 3 O 7 microflowers (Na-TMFs) originate a good network of electrically conductive paths in an electrode. Thus, Na-TMFs can get electrons from all directions and be fully utilized for sodium-ion insertion and extraction reactions, which can improve sodium storage properties with enhanced rate capability and super cycling performance. Furthermore, the large specific surface area provides a high capacity, which can be ascribed to the pseudo-capacitance effect. The wettability of the electrolyte was also improved by the porous and crumpled structure. The remarkably improved cycling performance and rate capability of Na-TMFs make a captivating case for its development as an advanced anode material for SIBs.
Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki
2018-01-01
We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.
Electronic transport in two-dimensional high dielectric constant nanosystems
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less
Electronic transport in two-dimensional high dielectric constant nanosystems.
Ortuño, M; Somoza, A M; Vinokur, V M; Baturina, T I
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
Simulation of femtosecond two-dimensional electronic spectra of conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčmář, Jindřich; Gelin, Maxim F.; Domcke, Wolfgang
2015-08-21
We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.
Two-dimensional interpreter for field-reversed configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhauer, Loren, E-mail: lstein@uw.edu
2014-08-15
An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibriummore » reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.« less
Quantum stream instability in coupled two-dimensional plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2014-08-01
In this paper the quantum counter-streaming instability problem is studied in planar two-dimensional (2D) quantum plasmas using the coupled quantum hydrodynamic (CQHD) model which incorporates the most important quantum features such as the statistical Fermi-Dirac electron pressure, the electron-exchange potential and the quantum diffraction effect. The instability is investigated for different 2D quantum electron systems using the dynamics of Coulomb-coupled carriers on each plasma sheet when these plasmas are both monolayer doped graphene or metalfilm (corresponding to 2D Dirac or Fermi electron fluids). It is revealed that there are fundamental differences between these two cases regarding the effects of Bohm's quantum potential and the electron-exchange on the instability criteria. These differences mark yet another interesting feature of the effect of the energy band dispersion of Dirac electrons in graphene. Moreover, the effects of plasma number-density and coupling parameter on the instability criteria are shown to be significant. This study is most relevant to low dimensional graphene-based field-effect-transistor (FET) devices. The current study helps in understanding the collective interactions of the low-dimensional coupled ballistic conductors and the nanofabrication of future graphene-based integrated circuits.
An update on intraoperative three-dimensional transesophageal echocardiography
2017-01-01
Transesophageal echocardiography (TEE) was first used routinely in the operating rooms in the 1980s to facilitate surgical decision-making. Since then, TEE has evolved from the standard two-dimensional (2D) exam to include focused real-time three-dimensional (RT-3D) imaging both inside and outside the operating rooms. Improved spatial and temporal resolution due to technological advances has expedited surgical interventions in diseased valves. 3D imaging has also emerged as a crucial adjunct in percutaneous interventions for structural heart disease. With continued advancement in software, RT-3D TEE will continue to impact perioperative decisions. PMID:28540070
On the sensitivity of mesoscale models to surface-layer parameterization constants
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pielke, R. A.
1989-09-01
The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.
The use of three-dimensional ultrasound does not improve training in fetal biometric measurements.
Chan, Lin W; Ting, Yuen H; Lao, Terence T; Chau, Macy M C; Fung, Tak Y; Leung, Tak Y; Sahota, Daljit S; Lau, Tze K
2011-09-01
To investigate whether three-dimensional (3D) technology offers any advantage over two-dimensional (2D) ultrasound in fetal biometric measurement training. Ten midwives with no hands-on experience in ultrasound were randomized to receive training on 2D or 3D ultrasound fetal biometry assessment. Midwives were taught how to obtain fetal biometric measurements (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL)) by a trainer. Subsequently, each midwife measured the parameters on another 10 fetuses. The same set of measurements was repeated by the trainer. The percentage deviation between the midwives' and the trainer's measurements was determined and compared between training groups. Time required for completion was recorded. Frozen images were reviewed by another sonographer to assess the image quality using a standardized scoring system. The median time for the complete set of measurements was significantly shorter in the 2D than in 3D group (13.4 min versus 17.8 min, P = 0.03). The mean percentage deviations did not reach statistical significance between the two groups except for FL (3.83% in 2D group versus 2.23% in 3D group (P = 0.046)). There were no significant differences in the quality scores. This study showed that the only demonstrable advantage of 3D ultrasound was a slightly more accurate measurement of FL, at the expense of a significantly longer time required.
NASA Astrophysics Data System (ADS)
Seredyński, M.; Rebow, M.; Banaszek, J.
2017-06-01
The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors` attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt's analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling, the average temperature gradient at a front of the dendrite tip envelope and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed for two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed.
A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum
NASA Astrophysics Data System (ADS)
Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.
2017-01-01
Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.
Sakata, S; Grove, P M; Hill, A; Watson, M O; Stevenson, A R L
2017-07-01
This study compared precision of depth judgements, technical performance and workload using two-dimensional (2D) and three-dimensional (3D) laparoscopic displays across different viewing distances. It also compared the accuracy of 3D displays with natural viewing, along with the relationship between stereoacuity and 3D laparoscopic performance. A counterbalanced within-subjects design with random assignment to testing sequences was used. The system could display 2D or 3D images with the same set-up. A Howard-Dolman apparatus assessed precision of depth judgements, and three laparoscopic tasks (peg transfer, navigation in space and suturing) assessed performance (time to completion). Participants completed tasks in all combinations of two viewing modes (2D, 3D) and two viewing distances (1 m, 3 m). Other measures administered included the National Aeronautics and Space Administration Task Load Index (perceived workload) and the Randot ® Stereotest (stereoacuity). Depth judgements were 6·2 times as precise at 1 m and 3·0 times as precise at 3 m using 3D versus 2D displays (P < 0·001). Participants performed all laparoscopic tasks faster in 3D at both 1 and 3 m (P < 0.001), with mean completion times up to 64 per cent shorter for 3D versus 2D displays. Workload was lower for 3D displays (up to 34 per cent) than for 2D displays at both viewing distances (P < 0·001). Greater viewing distance inhibited performance for two laparoscopic tasks, and increased perceived workload for all three (P < 0·001). Higher stereoacuity was associated with shorter completion times for the navigating in space task performed in 3D at 1 m (r = - 0·40, P = 0·001). 3D displays offer large improvements over 2D displays in precision of depth judgements, technical performance and perceived workload. © 2017 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS Society Ltd.
NASA Astrophysics Data System (ADS)
Di, Si; Lin, Hui; Du, Ruxu
2011-05-01
Displacement measurement of moving objects is one of the most important issues in the field of computer vision. This paper introduces a new binocular vision system (BVS) based on micro-electro-mechanical system (MEMS) technology. The eyes of the system are two microlenses fabricated on a substrate by MEMS technology. The imaging results of two microlenses are collected by one complementary metal-oxide-semiconductor (CMOS) array. An algorithm is developed for computing the displacement. Experimental results show that as long as the object is moving in two-dimensional (2D) space, the system can effectively estimate the 2D displacement without camera calibration. It is also shown that the average error of the displacement measurement is about 3.5% at different object distances ranging from 10 cm to 35 cm. Because of its low cost, small size and simple setting, this new method is particularly suitable for 2D displacement measurement applications such as vision-based electronics assembly and biomedical cell culture.
Zang, Huidong; Routh, Prahlad K.; Huang, Yuan; ...
2016-03-31
We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zang, Huidong; Routh, Prahlad K.; Huang, Yuan
We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.
Full Immersive Virtual Environment Cave[TM] in Chemistry Education
ERIC Educational Resources Information Center
Limniou, M.; Roberts, D.; Papadopoulos, N.
2008-01-01
By comparing two-dimensional (2D) chemical animations designed for computer's desktop with three-dimensional (3D) chemical animations designed for the full immersive virtual reality environment CAVE[TM] we studied how virtual reality environments could raise student's interest and motivation for learning. By using the 3ds max[TM], we can visualize…
Teo, B G; Sarinder, K K S; Lim, L H S
2010-08-01
Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms.
USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)
Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...
NASA Astrophysics Data System (ADS)
Li, Ni; Zhou, Jing; Sheng, Ziqiong; Xiao, Wei
2018-02-01
Construction of two-dimensional/two-dimensional (2D/2D) hybrid with well-defined composition and microstructure is a general protocol to achieve high-performance catalysts. We herein report preparation of g-C3N4-MoS2 hybrid by pyrolysis of affordable melamine and (NH4)2MoS4 in molten LiCl-NaCl-KCl at 550 °C. Molten salts are confirmed as ideal reaction media for formation of homogeneous hybrid. Characterizations suggest a strong interaction between g-C3N4 and MoS2 in the hybrid, which results in an enhanced visible-light-driven photocatalytic hydrogen generation of the hybrid with an optimal g-C3N4/MoS2 ratio. The present study highlights the merits of molten salt methods on preparation of 2D photocatalysts and provides a rational design of 2D/2D hybrid catalysts for advanced environmental and energy applications.
Chen, Junnian; Wang, Yaguang; Gan, Lin; He, Yunbin; Li, Huiqiao; Zhai, Tianyou
2017-11-20
Two-dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light-emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self-doping directed synthesis of ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 (1
Thomas, Lisa C; Wickens, Christopher D
2008-08-01
Two experiments explored the effects of display dimensionality, conflict geometry, and time pressure on pilot maneuvering preferences for resolving en route conflicts. With the presence of a cockpit display of traffic information (CDTI) that provides graphical airspace information, pilots can use a variety of conflict resolution maneuvers in response to how they perceive the conflict. Inconsistent preference findings from previous research on conflict resolution using CDTIs may be attributable to inherent ambiguities in 3-D perspective displays and/or a limited range of conflict geometries. Pilots resolved predicted conflicts using CDTIs with three levels of display dimensionality; the first had two 2-D orthogonal views, the second depicted the airspace in two alternating 3-D perspective views, and the third had a pilot-controlled swiveling viewpoint. Pilots demonstrated the same preferences that have been observed in previous research for vertical over lateral maneuvers in low workload and climbs over descents for level-flight conflicts. With increasing workload the two 3-D perspective displays, but not the 2-D displays, resulted in an increased preference for lateral over vertical maneuvers. Increased time pressure resulted in increased vertical maneuvers, an effect again limited to the two 3-D perspective displays. Resolution preferences were more affected by workload and time pressure when the 3-D perspective displays were used, as compared with the 2-D displays, although overall preferences were milder than in previous studies. Investigating maneuver preferences using the strategic flight planning paradigm employed in this study may be the key to better ensure pilot acceptance of computer-generated resolution maneuvers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackmore, W. J.A.; Goddard, P. A.; Xiao, F.
Low-dimensional quantum magnetism is currently of great interest due to the fact that reduced dimensionality can support strong quantum fluctuations, which may lead to unusual phenomena and quantum-critical behavior. The effect of random exchange strengths in two-dimensional (2D) antiferromagnets is still not fully understood despite much effort. This project aims to rectify this by investigating the high-field properties of the 2D coordination polymer (QuinH) 2Cu(Cl xBr 1-x) 4.2H 2O. The exchange pathway is through Cu-Halide-Cu bonds, and by randomizing the proportion of chlorine and bromine atoms in the unit cell, disorder can be introduced into the system.
Two-dimensional heterostructures for energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogotsi, Yury G.; Pomerantseva, Ekaterina
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associatedmore » shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.« less
Optical contrast for identifying the thickness of two-dimensional materials
NASA Astrophysics Data System (ADS)
Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan
2018-01-01
One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.
Polarization-independent high-speed photodetector based on a two-dimensional focusing grating
NASA Astrophysics Data System (ADS)
Duan, Xiaofeng; Chen, Hailang; Huang, Yongqing; Liu, Kai; Cai, Shiwei; Ren, Xiaomin
2018-01-01
We demonstrate a reflection-enhanced high-speed photodetector, which integrated a mushroom-mesa p-i-n structure on a two-dimensional (2D) nonperiodic focusing grating. Mushroom-mesa p-i-n photodetectors exhibit a high frequency response owing to their low resistance capacity (RC) time constant. 2D nonperiodic focusing gratings not only can increase the external quantum efficiency of the device owing to their reflecting and focusing abilities, but also are not sensitive to the polarization of the incident light. The external quantum efficiency of this device is 44.71% and the measured 3 dB bandwidth is up to 32 GHz.
2D/3D Synthetic Vision Navigation Display
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.
2008-01-01
Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.
Space Product Development (SPD)
2003-06-01
Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.
Two dimensional analytical model for a reconfigurable field effect transistor
NASA Astrophysics Data System (ADS)
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
An "adiabatic-hindered-rotor" treatment allows para-H(2) to be treated as if it were spherical.
Li, Hui; Roy, Pierre-Nicholas; Le Roy, Robert J
2010-09-14
In para-H(2)-{molecule} interactions, the common assumption that para-H(2) may be treated as a spherical particle is often substantially in error. For example, quantum mechanical eigenvalues on a full four-dimensional (4D) potential energy surface for para H(2)-{linear molecule} species often differ substantially from those calculated from the corresponding two-dimensional (2D) surface obtained by performing a simple spherical average over the relative orientations of the H(2) moiety. However, use of an "adiabatic-hindered-rotor" approximation can yield an effective 2D surface whose spectroscopic properties are an order of magnitude closer to those yielded by a full 4D treatment.
Wen, Li-Li; Dang, Dong-Bin; Duan, Chun-Ying; Li, Yi-Zhi; Tian, Zheng-Fang; Meng, Qing-Jin
2005-10-03
Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.
NASA Astrophysics Data System (ADS)
Khoudeir, A.; Montemayor, R.; Urrutia, Luis F.
2008-09-01
Using the parent Lagrangian method together with a dimensional reduction from D to (D-1) dimensions, we construct dual theories for massive spin two fields in arbitrary dimensions in terms of a mixed symmetry tensor TA[A1A2…AD-2]. Our starting point is the well-studied massless parent action in dimension D. The resulting massive Stueckelberg-like parent actions in (D-1) dimensions inherit all the gauge symmetries of the original massless action and can be gauge fixed in two alternative ways, yielding the possibility of having a parent action with either a symmetric or a nonsymmetric Fierz-Pauli field eAB. Even though the dual sector in terms of the standard spin two field includes only the symmetrical part e{AB} in both cases, these two possibilities yield different results in terms of the alternative dual field TA[A1A2…AD-2]. In particular, the nonsymmetric case reproduces the Freund-Curtright action as the dual to the massive spin two field action in four dimensions.
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
A thermal analysis of a spirally wound battery using a simple mathematical model
NASA Technical Reports Server (NTRS)
Evans, T. I.; White, R. E.
1989-01-01
A two-dimensional thermal model for spirally wound batteries has been developed. The governing equation of the model is the energy balance. Convective and insulated boundary conditions are used, and the equations are solved using a finite element code called TOPAZ2D. The finite element mesh is generated using a preprocessor to TOPAZ2D called MAZE. The model is used to estimate temperature profiles within a spirally wound D-size cell. The model is applied to the lithium/thionyl chloride cell because of the thermal management problems that this cell exhibits. Simplified one-dimensional models are presented that can be used to predict best and worst temperature profiles. The two-dimensional model is used to predict the regions of maximum temperature within the spirally wound cell. Normal discharge as well as thermal runaway conditions are investigated.
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Cheng, Xin-Lu
2018-02-01
Three two-dimensional (2D) single layer boron nitride sheets have been predicted based on the first-principles calculations. These 2D boron nitride sheets are comprised of equivalent boron atoms and nitride atoms with sp2 and sp bond hybridization. The geometry optimization reflects that they all possess stable planar crystal structures with the space group P 6 bar 2 m (D3h3) symmetry. The charge density distribution manifests that the B-N bonds in these boron nitride sheets are covalent in nature but with ionic characteristics. The tunable band gaps indicate their potential applications in nanoscale electronic and optoelectronic devices by changing the length of sp-bonded Bsbnd N linkages.
Ghareeb, Hewa Othman; Radke, Wolfgang
2013-11-06
A two-dimensional liquid chromatographic method (2D LC) was developed to analyze the heterogeneities of cellulose acetates (CA) in the DS-range DS=1.5-2.9 with respect to both, molar mass and degree of substitution (DS). The method uses gradient liquid chromatography (HPLC) as the first dimension in order to separate by DS followed by separation of the different fractions by size (SEC) in the second dimension. The 2D experiments revealed different correlations between gradient and SEC elution volume. These correlations might arise from differences in the synthetic conditions. The newly developed 2D LC separation therefore provides new insights into the heterogeneity of CAs. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, D., E-mail: iamzd@hpu.edu.cn; Zhang, R. H.; Li, F. F.
2016-12-15
A new Pb{sup II}−edta{sup 4–} coordination polymer, Pb{sub 2}(edta)(H{sub 2}O){sub 0.76} (edta{sup 4–} = ethylenediaminetetraacetate) was synthesized under hydrothermal condition. Single crystal X-ray analysis reveals that it represents a novel two-dimensional (2D) Pb{sup 2+}–edta{sup 4–} layer structure with a (4,8{sup 2})-topology. Each edta{sup 4–} ligand employs its four carboxylate O and two N atoms to chelate one Pb{sup II} atom (hexa-coordinated) and connects five Pb{sup II} atoms (ennea-coordinated) via its four carboxylate groups to form 2D layer framework. Adjacent layers are packed into the overall structure through vander Waals interactions.
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.
Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul
2012-08-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs
Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun
2012-01-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794
Combining 1D and 2D linear discriminant analysis for palmprint recognition
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ji, Hongbing; Wang, Lei; Lin, Lin
2011-11-01
In this paper, a novel feature extraction method for palmprint recognition termed as Two-dimensional Combined Discriminant Analysis (2DCDA) is proposed. By connecting the adjacent rows of a image sequentially, the obtained new covariance matrices contain the useful information among local geometry structures in the image, which is eliminated by 2DLDA. In this way, 2DCDA combines LDA and 2DLDA for a promising recognition accuracy, but the number of coefficients of its projection matrix is lower than that of other two-dimensional methods. Experimental results on the CASIA palmprint database demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Wang, Qingyi; Yang, Dechao; Qiu, Yu; Zhang, Xiaotong; Song, Wenbin; Hu, Lizhong
2018-02-01
Here, we report the two-step growth method of two-dimensional (2-D) ZnO nanosheets (NSs) and explore their formation mechanism. Additionally, we illustrate their application for high-performance piezoelectric nanogenerators (NGs) by using grown products from various reaction times. The result shows that NGs based on 2-D NSs demonstrated better output performance than those based on 1-D NWs, which surprisingly increased from ˜40 nA to ˜0.15 μA under the same compressive force of ˜1 kgf. It can also be observed that the output current is slightly elevated as the 2-D nanostructures become thinner. Our results offer a unique way to improve the output performance of NGs by means of controlling the synthesis period of ZnO nanostructures, which have important applications in flexible electronics and wearable devices.
Yuasa, Toshinori; Takasaki, Kunitsugu; Mizukami, Naoko; Ueya, Nami; Kubota, Kayoko; Horizoe, Yoshihisa; Chaen, Hideto; Kuwahara, Eiji; Kisanuki, Akira; Hamasaki, Shuichi
2013-09-01
A 39-year-old male who had undergone tricuspid valve replacement for severe tricuspid regurgitation was admitted with palpitation and general edema. Two-dimensional (2D) echocardiography showed tricuspid prosthetic valve dysfunction. Additional three-dimensional (3D) transthoracic and transesophageal echocardiography (TEE) could clearly demonstrate the disabilities of the mechanical tricuspid valve. Particularly, 3D TEE demonstrated a mass located on the right ventricular side of the tricuspid prosthesis, which may have caused the stuck disk. This observation was confirmed by intra-operative findings.
Influence of 2D and 3D view on performance and time estimation in minimal invasive surgery.
Blavier, A; Nyssen, A S
2009-11-01
This study aimed to evaluate the impact of two-dimensional (2D) and three-dimensional (3D) images on time performance and time estimation during a surgical motor task. A total of 60 subjects without any surgical experience (nurses) and 20 expert surgeons performed a fine surgical task with a new laparoscopic technology (da Vinci robotic system). The 80 subjects were divided into two groups, one using 3D view option and the other using 2D view option. We measured time performance and asked subjects to verbally estimate their time performance. Our results showed faster performance in 3D than in 2D view for novice subjects while the performance in 2D and 3D was similar in the expert group. We obtained a significant interaction between time performance and time evaluation: in 2D condition, all subjects accurately estimated their time performance while they overestimated it in the 3D condition. Our results emphasise the role of 3D in improving performance and the contradictory feeling about time evaluation in 2D and 3D. This finding is discussed in regard with the retrospective paradigm and suggests that 2D and 3D images are differently processed and memorised.
Effects of molecular geometry on the properties of compressed diamondoid crystals
Yang, Fan; Lin, Yu; Baldini, Maria; ...
2016-11-01
Diamondoids are an intriguing group of carbon-based nanomaterials, which combine desired properties of inorganic nanomaterials and small hydrocarbon molecules with atomic-level uniformity. In this Letter, we report the first comparative study on the effect of pressure on a series of diamondoid crystals with systematically varying molecular geometries and shapes, including zero-dimensional (0D) adamantane; one-dimensional (1D) diamantane, [121]tetramantane, [123]tetramantane, and [1212]pentamantane; two-dimensional (2D) [12312]hexamantane; and three-dimensional (3D) triamantane and [1(2,3)4]pentamantane. We find the bulk moduli of these diamondoid crystals are strongly dependent on the diamondoids’ molecular geometry with 3D [1(2,3)4]pentamantane being the least compressible and 0D adamantane being the most compressible.more » These diamondoid crystals possess excellent structural rigidity and are able to sustain large volume deformation without structural failure even after repetitive pressure loading cycles. These properties are desirable for constructing cushioning devices. Furthermore, we also demonstrate that lower diamondoids outperform the conventional cushioning materials in both the working pressure range and energy absorption density.« less
Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.
Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei
2016-10-07
Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Copyright © 2016, American Association for the Advancement of Science.
Inoue, Daisuke; Yoshimoto, Koji; Uemura, Munenori; Yoshida, Masaki; Ohuchida, Kenoki; Kenmotsu, Hajime; Tomikawa, Morimasa; Sasaki, Tomio; Hashizume, Makoto
2013-11-01
The purpose of this research was to investigate the usefulness of three-dimensional (3D) endoscopy compared with two-dimensional (2D) endoscopy in neuroendoscopic surgeries in a comparative study and to test the clinical applications. Forty-three examinees were divided into three groups according to their endoscopic experience: novice, beginner, or expert. Examinees performed three separate tasks using 3D and 2D endoscopy. A recently developed 3D high-definition (HD) neuroendoscope, 4.7 mm in diameter (Shinko Optical Co., Ltd., Tokyo, Japan) was used. In one of the three tasks, we developed a full-sized skull model of acrylic-based plastic using a 3D printer and a patient's thin slice computed tomography data, and evaluated the execution time and total path length of the tip of the pointer using an optical tracking system. Sixteen patients underwent endoscopic transnasal transsphenoidal pituitary surgery using both 3D and 2D endoscopy. Horizontal motion was evaluated using task 1, and anteroposterior motion was evaluated with task 3. Execution time and total path length in task 3 using the 3D system in both novice and beginner groups were significantly shorter than with the 2D system (p < 0.05), although no significant difference between 2D and 3D systems in task 1 was seen. In both the novice and beginner groups, the 3D system was better for depth perception than horizontal motion. No difference was seen in the expert group in this regard. The 3D HD endoscope was used for the pituitary surgery and was found very useful to identify the spatial relationship of carotid arteries and bony structures. The use of a 3D neuroendoscope improved depth perception and task performance. Our results suggest that 3D endoscopes could shorten the learning curve of young neurosurgeons and play an important role in both general surgery and neurosurgery. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu
2015-05-15
A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N)more » analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal structure of 1D metastable phase was also determined. • Thermal behavior of 2D compound is strongly dependent on the selected heating rate. • Magnetic measurements show no magnetic ordering down to 4 K.« less
NASA Astrophysics Data System (ADS)
Ovanesyan, Nikolai S.; Shilov, Gena V.; Pyalling, Alex A.; Train, Cyrille; Gredin, Patrick; Gruselle, Michel; Kiss, László F.; Bottyán, László
2004-05-01
We discuss the different structural arrangements of NBu 4[Fe IICr III(C 2O 4) 3] layered compounds in their racemic and enantiomeric forms and related magnetic properties. For [Mn IIFe III(C 2O 4) 3] networks of dimensionalities 2 and 3 Mössbauer spectroscopy was applied to study the Fe III sublattice magnetization. Unusual magnetic relaxation phenomena below TN were observed for both 2D and 3D networks.
Karavitis, G.A.
1984-01-01
The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)
Airy beams on two dimensional materials
NASA Astrophysics Data System (ADS)
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Anisotropic Defect-Mediated Melting of Two-Dimensional Colloidal Crystals
NASA Astrophysics Data System (ADS)
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.
2004-09-01
The melting transition of anisotropic two-dimensional (2D) crystals is studied in a model system of superparamagnetic colloids. The anisotropy of the induced dipole-dipole interaction is varied by tilting the external magnetic field off the normal to the particle plane. By analyzing the time-dependent Lindemann parameter as well as translational and orientational order we observe a 2D smecticlike phase. The Kosterlitz-Thouless-Halperin-Nelson-Young scenario of isotropic melting is modified: dislocation pairs and dislocations appear with different probabilities depending on their orientation with respect to the in-plane field.
Creation of three-dimensional craniofacial standards from CBCT images
NASA Astrophysics Data System (ADS)
Subramanyan, Krishna; Palomo, Martin; Hans, Mark
2006-03-01
Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.
ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Charles R.; Anderson, Andrew T.; Barton, Nathan R.
ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jin-Hua; Tang, Gui-Mei, E-mail: meiguit@163.com; Qin, Ting-Xiao
2014-11-15
Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11more » nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one-dimensional structures have been observed. • The properties of second harmonic generation and ferroelectricity for complex 2.« less
Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation
NASA Astrophysics Data System (ADS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2017-05-01
The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.
Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes
NASA Astrophysics Data System (ADS)
Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.
2018-01-01
Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.
Cross-circularly polarized two-exciton states in one to three dimensions
NASA Astrophysics Data System (ADS)
Ajiki, Hiroshi
2015-03-01
Biexciton and two-exciton dissociated states of Frenkel-type excitons are studied theoretically using an exciton tight-binding (TB) model including a polarization degree of freedom. Because the biexciton consists of two cross-circularly polarized excitons, an on-site interaction (V) between the two excitons should be considered in addition to a nearest-neighbor two-exciton attractive interaction (δ). Although there are an infinitely large number of combinations of V and δ providing the observed binding energy of a biexciton, the wave function of the biexciton and two-exciton dissociated states is nearly independent of these parameter sets. This means that all the two-exciton states are uniquely determined from the exciton TB model. There are a spatially symmetric and an antisymmetric biexciton state for a one-dimensional (1D) lattice and two symmetric and one antisymmetric biexciton states at most for two- (2D) and three-dimensional (3D) lattices. In contrast, when the polarization degree of freedom is ignored, there is one biexciton state for 1D, 2D, and 3D lattices. For this study, a rapid and memory-saving calculation method for two-exciton states is extended to include the polarization degree of freedom.
Cross-circularly polarized two-exciton states in one to three dimensions.
Ajiki, Hiroshi
2015-03-14
Biexciton and two-exciton dissociated states of Frenkel-type excitons are studied theoretically using an exciton tight-binding (TB) model including a polarization degree of freedom. Because the biexciton consists of two cross-circularly polarized excitons, an on-site interaction (V) between the two excitons should be considered in addition to a nearest-neighbor two-exciton attractive interaction (δ). Although there are an infinitely large number of combinations of V and δ providing the observed binding energy of a biexciton, the wave function of the biexciton and two-exciton dissociated states is nearly independent of these parameter sets. This means that all the two-exciton states are uniquely determined from the exciton TB model. There are a spatially symmetric and an antisymmetric biexciton state for a one-dimensional (1D) lattice and two symmetric and one antisymmetric biexciton states at most for two- (2D) and three-dimensional (3D) lattices. In contrast, when the polarization degree of freedom is ignored, there is one biexciton state for 1D, 2D, and 3D lattices. For this study, a rapid and memory-saving calculation method for two-exciton states is extended to include the polarization degree of freedom.
2012-01-01
We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement. PMID:23072433
Fan, Zheyong; Zheng, Jiansen; Wang, Hui-Qiong; Zheng, Jin-Cheng
2012-10-16
We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
2004-01-01
The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.
Two-dimensional relativistic space charge limited current flow in the drift space
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.
2014-04-01
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian
2015-06-15
Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction betweenmore » 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.« less
Theoretical study in carrier mobility of two-dimensional materials
NASA Astrophysics Data System (ADS)
Huang, R.
2017-09-01
Recently, the theoretical prediction on carrier mobility of two-dimensional (2D) materials has aroused wild attention. At present, there is still a large gap between the theoretical prediction and the device performance of the semiconductor based on the 2D layer semiconductor materials such as graphene. It is particularly important to theoretically design and screen the high-performance 2D layered semiconductor materials with suitable band gap and high carrier mobility. This paper introduces some 2D materials with fine properties and deduces the formula for mobility of the isotropic materials on the basis of the deformation potential theory and Fermic golden rule under acoustic phonon scattering conditions, and then discusses the carrier mobility of anisotropic materials with Dirac cones. We point out the misconceptions in the existing literature and discuss the correct ones.
Borumandi, Farzad; Hammer, Beat; Noser, Hansrudi; Kamer, Lukas
2013-05-01
Three-dimensional (3D) CT reconstruction of the bony orbit for accurate measurement and classification of the complex orbital morphology may not be suitable for daily practice. We present an easily measurable two-dimensional (2D) reference dataset of the bony orbit for study of individual orbital morphology prior to decompression surgery in Graves' orbitopathy. CT images of 70 European adults (140 orbits) with unaffected orbits were included. On axial views, the following orbital dimensions were assessed: orbital length (OL), globe length (GL), GL/OL ratio and cone angle. Postprocessed CT data were required to measure the corresponding 3D orbital parameters. The 2D and 3D orbital parameters were correlated. The 2D orbital parameters were significantly correlated to the corresponding 3D parameters (significant at the 0.01 level). The average GL was 25 mm (SD±1.0), the average OL was 42 mm (SD±2.0) and the average GL/OL ratio was 0.6 (SD±0.03). The posterior cone angle was, on average, 50.2° (SD±4.1). Three orbital sizes were classified: short (OL≤40 mm), medium (OL>40 to <45 mm) and large (OL≥45 mm). We present easily measurable reference data for the orbit that can be used for preoperative study and classification of individual orbital morphology. A short and shallow orbit may require a different decompression technique than a large and deep orbit. Prospective clinical trials are needed to demonstrate how individual orbital morphology affects the outcome of decompression surgery.
TOPAZ2D heat transfer code users manual and thermal property data base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less
Fabrication of 2D and 3D photonic structures using laser lithography
NASA Astrophysics Data System (ADS)
Gaso, P.; Jandura, D.; Pudis, D.
2016-12-01
In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.
SWCNT-MoS2 -SWCNT Vertical Point Heterostructures.
Zhang, Jin; Wei, Yang; Yao, Fengrui; Li, Dongqi; Ma, He; Lei, Peng; Fang, Hehai; Xiao, Xiaoyang; Lu, Zhixing; Yang, Juehan; Li, Jingbo; Jiao, Liying; Hu, Weida; Liu, Kaihui; Liu, Kai; Liu, Peng; Li, Qunqing; Lu, Wei; Fan, Shoushan; Jiang, Kaili
2017-02-01
A vertical point heterostructure (VPH) is constructed by sandwiching a two-dimensional (2D) MoS 2 flake with two cross-stacked metallic single-walled carbon nanotubes. It can be used as a field-effect transistor with high on/off ratio and a light detector with high spatial resolution. Moreover, the hybrid 1D-2D-1D VPHs open up new possibilities for nanoelectronics and nano-optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].
Kneist, W; Huber, T; Paschold, M; Lang, H
2016-06-01
The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.
Classical defects in higher-dimensional Einstein gravity coupled to nonlinear σ -models
NASA Astrophysics Data System (ADS)
Prasetyo, Ilham; Ramadhan, Handhika S.
2017-09-01
We construct solutions of higher-dimensional Einstein gravity coupled to nonlinear σ -model with cosmological constant. The σ -model can be perceived as exterior configuration of a spontaneously-broken SO(D-1) global higher-codimensional "monopole". Here we allow the kinetic term of the σ -model to be noncanonical; in particular we specifically study a quadratic-power-law type. This is some possible higher-dimensional generalization of the Bariola-Vilenkin (BV) solutions with k-global monopole studied recently. The solutions can be perceived as the exterior solution of a black hole swallowing up noncanonical global defects. Even in the absence of comological constant its surrounding spacetime is asymptotically non-flat; it suffers from deficit solid angle. We discuss the corresponding horizons. For Λ >0 in 4 d there can exist three extremal conditions (the cold, ultracold, and Nariai black holes), while in higher-than-four dimensions the extremal black hole is only Nariai. For Λ <0 we only have black hole solutions with one horizon, save for the 4 d case where there can exist two horizons. We give constraints on the mass and the symmetry-breaking scale for the existence of all the extremal cases. In addition, we also obtain factorized solutions, whose topology is the direct product of two-dimensional spaces of constant curvature (M_2, dS_2, or AdS_2) with (D-2)-sphere. We study all possible factorized channels.
PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics.
Oyedele, Akinola D; Yang, Shize; Liang, Liangbo; Puretzky, Alexander A; Wang, Kai; Zhang, Jingjie; Yu, Peng; Pudasaini, Pushpa R; Ghosh, Avik W; Liu, Zheng; Rouleau, Christopher M; Sumpter, Bobby G; Chisholm, Matthew F; Zhou, Wu; Rack, Philip D; Geohegan, David B; Xiao, Kai
2017-10-11
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe 2 exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from 0 (bulk) to 1.3 eV (monolayer). The Raman-active vibrational modes of PdSe 2 were identified using polarized Raman spectroscopy, and a strong interlayer interaction was revealed from large, thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe 2 display tunable ambipolar charge carrier conduction with a high electron field-effect mobility of ∼158 cm 2 V -1 s -1 , indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.
NASA Astrophysics Data System (ADS)
Luo, Geng-Geng; Wu, Dong-Liang; Liu, Li; Xia, Jiu-Xu; Li, Dong-Xu; Dai, Jing-Cao; Xiao, Zi-Jing
2011-11-01
The ultrasonic reaction of Ag 2O, bipy and H 2aze gave rise to a novel Ag(I) mixed-ligand coordination polymer, namely [Ag(aze)(bipy)]·(H 2O) 3 ( 1) (bipy = 4,4'-bipyridine, H 2aze = azelaic acid). In 1, Ag(I) ions are linked by bipy and aze ligands to form a single two-dimensional (2D) undulated net with a (6,3) topology, incorporating Ag 6(bipy) 4(aze) 2 windows of 22.58 × 11.06 Å based on Ag⋯Ag distances. A pair of identical 2D single nets are interconnected via π⋯π stacking and unsupported Ag⋯Ag interactions to generate a 2D double-layered net. A discrete water hexamer composed of a new planar tetrameric water ring and two pendent water molecules is perpendicularly located in each hydrophilic cavity of the 2D bilayer and acts as a 'glue' to assemble adjacent 2D double-layered nets into a three-dimensional (3D) structure.
Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory
2011-01-01
Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988
Edmondson, Rasheena; Broglie, Jessica Jenkins; Adcock, Audrey F.
2014-01-01
Abstract Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review. PMID:24831787
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions
Wu, Guanhong; Zhou, Chenkun; Ming, Wenmei; ...
2018-05-23
Organic–inorganic metal halide hybrids have emerged as a new class of materials with fascinating optical and electronic properties. The exceptional structure tunability has enabled the development of materials with various dimensionalities at the molecular level, from three-dimensional (3D) to 2D, 1D, and 0D. Here, we report a new 1D lead chloride hybrid, C 4N 2H 14PbCl 4, which exhibits unusual inverse excitation-dependent broadband emission from bluish-green to yellow. Density functional theory calculations were performed to better understand the mechanism of this excitation-dependent broadband emission. This 1D hybrid material is found to have two emission centers, corresponding to the self-trapped excitonsmore » (STEs) and vacancy-bound excitons. The excitation-dependent emission is due to different populations of these two types of excitons generated at different excitation wavelengths. Furthermore, this work shows the rich chemistry and physics of organic–inorganic metal halide hybrids and paves the way to achieving novel light emitters with excitation-dependent broadband emissions at room temperature.« less
A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guanhong; Zhou, Chenkun; Ming, Wenmei
Organic–inorganic metal halide hybrids have emerged as a new class of materials with fascinating optical and electronic properties. The exceptional structure tunability has enabled the development of materials with various dimensionalities at the molecular level, from three-dimensional (3D) to 2D, 1D, and 0D. Here, we report a new 1D lead chloride hybrid, C 4N 2H 14PbCl 4, which exhibits unusual inverse excitation-dependent broadband emission from bluish-green to yellow. Density functional theory calculations were performed to better understand the mechanism of this excitation-dependent broadband emission. This 1D hybrid material is found to have two emission centers, corresponding to the self-trapped excitonsmore » (STEs) and vacancy-bound excitons. The excitation-dependent emission is due to different populations of these two types of excitons generated at different excitation wavelengths. Furthermore, this work shows the rich chemistry and physics of organic–inorganic metal halide hybrids and paves the way to achieving novel light emitters with excitation-dependent broadband emissions at room temperature.« less
Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J; Smith, R F; Bolme, C
2011-03-23
We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISARmore » optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.« less
Determination of melamine of milk based on two-dimensional correlation infrared spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Ren-jie; Liu, Rong; Xu, Kexin
2012-03-01
The adulteration of milk with harmful substances is a threat to public health and beyond question a serious crime. In order to develop a rapid, cost-effective, high-throughput analysis method for detecting of adulterants in milk, the discriminative analysis of melamine is established in milk based on the two-dimensional (2D) correlation infrared spectroscopy in present paper. Pure milk samples and adulterated milk samples with different content of melamine were prepared. Then the Fourier Transform Infrared spectra of all samples were measured at room temperature. The characteristics of pure milk and adulterated milk were studied by one-dimensional spectra. The 2D NIR and 2D IR correlation spectroscopy were calculated under the perturbation of adulteration concentration. In the range from 1400 to 1800 cm-1, two strong autopeaks were aroused by melamine in milk at 1464 cm-1 and 1560 cm-1 in synchronous spectrum. At the same time, the 1560 cm-1 band does not share cross peak with the 1464 cm-1 band, which further confirm that the two bands have the same origin. Also in the range from 4200 to 4800 cm-1, the autopeak was shown at 4648 cm-1 in synchronous spectrum of melamine in milk. 2D NIR-IR hetero-spectral correlation analysis confirmed that the bands at 1464, 1560 and 4648 cm-1 had the same origin. The results demonstrated that the adulterant can be discriminated correctly by 2D correlation infrared spectroscopy.
Three-Dimensional Eutrophication Model of Chesapeake Bay. Volume 1: Main Report.
1994-05-01
c.d.g (4-68) - Krpon RPON - WSr 5 RPON Nitrate NO 3 = [ (PNx - 1)PxANCxBx x=c, d ,g (4-69) + NT - ANDC Denit DOC Silica The model incorporates two siliceous...Dimensional Eutrophication Model of Chesapeake Bay Volume I: Main Report D TIC by Carl F. Cerco, Thomas M. Cole ELECTE• JUN 2 810,94U Approved For...Approach ................................... 15-13 Comparison of Analytical and Empirical Results ............... 15-19 D iscussion
Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics.
Yam, Kah Meng; Guo, Na; Zhang, Chun
2018-06-15
Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu 2 Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu 2 Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu 2 Si-NiPc-Cu 2 Si junction is about three orders higher than that through graphene-NiPc-graphene. Detailed analysis shows that the surprisingly high conductivity of Cu 2 Si-NiPc-Cu 2 Si originates from the mixing of the Cu 2 Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu 2 Si may be an excellent candidate for electrode materials for future nanoscale devices.
Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics
NASA Astrophysics Data System (ADS)
Meng Yam, Kah; Guo, Na; Zhang, Chun
2018-06-01
Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.
Stock, Kristin; Estrada, Marta F; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph
2016-07-01
Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models.
Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph
2016-01-01
Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600
Photonic topological boundary pumping as a probe of 4D quantum Hall physics
NASA Astrophysics Data System (ADS)
Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P.; Kraus, Yaacov E.; Rechtsman, Mikael C.
2018-01-01
When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.
Photonic topological boundary pumping as a probe of 4D quantum Hall physics.
Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C
2018-01-03
When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.
Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.
Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi
2015-12-28
A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect.
Universal scaling laws of diffusion in two-dimensional granular liquids.
Wang, Chen-Hung; Yu, Szu-Hsuan; Chen, Peilong
2015-06-01
We find, in a two-dimensional air table granular system, that the reduced diffusion constant D* and excess entropy S(2) follow two distinct scaling laws: D*∼e(S(2)*) for dense liquids and D∼e(3S(2)*) for dilute ones. The scaling for dense liquids is very similar to that for three-dimensional liquids proposed previously [M. Dzugutov, Nature (London) 381, 137 (1996); A. Samanta et al., Phys. Rev. Lett. 92, 145901 (2004)]. In the dilute regime, a power law [Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999)] also fits our data reasonably well. In our system, particles experience low air drag dissipation and interact with each others through embedded magnets. These near-conservative many-body interactions are responsible for the measured Gaussian velocity distribution functions and the scaling laws. The dominance of cage relaxations in dense liquids leads to the different scaling laws for dense and dilute regimes.
Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi
2013-01-01
The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
NASA Astrophysics Data System (ADS)
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Two-Dimensional VO2 Mesoporous Microarrays for High-Performance Supercapacitor
NASA Astrophysics Data System (ADS)
Fan, Yuqi; Ouyang, Delong; Li, Bao-Wen; Dang, Feng; Ren, Zongming
2018-05-01
Two-dimensional (2D) mesoporous VO2 microarrays have been prepared using an organic-inorganic liquid interface. The units of microarrays consist of needle-like VO2 particles with a mesoporous structure, in which crack-like pores with a pore size of about 2 nm and depth of 20-100 nm are distributed on the particle surface. The liquid interface acts as a template for the formation of the 2D microarrays, as identified from the kinetic observation. Due to the mesoporous structure of the units and high conductivity of the microarray, such 2D VO2 microarrays exhibit a high specific capacitance of 265 F/g at 1 A/g and excellent rate capability (182 F/g at 10 A/g) and cycling stability, suggesting the effect of unique microstructure for improving the electrochemical performance.
Miquel, M E; Hill, D L G; Baker, E J; Qureshi, S A; Simon, R D B; Keevil, S F; Razavi, R S
2003-06-01
The present study was designed to evaluate the feasibility and clinical usefulness of three-dimensional (3D) reconstruction of intra-cardiac anatomy from a series of two-dimensional (2D) MR images using commercially available software. Sixteen patients (eight with structurally normal hearts but due to have catheter radio-frequency ablation of atrial tachyarrhythmias and eight with atrial septal defects (ASD) due for trans-catheter closure) and two volunteers were imaged at 1T. For each patient, a series of ECG-triggered images (5 mm thick slices, 2-3 mm apart) were acquired during breath holding. Depending on image quality, T1- or T2-weighted spin-echo images or gradient-echo cine images were used. The 3D reconstruction was performed off-line: the blood pools within cardiac chambers and great vessels were semi-automatically segmented, their outer surface was extracted using a marching cube algorithm and rendered. Intra- and inter-observer variability, effect of breath-hold position and differences between pulse sequences were assessed by imaging a volunteer. The 3D reconstructions were assessed by three cardiologists and compared with the 2D MR images and with 2D and 3D trans-esophagal and intra-cardiac echocardiography obtained during interventions. In every case, an anatomically detailed 3D volume was obtained. In the two patients where a 3 mm interval between slices was used, the resolution was not as good but it was still possible to visualize all the major anatomical structures. Spin-echo images lead to reconstructions more detailed than those obtained from gradient-echo images. However, gradient-echo images are easier to segment due to their greater contrast. Furthermore, because images were acquired at least at ten points in the cardiac cycles for every slice it was possible to reconstruct a cine loop and, for example, to visualize the evolution of the size and margins of the ASD during the cardiac cycle. 3D reconstruction proved to be an effective way to assess the relationship between the different parts of the cardiac anatomy. The technique was useful in planning interventions in these patients.
Two- and three-dimensional CT measurements of urinary calculi length and width: a comparative study.
Lidén, Mats; Thunberg, Per; Broxvall, Mathias; Geijer, Håkan
2015-04-01
The standard imaging procedure for a patient presenting with renal colic is unenhanced computed tomography (CT). The CT measured size has a close correlation to the estimated prognosis for spontaneous passage of a ureteral calculus. Size estimations of urinary calculi in CT images are still based on two-dimensional (2D) reformats. To develop and validate a calculus oriented three-dimensional (3D) method for measuring the length and width of urinary calculi and to compare the calculus oriented measurements of the length and width with corresponding 2D measurements obtained in axial and coronal reformats. Fifty unenhanced CT examinations demonstrating urinary calculi were included. A 3D symmetric segmentation algorithm was validated against reader size estimations. The calculus oriented size from the segmentation was then compared to the estimated size in axial and coronal 2D reformats. The validation showed 0.1 ± 0.7 mm agreement against reference measure. There was a 0.4 mm median bias for 3D estimated calculus length compared to 2D (P < 0.001), but no significant bias for 3D width compared to 2D. The length of a calculus in axial and coronal reformats becomes underestimated compared to 3D if its orientation is not aligned to the image planes. Future studies aiming to correlate calculus size with patient outcome should use a calculus oriented size estimation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
ERIC Educational Resources Information Center
Hamdan, Mohd Najib; Ali, Ahmad Zamzuri Mohamad
2015-01-01
The talking-head animation is an instructional animation capable of improving the communication skills through enhancing the pronunciation skills; whereby a word is pronounced correctly and accurately. This had been proven by several researches, which indicate that learning with interactive animation is much more advantageous than conventional…
USDA-ARS?s Scientific Manuscript database
The eButton takes frontal images at 4 second intervals throughout the day. A three-dimensional (3D) manually administered wire mesh procedure has been developed to quantify portion sizes from the two-dimensional (2D) images. This paper reports a test of the interrater reliability and validity of use...
A Comparison of Cognitive Teaching Stimuli in a First Grade Classroom.
ERIC Educational Resources Information Center
Sigrest, Christine E.
A study assessed the effectiveness of three cognitive levels of instruction with first graders--three-dimensional (3-D) instruction using real objects, two-dimensional (2-D) instruction using picture representations, and verbal instruction. The study population included 18 first-grade students between the ages of 6 and 8 at a small elementary city…
NASA Astrophysics Data System (ADS)
Mu, Bao; Li, Qian; Lv, Lei; Yang, Dan-Dan; Wang, Qing; Huang, Ru-Dan
2015-03-01
The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H3ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H2O)] (1), [M(H2ImDC)2(H2O)2]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn3(ImDC)2(bpe)(H2O)]·3H2O (5) and [Cd(H2ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O-H•••O and O-H•••N). Complexes 2-4 and 6 are isomorphous, and they display the mononuclear structures. In these complexes, the O-H•••O and O-H•••N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (103) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1-7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K.
Exact deconstruction of the 6D (2,0) theory
NASA Astrophysics Data System (ADS)
Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodríguez-Gómez, D.
2017-06-01
The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: in the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the "half-BPS" limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 × T 2. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.
Santos, Jorge M; Camões, Sérgio P; Filipe, Elysse; Cipriano, Madalena; Barcia, Rita N; Filipe, Mariana; Teixeira, Mariana; Simões, Sandra; Gaspar, Manuela; Mosqueira, Diogo; Nascimento, Diana S; Pinto-do-Ó, Perpétua; Cruz, Pedro; Cruz, Helder; Castro, Matilde; Miranda, Joana P
2015-05-09
The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM2D-treated wounds in vivo. Although CM2D proved to be beneficial, CM3D-treated wounds revealed a completely regenerated tissue by day 14 after excisions, with a more mature vascular system already showing glands and hair follicles. This work unravels an important alternative to the use of cells in the final formulation of advanced therapy medicinal products by providing a proof of concept that a reproducible system for the production of UCX®-conditioned medium can be used to prime a secretome for eventual clinical applications.
A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS
In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...
Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI
NASA Astrophysics Data System (ADS)
Kaur, Harpinder; Kumar, Mukesh
2016-05-01
A two-dimensional (2D) high-index contrast grating (HCG) is proposed as a two-way reflector on Silicon-on-insulator (SOI). The proposed reflector provides high reflectivity over two (practically important) sets of angles of incidence- normal (θ = 0 °) and oblique/grazing (θ = 80 ° - 85 ° / 90 °). Analytical model of 2D HCG is presented using improved Fourier modal method. The vertical incidence is useful for application in VCSEL while oblique/grazing incidence can be utilized in high confinement (HCG mirrors based) hollow waveguides and Bragg reflectors. The proposed two-way reflector also exhibits a large reflection bandwidth (around telecom wavelength) which is an advantage for broadband photonic devices.
NASA Astrophysics Data System (ADS)
Kim, Jeongwoo; Wu, Ruqian
2018-03-01
Despite the superiority of two-dimensional (2D) topological insulators (TIs) over their three-dimensional (3D) counterparts in various aspects and the essential distinction between them in structural symmetry, the variation of the topological one-dimensional (1D) edge states upon magnetic interaction and their application for spintronic devices have not been sufficiently illuminated. Here, we reveal that 1D edge states of 2D TIs have a unique magnetic response never observed in 2D surface states of 3D TIs, and using this exotic nature we propose a way to utilize the spin-polarized channel for spintronic applications. We investigate the effects of width and magnetic decoration on the 1D topological edge state of Bi bilayer nanoribbons (BNRs). Through the Zak phase, we find that the zero-energy states are enforced at the magnetic domain boundaries in the Cr-decorated BNR and directly examine their robustness using short-range magnetic domain structures. We also demonstrate that 1D edge states of BNRs can be selectively and reversibly controlled by the combination of magnetic reorientation and electric field without compromising their structural integrity. Our work provides a fundamental understanding of 1D topological edge states and shows the opportunity of using these features in spintronic devices.
NASA Astrophysics Data System (ADS)
Seredyński, M.; Rebow, M.; Banaszek, J.
2016-09-01
The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors' attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt's analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed.
NASA Astrophysics Data System (ADS)
Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi
2018-07-01
Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.
Learning control system design based on 2-D theory - An application to parallel link manipulator
NASA Technical Reports Server (NTRS)
Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.
1990-01-01
An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.
NASA Astrophysics Data System (ADS)
Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko
2017-05-01
Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.
NASA Technical Reports Server (NTRS)
Olariu, S.; Schwing, J.; Zhang, J.
1991-01-01
A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.
Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M
2016-08-10
The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors.
Debnath, Ananya; Thakkar, Foram M; Maiti, Prabal K; Kumaran, V; Ayappa, K G
2014-10-14
Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, Lβ', to the one dimensional (1D) rippled, Pβ' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel Lβ' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of ∼2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.
Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan
2017-10-27
The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.; Vidussoni, Marco A.
1990-01-01
A practical example of applying two- to three-dimensional (2- to 3-D) global/local finite element analysis to laminated composites is presented. Cross-ply graphite/epoxy laminates of 0.1-in. (0.254-cm) thickness with central circular holes ranging from 1 to 6 in. (2.54 to 15.2 cm) in diameter, subjected to in-plane compression were analyzed. Guidelines for full three-dimensional finite element analysis and two- to three-dimensional global/local analysis of interlaminar stresses at straight free edges of laminated composites are included. The larger holes were found to reduce substantially the interlaminar stresses at the straight free-edge in proximity to the hole. Three-dimensional stress results were obtained for thin laminates which require prohibitive computer resources for full three-dimensional analyses of comparative accuracy.
Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Li, J.; Chen, K.-C.; Jajoo, A.; Nicol, M.; Alfi, D. M.
2015-01-01
Three-dimensional (3D) cephalometry is not as simple as just adding a ‘third’ dimension to a traditional two-dimensional cephalometric analysis. There are more complex issues in 3D analysis. These include how reference frames are created, how size, position, orientation and shape are measured, and how symmetry is assessed. The main purpose of this article is to present the geometric principles of 3D cephalometry. In addition, the Gateno–Xia cephalometric analysis is presented; this is the first 3D cephalometric analysis to observe these principles. PMID:26573563
NASA Astrophysics Data System (ADS)
Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.
2015-11-01
Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.
Two-dimensional wide-band-gap II-V semiconductors with a dilated graphene-like structure
NASA Astrophysics Data System (ADS)
Zhang, Xue-Jing; Liu, Bang-Gui
2016-12-01
Since the advent of graphene, two-dimensional (2D) materials have become very attractive and there is growing interest in exploring new 2D materials beyond graphene. Here, through density-functional theory (DFT) calculations, we predict 2D wide-band-gap II-V semiconductor materials of M3X2 (M = Zn, Cd and X = N, P, As) with a dilated graphene-like honeycomb structure. In this structure the group-V X atoms form two X-atomic planes symmetrically astride the centering group-IIB M atomic plane. Our DFT calculation shows that 2D Zn3N2, Zn3P2 and Zn3As2 have direct band gaps of 2.87, 3.81 and 3.55 eV, respectively, and 2D Cd3N2, Cd3P2 and Cd3As2 exhibit indirect band gaps of 2.74, 3.51 and 3.29 eV, respectively. Each of the six 2D materials is shown to have effective carrier (either hole or electron) masses down to 0.03m 0-0.05m 0. The structural stability and feasibility of experimental realization of these 2D materials has been shown in terms of DFT phonon spectra and total energy comparison with related existing bulk materials. On the experimental side, there already are many similar two-coordinate structures of Zn and other transition metals in various organic materials. Therefore, these 2D semiconductors can enrich the family of 2D electronic materials and may have promising potential for achieving novel transistors and optoelectronic devices.
Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea.
Lin, Shih-Wei; Sutherland, Kate; Liao, Yu-Fang; Cistulli, Peter A; Chuang, Li-Pang; Chou, Yu-Ting; Chang, Chih-Hao; Lee, Chung-Shu; Li, Li-Fu; Chen, Ning-Hung
2018-06-01
Craniofacial structure is an important determinant of obstructive sleep apnoea (OSA) syndrome risk. Three-dimensional stereo-photogrammetry (3dMD) is a novel technique which allows quantification of the craniofacial profile. This study compares the facial images of OSA patients captured by 3dMD to three-dimensional computed tomography (3-D CT) and two-dimensional (2-D) digital photogrammetry. Measurements were correlated with indices of OSA severity. Thirty-eight patients diagnosed with OSA were included, and digital photogrammetry, 3dMD and 3-D CT were performed. Distances, areas, angles and volumes from the images captured by three methods were analysed. Almost all measurements captured by 3dMD showed strong agreement with 3-D CT measurements. Results from 2-D digital photogrammetry showed poor agreement with 3-D CT. Mandibular width, neck perimeter size and maxillary volume measurements correlated well with the severity of OSA using all three imaging methods. Mandibular length, facial width, binocular width, neck width, cranial base triangle area, cranial base area 1 and middle cranial fossa volume correlated well with OSA severity using 3dMD and 3-D CT, but not with 2-D digital photogrammetry. 3dMD provided accurate craniofacial measurements of OSA patients, which were highly concordant with those obtained by CT, while avoiding the radiation associated with CT. © 2018 Asian Pacific Society of Respirology.