Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K
2013-01-01
We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.
Generalized Jastrow Variational Method for Liquid HELIUM-3-HELIUM-4 Mixtures at T = 0 K.
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, Kavoos
Microscopic theory of dilute liquid { ^3 He}-{^4 He} mixtures is of great interest, because it provides a physical realization of a nearly degenerate weakly interacting Fermion system. An understanding of properties of the mixtures has received considerable attention both theoretically and experimentally over the past thirty years. We present here a variational procedure based on the Jastrow function for the ground state of {^3 He}- {^4 He} mixtures by minimizing the total energy of the mixture using the hypernetted-chain (HNC) approximation and the Percus-Yevick (PY) approximation for the two body correlation functions. Our goal is to compute from first principles the internal energy of the system and the various two body correlation functions at various densities and compare the results with experiment. The Jastrow variational method for the ground state energy of liquid {^4 He} consists of the following ansatz for the wave function Psi_alpha {rm(vec r_{1 alpha},} {vec r_{2alpha},} dots, {vec r_{N _alpha})} = prod _{rm i < j} {rm f_ {alphaalpha}(r_{ij}). } For a {^3 He } system the corresponding ansatz is Psi_beta {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{N_beta})} = {[prod _{i < j} f_{betabeta }(r_{ij})]} Phi {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{Nbeta}),} where Phi is a Slater determinant of plane waves for the ground state of the Fermion system. The total energy per particle can be written in the form: E = x_sp{alpha}{2} E_{alphaalpha} + x_sp{beta}{2 }E_{betabeta } + 2x_{alpha} x_{beta}E _{alphabeta}, where E_{alphaalpha} , E_{betabeta} , E_{alphabeta} are unknown parameters to be determined from a microscopic theory. Using the Jastrow wave function Psi for the mixture, a general expression is given for the ground state energy in terms of the two body potential and two and three body correlation functions. The Kirkwood Super-position Approximation (KSA) is used for the three-body correlation functions. The antisymmetry of the wave function for Fermions is incorporated following the procedure given earlier by Lado, Inguva and Smith. This procedure for treating the antisymmetry of the wave function simplifies the equations for the two-body correlation functions considerably. The equations for the correlation functions are solved in the hypernetted-chain approximation. Once the two-particle correlation functions for the mixture ( ^3He-^4He) have been obtained, the energy is minimized with respect to the variational parameters involved in the Jastrow wave function. The binding energy and the optimal correlation functions are then obtained as a function of the concentration of ^3He atoms in the mixture. (Abstract shortened with permission of author.).
NASA Astrophysics Data System (ADS)
Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.
2017-05-01
We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.
ERIC Educational Resources Information Center
Klesges, Robert C.; And Others
1992-01-01
Examined whether 132 preschool children who varied in levels of body fat differed on psychosocial functioning. Children did not differ in self-esteem and family functioning as function of body fat. Prospectively, physical self-esteem weakly but significantly correlated with body fat at one and two years; father's perception of family functioning…
Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids
NASA Astrophysics Data System (ADS)
Krotscheck, E.
1985-04-01
We develop a general variational theory for inhomogeneous Fermi systems such as the electron gas in a metal surface, the surface of liquid 3He, or simple models of heavy nuclei. The ground-state wave function is expressed in terms of two-body correlations, a one-body attenuation factor, and a model-system Slater determinant. Massive partial summations of cluster expansions are performed by means of Born-Green-Yvon and hypernetted-chain techniques. An optimal single-particle basis is generated by a generalized Hartree-Fock equation in which the two-body correlations screen the bare interparticle interaction. The optimization of the pair correlations leads to a state-averaged random-phase-approximation equation and a strictly microscopic determination of the particle-hole interaction.
Qi, Helena W; Leverentz, Hannah R; Truhlar, Donald G
2013-05-30
This work presents a new fragment method, the electrostatically embedded many-body expansion of the nonlocal energy (EE-MB-NE), and shows that it, along with the previously proposed electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), produces accurate results for large systems at the level of CCSD(T) coupled cluster theory. We primarily study water 16-mers, but we also test the EE-MB-CE method on water hexamers. We analyze the distributions of two-body and three-body terms to show why the many-body expansion of the electrostatically embedded correlation energy converges faster than the many-body expansion of the entire electrostatically embedded interaction potential. The average magnitude of the dimer contributions to the pairwise additive (PA) term of the correlation energy (which neglects cooperative effects) is only one-half of that of the average dimer contribution to the PA term of the expansion of the total energy; this explains why the mean unsigned error (MUE) of the EE-PA-CE approximation is only one-half of that of the EE-PA approximation. Similarly, the average magnitude of the trimer contributions to the three-body (3B) term of the EE-3B-CE approximation is only one-fourth of that of the EE-3B approximation, and the MUE of the EE-3B-CE approximation is one-fourth that of the EE-3B approximation. Finally, we test the efficacy of two- and three-body density functional corrections. One such density functional correction method, the new EE-PA-NE method, with the OLYP or the OHLYP density functional (where the OHLYP functional is the OptX exchange functional combined with the LYP correlation functional multiplied by 0.5), has the best performance-to-price ratio of any method whose computational cost scales as the third power of the number of monomers and is competitive in accuracy in the tests presented here with even the electrostatically embedded three-body approximation.
A pilot study examining correlates of body image among women living with SCI.
Bassett, R L; Martin Ginis, K A; Buchholz, A C
2009-06-01
Cross-sectional pilot study. To explore correlates of body image among women with spinal cord injury (SCI), within the framework of Cash's cognitive behavioral model of body image. Hamilton, Ontario, Canada. Women with SCI (N=11, 64% with tetraplegia) reported their functional and appearance body image (Adult Body Satisfaction Questionnaire). A 3-day recall of leisure time physical activity (LTPA), three measures of body composition (that is, weight, waist circumference, body fat) and several demographic variables were assessed as potential correlates. Appearance satisfaction was negatively correlated with all three measures of body composition and positively correlated with years postinjury. Functional satisfaction was positively correlated with years postinjury, and negatively correlated with various LTPA variables. Functional and appearance body image may improve with time following SCI. Body composition may impact satisfaction with physical appearance for some women. The negative relationship between LTPA and functional satisfaction merits further examination, as functional dissatisfaction may motivate individuals to engage in certain types and intensities of LTPA. Correlates of body image differ between appearance and functional satisfaction. Future research should examine appearance and functional satisfaction separately among women with SCI.
Body-mass dependence of age-related deterioration in human muscular function.
Meltzer, D E
1996-04-01
Maximal anaerobic power of human muscles declines with increasing chronological age and is correlated with body mass. This study investigated whether the rate of deterioration in human muscular function among trained weight lifters is also correlated with body mass. Cross-sectional analysis of performance data of over 1,100 Masters competitors in Olympic-style weight lifting was carried out; eight body-weight classes and six age groups were represented. Two-lift total data (sum of snatch and clean and jerk lifts) were analyzed. Mean deterioration rates in the performance of athletes of widely diverse body masses were compared over the following age ranges: 42-57, 42-62, and 42-67 yr. No statistically significant correlation (P < 0.05) was found between rate of performance decline and body mass. The relationship between body mass and the magnitude of age-related variation of deterioration rate was also studied; no significant correlation was found. Previous studies have demonstrated that performance in Olympic-style weight lifting is correlated with maximal anaerobic muscular power. This leads us to suggest that the age-related deterioration rate of anaerobic power in trained subjects may not be correlated with the body mass of the individual.
Martinez, Christopher M; Sparks, John S
2017-09-01
Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-19
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less
Peculiar velocity effect on galaxy correlation functions in nonlinear clustering regime
NASA Astrophysics Data System (ADS)
Matsubara, Takahiko
1994-03-01
We studied the distortion of the apparent distribution of galaxies in redshift space contaminated by the peculiar velocity effect. Specifically we obtained the expressions for N-point correlation functions in redshift space with given functional form for velocity distribution f(v) and evaluated two- and three-point correlation functions quantitatively. The effect of velocity correlations is also discussed. When the two-point correlation function in real space has a power-law form, Xir(r) is proportional to r(-gamma), the redshift-space counterpart on small scales also has a power-law form but with an increased power-law index: Xis(s) is proportional to s(1-gamma). When the three-point correlation function has the hierarchical form and the two-point correlation function has the power-law form in real space, the hierarchical form of the three-point correlation function is almost preserved in redshift space. The above analytic results are compared with the direct analysis based on N-body simulation data for cold dark matter models. Implications on the hierarchical clustering ansatz are discussed in detail.
Universal noise and Efimov physics
NASA Astrophysics Data System (ADS)
Nicholson, Amy N.
2016-03-01
Probability distributions for correlation functions of particles interacting via random-valued fields are discussed as a novel tool for determining the spectrum of a theory. In particular, this method is used to determine the energies of universal N-body clusters tied to Efimov trimers, for even N, by investigating the distribution of a correlation function of two particles at unitarity. Using numerical evidence that this distribution is log-normal, an analytical prediction for the N-dependence of the N-body binding energies is made.
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward
1991-01-01
It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.
The influence of body mass index on skin susceptibility to sodium lauryl sulphate.
Löffler, H; Aramaki, J U N; Effendy, Isaak
2002-02-01
The influence of nutrition on the physiological functions of man is well studied. Numerous diseases can be exacerbated by obesity. However, it has not yet been determined whether body weight and body mass index (BMI), as an indicator of a high body fat store, can influence skin sensitivity. This study investigates the correlation between body mass index and the epidermal functions, evaluated by bioengineering methods, before and after an irritant patch test with sodium lauryl sulphate (SLS). Epidermal functions were evaluated using an evaporimeter, chromameter and laser-Doppler-flowmeter. Patch testing was conducted for 48 h with two different concentrations of SLS (0.25% and 0.5%) on the forearms of healthy volunteers. Measurements were performed 24h after patch removal. Obese individuals showed significantly increased transepidermal water loss (TEWL), skin blood flow and skin colour (red) as compared to a control group. However, the degree of skin sensitivity to SLS was not correlated with BMI. Basal biophysical parameters of the skin are primarily correlated with the BMI. This may be caused by obesity-induced physiological changes, e.g. increased sweat gland activity, high blood pressure and physiological temperature-regulating system. The epidermal barrier function, as evaluated after SLS patch testing is, however, not correlated with a high BMI, indicating a normal skin barrier.
Correlated scattering states of N-body Coulomb systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berakdar, J.
1997-03-01
For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate analytical solution of the many-body time-independent Schr{umlt o}dinger equation is derived at a total energy above the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed correlated wave function represents, to leading order, an exact solution of the many-body Schr{umlt o}dinger equation in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown that the Kato cusp conditionsmore » are satisfied by the derived wave function at all two-body coalescence points. An expression of the normalization of this wave function is also given. To render possible the calculations of scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is suggested in which the correlations between the continuum particles are completely subsumed into effective interactions with the residual charge. Analytical expressions for these effective interactions are derived and discussed for physical situations. {copyright} {ital 1997} {ital The American Physical Society}« less
Cornelissen, Piers L; Toveé, Martin J; Bateson, Melissa
2009-02-07
Body mass index (BMI) and waist-to-hip ratio (WHR) are two widely used anthropometric indices of body shape argued to convey different information about health and fertility. Both indices have also been shown to affect attractiveness ratings of female bodies. However, BMI and WHR are naturally positively correlated, complicating studies designed to identify their relative importance in predicting health and attractiveness outcomes. We show that the correlation between BMI and WHR depends on the assumed model of subcutaneous fat deposition. An additive model, whereby fat is added to the waist and hips at a constant rate, predicts a correlation between BMI and WHR because with increasing fat, the difference between the waist and hips becomes smaller relative to total width. This model is supported by longitudinal and cross-sectional data. We parameterized the function relating WHR to BMI for white UK females of reproductive age, and used this function to statistically decompose body shape into two independent components. We show that judgements of the attractiveness of female bodies are well explained by the component of curvaceousness related to BMI but not by residual curvaceousness. Our findings resolve a long-standing dispute in the attractiveness literature by confirming that although WHR appears to be an important predictor of attractiveness, this is largely explained by the direct effect of total body fat on WHR, thus reinforcing the conclusion that total body fat is the primary determinant of female body shape attractiveness.
Overcomplete compact representation of two-particle Green's functions
NASA Astrophysics Data System (ADS)
Shinaoka, Hiroshi; Otsuki, Junya; Haule, Kristjan; Wallerberger, Markus; Gull, Emanuel; Yoshimi, Kazuyoshi; Ohzeki, Masayuki
2018-05-01
Two-particle Green's functions and the vertex functions play a critical role in theoretical frameworks for describing strongly correlated electron systems. However, numerical calculations at the two-particle level often suffer from large computation time and massive memory consumption. We derive a general expansion formula for the two-particle Green's functions in terms of an overcomplete representation based on the recently proposed "intermediate representation" basis. The expansion formula is obtained by decomposing the spectral representation of the two-particle Green's function. We demonstrate that the expansion coefficients decay exponentially, while all high-frequency and long-tail structures in the Matsubara-frequency domain are retained. This representation therefore enables efficient treatment of two-particle quantities and opens a route to the application of modern many-body theories to realistic strongly correlated electron systems.
Han, Der-Sheng; Chang, Ke-Vin; Li, Chia-Ming; Lin, Yu-Hong; Kao, Tung-Wei; Tsai, Keh-Sung; Wang, Tyng-Grey; Yang, Wei-Shiung
2016-01-20
Sarcopenia, characterized by low muscle mass and function, results in frailty, comorbidities and mortality. However, its prevalence varies according to the different criteria used in its diagnosis. This cross-sectional study investigated the difference in the number of sarcopenia cases recorded by two different measurement methods of low muscle mass to determine which measurement was better. We recruited 878 (54.2% female) individuals aged over 65 years and obtained their body composition and functional parameters. Low muscle mass was defined as two standard deviations below either the mean height-adjusted (hSMI) or weight-adjusted (wSMI) muscle mass of a young reference group. The prevalence of sarcopenia was 6.7% vs. 0.4% (male/female) by hSMI, and 4.0% vs. 10.7% (male/female) by wSMI. The κ coefficients for these two criteria were 0.39 vs. 0.03 (male/female), and 0.17 in all subjects. Serum myostatin levels correlated positively with gait speed (r = 0.142, p = 0.007) after adjustment for gender. hSMI correlated with grip strength, cardiopulmonary endurance, leg endurance, gait speed, and flexibility. wSMI correlated with grip strength, leg endurance, gait speed, and flexibility. Since hSMI correlated more closely with grip strength and more muscular functions, we recommend hSMI in the diagnosis of low muscle mass.
Optimized Hypernetted-Chain Solutions for Helium -4 Surfaces and Metal Surfaces
NASA Astrophysics Data System (ADS)
Qian, Guo-Xin
This thesis is a study of inhomogeneous Bose systems such as liquid ('4)He slabs and inhomogeneous Fermi systems such as the electron gas in metal films, at zero temperature. Using a Jastrow-type many-body wavefunction, the ground state energy is expressed by means of Bogoliubov-Born-Green-Kirkwood -Yvon and Hypernetted-Chain techniques. For Bose systems, Euler-Lagrange equations are derived for the one- and two -body functions and systematic approximation methods are physically motivated. It is shown that the optimized variational method includes a self-consistent summation of ladder- and ring-diagrams of conventional many-body theory. For Fermi systems, a linear potential model is adopted to generate the optimized Hartree-Fock basis. Euler-Lagrange equations are derived for the two-body correlations which serve to screen the strong bare Coulomb interaction. The optimization of the pair correlation leads to an expression of correlation energy in which the state averaged RPA part is separated. Numerical applications are presented for the density profile and pair distribution function for both ('4)He surfaces and metal surfaces. Both the bulk and surface energies are calculated in good agreement with experiments.
Extended screened exchange functional derived from transcorrelated density functional theory.
Umezawa, Naoto
2017-09-14
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
Avatar body dimensions and men's body image.
Cacioli, Jon-Paul; Mussap, Alexander J
2014-03-01
Two online surveys examined the significance of the visual analogues, or 'avatars', men (total N=266) create and use online. Two-dimensional (adiposity×muscle) somatomorphic matrices revealed that avatars are generally thinner than their creator's actual body and similar to their ideal, but more muscular than either their actual or ideal. Men's ratings of the importance of their avatar's appearance correlated with their actual weight and muscle concerns, and disparity between their avatar and actual body dimensions predicted their offline context body change concerns additional to that accounted for by disparity between their ideal and actual bodies. Together with the observation that men also reported higher self-esteem, less social interaction anxiety and less social phobia while online (which correlated with the time they spent online), these results suggest that the physical dimensions of avatars used in social interactions online may serve a compensatory function. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combining two-body density functionals with multiconfigurational wavefunctions: diatomic molecules
NASA Astrophysics Data System (ADS)
McDouall, Joseph J. W.
The MCSCF method provides a correct zero-order wavefunction for all regions of molecular potential energy surfaces. To obtain quantitative accuracy a proper treatment of the dynamic correlation problem must be implemented. Traditionally this has been achieved through multireference variants of perturbation theory, configuration interaction and coupled cluster theory. The computational cost of such techniques makes them prohibitive for all but the smallest molecular problems. Reported here is an investigation into the efficacy of two-body density functionals in providing the dynamic correlation energy for MCSCF reference states. Tests were made on the two-body density functionals of Colle and Salvetti (CS), Moscardó and San-Fabián (MSF), and Moscardó and Pérez-Jiménez (MPJ5) in predicting the equilibrium bond lengths, harmonic frequencies and dissociation energies of fifteen diatomic molecules (3B2, 3BN, 2BS, 1C2, 2CN, 1CO, 1F2, 1FCl, 1N2, 3NCl, 3O2, 1PN, 3Si2, 3SiO, 3SO) using full valence-shell CASSCF reference wavefunctions. Also studied were modifications of these functionals recently suggested by Miehlich, Stoll and Savin (MSS) and Gräfenstein and Cremer (GC). The results obtained show accuracy comparable with and typically superior to the popular Kohn-Sham BLYP and B3LYP methods. However, the latter methods are not applicable in all regions of a potential energy surface, and even predict incorrect ground states for some systems. The use of two-body density functionals with MCSCF reference states does not share this shortcoming.
Giner, Emmanuel; Tenti, Lorenzo; Angeli, Celestino; Malrieu, Jean-Paul
2016-09-28
The impact of the antisymmetrization is often addressed as a local property of the many-electron wave function, namely that the wave function should vanish when two electrons with parallel spins are in the same position in space. In this paper, we emphasize that this presentation is unduly restrictive: we illustrate the strong non-local character of the antisymmetrization principle, together with the fact that it is a matter of spin symmetry rather than spin parallelism. To this aim, we focus our attention on the simplest representation of various states of two-electron systems, both in atomic (helium atom) and molecular (H 2 and the π system of the ethylene molecule) cases. We discuss the non-local property of the nodal structure of some two-electron wave functions, both using analytical derivations and graphical representations of cuttings of the nodal hypersurfaces. The attention is then focussed on the impact of the antisymmetrization on the maxima of the two-body density, and we show that it introduces strong correlation effects (radial and/or angular) with a non-local character. These correlation effects are analyzed in terms of inflation and depletion zones, which are easily identifiable, thanks to the nodes of the orbitals composing the wave function. Also, we show that the correlation effects induced by the antisymmetrization occur also for anti-parallel spins since all M s components of a given spin state have the same N-body densities. Finally, we illustrate that these correlation effects occur also for the singlet states, but they have strictly opposite impacts: the inflation zones in the triplet become depletion zones in the singlet and vice versa.
Halo correlations in nonlinear cosmic density fields
NASA Astrophysics Data System (ADS)
Bernardeau, F.; Schaeffer, R.
1999-09-01
The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.
Derivation of the density functional theory from the cluster expansion.
Hsu, J Y
2003-09-26
The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.
Exploring excited eigenstates of many-body systems using the functional renormalization group
NASA Astrophysics Data System (ADS)
Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph
2018-05-01
We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.
Effect of short-range correlations on the single proton 3s1/2 wave function in 206Pb
NASA Astrophysics Data System (ADS)
Shlomo, S.; Talmi, I.; Anders, M. R.; Bonasera, G.
2018-02-01
We consider the experimental data for difference, Δρc (r), between the charge density distributions of the isotones 206Pb - 205Tl, deduced by analysis of elastic electron scattering measurements and corresponds to the shell model 3s1/2 proton orbit. We investigate the effects of two-body short-range correlations. This is done by: (a) Determining the corresponding single particle potential (mean-field), employing a novel method, directly from the single particle proton density and its first and second derivatives. We also carried out least-square fits to parametrized single particle potentials; (b) Determining the short-range correlations effect by employing the Jastrow correlated many-body wave function to derive a correlation factor for the single particle density distribution. The 3s 1/2 wave functions of the determined potentials reproduce fairly well the experimental data within the quoted errors. The calculated charge density difference, Δρc (r), obtained with the inclusion of the short-range correlation effect does not reproduce the experimental data.
Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.
Georgi, Justin A; Sipla, Justin S; Forster, Catherine A
2013-01-01
Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.
Turning Semicircular Canal Function on Its Head: Dinosaurs and a Novel Vestibular Analysis
Georgi, Justin A.; Sipla, Justin S.; Forster, Catherine A.
2013-01-01
Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function. PMID:23516495
Ferrante, Simona; Contini, Davide; Spinelli, Lorenzo; Pedrocchi, Alessandra; Torricelli, Alessandro; Molteni, Franco; Ferrigno, Giancarlo; Cubeddu, Rinaldo
2009-01-01
A noninvasive methodology, combining functional electrical stimulation and time-domain near-infrared spectroscopy (TD-NIRS), is developed to verify whether stroke-altered muscular metabolism on postacute patients. Seven healthy subjects and nine postacute stroke patients undergo a protocol of knee flex-extension induced by quadricep electrical stimulation. During the protocol, TD-NIRS measurements are performed on both rectus femoris to investigate whether significant differences arise between able-bodied and stroke subjects and between patients' paretic and healthy legs. During baseline, metabolic parameters do not show any significant differences among subjects. During stimulation, paretic limbs produce a knee angle significantly lower than healthy legs. During recovery, patients' healthy limbs show a metabolic behavior correlated to able-bodied subjects. Instead, the correlation between the metabolic behavior of the paretic and able-bodied legs allows the definition of two patients' subgroups: one highly correlated (R>0.87) and the other uncorrelated (R<0.08). This grouping reflects the patient functional condition. The results obtained on the most impaired patients suggest that stroke does not produce any systemic consequences at the muscle, but the metabolic dysfunction seems to be local and unilateral. It is crucial to enlarge the sample size of the two subgroups before making these preliminary results a general finding.
NASA Astrophysics Data System (ADS)
Ferrante, Simona; Contini, Davide; Spinelli, Lorenzo; Pedrocchi, Alessandra; Torricelli, Alessandro; Molteni, Franco; Ferrigno, Giancarlo; Cubeddu, Rinaldo
2009-07-01
A noninvasive methodology, combining functional electrical stimulation and time-domain near-infrared spectroscopy (TD-NIRS), is developed to verify whether stroke-altered muscular metabolism on postacute patients. Seven healthy subjects and nine postacute stroke patients undergo a protocol of knee flex-extension induced by quadricep electrical stimulation. During the protocol, TD-NIRS measurements are performed on both rectus femoris to investigate whether significant differences arise between able-bodied and stroke subjects and between patients' paretic and healthy legs. During baseline, metabolic parameters do not show any significant differences among subjects. During stimulation, paretic limbs produce a knee angle significantly lower than healthy legs. During recovery, patients' healthy limbs show a metabolic behavior correlated to able-bodied subjects. Instead, the correlation between the metabolic behavior of the paretic and able-bodied legs allows the definition of two patients' subgroups: one highly correlated (R>0.87) and the other uncorrelated (R<0.08). This grouping reflects the patient functional condition. The results obtained on the most impaired patients suggest that stroke does not produce any systemic consequences at the muscle, but the metabolic dysfunction seems to be local and unilateral. It is crucial to enlarge the sample size of the two subgroups before making these preliminary results a general finding.
Evaluation of cluster expansions and correlated one-body properties of nuclei
NASA Astrophysics Data System (ADS)
Moustakidis, Ch. C.; Massen, S. E.; Panos, C. P.; Grypeos, M. E.; Antonov, A. N.
2001-07-01
Three different cluster expansions for the evaluation of correlated one-body properties of s-p and s-d shell nuclei are compared. Harmonic oscillator wave functions and Jastrow-type correlations are used, while analytical expressions are obtained for the charge form factor, density distribution, and momentum distribution by truncating the expansions and using a standard Jastrow correlation function f. The harmonic oscillator parameter b and the correlation parameter β have been determined by a least-squares fit to the experimental charge form factors in each case. The information entropy of nuclei in position space (Sr) and momentum space (Sk) according to the three methods are also calculated. It is found that the larger the entropy sum, S=Sr+Sk (the net information content of the system), the smaller the values of χ2. This indicates that maximal S is a criterion of the quality of a given nuclear model, according to the maximum entropy principle. Only two exceptions to this rule, out of many cases examined, were found. Finally an analytic expression for the so-called ``healing'' or ``wound'' integrals is derived with the function f considered, for any state of the relative two-nucleon motion, and their values in certain cases are computed and compared.
The Hubbard Dimer: A Complete DFT Solution to a Many-Body Problem
NASA Astrophysics Data System (ADS)
Smith, Justin; Carrascal, Diego; Ferrer, Jaime; Burke, Kieron
2015-03-01
In this work we explain the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site asymmetric Hubbard model. We discuss the connection between the lattice and real-space and how this is a simple model for stretched H2. We can solve this elementary example analytically, and with that we can illuminate the underlying logic and aims of DFT. While the many-body solution is analytic, the density functional is given only implicitly. We overcome this difficulty by creating a highly accurate parameterization of the exact function. We use this parameterization to perform benchmark calculations of correlation kinetic energy, the adiabatic connection, etc. We also test Hartree-Fock and the Bethe Ansatz Local Density Approximation. We also discuss and illustrate the derivative discontinuity in the exchange-correlation energy and the infamous gap problem in DFT. DGE-1321846, DE-FG02-08ER46496.
Weigl, Martin; Wild, Heike
2017-09-15
To validate the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis from the patient perspective in Europe. This multicenter cross-sectional study involved 375 patients with knee or hip osteoarthritis. Trained health professionals completed the Comprehensive Core Set, and patients completed the Short-Form 36 questionnaire. Content validity was evaluated by calculating prevalences of impairments in body function and structures, limitations in activities and participation and environmental factors, which were either barriers or facilitators. Convergent construct validity was evaluated by correlating the International Classification of Functioning, Disability and Health categories with the Short-Form 36 Physical Component Score and the SF-36 Mental Component Score in a subgroup of 259 patients. The prevalences of all body function, body structure and activities and participation categories were >40%, >32% and >20%, respectively, and all environmental factors were relevant for >16% of patients. Few categories showed relevant differences between knee and hip osteoarthritis. All body function categories and all but two activities and participation categories showed significant correlations with the Physical Component Score. Body functions from the ICF chapter Mental Functions showed higher correlations with the Mental Component Score than with the Physical Component Score. This study supports the validity of the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis. Implications for Rehabilitation Comprehensive International Classification of Functioning, Disability and Health Core Sets were developed as practical tools for application in multidisciplinary assessments. The validity of the Comprehensive International Classification of Functioning, Disability and Health Core Set for Osteoarthritis in this study supports its application in European patients with osteoarthritis. The differences in results between this Europe validation study and a previous Singaporean validation study underscore the need to validate the International Classification of Functioning, Disability and Health Core Sets in different regions of the world.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
Waitz, M.; Bello, R. Y.; Metz, D.; ...
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
Imaging the square of the correlated two-electron wave function of a hydrogen molecule.
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waitz, M.; Bello, R. Y.; Metz, D.
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
NASA Astrophysics Data System (ADS)
Drachta, Jürgen T.; Kreil, Dominik; Hobbiger, Raphael; Böhm, Helga M.
2018-03-01
Correlations, highly important in low-dimensional systems, are known to decrease the plasmon dispersion of two-dimensional electron liquids. Here we calculate the plasmon properties, applying the 'Dynamic Many-Body Theory', accounting for correlated two-particle-two-hole fluctuations. These dynamic correlations are found to significantly lower the plasmon's energy. For the data obtained numerically, we provide an analytic expression that is valid across a wide range both of densities and of wave vectors. Finally, we demonstrate how this can be invoked in determining the actual electron densities from measurements on an AlGaAs quantum well.
Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases
NASA Astrophysics Data System (ADS)
Colussi, V. E.; Corson, J. P.; D'Incao, J. P.
2018-03-01
We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.
A two-dimensional model of disrupted body integrity: initial evaluation in head and neck cancer.
Mah, Kenneth; Lebel, Sophie; Irish, Jonathan; Bezjak, Andrea; Payne, Ada Y M; Devins, Gerald M
2018-04-13
This cross-sectional study presents an initial psychometric evaluation of a two-dimensional (perceptual and evaluative) conceptualization and measure of disrupted body integrity (DBI)-illness-related disruption of the sense of the body as an integrated, smoothly functioning whole. Male and female head and neck cancer (HNC) outpatients (N = 98) completed a questionnaire package prior to outpatient visits. The Disrupted Body Integrity Scale (DBIS) was developed to measure the perceptual and evaluative facets of DBI. Self-report measures of disfigurement, stigma, depressive symptoms, and negative affect were also completed. Almost all DBIS subscales demonstrated good internal consistency. Results largely supported the DBIS's construct validity. The majority of subscales correlated within the predicted range of r's = .40-.70. Almost all DBIS constructs were positively linked with either depressive symptoms or disfigurement. None correlated with positive affect, and only two subscales, abnormal sensations (perceptual) and physical vulnerability (evaluative), correlated with negative affect. DBIS constructs showed little relation with stigma, once disfigurement effects were controlled for. Findings offer preliminary evidence for the DBIS and the relevance of DBI in HNC. Further evaluation of DBI in disease adaptation and the DBIS's factor structure is warranted.
Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope
NASA Astrophysics Data System (ADS)
Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.
2017-06-01
In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.
Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows
NASA Astrophysics Data System (ADS)
Kumaran, V.
A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.
Zhang, Jian-Hua; Yu, Na; Xu, Xi-Xia; Liu, Ze-Wen
2018-02-09
The endosymbionts play vital roles in growth, development and reproduction in insects. Yeast-like endosymbionts (YLSs) have been well studied in Nilaparvata lugens (N. lugens), but little is known about the tissue-specific bacterial microbiomes, especially on the microbial intersection among internal tissues. Here, the correlation of microbial composition, structure, dispersal ability and functional profiling were illuminated in two tissues, the fat body and ovary in N. lugens. A total of 11 phyla and 105 genera were captured from all samples; Firmicutes and Proteobacteria were the most predominant and accounted for more than 99% in all samples. However, the relative abundance of Firmicutes and Proteobacteria was significantly different in ovary and fat body through Fisher's Least Significant Difference test. Microbial diversity but not the richness index in the two tissues exhibited significant difference. Furthermore, the microbial community structure of the ovary and fat body were primarily determined by tissue quality. Firmicutes showed strong dispersal ability between ovary and fat body based on the quantitative null model assessing, indicating the frequent interaction of these microbiomes in the two tissues. In addition, the Kyoto Encyclopedia of Genes and Genomes pathways of microbial participation were delineated. The ten most abundant pathways counted for over 46% of the annotation and were shared between the two tissues, mainly containing Energy Metabolism and Amino Acid Metabolism/Biosynthesis. The results will provide insights into the correlation of microbial community structure between ovary and fat body of N. lugens. © 2018 Institute of Zoology, Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi
2018-05-01
Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.
Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N.; Armstrong, Hilary F.; Ballon, Jacob S.; Khan, Samira; Chang, Rachel W.; Hansen, Marie C.; Ayanruoh, Lindsey; Smith, Edward E.; Sloan, Richard P.
2014-01-01
Previous reports indicate that among healthy individuals low Aerobic Fitness (AF) and high Body-Mass Index (BMI) predict poor neurocognition and daily-functioning. It is unknown whether these associations extend to disorders characterized by poor neurocognition, such as schizophrenia. Therefore, we compared AF and BMI in individuals with schizophrenia and non-clinical controls, and then within the schizophrenia group we examined the links between AF, BMI, neurocognition and daily-functioning. Thirty-two individuals with schizophrenia and 64 gender- and age-matched controls completed assessments of AF (indexed by VO2max) and BMI. The former also completed measures of neurocognition, daily-functioning and physical activity. The schizophrenia group displayed significantly lower AF and higher BMI. In the schizophrenia group, AF was significantly correlated with overall neurocognition (r=0.57), along with executive functioning, working memory, social cognition, and processing speed. A hierarchical regression analysis indicated that AF accounted for 22% of the neurocognition variance. Furthermore, AF was significantly correlated with overall daily-functioning (r=0.46). In contrast, BMI displayed significant inverse correlations with neurocognition, but no associations to daily-functioning. AF was significantly correlated physical activity. The authors discuss the potential use of AF-enhancing interventions to improve neurocognitive and daily-functioning in schizophrenia, along with putative neurobiological mechanisms underlying these links, including Brain-Derived Neurotrophic Factor. PMID:25219618
Correlation of anthropometric variables, conditional and exercise habits in activite olders
Ramos Bermúdez, Santiago; Parra Sánchez, José H
2012-01-01
Objective: This study sought to correlate the anthropometric and functional variables, and exercise habits in a group of elderly adults who regularly attend exercise programs. Method: Participation of 217 subjects between 60 and 85 years of age, from 13 regions of Colombia. Anthropometric and functional assessment was conducted as a questionnaire on exercise habits. Results: Negative correlations were shown between exercise habits and body fat and positive correlations between hand strength and VO2 max. (r = 0.4), age was negatively associated to functional variables. Conclusions: The functional capacity is influenced by increased age and body fat. With higher frequencies of physical exercise, VO2 max. and strength improved, but less body fat was observed. PMID:24893195
Pulmonary function studies in young healthy Malaysians of Kelantan, Malaysia.
Bandyopadhyay, Amit
2011-11-01
Pulmonary function tests have been evolved as clinical tools in diagnosis, management and follow up of respiratory diseases as it provides objective information about the status of an individual's respiratory system. The present study was aimed to evaluate pulmonary function among the male and female young Kelantanese Malaysians of Kota Bharu, Malaysia, and to compare the data with other populations. A total of 128 (64 males, 64 females) non-smoking healthy young subjects were randomly sampled for the study from the Kelantanese students' population of the University Sains Malaysia, Kota Bharu Campus, Kelantan, Malaysia. The study population (20-25 yr age group) had similar socio-economic background. Each subject filled up the ATS (1978) questionnaire to record their personal demographic data, health status and consent to participate in the study. Subjects with any history of pulmonary diseases were excluded from the study. The pulmonary function measurements exhibited significantly higher values among males than the females. FEV 1% did not show any significant inter-group variation probably because the parameter expresses FEV 1 as a percentage of FVC. FVC and FEV 1 exhibited significant correlations with body height and body mass among males whereas in the females exhibited significant correlation with body mass, body weight and also with age. FEV 1% exhibited significant correlation with body height and body mass among males and with body height in females. FEF 25-75% did not show any significant correlation except with body height among females. However, PEFR exhibited significant positive correlation with all the physical parameters except with age among the females. On the basis of the existence of significant correlation between different physical parameters and pulmonary function variables, simple and multiple regression norms have been computed. From the present investigation it can be concluded that Kelantanese Malaysian youths have normal range of pulmonary function in both the sexes and the computed regression norms may be used to predict the pulmonary function values in the studied population.
Pulmonary function studies in young healthy Malaysians of Kelantan, Malaysia
Bandyopadhyay, Amit
2011-01-01
Background & objectives: Pulmonary function tests have been evolved as clinical tools in diagnosis, management and follow up of respiratory diseases as it provides objective information about the status of an individual's respiratory system. The present study was aimed to evaluate pulmonary function among the male and female young Kelantanese Malaysians of Kota Bharu, Malaysia, and to compare the data with other populations. Methods: A total of 128 (64 males, 64 females) non-smoking healthy young subjects were randomly sampled for the study from the Kelantanese students’ population of the University Sains Malaysia, Kota Bharu Campus, Kelantan, Malaysia. The study population (20-25 yr age group) had similar socio-economic background. Each subject filled up the ATS (1978) questionnaire to record their personal demographic data, health status and consent to participate in the study. Subjects with any history of pulmonary diseases were excluded from the study. Results: The pulmonary function measurements exhibited significantly higher values among males than the females. FEV1% did not show any significant inter-group variation probably because the parameter expresses FEV1 as a percentage of FVC. FVC and FEV1 exhibited significant correlations with body height and body mass among males whereas in the females exhibited significant correlation with body mass, body weight and also with age. FEV1% exhibited significant correlation with body height and body mass among males and with body height in females. FEF25-75% did not show any significant correlation except with body height among females. However, PEFR exhibited significant positive correlation with all the physical parameters except with age among the females. On the basis of the existence of significant correlation between different physical parameters and pulmonary function variables, simple and multiple regression norms have been computed. Interpretation & conclusions: From the present investigation it can be concluded that Kelantanese Malaysian youths have normal range of pulmonary function in both the sexes and the computed regression norms may be used to predict the pulmonary function values in the studied population. PMID:22199104
Heisenberg symmetry and collective modes of one dimensional unitary correlated fermions
NASA Astrophysics Data System (ADS)
Abhinav, Kumar; Chandrasekhar, B.; Vyas, Vivek M.; Panigrahi, Prasanta K.
2017-02-01
The correlated fermionic many-particle system, near infinite scattering length, reveals an underlying Heisenberg symmetry in one dimension, as compared to an SO (2 , 1) symmetry in two dimensions. This facilitates an exact map from the interacting to the non-interacting system, both with and without a harmonic trap, and explains the short-distance scaling behavior of the wave-function. Taking advantage of the phenomenological Calogero-Sutherland-type interaction, motivated by the density functional approach, we connect the ground-state energy shift, to many-body correlation effect. For the excited states, modes at integral values of the harmonic frequency ω are predicted in one dimension, in contrast to the breathing modes with frequency 2ω in two dimensions.
Strong Photoassociation in Ultracold Fermions
NASA Astrophysics Data System (ADS)
Jing, Li; Jamison, Alan; Rvachov, Timur; Ebadi, Sepher; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang
2016-05-01
Despite many studies there are still open questions about strong photoassociation in ultracold gases. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system and to engineer Hamiltonians using dissipation. We propose the possibility to slow down decoherence by photoassociation through the quantum Zeno effect. This can realized by shining strong photoassociation light on the superposition of the lowest two hyperfine states of Lithium 6. NSF, ARO-MURI, Samsung, NSERC.
Goins, R Turner; Schure, Mark; Jensen, Paul N; Suchy-Dicey, Astrid; Nelson, Lonnie; Verney, Steven P; Howard, Barbara V; Buchwald, Dedra
2018-01-05
More than six million American Indians live in the United States, and an estimated 1.6 million will be aged ≥65 years old by 2050 tripling in numbers since 2012. Physical functioning and related factors in this population are poorly understood. Our study aimed to assess lower body functioning and identify the prevalence and correlates of "good" functioning in a multi-tribe, community-based sample of older American Indians. Assessments used the Short Physical Performance Battery (SPPB). "Good" lower body functioning was defined as a total SPPB score of ≥10. Potential correlates included demographic characteristics, study site, anthropometrics, cognitive functioning, depressive symptomatology, grip strength, hypertension, diabetes mellitus, heart disease, prior stroke, smoking, alcohol use, and over-the-counter medication use for arthritis or pain. Data were collected between 2010 and 2013 by the Cerebrovascular Disease and Its Consequences in American Indians Study from community-dwelling adults aged ≥60 years (n = 818). The sample's mean age was 73 ± 5.9 years. After adjustment for age and study site, average SPPB scores were 7.0 (95% CI, 6.8, 7.3) in women and 7.8 (95% CI, 7.5, 8.2) in men. Only 25% of the sample were classified with "good" lower body functioning. When treating lower body functioning as a continuous measure and adjusting for age, gender, and study site, the correlates of better functioning that we identified were younger age, male gender, married status, higher levels of education, higher annual household income, Southern Plains study site, lower waist-hip ratio, better cognitive functioning, stronger grip strength, lower levels of depressive symptomatology, alcohol consumption, and the absence of hypertension, diabetes mellitus, and heart disease. In our fully adjusted models, correlates of "good" lower body functioning were younger age, higher annual household income, better cognitive functioning, stronger grip, and the absence of diabetes mellitus and heart disease. These results suggest that "good" lower body functioning is uncommon in this population, whereas its correlates are similar to those found in studies of other older adult populations. Future efforts should include the development or cultural tailoring of interventions to improve lower body functioning in older American Indians.
Cai, Kai-yu; Zhang, Wei-zhong; Qiu, Hui-li; Wu, Mei-zhi
2007-03-01
To analyze the clinical factors relating to arterial elastic function measured with pulse wave velocity (PWV), large and small arterial elastic indexes (C(1) and C(2)) and augmentation index (AI) in hypertensive patients. A total of 2176 hypertensive patients were enrolled and divided into three groups: Elastic function was measured in 1100 subjects by (PWV), in 647 subjects by C(1) and C(2) and in 429 by AI. PWV was positively correlated with age, systolic pressure, pulse pressure and negatively correlated with body height and weights (all P < 0.05). C(1) and C(2) values were higher in male than that in female patients (P < 0.01) and negatively correlated with age, systolic pressure, pulse pressure and heart rate while positively correlated with body height, weight and body mass index. In hypercholesterolemia patients (n = 168), C(1) and C(2) were negatively correlated with serum cholesterol level (P < 0.05). AI value was higher in female than that in male patients (P < 0.01) and positively correlated with age, systolic pressure, diastolic pressure, pulse pressure while negatively correlated with body height, weight and heart rate. Age, systolic and pulse pressure as well as body height and weights are the main factors correlated to arterial elastic function measured by PWV, C(1) and C(2) and AI.
Four and Five-body non-local correlations in pure and mixed states
NASA Astrophysics Data System (ADS)
Sharma, Santosh Shelly; Sharma, Naresh Kumar
2014-03-01
In our earlier works, quantifiers of four and three-body correlations based on four qubit invariants had been constructed for pure states. The principal construction tools, local unitary invariance and notion of negativity fonts, make it possible to outline the process of selective construction of meaningful invariants that quanify N and N - 1 qubit correlations. It is found that, in general, starting from degree k invariants relevant to detection and quantifcation of specific type of non-local quantum correlations in (N - 1) (N > 2) qubit system, one can construct degree k coefficients of an N-qubit bilinear form. When k =2 N - 2 (N > 2), one of the invariants of degree 2 N - 1 quantifies N-body non-local correlations The process is recursive. While for few body systems it yields analytical expressions in terms of functions of state coefficients, for larger systems it can be the guiding principle to numerical caculations of invariants. To illustrate the process, an expression for a five qubit correlation quantifier for pure states is constructed. In addition, the extension to specific rank two mixed states through convex-roof extension is investigated. We gratefully acknowledge Financial support from CNPq Brazil and Fundacao Araucaria PR Brazil.
Experimental characterization of a quantum many-body system via higher-order correlations.
Schweigler, Thomas; Kasper, Valentin; Erne, Sebastian; Mazets, Igor; Rauer, Bernhard; Cataldini, Federica; Langen, Tim; Gasenzer, Thomas; Berges, Jürgen; Schmiedmayer, Jörg
2017-05-17
Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.
Correlation functions for Hermitian many-body systems: Necessary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E.B.
1994-02-01
Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at [ital t]=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated.
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.
1983-01-01
are ignored, from the formula i,;k i/s&-) - A.(S’o e T() (2.28) ( = . 4,-p ) L) C(_ (one point function has S S 2 two body correlation integrates over s...rigid solid limit since the contributions of the first two integrals of equation (5) cancel in this case. However, for correlation times Tc - T1 4no...expression for TID for a distribution of correlation times in the same manner as we did previously for T and using the activation parameters previously
Song, Young-Hwan; Kim, Hae Soon; Park, Hae Sook; Jung, Jo Won; Kim, Nam Su; Noh, Chung Il; Hong, Young Mi
2014-01-01
Objective Obesity in adolescence is associated with increased cardiovascular risk. The patterns of obesity and body composition differ between boys and girls. It is uncertain how body composition correlates with the cardiovascular system and whether such correlations differ by sex in adolescents. Methods Body composition (fat-free mass (FFM), adipose mass, waist circumference (WC)) and cardiovascular parameters and functions were studied in 676 healthy Korean adolescents aged 12-16 years. Partial correlation and path analyses were done. Results WC correlated with stroke volume (SV) and cardiac output (CO), systolic blood pressure (SBP) and pulse pressure (PP), cardiac diastolic function (ratio of early to late filling velocity (E/A ratio)), and vascular function (pulse wave velocity (PWV)) in boys. Adipose mass was related to SV, CO, SBP, PP, left ventricular mass (LVM), and PWV in girls – and to E/A ratio in both sexes. FFM affected SV, CO, SBP, and PP in both sexes and LVM in boys. Cardiac systolic functions had no relation with any body composition variable in either sex. Conclusion In adolescence, the interdependence of the cardiovascular system and the body composition differs between sexes. Understanding of those relations is required to control adolescent obesity and prevent adult cardiovascular disease. PMID:24820977
Artemenko, M V
2008-01-01
Two approaches to calculation of the qualitative measures for assessing the functional state level of human body are considered. These approaches are based on image and fuzzy set recognition theories and are used to construct diagnostic decision rules. The first approach uses the data on deviation of detected parameters from those for healthy persons; the second approach analyzes the degree of deviation of detected parameters from the approximants characterizing the correlation differences between the parameters. A method for synthesis of decision rules and the results of blood count-based research for a number of diseases (hemophilia, thrombocytopathy, hypertension, arrhythmia, hepatic cirrhosis, trichophytia) are considered. An effect of a change in the functional link between the cholesterol content in blood and the relative rate of variation of AST and ALT enzymes in blood from direct proportional (healthy state) to inverse proportional (hepatic cirrhosis) is discussed. It is shown that analysis of correlation changes in detected parameters of the human body state during diagnostic process is more effective for application in decision support systems than the state space analysis.
Quantum Monte Carlo calculations of weak transitions in A = 6 – 10 nuclei
Pastore, S.; Baroni, A.; Carlson, J.; ...
2018-02-26
{\\it Ab initio} calculations of the Gamow-Teller (GT) matrix elements in themore » $$\\beta$$ decays of $^6$He and $$^{10}$$C and electron captures in $^7$Be are carried out using both variational and Green's function Monte Carlo wave functions obtained from the Argonne $$v_{18}$$ two-nucleon and Illinois-7 three-nucleon interactions, and axial many-body currents derived from either meson-exchange phenomenology or chiral effective field theory. The agreement with experimental data is excellent for the electron captures in $^7$Be, while theory overestimates the $^6$He and $$^{10}$$C data by $$\\sim 2\\%$$ and $$\\sim 10\\%$$, respectively. We show that for these systems correlations in the nuclear wave functions are crucial to explain the data, while many-body currents increase by $$\\sim 2$$--$$3\\%$$ the one-body GT contributions. These findings suggest that the longstanding $$g_A$$-problem, {\\it i.e.}, the systematic overprediction ($$\\sim 20 \\%$$ in $$A\\le 18$$ nuclei) of GT matrix elements in shell-model calculations, may be resolved, at least partially, by correlation effects.« less
Griffiths' inequalities for Ashkin-Teller model
NASA Technical Reports Server (NTRS)
Lee, C. T.
1973-01-01
The two Griffiths' (1967) inequalities for the correlation functions of Ising ferromagnets with two-body interactions, and two other inequalities obtained by Kelly and Sherman (1968) and by Sherman (1969) are shown to hold not only for the Ashkin-Teller (1943) model but also for a generalized Ashkin-Teller model (Kihara et al., 1954) with many-body interactions involving arbitrary clusters of particles. A cluster of particles is understood to mean a collection of pairs of particles rather than a group of particles. The four generalized inequalities under consideration are presented in the form of theorems, and a new inequality is obtained.
NASA Astrophysics Data System (ADS)
Kohno, Wataru; Kirikoshi, Akimitsu; Kita, Takafumi
2018-03-01
We construct a variational ground-state wave function of weakly interacting M-component Bose-Einstein condensates beyond the mean-field theory by incorporating the dynamical 3/2-body processes, where one of the two colliding particles drops into the condensate and vice versa. Our numerical results with various masses and particle numbers show that the 3/2-body processes between different particles make finite contributions to lowering the ground-state energy, implying that many-body correlation effects between different particles are essential even in the weak-coupling regime of the Bose-Einstein condensates. We also consider the stability condition for 2-component miscible states using the new ground-state wave function. Through this calculation, we obtain the relation UAB2/UAAUBB < 1 + α , where Uij is the effective contact potential between particles i and j and α is the correction, which originates from the 3/2- and 2-body processes.
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L
2017-07-11
Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.
Weingarden, Hilary; Renshaw, Keith D
2016-01-01
Body dysmorphic disorder is associated with elevated social and occupational impairment and comorbid depression, but research on risk factors for body dysmorphic symptoms and associated outcomes is limited. Appearance-based teasing may be a potential risk factor. To examine the specificity of this factor, the authors assessed self-reported appearance-based teasing, body dysmorphic, and obsessive-compulsive symptom severity, functional impairment (i.e., social, occupational, family impairment), and depression in a nonclinical sample of undergraduates. As hypothesized, appearance-based teasing was positively correlated with body dysmorphic symptoms. The correlation between teasing and body dysmorphic symptoms was stronger than that between teasing and obsessive-compulsive symptom severity. Last, body dysmorphic symptom severity and appearance-based teasing interacted in predicting functional impairment and depression. Specifically, appearance-based teasing was positively associated with depression and functional impairment only in those with elevated body dysmorphic symptoms. When a similar moderation was tested with obsessive-compulsive, in place of body dysmorphic, symptom severity, the interaction was nonsignificant. Findings support theory that appearance-based teasing is a specific risk factor for body dysmorphic symptoms and associated functional impairment.
Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.
Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J
2017-04-01
Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holographic non-Fermi-liquid fixed points.
Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2011-04-28
Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.
Body image and sexual function in women after treatment for anal and rectal cancer.
Benedict, Catherine; Philip, Errol J; Baser, Raymond E; Carter, Jeanne; Schuler, Tammy A; Jandorf, Lina; DuHamel, Katherine; Nelson, Christian
2016-03-01
Treatment for anal and rectal cancer (ARCa) often results in side effects that directly impact sexual functioning; however, ARCa survivors are an understudied group, and factors contributing to the sexual sequelae are not well understood. Body image problems are distressing and may further exacerbate sexual difficulties, particularly for women. This preliminary study sought to (1) describe body image problems, including sociodemographic and disease/treatment correlates, and (2) examine relations between body image and sexual function. For the baseline assessment of a larger study, 70 women completed the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire and Colorectal Cancer-specific Module, including the Body Image subscale, and Female Sexual Function Index. Pearson's correlation and multiple regression evaluated correlates of body image. Among sexually active women (n = 41), hierarchical regression examined relations between body image and sexual function domains. Women were on average 55 years old (standard deviation = 11.6), non-Hispanic White (79%), married (57%), and employed (47%). The majority (86%) reported at least one body image problem. Younger age, lower global health status, and greater severity of symptoms related to poorer body image (p's < 0.05). Poor body image was inversely related to all aspects of sexual function (β range 0.50-0.70, p's < 0.05), except pain. The strongest association was with Female Sexual Function Index Sexual/Relationship Satisfaction. These preliminary findings suggest the importance of assessing body image as a potentially modifiable target to address sexual difficulties in this understudied group. Further longitudinal research is needed to inform the development and implementation of effective interventions to improve the sexual health and well-being of female ARCa survivors. Copyright © 2015 John Wiley & Sons, Ltd.
Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F
2012-04-01
Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.
Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
NASA Astrophysics Data System (ADS)
Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž
2018-04-01
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior K (t )≃2 t is a consequence of translation and reflection symmetry of the Ising partition function.
Explicitly-correlated Gaussian geminals in electronic structure calculations
NASA Astrophysics Data System (ADS)
Szalewicz, Krzysztof; Jeziorski, Bogumił
2010-11-01
Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960, Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst, Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC) equations as a system of integro-differential equations and developed techniques of solving these equations with two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r 12 correlating factor can also be employed if n-electron integrals, n > 2, are factorised with the resolution of identity. Later, this factor was replaced by more general functions f (r 12), most often by ? , usually represented as linear combinations of Gaussian functions which makes the resulting approach (called F12) a special case of the original GTG expansion. The current state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis available, but for larger systems the F12 approach is the method of choice, giving significant improvements over orbital calculations.
NASA Technical Reports Server (NTRS)
Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.
1985-01-01
The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.
Lynn, J. E.; Tews, I.; Carlson, J.; ...
2017-11-30
Local chiral effective field theory interactions have recently been developed and used in the context of quantum Monte Carlo few- and many-body methods for nuclear physics. In this paper, we go over detailed features of local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator ambiguities and their interplay with regulator effects. We then discuss the nuclear Green's function Monte Carlo method, going over both wave-function correlations and approximations for the two- and three-body propagators. Finally, following this, wemore » present a range of results on light nuclei: Binding energies and distribution functions are contrasted and compared, starting from several different microscopic interactions.« less
Boquiren, Virginia M; Esplen, Mary Jane; Wong, Jiahui; Toner, Brenda; Warner, Ellen
2013-10-01
This study aimed to explore the relationships between gender-role socialization, objectified body consciousness and quality of life in breast cancer (BC) survivors with body image (BI) disturbance post-treatment. A total of 150 BC survivors participating in an ongoing randomized clinical trial of a group psychotherapy intervention for BI-related concerns completed a baseline battery of standardized measures including the following: Body Image Scale (BIS), Body Image after Breast Cancer Questionnaire (BIBCQ), Objectified Body Consciousness Scale (OBCS) measuring Body Shame and Surveillance, Gender-Role Socialization Scale (GRSS) measuring internalization of traditional gender roles and attitudes and the Functional Assessment of Cancer Therapy-Breast Quality-of-Life Instrument (FACT-B). Correlational analyses were conducted between the two BI questionnaires, the two primary psychosocial variables GRSS and OBCS, and FACT-B. Path analysis was conducted on a proposed theoretical model delineating pathways between the two primary psychosocial variables and BI disturbance. Significant positive correlations were found between the two BI scales and (a) GRSS (average r = 0.53, p < 0.000), (b) Body Shame (average r = 0.53, p < 0.000) and Surveillance (average r = 0.48, p < 0.000). The BIS and BIBCQ were negatively associated with the FACT-B (r = -0.62, -0.73, respectively; p < 0.000). Results from the path analysis demonstrated support for the proposed model. Breast cancer survivors who endorsed greater internalization of traditional gender roles and attitudes, who engaged in greater self-surveillance and experienced greater body shame, reported greater BI disturbance and poorer quality of life post-treatment. Women with these predispositions are likely to be more vulnerable for psychological distress and may experience poorer adjustment after BC treatment. Copyright © 2013 John Wiley & Sons, Ltd.
Correlations and currents in 3He studied with the (e, e'pp) reaction
NASA Astrophysics Data System (ADS)
Groep, David Leo
2000-01-01
Nucleon-nucleon correlations, especially those of short-range character, can be well studied with electron-induced two-nucleon knockout reactions at intermediate electron energies. However, these reactions are not only driven by one-body currents, i.e., coupling of the virtual photon to one of the nucleons of a correlated pair, a process that directly probes NN-correlations. Also two-body currents, resulting from intermediate Delta-excitation and coupling to exchanged mesons, as well as final state interactions, influence the experimental cross section. Exclusive measurements of the three-body breakup of 3He offer the opportunity to compare data to microscopic calculations. The relative importance of competing two-proton knockout mechanisms can be investigated by varying the energy and momentum of the virtual photon. The experiment was performed with the electron beam extracted from the Amsterdam Pulse Stretcher (AmPS) at NIKHEF; the incident electron energy was 564 MeV. A cryogenic, high-pressure 3He gas target was used with a thickness of 270 mg/cm^2. Scattered electrons were detected in the QDQ magnetic spectrometer and both emitted protons in the HADRON plastic scintillator arrays. Cross sections were determined for three values of the three-momentum transfer of the virtual photon (q=305, 375, and 445 MeV/c) at an energy transfer value omega of 220 MeV. At q=375 MeV/c, measurements were performed over a continuous range in energy transfer from 170 to 290 MeV. The data are compared to results of continuum-Faddeev calculations performed by Golak et al., that account for rescattering among the emitted nucleons. Various potential models were used in the calculations: Bonn-B, CD-Bonn, Nijmegen-93 and Argonne v18 . Presentation of the data as a function of the missing or neutron momentum, pm, shows that the cross section decreases exponentially as a function of pm. Calculations performed with only a one-body hadronic current operator show fair agreement with data obtained at pm < 100 MeV/c at omega = 220 MeV for all q-values. It can therefore be concluded that at omega = 220 MeV and pm < 100 MeV/c the cross section is dominated by direct knockout of two protons via a one-body hadronic current. At higher neutron momentum values, data and theoretical predictions differ up to a fac tor of five for all values of omega. Within the range of energy transfer values probed in this experiment, the high pm domain is expected to be strongly influenced by intermediate excitation in the proton-neutron pair. Within specific regions of phase space, where two nucleons are emitted with comparable momentum vectors, rescattering processes strongly influence the cross section. For a such a region, measured at q=445 MeV/c, good agreement was found between data and the continuum- Faddeev calculations as a function of the pn momentum difference in the final state. Information on the wave function of 3He may be obtained in the domain omega = 220 MeV and pm < 100 MeV/c by representing the cross section as a function of pdiff1, which can be related to the relative momentum of the constituents of the two-proton pair in the initial state. The observed decrease of the cross section reflects the behaviour of the wave function and is well reproduced by calculations. At present, the data do not permit to express preference for any one of the potential models considered.
Şimşek, Tülay Tarsuslu; Tuç, Gamze
2014-01-01
Aim: The aim of this study was to examine the relation between body mass index (BMI) and functional level and health-related quality of life in children with cerebral palsy (CP). Material and Methods: Two hundred seventy-eight children with CP aged between 2 and 18 years were included in the study. The sociodemographic properties of the children were recorded. Their functional independence levels were assessed with WeeFIM and their health-related quality of life levels were assessed with the Child Health Questionnaire-Parent Form (PF-50). Approval was obtained from the ethics committee of Abant İzzet Baysal University Medical Faculty for this study (Number: 2008/100-77). Results: When classified by body mass index, 26.3% of the children had a normal body weight, 5.4% were overweight, 11.5% were obese and 56.8% had a low body weight. The rate of low body weight was higher in children with moderate and severe CP (52.7% and 53.8%, respectively), while the rate of obesity was higher in children with mild CP who could walk (7.1%). A significant difference was found in children with CP with a normal body weight, overweight children with CP, obese children with CP and children with CP with a low body weight in terms of the total WeeFIM score and the variables of quality of life including physical functionality and role/social limitations because of physical health (p<0.05). In the correlation analysis, a positive correlation was found between WeeFIM and BMI and the subdimensions of role/social limitations because of emotional or behavioral difficulties, pain and discomfort and self-esteem (p<0.05). Conclusions: Our results showed that BMI affected functional independence and health-related quality of life in children with CP and this was more prominent in children who had severe CP and low BMI values. More studies are needed in this area. PMID:26078648
Solving the quantum many-body problem with artificial neural networks
NASA Astrophysics Data System (ADS)
Carleo, Giuseppe; Troyer, Matthias
2017-02-01
The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the nontrivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with a variable number of hidden neurons. A reinforcement-learning scheme we demonstrate is capable of both finding the ground state and describing the unitary time evolution of complex interacting quantum systems. Our approach achieves high accuracy in describing prototypical interacting spins models in one and two dimensions.
Bell Correlations in a Many-Body System with Finite Statistics
NASA Astrophysics Data System (ADS)
Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel
2017-10-01
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.
Bell Correlations in a Many-Body System with Finite Statistics.
Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel
2017-10-27
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.
Body Image and Sexual Function in Women after Treatment for Anal and Rectal Cancer
Benedict, Catherine; Philip, Errol J.; Baser, Raymond E.; Carter, Jeanne; Schuler, Tammy A.; Jandorf, Lina; DuHamel, Katherine; Nelson, Christian
2016-01-01
Objective Treatment for anal and rectal cancer (ARCa) often results in side effects that directly impact sexual functioning; however, ARCa survivors are an understudied group and factors contributing to the sexual sequelae are not well understood. Body image problems are distressing and may further exacerbate sexual difficulties, particularly for women. This preliminary study sought to (1) describe body image problems, including sociodemographic and disease/treatment correlates; and (2) examine relations between body image and sexual function. Methods For the baseline assessment of a larger study, 70 women completed the EORTC QLQ-C30 and CR38, including the Body Image subscale, and Female Sexual Function Index (FSFI). Pearson’s correlation and multiple regression evaluated correlates of body image. Among sexually active women (n=41), hierarchical regression examined relations between body image and sexual function domains. Results Women were an average 55 years old (SD=11.6), Non-Hispanic White (79%), married (57%), and employed (47%). The majority (86%) reported at least one body image problem. Younger age, lower global health status, and greater severity of symptoms related to poorer body image (p’s<.05). Poor body image was inversely related to all aspects of sexual function (β range .50 to .70, p’s<.05), except pain. The strongest association was with FSFI Sexual/Relationship Satisfaction. Conclusion These preliminary findings suggest the importance of assessing body image as a potentially modifiable target to address sexual difficulties in this understudied group. Further longitudinal research is needed to inform the development and implementation of effective interventions to improve the sexual health and well-being of female ARCa survivors. PMID:25974874
Four-body correlation embedded in antisymmetrized geminal power wave function.
Kawasaki, Airi; Sugino, Osamu
2016-12-28
We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.
The nuclear contacts and short range correlations in nuclei
NASA Astrophysics Data System (ADS)
Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.
2018-05-01
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.
Interspecific analysis of covariance structure in the masticatory apparatus of galagos.
Vinyard, Christopher J
2007-01-01
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome-b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA.
NASA Astrophysics Data System (ADS)
Vyas, Manan; Kota, V. K. B.
2012-12-01
Following the earlier studies on embedded unitary ensembles generated by random two-body interactions [EGUE(2)] with spin SU(2) and spin-isospin SU(4) symmetries, developed is a general formulation, for deriving lower order moments of the one- and two-point correlation functions in eigenvalues, that is valid for any EGUE(2) and BEGUE(2) ("B" stands for bosons) with U(Ω)⊗SU(r) embedding and with two-body interactions preserving SU(r) symmetry. Using this formulation with r = 1, we recover the results derived by Asaga et al. [Ann. Phys. (N.Y.) 297, 344 (2002)], 10.1006/aphy.2002.6248 for spinless boson systems. Going further, new results are obtained for r = 2 (this corresponds to two species boson systems) and r = 3 (this corresponds to spin 1 boson systems).
The relation between the Gross Pitaevskii and Bogoliubov descriptions of a dilute Bose gas
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-07-01
I formulate a 'pseudo-paradox' in the theory of a dilute Bose gas with repulsive interactions: the standard expression for the ground state energy within the Gross-Pitaevskii (GP) approximation is lower than that in the Bogoliubov approximation, and hence, by the standard variational argument, the former should prima facie be a better approximation than the latter to the true ground state—a conclusion which is of course opposite to the established wisdom concerning this problem. It is shown that the pseudo-paradox is (unsurprisingly) resolved by a correct transcription of the two-body scattering theory to the many-body case; however, contrary to what appears to be a widespread belief, the resolution has nothing to do with any spurious ultraviolet divergences which result from the replacement of the true interatomic potential by a delta-function pseudopotential. Rather, it relates to an infrared divergence which has the consequence that (a) the most obvious form of the GP 'approximation' actually does not correspond to any well-defined ansatz for the many-body wavefunction, and (b) that the 'best shot' at such a wavefunction always produces an energy which exceeds, or at best equals, that calculated in the Bogoliubov approximation. In fact, the necessity of the latter may be seen as a consequence of the need to reduce the Fock term in the energy, which is absent in the two-particle problem but dominant in the many-body case; it does this by increasing the density correlations, at distances less than or approximately equal to the correlation length \\xi , above the value extrapolated from the two-body case. As a by-product I devise an alternative formulation of the Bogoliubov approximation which does not require the explicit replacement of the true interatomic potential by a delta-function pseudopotential.
Rask-Andersen, Mathias; Jacobsson, Josefin A; Moschonis, George; Chavan, Rohit A; Sikder, Md Abu Noman; Allzén, Elin; Alsiö, Johan; Chrousos, George P; Manios, Yannis; Fredriksson, Robert; Schiöth, Helgi B
2012-02-01
Genome-wide association studies have shown a strong association of single-nucleotide polymorphisms (SNPs) in the near vicinity of the TMEM18 gene. The effects of the TMEM18-associated variants are more readily observed in children. TMEM18 encodes a 3TM protein, which locates to the nuclear membrane. The functional context of TMEM18 and the effects of its associated variants are as of yet undetermined. To further explore the effects of near-TMEM18 variants, we have genotyped two TMEM18-associated SNPs, rs6548238 and rs4854344, in a cohort of 2352 Greek children (Healthy Growth Study). Included in this study are data on anthropomorphic traits body weight, BMI z-score and waist circumference. Also included are dietary energy and macronutrient intake as measured via 24-h recall interviews. Major alleles of rs6548238 and rs4854344 were significantly associated with an increased risk of obesity (odds ratio = 1.489 (1.161-1.910) and 1.494 (1.165-1.917), respectively), and positively correlated to body weight (P = 0.017, P = 0.010) and waist circumference (P = 0.003, P = 0.003). An association to energy and macronutrient intake was not observed in this cohort. We also correlated food intake and body weight in a food choice model in rats to Tmem18 expression in central regions involved in feeding behavior. We observed a strong positive correlation between TMEM18 expression and body weight in the prefrontal cortex (PFC) (r = 0.5694, P = 0.0003) indicating a potential role for TMEM18 in higher functions related to feeding involving the PFC.
Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V
2011-05-01
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.
2011-01-01
SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257
Multiple Scattering of Waves in Discrete Random Media.
1987-12-31
expanding the two body correlation functions in Legendre polynomials. This permits us to consider the angular correlations that exist for non-spherical...a scat- of the translation matrix after the angular and radial parts have terer fixed at it. been absorbed in the integration. Expressions for them...Approach New York: Pergamon Press. 1980 ’" close to the actual values for FeO, in isolation since they 171 A R. Edmonds. Angular Momentum in Quantum . h(pa
Comparative study of the LOCV and the FHNC approaches for the nucleonic matter problem
NASA Astrophysics Data System (ADS)
Tafrihi, Azar; Modarres, Majid
2016-03-01
The nucleonic matter problem is investigated by comparing the lowest order constrained variational (LOCV) method with the Fermi hypernetted chain (FHNC) theory, emphasizing the role of the LOCV correlation functions. In this way, the central correlation functions are used in the LOCV formalism, for the Bethe homework problem. It is shown that the LOCV computations reasonably agree with those of FHNC. Moreover, the FHNC calculations are performed with the LOCV correlation functions. It is found that, assuming the LOCV or the parametrized correlation functions, the FHNC computations do not change significantly. So, one may conclude that the mentioned consistencies refer to the choice of the LOCV correlation functions. Because, the contribution of the many-body cluster terms can be ignored, if the LOCV correlation functions satisfy the normalization constraint. Then, using the AV 18 interaction, the operator-dependent (OD) correlation functions are employed in the LOCV calculations. Note that the LOCV OD correlation functions are obtained by averaging over the states. It turns out that the overall behaviour of the LOCV OD correlation functions are similar to those of FHNC. Although, due to the many-body effects which are considered in the FHNC calculations, the LOCV results fairly differ from those of FHNC. Finally, it is worth mentioning that, unlike the recent FHNC calculations, the spin-orbit-dependent correlation functions are included in the LOCV approach.
Strong photoassociation in a degenerate fermi gas
NASA Astrophysics Data System (ADS)
Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang
2016-05-01
Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.
McGlothlin, Joel W; Parker, Patricia G; Nolan, Val; Ketterson, Ellen D
2005-03-01
When a trait's effect on fitness depends on its interaction with other traits, the resultant selection is correlational and may lead to the integration of functionally related traits. In relation to sexual selection, when an ornamental trait interacts with phenotypic quality to determine mating success, correlational sexual selection should generate genetic correlations between the ornament and quality, leading to the evolution of honest signals. Despite its potential importance in the evolution of signal honesty, correlational sexual selection has rarely been measured in natural populations. In the dark-eyed junco (Junco hyemalis), males with experimentally elevated values of a plumage trait (whiteness in the tail or "tail white") are more attractive to females and dominant in aggressive encounters over resources. We used restricted maximum-likelihood analysis of a long-term dataset to measure the heritability of tail white and two components of body size (wing length and tail length), as well as genetic correlations between pairs of these traits. We then used multiple regression to assess directional, quadratic, and correlational selection as they acted on tail white and body size via four components of lifetime fitness (juvenile and adult survival, mating success, and fecundity). We found a positive genetic correlation between tail white and body size (as measured by wing length), which indicates past correlational selection. Correlational selection, which was largely due to sexual selection on males, was also found to be currently acting on the same pair of traits. Larger males with whiter tails sired young with more females, most likely due to a combination of female choice, which favors males with whiter tails, and male-male competition, which favors both tail white and larger body size. To our knowledge, this is the first study to show both genetic correlations between sexually selected traits and currently acting correlational sexual selection, and we suggest that correlational sexual selection frequently may be an important mechanism for maintaining the honesty of sexual signals.
Chain and ladder models with two-body interactions and analytical ground states
NASA Astrophysics Data System (ADS)
Manna, Sourav; Nielsen, Anne E. B.
2018-05-01
We consider a family of spin-1 /2 models with few-body, SU(2)-invariant Hamiltonians and analytical ground states related to the one-dimensional (1D) Haldane-Shastry wave function. The spins are placed on the surface of a cylinder, and the standard 1D Haldane-Shastry model is obtained by placing the spins with equal spacing in a circle around the cylinder. Here, we show that another interesting family of models with two-body exchange interactions is obtained if we instead place the spins along one or two lines parallel to the cylinder axis, giving rise to chain and ladder models, respectively. We can change the scale along the cylinder axis without changing the radius of the cylinder. This gives us a parameter that controls the ratio between the circumference of the cylinder and all other length scales in the system. We use Monte Carlo simulations and analytical investigations to study how this ratio affects the properties of the models. If the ratio is large, we find that the two legs of the ladder decouple into two chains that are in a critical phase with Haldane-Shastry-like properties. If the ratio is small, the wave function reduces to a product of singlets. In between, we find that the behavior of the correlations and the Renyi entropy depends on the distance considered. For small distances the behavior is critical, and for long distances the correlations decay exponentially and the entropy shows an area law behavior. The distance up to which there is critical behavior gets larger as the ratio increases.
Triplet correlation functions in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhabal, Debdas; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in; Singh, Murari
Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M.more » P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.« less
NASA Technical Reports Server (NTRS)
Wolf, David R.
2004-01-01
The topic of this paper is a hierarchy of information-like functions, here named the information correlation functions, where each function of the hierarchy may be thought of as the information between the variables it depends upon. The information correlation functions are particularly suited to the description of the emergence of complex behaviors due to many- body or many-agent processes. They are particularly well suited to the quantification of the decomposition of the information carried among a set of variables or agents, and its subsets. In more graphical language, they provide the information theoretic basis for understanding the synergistic and non-synergistic components of a system, and as such should serve as a forceful toolkit for the analysis of the complexity structure of complex many agent systems. The information correlation functions are the natural generalization to an arbitrary number of sets of variables of the sequence starting with the entropy function (one set of variables) and the mutual information function (two sets). We start by describing the traditional measures of information (entropy) and mutual information.
Sexual Function Is Correlated With Body Image and Partnership Quality in Female University Students.
Wallwiener, Stephanie; Strohmaier, Jana; Wallwiener, Lisa-Maria; Schönfisch, Birgitt; Zipfel, Stephan; Brucker, Sara Y; Rietschel, Marcella; Wallwiener, Christian W
2016-10-01
According to the World Health Organization definition, sexual health is more than mere physical sexual function; it also encompasses emotional, mental, and social well-being in relation to sexuality and is not merely the absence of dysfunction or disease. In line with this definition, various studies have reported that female sexual function is associated with partnership quality, body image, and body self-acceptance. To investigate whether female sexual function is influenced by (i) body self-acceptance and (ii) partnership quality, as important factors in psychosocial well-being, and (iii) whether the effects of body self-acceptance are moderated by partnership quality. In total, 2,685 female medical students no older than 35 years from Germany, Austria, and Switzerland completed an anonymous online questionnaire comprising the Female Sexual Function Index (FSFI) and the Self-Acceptance of the Body Scale. Respondents were asked to state whether they had been in a steady partnership in the preceding 6 months. When present, the quality of the partnership status was rated (enamoredness, love, friendship, or conflicted). To determine correlations, group differences, and moderating effects among body self-acceptance, partnership quality, and sexual function, the data were analyzed using Spearman correlations, Kruskal-Wallis tests, and analyses of variance. Female sexual function (FSFI total score). (i) In sexually active women, higher FSFI scores were significantly associated with greater body self-acceptance and a steady partnership during the preceding 6 months. (ii) Total FSFI scores were highest in women who described their partnership as enamored (29.45) or loving (28.55). Lower scores were observed in single women (26.71) and in women who described their partnerships as friendship (25.76) or as emotionally conflicted (23.41). (iii) Total FSFI score was affected by an interaction between body self-acceptance and partnership quality. Body self- acceptance was positively associated with FSFI total scores, particularly in single women and women in emotionally conflicted partnerships. Our findings suggest that in young women, body self-acceptance and partnership quality are positively associated with better sexual function, and that high body self-acceptance might buffer the negative impact on sexual function of partnership quality. The present data suggest that psychological interventions to improve the body image of younger women can positively affect sexual function and thereby improve sexual health. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.
2014-09-15
The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less
A study of electron transfer using a three-level system coupled to an ohmic bath
NASA Technical Reports Server (NTRS)
Takasu, Masako; Chandler, David
1993-01-01
Electron transfer is studied using a multi-level system coupled to a bosonic bath. Two body correlation functions are obtained using both exact enumeration of spin paths and Monte Carlo simulation. It was found that the phase boundary for the coherent-incoherent transition lies at a smaller friction in the asymmetric two-level model than in the symmetric two-level model. A similar coherent-incoherent transition is observed for three-level system.
The Quételet index revisited in children and adults.
Chiquete, Erwin; Ruiz-Sandoval, José L; Ochoa-Guzmán, Ana; Sánchez-Orozco, Laura V; Lara-Zaragoza, Erika B; Basaldúa, Nancy; Ruiz-Madrigal, Bertha; Martínez-López, Erika; Román, Sonia; Godínez-Gutiérrez, Sergio A; Panduro, Arturo
2014-02-01
The body mass index (BMI) is based on the original concept that body weight increases as a function of height squared. As an indicator of obesity the modern BMI assumption postulates that adiposity also increases as a function of height in states of positive energy balance. To evaluate the BMI concept across different adiposity magnitudes, in both children and adults. We studied 975 individuals who underwent anthropometric evaluation: 474 children and 501 adults. Tetrapolar bioimpedance analysis was used to assess body fat and lean mass. BMI significantly correlated with percentage of body fat (%BF; children: r=0.893; adults: r=0.878) and with total fat mass (children: r=0.967; adults: r=0.953). In children, body weight, fat mass, %BF and waist circumference progressively increased as a function of height squared. In adults body weight increased as a function of height squared, but %BF actually decreased with increasing height both in men (r=-0.406; p<0.001) and women (r=-0.413; p<0.001). Most of the BMI variance in adults was explained by a positive correlation of total lean mass with height squared (r(2)=0.709), and by a negative correlation of BMI with total fat mass (r=-0.193). Body weight increases as a function of height squared. However, adiposity progressively increases as a function of height only in children. BMI is not an ideal indicator of obesity in adults since it is significantly influenced by the lean mass, even in obese individuals. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Giraud, Olivier; Grabsch, Aurélien; Texier, Christophe
2018-05-01
We study statistical properties of N noninteracting identical bosons or fermions in the canonical ensemble. We derive several general representations for the p -point correlation function of occupation numbers n1⋯np ¯. We demonstrate that it can be expressed as a ratio of two p ×p determinants involving the (canonical) mean occupations n1¯, ..., np¯, which can themselves be conveniently expressed in terms of the k -body partition functions (with k ≤N ). We draw some connection with the theory of symmetric functions and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a one-dimensional harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground-state and excited-state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground-state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme-value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.
Correlated evolution of host and parasite body size: tests of Harrison's rule using birds and lice.
Johnson, Kevin P; Bush, Sarah E; Clayton, Dale H
2005-08-01
Large-bodied species of hosts often harbor large-bodied parasites, a pattern known as Harrison's rule. Harrison's rule has been documented for a variety of animal parasites and herbivorous insects, yet the adaptive basis of the body-size correlation is poorly understood. We used phylogenetically independent methods to test for Harrison's rule across a large assemblage of bird lice (Insecta: Phthiraptera). The analysis revealed a significant relationship between louse and host size, despite considerable variation among taxa. We explored factors underlying this variation by testing Harrison's rule within two groups of feather-specialist lice that share hosts (pigeons and doves). The two groups, wing lice (Columbicola spp.) and body lice (Physconelloidinae spp.), have similar life histories, despite spending much of their time on different feather tracts. Wing lice showed strong support for Harrison's rule, whereas body lice showed no significant correlation with host size. Wing louse size was correlated with wing feather size, which was in turn correlated with overall host size. In contrast, body louse size showed no correlation with body feather size, which also was not correlated with overall host size. The reason why body lice did not fit Harrison's rule may be related to the fact that different species of body lice use different microhabitats within body feathers. More detailed measurements of body feathers may be needed to explore the precise relationship of body louse size to relevant components of feather size. Whatever the reason, Harrison's rule does not hold in body lice, possibly because selection on body size is mediated by community-level interactions between body lice.
The relationship between allometry and preferred transition speed in human locomotion.
Ranisavljev, Igor; Ilic, Vladimir; Soldatovic, Ivan; Stefanovic, Djordje
2014-04-01
The purpose of this study was to explore the relationships between preferred transition speed (PTS) and anthropometric characteristics, body composition and different human body proportions in males. In a sample of 59 male students, we collected anthropometric and body composition data and determined individual PTS using increment protocol. The relationships between PTS and other variables were determined using Pearson correlation, stepwise linear and hierarchical regression. Body ratios were formed as quotient of two variables whereby at least one significantly correlated to PTS. Circular and transversal (except bitrochanteric diameter) body dimensions did not correlate with PTS. Moderate correlations were found between longitudinal leg dimensions (foot, leg and thigh length) and PTS, while the highest correlation was found for lower leg length (r=.488, p<.01). Two parameters related to body composition showed weak correlation with PTS: body fat mass (r=-.250, p<.05) and amount of lean leg mass scaled to body weight (r=.309, p<.05). Segmental body proportions correlated more significantly with PTS, where thigh/lower leg length ratio showed the highest correlation (r=.521, p<.01). Prediction model with individual variables (lower leg and foot length) have explained just 31% of PTS variability, while model with body proportions showed almost 20% better prediction (R(2)=.504). These results suggests that longitudinal leg dimensions have moderate influence on PTS and that segmental body proportions significantly more explain PTS than single anthropometric variables. Copyright © 2014 Elsevier B.V. All rights reserved.
NONUNIFORM FOURIER TRANSFORMS FOR RIGID-BODY AND MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS
BAJAJ, CHANDRAJIT; BAUER, BENEDIKT; BETTADAPURA, RADHAKRISHNA; VOLLRATH, ANTJE
2013-01-01
The task of evaluating correlations is central to computational structural biology. The rigid-body correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes the correlation between a pair of input scalar-valued functions representing molecular structures. Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier transform to achieve a speedup either with respect to the sought translation or rotation. We present PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous solutions, ours achieves a combination of translational and rotational speedups without requiring equispaced grids. PFcorr can be straightforwardly applied to a variety of problems in protein structure prediction and refinement that involve correlations under rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant. PMID:24379643
Muscle performance, body fat, pain and function in the elderly with arthritis.
Dos Santos, Wagner Teixeira; Rodrigues, Erika de Carvalho; Mainenti, Míriam Raquel Meira
2014-01-01
To correlate muscule performance, body composition, pain and joint function in elderly people with gonarthrosis. 21 elderly patients were submitted to bioelectrical impedance analysis, dynamometry associated with electromyographic (EMG) evaluation of isometric knee extension, in addition to pain assessment by the Numeric Pain Intensity Scale and function assessment, by the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis (OA) questionnaire. Correlations were checked by the Pearson's correlation coefficient. The sample characteristics were mean age 67.36 ± 4.21 years old, body fat percentage 40.57±6.15%, total WOMAC score 43.27 ± 16.32%, and maximum strength 19.95 ± 6.99 kgF. Pain during movement showed a statistical association with WOMAC physical activity domain (r = 0.47) and its general score (r = 0.51); pain intensity at night presented association with WOMAC stiffness domain (r = 0.55), in addition to the negative correlation with the slope values of the Medium Frequency of the EMG signal (r = - 0.57). pain intensity is correlated to functional incapacity in elderly people with knee OA and to a greater expression of fatigue in EMG signal. Levels of Evidence III, Study of non consecutive patients.
High order neural correlates of social behavior in the honeybee brain.
Duer, Aron; Paffhausen, Benjamin H; Menzel, Randolf
2015-10-30
Honeybees are well established models of neural correlates of sensory function, learning and memory formation. Here we report a novel approach allowing to record high-order mushroom body-extrinsic interneurons in the brain of worker bees within a functional colony. New method The use of two 100 cm long twisted copper electrodes allowed recording of up to four units of mushroom body-extrinsic neurons simultaneously for up to 24h in animals moving freely between members of the colony. Every worker, including the recorded bee, hatched in the experimental environment. The group consisted of 200 animals in average. Animals explored different regions of the comb and interacted with other colony members. The activities of the units were not selective for locations on the comb, body directions with respect to gravity and olfactory signals on the comb, or different social interactions. However, combinations of these parameters defined neural activity in a unit-specific way. In addition, units recorded from the same animal co-varied according to unknown factors. Comparison with existing method(s): All electrophysiological studies with honey bees were performed so far on constrained animals outside their natural behavioral contexts. Yet no neuronal correlates were measured in a social context. Free mobility of recoded insects over a range of a quarter square meter allows addressing questions concerning neural correlates of social communication, planning of tasks within the colony and attention-like processes. The method makes it possible to study neural correlates of social behavior in a near-natural setting within the honeybee colony. Copyright © 2015 Elsevier B.V. All rights reserved.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions.
Jerke, Jonathan; Poirier, Bill
2018-03-14
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy-i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted-as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Neural Correlates of Personal Space Intrusion
Cassidy, Brittany S.; Yue, Xiaomin; Rauch, Scott L.; Boeke, Emily A.; Nasr, Shahin; Tootell, Roger B. H.; Coombs, Garth
2014-01-01
A parietal-frontal network in primates is thought to support many behaviors occurring in the space around the body, including interpersonal interactions and maintenance of a particular “comfort zone” or distance from other people (“personal space”). To better understand this network in humans, we used functional MRI to measure the responses to moving objects (faces, cars, simple spheres) and the functional connectivity of two regions in this network, the dorsal intraparietal sulcus (DIPS) and the ventral premotor cortex (PMv). We found that both areas responded more strongly to faces that were moving toward (vs away from) subjects, but did not show this bias in response to comparable motion in control stimuli (cars or spheres). Moreover, these two regions were functionally interconnected. Tests of activity-behavior associations revealed that the strength of DIPS-PMv connectivity was correlated with the preferred distance that subjects chose to stand from an unfamiliar person (personal space size). In addition, the magnitude of DIPS and PMv responses was correlated with the preferred level of social activity. Together, these findings suggest that this parietal-frontal network plays a role in everyday interactions with others. PMID:24647934
Multidimensional optical spectroscopy of a single molecule in a current-carrying state
NASA Astrophysics Data System (ADS)
Rahav, S.; Mukamel, S.
2010-12-01
The nonlinear optical signals from an open system consisting of a molecule connected to metallic leads, in response to a sequence of impulsive pulses, are calculated using a superoperator formalism. Two detection schemes are considered: coherent stimulated emission and incoherent fluorescence. The two provide similar but not identical information. The necessary superoperator correlation functions are evaluated either by converting them to ordinary (Hilbert space) operators which are then expanded in many-body states, or by using Wick's theorem for superoperators to factorize them into nonequilibrium two point Green's functions. As an example we discuss a stimulated Raman process that shows resonances involving two different charge states of the molecule in the same signal.
Functionally different α-synuclein inclusions yield insight into Parkinson’s disease pathology
Raiss, Christian C.; Braun, Theresa S.; Konings, Irene B. M.; Grabmayr, Heinrich; Hassink, Gerco C.; Sidhu, Arshdeep; le Feber, Joost; Bausch, Andreas R.; Jansen, Casper; Subramaniam, Vinod; Claessens, Mireille M. A. E.
2016-01-01
The formation of α-synuclein (α-S) amyloid aggregates, called Lewy bodies (LBs), is a hallmark of Parkinson’s disease (PD). The function of LBs in the disease process is however still unclear; they have been associated with both neuroprotection and toxicity. To obtain insight into this contradiction, we induced the formation of α-S inclusions, using three different induction methods in SH-SY5Y cells and rat-derived primary neuronal cells. Using confocal and STED microscopy we observed induction-dependent differences in α-S inclusion morphology, location and function. The aggregation of α-S in functionally different compartments correlates with the toxicity of the induction method measured in viability assays. The most cytotoxic treatment largely correlates with the formation of proteasome-associated, juxta-nuclear inclusions. With less toxic methods cytosolic deposits that are not associated with the proteasome are more prevalent. The distribution of α-S over at least two different types of inclusions is not limited to cell models, but is also observed in primary neuronal cells and in human mesencephalon. The existence of functionally different LBs, in vivo and in vitro, gives important insights in the impact of Lewy Body formation on neuronal functioning and may thereby provide a platform for discovering therapeutics. PMID:26984067
Effects of Body Mass Index on Lung Function Index of Chinese Population
NASA Astrophysics Data System (ADS)
Guo, Qiao; Ye, Jun; Yang, Jian; Zhu, Changan; Sheng, Lei; Zhang, Yongliang
2018-01-01
To study the effect of body mass index (BMI) on lung function indexes in Chinese population. A cross-sectional study was performed on 10, 592 participants. The linear relationship between lung function and BMI was evaluated by multivariate linear regression analysis, and the correlation between BMI and lung function was assessed by Pearson correlation analysis. Correlation analysis showed that BMI was positively related with the decreasing of forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and FEV1/FVC (P <0.05), the increasing of FVC% predicted value (FVC%pre) and FEV1% predicted value (FEV1%pre). These suggested that Chinese people can restrain the decline of lung function to prevent the occurrence and development of COPD by the control of BMI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu
2015-06-07
The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.
Functional modules by relating protein interaction networks and gene expression.
Tornow, Sabine; Mewes, H W
2003-11-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.
Functional modules by relating protein interaction networks and gene expression
Tornow, Sabine; Mewes, H. W.
2003-01-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317
Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N
2018-03-01
DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p < 0.0001) from one another with DXA total body less head being highest at 37.8 (7.3) kg, D3-C muscle mass at 21.1 (4.6) kg, and BIS total body intracellular water at 17.4 (3.5) kg. All mass assessment methods correlated with grip strength and jump power (R = 0.35-0.63, p < 0.0002), but not with gait speed or repeat chair rise. Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.
Thouless energy and multifractality across the many-body localization transition
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.
2017-09-01
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.
Powering Up Mitichondrial Functions to Treat Mitochondrial Disease
2017-10-01
derived hormone whose serum level correlates positively with the severity of mitochondrial cardiomyopathy (recently published with DOD grant support...derived hormone that regulates body growth. Circulating GDF15 level correlates positively with the severity of mitochondrial cardiomyopathy and can...Pei lab recently discovered that GDF15 is a heart-derived hormone that regulates body growth. Circulating GDF15 level correlates positively with the
Dynamical potentials for nonequilibrium quantum many-body phases
NASA Astrophysics Data System (ADS)
Roy, Sthitadhi; Lazarides, Achilleas; Heyl, Markus; Moessner, Roderich
2018-05-01
Out of equilibrium phases of matter exhibiting order in individual eigenstates, such as many-body localized spin glasses and discrete time crystals, can be characterized by inherently dynamical quantities such as spatiotemporal correlation functions. In this paper, we introduce dynamical potentials which act as generating functions for such correlations and capture eigenstate phases and order. These potentials show formal similarities to their equilibrium counterparts, namely thermodynamic potentials. We provide three representative examples: a disordered XXZ chain showing many-body localization, a disordered Ising chain exhibiting spin-glass order, and its periodically-driven cousin exhibiting time-crystalline order.
Bikondoa, Oier
2017-04-01
Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2018-01-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.
Kinematic Analysis of Javelin Throw Performed by Wheelchair Athletes of Different Functional Classes
Chow, John W.; Kuenster, Ann F.; Lim, Young-tae
2003-01-01
The purpose of this study was to identify those kinematic characteristics that are most closely related to the functional classification of a wheelchair athlete and measured distance of a javelin throw. Two S-VHS camcorders (60 field·s-1) were used to record the performance of 15 males of different classes. Each subject performed 6-10 throws and the best two legal throws from each subject were selected for analysis. Three-dimensional kinematics of the javelin and upper body segments at the instant of release and during the throw (delivery) were determined. The selection of kinematic parameters that were analyzed in this study was based on a javelin throw model showing the factors that determine the measured distance of a throw. The average of two throws for each subject was used to compute Spearman rank correlation coefficients between selected parameters and measured distance, and between selected parameters and the functional classification. The speeds and angles of the javelin at release, ranged from 9.1 to 14.7 m·s-1 and 29.6 to 35.8°, respectively, were smaller than those exhibited by elite male able-bodied throwers. As expected, the speed of the javelin at release was significantly correlated to both the classification (p<0.01) and measured distance (p<0.001). Of the segmental kinematic parameters, significant correlations were found between the trunk inclination at release and classification and between the angular speed at release and measured distance (p<0.01 for both). The angular speed of the shoulder girdle at release and the average angular speeds of the shoulder girdle during the delivery were significantly correlated to both the classification and measured distance (p<0.05). The results indicate that shoulder girdle movement during the delivery is an important determinant of classification and measured distance. PMID:24616609
Scaling within the spectral function approach
NASA Astrophysics Data System (ADS)
Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.
2018-03-01
Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.
Constrained variation in Jastrow method at high density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, J.C.; Bishop, R.F.; Irvine, J.M.
1976-11-01
A method is derived for constraining the correlation function in a Jastrow variational calculation which permits the truncation of the cluster expansion after two-body terms, and which permits exact minimization of the two-body cluster by functional variation. This method is compared with one previously proposed by Pandharipande and is found to be superior both theoretically and practically. The method is tested both on liquid /sup 3/He, by using the Lennard--Jones potential, and on the model system of neutrons treated as Boltzmann particles (''homework'' problem). Good agreement is found both with experiment and with other calculations involving the explicit evaluation ofmore » higher-order terms in the cluster expansion. The method is then applied to a more realistic model of a neutron gas up to a density of 4 neutrons per F/sup 3/, and is found to give ground-state energies considerably lower than those of Pandharipande. (AIP)« less
Costa, R M; Pestana, José; Costa, David; Wittmann, Marc
2017-07-01
Greater vibrotactile sensitivity has been related to better erectile function in men, and vibrotactile and pressure tactile sensitivity have been related to better sexual function in women. Our previous study found that, for both sexes, greater recalled body awareness during last sexual relation correlated with greater recalled desire and arousal. Using the same sample of that study (68 women and 48 men, recruited in the Lisbon area, Portugal), we tested if greater recalled body awareness during last sexual relation correlates with tactile pressure sensitivity, as assessed by von Frey microfilaments. In simple and partial correlations controlling for social desirability and smoking before last sex, the hypothesis was confirmed for women, but not for men. Greater tactile sensitivity might enhance sexual arousal through greater awareness of the body during sex, and/or more frequent and pleasant body sensations during sex might lead to greater tactile sensitivity in nonsexual situations. Pressure sensitivity might be more closely linked to sexual arousal in women than in men.
Nonlocality in many-body quantum systems detected with two-body correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tura, J., E-mail: jordi.tura@icfo.es; Augusiak, R.; Sainz, A.B.
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however,more » we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.« less
Genetics of human body size and shape: body proportions and indices.
Livshits, Gregory; Roset, A; Yakovenko, K; Trofimov, S; Kobyliansky, E
2002-01-01
The study of the genetic component in morphological variables such as body height and weight, head and chest circumference, etc. has a rather long history. However, only a few studies investigated body proportions and configuration. The major aim of the present study was to evaluate the extent of the possible genetic effects on the inter-individual variation of a number of body configuration indices amenable to clear functional interpretation. Two ethnically different pedigree samples were used in the study: (1) Turkmenians (805 individuals) from Central Asia, and (2) Chuvasha (732 individuals) from the Volga riverside, Russian Federation. To achieve the aim of the present study we proposed three new indices, which were subjected to a statistical-genetic analysis using modified version of "FISHER" software. The proposed indices were: (1) an integral index of torso volume (IND#1), an index reflecting a predisposition of body proportions to maintain a balance in a vertical position (IND#2), and an index of skeletal extremities volume (IND#3). Additionally, the first two principal factors (PF1 and PF2) obtained on 19 measurements of body length and breadth were subjected to genetic analysis. Variance decomposition analysis that simultaneously assess the contribution of gender, age, additive genetic effects and effects of environment shared by the nuclear family members, was applied to fit variation of the above three indices, and PF1 and PF2. The raw familial correlation of all study traits and in both samples showed: (1) all marital correlations did not differ significantly from zero; (2) parent-offspring and sibling correlations were all positive and statistically significant. The parameter estimates obtained in variance analyses showed that from 40% to 75% of inter-individual variation of the studied traits (adjusted for age and sex) were attributable to genetic effects. For PF1 and PF2 in both samples, and for IND#2 (in Chuvasha pedigrees), significant common sib environmental effects were also detectable. Genetic factors substantially influence inter-individual differences in body shape and configuration in two studied samples. However, further studies are needed to clarify the extent of pleiotropy and epigenetic effects on various facets of the human physique.
NASA Astrophysics Data System (ADS)
Riera, Marc; Mardirossian, Narbe; Bajaj, Pushp; Götz, Andreas W.; Paesani, Francesco
2017-10-01
This study presents the extension of the MB-nrg (Many-Body energy) theoretical/computational framework of transferable potential energy functions (PEFs) for molecular simulations of alkali metal ion-water systems. The MB-nrg PEFs are built upon the many-body expansion of the total energy and include the explicit treatment of one-body, two-body, and three-body interactions, with all higher-order contributions described by classical induction. This study focuses on the MB-nrg two-body terms describing the full-dimensional potential energy surfaces of the M+(H2O) dimers, where M+ = Li+, Na+, K+, Rb+, and Cs+. The MB-nrg PEFs are derived entirely from "first principles" calculations carried out at the explicitly correlated coupled-cluster level including single, double, and perturbative triple excitations [CCSD(T)-F12b] for Li+ and Na+ and at the CCSD(T) level for K+, Rb+, and Cs+. The accuracy of the MB-nrg PEFs is systematically assessed through an extensive analysis of interaction energies, structures, and harmonic frequencies for all five M+(H2O) dimers. In all cases, the MB-nrg PEFs are shown to be superior to both polarizable force fields and ab initio models based on density functional theory. As previously demonstrated for halide-water dimers, the MB-nrg PEFs achieve higher accuracy by correctly describing short-range quantum-mechanical effects associated with electron density overlap as well as long-range electrostatic many-body interactions.
Analyzing the errors of DFT approximations for compressed water systems
NASA Astrophysics Data System (ADS)
Alfè, D.; Bartók, A. P.; Csányi, G.; Gillan, M. J.
2014-07-01
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm3 where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mEh ≃ 15 meV/monomer for the liquid and the clusters.
Analyzing the errors of DFT approximations for compressed water systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfè, D.; London Centre for Nanotechnology, UCL, London WC1H 0AH; Thomas Young Centre, UCL, London WC1H 0AH
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm{sup 3} where the experimental pressure is 15 kilobars; second, thermal samples of compressed watermore » clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE{sub h} ≃ 15 meV/monomer for the liquid and the clusters.« less
A perturbative approach to the redshift space correlation function: beyond the Standard Model
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Koyama, Kazuya
2017-08-01
We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with <= 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpch <= s <= 180Mpc/h. Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.
NASA Astrophysics Data System (ADS)
Fischer, M.; Groote, S.; Körner, J. G.
2018-05-01
We identify the T -odd structure functions that appear in the description of polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) (two structure functions) and the quasi-three-body decay t (↑)→X b+ℓ++νℓ (one structure function). A convenient measure of the magnitude of the T -odd structure functions is the contribution of the imaginary part Im gR of the right-chiral tensor coupling gR to the T -odd structure functions which we work out. Contrary to the case of QCD, the NLO electroweak corrections to polarized top quark decays admit absorptive one-loop vertex contributions. We analytically calculate the imaginary parts of the relevant four electroweak one-loop triangle vertex diagrams and determine their contributions to the T -odd helicity structure functions that appear in the description of polarized top quark decays.
Ageing and COPD affect different domains of nutritional status: the ECCE study.
Battaglia, S; Spatafora, M; Paglino, G; Pedone, C; Corsonello, A; Scichilone, N; Antonelli-Incalzi, R; Bellia, V
2011-06-01
Chronic obstructive pulmonary disease (COPD) and ageing may contribute to malnutrition. We aimed to explore whether COPD and ageing determine malnutrition in different manners. 460 stable COPD outpatients (376 males and 84 females) from the Extrapulmonary Consequences of COPD in the Elderly (ECCE) study database were investigated (age 75.0±5.9 yrs; forced expiratory volume in 1 s 54.7±18.3% predicted). Nutritional status was evaluated using the Mini Nutritional Assessment® (MNA) questionnaire. From the MNA, three scores exploring the domains of the nutritional status were calculated: body composition, energy intake and body functionality scores. Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages were negatively correlated with five MNA items exploring mobility, patient's perception of own nutrition and health status, and arm and calf circumferences (lowest Spearman's rho (rs)=-0.011; highest p=0.039). GOLD stages were independently correlated with body composition and body functionality scores (model r2=0.073). Age was negatively correlated with four MNA items exploring loss of appetite, fluid intake, mobility and autonomy in daily life (lowest rs=-0.013; highest p=0.030). Age was independently correlated with body functionality score (model r2=0.037). Severe COPD and ageing are independent and probably concurrent conditions leading to malnutrition. The MNA questionnaire allows a valuable insight into the complexity of components of nutritional status and may provide useful clues for treatment strategies.
Predictive value of plasma β2-microglobulin on human body function and senescence.
Dong, X-M; Cai, R; Yang, F; Zhang, Y-Y; Wang, X-G; Fu, S-L; Zhang, J-R
2016-06-01
To explore the correlation between plasma β2-microglobulin (β2-MG) as senescence factor with age, heart, liver and kidney function as well as the predictive value of β2-MG in human metabolism function and senescence. 387 cases of healthy people of different ages were selected and the automatic biochemical analyzer was used to test β2-MG in plasma based on immunoturbidimetry and also all biochemical indexes. The correlation between β2-MG and age, gender and all biochemical indexes was analyzed. β2-MG was positively correlated to age, r = 0.373; and the difference was of statistical significance (p < 0.010). It was significantly negative correlated to HDL-C but positively correlated to LP (a), BUN, CREA, UA, CYS-C, LDH, CK-MB, HBDH, AST, GLB and HCY. β2-MG was closely correlated to age, heart, kidney and liver biochemical indexes, which can be taken as an important biomarker for human body function and anti-senescence and have significant basic research and clinical guidance values.
Potentials of mean force for biomolecular simulations: Theory and test on alanine dipeptide
NASA Astrophysics Data System (ADS)
Pellegrini, Matteo; Grønbech-Jensen, Niels; Doniach, Sebastian
1996-06-01
We describe a technique for generating potentials of mean force (PMF) between solutes in an aqueous solution. We first generate solute-solvent correlation functions (CF) using Monte Carlo (MC) simulations in which we place a single atom solute in a periodic boundary box containing a few hundred water molecules. We then make use of the Kirkwood superposition approximation, where the 3-body correlation function is approximated as the product of 2-body CFs, to describe the mean water density around two solutes. Computing the force generated on the solutes by this average water density allows us to compute potentials of mean force between the two solutes. For charged solutes an additional approximation involving dielectric screening is made, by setting the dielectric constant of water to ɛ=80. These potentials account, in an approximate manner, for the average effect of water on the atoms. Following the work of Pettitt and Karplus [Chem. Phys. Lett. 121, 194 (1985)], we approximate the n-body potential of mean force as a sum of the pairwise potentials of mean force. This allows us to run simulations of biomolecules without introducing explicit water, hence gaining several orders of magnitude in efficiency with respect to standard molecular dynamics techniques. We demonstrate the validity of this technique by first comparing the PMFs for methane-methane and sodium-chloride generated with this procedure, with those calculated with a standard Monte Carlo simulation with explicit water. We then compare the results of the free energy profiles between the equilibria of alanine dipeptide generated by the two methods.
NASA Astrophysics Data System (ADS)
Das, Joy Prakash; Setlur, Girish S.
2017-10-01
The one step fermionic ladder refers to two parallel Luttinger Liquids (poles of the ladder) placed such that there is a finite probability of electrons hopping between the two poles at a pair of opposing points along each of the poles. The many-body Green function for such a system is calculated in presence of forward scattering interactions using the powerful non-chiral bosonization technique (NCBT). This technique is based on a non-standard harmonic analysis of the rapidly varying parts of the density fields appropriate for the study of strongly inhomogeneous ladder systems. The closed analytical expression for the correlation function obtained from NCBT is nothing but the series involving the RPA (Random Phase Approximation) diagrams in powers of the forward scattering coupling strength resummed to include only the most singular terms with the source of inhomogeneities treated exactly. Finally the correlation functions are used to study physical phenomena such as Friedel oscillations and the conductance of such systems with the potential difference applied across various ends.
Finn, Erica; Morrison, Todd G; McGuire, Brian E
2018-05-01
The aims of the study were to 1) examine the prevalence of sexual functioning difficulties in a chronic pain sample; 2) identify correlates of sexual functioning and relationship satisfaction utilizing pain variables (pain severity and pain interference) and psychological variables (mood, pain-related cognitions, self-efficacy, self-esteem, body-image); and 3) investigate possible sex differences in the correlates of sexual functioning and relationship satisfaction. Two hundred sixty-nine participants were recruited online from chronic pain organizations, websites, social media sites, and discussion forums. Those who met criteria for inclusion were presented with a variety of measures related to pain, sexual functioning, and relationship satisfaction (for those in a relationship), as well as cognitive and affective variables. Participant mean age was 37 years, and the majority were female, heterosexual, and currently in a relationship. High levels of pain severity and interference from pain, fatigue, depression, anxiety, stress, and body image concerns were reported, along with low levels of self-esteem and pain self-efficacy. In addition, substantial proportions of male (43%) and female (48%) respondents had scores indicative of sexual problems. Exploratory hierarchical regression analyses revealed that, for women, age and relationship satisfaction (which were both treated as covariates) as well as depression emerged as statistically significant correlates of sexual functioning (i.e., women who were older and reported greater levels of depression and less satisfaction with their current relationship indicated poorer sexual functioning). When relationship satisfaction was the criterion measure, age and sexual functioning (again, treated as covariates) and perceived stress emerged as significant (i.e., women who were older, reported poorer sexual functioning, and reported greater perceived stress also indicated being less satisfied with their current relationship). For male participants, age emerged as the only statistically significant correlate of sexual functioning (i.e., older men reported poorer functioning). In terms of relationship satisfaction, self-esteem was the lone significant correlate variable (men who reported lower self-esteem also were less satisfied with their current relationship). Some sex differences were evident in the variables that predict sexual difficulties and relationship satisfaction among those suffering from chronic pain. Of note is that when psychological variables were considered, pain-specific physical variables (e.g., pain severity and activity limitations) accounted for very little additional variance.
Chevalier, S; Saoud, F; Gray-Donald, K; Morais, J A
2008-12-01
To estimate the prevalence of malnutrition in frail elders undergoing rehabilitation and the association between their nutritional status and physical function. Observational study of new participants undergoing ambulatory rehabilitation. Two Geriatric Day Hospitals (GDH) in Montreal, Quebec. 121 women and 61 men. Evaluation of nutritional status, body composition and physical function. The nutritional status was assessed with a composite index based on anthropometric measurements and serum albumin, as well as using the Mini Nutritional Assessment (MNA) questionnaire. Patients were classified as well-nourished, having mild/at risk of malnutrition or malnourished. Body composition was estimated by bioimpedance and handgrip strength and gait speed by standard methods. 13% of patients were found to be mildly malnourished, whereas 6% were malnourished. Malnourished patients were older and had worse cognition, lower BMI, and % body fat (all p<0.05). Malnourished patients and those with mild malnutrition had lower weight, triceps skinfold thickness, muscle and fat mass (all, p<0.003). Handgrip strength was different according to the nutritional status (p=0.034) and correlated with muscle mass (r=0.65, p<0.001). MNA classified 53% of patients as being at risk whereas 3% were malnourished and it correlated with gait speed (r=0.26, p=0.001). There is a high prevalence of patients in GDH at risk or with mild malnutrition. Being malnourished was associated with worse physical performance, which suggests that a nutritional intervention may be of benefit in improving their physical function.
Ishikawa, Junko; Shimotoyodome, Yoshie; Ito, Shotaro; Miyauchi, Yuki; Fujimura, Tsutomu; Kitahara, Takashi; Hase, Tadashi
2013-03-01
The objective of this study was to clarify variations of the ceramide (CER) profile in human stratum corneum (SC) in different seasons and in different regions of the body and to estimate the contributions of CERs to the SC barrier and water-holding functions. Based on the information that there are great variations of SC functions among body sites, we compared the CER profiles obtained from ten different anatomical sites in healthy Japanese males in four seasons. Not only the physiological parameters of skin but also the CER profile showed body region and seasonal variations. The total CER level, the CER composition and the C34-CER[NS] species displayed strong correlations with the values of transepidermal water loss and capacitance throughout the body. Especially in the cheek, a strong correlation between the capacitance and the CER profile was observed. There were seasonal variations of the CER profile in the lip, upper arm and palm. Our results indicate that regional and seasonal variations of the CER profile may contribute to SC functions.
Swimming Speed of The Breaststroke Kick
Strzała, Marek; Krężałek, Piotr; Kaca, Marcin; Głąb, Grzegorz; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Aleksander
2012-01-01
The breaststroke kick is responsible for a considerable portion of the forward propulsion in breaststroke swimming. The aim of this study was to measure selected anthropometric variables and functional properties of a swimmer’s body: length of body parts; functional range of motion in the leg joints and anaerobic power of the lower limbs. Chosen kinematic variables useful in the evaluation of swimming performance in the breaststroke kick were evaluated. In the present research, swimming speed using breaststroke kicks depended to the largest extent on anaerobic endurance (0.46, p < 0.05 partial correlations with age control). In addition, knee external rotation and swimming technique index had an impact on swimming speed and kick length (both partial correlations with age control 0.35, p < 0.08). A kinematic analysis of the breaststroke kick hip displacement compatible with horizontal body displacement was significantly negatively correlated with foot slip in the water opposite to body displacement (partial correlations: with leg length control −0.43, p < 0.05; with shank length control −0.45, p < 0.05, respectively). Present research and measurements of selected body properties, physical endurance and kinematic movement analysis may help in making a precise determination of an athlete’s talent for breaststroke swimming. PMID:23486737
[Spleen autotransplant. Natural history and description of a case].
Ceccherini, E; Sereni, P; Ferrari, F; Fagioli Zucchi, A; Croce, F; Di Maggio, G; Vattimo, A; Mancini, S
1989-09-30
After considering the natural history of spleen auto-transplant, a clinical case followed up for seven months with instrumental (echography, scintigraphy) and humoral (Jolly bodies, Heinz bodies, reticulocytes, platelets, complement, immune globulin) examinations has been considered so as to verify "take" and function. One months after reimplantation the patient was again operated on for the onset of an intestinal occlusion due to adherences. On that occasion it was possible to control that the implant had taken. It is concluded that personally used parameters proved to be well correlated and that scintigraphy and echography are two complementary, effective techniques for monitoring auto-transplants.
Quasiparticle Representation of Coherent Nonlinear Optical Signals of Multiexcitons
NASA Astrophysics Data System (ADS)
Fingerhut, Benjamin; Bennet, Kochise; Roslyak, Oleksiy; Mukamel, Shaul
2013-03-01
Elementary excitations of many-Fermion systems can be described within the quasiparticle approach which is widely used in the calculation of transport and optical properties of metals, semiconductors, molecular aggregates and strongly correlated quantum materials. The excitations are then viewed as independent harmonic oscillators where the many-body interactions between the oscillators are mapped into anharmonicities. We present a Green's function approach based on coboson algebra for calculating nonlinear optical signals and apply it onwards the study of two and three exciton states. The method only requires the diagonalization of the single exciton manifold and avoids equations of motion of multi-exciton manifolds. Using coboson algebra many body effects are recast in terms of tetradic exciton-exciton interactions: Coulomb scattering and Pauli exchange. The physical space of Fermions is recovered by singular-value decomposition of the over-complete coboson basis set. The approach is used to calculate third and fifth order quantum coherence optical signals that directly probe correlations in two- and three exciton states and their projections on the two and single exciton manifold.
Reinhold, Stephan W; Scherl, Thomas; Stölcker, Benjamin; Bergler, Tobias; Hoffmann, Ute; Weingart, Christian; Banas, Miriam C; Kollins, Dmitrij; Kammerl, Martin C; Krüger, Bernd; Kaess, Bernhard; Krämer, Bernhard K; Banas, Bernhard
2013-02-01
Acute transplant rejection is the leading cause of graft loss in the first months after kidney transplantation. Lipoxygenase products mediate pro- and anti-inflammatory actions and thus we aimed to correlate the histological reports of renal transplant biopsies with urinary lipoxygenase products concentrations to evaluate their role as a diagnostic marker. This study included a total of 34 kidney transplant recipients: 17 with an acute transplant rejection and 17 controls. LTE4, LTB4, 12-HETE and 15-HETE concentrations were measured by enzyme immunoassay. Urinary lipoxygenase product concentrations were not significantly changed during an acute allograft rejection. Nevertheless, LTB4 concentrations correlated significantly with the body temperature (P ≤ 0.05) 3 months after transplantation, and 12- and 15-HETE concentrations correlated significantly with renal function (P ≤ 0.05) 2 weeks after transplantation. In conclusion, our data show a correlation for LTB4 with the body temperature 3 months after transplantation and urinary 12- and 15-HETE concentrations correlate positively with elevated serum creatinine concentrations but do not predict acute allograft rejection.
Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.
Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R
2013-05-02
Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during terrestrial locomotion, we suggest that the evolution of avian flight is linked to anatomical novelties in the pelvic limb as well as the pectoral.
De Winter, Gunnar; Martins, Henrique Ramalho; Trovo, Rafael Arnoni; Chapman, Ben B
2016-01-01
Behavioural variation among individuals has received a lot of attention by behavioural ecologists in the past few years. Its causes and consequences are becoming vast areas of research. The origin and maintenance of individual variation in behaviour within and among populations is affected by many facets of the biotic and abiotic environment. Here, two populations of lab-reared juvenile three-spined sticklebacks (Gasterosteus aculeatus) are tested for three behaviours (boldness, exploration, and sociability). Given the identical rearing conditions, the only difference between these populations is the parental habitat. In both populations, correlations between behaviour and body length are found. Interestingly, these differ between the populations. In one population body length was negatively correlated with exploratory behaviour, while in the other one body length correlated negatively with sociability. Considering the identical environment these juvenile fish were exposed to, these findings suggest a potential (epi)genetic foundation for these correlations and shows that, in three-spined sticklebacks, the proximate basis for correlations between body length and behaviour appears quite malleable. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria
2017-08-01
Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.
Endothelial Function and Weight Loss: Comparison of Low-Carbohydrate and Low-Fat Diets
Mohler, Emile R.; Sibley, Alexandra A.; Stein, Richard; Davila-Roman, Victor; Wyatt, Holly; Badellino, Karen; Rader, Daniel J.; Klein, Samuel; Foster, Gary D.
2012-01-01
The effect of weight loss on obesity-associated endothelial dysfunction is not clear because of conflicting data, demonstrating both improvement and no change in endothelial function after weight loss in obese subjects. A two-year prospective study (n=121) was conducted to examine: 1) the effect of obesity and weight loss (either a low-carbohydrate or and low-fat diet) on flow mediated vasodilatation (FMD), a measure of endothelial function. Participants reduced body weight by 7.1±4.4%, 8.7±6.8% 7.1±7.8% and 4.1±7.7% at 3, 6, 12 and 24 months, respectively with no significant differences between the low-fat and low-carbohydrate groups. Endothelial function was inversely correlated with waist circumference, triglyceride level, and directly correlated with leptin in obese persons prior to weight loss. These weight losses did not confer any improvements in FMD. There were no differences between the low-fat and low-carbohydrate diets in FMD at any time point. At 6 months (r = 0.26, p = 0.04) and one year (r = 0.28, p = 0.03), there were positive correlations between change in FMD and change in leptin but not at two years. There was no significant improvement in endothelial function after 7.1±7.8% weight loss at one year and 4.1±7.7% at two years, achieved by either a low carbohydrate or a low fat diet. PMID:23404949
Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, S.; Carlson, J.; Cirigliano, V.
We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v 18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such asmore » those corresponding to different orders in chiral effective theory.« less
NASA Astrophysics Data System (ADS)
Heßelmann, Andreas
2017-06-01
A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Tang, Chunguang; Harrowell, Peter
2018-06-01
In this paper, we compare the composition fluctuations and interaction potentials of a good metallic glass former, Cu50Zr50, and a poor glass former, Ni50Al50. The Bhatia-Thornton correlation functions are calculated. Motivated by the observation of chemical ordering at the NiAl surface, we derive a new property, R^ c n(q ) , corresponding to the linear susceptibility of concentration to a perturbation in density. We present a direct comparison of the potentials for the two model alloys using a 2nd order density expansion, and establish that the one-body energy plays a crucial role in stabilizing the crystal relative to the liquid in both alloys but that the three-body contribution to the heat of fusion is significantly larger in NiAl than CuZr.
Soliman, Essam S; Moawed, Sherif A; Hassan, Rania A
2017-08-01
Birds litter contains unutilized nitrogen in the form of uric acid that is converted into ammonia; a fact that does not only affect poultry performance but also has a negative effect on people's health around the farm and contributes in the environmental degradation. The influence of microclimatic ammonia emissions on Ross and Hubbard broilers reared in different housing systems at two consecutive seasons (fall and winter) was evaluated using a discriminant function analysis to differentiate between Ross and Hubbard breeds. A total number of 400 air samples were collected and analyzed for ammonia levels during the experimental period. Data were analyzed using univariate and multivariate statistical methods. Ammonia levels were significantly higher (p< 0.01) in the Ross compared to the Hubbard breed farm, although no significant differences (p>0.05) were found between the two farms in body weight, body weight gain, feed intake, feed conversion ratio, and performance index (PI) of broilers. Body weight; weight gain and PI had increased values (p< 0.01) during fall compared to winter irrespective of broiler breed. Ammonia emissions were positively (although weekly) correlated with the ambient relative humidity (r=0.383; p< 0.01), but not with the ambient temperature (r=-0.045; p>0.05). Test of significance of discriminant function analysis did not show a classification based on the studied traits suggesting that they cannot been used as predictor variables. The percentage of correct classification was 52% and it was improved after deletion of highly correlated traits to 57%. The study revealed that broiler's growth was negatively affected by increased microclimatic ammonia concentrations and recommended the analysis of broilers' growth performance parameters data using multivariate discriminant function analysis.
Soliman, Essam S.; Moawed, Sherif A.; Hassan, Rania A.
2017-01-01
Background and Aim: Birds litter contains unutilized nitrogen in the form of uric acid that is converted into ammonia; a fact that does not only affect poultry performance but also has a negative effect on people’s health around the farm and contributes in the environmental degradation. The influence of microclimatic ammonia emissions on Ross and Hubbard broilers reared in different housing systems at two consecutive seasons (fall and winter) was evaluated using a discriminant function analysis to differentiate between Ross and Hubbard breeds. Materials and Methods: A total number of 400 air samples were collected and analyzed for ammonia levels during the experimental period. Data were analyzed using univariate and multivariate statistical methods. Results: Ammonia levels were significantly higher (p< 0.01) in the Ross compared to the Hubbard breed farm, although no significant differences (p>0.05) were found between the two farms in body weight, body weight gain, feed intake, feed conversion ratio, and performance index (PI) of broilers. Body weight; weight gain and PI had increased values (p< 0.01) during fall compared to winter irrespective of broiler breed. Ammonia emissions were positively (although weekly) correlated with the ambient relative humidity (r=0.383; p< 0.01), but not with the ambient temperature (r=−0.045; p>0.05). Test of significance of discriminant function analysis did not show a classification based on the studied traits suggesting that they cannot been used as predictor variables. The percentage of correct classification was 52% and it was improved after deletion of highly correlated traits to 57%. Conclusion: The study revealed that broiler’s growth was negatively affected by increased microclimatic ammonia concentrations and recommended the analysis of broilers’ growth performance parameters data using multivariate discriminant function analysis. PMID:28919677
Molecular dynamics simulations on the local order of liquid and amorphous ZnTe
NASA Astrophysics Data System (ADS)
Rino, José Pedro; Borges, Denilson; Mota, Rita C.; Silva, Maurício A. P.
2008-05-01
Molecular dynamics studies of structural and dynamical correlations of molten and vitreous states under several conditions of density and temperature were performed. We use an effective recently proposed interatomic potential, consisting of two- and three-body covalent interactions which has successfully described the structural, dynamical, and structural phase transformation induced by pressure in ZnTe [D. S. Borges and J. P. Rino, Phys. Rev. B 72, 014107 (2005)]. The two-body term of the interaction potential consists of Coulomb interaction resulting from charge transfer, steric repulsion due to atomic sizes, charge-dipole interaction to include the effect of electronic polarizability of anions, and dipole-dipole (van der Waals) interactions. The three-body covalent term is a modification of the Stillinger-Weber potential. Molecular dynamics simulations in isobaric-isenthalpic ensemble have been performed for systems amounting to 4096 and 64 000 particles. Starting from a crystalline zinc-blende (ZB) structure, the system is initially heated until a very homogeneous liquid is obtained. The vitreous zinc telluride phase is attained by cooling the liquid at sufficiently fast cooling rates, while slower cooling rates lead to a disordered ZB crystalline structure. Two- and three-body correlations for the liquid and vitreous phases are analyzed through pair distribution functions, static structure factors, and bond angle distributions. In particular, the neutron static structure factor for the liquid phase is in very good agreement with both the reported experimental data and first-principles simulations.
Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias
2013-04-05
For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.
McManus, Francis P; Bourdeau, Véronique; Acevedo, Mariana; Lopes-Paciencia, Stéphane; Mignacca, Lian; Lamoliatte, Frédéric; Rojas Pino, John W; Ferbeyre, Gerardo; Thibault, Pierre
2018-05-17
Several regulators of SUMOylation have been previously linked to senescence but most targets of this modification in senescent cells remain unidentified. Using a two-step purification of a modified SUMO3, we profiled the SUMO proteome of senescent cells in a site-specific manner. We identified 25 SUMO sites on 23 proteins that were significantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9's ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation.
Lameira, Adriano R.; Hardus, Madeleine E.; Nouwen, Kim J. J. M.; Topelberg, Eva; Delgado, Roberto A.; Spruijt, Berry M.; Sterck, Elisabeth H. M.; Knott, Cheryl D.; Wich, Serge A.
2013-01-01
Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call – the kiss-squeak – and two variants – hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak’s acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music. PMID:23861981
Lameira, Adriano R; Hardus, Madeleine E; Nouwen, Kim J J M; Topelberg, Eva; Delgado, Roberto A; Spruijt, Berry M; Sterck, Elisabeth H M; Knott, Cheryl D; Wich, Serge A
2013-01-01
Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call - the kiss-squeak - and two variants - hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak's acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music.
Appearance Investment and Everyday Interpersonal Functioning: An Experience Sampling Study
ERIC Educational Resources Information Center
Forand, Nicholas R.; Gunthert, Kathleen C.; German, Ramaris E.; Wenze, Susan J.
2010-01-01
Several studies have shown that body satisfaction affects interpersonal functioning. However, few have studied the specific interpersonal correlates of another important body image dimension, appearance investment--that is, the importance a woman places on appearance. We used an experience sampling design with PDA (personal digital assistant)…
Variational Calculation of the Ground State of Closed-Shell Nuclei Up to $A$ = 40
Lonardoni, Diego; Lovato, Alessandro; Pieper, Steven C.; ...
2017-08-31
Variational calculations of ground-state properties of 4He, 16O and 40Ca are carried out employing realistic phenomenological two- and three-nucleon potentials. The trial wave function includes twoand three-body correlations acting on a product of single-particle determinants. Expectation values are evaluated with a cluster expansion for the spin-isospin dependent correlations considering up to five-body cluster terms. The optimal wave function is obtained by minimizing the energy expectation value over a set of up to 20 parameters by means of a nonlinear optimization library. We present results for the binding energy, charge radius, point density, single-nucleon momentum distribution, charge form factor, and Coulombmore » sum rule. We find that the employed three-nucleon interaction becomes repulsive for A ≥ 16. In 16O the inclusion of such a force provides a better description of the properties of the nucleus. In 40Ca instead, the repulsive behavior of the three-body interaction fails to reproduce experimental data for the charge radius and the charge form factor. We find that the high-momentum region of the momentum distributions, determined by the short-range terms of nuclear correlations, exhibit a universal behavior independent of the particular nucleus. The comparison of the Coulomb sum rules for 4He, 16O, and 40Ca reported in this work will help elucidate in-medium modifications of the nucleon form factors.« less
Pigłowska, Małgorzata; Kostka, Tomasz; Drygas, Wojciech; Jegier, Anna; Leszczyńska, Joanna; Bill-Bielecka, Mirosława; Kwaśniewska, Magdalena
2016-04-27
The purpose of this analysis was to investigate the relationship between body composition, metabolic parameters and endothelial function among physically active healthy middle-aged and older men. Out of 101 asymptomatic men prospectively tracked for traditional cardiovascular risk factors (mean observation period 25.1 years), 55 metabolically healthy individuals who maintained stable leisure time physical activity (LTPA) level throughout the observation and agreed to participate in the body composition assessment were recruited (mean age 60.3 ± 9.9 years). Body composition and raw bioelectrical parameters were measured with bioelectrical impedance analysis (BIA). Microvascular endothelial function was evaluated by means of the reactive hyperemia index (RHI) using Endo-PAT2000 system. Strong correlations were observed between lifetime physical activity (PA), aerobic fitness and most of analyzed body composition parameters. The strongest inverse correlation was found for fat mass (p < 0.01) while positive relationship for fat-free mass (p < 0.01), total body water (p < 0.05 for current aerobic capacity and p < 0.01 for historical PA), body cell mass (p < 0.001), muscle mass (p < 0.001), calcium and potassium (p < 0.01 and p < 0.001 for current aerobic capacity and p < 0.001 and p < 0.01 for historical PA, respectively) and glycogen mass (p < 0.001). Among metabolic parameters, HDL cholesterol (HDL-C) and uric acid were significantly associated with most body composition indicators. Regarding endothelial function, a negative correlation was found for RHI and body mass (p < 0.05) while positive relationship for RHI and body cell mass (p < 0.05), calcium (p < 0.05) and potassium mass (p < 0.05). Impaired endothelial function was observed among 8 subjects. Among bioelectrical parameters, impedance (Z) and resistance (R) normalized for subjects' height were negatively related with body mass, body mass index (BMI) and waist circumference (p < 0.001); while reactance (Xc) normalized for patients' height was negatively related with body mass (p < 0.05). The mean phase angle value was relatively high (8.83 ± 1.22) what reflects a good level of cellularity and cell function. Phase angle was positively related with body mass and BMI (p < 0.05). Both fat mass and muscle mass components are important predictors of metabolic profile. Maintaining regular high PA level and metabolically healthy status through young and middle adulthood may have beneficial influence on body composition parameters and may prevent age-related decrease of fat-free mass and endothelial dysfunction.
The pair correlation function of krypton in the critical region: theory and experiment
NASA Astrophysics Data System (ADS)
Barocchi, F.; Chieux, P.; Fontana, R.; Magli, R.; Meroni, A.; Parola, A.; Reatto, L.; Tau, M.
1997-10-01
We present the results of high-precision measurements of the structure factor S(k) of krypton in the near-critical region of the liquid - vapour phase transition for values of k ranging from 1.5 up to 0953-8984/9/42/003/img15. The experimental results are compared with a theoretical calculation based on the hierarchical reference theory (HRT) with an accurate potential which includes two- and three-body contributions. The theory is based on a new implementation of HRT in which we avoid the use of hard spheres as a reference system. With this soft-core formulation we find a generally good agreement with experiments both at large k, where S(k) probes the short-range correlations, as well as at small k, where critical fluctuations become dominant. Also, for the density derivative of the pair correlation function there is an overall good agreement between theory and experiment.
Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F
2012-09-14
We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
Lavagnino, Luca; Amianto, Federico; D’Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg
2014-01-01
Background: Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Methods: Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Results: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = −0.4; P = 0.02) and interoceptive awareness (r = −0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Conclusion: Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size. PMID:25136302
Lavagnino, Luca; Amianto, Federico; D'Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg
2014-01-01
Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.
Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic.
Yokoyama, Jun'ichi
2014-01-01
After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student's t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case.
Campos, Elaine Cristina de; Peixoto-Souza, Fabiana Sobral; Alves, Viviane Cristina; Basso-Vanelli, Renata; Barbalho-Moulim, Marcela; Laurino-Neto, Rafael Melillo; Costa, Dirceu
2018-03-15
To determine whether weight loss in women with morbid obesity subjected to bariatric surgery alters lung function, respiratory muscle strength, functional capacity and the level of habitual physical activity and to investigate the relationship between these variables and changes in both body composition and anthropometrics. Twenty-four women with morbid obesity were evaluated with regard to lung function, respiratory muscle strength, functional capacity, body composition, anthropometrics and the level of habitual physical activity two weeks prior to and six months after bariatric surgery. Regarding lung function, mean increases of 160 mL in slow vital capacity, 550 mL in expiratory reserve volume, 290 mL in forced vital capacity and 250 mL in forced expiratory volume in the first second as well as a mean reduction of 490 mL in inspiratory capacity were found. Respiratory muscle strength increased by a mean of 10 cmH2O of maximum inspiratory pressure, and a 72-meter longer distance on the Incremental Shuttle Walk Test demonstrated that functional capacity also improved. Significant changes also occurred in anthropometric variables and body composition but not in the level of physical activity detected using the Baecke questionnaire, indicating that the participants remained sedentary. Moreover, correlations were found between the percentages of lean and fat mass and both inspiratory and expiratory reserve volumes. The present data suggest that changes in body composition and anthropometric variables exerted a direct influence on functional capacity and lung function in the women analyzed but exerted no influence on sedentarism, even after accentuated weight loss following bariatric surgery.
Sakuragi, Toshiyuki; Fuller, Judith W
2003-07-01
What kinds of linguistic resources do people utilize when they try to translate metaphors into a foreign language? This investigation of the perception of translatability of body-part metaphors examined the effects of the following factors: the similarity between the human body part and the metaphorical expression (e.g., "eye" in "electric eye") in appearance and function; the frequency of the use of the metaphor in the native language; and the perceived distance between the first language and the target language. The results of a survey of American (n = 151) and Japanese (n = 116) university students showed that both Similarity in Appearance and Similarity in Function correlated positively with Translatability, while the effect of the former was stronger than the latter. Frequency correlated positively with Translatability for the Americans, although the correlation was weaker when the target language is "distant" (Japanese or Chinese) than when the target language is "close" (Spanish). Among the Japanese, Frequency did not correlate with translatability regardless of the target language.
NASA Astrophysics Data System (ADS)
Bera, Sangita; Lekala, Mantile Leslie; Chakrabarti, Barnali; Bhattacharyya, Satadal; Rampho, Gaotsiwe Joel
2017-09-01
'We study the condensate fluctuation and several statistics of weakly interacting attractive Bose gas of 7 Li atoms in harmonic trap. Using exact recursion relation we calculate canonical ensemble partition function and study the thermal evolution of the condensate. As 7 Li condensate is associated with collapse, the number of condensate atom is truly finite and it facilitates to study the condensate in mesoscopic region. Being highly correlated, we utilize the two-body correlated basis function to get the many-body effective potential which is further used to calculate the energy levels. Taking van der Waals interaction as interatomic interaction we calculate several quantities like condensate fraction
A perturbative approach to the redshift space correlation function: beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model whichmore » is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with ≤ 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpc h ≤ s ≤ 180Mpc/ h . Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.« less
Strongdeco: Expansion of analytical, strongly correlated quantum states into a many-body basis
NASA Astrophysics Data System (ADS)
Juliá-Díaz, Bruno; Graß, Tobias
2012-03-01
We provide a Mathematica code for decomposing strongly correlated quantum states described by a first-quantized, analytical wave function into many-body Fock states. Within them, the single-particle occupations refer to the subset of Fock-Darwin functions with no nodes. Such states, commonly appearing in two-dimensional systems subjected to gauge fields, were first discussed in the context of quantum Hall physics and are nowadays very relevant in the field of ultracold quantum gases. As important examples, we explicitly apply our decomposition scheme to the prominent Laughlin and Pfaffian states. This allows for easily calculating the overlap between arbitrary states with these highly correlated test states, and thus provides a useful tool to classify correlated quantum systems. Furthermore, we can directly read off the angular momentum distribution of a state from its decomposition. Finally we make use of our code to calculate the normalization factors for Laughlin's famous quasi-particle/quasi-hole excitations, from which we gain insight into the intriguing fractional behavior of these excitations. Program summaryProgram title: Strongdeco Catalogue identifier: AELA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5475 No. of bytes in distributed program, including test data, etc.: 31 071 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which Mathematica can be installed Operating system: Linux, Windows, Mac Classification: 2.9 Nature of problem: Analysis of strongly correlated quantum states. Solution method: The program makes use of the tools developed in Mathematica to deal with multivariate polynomials to decompose analytical strongly correlated states of bosons and fermions into a standard many-body basis. Operations with polynomials, determinants and permanents are the basic tools. Running time: The distributed notebook takes a couple of minutes to run.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less
Osteopenia and the physical function in Japanese patients with schizophrenia.
Uchida, Satoru; Ichinose, Tsuyoshi; Iizuka, Yoichi; Okamura, Koichi; Shitara, Hitoshi; Yamazaki, Manabu; Takagishi, Kenji; Iizuka, Haku
2017-10-27
We evaluated the state of osteopenia and the physical function in 121 schizophrenic patients. These factors were worse in the inpatient group than in the outpatient group. The age, sex, body mass index (BMI), and physical function were correlated to the state of osteopenia. Physicians should consider the risk of osteopenia in elderly female psychiatric patients with low BMI. Information about the actual state of osteopenia in patients with schizophrenia is limited. In the present study, we evaluated the factors related to osteopenia and patient's physical function and compared these factors between inpatients and outpatients. A total of 121 schizophrenic patients were included in the present study. We divided the patients into two groups according to the therapeutic form. We collected data on their age, sex, body mass index (BMI), bone mineral density (BMD) in the lumbar spine and proximal femur, serum bone metabolic markers, risk of fracture, and physical function. The number of fractured vertebrae, risk of fracture, serum concentration of tartrate-resistant acid phosphatase 5b (TRACP-5b), and score of locomo25 were significantly higher and the BMI and BMD in the lumbar spine and proximal femur significantly lower in the inpatient group than in the outpatient group. A multiple regression analysis showed that the age, sex, BMI, the number of fractured vertebrae, and score of locomo 25 were correlated with the BMD in the lumbar spine and proximal femur. Neither the therapeutic form nor any bone metabolic markers were correlated with the BMD. The inpatient group had a lower average BMI, BMD, and physical function than the outpatient group. However, a multiple regression analysis showed that the therapeutic form was not correlated with the BMD. These findings suggest that physicians should consider elderly female schizophrenic patients with a low BMI to be at risk of developing osteopenia.
Female sexual function and the clitoral complex using pelvic MRI assessment.
Vaccaro, Christine M; Fellner, Angela N; Pauls, Rachel N
2014-09-01
To report basic measurements of clitoral anatomy, and explore potential relationships between the clitoral complex and female sexual function using MRI assessment. In this retrospective descriptive study, 20 sexually active women (≥18 years) who had a recent pelvic MRI for various gynecologic concerns were invited to participate. Outcome measures included demographic data, medical and sexual history, quality of life questionnaires: Female Sexual Function Index (FSFI), Body Exposure during Sexual Activities Questionnaire (BESAQ), and Short Form Quality of Life Questionnaire (SF-12). These data were then compared to detailed clitoral MRI measurements and analyzed using the Pearson correlation and Chi square test. FSFI domains of desire, arousal, lubrication, and orgasm were inversely correlated with clitoral size (p=0.01-0.04), as were SF-12 physical composite scores (p=0.003), suggesting improved sexual function and physical health in women with smaller clitoral structures (specifically the clitoral body and crus). Sexual function was improved in women with a smaller-sized clitoris, specifically the clitoral body and crus. Published by Elsevier Ireland Ltd.
Sexual Anatomy and Function in Women With and Without Genital Mutilation: A Cross-Sectional Study.
Abdulcadir, Jasmine; Botsikas, Diomidis; Bolmont, Mylène; Bilancioni, Aline; Djema, Dahila Amal; Bianchi Demicheli, Francesco; Yaron, Michal; Petignat, Patrick
2016-02-01
Female genital mutilation (FGM), the partial or total removal of the external genitalia for non-medical reasons, can affect female sexuality. However, only few studies are available, and these have significant methodologic limitations. To understand the impact of FGM on the anatomy of the clitoris and bulbs using magnetic resonance imaging and on sexuality using psychometric instruments and to study whether differences in anatomy after FGM correlate with differences in sexual function, desire, and body image. A cross-sectional study on sexual function and sexual anatomy was performed in women with and without FGM. Fifteen women with FGM involving cutting of the clitoris and 15 uncut women as a control group matched by age and parity were prospectively recruited. Participants underwent pelvic magnetic resonance imaging with vaginal opacification by ultrasound gel and completed validated questionnaires on desire (Sexual Desire Inventory), body image (Questionnaire d'Image Corporelle [Body Image Satisfaction Scale]), and sexual function (Female Sexual Function Index). Primary outcomes were clitoral and bulbar measurements on magnetic resonance images. Secondary outcomes were sexual function, desire, and body image scores. Women with FGM did not have significantly decreased clitoral glans width and body length but did have significantly smaller volume of the clitoris plus bulbs. They scored significantly lower on sexual function and desire than women without FGM. They did not score lower on Female Sexual Function Index sub-scores for orgasm, desire, and satisfaction and on the Questionnaire d'Image Corporelle but did report significantly more dyspareunia. A larger total volume of clitoris and bulbs did not correlate with higher Female Sexual Function Index and Sexual Desire Inventory scores in women with FGM compared with uncut women who had larger total volume that correlated with higher scores. Women with FGM have sexual erectile tissues for sexual arousal, orgasm, and pleasure. Women with sexual dysfunction should be appropriately counseled and treated. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2016-09-01
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.
Neuronal correlates of reduced memory performance in overweight subjects.
Stingl, Krunoslav T; Kullmann, Stephanie; Ketterer, Caroline; Heni, Martin; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert
2012-03-01
There is growing evidence that excessive body weight correlates with impaired cognitive performance like executive function, attention and memory. In our study, we applied a visual working memory task to quantify associations between body weight and executive function. In total, 34 lean (BMI 22±2.1 kg/m(2)) and 34 obese (BMI 30.4±3.2 kg/m(2)) subjects were included. Magnetic brain activity and behavioral responses were recorded during a one-back visual memory task with food and non-food pictures, which were matched for color, size and complexity. Behavioral responses (reaction time and accuracy) were reduced in obese subjects independent of the stimulus category. Neuronal activity at the source level showed a positive correlation between the right dorsolateral prefrontal cortex (DLPFC) activity and BMI only for the food category. In addition, a negative correlation between BMI and neuronal activity was observed in the occipital area for both categories. Therefore we conclude that increased body weight is associated with reduced task performance and specific neuronal changes. This altered activity is probably related to executive function as well as encoding and retrieval of information. Copyright © 2011 Elsevier Inc. All rights reserved.
Weingarden, Hilary; Renshaw, Keith D; Davidson, Eliza; Wilhelm, Sabine
2017-07-01
Body Dysmorphic Disorder (BDD) is characterized by a preoccupation with a perceived flaw in appearance and repetitive avoidance behaviors. BDD involves severe psychosocial outcomes (e.g., depression, suicidality, functional impairment). Identifying correlates of BDD symptoms and outcomes can inform treatment. Shame, a painful emotion felt in response to critical self-judgment, may be one key correlate. However, research on shame in BDD is scarce and previous studies have not distinguished general shame from body shame. This study examines the relative relationships between body shame and general shame with body dysmorphic phenomenology and psychosocial outcomes. Participants ( N = 184) were recruited online via BDD organizations and completed a survey. Path analysis was used to examine associations between body and general shame with 1) body dysmorphic phenomenology and 2) depression severity, suicide risk, and functional impairment. Both types of shame were differentially related to outcomes. Body shame was more strongly related to phenomenology, whereas general shame was more strongly related to psychosocial outcomes. Thus, it may be important for BDD treatment to focus on reducing both general and body shame. Further research should evaluate whether current treatments adequately address and reduce general and body shame, and whether addressing shame promotes better treatment outcomes.
Linking pain and the body: neural correlates of visually induced analgesia.
Longo, Matthew R; Iannetti, Gian Domenico; Mancini, Flavia; Driver, Jon; Haggard, Patrick
2012-02-22
The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.
Smith, J. C.; Pribram-Jones, A.; Burke, K.
2016-06-14
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J. C.; Pribram-Jones, A.; Burke, K.
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
Kinetic energy as functional of the correlation hole
NASA Astrophysics Data System (ADS)
Nalewajski, Roman F.
2003-01-01
Using the marginal decomposition of the many-body probability distribution the electronic kinetic energy is expressed as the functional of the electron density and correlation hole. The analysis covers both the molecule as a whole and its constituent subsystems. The importance of the Fisher information for locality is emphasized.
Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M
2018-02-01
Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.
Effective equilibrium states in mixtures of active particles driven by colored noise
NASA Astrophysics Data System (ADS)
Wittmann, René; Brader, J. M.; Sharma, A.; Marconi, U. Marini Bettolo
2018-01-01
We consider the steady-state behavior of pairs of active particles having different persistence times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the particles are driven by colored noises with exponential correlation functions whose intensities and correlation times vary from species to species. By extending Fox's theory to many components, we derive by functional calculus an approximate Fokker-Planck equation for the configurational distribution function of the system. After illustrating the predicted distribution in the solvable case of two particles interacting via a harmonic potential, we consider systems of particles repelling through inverse power-law potentials. We compare the analytic predictions to computer simulations for such soft-repulsive interactions in one dimension and show that at linear order in the persistence times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body phenomena, such as demixing and depletion, by means of effective pair potentials.
Ni, Pengsheng; McDonough, Christine M; Jette, Alan M; Bogusz, Kara; Marfeo, Elizabeth E; Rasch, Elizabeth K; Brandt, Diane E; Meterko, Mark; Haley, Stephen M; Chan, Leighton
2013-09-01
To develop and test an instrument to assess physical function for Social Security Administration (SSA) disability programs, the SSA-Physical Function (SSA-PF) instrument. Item response theory (IRT) analyses were used to (1) create a calibrated item bank for each of the factors identified in prior factor analyses, (2) assess the fit of the items within each scale, (3) develop separate computer-adaptive testing (CAT) instruments for each scale, and (4) conduct initial psychometric testing. Cross-sectional data collection; IRT analyses; CAT simulation. Telephone and Internet survey. Two samples: SSA claimants (n=1017) and adults from the U.S. general population (n=999). None. Model fit statistics, correlation, and reliability coefficients. IRT analyses resulted in 5 unidimensional SSA-PF scales: Changing & Maintaining Body Position, Whole Body Mobility, Upper Body Function, Upper Extremity Fine Motor, and Wheelchair Mobility for a total of 102 items. High CAT accuracy was demonstrated by strong correlations between simulated CAT scores and those from the full item banks. On comparing the simulated CATs with the full item banks, very little loss of reliability or precision was noted, except at the lower and upper ranges of each scale. No difference in response patterns by age or sex was noted. The distributions of claimant scores were shifted to the lower end of each scale compared with those of a sample of U.S. adults. The SSA-PF instrument contributes important new methodology for measuring the physical function of adults applying to the SSA disability programs. Initial evaluation revealed that the SSA-PF instrument achieved considerable breadth of coverage in each content domain and demonstrated noteworthy psychometric properties. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Skin picking disorder with co-occurring body dysmorphic disorder.
Grant, Jon E; Redden, Sarah A; Leppink, Eric W; Odlaug, Brian L
2015-09-01
There is clinical overlap between skin picking disorder (SPD) and body dysmorphic disorder (BDD), but little research has examined clinical and cognitive correlates of the two disorders when they co-occur. Of 55 participants with SPD recruited for a neurocognitive study and two pharmacological studies, 16 (29.1%) had co-occurring BDD. SPD participants with and without BDD were compared to each other and to 40 healthy volunteers on measures of symptom severity, social functioning, and cognitive assessments using the Stop-signal task (assessing response impulsivity) and the Intra-dimensional/Extra-dimensional Set Shift task (assessing cognitive flexibility). Individuals with SPD and BDD exhibited significantly worse picking, significantly worse overall psychosocial functioning, and significantly greater dysfunction on aspects of cognitive flexibility. These results indicate that when SPD co-occurs with BDD unique clinical and cognitive aspects of SPD may be more pronounced. Future work should explore possible subgroups in SPD and whether these predict different treatment outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
de Oliveira, Carlos Antonio Lopes; Ribeiro, Ricardo Pereira; Yoshida, Grazyella Massako; Kunita, Natali Miwa; Rizzato, Gabriel Soriani; de Oliveira, Sheila Nogueira; Dos Santos, Alexandra Inês; Nguyen, Nguyen Hong
2016-11-01
Body shape is a commercial trait of great interest as it impacts profit and productivity of aquaculture enterprises. In the present study, we examined correlated changes in two measures of body shape (depth to length ratio, DL-R and ellipticity of mid sagittal plane, EL-H) from a selection program for high daily weight gain in a Nile tilapia population reared in freshwater cages in Brazil. Genetic parameters for body shape and its genetic association with growth traits (body weight and daily gain) were also estimated from 8,725 individuals with growth performance recorded over five generations from 2008 to 2013. Mixed model analysis showed that the selection program resulted in substantial improvement in growth performance (about 4 % genetic gain per generation or per year) and also brought about trivial changes in body shape. The heritabilities ranged from 0.470 to 0.564 for growth traits and 0.180 to 0.289 for body shape. The common family effects were low for all traits studied, accounting for only 3-11 % of total phenotypic variance. The genetic correlations between body shape and growth traits were weak, i.e., -0.385 between EL-H and growth traits and 0.28 between DL-R and body weight or daily gain. Strong and negative genetic association was found between the two body shape traits (rg = --0.955). Harvest body weight and daily gain are essentially the same traits, as indicated by the close to one genetic correlations between the two characters. Our results demonstrated that the selection process to increase growth rate had small, but slowly constant effect in body shape traits; and in the long term, the fish would have become rotund.
Dependence of two-proton radioactivity on nuclear pairing models
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro
2017-10-01
Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.
Effect of added mass on treadmill performance and pulmonary function.
Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R
2015-04-01
Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.
The Relationship Between Body Image and Sexual Function in Middle-Aged Women.
Afshari, Poorandokht; Houshyar, Zeinab; Javadifar, Nahid; Pourmotahari, Fatemeh; Jorfi, Maryam
2016-11-01
An individual's social and marital function, interpersonal relationships, and quality of life may, sometimes be affected by negative body image. This study is aimed at determining the relationship between body image and sexual function in middle-aged women. In this cross-sectional study, 437 middle-aged women, who were referred to various public healthcare centers in Ahvaz, Iran during 2014-2015, were selected. The Female Sexual Function Index (FSFI) and Body Shape Questionnaire (BSQ) were used for data collection. Chi-square, one-way analysis of variance, Spearman's correlation test, and logistic regression analysis were performed for statistical analysis. Approximately 58% of the participants expressed satisfaction with their body image, 35% were mildly dissatisfied, and 7% were moderately dissatisfied with their body image. Body image had a significant negative relationship with sexual satisfaction and sexual function (p=0.005). Furthermore, there was a significant relationship between body image and sexual desire (p=0.022), pain (p=0.001), sexual arousal (p<0.0005), sexual orgasm (p=0.001), and sexual satisfaction (p<0.0005). As the results indicated, body image is an important aspect of sexual health. In this study, women with a positive body image had higher sexual function valuation, compared to women with a negative body image. Also, body shape satisfaction was a predictor of sexual function.
Four-body interaction energy for compressed solid krypton from quantum theory.
Tian, Chunling; Wu, Na; Liu, Fusheng; Saxena, Surendra K; Zheng, Xingrong
2012-07-28
The importance of the four-body contribution in compressed solid krypton was first evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock and correlation parts of the four-body interaction were accurately determined from the ambient conditions up to eightfold volume compression. We find that the four-body interaction energy is negative at compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the compression, the four-body contribution becomes repulsive and significantly cancels the over-softening effects of the three-body potential. The obtained equation of state (EOS) was compared with the experiments and the density-functional theory calculations. It shows that combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with EOS measurements throughout the whole experimental range 0-130 GPa, and extends the prediction to 300 GPa.
Stochastic evaluation of second-order many-body perturbation energies.
Willow, Soohaeng Yoo; Kim, Kwang S; Hirata, So
2012-11-28
With the aid of the Laplace transform, the canonical expression of the second-order many-body perturbation correction to an electronic energy is converted into the sum of two 13-dimensional integrals, the 12-dimensional parts of which are evaluated by Monte Carlo integration. Weight functions are identified that are analytically normalizable, are finite and non-negative everywhere, and share the same singularities as the integrands. They thus generate appropriate distributions of four-electron walkers via the Metropolis algorithm, yielding correlation energies of small molecules within a few mE(h) of the correct values after 10(8) Monte Carlo steps. This algorithm does away with the integral transformation as the hotspot of the usual algorithms, has a far superior size dependence of cost, does not suffer from the sign problem of some quantum Monte Carlo methods, and potentially easily parallelizable and extensible to other more complex electron-correlation theories.
Edgeworth streaming model for redshift space distortions
NASA Astrophysics Data System (ADS)
Uhlemann, Cora; Kopp, Michael; Haugg, Thomas
2015-09-01
We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N -body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc /h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc /h . To predict the scale-dependent functions entering the streaming model we employ convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian radius, we extend CLPT to the coarse-grained dust model and consider two different smoothing approaches operating in Eulerian and Lagrangian space, respectively. The coarse graining in Eulerian space features modified fluid dynamics different from dust while the coarse graining in Lagrangian space is performed in the initial conditions with subsequent single-streaming dust dynamics, implemented by smoothing the initial power spectrum in the spirit of the truncated Zel'dovich approximation. Finally, we compare the predictions of the different coarse-grained models for the streaming model ingredients to N -body measurements and comment on the proper choice of both the tracer distribution function and the smoothing scale. Since the perturbative methods we considered are not yet accurate enough on small scales, the GSM is sufficient when applied to perturbation theory.
Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.
Egan, Colin K; Paesani, Francesco
2018-04-10
The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.
Lee, Jong Hwa; Kim, Sang Beom; Lee, Kyeong Woo; Lee, Sook Joung; Park, Hyuntae; Kim, Dong Won
2017-09-01
The use of a whole-body vibration (WBV) therapy has recently been applied and investigated as a rehabilitation method for subacute stroke patients. To evaluate the effects of a WBV therapy on recovery of balance in subacute stroke patients who were unable to gain sitting balance. The conventional rehabilitation group (CG) received conventional physical therapy, including sitting balance training by a physical therapist, for 30 min a one session, for twice a day for five days a week for two weeks. The whole-body vibration group (VG) received one session of conventional physical therapy, and received WBV therapy instead of conventional physical therapy for 30 min a day for five days a week for two weeks. There were 15 patients in the CG and 15 patients in the VG who completed the two-week therapy. After the two-week therapy, both groups showed functional improvement. Patients in the VG improved functional ambulation categories, Berg balance scale, trunk impairment scale scores. But, no statistically significant correlations between the therapeutic methods and outcomes were observed in either group. Our results suggest that WBV therapy led to improvement of the recovery in balance recovery for subacute stroke patients. Because the WBV therapy was as effective as conventional physical therapy, we can consider a WBV therapy as a clinical method to improve the sitting balance of subacute stoke patients.
Counter-ions at single charged wall: Sum rules.
Samaj, Ladislav
2013-09-01
For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.
Hampton, Paul M
2018-02-01
As body size increases, some predators eliminate small prey from their diet exhibiting an ontogenetic shift toward larger prey. In contrast, some predators show a telescoping pattern of prey size in which both large and small prey are consumed with increasing predator size. To explore a functional explanation for the two feeding patterns, I examined feeding effort as both handling time and number of upper jaw movements during ingestion of fish of consistent size. I used a range of body sizes from two snake species that exhibit ontogenetic shifts in prey size (Nerodia fasciata and N. rhombifer) and a species that exhibits telescoping prey size with increased body size (Thamnophis proximus). For the two Nerodia species, individuals with small or large heads exhibited greater difficulty in feeding effort compared to snakes of intermediate size. However, for T. proximus measures of feeding effort were negatively correlated with head length and snout-vent length (SVL). These data indicate that ontogenetic shifters of prey size develop trophic morphology large enough that feeding effort increases for disproportionately small prey. I also compared changes in body size among the two diet strategies for active foraging snake species using data gleaned from the literature to determine if increased change in body size and thereby feeding morphology is observable in snakes regardless of prey type or foraging habitat. Of the 30 species sampled from literature, snakes that exhibit ontogenetic shifts in prey size have a greater magnitude of change in SVL than species that have telescoping prey size patterns. Based upon the results of the two data sets above, I conclude that ontogenetic shifts away from small prey occur in snakes due, in part, to growth of body size and feeding structures beyond what is efficient for handling small prey. Copyright © 2017. Published by Elsevier GmbH.
Hunt, Gene; Lockwood, Rowan; Swaddle, John P.; Horne, David J.
2017-01-01
Assessing the long-term macroevolutionary consequences of sexual selection has been hampered by the difficulty of studying this process in the fossil record. Cytheroid ostracodes offer an excellent system to explore sexual selection in the fossil record because their readily fossilized carapaces are sexually dimorphic. Specifically, males are relatively more elongate than females in this superfamily. This sexual shape difference is thought to arise so that males carapaces can accommodate their very large copulatory apparatus, which can account for up to one-third of body volume. Here we test this widely held explanation for sexual dimorphism in cytheroid ostracodes by correlating investment in male genitalia, a trait in which sexual selection is seen as the main evolutionary driver, with sexual dimorphism of carapace in the genus Cyprideis. We analyzed specimens collected in the field (C. salebrosa, USA; C. torosa, UK) and from collections of the National Museum of Natural History, Washington, DC (C. mexicana). We digitized valve outlines in lateral view to obtain measures of size (valve area) and shape (elongation, measured as length to height ratio), and obtained several dimensions from two components of the hemipenis: the muscular basal capsule, which functions as a sperm pump, and the section that includes the intromittent organ (terminal extension). In addition to the assessment of this primary sexual trait, we also quantified two dimensions of the male secondary sexual trait—where the transformed right walking leg functions as a clasping organ during mating. We also measured linear dimensions from four limbs as indicators of overall (soft-part) body size, and assessed allometry of the soft anatomy. We observed significant correlations in males between valve size, but not elongation, and distinct structural parts of the hemipenis, even after accounting for their shared correlation with overall body size. We also found weak but significant positive correlation between valve elongation and the degree of sexual dimorphism of the walking leg, but only in C. torosa. The correlation between the hemipenis parts, especially basal capsule size and male valve size dimorphism suggests that sexual selection on sperm size, quantity, and/or efficiency of transfer may drive sexual size dimorphism in these species, although we cannot exclude other aspects of sexual and natural selection. PMID:28678866
Katulska, Katarzyna; Milewska, Agata; Wykretowicz, Mateusz; Krauze, Tomasz; Przymuszala, Dagmara; Piskorski, Jaroslaw; Stajgis, Marek; Guzik, Przemyslaw; Wysocki, Henryk; Wykrętowicz, Andrzej
2013-10-01
Left atrial (LA) size is an important predictor of stroke, death, and atrial fibrillation. It was demonstrated recently that body fat, arterial stiffness and renal functions are associated with LA diameter. However, data are lacking for comprehensive assessments of all these risk factors in a single population. Therefore, the aim of the present study was to investigate the association between LA size and different fat descriptors, central hemodynamics, arterial stiffness, and renal function in healthy subjects. To this end, body fat percentage, abdominal, subcutaneous fat, and general descriptors of body fat were estimated in 162 healthy subjects (mean age 51 years). Echocardiography was performed to assess LA diameter. Arterial stiffness and peripheral and central hemodynamics were estimated by digital volume pulse analysis and pulse wave analysis. Glomerular filtration rate was estimated by MDRD formula. There were significant (p < 0.05) bivariate correlations between LA diameter and all descriptors of body fat (except subcutaneous fat). Arterial stiffness and estimated glomerular filtration rate (eGFR) were also significantly correlated with LA size. Multiple regression analysis including all significant confounders, such as sex, mean arterial pressure, arterial stiffness, eGFR and body fat descriptors, explained 35% of variance in LA diameter. In conclusion, the present study reveals significant, independent relationships between body fat, arterial stiffness, and LA size.
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
Feigin, V L; Barker-Collo, S; Parag, V; Senior, H; Lawes, C M M; Ratnasabapathy, Y; Glen, E
2010-11-02
Studying long-term stroke outcomes including body functioning (neurologic and neuropsychological impairments) and activity limitations and participation is essential for long-term evidence-based rehabilitation and service planning, resource allocation, and improving health outcomes in stroke. However, reliable data to address these issues is lacking. This study (February 2007-December 2008) sourced its participants from the population-based incidence study conducted in Auckland in 2002-2003. Participants completed structured self-administered questionnaires, and a face-to-face interview including a battery of neuropsychological tests. Logistic regression analysis was used to analyze associations between and within functional outcomes and their potential predictors. Of 418 5-year stroke survivors, two-thirds had good functional outcome in terms of neurologic impairment and disability (defined as modified Rankin Score <3), 22.5% had cognitive impairment indicative of dementia, 20% had experienced a recurrent stroke, almost 15% were institutionalized, and 29.6% had symptoms suggesting depression. Highly significant correlations were found between and within various measurements of body functioning (especially neuropsychological impairments), activity, and participation. Age, dependency, and depression were independently associated with most outcomes analyzed. The strong associations between neuropsychological impairment and other functional outcomes and across various measurements of body functioning, activity, and participation justify utilizing a multidisciplinary approach to studying and managing long-term stroke outcomes. Observed gender and ethnic differences in some important stroke outcomes warrant further investigations.
Bruegger, Lukas; Studer, Peter; Schmid, Stefan W; Pestel, Gunther; Reichen, Juerg; Seiler, Christian; Candinas, Daniel; Inderbitzin, Daniel
2008-01-01
Non-invasive pulse spectrophotometry to measure indocyanine green (ICG) elimination correlates well with the conventional invasive ICG clearance test. Nevertheless, the precision of this method remains unclear for any application, including small-for-size liver remnants. We therefore measured ICG plasma disappearance rate (PDR) during the anhepatic phase of orthotopic liver transplantation using pulse spectrophotometry. Measurements were done in 24 patients. The median PDR after exclusion of two outliers and two patients with inconstant signal was 1.55%/min (95% confidence interval [CI]=0.8-2.2). No correlation with patient age, gender, body mass, blood loss, administration of fresh frozen plasma, norepinephrine dose, postoperative albumin (serum), or difference in pre and post transplant body weight was detected. In conclusion, we found an ICG-PDR different from zero in the anhepatic phase, an overestimation that may arise in particular from a redistribution into the interstitial space. If ICG pulse spectrophotometry is used to measure functional hepatic reserve, the verified average difference from zero (1.55%/min) determined in our study needs to be taken into account.
Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic
YOKOYAMA, Jun’ichi
2014-01-01
After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student’s t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case. PMID:25504231
Evolutionary fitness as a function of pubertal age in 22 subsistence-based traditional societies
2011-01-01
Context The age of puberty has fallen over the past 130 years in industrialized, western countries, and this fall is widely referred to as the secular trend for earlier puberty. The current study was undertaken to test two evolutionary theories: (a) the reproductive system maximizes the number of offspring in response to positive environmental cues in terms of energy balance, and (b) early puberty is a trade-off response for high mortality rate and reduced resource availability. Methods Using a sample of 22 natural-fertility societies of mostly tropical foragers, horticulturalists, and pastoralists from Africa, South America, Australia, and Southeastern Asia, this study compares indices of adolescence growth and menarche with those of fertility fitness in these non-industrial, traditional societies. Results The average age at menarche correlated with the first reproduction, but did not correlate with the total fertility rate TFR or reproductive fitness. The age at menarche correlated negatively with their average adult body mass, and the average adult body weight positively correlated with reproductive fitness. Survivorship did not correlate with the age at menarche or age indices of the adolescent growth spurt. The population density correlated positively with the age at first reproduction, but not with menarche age, TFR, or reproductive fitness. Conclusions Based on our analyses, we reject the working hypotheses that reproductive fitness is enhanced in societies with early puberty or that early menarche is an adaptive response to greater mortality risk. Whereas body mass is a measure of resources is tightly associated with fitness, the age of menarche is not. PMID:21860629
Song, Xiaowen; Huang, Fei; Liu, Juanjuan; Li, Chengjun; Gao, Shanshan; Wu, Wei; Zhai, Mengfan; Yu, Xiaojuan; Xiong, Wenfeng; Xie, Jia
2017-01-01
Abstract Cytosine DNA methylation is a vital epigenetic regulator of eukaryotic development. Whether this epigenetic modification occurs in Tribolium castaneum has been controversial, its distribution pattern and functions have not been established. Here, using bisulphite sequencing (BS-Seq), we confirmed the existence of DNA methylation and described the methylation profiles of the four life stages of T. castaneum. In the T. castaneum genome, both symmetrical CpG and non-CpG methylcytosines were observed. Symmetrical CpG methylation, which was catalysed by DNMT1 and occupied a small part in T. castaneum methylome, was primarily enriched in gene bodies and was positively correlated with gene expression levels. Asymmetrical non-CpG methylation, which was predominant in the methylome, was strongly concentrated in intergenic regions and introns but absent from exons. Gene body methylation was negatively correlated with gene expression levels. The distribution pattern and functions of this type of methylation were similar only to the methylome of Drosophila melanogaster, which further supports the existence of a novel methyltransferase in the two species responsible for this type of methylation. This first life-cycle methylome of T. castaneum reveals a novel and unique methylation pattern, which will contribute to the further understanding of the variety and functions of DNA methylation in eukaryotes. PMID:28449092
de Campos, Elaine Cristina; Peixoto-Souza, Fabiana Sobral; Alves, Viviane Cristina; Basso-Vanelli, Renata; Barbalho-Moulim, Marcela; Laurino-Neto, Rafael Melillo; Costa, Dirceu
2018-01-01
OBJECTIVE: To determine whether weight loss in women with morbid obesity subjected to bariatric surgery alters lung function, respiratory muscle strength, functional capacity and the level of habitual physical activity and to investigate the relationship between these variables and changes in both body composition and anthropometrics. METHODS: Twenty-four women with morbid obesity were evaluated with regard to lung function, respiratory muscle strength, functional capacity, body composition, anthropometrics and the level of habitual physical activity two weeks prior to and six months after bariatric surgery. RESULTS: Regarding lung function, mean increases of 160 mL in slow vital capacity, 550 mL in expiratory reserve volume, 290 mL in forced vital capacity and 250 mL in forced expiratory volume in the first second as well as a mean reduction of 490 mL in inspiratory capacity were found. Respiratory muscle strength increased by a mean of 10 cmH2O of maximum inspiratory pressure, and a 72-meter longer distance on the Incremental Shuttle Walk Test demonstrated that functional capacity also improved. Significant changes also occurred in anthropometric variables and body composition but not in the level of physical activity detected using the Baecke questionnaire, indicating that the participants remained sedentary. Moreover, correlations were found between the percentages of lean and fat mass and both inspiratory and expiratory reserve volumes. CONCLUSION: The present data suggest that changes in body composition and anthropometric variables exerted a direct influence on functional capacity and lung function in the women analyzed but exerted no influence on sedentarism, even after accentuated weight loss following bariatric surgery. PMID:29561930
Nuclear structure properties of the double-charge-exchange transition amplitudes
NASA Astrophysics Data System (ADS)
Auerbach, N.; Zheng, D. C.
1992-03-01
Nuclear structure aspects of the double-charge-exchange (DCX) reaction on nuclei are studied. Using a variety of DCX-type two-body transition operators, we explore the influence of two-body correlations among valence nucleons on the DCX transition amplitudes to the isobaric analog state and to other nonanalog J π=0+ states. In particular, the question of the spin dependence and of the range of the DCX transition operators is explored and the behavior of the transition amplitudes as a function of the valence nucleon number is studied. It is shown that the two-amplitude DCX formula derived by Auerbach, Gibbs, and Piasetzky for a single j n configuration holds also in some cases when configuration mixing is strong. DCX-type transitions from the Ca and Ni isotopes to the Ti and Zn isotopes and from 56Fe to 56Ni are the subject of this study.
Brain evolution and development: adaptation, allometry and constraint
Barton, Robert A.
2016-01-01
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025
"When I feel the worst pain, I look like shit" - body image concerns in persistent pain.
Sündermann, Oliver; Rydberg, Karin; Linder, Ludwig; Linton, Steven James
2018-04-17
Persistent pain is a pervasive condition that is often associated with a distorted body image. Most research into pain and body image investigated neural or physiological correlates (e.g. phantom limb pain), and much less is known about the psychological experience of body image changes in response to pain such as appearance concerns. The aim was to examine body image concerns in people with persistent pain, in particular appearance concerns and related coping behaviours and appearance-related emotions such as anger and shame. Design was cross-sectional and data was collected through in-depth semi-structured interviews with people suffering from persistent musculoskeletal pain (n=7; six females; age=19-56), and analysed with inductive thematic analysis (TA). Two main themes were identified: "Relationship to the painful body" and "Dissatisfaction with the body", each containing three subthemes, along with the side-theme "Appearance concerns affected by pain and mood". All participants reported appearance concerns, predominantly about their weight and related coping behaviours such as avoidance of mirrors, exercising or dieting and pain-induced mood changes that were associated with a negative body image. People with persistent pain report appearance concerns, often related to pain-induced negative mood changes, and reduced functioning. It remains unclear to what extent attitudes towards the body change over time in accordance with pain. A wider concept of body image is required, including the perception of reduced functioning, related appraisals (e.g. "I look weak and old") and appearance investment.
Cuesta, D; Varela, M; Miró, P; Galdós, P; Abásolo, D; Hornero, R; Aboy, M
2007-07-01
Body temperature is a classical diagnostic tool for a number of diseases. However, it is usually employed as a plain binary classification function (febrile or not febrile), and therefore its diagnostic power has not been fully developed. In this paper, we describe how body temperature regularity can be used for diagnosis. Our proposed methodology is based on obtaining accurate long-term temperature recordings at high sampling frequencies and analyzing the temperature signal using a regularity metric (approximate entropy). In this study, we assessed our methodology using temperature registers acquired from patients with multiple organ failure admitted to an intensive care unit. Our results indicate there is a correlation between the patient's condition and the regularity of the body temperature. This finding enabled us to design a classifier for two outcomes (survival or death) and test it on a dataset including 36 subjects. The classifier achieved an accuracy of 72%.
Probing the triplet correlation function in liquid water by experiments and molecular simulations.
Dhabal, Debdas; Wikfeldt, Kjartan Thor; Skinner, Lawrie B; Chakravarty, Charusita; Kashyap, Hemant K
2017-01-25
Despite very significant developments in scattering experiments like X-ray and neutron diffraction, it has been challenging to elucidate the nature of tetrahedral molecular configurations in liquid water. A key question is whether the pair correlation functions, which can be obtained from scattering experiments, are sufficient to describe the tetrahedral ordering of water molecules. In our previous study (Dhabal et al., J. Chem. Phys., 2014, 141, 174504), using data-sets generated from reverse Monte Carlo and molecular dynamics simulations, we showed that the triplet correlation functions contain important information on the tetrahedrality of water in the liquid state. In the present study, X-ray scattering experiments and molecular dynamics (MD) simulations are used to link the isothermal pressure derivative of the structure factor with the triplet correlation functions for water. Triplet functions are determined for water up to 3.3 kbar at 298 K to display the effect of pressure on the water structure. The results suggest that triplet functions (H[combining tilde](q)) obtained using a rigid-body TIP4P/2005 water model are consistent with the experimental results. The triplet functions obtained in experiment as well as in simulations evince that in the case of tetrahedral liquids, exertion of higher pressure leads to a better agreement with the Kirkwood superposition approximation (KSA). We further validate this observation using the triplet correlation functions (g (3) (r,s,t)) calculated directly from simulation trajectory, revealing that both H[combining tilde](q) in q-space and g (3) (r,s,t) in real-space contain similar information on the tetrahedrality of liquids. This study demonstrates that the structure factor, even though it has only pair correlation information of the liquid structure, can shed light on three-body correlations in liquid water through its isothermal pressure derivative term.
Guclu, Metin; Ali, Asuman; Eroglu, Derya Ustun; Büyükuysal, Sema Oral; Cander, Soner; Ocak, Nihal
2016-02-01
Our aim was to assess serum levels of the soluble receptor for advanced glycation end products (sRAGE) and to examine their association with anthropometric and metabolic parameters in patients with prediabetes and obese controls. The two study groups were composed of 42 patients with prediabetes and diabetic neuropathy and 42 age-, gender-, body weight (BW)-, and body mass index (BMI)-matched obese adults as the control group. Prediabetes was diagnosed by the following criteria issued by the American Diabetes Association: impaired fasting glucose [fasting plasma glucose (FPG) level of 100-125 mg/dL], impaired glucose tolerance (2 hr plasma glucose level of 140-199 mg/dL after a 75 grams oral glucose challenge), or a glycated hemoglobin (HbA1C) level of 5.7%-6.4%. There were no differences between the groups in terms of age, gender distribution, BW, or BMI. Despite these similarities, patients with prediabetes had higher FPG, HbA1c, and 2-hr postchallenge glucose levels, higher systolic and diastolic blood pressure, and larger waist and hip circumferences compared with the obese controls. Lipid measurements, complete blood counts, kidney and liver function tests, high-sensitivity C-reactive protein, and sRAGE levels were similar between the two groups. We found significant negative correlations between sRAGE levels and BW, BMI, waist and hip circumferences, waist-to-hip ratios, and low-density lipoprotein (LDL) cholesterol levels. There were no significant correlations with other parameters, including demographic, metabolic, and blood pressure measurements. In contrast to glycemic parameters, serum levels of sRAGE were negatively correlated with body measurements indicative of obesity in the prediabetic state. In addition, the negative correlation with LDL cholesterol levels suggests that sRAGE has a more robust association with metabolic syndrome than with prediabetes.
Bai, Youping; Zhang, Jing; Jiang, Shuangshuang; Sun, Jun; Zheng, Chenfei; Wang, Ke; Qian, Jingjing; Nie, Liuwang
2013-07-01
To explore the influences of slim exercise prescription on body fat mass, blood sugar and plasma resistin for overweight and obesity students. Subjects were 9 males and 13 females for simple overweight and obesity students of freshman and junior. The function capacity (FC) were defined after examine of body shape, physical function and exercise capacity. The slim goals and exercise projects were determined according to different objects. The exercise intensity was 60%-70% of FC and 13-15 levels of RPE. Exercise with each time was 60 min, exercise frequency was 5 times perweek, energy metabolism was 500-600 kcal at a time. The relative indexes were detected after 8 weeks. Implementing programmes of slim exercise prescription for 8 weeks, before and after the experiment in the males and females group. The weight, BMI, percentage of body fat (FAT%), waist and hip circumference ratio (WHR), body surface area (BS), fat indexes, the density of body for overweight and obesity the male and female students were significantly decreased (P < 0.01). Body fat mass (FM) and blood sugar were significantly decreased (P < 0.01). Plasma resistin of the male students were significant different (P < 0.01), but the female students were significant different (P < 0.05). Analysis of Bivariate Correlation was Pearson Correlation, plasma resistin and BMI, WHR the male students had correlation, but the female had no correlation. The exercise prescription was safe and sure, and could improve weight, BMI, FAT%, FM, WHR, BS, fat indexes, the density of body, blood sugar, plasma resistin in obesity without the diet control.
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
NASA Astrophysics Data System (ADS)
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
Two-nucleon emitters within a pseudostate method: The case of 6Be and 16Be
NASA Astrophysics Data System (ADS)
Casal, J.
2018-03-01
Background: Since the first experimental observation, two-nucleon radioactivity has gained renewed attention since the early 2000s. The 6Be system is the lightest two-proton ground-state emitter, while 16Be was recently proposed to be the first two-neutron ground-state emitter ever observed. A proper understanding of their properties and decay modes requires a reasonable description of the three-body continuum. Purpose: Study the ground-state properties of 6Be and 16Be within a general three-body model and investigate their nucleon-nucleon correlations in the continuum. Method: The pseudostate (PS) method in hyperspherical coordinates, using the analytical transformed harmonic oscillator (THO) basis for three-body systems, is used to construct the 6Be and 16Be ground-state wave functions. These resonances are approximated as a stable PS around the known two-nucleon separation energy. Effective core-N potentials, constrained by the available experimental information on the binary subsystems 5Li and 15Be, are employed in the calculations. Results: The ground state of 16Be is found to present a strong dineutron configuration, with the valence neutrons occupying mostly an l =2 state relative to the core. The results are consistent with previous R -matrix calculations for the actual continuum. The case of 6Be shows a clear symmetry with respect to its mirror partner, the two-neutron halo 6He: The diproton configuration is dominant, and the valence protons occupy an l =1 orbit. Conclusions: The PS method is found to be a suitable tool in describing the properties of unbound core+N +N ground states. For both 16Be and 6Be, the results are consistent with previous theoretical studies and confirm the dominant dinucleon configuration. This favors the picture of a correlated two-nucleon emission.
The relationship between nephron number, kidney size and body weight in two inbred mouse strains.
Murawski, Inga J; Maina, Rita W; Gupta, Indra R
2010-01-01
While some reports in humans have shown that nephron number is positively correlated with height, body weight or kidney weight, other studies have not reproduced these findings. To understand the impact of genetic and environmental variation on these relationships, we examined whether nephron number correlates with body weight, kidney planar surface area, or kidney weight in two inbred mouse strains with contrasting kidney sizes but no overt renal pathology: C3H/HeJ and C57BL/6J. C3H/HeJ mice had smaller kidneys at birth and larger kidneys by adulthood, however there was no significant difference in nephron number between the two strains. We did observe a correlation between kidney size and body weight at birth and at adulthood for both strains. However, there was no relationship between nephron number and body weight or between nephron number and kidney size. From other studies, it appears that a greater than two-fold variation is required in each of these parameters in order to demonstrate these relationships, suggesting they are highly dependent on scale. Our results are therefore not surprising since there was a less than two-fold variation in each of the parameters examined. In summary, the relationship between nephron number and body or kidney size is most likely to be demonstrated when there is greater phenotypic variation either from genetic and/or environmental factors.
Computational analysis of kidney scintigrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrincianu, D.; Puscasu, E.; Creanga, D.
The scintigraphic investigation of normal and pathological kidneys was carried out using specialized gamma-camera device from nuclear medicine hospital department. Technetium 90m isotope with gamma radiation emission, coupled with vector molecules for kidney tissues was introduced into the subject body, its dynamics being recorded as data source for kidney clearance capacity. Two representative data series were investigated, corresponding to healthy and pathological organs respectively. The semi-quantitative tests applied for the comparison of the two distinct medical situations were: the shape of probability distribution histogram, the power spectrum, the auto-correlation function and the Lyapunov exponent. While power spectrum led to similarmore » results in both cases, significant differences were revealed by means of distribution probability, Lyapunov exponent and correlation time, recommending these numerical tests as possible complementary tools in clinical diagnosis.« less
Guimaraes, Julio Brandao; Zanoteli, Edmar; Link, Thomas M; de Camargo, Leonardo V; Facchetti, Luca; Nardo, Lorenzo; Fernandes, Artur da Rocha Correa
2017-12-01
The purpose of this prospective study is to assess MRI findings in patients with sporadic inclusion body myositis (IBM) and correlate them with clinical and functional parameters. This study included 12 patients with biopsy-proven sporadic IBM. All patients underwent MRI of the bilateral upper and lower extremities. The images were scored for muscle atrophy, fatty infiltration, and edema pattern. Clinical data included onset and duration of disease. Muscle strength was measured using the Medical Research Council (MRC) scale, and functional status was assessed using the Modified Rankin Scale. Correlation between MRI and different clinical and functional parameters was calculated using the Spearman rank test and Pearson correlation. All patients showed MRI abnormalities, which were more severe within the lower limbs and the distal segments. The most prevalent MRI finding was fat infiltration. There was a statistically significant correlation between disease duration and number of muscles infiltrated by fat (r = 0.65; p = 0.04). The number of muscles with fat infiltration correlated with the sum of the scores of MRC (r = -0.60; p = 0.04) and with the Modified Rankin Scale (r = 0.48; p = 0.03). Our findings suggest that most patients with biopsy-proven sporadic IBM present with a typical pattern of muscle involvement at MRI, more extensively in the lower extremities. Moreover, MRI findings strongly correlated with clinical and functional parameters, because both the extent and severity of muscle involvement assessed by MRI and clinical and functional parameters are associated with the early onset of the disease and its duration.
NASA Astrophysics Data System (ADS)
Phillips, Jordan J.; Zgid, Dominika
2014-06-01
We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitagawa, Takuya; Pielawa, Susanne; Demler, Eugene
2010-06-25
We theoretically analyze Ramsey interference experiments in one-dimensional quasicondensates and obtain explicit expressions for the time evolution of full distribution functions of fringe contrast. We show that distribution functions contain unique signatures of the many-body mechanism of decoherence. We argue that Ramsey interference experiments provide a powerful tool for analyzing strongly correlated nature of 1D interacting systems.
NASA Astrophysics Data System (ADS)
Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.
2017-06-01
The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.
Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy
NASA Astrophysics Data System (ADS)
Papastergis, E.
2013-09-01
We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.
Ni, Pengsheng; McDonough, Christine M.; Jette, Alan M.; Bogusz, Kara; Marfeo, Elizabeth E.; Rasch, Elizabeth K.; Brandt, Diane E.; Meterko, Mark; Chan, Leighton
2014-01-01
Objectives To develop and test an instrument to assess physical function (PF) for Social Security Administration (SSA) disability programs, the SSA-PF. Item Response Theory (IRT) analyses were used to 1) create a calibrated item bank for each of the factors identified in prior factor analyses, 2) assess the fit of the items within each scale, 3) develop separate Computer-Adaptive Test (CAT) instruments for each scale, and 4) conduct initial psychometric testing. Design Cross-sectional data collection; IRT analyses; CAT simulation. Setting Telephone and internet survey. Participants Two samples: 1,017 SSA claimants, and 999 adults from the US general population. Interventions None. Main Outcome Measure Model fit statistics, correlation and reliability coefficients, Results IRT analyses resulted in five unidimensional SSA-PF scales: Changing & Maintaining Body Position, Whole Body Mobility, Upper Body Function, Upper Extremity Fine Motor, and Wheelchair Mobility for a total of 102 items. High CAT accuracy was demonstrated by strong correlations between simulated CAT scores and those from the full item banks. Comparing the simulated CATs to the full item banks, very little loss of reliability or precision was noted, except at the lower and upper ranges of each scale. No difference in response patterns by age or sex was noted. The distributions of claimant scores were shifted to the lower end of each scale compared to those of a sample of US adults. Conclusions The SSA-PF instrument contributes important new methodology for measuring the physical function of adults applying to the SSA disability programs. Initial evaluation revealed that the SSA-PF instrument achieved considerable breadth of coverage in each content domain and demonstrated noteworthy psychometric properties. PMID:23578594
Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François
2015-01-01
Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689
Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François
2015-09-01
Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.
Differential models of twin correlations in skew for body-mass index (BMI).
Tsang, Siny; Duncan, Glen E; Dinescu, Diana; Turkheimer, Eric
2018-01-01
Body Mass Index (BMI), like most human phenotypes, is substantially heritable. However, BMI is not normally distributed; the skew appears to be structural, and increases as a function of age. Moreover, twin correlations for BMI commonly violate the assumptions of the most common variety of the classical twin model, with the MZ twin correlation greater than twice the DZ correlation. This study aimed to decompose twin correlations for BMI using more general skew-t distributions. Same sex MZ and DZ twin pairs (N = 7,086) from the community-based Washington State Twin Registry were included. We used latent profile analysis (LPA) to decompose twin correlations for BMI into multiple mixture distributions. LPA was performed using the default normal mixture distribution and the skew-t mixture distribution. Similar analyses were performed for height as a comparison. Our analyses are then replicated in an independent dataset. A two-class solution under the skew-t mixture distribution fits the BMI distribution for both genders. The first class consists of a relatively normally distributed, highly heritable BMI with a mean in the normal range. The second class is a positively skewed BMI in the overweight and obese range, with lower twin correlations. In contrast, height is normally distributed, highly heritable, and is well-fit by a single latent class. Results in the replication dataset were highly similar. Our findings suggest that two distinct processes underlie the skew of the BMI distribution. The contrast between height and weight is in accord with subjective psychological experience: both are under obvious genetic influence, but BMI is also subject to behavioral control, whereas height is not.
Autonomic function responses to training: Correlation with body composition changes.
Tian, Ye; Huang, Chuanye; He, Zihong; Hong, Ping; Zhao, Jiexiu
2015-11-01
The causal relation between autonomic function and adiposity is an unresolved issue. Thus, we studied whether resting heart rate variability (HRV) changes could be used to predict changes in body composition after 16 weeks of individualized exercise training. A total of 117 sedentary overweight/obese adults volunteered to join an intervention group (IN, n=82) or a control group (CON, n=35). The intervention group trained for 30-40 min three times a week with an intensity of 85-100% of individual ventilatory threshold (Thvent). At baseline and after a 16-week training period, resting HRV variables, body composition and peak oxygen uptake (VO2peak) were assessed. Compared with CON, exercise training significantly improved HRV and body composition and increased VO2peak (P<0.05). Significant correlations were observed between changes of HRV variables and body composition indices and VO2peak (P<0.05). Greater individual changes in HRV in response to exercise training were observed for those with greater total and central fat loss. Individual aerobic-based exercise training was for improving autonomic function and resting HRV responses to aerobic training is a potential indicator for adaptations to exercise training. Copyright © 2015. Published by Elsevier Inc.
Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli
2007-11-16
We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.
Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks
NASA Astrophysics Data System (ADS)
Huh, Hyungjin; Ha, Seung-Yeal; Kim, Dohyun
2017-12-01
We present several sufficient frameworks leading to the emergent behaviors of the coupled Schrödinger-Lohe (S-L) model under the same one-body external potential on cooperative-competitive networks. The S-L model was first introduced as a possible phenomenological model exhibiting quantum synchronization and its emergent dynamics on all-to-all cooperative networks has been treated via two distinct approaches, Lyapunov functional approach and the finite-dimensional reduction based on pairwise correlations. In this paper, we further generalize the finite-dimensional dynamical systems approach for pairwise correlation functions on cooperative-competitive networks and provide several sufficient frameworks leading to the collective exponential synchronization. For small systems consisting of three and four quantum subsystem, we also show that the system for pairwise correlations can be reduced to the Lotka-Volterra model with cooperative and competitive interactions, in which lots of interesting dynamical patterns appear, e.g., existence of closed orbits and limit-cycles.
Yang, Lu; Zhang, Xue-mei; Hu, Xiu-ying; Zhang, Yan-ling
2016-01-01
To investigate the correlation of serum leptin and to energy consumption and metabolization in the patients with chronic obstructive pulmonary disease (COPD). We included 92 outpatients with stable COPD in West China Hospital of Sichuan University as trail group (COPD group) and 80 healthy elderly people in community as control group. All patients and healthy control received the measurements of body mass index (BMI), fat mass, resting energy expenditure (REE), lung function, serum leptin and tumor necrosis factor-α (TNF-α). The concentrations of serum leptin, BMI and lung function were lower in COPD group than those in control group (P < 0.01). The concentrations of serum leptin between two groups were not difference after the adjusted results of BMI and fat mass.. There was no difference of REE and TNF-α concentrations in these two groups. The serum leptin had positive correlation with BMI and fat mass, but there were no correlation between of TNF-α and serum leptin. In elderly people with stable COPD, the decline on the serum leptin is related to the decrease of BMI and fat mass, but barely related to the level of TNF-α.
Robbins, Lorraine B; Ling, Jiying; Resnicow, Kenneth
2017-12-06
Understanding factors related to girls' body image discrepancy, which is the difference between self-perceived current or actual and ideal body size, is important for addressing body-related issues and preventing adverse sequelae. Two aims were to: 1) examine demographic differences in body image discrepancy; and 2) determine the association of body image discrepancy with weight status, percent body fat, physical activity, sedentary behavior, and cardiovascular (CV) fitness among young adolescent girls. The cross-sectional study included a secondary analysis of baseline data from a group randomized controlled trial including 1519 5th-8th grade girls in 24 U.S. schools. Girls completed physical activity and sedentary behavior surveys. To indicate perceived current/actual and ideal body image, girls selected from nine body figures the one that represented how they look now and another showing how they want to look. Girls wore accelerometers measuring physical activity. Height, weight, and percent body fat were assessed. The Progressive Aerobic CV Endurance Run was used to estimate CV fitness. Independent t-test, one- and two-way ANOVA, correlational analyses, and hierarchical linear regressions were performed. The majority (67.5%; n = 1023) chose a smaller ideal than current/actual figure. White girls had higher body image discrepancy than Black girls (p = .035). Body image discrepancy increased with increasing weight status (F 3,1506 = 171.32, p < .001). Moderate-to-vigorous physical activity (MVPA) and vigorous physical activity were negatively correlated with body image discrepancy (r = -.10, p < .001; r = -.14, p < .001, respectively), but correlations were not significant after adjusting for race and body mass index (BMI), respectively. Body image discrepancy was moderately correlated with CV fitness (r = -.55, p < .001). After adjusting for demographics, percent body fat, but not CV fitness or MVPA, influenced body image discrepancy. Girls with higher percent body fat had higher body image discrepancy (p < .001). This study provided important information to guide interventions for promoting a positive body image among girls. ClinicalTrials.gov Identifier NCT01503333 , registration date: January 4, 2012.
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena
2017-10-01
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.
NASA Astrophysics Data System (ADS)
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
Chemical accuracy from quantum Monte Carlo for the benzene dimer.
Azadi, Sam; Cohen, R E
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
Fekete, Christine; Rauch, Alexandra
2012-07-01
Participation in physical activity (PA) decreases after the onset of a spinal cord injury (SCI) and is generally low in persons with SCI. To provide an overview of findings on correlates/determinants of PA in persons with SCI applying the International Classification of Functioning, Disability and Health (ICF) to analyze and report results. A systematic literature review using the databases MEDLINE, PsycINFO, SSCI, and CINHAL was conducted. Independent variables were extracted and linked to ICF codes. Quality of evidence was rated using internationally accepted standards. Overall, evidence quality of the 25 included studies is low. Environmental Factors were consistently found as correlates of PA, whereas Personal Factors (socio-demographics and psychological constructs) were weakly associated with PA in the SCI population. Associations with Body Functions, Body Structures, Activities and Participation and Health Conditions were less frequently studied. Although quality of evidence of reviewed literature is low, results indicate that rather environmental barriers than the 'classical' socio-demographic factors known from social epidemiology correlate with PA in persons with SCI. There is insufficient evidence to draw conclusions concerning the association of Body Functions and Structures and Activity and Participation with PA. Future research is encouraged to better understand the interplay between functioning, contextual factors, health conditions and PA in SCI to establish a sound basis for intervention planning in this special needs population. In addition, our experience showed that linking study results to the ICF facilitates data analysis and reporting. Copyright © 2012 Elsevier Inc. All rights reserved.
Sexual function of women suffering from anorexia nervosa and bulimia nervosa.
Gonidakis, Fragiskos; Kravvariti, Vasilliki; Varsou, Eleftheria
2015-01-01
The cross-sectional study aimed at examining the sexual function of young adult women suffering from eating disorders. The authors interviewed 53 women (26 with anorexia nervosa and 27 with bulimia nervosa) and 58 female students. Each participant was administered the Female Sexual Function Index, the Eating Attitudes Test, the Body Shape Questionnaire, and the Beck Depression Inventory. Comparisons among the 3 groups showed that patients with anorexia nervosa scored lower in each Female Sexual Function Index subscale than did healthy controls. There was no significant difference between bulimia nervosa and healthy controls. Sexual functionality of patients with anorexia nervosa was correlated only with body mass index (r = 0.5, p =.01). Sexual functionality of patients with bulimia nervosa was correlated only with the Beck Depression Inventory (r = -0.4, p =.03) Patients with anorexia nervosa had more disturbed sexual function than did controls. Sexual function can be related to the level of starvation and symptoms of depression.
Reliability of TMS metrics in patients with chronic incomplete spinal cord injury.
Potter-Baker, K A; Janini, D P; Frost, F S; Chabra, P; Varnerin, N; Cunningham, D A; Sankarasubramanian, V; Plow, E B
2016-11-01
Test-retest reliability analysis in individuals with chronic incomplete spinal cord injury (iSCI). The purpose of this study was to examine the reliability of neurophysiological metrics acquired with transcranial magnetic stimulation (TMS) in individuals with chronic incomplete tetraplegia. Cleveland Clinic Foundation, Cleveland, Ohio, USA. TMS metrics of corticospinal excitability, output, inhibition and motor map distribution were collected in muscles with a higher MRC grade and muscles with a lower MRC grade on the more affected side of the body. Metrics denoting upper limb function were also collected. All metrics were collected at two sessions separated by a minimum of two weeks. Reliability between sessions was determined using Spearman's correlation coefficients and concordance correlation coefficients (CCCs). We found that TMS metrics that were acquired in higher MRC grade muscles were approximately two times more reliable than those collected in lower MRC grade muscles. TMS metrics of motor map output, however, demonstrated poor reliability regardless of muscle choice (P=0.34; CCC=0.51). Correlation analysis indicated that patients with more baseline impairment and/or those in a more chronic phase of iSCI demonstrated greater variability of metrics. In iSCI, reliability of TMS metrics varies depending on the muscle grade of the tested muscle. Variability is also influenced by factors such as baseline motor function and time post SCI. Future studies that use TMS metrics in longitudinal study designs to understand functional recovery should be cautious as choice of muscle and clinical characteristics can influence reliability.
Velghe, Katherine; Gregory-Eaves, Irene
2013-01-01
Biodiversity losses over the next century are predicted to result in alterations of ecosystem functions that are on par with other major drivers of global change. Given the seriousness of this issue, there is a need to effectively monitor global biodiversity. Because performing biodiversity censuses of all taxonomic groups is prohibitively costly, indicator groups have been studied to estimate the biodiversity of different taxonomic groups. Quantifying cross-taxon congruence is a method of evaluating the assumption that the diversity of one taxonomic group can be used to predict the diversity of another. To improve the predictive ability of cross-taxon congruence in aquatic ecosystems, we evaluated whether body size, measured as the ratio of average body length between organismal groups, is a significant predictor of their cross-taxon biodiversity congruence. To test this hypothesis, we searched the published literature and screened for studies that used species richness correlations as their metric of cross-taxon congruence. We extracted 96 correlation coefficients from 16 studies, which encompassed 784 inland water bodies. With these correlation coefficients, we conducted a categorical meta-analysis, grouping data based on the body size ratio of organisms. Our results showed that cross-taxon congruence is variable among sites and between different groups (r values ranging between −0.53 to 0.88). In addition, our quantitative meta-analysis demonstrated that organisms most similar in body size showed stronger species richness correlations than organisms which differed increasingly in size (radj 2 = 0.94, p = 0.02). We propose that future studies applying biodiversity indicators in aquatic ecosystems consider functional traits such as body size, so as to increase their success at predicting the biodiversity of taxonomic groups where cost-effective conservation tools are needed. PMID:23468903
Raschpichler, Matthias; Straatman, Kees; Schroeter, Matthias Leopold; Arelin, Katrin; Schlögl, Haiko; Fritzsch, Dominik; Mende, Meinhard; Pampel, André; Böttcher, Yvonne; Stumvoll, Michael; Villringer, Arno; Mueller, Karsten
2013-01-01
Objectives To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. Design Cross-sectional, exploratory. Setting University Clinic, Integrative Research and Treatment Centre. Participants We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20–45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65–70 years of age, mean BMI=27.0, 18 women). Main outcome measures VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). Results We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT–cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. Conclusions Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults’ brains being adversely affected. PMID:23355665
Effect of chromium doping on the correlated electronic structure of V2O3
NASA Astrophysics Data System (ADS)
Grieger, Daniel; Lechermann, Frank
2014-09-01
The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.
Optimal Correlations in Many-Body Quantum Systems
NASA Astrophysics Data System (ADS)
Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.
2012-06-01
Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.
Effect of gender, facial dimensions, body mass index and type of functional occlusion on bite force.
Koç, Duygu; Doğan, Arife; Bek, Bülent
2011-01-01
Some factors such as gender, age, craniofacial morphology, body structure, occlusal contact patterns may affect the maximum bite force. Thus, the purposes of this study were to determine the mean maximum bite force in individuals with normal occlusion, and to examine the effect of gender, facial dimensions, body mass index (BMI), type of functional occlusion (canine guidance and group function occlusion) and balancing side interferences on it. Thirty-four individuals aged 19-20 years-old were selected for this study. Maximum bite force was measured with strain-gauge transducers at first molar region. Facial dimensions were defined by standardized frontal photographs as follows: anterior total facial height (ATFH), bizygomathic facial width (BFW) and intergonial width (IGW). BMI was calculated using the equation weight/height². The type of functional occlusion and the balancing side interferences of the subjects were identified by clinical examination. Bite force was found to be significantly higher in men than women (p<0.05). While there was a negative correlation between the bite force and ATFH/BFW, ATFH/IGW ratios in men (p<0.05), women did not show any statistically significant correlation (p>0.05). BMI and bite force correlation was not statistically significant (p>0.05). The average bite force did not differ in subjects with canine guidance or group function occlusion and in the presence of balancing side interferences (p>0.05). Data suggest that bite force is affected by gender. However, BMI, type of functional occlusion and the presence of balancing side interferences did not exert a meaningful influence on bite force. In addition, transverse facial dimensions showed correlation with bite force in only men.
Kulikov, A G; Tabiev, V I; Rassulova, M A
2015-01-01
The objective of the present study was to evaluate the possibilities for the correction of muscular disorders associated with ankylosing spondylitis and their correction with the help of whole body cryotherapy. The study included 55 patients randomly allocated to two groups. Group 1 was comprised of the patients treated with the use of the common mineral baths, physiotherapy, therapeutic physical exercises, spinal massage, and whole body air-cryotherapy. Group 2 contained the patients who were treated in a similar way with the exception of whole body cryotherapy; they served as controls. Muscular disorders were diagnosed by means of functional muscular testing. The study has demonstrated the high prevalence of muscular disorders in the patients suffering from ankylosing spondylitis. Moreover, it revealed the profile of such disorders associated with ankylosing spondylitis and showed significant correlation between the results of functional muscular testing, BASMI and BASFI indices as well as characteristics of chest excursions (p<0.01). The analysis of the results of the treatment gave evidence of the higher effectiveness of the combined treatment including whole body cryotherapy in comparison with the alternative therapeutic modalities employed in the present study. This therapeutic modality ensured the statistically more pronounced improvement of functional muscular testing parameters (p<0.05), muscle strength and extensibility, as well as certain other clinical and functional characteristics. The groups of muscles most susceptible to cryogenic therapy have been identified. The data obtained in the present study shed light on some specific features of the action of whole body cryotherapy accounting for its corrective influence on the muscular disorders in the patients presenting with ankylosing spondylitis. It is concluded that the proposed approach can be recommended for the introduction in the combined therapeutic and rehabilitative treatment of muscular disorders associated with ankylosing spondylitis.
Oeffinger, Donna J; Gurka, Matthew J; Kuperminc, Michelle; Hassani, Sahar; Buhr, Neeley; Tylkowski, Chester
2014-05-01
This study assessed the accuracy of measurements of body fat percentage in ambulatory individuals with cerebral palsy (CP) from bioelectrical impedance analysis (BIA) and skinfold equations. One hundred and twenty-eight individuals (65 males, 63 females; mean age 12y, SD 3, range 6-18y) with CP (Gross Motor Function Classification System [GMFCS] levels I (n=6), II (n=46), and III (n=19) participated. Body fat percentage was estimated from (1) BIA using standing height and estimated heights (knee height and tibial length) and (2) triceps and subscapular skinfolds using standard and CP-specific equations. All estimates of body fat percentage were compared with body fat percentage from dual-energy X-ray absorptiometry (DXA) scans. Differences between DXA, BIA, and skinfold body fat percentage were analyzed by comparing mean differences. Agreement was assessed by Bland-Altman plots and concordance correlation coefficients (CCC). BMI was moderately correlated with DXA (Pearson's r=0.53). BIA body fat percentage was significantly different from DXA when using estimated heights (95% confidence intervals [CIs] do not contain 0) but not standing height (95% CI -1.9 to 0.4). CCCs for all BIA comparisons indicated good to excellent agreement (0.75-0.82) with DXA. Body fat percentage from skinfold measurements and CP-specific equations was not significantly different from DXA (mean 0.8%; SD 5.3%; 95% CI -0.2 to 1.7) and demonstrated strong agreement with DXA (CCC 0.86). Accurate measures of body fat percentage can be obtained using BIA and two skinfold measurements (CP-specific equations) in ambulatory individuals with CP. These findings should encourage assessments of body fat in clinical and research practices. © 2013 Mac Keith Press.
Mobilized plasma lead as an index of lead body burden and its relation to the heme-related indices.
Sakai, T; Ushio, K; Ikeya, Y
1998-07-01
Plasma lead (Pb-P) from workers were distributed in two main fractions: a protein bound fraction and low molecular weight fractions. Lead mobilized into plasma by CaEDTA was mainly observed in the low molecular weight fraction corresponding to lead disodium ethylenediamine tetraacetic acid (PbEDTA). The peak levels of Pb-P was attained around 1.5 and 2.5 hours after the start of CaEDTA injection. Pb-P and blood lead levels (Pb-B) at 2 h after the injection were 4.26 (+/- 2.84) and 0.96 (+/- 0.27) fold of the initial levels just before the injection. Pb-P concentrations at 2 hours after the start of CaEDTA injection (MPb-P) were well correlated (r = 0.740) with amounts of lead excreted in urine for 24 h thereafter (MPb-U). log MPb-P as well as log MPb-U were correlated with Pb-B (r = 0.765 and 0.817, respectively). Correlation coefficients of lead body burden (MPb-P or MPb-U) vs the logarithms of the effect indices (delta-aminolevulinic acid (ALA) dehydratase, ALA in urine, coproporphyrin in urine, and erythrocyte zinc protoporphyrin) were higher than the correlation coefficients of exposure indices (Pb-B or Pb-U) vs the logarithms of the effect indices. Thus the biological effect monitoring is significant and reliable for evaluating the functional components of lead body burden (MPb-P or MPb-U).
Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices
NASA Astrophysics Data System (ADS)
Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.
2018-04-01
We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.
Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices
NASA Astrophysics Data System (ADS)
Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.
2018-06-01
We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.
Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping
2006-03-09
Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less
ERIC Educational Resources Information Center
Kim, Dong-Sik; Cho, Youngtae; Cho, Sung-Il; Lim, In-Sook
2009-01-01
Background: This study examined the mediating function of body weight perception (BWP) in the relation between body mass index (BMI) and unhealthy weight control behaviors (UWCBs; eg, fasting, using diet pills, or laxatives), and between BMI and suicidal ideation. It also explored the correlation between exposure to multiple UWCBs and suicidal…
Redshift-space distortions of group and galaxy correlations in the Updated Zwicky Catalog
NASA Astrophysics Data System (ADS)
Padilla, N. D.; Merchán, M.; García Lambas, D.; Maia, M. G.
We calculate two-point correlation functions of galaxies and groups of galaxies selected in three dimensions from the Updated Zwicky Galaxy Catalog - (UZC). The redshift space distortion of the correlation function ξ(σ,π) in the directions parallel and perpendicular to the line of sight, induced by pairwise group peculiar velocities is evaluated. Two methods are used to characterize the pairwise velocity field. The first method consists in fitting the observed ξ(σ,π) with a distorted model with an exponential pairwise velocity distribution, in fixed σ bins. The second method compares the contours of constant predicted correlation function of this model with the data. The results are consistent with a one-dimensional pairwise rms velocity dispersion of groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suhara, Tadahiro; Kanada-En'yo, Yoshiko
We investigate the linear-chain structures in highly excited states of {sup 14}C using a generalized molecular-orbital model, by which we incorporate an asymmetric configuration of three {alpha} clusters in the linear-chain states. By applying this model to the {sup 14}C system, we study the {sup 10}Be+{alpha} correlation in the linear-chain state of {sup 14}C. To clarify the origin of the {sup 10}Be+{alpha} correlation in the {sup 14}C linear-chain state, we analyze linear 3 {alpha} and 3{alpha} + n systems in a similar way. We find that a linear 3{alpha} system prefers the asymmetric 2{alpha} + {alpha} configuration, whose origin ismore » the many-body correlation incorporated by the parity projection. This configuration causes an asymmetric mean field for two valence neutrons, which induces the concentration of valence neutron wave functions around the correlating 2{alpha}. A linear-chain structure of {sup 16}C is also discussed.« less
Vocal mechanics in Darwin's finches: correlation of beak gape and song frequency.
Podos, Jeffrey; Southall, Joel A; Rossi-Santos, Marcos R
2004-02-01
Recent studies of vocal mechanics in songbirds have identified a functional role for the beak in sound production. The vocal tract (trachea and beak) filters harmonic overtones from sounds produced by the syrinx, and birds can fine-tune vocal tract resonance properties through changes in beak gape. In this study, we examine patterns of beak gape during song production in seven species of Darwin's finches of the Galápagos Islands. Our principal goals were to characterize the relationship between beak gape and vocal frequency during song production and to explore the possible influence therein of diversity in beak morphology and body size. Birds were audio and video recorded (at 30 frames s(-1)) as they sang in the field, and 164 song sequences were analyzed. We found that song frequency regressed significantly and positively on beak gape for 38 of 56 individuals and for all seven species examined. This finding provides broad support for a resonance model of vocal tract function in Darwin's finches. Comparison among species revealed significant variation in regression y-intercept values. Body size correlated negatively with y-intercept values, although not at a statistically significant level. We failed to detect variation in regression slopes among finch species, although the regression slopes of Darwin's finch and two North American sparrow species were found to differ. Analysis within one species (Geospiza fortis) revealed significant inter-individual variation in regression parameters; these parameters did not correlate with song frequency features or plumage scores. Our results suggest that patterns of beak use during song production were conserved during the Darwin's finch adaptive radiation, despite the evolution of substantial variation in beak morphology and body size.
Tang, Yongjiang; Zhang, Mingke; Feng, Yulin; Liang, Binmiao
2016-11-23
Chronic obstructive pulmonary disease (COPD) is a chronic airway disease characterized by persistent airflow limitation. Moreover, lung hyperinflation evaluated by lung volumes is also the key pathophysiologic process during COPD progression. Nevertheless, there is still no preferred method to evaluate lung volumes. For this study, we recruited 170 patients with stable COPD to assess lung volumes stratified by airflow limitation severity. Lung volumes including residual volume (RV) and total lung capacity (TLC) were determined by both body plethysmography and helium dilution methods. The discrepancies between these two methods were recorded as ΔRV%pred, ΔTLC%pred, and ΔRV/TLC. We found that ΔRV%pred, ΔTLC%pred, and ΔRV/TLC increased significantly with the severity of COPD. The differences of lung capacity between these two methods were negatively correlated with FEV 1 %pred, and diffusing capacity for carbon monoxide (D L CO%pred). Moreover, the receiver operating characteristic (ROC) for ΔTLC%pred to distinguish severe COPD from non-severe COPD had an area under curve (AUC) of 0.886. The differences of lung volume parameters measured by body plethysmography and helium dilution methods were associated with airflow limitation and can effectively differentiate COPD severity, which may be a supportive method to assess the lung function of stable COPD patients.
Personality and performance are affected by age and early life parameters in a small primate.
Zablocki-Thomas, Pauline B; Herrel, Anthony; Hardy, Isabelle; Rabardel, Lucile; Perret, Martine; Aujard, Fabienne; Pouydebat, Emmanuelle
2018-05-01
A whole suite of parameters is likely to influence the behavior and performance of individuals as adults, including correlations between phenotypic traits or an individual's developmental context. Here, we ask the question whether behavior and physical performance traits are correlated and how early life parameters such as birth weight, litter size, and growth can influence these traits as measured during adulthood. We studied 486 captive gray mouse lemurs ( Microcebus murinus ) and measured two behavioral traits and two performance traits potentially involved in two functions: exploration behavior with pull strength and agitation score with bite force. We checked for the existence of behavioral consistency in behaviors and explored correlations between behavior, performance, morphology. We analyzed the effect of birth weight, growth, and litter size, while controlling for age, sex, and body weight. Behavior and performance were not correlated with one another, but were both influenced by age. Growth rate had a positive effect on adult morphology, and birth weight significantly affected emergence latency and bite force. Grip strength was not directly affected by early life traits, but bite performance and exploration behavior were impacted by birth weight. This study shows how early life parameters impact personality and performance.
Electron-electron correlation in two-photon double ionization of He-like ions
NASA Astrophysics Data System (ADS)
Hu, S. X.
2018-01-01
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.
Oliver, W.C.; Blau, P.J.
1994-11-01
A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.
Oliver, Warren C.; Blau, Peter J.
1994-01-01
A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.
Song, Xiaowen; Huang, Fei; Liu, Juanjuan; Li, Chengjun; Gao, Shanshan; Wu, Wei; Zhai, Mengfan; Yu, Xiaojuan; Xiong, Wenfeng; Xie, Jia; Li, Bin
2017-10-01
Cytosine DNA methylation is a vital epigenetic regulator of eukaryotic development. Whether this epigenetic modification occurs in Tribolium castaneum has been controversial, its distribution pattern and functions have not been established. Here, using bisulphite sequencing (BS-Seq), we confirmed the existence of DNA methylation and described the methylation profiles of the four life stages of T. castaneum. In the T. castaneum genome, both symmetrical CpG and non-CpG methylcytosines were observed. Symmetrical CpG methylation, which was catalysed by DNMT1 and occupied a small part in T. castaneum methylome, was primarily enriched in gene bodies and was positively correlated with gene expression levels. Asymmetrical non-CpG methylation, which was predominant in the methylome, was strongly concentrated in intergenic regions and introns but absent from exons. Gene body methylation was negatively correlated with gene expression levels. The distribution pattern and functions of this type of methylation were similar only to the methylome of Drosophila melanogaster, which further supports the existence of a novel methyltransferase in the two species responsible for this type of methylation. This first life-cycle methylome of T. castaneum reveals a novel and unique methylation pattern, which will contribute to the further understanding of the variety and functions of DNA methylation in eukaryotes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Noninvasive parametric blood flow imaging of head and neck tumours using [15O]H2O and PET/CT.
Komar, Gaber; Oikonen, Vesa; Sipilä, Hannu; Seppänen, Marko; Minn, Heikki
2012-11-01
The aim of this study was to develop a simple noninvasive method for measuring blood flow using [15O]H2O PET/CT for the head and neck area applicable in daily clinical practice. Fifteen dynamic [15O]H2O PET emission scans with simultaneous online radioactivity measurements of radial arterial blood [Blood-input functions (IFs)] were performed. Two noninvasively obtained population-based input functions were calculated by averaging all Blood-IF curves corrected for patients' body mass and injected dose [standardized uptake value (SUV)-IF] and for body surface area (BSA-IF) and injected dose. Parametric perfusion images were calculated for each set of IFs using a linearized two-compartment model, and values for several tissues were compared using Blood-IF as the gold standard. On comparing all tissues, the correlation between blood flow obtained with the invasive Blood-IF and both SUV-IF and BSA-IF was significant (R2=0.785 with P<0.001 and R2=0.813 with P<0.001, respectively). In individual tissues, the performance of the two noninvasive methods was most reliable in resting muscle and slightly less reliable in tumour and cerebellar regions. In these two tissues, only BSA-IF showed a significant correlation with Blood-IF (R2=0.307 with P=0.032 in tumours and R2=0.398 with P<0.007 in the cerebellum). The BSA-based noninvasive method enables clinically relevant delineation between areas of low and high blood flow in tumours. The blood flow of low-perfusion tissues can be reliably quantified using either of the evaluated noninvasive methods.
Reduced flexibility associated with metabolic syndrome in community-dwelling elders.
Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng
2015-01-01
The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25-2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95-0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength and cardiorespiratory fitness in the elderly were not observed. Furthermore, flexibility should be included in the complete evaluation for metabolic syndrome.
Few-body problem in terms of correlated Gaussians
NASA Astrophysics Data System (ADS)
Silvestre-Brac, Bernard; Mathieu, Vincent
2007-10-01
In their textbook, Suzuki and Varga [Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, Berlin, 1998)] present the stochastic variational method with the correlated Gaussian basis in a very exhaustive way. However, the Fourier transform of these functions and their application to the management of a relativistic kinetic energy operator are missing and cannot be found in the literature. In this paper we present these interesting formulas. We also give a derivation for formulations concerning central potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, W.E.
1973-01-01
An introduction is given to techniques used in the many-body problem, and a reference book is given for those techniques. Sevcral different formulations of the techniques, and their interrelations, are discussed, to prepare the reader for the published literature. Examples are taken mostly from the physics of solids, fluids and plasmas. Second quantization, perturbation theory, Green functions and correlation functions, examples in the use of diagrammatic perturbation theory, the equation of motion method, magnetism (the drone-fermion representation), linear response and transport processes, niany- body systems at zero temperature, the variational principle and pair-wave approximation. (UK)
Neural Substrate of Body Size: Illusory Feeling of Shrinking of the Waist
Kito, Tomonori; Sadato, Norihiro; Passingham, Richard E; Naito, Eiichi
2005-01-01
The perception of the size and shape of one's body (body image) is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments. PMID:16336049
Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.
De Nardis, Jacopo; Panfil, Miłosz
2018-05-25
The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.
Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
De Nardis, Jacopo; Panfil, Miłosz
2018-05-01
The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.
Spin-polarized density-matrix functional theory of the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Töws, W.; Pastor, G. M.
2012-12-01
Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüchow, Arne, E-mail: luechow@rwth-aachen.de; Jülich Aachen Research Alliance; Sturm, Alexander
2015-02-28
Jastrow correlation factors play an important role in quantum Monte Carlo calculations. Together with an orbital based antisymmetric function, they allow the construction of highly accurate correlation wave functions. In this paper, a generic expansion of the Jastrow correlation function in terms of polynomials that satisfy both the electron exchange symmetry constraint and the cusp conditions is presented. In particular, an expansion of the three-body electron-electron-nucleus contribution in terms of cuspless homogeneous symmetric polynomials is proposed. The polynomials can be expressed in fairly arbitrary scaling function allowing a generic implementation of the Jastrow factor. It is demonstrated with a fewmore » examples that the new Jastrow factor achieves 85%–90% of the total correlation energy in a variational quantum Monte Carlo calculation and more than 90% of the diffusion Monte Carlo correlation energy.« less
Phenotypic integration emerges from aposematism and scale in poison frogs
Santos, Juan C.; Cannatella, David C.
2011-01-01
Complex phenotypes can be modeled as networks of component traits connected by genetic, developmental, or functional interactions. Aposematism, which has evolved multiple times in poison frogs (Dendrobatidae), links a warning signal to a chemical defense against predators. Other traits are involved in this complex phenotype. Most aposematic poison frogs are ant specialists, from which they sequester defensive alkaloids. We found that aposematic species have greater aerobic capacity, also related to diet specialization. To characterize the aposematic trait network more fully, we analyzed phylogenetic correlations among its hypothesized components: conspicuousness, chemical defense, diet specialization, body mass, active and resting metabolic rates, and aerobic scope. Conspicuous coloration was correlated with all components except resting metabolism. Structural equation modeling on the basis of trait correlations recovered “aposematism” as one of two latent variables in an integrated phenotypic network, the other being scaling with body mass and physiology (“scale”). Chemical defense and diet specialization were uniquely tied to aposematism whereas conspicuousness was related to scale. The phylogenetic distribution of the aposematic syndrome suggests two scenarios for its evolution: (i) chemical defense and conspicuousness preceded greater aerobic capacity, which supports the increased resource-gathering abilities required of ant–mite diet specialization; and (ii) assuming that prey are patchy, diet specialization and greater aerobic capacity evolved in tandem, and both traits subsequently facilitated the evolution of aposematism. PMID:21444790
Functional decline in Huntington's disease.
Feigin, A; Kieburtz, K; Bordwell, K; Como, P; Steinberg, K; Sotack, J; Zimmerman, C; Hickey, C; Orme, C; Shoulson, I
1995-03-01
We prospectively evaluated 129 patients with manifest Huntington's disease (HD) to determine the rate of illness progression and the clinical features that correlate with functional decline. A single examiner evaluated each patient using the HD Functional Capacity Scale. Standardized motor performance was also assessed in 94 of the patients (73%) using the HD Rating Scale. Total Functional Capacity declined at a rate of 0.63 +/- 0.75 U per year. As functional capacity worsened, chorea lessened, and dystonia intensified. There was no correlation between rate of functional decline and age at onset of HD, body weight, gender of affected parent, or history of neuroleptic use.
van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S
2014-01-01
Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important implications for our understanding not only of the evolutionary and ecological dynamics of sex-ratio distorters and suppressors, but also of the functioning of deleterious and sexually-antagonistic alleles, and their impact on population viability.
Cohen, H; McCabe, C; Harris, N; Hall, J; Lewis, J; Blake, D R
2013-04-01
Unusual symptoms such as digit misidentification and neglect-like phenomena have been reported in complex regional pain syndrome (CRPS), which we hypothesized could be explained by parietal lobe dysfunction. Twenty-two patients with chronic CRPS attending an in-patient rehabilitation programme underwent standard neurological examination followed by clinical assessment of parietal lobe function and detailed sensory testing. Fifteen (68%) patients had evidence of parietal lobe dysfunction. Six (27%) subjects failed six or more test categories and demonstrated new clinical signs consistent with their parietal testing impairments, which were impacting significantly on activities of daily living. A higher incidence was noted in subjects with >1 limb involvement, CRPS affecting the dominant side and in left-handed subjects. Eighteen patients (82%) had mechanical allodynia covering 3-57.5% of the body surface area. Allochiria (unilateral tactile stimulation perceived only in the analogous location on the opposite limb), sensory extinction (concurrent bilateral tactile stimulation perceived only in one limb), referred sensations (unilateral tactile stimulation perceived concurrently in another discrete body area) and dysynchiria (unilateral non-noxious tactile stimulation perceived bilaterally as noxious) were present in some patients. Greater extent of body surface allodynia was correlated with worse parietal function (Spearman's rho = -0.674, p = 0.001). In patients with chronic CRPS, detailed clinical examination may reveal parietal dysfunction, with severity relating to the extent of allodynia. © 2012 European Federation of International Association for the Study of Pain Chapters.
Using galaxy pairs to investigate the three-point correlation function in the squeezed limit
NASA Astrophysics Data System (ADS)
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2017-11-01
We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.
Hu, S. X.
2018-01-18
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
Nonlocality, Entanglement Witnesses and Supra-correlations
2012-04-01
1) (2) ( ), , ns s s , ( 1) 2 2 n n n = − two -party correlations 1 2 ( , )i jCα α for 1≤i≤j≤n etc…, up to 1 n n = n- body ...maximally entangled Bell states). As a counter example, for n=3 the state ;TPRO ε from (33), defined by setting ;TPRC εαβγ αβγε≡ (the Levi - Civita ...science], Oxford, N.Y. (2006). [13] G. Svetlichny, “Distinguishing three- body from two - body nonseparability by a Bell-type inequality,” Phys. Rev. D
Moore, I T; Lerner, J P; Lerner, D T; Mason, R T
2000-01-01
Over a 2-yr period, we investigated the annual cycles of plasma testosterone and corticosterone and the relationships between these hormones and body condition in a wild population of male red-spotted garter snakes, Thamnophis sirtalis concinnus. In the 10 mo that were sampled, a peak in testosterone was observed in late summer during gametogenesis and declining through the spring breeding period. Corticosterone and testosterone cycles were positively correlated, in contrast to many vertebrates, suggesting the lack of a direct negative interaction between the two hormones. Body condition, defined as the residual of the regression of mass on snout-vent length, also cycled annually, with individuals being more robust during the summer than during the spring or fall. Individuals with a positive body condition had significantly lower plasma levels of corticosterone than did individuals with a negative body condition, supporting the energetic role of glucocorticoids. There was no relationship between body condition and testosterone. This study suggests that annual cycles of testosterone, corticosterone, and body condition can be associated with one another, and considering all three simultaneously is necessary to understand their control and function.
[Physical activity and respiratory function: corporal composition and spirometric values analysis].
Paulo, Rui; Petrica, João; Martins, Júlio
2013-01-01
The main aim of this research project was to measure the effects of physical activity on corporal composition (BMI and waist circumference) on spirometric values and relate these indicators to the respiratory/ventilator function. The sample consisted of 86 individuals, higher education students, with an average age of 21.3 ± 2.4 years, who were divided into two groups: the control group consisted of 28 sedentary subjects (20.9 ± 1.3 years), and the experimental group consisting of 58 subjects (21.5 ± 2.8 years) who undertook supervised exercise. To characterize the sample of the type of physical activity, we used an adaptation of the questionnaire Telama et al.19 We assessed the value of spirometry (PEF, FVC and FEV₁) with a Microquark Cosmed spirometer and the BMI and waist circumference. The figures obtained were processed with the S.P.S.S. 19.0, the t-test, the Levene test, the Mann-Whitney test and the Spearman correlation test, adopting a significance level of 5%. The experimental group achieved significantly better BMI and waist circumference results (p = 0.05) and in all of the values assessed by spirometry (PEF, FVC and FEV₁) compared to the control group. We also found that there is a tendency for a negative correlation between the values of body composition and spirometric values, only observable in some variables (PEF, FEV₁), i.e., the higher the values of body composition, the lower the spirometric values. The students that performed supervised exercise had higher levels of body composition and lung function. Poor BMI and waist circumference values may lead to respiratory dysfunction in terms of ventilation and the respective lung volumes, limiting the practice of physical activity and increasing the probability of respiratory pathologies.
Vozarova, B; Weyer, C; Bogardus, C; Ravussin, E; Tataranni, P A
2002-06-01
Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is, lower radiating area, and therefore a higher body temperature compared to Caucasians. Body composition, including volume (hydrodensitometry), and oral temperature were assessed in 69 nondiabetic Caucasian [age, 30 +/- 7 years; body fat, 21 +/- 8% (mean +/- SD)] and 115 Pima Indian males [age, 27 +/- 6 years; body fat, 28 +/- 6%]. Surface area was estimated from height, weight, and waist circumference (Bouchard's equation). In 47 Pima Indians, measures of insulin sensitivity (M, hyperinsulinemic euglycemic clamp) were available. Compared to Caucasians, Pima Indians had a higher oral temperature [36.4 +/- 0.3 degrees C vs. 36.3 +/- 0.3 degrees C (mean +/- SD), p < 0.04] and lower surface area relative to volume (2.19 +/- 0.05 vs. 2.23 +/- 0.26 m(2), p < 0.0001). Surface area relative to volume was negatively correlated with oral temperature (r = -0.14, p < 0.05), but in a multiple linear regression model it did not entirely explain the ethnic difference in oral temperature. Oral temperature was inversely correlated with M (r = -0.28, p < 0.05). Conclusions-Pima Indians have higher oral temperature and lower surface area relative to volume than Caucasians. The ethnic difference in temperature does not seem to be entirely explained by differences in body composition and body shape. Interestingly, higher oral temperature was associated with insulin resistance, a risk factor for type 2 diabetes.
DNA methylation Landscape of body size variation in sheep.
Cao, Jiaxue; Wei, Caihong; Liu, Dongming; Wang, Huihua; Wu, Mingming; Xie, Zhiyuan; Capellini, Terence D; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Lu, Jian; Liu, Ruizao; Zhang, Shifang; Du, Yongfei; Zhang, Hongping; Du, Lixin
2015-10-16
Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation - sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the "development process" (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.
Burton, Richard F
2010-01-01
It is almost a matter of dogma that human body mass in adults tends to vary roughly in proportion to the square of height (stature), as Quetelet stated in 1835. As he realised, perfect isometry or geometric similarity requires that body mass varies with height cubed, so there seems to be a trend for tall adults to be relatively much lighter than short ones. Much evidence regarding component tissues and organs seems to accord with this idea. However, the hypothesis is presented that the proportions of the body are actually very much less size-dependent. Past evidence has mostly been obtained by least-squares regression analysis, but this cannot generally give a true picture of the allometric relationships. This is because there is considerable scatter in the data (leading to a low correlation between mass and height) and because neither variable causally determines the other. The relevant regression equations, though often formulated in logarithmic terms, effectively treat the masses as proportional to (body height)(b). Values of b estimated by regression must usually underestimate the true functional values, doing so especially when mass and height are poorly correlated. It is therefore telling support for the hypothesis that published estimates of b both for the whole body (which range between 1.0 and 2.5) and for its component tissues and organs (which vary even more) correlate with the corresponding correlation coefficients for mass and height. There is no simple statistical technique for establishing the true functional relationships, but Monte Carlo modelling has shown that the results obtained for total body mass are compatible with a true height exponent of three. Other data, on relationships between body mass and the girths of various body parts such as the thigh and chest, are also more consistent with isometry than regression analysis has suggested. This too is demonstrated by modelling. It thus seems that much of anthropometry needs to be re-evaluated. It is not suggested that all organs and tissues scale equally with whole body size.
Ground states of larger nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.
1995-08-01
The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wavemore » functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.« less
Preliminary study on the time-related changes of the infrared thermal images of the human body
NASA Astrophysics Data System (ADS)
Li, Ziru; Zhang, Xusheng; Lin, Gang; Chen, Zhigang
2009-08-01
It is of great importance to study the manifestations and the influencing factors of the time-related changes of infrared thermal images (ITI) of human body since the variable body surface temperature distribution seriously affected the application of ITI in medicine. In this paper, manifestations of time-related changes of the ITI of human body from three double-blind randomized trials and their correlation with meteorological factors (e.g. temperature, pressure, humidity, cold front passage and tropical cyclone landing) were studied. The trials were placebo or drug controlled studying the influences of Chinese medicine health food (including Shengsheng capsule with immunity adjustment function, Shengan capsule with sleep improvement function and Shengyi capsule with the function of helping to decrease serum lipid) on the ITI of human body. In the first thirty-six days of the trials images were scanned every six days and image data in the seven observation time spots (including the 0, 6, 12, 18, 24, 30, 36 day of the trial) were used for the time-related study. For every subject the scanned time was fixed in the day within two hours. The ITI features which could reflect the functions of the health foods were studied. The indexes of the features were relative magnitude (temperature difference between the viewing area and the reference area). Results showed that the variation tendencies of the trial group and control group were basically the same in placebo controlled trials and some of the long-term effects of Chinese medicine health food could be reflected significantly in certain time spots in the first thirty-six days. Time-related changes of the ITI of human body were closely related with meteorological factors but there were other influencing factors still need to be studied. As the ITI of human body could reflect the influences of Chinese medicine health foods and are closely related with meteorology, there are bright prospects for the application of ITI in health monitor.
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Schneider, Peter; Hildebrandt, Hendrik; Shan, HuanYuan; Asgari, Marika; Dietrich, Jörg P.; Harnois-Déraps, Joachim; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Nakajima, Reiko
2018-02-01
We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S_8 = σ _8 √{Ω _m/0.3}, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are ˜ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N < 0 peaks does not add further information. Our results are in good agreement with the tomographic shear two-point correlation function measurement in KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a ˜20 per cent improvement in the uncertainty on S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.
Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu
2016-10-01
This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.
Two neutron correlations in photo-fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, D. S.; Kosinov, O.; Forest, T.
2016-01-01
A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of twomore » neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.« less
Dosimetry in differentiated thyroid carcinoma (12-1402R)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minguez, Pablo; Genolla, Jose; Celeiro, Jose Javier
2013-01-15
Purpose: The aim of this study has been to perform a dosimetric study in the treatments of differentiated thyroid cancer (DTC) performed in our center in order to find a dose-effect correlation. Methods: Thirty patients treated for DTC with 3700 MBq of {sup 131}I have been included in this study. For reasons of radiological protection all of them spent two nights as inpatients. Dose rate at 1 m from all patients was measured approximately 20 and 44 h after the administration of the radioiodine and a whole body scan in the gamma camera was performed approximately 1 week later. Withmore » those measurements and by using a model of two compartments the activities in thyroid bed remnants and in the whole body were calculated as a function of time. The integration of both activities yields the corresponding cumulated activities. Absorbed doses to thyroid bed remnants and to the whole body can be calculated following the MIRDOSE method-that is, by multiplying the corresponding cumulated activities by the corresponding S factors. Results: The absorbed doses to thyroid bed remnants calculated in this study fall into a very wide range (13-1161 Gy) and showed the highest correlation factors with the following parameters: the absorbed dose rate to thyroid bed remnants, the cumulated activity in thyroid bed remnants, and the maximum radioiodine uptake in thyroid bed remnants. The absorbed doses to the whole body range from 0.12 to 0.23 Gy. The ablation was successful in all patients, and in spite of the wide range of absorbed doses to thyroid bed remnants obtained, no dose-effect correlation could be obtained. Conclusions: Facing DTC treatments from a dosimetric viewpoint in which a predosimetry to calculate the activity of {sup 131}I to be administered is performed is a subject difficult to handle. This statement is based on the fact that although a very wide range of absorbed doses to thyroid bed remnants was obtained (including several absorbed doses well below some dose thresholds previously published to achieve ablation of thyroid bed remnants), ablation of thyroid bed remnants was successful for all patients and therefore no dose-effect correlation could be determined.« less
A new gas dilution method for measuring body volume.
Nagao, N; Tamaki, K; Kuchiki, T; Nagao, M
1995-01-01
This study was designed to examine the validity of a new gas dilution method (GD) for measuring human body volume and to compare its accuracy with the results obtained by the underwater weighing method (UW). We measured the volume of plastic bottles and 16 subjects (including two females), aged 18-42 years with each method. For the bottles, the volume measured by hydrostatic weighing was correlated highly (r = 1.000) with that measured by the new gas dilution method. For the subjects, the body volume determined by the two methods was significantly correlated (r = 0.998). However, the subject's volume measured by the gas dilution method was significantly larger than that by underwater weighing method. There was significant correlation (r = 0.806) between GD volume-UW volume and the body mass index (BMI), so that UW volume could be predicted from GD volume and BMI. It can be concluded that the new gas dilution method offers promising possibilities for future research in the population who cannot submerge underwater. PMID:7551760
Malomane, Dorcus Kholofelo; Norris, David; Banga, Cuthbert B; Ngambi, Jones W
2014-02-01
Body weight and weight of body parts are of economic importance. It is difficult to directly predict body weight from highly correlated morphological traits through multiple regression. Factor analysis was carried out to examine the relationship between body weight and five linear body measurements (body length, body girth, wing length, shank thickness, and shank length) in South African Venda (VN), Naked neck (NN), and Potchefstroom koekoek (PK) indigenous chicken breeds, with a view to identify those factors that define body conformation. Multiple regression was subsequently performed to predict body weight, using orthogonal traits derived from the factor analysis. Measurements were obtained from 210 chickens, 22 weeks of age, 70 chickens per breed. High correlations were obtained between body weight and all body measurements except for wing length in PK. Two factors extracted after varimax rotation explained 91, 95, and 83% of total variation in VN, NN, and PK, respectively. Factor 1 explained 73, 90, and 64% in VN, NN, and PK, respectively, and was loaded on all body measurements except for wing length in VN and PK. In a multiple regression, these two factors accounted for 72% variation in body weight in VN, while only factor 1 accounted for 83 and 74% variation in body weight in NN and PK, respectively. The two factors could be used to define body size and conformation of these breeds. Factor 1 could predict body weight in all three breeds. Body measurements can be better selected jointly to improve body weight in these breeds.
Oshima, Hiraku; Kinoshita, Masahiro
2015-04-14
In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshima, Hiraku; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp
In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent modelsmore » and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.« less
Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I
To identify those textural features that are insensitive to both technical and biological factors in order to standardise heterogeneity studies on 18 F-FDG PET imaging. Two different studies were performed. First, nineteen series from a cylindrical phantom filled with different 18 F-FDG activity concentration were acquired and reconstructed using three different protocols. Seventy-two texture features were calculated inside a circular region of interest. The variability of each feature was obtained. Second, the data for 15 patients showing non-pathological liver were acquired. Anatomical and physiological features such as patient's weight, height, body mass index, metabolic active volume, blood glucose level, SUV and SUV standard deviation were also recorded. A liver covering region of interest was delineated and low variability textural features calculated in each patient. Finally, a multivariate Spearman's correlation analysis between biological factors and texture features was performed. Only eight texture features analysed show small variability (<5%) with activity concentration and reconstruction protocol making them suitable for heterogeneity quantification. On the other hand, there is a high statistically significant correlation between MAV and entropy (P<0.05). Entropy feature is, indeed, correlated (P<0.05) with all patient parameters, except body mass index. The textural features that are correlated with neither technical nor biological factors are run percentage, short-zone emphasis and intensity, making them suitable for quantifying functional changes or classifying patients. Other textural features are correlated with technical and biological factors and are, therefore, a source of errors if used for this purpose. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Peverill, Roger E; Chou, Bon; Donelan, Lesley
2017-01-01
The physiological factors which affect left ventricular (LV) long-axis function are not fully defined. We investigated the relationships of resting heart rate and body size with the peak velocities and amplitudes of LV systolic and early diastolic long axis motion, and also with long-axis contraction duration. Two groups of adults free of cardiac disease underwent pulsed-wave tissue Doppler imaging at the septal and lateral mitral annular borders. Group 1 (n = 77) were healthy subjects <50 years of age and Group 2 (n = 65) were subjects between 40-80 years of age referred for stress echocardiography. Systolic excursion (SExc), duration (SDur) and peak velocity (s') and early diastolic excursion (EDExc) and peak velocity (e') were measured. SExc was not correlated with heart rate, height or body surface area (BSA) for either LV wall in either group, but SDur was inversely correlated with heart rate for both walls and both groups, and after adjustment for heart rate, males in both groups had a shorter septal SDur. Septal and lateral s` were independently and positively correlated with SExc, heart rate and height in both groups, independent of sex and age. There were no correlations of heart rate, height or BSA with either e` or EDExc for either wall in either group. Heart rate and height independently modify the relationship between s` and SExc, but neither are related to EDExc or e`. These findings suggest that s` and SExc cannot be used interchangeably for the assessment of LV long-axis contraction.
NASA Astrophysics Data System (ADS)
Nagaoka, Chika; Komori, Masashi
Body movement synchrony (i. e. rhythmic synchronization between the body movements of interacting partners) has been described by subjective impressions of skilled counselors and has been considered to reflect the depth of the client-counselor relationship. This study analyzed temporal changes in body movement synchrony through a video analysis of client-counselor dialogues in counseling sessions. Four 50-minute psychotherapeutic counseling sessions were analyzed, including two negatively evaluated sessions (low evaluation groups) and two positively evaluated sessions (high evaluation groups). In addition, two 50-minute ordinary advice sessions between two high school teachers and the clients in the high rating group were analyzed. All sessions represent role-playing. The intensity of the participants' body movement was measured using a video-based system. Temporal change of body movement synchrony was analyzed using moving correlations of the intensity between the two time series. The results revealed (1) A consistent temporal pattern among the four counseling cases, though the moving correlation coefficients were higher for the high evaluation group than the low evaluation group and (2) Different temporal patterns for the counseling and advice sessions even when the clients were the same. These results were discussed from the perspective of the quality of client-counselor relationship.
High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems
NASA Astrophysics Data System (ADS)
Silva, R. E. F.; Blinov, Igor V.; Rubtsov, Alexey N.; Smirnova, O.; Ivanov, M.
2018-05-01
We bring together two topics that, until now, have been the focus of intense but non-overlapping research efforts. The first concerns high-harmonic generation in solids, which occurs when an intense light field excites a highly non-equilibrium electronic response in a semiconductor or a dielectric. The second concerns many-body dynamics in strongly correlated systems such as the Mott insulator. We show that high-harmonic generation can be used to time-resolve ultrafast many-body dynamics associated with an optically driven phase transition, with accuracy far exceeding one cycle of the driving light field. Our work paves the way for time-resolving highly non-equilibrium many-body dynamics in strongly correlated systems, with few femtosecond accuracy.
Yang, Xiaotian; Zhou, Yujing; Wang, Pu; He, Chengqi; He, Hongchen
2016-05-01
To examine the effect of whole-body vibration in enhancing pulmonary function, functional exercise capacity and quality of life in people with chronic obstructive pulmonary disease and examine its safety. Randomized controlled trials examining the effects of whole body vibration among people with chronic obstructive pulmonary disease were identified by two independent researchers. Articles were excluded if they were studies on people with other primary diagnosis, abstracts published in the conferences or books. PEDro scale was used to assess the methodological quality of the selected studies. We evaluated the level of evidence by using the GRADE approach. The results were extracted by two researchers and confirmed by the third researcher if disagreement existed. Sources included Cochrane Central Register of Controlled Trials, PubMed, CINAHL, EMBASE, PEDro, AMED, PsycINFO, ClinicalTrials.gov, Current Controlled Trials and reference lists of all relevant articles. Four studies involving 206 participants were included in this systematic review. Methodological quality was rated as good for two studies. No great benefits on pulmonary function were found in whole body vibration treatment group. Two studies showed that quality of life was improved in people with chronic obstructive pulmonary disease. Whole body vibration led to significant improvements in functional exercise capacity measured with six minutes walking test. Nearly no adverse events were observed. Whole body vibration may improve functional exercise capacity and quality of life in people with chronic obstructive pulmonary disease. There was insufficient evidence to prove the effects of whole body vibration on pulmonary function. © The Author(s) 2015.
Ratti, Francesca; D'Alessandro, Valentina; Cipriani, Federica; Giannone, Fabio; Catena, Marco; Aldrighetti, Luca
2016-06-01
The aim of the present study was to prospectively investigate whether the anthropometric measures of A Body Shape Index (ABSI, taking into account waist circumference adjusted for height and weight) affects feasibility and outcome of laparoscopic liver resections. One hundred patients undergoing laparoscopic liver resection were prospectively included in the study (2014-2015). Preoperative clinical parameters, including body mass index (BMI) and ABSI were evaluated for associations with intraoperative outcome and postoperative results (morbidity, mortality and functional recovery). Twenty-two and 78 patients underwent major and minor hepatectomies, respectively. Conversion rate was 9%, mean blood loss was 210 ± 115 ml. Postoperative morbidity was 15% and mortality was nil. Mean length of stay was 4 days. When considering the entire series, ABSI was not associated with intra and postoperative outcome. After stratification of patients according to difficulty score, Pearson's correlation demonstrated an association between ABSI and intraoperative blood loss (P = 0.03) and time for functional recovery (P = 0.05) in patients undergoing resections with high score of difficulty. Body habitus has an influence on outcome of laparoscopic liver resections with high degree of difficulty, while feasibility and outcome of low difficulty resections seem not to be affected by anthropometric measures. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
The association between sexual satisfaction and body image in women.
Pujols, Yasisca; Seal, Brooke N; Meston, Cindy M
2010-02-01
Although sexual functioning has been linked to sexual satisfaction, it only partially explains the degree to which women report being sexually satisfied. Other factors include quality of life, relational variables, and individual factors such as body image. Of the few studies that have investigated the link between body image and sexual satisfaction, most have considered body image to be a single construct and have shown mixed results. The present study assessed multiple body image variables in order to better understand which aspects of body image influence multiple domains of sexual satisfaction, including sexual communication, compatibility, contentment, personal concern, and relational concern in a community sample of women. Women between the ages of 18 and 49 years in sexual relationships (N = 154) participated in an Internet survey that assessed sexual functioning, five domains of sexual satisfaction, and several body image variables. Body image variables included the sexual attractiveness, weight concern, and physical condition subscales of the Body Esteem Scale, the appearance-based subscale of the Cognitive Distractions During Sexual Activity Scale, and body mass index. Total score of the Sexual Satisfaction Scale for Women was the main outcome measure. Sexual functioning was measured by a modified Female Sexual Function Index. Consistent with expectations, correlations indicated significant positive relationships between sexual functioning, sexual satisfaction, and all body image variables. A multiple regression analysis revealed that sexual satisfaction was predicted by high body esteem and low frequency of appearance-based distracting thoughts during sexual activity, even after controlling for sexual functioning status. Several aspects of body image, including weight concern, physical condition, sexual attractiveness, and thoughts about the body during sexual activity predict sexual satisfaction in women. The findings suggest that women who experience low sexual satisfaction may benefit from treatments that target these specific aspects of body image.
Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems
NASA Astrophysics Data System (ADS)
Cohen, Guy
2015-03-01
This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.
Morgado, P Cresta; Giorlando, A; Castro, M; Navigante, A
2016-09-01
This study aims to determine the influence of significant weight loss on parameters of skeletal muscle function in a population of advanced cancer patients with fatigue. A cross-sectional and comparative study was designed between two arms of advanced cancer patients with fatigue (fatigue numeral scale (FNS) ≥4). A arm (n = 27) with ≥5 % weight loss in the last 6 months, and B arm (n = 22) without weight loss. Muscle strength was examined by hand grip technique and measurements of body composition by bioimpedance analysis (BIA), values of hemoglobin, albumin, lactic dehydrogenase (LDH), c-reactive protein (CRP), urine creatinine, and FNS. These variables were compared between both groups and correlated within each group. here were no differences concerning parameters of muscle strength between both arms. A arm had values of CRP ≥10 ug/dl in 77 % compared with 38.5 % of B arm (p = 0.004). A arm showed a higher percentage of body cell mass (%BCM) than B arm (p = 0.005). The A arm also showed a lower percentage of fat mass (%FM) (p = 0.014) when compared to the B arm. FNS was higher in A arm (median 7 vs 5; p = 0.047). All the variables of muscle strength had a significant positive correlation. In A arm, BCM had a negative significant correlation with CRP (p = 0.021). In this study, significant weight loss and high CRP did not have influence on parameters of skeletal muscular function. We consider that further studies should be necessary, preferably with longitudinal designs to evaluate these findings.
Shigehara, Kazuyoshi; Konaka, Hiroyuki; Ijima, Masashi; Nohara, Takahiro; Narimoto, Kazutaka; Izumi, Koji; Kadono, Yoshifumi; Kitagawa, Yasuhide; Mizokami, Atsushi; Namiki, Mikio
2016-12-01
We investigated the correlation between highly sensitive C-reactive protein (hs-CRP) levels and erectile function, and assessed the clinical role of hs-CRP levels in men with late-onset hypogonadism (LOH) syndrome. For 77 participants, we assessed Sexual Health Inventory for men (SHIM) score, Aging Male Symptoms (AMS) score and International Prostate Symptom Score (IPSS). We also evaluated free testosterone (FT), hs-CRP, total cholesterol, triglyceride levels, high density lipoprotein cholesterol, hemoglobin A1c, body mass index, waist size and blood pressure. We attempted to identify parameters correlated with SHIM score and to determine the factors affecting cardiovascular risk based on hs-CRP levels. A Spearman rank correlation test revealed that age, AMS score, IPSS and hs-CRP levels were significantly correlated with SHIM score. Age-adjusted analysis revealed that hs-CRP and IPSS were the independent factors affecting SHIM score (r= -0.304 and -0.322, respectively). Seventeen patients belonged to the moderate to high risk group for cardiovascular disease, whereas the remaining 60 belonged to the low risk group. Age, FT value and SHIM score showed significant differences between the two groups. A multivariate regression analysis demonstrated that SHIM score was an independent factor affecting cardiovascular risk (OR: 0.796; 95%CI: 0.637-0.995).
Clothing choices, weight, and trait self-objectification.
Tiggemann, Marika; Andrew, Rachel
2012-06-01
The present study aimed to assess the link between clothing choice and aspects of body image. Participants were 112 female undergraduate students who completed a questionnaire containing a measure of clothing functions, as well as BMI, self-classified weight, and trait self-objectification. Results indicated that BMI and self-classified weight were positively correlated with the choice of clothes for camouflage. Self-objectification was positively correlated with choice of clothes for fashion, and negatively correlated with choosing clothes for comfort. It was concluded that clothing represents an important but neglected aspect of contemporary women's management of their body's appearance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Auerbach, Joshua D; Lonner, Baron S; Crerand, Canice E; Shah, Suken A; Flynn, John M; Bastrom, Tracey; Penn, Phedra; Ahn, Jennifer; Toombs, Courtney; Bharucha, Neil; Bowe, Whitney P; Newton, Peter O
2014-04-16
Appearance concerns in individuals with adolescent idiopathic scoliosis can result in impairment in daily functioning, or body image disturbance. The Body Image Disturbance Questionnaire (BIDQ) is a self-reported, seven-question instrument that measures body image disturbance in general populations; no studies have specifically examined body image disturbance in those with adolescent idiopathic scoliosis. This study aimed to validate a modified version of the BIDQ in a population with adolescent idiopathic scoliosis and to establish discriminant validity by comparing responses of operatively and nonoperatively treated patients with those of normal controls. In the first phase, a multicenter study of forty-nine patients (mean age, fourteen years; thirty-seven female) with adolescent idiopathic scoliosis was performed to validate the BIDQ-Scoliosis version (BIDQ-S). Participants completed the BIDQ-S, Scoliosis Research Society (SRS)-22, Children's Depression Index (CDI), and Body Esteem Scale for Adolescents and Adults (BESAA) questionnaires. Descriptive statistics and Pearson correlation coefficients were calculated. In the second phase, ninety-eight patients with adolescent idiopathic scoliosis (mean age, 15.7 years; seventy-five female) matched by age and sex with ninety-eight healthy adolescents were enrolled into a single-center study to evaluate the discriminant validity of the BIDQ-S. Subjects completed the BIDQ-S and a demographic form before treatment. Independent-sample t tests and Pearson correlation coefficients were calculated. The BIDQ-S was internally consistent (Cronbach alpha = 0.82), and corrected item total correlations ranged from 0.47 to 0.67. The BIDQ-S was significantly correlated with each domain of the SRS-22 and the total score (r = -0.50 to -0.72, p ≤ 0.001), with the CDI (r = 0.31, p = 0.03), and with the BESAA (r = 0.60, p < 0.001). BIDQ-S scores differed significantly between patients (1.50) and controls (1.06, p < 0.005), establishing discriminant validity. The BIDQ-S is an internally consistent outcomes instrument that correlated with the SRS-22, CDI, and BESAA outcomes instruments in a scoliosis population. The scores of the patients with scoliosis indicated greater back-related body image disturbance compared with healthy controls. To our knowledge, this user-friendly instrument is the first to examine body image disturbance in adolescent idiopathic scoliosis, and it provides a comprehensive evaluation of how scoliosis-related appearance concerns impact psychosocial and daily functioning.
Metabolites Associated With Lean Mass and Adiposity in Older Black Men.
Murphy, Rachel A; Moore, Steven C; Playdon, Mary; Meirelles, Osorio; Newman, Anne B; Milijkovic, Iva; Kritchevsky, Stephen B; Schwartz, Ann; Goodpaster, Bret H; Sampson, Joshua; Cawthon, Peggy; Simonsick, Eleanor M; Gerszten, Robert E; Clish, Clary B; Harris, Tamara B
2017-10-01
To identify biomarkers of body mass index, body fat, trunk fat, and appendicular lean mass, nontargeted metabolomics was performed in plasma from 319 black men in the Health, Aging and Body Composition study (median age 72 years, median body mass index 26.8 kg/m2). Body mass index was calculated from measured height and weight; percent fat, percent trunk fat, and appendicular lean mass were measured with dual-energy x-ray absorptiometry. Pearson partial correlations between body composition measures and metabolites were adjusted for age, study site, and smoking. Out of 350 metabolites, body mass index, percent fat, percent trunk fat, and appendicular lean mass were significantly correlated with 92, 48, 96, and 43 metabolites at p less than .0014. Metabolites most strongly correlated with body composition included carnitine, a marker of fatty acid oxidation (positively correlated), triacylglycerols (positively correlated), and amino acids including branched-chain amino acids (positively correlated except for acetylglycine and serine). Gaussian Graphical Models of metabolites found that 25 lipid metabolites clustered into a single network. Groups of five amino acids, three plasmalogens, and two carnitines were also observed. Findings confirm prior reports of associations between amino acids, lean mass, and fat mass in addition to associations not previously reported. Future studies should consider whether these metabolites are relevant for metabolic disease processes. Published by Oxford University Press on behalf of The Gerontological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2010-01-01
Recent, current, and planned NASA missions that employ blunt-body entry vehicles pose aerothermodynamic problems that challenge the state-of-the art of experimental and computational methods. The issues of boundary-layer transition and turbulent heating on the heat shield have become important in the designs of both the Mars Science Laboratory and Crew Exploration Vehicle. While considerable experience in these general areas exists, that experience is mainly derived from simple geometries; e.g. sharp-cones and flat-plates, or from lifting bodies such as the Space Shuttle Orbiter. For blunt-body vehicles, application of existing data, correlations, and comparisons is questionable because an all, or mostly, subsonic flow field is produced behind the bow shock, as compared to the supersonic (or even hypersonic) flow of other configurations. Because of the need for design and validation data for projects such as MSL and CEV, many new experimental studies have been conducted in the last decade to obtain detailed boundary-layer transition and turbulent heating data on this class of vehicle. In this paper, details of several of the test programs are reviewed. The laminar and turbulent data from these various test are shown to correlate in terms of edge-based Stanton and Reynolds number functions. Correlations are developed from the data for transition onset and turbulent heating augmentation as functions of momentum thickness Reynolds number. These correlation can be employed as engineering-level design and analysis tools.
Body size preference and body weight perception among two migrant groups of non-Western origin.
Nicolaou, Mary; Doak, Colleen; Dam, Rob van; Hosper, Karen; Seidell, Jaap; Stronks, Karien
2008-12-01
To evaluate body size preference, body weight perception and their relationship with actual weight in two migrant groups of non-Western origin, Turks and Moroccans; additionally, to study the association between body size preference and acculturation. Cross-sectional study. Amsterdam, The Netherlands. Males and females (18-30 years) were randomly selected from the population registry (n 451); participants, or at least one of their parents, were born in Turkey or Morocco. Body size preference was assessed using seven silhouette drawings and body weight perception was assessed by asking participants' opinion of own weight. Acculturation variables were generation status and two scale measures, cultural orientation and social contacts. Participants showed preference for a thin body size. The discrepancy between ideal and current size was significant in women but not men (P < 0.001). Perceived current body size was correlated with BMI (Spearman's correlation coefficient 0.60, P < 0.001 (men) and 0.73, P < 0.001 (women)). Among overweight participants (BMI = 25.0-29.9 kg/m2), 63-82 % of men and 35 % of women perceived themselves as 'average'. Paying attention to own body weight was associated with a discrepancy between ideal and current size among women and with perceiving oneself as 'overweight' among men. Body size preference was not significantly associated with the three acculturation variables. We did not observe a preference for large body sizes in these two non-Western migrant groups. Similar to Western populations, most women wished to be thinner than they were. This was not the case among men, the majority of whom were also unaware of being overweight.
Defect-suppressed atomic crystals in an optical lattice.
Rabl, P; Daley, A J; Fedichev, P O; Cirac, J I; Zoller, P
2003-09-12
We present a coherent filtering scheme which dramatically reduces the site occupation number defects for atoms in an optical lattice by transferring a chosen number of atoms to a different internal state via adiabatic passage. With the addition of superlattices it is possible to engineer states with a specific number of atoms per site (atomic crystals), which are required for quantum computation and the realization of models from condensed matter physics, including doping and spatial patterns. The same techniques can be used to measure two-body spatial correlation functions.
Photon interferometry of Au+Au collisions at the BNL Relativistic Heavy-Ion Collider.
Bass, Steffen A; Müller, Berndt; Srivastava, Dinesh K
2004-10-15
We calculate the two-body correlation function of direct photons produced in central Au+Au collisions at the Relativistic Heavy-Ion Collider. Our calculation includes contributions from the early preequilibrium phase in which photons are produced via hard parton scatterings as well as radiation of photons from a thermalized quark-gluon plasma and the subsequent expanding hadron gas. We find that high energy photon interferometry provides a faithful probe of the details of the space-time evolution and of the early reaction stages of the system.
Frenkel versus charge-transfer exciton dispersion in molecular crystals
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco
2013-11-01
By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.
Two-time correlation function of an open quantum system in contact with a Gaussian reservoir
NASA Astrophysics Data System (ADS)
Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki
2018-05-01
An exact formula of a two-time correlation function is derived for an open quantum system which interacts with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is shown that the two-time correlation function up to the first order is a good approximation to the exact one.
Fernández-del-Valle, Maria; Larumbe-Zabala, Eneko; Morande-Lavin, Gonzalo; Perez Ruiz, Margarita
2016-01-01
The aim of this study was to analyze the effects of short-term resistance training on the body composition profile and muscle function in a group of Anorexia Nervosa restricting type (AN-R) patients. The sample consisted of AN-R female adolescents (12.8 ± 0.6 years) allocated into the control and intervention groups (n = 18 each). Body composition and relative strength were assessed at baseline, after 8 weeks and 4 weeks following the intervention. Body mass index (BMI) increased throughout the study (p = 0.011). Significant skeletal muscle mass (SMM) gains were found in the intervention group (p = 0.045, d = 0.6) that correlated to the change in BMI (r = 0.51, p < 0.031). Meanwhile, fat mass (FM) gains were significant in the control group (p = 0.047, d = 0.6) and correlated (r > 0.60) with change in BMI in both the groups. Significant relative strength increases (p < 0.001) were found in the intervention group and were sustained over time. SMM gain is linked to an increased relative strength when resistance training is prescribed. Although FM, relative body fat (%BF), BMI and body weight (BW) are used to monitor nutritional progress. Based on our results, we suggest to monitor SMM and relative strength ratios for a better estimation of body composition profile and muscle function recovery. Implications for Rehabilitation Anorexia Nervosa Restricting Type (AN-R) AN-R is a psychiatric disorder that has a major impact on muscle mass content and function. However, little or no attention has been paid to muscle recovery. High intensity resistance training is safe for AN-R after hospitalization and enhances the force generating capacity as well as muscle mass gains. Skeletal muscle mass content and muscular function improvements are partially maintained for a short period of time when the exercise program ceases.
A Kinematically Consistent Two-Point Correlation Function
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1998-01-01
A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.
Deciphering the Role of the Barr Body in Malignancy: An insight into head and neck cancer.
Sharma, Deepti; Koshy, George; Gupta, Shruti; Sharma, Bhushan; Grover, Sonal
2017-11-01
X chromosome inactivation is the epitome of epigenetic regulation and long non-coding ribonucleic acid function. The differentiation status of cells has been ascribed to X chromosome activity, with two active X chromosomes generally only observed in undifferentiated or poorly differentiated cells. Recently, several studies have indicated that the reactivation of an inactive X chromosome or X chromosome multiplication correlates with the development of malignancy; however, this concept is still controversial. This review sought to shed light on the role of the X chromosome in cancer development. In particular, there is a need for further exploration of the expression patterns of X-linked genes in cancer cells, especially those in head and neck squamous cell carcinoma (HNSCC), in order to identify different prognostic subpopulations with distinct clinical implications. This article proposes a functional relationship between the loss of the Barr body and the disproportional expression of X-linked genes in HNSCC development.
Stochastic, real-space, imaginary-time evaluation of third-order Feynman-Goldstone diagrams
NASA Astrophysics Data System (ADS)
Willow, Soohaeng Yoo; Hirata, So
2014-01-01
A new, alternative set of interpretation rules of Feynman-Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mEh after 106 Monte Carlo steps.
Vocks, Silja; Busch, Martin; Grönemeyer, Dietrich; Schulte, Dietmar; Herpertz, Stephan; Suchan, Boris
2010-05-01
In spite of many similarities in the psychopathology of anorexia nervosa (AN) and bulimia nervosa (BN), the 2 groups seem to differ in terms of body image disturbances. Therefore, the aim of the present study was to compare neuronal correlates of viewing photographs of one's own body and another woman's body in patients with these forms of eating disorders as well as controls. We performed functional magnetic resonance imaging while women with AN (n = 13), BN (n = 15) and healthy controls (n = 27) viewed 16 standardized pictures of their own body and another woman's body, taken while the participants were wearing a bikini. When viewing their own body, participants with AN and BN showed reduced activity in the inferior parietal lobule compared with healthy women. In response to looking at another woman's body, participants with AN had higher amygdala activity than did those in the BN and control groups. The generalizability of the results is limited by the small sample size. Our data suggest decreased attentional processes in AN and BN toward one's own body, possibly reflecting body-related avoidance behaviour. Enhanced limbic activity elicited by looking at another woman's body in participants with AN might be a neural correlate of stronger emotional activation and enhanced vigilance, possibly resulting from social comparison processes. Our study reveals hints about body image-associated alterations in brain activity, which seem to be more pronounced among women with AN than among those with BN.
Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay
2016-01-01
To examine relationships between self-reported ankle function and Hoffmann (H) reflex modulation during changes in body positions in patients with chronic ankle instability (CAI). Observational. Laboratory. Thirty-one young adults with CAI (19 males, 12 females) participated. There were two subscales of Foot and Ankle Ability Measure (FAAM) to quantify self-reported ankle function during activities of daily living (ADL) and sports activities. Maximum H-reflexes (H-max) and motor waves (M-max) from soleus and fibularis longus were recorded while participants lied prone and stood in bipedal and unipedal stances. For each muscle, percent change scores in Hmax:Mmax ratios were calculated between each pair of positions: prone-to-bipedal, bipedal-to-unipedal, and prone-to-unipedal, and used as a measure of H-reflex modulation. Pearson correlation coefficients were calculated between FAAM and H-reflex modulation measures. There were significant correlations between: (1) FAAM-ADL and soleus prone-to-unipedal modulation (r = 0.384, p = 0.04), (2) FAAM-Sport and soleus prone-to-unipedal modulation (r = 0.505, p = 0.005), (3) FAAM-Sport and fibular bipedal-to-unipedal modulation (r = 0.377, p = 0.05), and (4) FAAM-Sport and fibular prone-to-unipedal modulation (r = 0.396, p = 0.04). CAI patients presented moderate, positive relationships between self-reported ankle function and H-reflex modulation during changes in body positions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inhomogeneous hard homonuclear molecules
NASA Astrophysics Data System (ADS)
Quintana, Jacqueline
A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.
Recurrence formulas for fully exponentially correlated four-body wave functions
NASA Astrophysics Data System (ADS)
Harris, Frank E.
2009-03-01
Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (≥-1) of all the interparticle distances rij , multiplied by an exponential containing an arbitrary linear combination of all the rij . These integrals are generalizations of those encountered using Hylleraas basis functions and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill plus some easily evaluated three-body “boundary” integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.
Assessment of functional liver reserve: old and new in 99mTc-sulfur colloid scintigraphy.
Matesan, Manuela M; Bowen, Stephen R; Chapman, Tobias R; Miyaoka, Robert S; Velez, James W; Wanner, Michele F; Nyflot, Matthew J; Apisarnthanarax, Smith; Vesselle, Hubert J
2017-07-01
A semiquantitative assessment of hepatic reticuloendothelial system function using colloidal particles scintigraphy has been proposed previously as a surrogate for liver function evaluation. In this article, we present an updated method for the overall assessment of technetium-99m (Tc)-sulfur colloid (SC) biodistribution that combines information from planar and attenuation-corrected Tc-SC single-photon emission computed tomography (SPECT) images. The imaging protocol described here was developed as an easy-to-implement method to assess overall and regional liver function changes associated with chronic liver disease. Thirty patients with chronic liver disease and primary liver cancers underwent Tc-SC whole-body planar imaging and upper-abdomen SPECT/computed tomography (CT) imaging before external beam radiation therapy. Liver plus spleen and bone marrow counts as a fraction of whole-body total counts were calculated from SC planar imaging. Attenuation correction Tc-SC images were rigidly coregistered with treatment planning CT images that contained liver and spleen regions-of-interest. Ratios of total liver counts to total spleen counts were obtained from the aligned Tc-SC SPECT and CT images, and were subsequently used to separate liver plus spleen counts obtained on the planar images. This hybrid SPECT/CT and planar scintigraphy approach yielded an updated estimation of whole-body SC distribution. These biodistribution estimates were compared with historical data for reference. Statistical associations of Tc-SC biodistribution to liver function parameters and liver disease scoring systems (Child-Pugh) were evaluated by Spearman rank correlation. Percentages of Tc-SC uptake ranged from 19.3 to 77.3% for the liver; 3.4 to 40.7% for the spleen; and 19.0 to 56.7% for the bone marrow. Spearman's correlation coefficient showed a significant statistical association between Child-Pugh score and bone marrow uptake at 0.55 (P≤0.05), liver uptake at 0.71 (P≤0.001), spleen uptake at 0.56 (P≤0.05), and spleen plus bone marrow uptake at 0.71 (P≤0.001). There was also a good correlation of SC uptake percentages with individual quantitative liver function components such as albumin and total bilirubin, and qualitative liver function components (varices, portal hypertension, ascites). For albumin: r=0.64 (P<0.001) compared with liver uptake percentage from the whole-body counts, r=0.49 (P<0.001) compared with splenic uptake percentage, and r=0.45 (P≤0.05) compared with bone marrow uptake percentage. We describe a novel liver function quantitative assessment method that combines whole-body planar images and SPECT/CT attenuation-corrected images of Tc-SC distribution. Attenuation-corrected SC images provide valuable regional liver function information, which is a unique feature compared with other imaging methods available. The results of our study indicate that the Tc-SC uptake by the liver, spleen, and bone marrow correlates with liver function parameters in patients with diffuse liver disease and the correlation with liver disease severity is slightly better for liver uptake percentages than for individual values of bone marrow and spleen uptake percentages.
Vörös, Károly; Hetyey, Csaba; Reiczigel, Jeno; Czirok, Gábor Nagy
2009-06-01
The aim of the study was to establish normal reference echocardiographic values for three Hungarian dog breeds, and to determine the potential dependence of intracardiac parameters on body weight, age and gender. M-mode and two-dimensional echocardiography were performed on 95 clinically healthy dogs including 45 Hungarian Vizslas, 28 Mudis and 22 Hungarian Greyhounds. Linear intracardiac measurements included interventricular septal thickness (IVS), left ventricular internal diameter (LVID), left ventricular posterior wall thickness (LVPW) both in systole and diastole, as well as left atrial internal diameter (LAD), and aortic diameter (AOD) in early diastole. Fractional shortening (FS), end-diastolic and end-systolic left ventricular volumes (EDV and ESV), as well as LAD:AOD ratio were calculated from the linear parameters. Mean, range and standard deviation of measurements were calculated for each breed. Body weight positively correlated in all three breeds with all left ventricular dimensions, such as IVS d , IVS s , LVID d , LVIDD s , LVPW d and LVPW s parameters. LA values showed positive correlations to body weight in all three breeds. AOD and LA demonstrated a positive correlation with body weight in Hungarian Vizslas and Mudis, whilst the LAD:AOD ratio was related to body weight only in Mudis. Gender did not correlate with any of the measured echocardiographic parameters in any breeds. In Mudis, a positive correlation was found between the LAD: AOD ratio and age, as well as between the LAD: AOD ratio and E point to septal separation (EPSS).
Steady-state visually evoked potential correlates of human body perception.
Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja
2016-11-01
In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.
NASA Technical Reports Server (NTRS)
Sulyma, P. R.; Penny, M. M.
1978-01-01
A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.
Size-Dependent Realized Fecundity in Two Lepidopteran Capital Breeders.
Rhainds, Marc
2015-08-01
Body size is correlated with potential fecundity in capital breeders, but size-dependent functions of realized fecundity may be impacted by reproductive losses due to mating failure or oviposition time limitations (number of eggs remaining in the abdomen of females at death). Post-mortem assessment of adults collected in the field after natural death represents a sound approach to quantify how body size affects realized fecundity. This approach is used here for two Lepidoptera for which replicated field data are available, the spruce budworm Choristoneura fumiferana Clemens (Tortricidae) and bagworm Metisa plana Walker (Psychidae). Dead female budworms were collected on drop trays placed beneath tree canopies at four locations. Most females had mated during their lifetime (presence of a spermatophore in spermatheca), and body size did not influence mating failure. Oviposition time limitation was the major factor restricting realized fecundity of females, and its incidence was independent of body size at three of the four locations. Both realized and potential fecundity of female budworms increased linearly with body size. Female bagworms are neotenous and reproduce within a bag; hence, parameters related to realized fecundity are unusually tractable. For each of five consecutive generations of bagworms, mating probability increased with body size, so that virgin-dead females were predominantly small, least fecund individuals. The implication of size-dependent reproductive losses are compared for the two organisms in terms of life history theory and population dynamics, with an emphasis on how differential female motility affects the evolutionary and ecological consequences of size-dependent realized fecundity. © Crown copyright 2015.
Chen, X L; Han, Y; Zhao, X M; Liu, Y; Lü, J J
2017-01-03
Objective: To explore the correlation among the pre-pregnant body mass index (BMI), gestational weight gain (GWG) and umbilical cord blood C peptide, and to investigate the influence of maternal weight management on the incidence of baby long-term metabolic syndrome. Methods: During May to Aug.2015, 485 pregnant women in Zhejiang Taizhou first people's hospital and Taizhou Huangyan maternal &child care service centre were selected in random and divided into four groups according to pre-pregnant BMI: low body mass, normal body mass, over body mass and obese group, and also divided into two groups for getting gestational diabetes mellitus (GDM) or not. According to the gestational weight gain (GWG), all the cases were divided into two groups: above the Institute Of Medicine (IMO) 2009 recommendations or not. According to the outcome, the GDM group which had received weight control treatment, was divided into successful treat group or not. At last, we tested the umbilical cord blood C peptide and birth weight of each newborn and compared the difference in all subgroups. The correlation between the umbilical cord blood C peptide and birth weight were analysed. Results: (1) In the pre-pregnant BMI groups, there were significant differences of incidence of GDM ( P <0.05). But, there were no significant differences of incidence of GWG in four groups ( P >0.05). (2) Newborn birth weight and the umbilical cord blood C peptide were positively correlated ( r =0.673, P <0.05). (3) Umbilical cord blood C peptide showed the correlation in all subgroups for different pre-pregnant BMI, GDM or not, overweight or not ( P <0.05), but only the GDM or not group had relation to newborn birth weight in all subgroups. (4) All groups showed correlations with neonatal umbilical cord blood C peptide, the GDM mostly (β=0.58), pre-pregnant BMI secondly (β: 0.36, 0.38) , and GWG weakly (β=0.17). (5) By stratification analysis, in GDM group, low body mass was negatively correlated with umbilical cord blood C peptide ( P <0.05, β=-1.41); in non-GDM group, over body mass group and obsess group were positively correlated with umbilical cord blood C peptide ( P <0.05, β=0.37, 0.46). Conclusion: There was direct correlation between the pre-pregnant body mass index, the gestational weight gain and umbilical cord blood C peptide. Suitable maternal weight control especially pre-pregnant body mass index control will lower the baby long-term metabolic syndrome incidence.
Two-particle correlation function and dihadron correlation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vechernin, V. V., E-mail: v.vechernin@spbu.ru; Ivanov, K. O.; Neverov, D. I.
It is shown that, in the case of asymmetric nuclear interactions, the application of the traditional dihadron correlation approach to determining a two-particle correlation function C may lead to a form distorted in relation to the canonical pair correlation function {sub C}{sup 2}. This result was obtained both by means of exact analytic calculations of correlation functions within a simple string model for proton–nucleus and deuteron–nucleus collisions and by means of Monte Carlo simulations based on employing the HIJING event generator. It is also shown that the method based on studying multiplicity correlations in two narrow observation windows separated inmore » rapidity makes it possible to determine correctly the canonical pair correlation function C{sub 2} for all cases, including the case where the rapidity distribution of product particles is not uniform.« less
Relationship between alertness, performance, and body temperature in humans.
Wright, Kenneth P; Hull, Joseph T; Czeisler, Charles A
2002-12-01
Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.
Relationship between alertness, performance, and body temperature in humans
NASA Technical Reports Server (NTRS)
Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.
2002-01-01
Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.
Correlation functions from a unified variational principle: Trial Lie groups
NASA Astrophysics Data System (ADS)
Balian, R.; Vénéroni, M.
2015-11-01
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.
Thermal regulation in Macaca mulatta during space flight
NASA Technical Reports Server (NTRS)
Klimovitsky, V. Y.; Alpatov, A. M.; Hoban-Higgins, T. M.; Utekhina, E. S.; Fuller, C. A.
2000-01-01
The results of studies of body temperature and thermal regulation in Macaca mulatta flown on biosatellites Bion 6-11 are presented. The effect of microgravity on deep body temperature as compared to skin temperature was investigated. In most animals, deep body temperature declined moderately and then tended to return to normal. Brain temperature/ankle temperature correlation changed. The system of thermal regulation was found to function adequately in space.
NASA Astrophysics Data System (ADS)
Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.
Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.
M.A. Mohamed; H.C. Coppel; J.D. Podgwaite; W.D. Rollinson
1983-01-01
Disease-free larvae of Neodiprion sertifer (Geoffroy) treated with its nucleopolyhedrosis virus in the field and under laboratory conditions showed a high correlation between virus accumulation and body weight. Simple linear regression models were found to fit viral accumulation versus body weight under either circumstance.
Stadler, A M; Digel, I; Embs, J P; Unruh, T; Tehei, M; Zaccai, G; Büldt, G; Artmann, G M
2009-06-17
A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.
Systematic expansion in the order parameter for replica theory of the dynamical glass transition.
Jacquin, Hugo; Zamponi, Francesco
2013-03-28
It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.
Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter
2018-01-01
The promyelocytic leukemia ( pml ) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Sharfi, Kineret; Rosenblum, Sara
2015-01-01
Following the International Classification of Functioning, Disability and Health (ICF) concepts, this study examines body functions such as sensory modulation and sleep quality among adults with learning disabilities (LD). One hundred and ten participants, 55 adults with LD and 55 matched controls (mean age 30 years) filled in a socio-demographic questionnaire, the Adults/Adolescents Sensory Profile (AASP), and the Mini Sleep Questionnaire (MSQ). Chi-tests, Mann-Whitney tests, and Kolmogorov-Smirnov tests were conducted to examine group differences related to socio-demographic characteristics and body functions. Correlation and regression analyses were conducted to examine relationships between body functions. Significant differences were found between the groups in: (a) unique socio-demographic variables: high-schools attended, family status and number of children; (b) body functions: low registration and sensory sensitivity (p < .001), sensory avoiding (p = .002), sensory seeking (p = .021) and sleep quality (p < .001). Significant correlations were found between AASP subscale scores and the MSQ final score in each group. Regression analysis revealed that for the entire sample (N = 108), low registration accounted for 10.2% of the variance of sleep quality above group membership (p < .001), while in a separate examination of adults with LD (n = 53), low registration accounted for 19.9% of the variance of sleep quality (p < .001). Adults with LD need to be studied through a health-related perspective such as the ICF model to gain further understanding of their unique characteristics and daily needs. Sensory and sleep functions of adults with LD should be further studied in the context of health related quality of life.
Evidence of three-body correlation functions in Rb+ and Sr2+ acetonitrile solutions
NASA Astrophysics Data System (ADS)
D'Angelo, P.; Pavel, N. V.
1999-09-01
The local structure of Sr2+ and Rb+ ions in acetonitrile has been investigated by x-ray absorption spectroscopy (XAS) and molecular dynamics simulations. The extended x-ray absorption fine structure above the Sr and Rb K edges has been interpreted in the framework of multiple scattering (MS) formalism and, for the first time, clear evidence of MS contributions has been found in noncomplexing ion solutions. Molecular dynamics has been used to generate the partial pair and triangular distribution functions from which model χ(k) signals have been constructed. The Sr2+ and Rb+ acetonitrile pair distribution functions show very sharp and well-defined first peaks indicating the presence of a well organized first solvation shell. Most of the linear acetonitrile molecules have been found to be distributed like hedgehog spines around the Sr2+ and Rb+ ions. The presence of three-body correlations has been singled out by the existence of well-defined peaks in the triangular configurations. Excellent agreement has been found between the theoretical and experimental data enforcing the reliability of the interatomic potentials used in the simulations. These results demonstrate the ability of the XAS technique in probing the higher-order correlation functions in solution.
Measures for the Dynamics in a Few-Body Quantum System with Harmonic Interactions
NASA Astrophysics Data System (ADS)
Nagy, I.; Pipek, J.; Glasser, M. L.
2018-01-01
We determine the exact time-dependent non-idempotent one-particle reduced density matrix and its spectral decomposition for a harmonically confined two-particle correlated one-dimensional system when the interaction terms in the Schrödinger Hamiltonian are changed abruptly. Based on this matrix in coordinate space we derive a precise condition for the equivalence of the purity and the overlap-square of the correlated and non-correlated wave functions as the model system with harmonic interactions evolves in time. This equivalence holds only if the interparticle interactions are affected, while the confinement terms are unaffected within the stability range of the system. Under this condition we analyze various time-dependent measures of entanglement and demonstrate that, depending on the magnitude of the changes made in the Hamiltonian, periodic, logarithmically increasing or constant value behavior of the von Neumann entropy can occur.
Tsai, Song-Yen; Chou, Hung-Yi; The, Hee-Wen; Chen, Chao-Meei; Chen, Chien-Jen
2003-08-01
This cross-sectional study examined the possible influence on the development of cognitive function among adolescents due to long-term arsenic exposure. Forty-nine junior school students drinking arsenic-containing well water and 60 controls matched with age, sex, education, body height, body weight, body mass index, and socioeconomic status were compared. The former was divided into two groups: high and low exposure, with mean cumulative arsenic levels of 520629.0+/-605824.2 and 13782.2+/-12886.0 ppm, respectively. Four neurobehavioral tests including continuous performance test (CPT), symbol digit (SD), pattern memory (PM) and switching attention (SA) were applied. A strong correlation between age and education caused collinearity in the multiple regression model (r=0.84, P<0.0001). Only education and sex, excluding age, were entered into the model as covariates. Pattern memory and switching attention were significantly affected by long-term cumulative exposure to arsenic after adjusting for education and sex. It is suggested that the arsenic levels in the well water may be monitored extensively, but if there is no intervention, then neurobehavioral function will not be protected. Limitations of the current study require replication of this effect in other studies to confirm this conclusion.
Roy, Subhojit; Galasko, Douglas R.; Hansen, Lawrence A.; Masliah, Eliezer
2017-01-01
Despite considerable research to uncover them, the anatomic and neuropathologic correlates of memory impairment in dementia with Lewy bodies (DLB) remain unclear. While some studies have implicated Lewy bodies in the neocortex, others have pointed to α-synuclein pathology in the hippocampus. We systematically examined hippocampal Lewy pathology and its distribution in hippocampal subfields in 95 clinically and neuropathologically characterized human cases of DLB, finding that α-synuclein pathology was highest in two hippocampal-related subregions: the CA2 subfield and the entorhinal cortex (EC). While the EC had numerous classic somatic Lewy bodies, CA2 contained mainly Lewy neurites in presumed axon terminals, suggesting the involvement of the EC → CA2 circuitry in the pathogenesis of DLB symptoms. Clinicopathological correlations with measures of verbal and visual memory supported a role for EC Lewy pathology, but not CA2, in causing these memory deficits. Lewy pathology in CA1—the main output region for CA2—correlated best with results from memory testing despite a milder pathology. This result indicates that CA1 may be more functionally relevant than CA2 in the context of memory impairment in DLB. These correlations remained significant after controlling for several factors, including concurrent Alzheimer's pathology (neuritic plaques and neurofibrillary tangles) and the interval between time of testing and time of death. Our data suggest that although hippocampal Lewy pathology in DLB is predominant in CA2 and EC, memory performance correlates most strongly with CA1 burden. SIGNIFICANCE STATEMENT This study provides a detailed neuropathologic analysis of hippocampal Lewy pathology in human patients with autopsy-confirmed dementia with Lewy bodies. The approach—informed by regional molecular markers, concurrent Alzheimer's pathology analysis, and relevant clinical data—helps tease out the relative contribution of Lewy pathology to memory dysfunction in the disease. Levels of Lewy pathology were found to be highest in the hippocampal CA2 subregion and entorhinal cortex, implicating a potentially overlooked circuit in disease pathogenesis. However, correlation with memory performance was strongest with CA1. This unexpected finding suggests that Lewy pathology must reach a critical burden across hippocampal circuitry to contribute to memory dysfunction beyond that related to other factors, notably coexisting Alzheimer's disease tau pathology. PMID:28039370
Thermal contact through a two-temperature kinetic Ising chain
NASA Astrophysics Data System (ADS)
Bauer, M.; Cornu, F.
2018-05-01
We consider a model for thermal contact through a diathermal interface between two macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor interactions is endowed with a Glauber dynamics with different temperatures and kinetic parameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with respect to the model of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence upon the stationary non equilibrium values of the two-spin correlations at any distance. By mapping to the dynamics of spin domain walls and using free fermion techniques, we determine the scaled generating function for the cumulants of the exchanged heat amounts per unit of time in the long time limit.
Two-point correlation functions in inhomogeneous and anisotropic cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br
Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation functionmore » in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.« less
The mean density and two-point correlation function for the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1988-01-01
The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.
Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.
Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z
2014-08-14
The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.
Goljar, Nika; Burger, Helena; Vidmar, Gaj; Leonardi, Matilde; Marincek, Crt
2011-06-01
To determine whether the International Classification of Functioning, Disability and Health (ICF) model is adequate for assessing disability patterns in stroke survivors in the sub-acute rehabilitation setting in terms of potential changes in functional profiles over time. Functional profiles of 197 stroke patients were assessed using the ICF Checklist and the Functional Independence Measure (FIMTM) at admission and discharge from rehabilitation hospital. The ICF Checklist was applied based on medical documentation and rehabilitation team meetings. Descriptive analyses were performed to identify changes in ICF categories and qualifiers from admission to discharge, and correlations between different improvement measures were calculated. Mean rehabilitation duration was 60 days; patients' mean age was 60 years, with mean FIM-score 75 at admission. Mean FIM-score improvement at discharge was 12.5. Within Body Functions, changes in at least 10% of patients were found regarding 13 categories; no categories within Body Structures, 24 within Activities and Participation, and 2 within Environmental Factors. Changes were mostly due to improvement in qualifiers, except for within Environmental Factors, where they were due to use of additional categories. Correlations between improvements in Body Functions and Activities and Participation (regarding capacity and performance), as well as between capacity and performance within Activities and Participation, were approximately 0.4. Rating ICF categories with qualifiers enables the detection of changes in functional profiles of stroke patients who underwent an inpatient rehabilitation programme. :
Functional Movements in Japanese Mini-Basketball Players
Kuzuhara, Kenji; Shibata, Masashi; Iguchi, Junta; Uchida, Ryo
2018-01-01
Abstract Functional movement screen (FMS) has been used to establish normative data and determine potential injury risk for young adults and athletes, but there are few data in elementary school-age children. The purpose of this study was to establish fundamental values for the FMS in elementary school-age mini-basketball players. Secondary purposes were to examine relationships between functional movement patterns and age, peak height velocity (PHV), and body mass index (BMI), and to compare functional movement patterns between boys and girls and between individuals with and without a history of injury. The mean composite FMS score was 16.5 ± 2.2 (16.5 ± 2.4 for boys, 16.5 ± 1.7 for girls). The composite FMS score was positively correlated with age (r = .312) and negatively correlated with the BMI (r = − .371). However, the FMS score was not correlated with PHV or with PHV age. The FMS score was not different between boys and girls or between individuals who reported a previous injury and those who did not. However, boys in the mini-basketball teams performed better than girls on the trunk stability push-up and rotary stability tests. Age and the body mass index were significantly associated with better and poorer functional movement, respectively. PMID:29599859
Functional Movements in Japanese Mini-Basketball Players.
Kuzuhara, Kenji; Shibata, Masashi; Iguchi, Junta; Uchida, Ryo
2018-03-01
Functional movement screen (FMS) has been used to establish normative data and determine potential injury risk for young adults and athletes, but there are few data in elementary school-age children. The purpose of this study was to establish fundamental values for the FMS in elementary school-age mini-basketball players. Secondary purposes were to examine relationships between functional movement patterns and age, peak height velocity (PHV), and body mass index (BMI), and to compare functional movement patterns between boys and girls and between individuals with and without a history of injury. The mean composite FMS score was 16.5 ± 2.2 (16.5 ± 2.4 for boys, 16.5 ± 1.7 for girls). The composite FMS score was positively correlated with age (r = .312) and negatively correlated with the BMI (r = - .371). However, the FMS score was not correlated with PHV or with PHV age. The FMS score was not different between boys and girls or between individuals who reported a previous injury and those who did not. However, boys in the mini-basketball teams performed better than girls on the trunk stability push-up and rotary stability tests. Age and the body mass index were significantly associated with better and poorer functional movement, respectively.
Stenlöf, Kaj; Wernstedt, Ingrid; Fjällman, Ted; Wallenius, Ville; Wallenius, Kristina; Jansson, John-Olov
2003-09-01
Recently, we demonstrated that intracerebroventricular injection of IL-6 increases energy expenditure and decreases body fat in rodents. Therefore, IL-6 may play a role in appetite and body weight control in the central nervous system. In the present study we evaluated cerebrospinal fluid (CSF) and serum IL-6 levels in humans in relation to body fat content and to CSF and serum levels of leptin. Thirty-two healthy overweight/obese male subjects with a body mass index range of 29.3-36.0 kg/m(2) were studied. Total and sc body fat were measured by dual energy x-ray absorptiometry and computed tomography, respectively. CSF IL-6 levels were in some individuals higher than serum IL-6 levels and correlated negatively with total body weight, sc and total body fat. In contrast, CSF leptin levels were 30-60 times lower than serum leptin levels and correlated positively with serum leptin, body weight, sc and total body fat. Furthermore, there was a negative correlation between CSF IL-6 and leptin. In conclusion, CSF IL-6 differs in many ways from CSF leptin. CSF IL-6 may be locally produced rather than serum derived, and body fat-regulating regions in the central nervous system may be exposed to insufficient IL-6 levels in more severe obesity.
Impact of age and sex on normal left heart structure and function.
Hagström, Linn; Henein, Michael Y; Karp, Kjell; Waldenström, Anders; Lindqvist, Per
2017-11-01
Accurate age- and sex-related normal reference values of ventricular structure and function are important to determine the level of dysfunction in patients. The aim of this study therefore was to document normal age range sex-related measurements of LV structural and functional measurements to serve such purpose. We evaluated left ventricular structure and function in 293 healthy subjects between 20 and 90 years with equally distributed gender. Doppler echocardiography was used including measure of both systolic and diastolic functions. Due to systolic LV function, only long axis function correlated with age (r = 0·55, P<0·01) and the correlation was stronger in females. Concerning diastolic function, there was a strong age correlation in all parameters used (r = 0·40-0·74, P<0·001). Due to LV structural changes over age, females showed a larger reduction in end-diastolic volumes, but no or trivial difference in wall thickness after the age of 60 years. Age is associated with significant normal changes in left ventricular structure and function, which should be considered when deciding on normality. These changes are related to systemic arterial changes as well as body stature, thus reflecting overall body ageing process. Furthermore, normal cardiac ageing in females might partly explain the higher prevalence of heart failure with preserved ejection in females. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Low-energy effective Hamiltonians for correlated electron systems beyond density functional theory
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Miyake, Takashi; Imada, Masatoshi; Biermann, Silke
2017-08-01
We propose a refined scheme of deriving an effective low-energy Hamiltonian for materials with strong electronic Coulomb correlations beyond density functional theory (DFT). By tracing out the electronic states away from the target degrees of freedom in a controlled way by a perturbative scheme, we construct an effective Hamiltonian for a restricted low-energy target space incorporating the effects of high-energy degrees of freedom in an effective manner. The resulting effective Hamiltonian can afterwards be solved by accurate many-body solvers. We improve this "multiscale ab initio scheme for correlated electrons" (MACE) primarily in two directions by elaborating and combining two frameworks developed by Hirayama et al. [M. Hirayama, T. Miyake, and M. Imada, Phys. Rev. B 87, 195144 (2013), 10.1103/PhysRevB.87.195144] and Casula et al. [M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, T. Miyake, A. J. Millis, and S. Biermann, Phys. Rev. Lett. 109, 126408 (2012), 10.1103/PhysRevLett.109.126408]: (1) Double counting of electronic correlations between the DFT and the low-energy solver is avoided by using the constrained G W scheme; and (2) the frequency dependent interactions emerging from the partial trace summation are successfully separated into a nonlocal part that is treated following ideas by Hirayama et al. and a local part treated nonperturbatively in the spirit of Casula et al. and are incorporated into the renormalization of the low-energy dispersion. The scheme is favorably tested on the example of SrVO3.
Yagil, Yaron; Geller, Shulamit; Levy, Sigal; Sidi, Yael; Aharoni, Shiri
2018-04-01
The purpose of the current study was to assess the uniqueness of the condition of kidney transplant recipients in comparison to a sample of matching healthy peers in relation to body-image dissatisfaction and identification, quality of life and psychological distress. Participants were 45 kidney transplant recipients who were under follow-up care at a Transplant Unit of a major Medical Center, and a sample of 45 matching healthy peers. Measures were taken using self-report questionnaires [Body-Image Ideals Questionnaire (BIIQ), Body Identification Questionnaire (BIQ), Brief Symptoms Inventory (BSI), and the SF-12]. The major findings were the following: (i) kidney transplant recipients reported lower levels of quality of life and higher levels of PsD when compared to their healthy peers; (ii) no difference in body-image dissatisfaction was found between the two studied groups; (iii) significant correlations between body-image dissatisfaction quality of life and PsD were found only in the kidney transplant recipients. The kidney transplantation condition has a moderating effect in the association between body-image dissatisfaction PsD but not in the association between body-image dissatisfaction and quality of life; (iv) kidney transplant recipients experienced higher levels of body identification than did their healthy peers. Taken together, these findings highlight the unique condition of kidney transplant recipients, as well as the function that body-image plays within the self.
Morita, T; Nakamura, K; Osuga, T; Yokoyama, N; Khoirun, N; Morishita, K; Sasaki, N; Ohta, H; Takiguchi, M
2017-08-01
To assess the repeatability and characteristics of echocardiographic indices of the right ventricular (RV) function derived from speckle-tracking echocardiography. Fourteen laboratory Beagles and 103 privately owned dogs without cardiac disease were involved in this study. Right ventricular longitudinal strain, strain rate, and a strain-related index for assessing RV dyssynchrony derived from speckle-tracking echocardiography were obtained by two different observers using five Beagles. Within-day, between-day, and interobserver coefficients of variation and the intraclass correlation coefficient of speckle-tracking echocardiography indices were determined. Both speckle-tracking echocardiography and conventional indices of RV function, including the peak velocity of systolic tricuspid annular motion, tricuspid annulus plane systolic excursion, fractional area change, and the Tei index, were obtained from 14 Beagles and 103 privately owned dogs. Relationships between echocardiographic indices and the body weight, heart rate, age, and sex were estimated by regression analysis. Speckle-tracking echocardiographic indices showed good within-day repeatability, between-day and interobserver repeatability were moderate to good. In large dogs, RV longitudinal strain, strain rate, and fractional area change were significantly decreased, while the index of RV dyssynchrony, systolic tricuspid annular motion, tricuspid annulus plane systolic excursion, and the Tei index were increased. All speckle-tracking and conventional echocardiographic indices were correlated with the body weight. The speckle-tracking echocardiography indices were highly repeatable and body weight affected speckle-tracking echocardiography indices in dogs. Further studies are needed to apply speckle-tracking echocardiography indices in dogs with cardiac disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Jenkins, Nathaniel D M; Buckner, Samuel L; Bergstrom, Haley C; Cochrane, Kristen C; Goldsmith, Jacob A; Housh, Terry J; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T
2014-10-01
To quantify the reliability of isometric leg extension torque (LEMVC), rate of torque development (LERTD), isometric handgrip force (HGMVC) and RFD (HGRFD), isokinetic leg extension torque and power at 1.05rad·s(-1) and 3.14rad·s(-1); and explore relationships among strength, power, and balance in older men. Sixteen older men completed 3 isometric handgrips, 3 isometric leg extensions, and 3 isokinetic leg extensions at 1.05rad·s(-1) and 3.14rad·s(-1) during two visits. Intraclass correlation coefficients (ICCs), ICC confidence intervals (95% CI), coefficients of variation (CVs), and Pearson correlation coefficients were calculated. LERTD demonstrated no reliability. The CVs for LERTD and HGRFD were ≤23.26%. HGMVC wasn't related to leg extension torque or power, or balance (r=0.14-0.47; p>0.05). However, moderate to strong relationships were found among isokinetic leg extension torque at 1.05rad·s(-1) and 3.14rad·s(-1), leg extension mean power at 1.05rad·s(-1), and functional reach (r=0.51-0.95; p≤0.05). LERTD and HGRFD weren't reliable and shouldn't be used as outcome variables in older men. Handgrip strength may not be an appropriate surrogate for lower body strength, power, or balance. Instead, perhaps handgrip strength should only be used to describe upper body strength or functionality, which may compliment isokinetic assessments of lower body strength, which were reliable and related to balance. Copyright © 2014 Elsevier Inc. All rights reserved.
Powering Up Mitochondrial Functions to Treat Mitochondrial Disease
2017-10-01
derived hormone whose serum level correlates positively with the severity of mitochondrial cardiomyopathy (recently published with DOD grant support...o Pei lab has recently discovered that GDF15 is a heart-derived hormone that regulates body growth. Circulating GDF15 level correlates positively...Circulating GDF15 level correlates positively with the severity of mitochondrial cardiomyopathy and can be used as a serum biomarker for our 5
Trainor, Brian C.; Hofmann, Hans A.
2009-01-01
Somatostatin is a neuropeptide best known for its inhibitory effects on growth hormone secretion and has recently been implicated in the control of social behavior. Several somatostatin receptor subtypes have been identified in vertebrates, but the functional basis for this diversity is still unclear. Here we investigate the expression levels of the somatostatin prepropeptide and two of its receptors, sstR2, and sstR3, in the brains of socially dominant and subordinate A. burtoni males using real-time PCR. Dominant males had higher somatostatin prepropeptide and sstR3 expression in hypothalamus compared to subordinate males. Hypothalamic sstR2 expression did not differ. There were no differences in gene expression in the telencephalon. We also observed an interesting difference between dominants and subordinates in the relationship between hypothalamic sstR2 expression and body size. As would be predicted based on the inhibitory effects of somatostatin on somatic growth, sstR2 expression was negatively correlated with body size in dominant males. In contrast sstR2 expression was positively correlated with body size in subordinate males. These results suggest that somatostatin prepropeptide and receptor gene expression in the hypothalamus are associated with the control of somatic growth in A. burtoni depending on social status. PMID:17374406
Exteroceptive and Interoceptive Body-Self Awareness in Fibromyalgia Patients
Valenzuela-Moguillansky, Camila; Reyes-Reyes, Alejandro; Gaete, María I.
2017-01-01
Fibromyalgia is a widespread chronic pain disease characterized by generalized musculoskeletal pain and fatigue. It substantially affects patients' relationship with their bodies and quality of life, but few studies have investigated the relationship between pain and body awareness in fibromyalgia. We examined exteroceptive and interoceptive aspects of body awareness in 30 women with fibromyalgia and 29 control participants. Exteroceptive body awareness was assessed by a body-scaled action-anticipation task in which participants estimated whether they could pass through apertures of different widths. Interoceptive sensitivity (IS) was assessed by a heartbeat detection task where participants counted their heartbeats during different time intervals. Interoceptive awareness was assessed by the Multidimensional Assessment of Interoceptive Awareness (MAIA). The “passability ratio” (the aperture size for a 50% positive response rate, divided by shoulder width), assessed by the body-scaled action-anticipation task, was higher for fibromyalgia participants, indicating disrupted exteroceptive awareness. Overestimating body size correlated positively with pain and its impact on functionality, but not with pain intensity. There was no difference in IS between groups. Fibromyalgia patients exhibited a higher tendency to note bodily sensations and decreased body confidence. In addition, the passability ratio and IS score correlated negatively across the whole sample, suggesting an inverse relationship between exteroceptive and interoceptive body awareness. There was a lower tendency to actively listen to the body for insight, with higher passability ratios across the whole sample. Based on our results and building on the fear-avoidance model, we outline a proposal that highlights possible interactions between exteroceptive and interoceptive body awareness and pain. Movement based contemplative practices that target sensory-motor integration and foster non-judgmental reconnection with bodily sensations are suggested to improve body confidence, functionality, and quality of life. PMID:28348526
Exteroceptive and Interoceptive Body-Self Awareness in Fibromyalgia Patients.
Valenzuela-Moguillansky, Camila; Reyes-Reyes, Alejandro; Gaete, María I
2017-01-01
Fibromyalgia is a widespread chronic pain disease characterized by generalized musculoskeletal pain and fatigue. It substantially affects patients' relationship with their bodies and quality of life, but few studies have investigated the relationship between pain and body awareness in fibromyalgia. We examined exteroceptive and interoceptive aspects of body awareness in 30 women with fibromyalgia and 29 control participants. Exteroceptive body awareness was assessed by a body-scaled action-anticipation task in which participants estimated whether they could pass through apertures of different widths. Interoceptive sensitivity (IS) was assessed by a heartbeat detection task where participants counted their heartbeats during different time intervals. Interoceptive awareness was assessed by the Multidimensional Assessment of Interoceptive Awareness (MAIA). The "passability ratio" (the aperture size for a 50% positive response rate, divided by shoulder width), assessed by the body-scaled action-anticipation task, was higher for fibromyalgia participants, indicating disrupted exteroceptive awareness. Overestimating body size correlated positively with pain and its impact on functionality, but not with pain intensity. There was no difference in IS between groups. Fibromyalgia patients exhibited a higher tendency to note bodily sensations and decreased body confidence. In addition, the passability ratio and IS score correlated negatively across the whole sample, suggesting an inverse relationship between exteroceptive and interoceptive body awareness. There was a lower tendency to actively listen to the body for insight, with higher passability ratios across the whole sample. Based on our results and building on the fear-avoidance model, we outline a proposal that highlights possible interactions between exteroceptive and interoceptive body awareness and pain. Movement based contemplative practices that target sensory-motor integration and foster non-judgmental reconnection with bodily sensations are suggested to improve body confidence, functionality, and quality of life.
Reduced Flexibility Associated with Metabolic Syndrome in Community-Dwelling Elders
Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng
2015-01-01
Background The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. Methods A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Results Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25–2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95–0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Conclusion Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength and cardiorespiratory fitness in the elderly were not observed. Furthermore, flexibility should be included in the complete evaluation for metabolic syndrome. PMID:25614984
Vogrin, Bernarda; Slak Rupnik, Marjan; Mičetić-Turk, Dušanka
2017-12-01
Objective In adults, improper arterial function has been linked to cognitive impairment. The pulse wave velocity (PWV), augmentation index (AIx) and other vascular parameters are useful indicators of arterial health. In our study, we monitored arterial properties, body constitution, school success, and motor skills in young adolescents. We hypothesize that reduced cognitive and motor abilities have a vascular origin in children. Methods We analysed 81 healthy school children aged 11-16 years. Anthropometry central systolic arterial pressure, body mass index (BMI), standard deviation scores (SDS) BMI, general school performance grade, and eight motor tests were assessed. PWV, AIx, and central systolic arterial pressure (SBPao) were measured. Results AIx and SBPao correlated negatively with school performance grades. Extremely high AIx, PWV and SBPao values were observed in 5% of children and these children had average to low school performance. PWV correlated significantly with weight, height, and waist and hip circumference. AIx, PWV, school success, and BMI correlated strongly with certain motor functions. Conclusions Increased AIx and SBPao are associated with lower school and motor performance in children. PWV is influenced by the body's constitution.
Measuring fish body condition with or without parasites: does it matter?
Lagrue, C; Poulin, R
2015-10-01
A fish body condition index was calculated twice for each individual fish, including or excluding parasite mass from fish body mass, and index values were compared to test the effects of parasite mass on measurement of body condition. Potential correlations between parasite load and the two alternative fish condition index values were tested to assess how parasite mass may influence the perception of the actual effects of parasitism on fish body condition. Helminth parasite mass was estimated in common bully Gobiomorphus cotidianus from four New Zealand lakes and used to assess the biasing effects of parasite mass on body condition indices. Results showed that the inclusion or exclusion of parasite mass from fish body mass in index calculations significantly influenced correlation patterns between parasite load and fish body condition indices. When parasite mass was included, there was a positive correlation between parasite load and fish body condition, seemingly indicating that fish in better condition supported higher parasite loads. When parasite mass was excluded, there was no correlation between parasite load and fish body condition, i.e. there was no detectable effect of helminth parasites on fish condition or fish condition on parasite load. Fish body condition tended to be overestimated when parasite mass was not accounted for; results showed a positive correlation between relative parasite mass and the degree to which individual fish condition was overestimated. Regardless of the actual effects of helminth parasites on fish condition, parasite mass contained within a fish should be taken into account when estimating fish condition. Parasite tissues are not host tissues and should not be included in fish mass when calculating a body condition index, especially when looking at potential effects of helminth infections on fish condition. © 2015 The Fisheries Society of the British Isles.
Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.
Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng
2013-11-01
Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Geographical variation in parasitism shapes larval immune function in a phytophagous insect
NASA Astrophysics Data System (ADS)
Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme
2013-12-01
Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.
β cell function and insulin resistance in lean cases with polycystic ovary syndrome.
Pande, Arunkumar R; Guleria, Ashwani Kumar; Singh, Sudhanshu Dev; Shukla, Manoj; Dabadghao, Preeti
2017-11-01
Obesity is a major factor in development of insulin resistance (IR) and metabolic features in polycystic ovary syndrome (PCOS) patients. Nearly two-thirds patients with PCOS (30 of 37 confirmed cases of PCOS) in our previous community based study were lean, in contrast to Caucasians. Metabolic parameters including IR and β cell function have not been characterized well in this group of lean PCOS. To study the metabolic features including IR and β cell function in lean PCOS patients, 53 patients with BMI, <23 kg/m 2 were compared with 71 obese PCOS and 45 age and body mass index matched controls. Lean patients had similar β cell function and IR as compared to controls and obese patients, though the latter group had more metabolic abnormality. Fasting c-peptide and its ratio to glucose were significantly higher in lean patients compared to controls. In subset of subjects with five point OGTT, disposition index and Matsuda index (MI) showed significant negative correlation with BMI and blood pressure. MI also negatively correlated with waist, WHR, and HOMAB. High fasting C-peptide is probably a class effect as is seen in both lean and obese PCOS.
Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M
2004-09-01
In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.
Wichstrøm, Lars; von Soest, Tilmann
2016-02-01
Previous research has demonstrated that body satisfaction and self-esteem are highly correlated in adolescence, but reasons are poorly understood. We tested three explanations: (i) the two constructs are actually one; (ii) the correlation is explained by a third factor; (iii) there are prospective relationships between body satisfaction and self-esteem. A population based sample of Norwegian adolescents (n = 3251) was examined four times over a 13-year period. Confirmatory factor analysis showed that body satisfaction and self-esteem were separate constructs and the correlation between them was not attenuated when adjusting for 3rd variables. Autoregressive cross-lagged analysis showed reciprocal relations between body satisfaction and self-esteem. The prospective relationship between body satisfaction during adolescence and self-esteem in late adolescence and emerging adulthood was stronger than at later stages. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Lim, Seung-Lark; Bruce, Amanda S
2015-01-01
We developed a novel decision-making paradigm that allows us to apply prospect theory in behavioral economics to body mass. 67 healthy young adults completed self-report measures and two decision-making tasks for weight-loss, as well as for monetary rewards. We estimated risk-related preference and loss aversion parameters for each individual, separately for weight-loss and monetary rewards choice data. Risk-seeking tendency for weight-loss was positively correlated with body mass index in individuals who desired to lose body weight, whereas the risk-seeking for momentary rewards was not. Risk-seeking for weight-loss was correlated to excessive body shape preoccupations, while aversion to weight-gain was correlated with self-reports of behavioral involvement for successful weight-loss. We demonstrated that prospect theory can be useful in explaining the decision-making process related to body mass. Applying prospect theory is expected to advance our understanding of decision-making mechanisms in obesity, which might prove helpful for improving healthy choices.
Lim, Seung-Lark; Bruce, Amanda S.
2015-01-01
We developed a novel decision-making paradigm that allows us to apply prospect theory in behavioral economics to body mass. 67 healthy young adults completed self-report measures and two decision-making tasks for weight-loss, as well as for monetary rewards. We estimated risk-related preference and loss aversion parameters for each individual, separately for weight-loss and monetary rewards choice data. Risk-seeking tendency for weight-loss was positively correlated with body mass index in individuals who desired to lose body weight, whereas the risk-seeking for momentary rewards was not. Risk-seeking for weight-loss was correlated to excessive body shape preoccupations, while aversion to weight-gain was correlated with self-reports of behavioral involvement for successful weight-loss. We demonstrated that prospect theory can be useful in explaining the decision-making process related to body mass. Applying prospect theory is expected to advance our understanding of decision-making mechanisms in obesity, which might prove helpful for improving healthy choices. PMID:25852628
The cluster-cluster correlation function. [of galaxies
NASA Technical Reports Server (NTRS)
Postman, M.; Geller, M. J.; Huchra, J. P.
1986-01-01
The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.
Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle
Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; e Silva, Fabyano Fonseca; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen
2015-01-01
Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this GWAS may inform the search for causative mutations that could underpin genomic breeding for improved growth rates. PMID:26445451
Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.
Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; Fonseca e Silva, Fabyano; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen
2015-01-01
Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this GWAS may inform the search for causative mutations that could underpin genomic breeding for improved growth rates.
Exploring Eucladoceros ecomorphology using geometric morphometrics.
Curran, Sabrina C
2015-01-01
An increasingly common method for reconstructing paleoenvironmental parameters of hominin sites is ecological functional morphology (ecomorphology). This study provides a geometric morphometric study of cervid rearlimb morphology as it relates to phylogeny, size, and ecomorphology. These methods are then applied to an extinct Pleistocene cervid, Eucladoceros, which is found in some of the earliest hominin-occupied sites in Eurasia. Variation in cervid postcranial functional morphology associated with different habitats can be summarized as trade-offs between joint stability versus mobility and rapid movement versus power-generation. Cervids in open habitats emphasize limb stability to avoid joint dislocation during rapid flight from predators. Closed-adapted cervids require more joint mobility to rapidly switch directions in complex habitats. Two skeletal features (of the tibia and calcaneus) have significant phylogenetic signals, while two (the femur and third phalanx) do not. Additionally, morphology of two of these features (tibia and third phalanx) were correlated with body size. For the tibial analysis (but not the third phalanx) this correlation was ameliorated when phylogeny was taken into account. Eucladoceros specimens from France and Romania fall on the more open side of the habitat continuum, a result that is at odds with reconstructions of their diet as browsers, suggesting that they may have had a behavioral regime unlike any extant cervid. © 2014 Wiley Periodicals, Inc.
Munhoz, Wagner Cesar; Hsing, Wu Tu
2014-07-01
Studies on the relationships between postural deviations and the temporomandibular system (TS) functional health are controversial and inconclusive. This study stems from the hypothesis that such inconclusiveness is due to authors considering functional pathologies of the TS (FPTS) as a whole, without taking into account subjects' specific FPTS signs and symptoms. Based on the author and collaborators' previous studies, the present study analyzed data on body posture from a sample of 50 subjects with (30) and without (20) FPTS. Correlation analyses were applied, taking as independent variables age, sex, Helkimo anamnestic, occlusal, and dysfunction indices, as well as FPTS specific signs and symptoms. Postural assessments of the head, cervical spine, shoulders, lumbar spine, and hips were the dependent variables. Linear regression equations were built that proved to partially predict the presence and magnitude of body posture deviations by drawing on subjects' characteristics and specific FPTS symptoms. Determination coefficients for these equations ranged from 0.082 to 0.199 in the univariate, and from 0.121 to 0.502 in the multivariate regression analyses. Results show that factors intrinsic to the subjects or the TS may potentially interfere in results of studies that analyze relationships between FPTS and body posture. Furthermore, a trend to specificity was found, e.g. the degree of cervical lordosis was found to correlate to age and FPTS degree of severity, suggesting that some TS pathological features, or malocclusion, age or sex, may be more strongly correlated than others with specific posture patterns.
Adipose Tissue Quantification by Imaging Methods: A Proposed Classification
Shen, Wei; Wang, ZiMian; Punyanita, Mark; Lei, Jianbo; Sinav, Ahmet; Kral, John G.; Imielinska, Celina; Ross, Robert; Heymsfield, Steven B.
2007-01-01
Recent advances in imaging techniques and understanding of differences in the molecular biology of adipose tissue has rendered classical anatomy obsolete, requiring a new classification of the topography of adipose tissue. Adipose tissue is one of the largest body compartments, yet a classification that defines specific adipose tissue depots based on their anatomic location and related functions is lacking. The absence of an accepted taxonomy poses problems for investigators studying adipose tissue topography and its functional correlates. The aim of this review was to critically examine the literature on imaging of whole body and regional adipose tissue and to create the first systematic classification of adipose tissue topography. Adipose tissue terminology was examined in over 100 original publications. Our analysis revealed inconsistencies in the use of specific definitions, especially for the compartment termed “visceral” adipose tissue. This analysis leads us to propose an updated classification of total body and regional adipose tissue, providing a well-defined basis for correlating imaging studies of specific adipose tissue depots with molecular processes. PMID:12529479
Spin-imbalance in a 2D Fermi-Hubbard system
NASA Astrophysics Data System (ADS)
Brown, Peter T.; Mitra, Debayan; Guardado-Sanchez, Elmer; Schauß, Peter; Kondov, Stanimir S.; Khatami, Ehsan; Paiva, Thereza; Trivedi, Nandini; Huse, David A.; Bakr, Waseem S.
2017-09-01
The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature phase diagram of the Fermi-Hubbard model as a function of both doping and spin polarization, for which many open questions remain.
Statistical analysis of trypanosomes' motility
NASA Astrophysics Data System (ADS)
Zaburdaev, Vasily; Uppaluri, Sravanti; Pfohl, Thomas; Engstler, Markus; Stark, Holger; Friedrich, Rudolf
2010-03-01
Trypanosome is a parasite causing the sleeping sickness. The way it moves in the blood stream and penetrates various obstacles is the area of active research. Our goal was to investigate a free trypanosomes' motion in the planar geometry. Our analysis of trypanosomes' trajectories reveals that there are two correlation times - one is associated with a fast motion of its body and the second one with a slower rotational diffusion of the trypanosome as a point object. We propose a system of Langevin equations to model such motion. One of its peculiarities is the presence of multiplicative noise predicting higher level of noise for higher velocity of the trypanosome. Theoretical and numerical results give a comprehensive description of the experimental data such as the mean squared displacement, velocity distribution and auto-correlation function.
Marchini, Agnese; Munari, Cristina; Mistri, Michele
2008-06-01
The soft-bottom communities of eight Italian lagoons were analyzed for eight biological traits (feeding, mobility, adult life habitat, body size, life span, reproductive technique, type of larva and reproductive frequency) in order to identify the dominant traits in different transitional environments. We considered the ecological quality status (EcoQS) of the stations, assessed by two biotic indices, AMBI and Bentix. Stations were categorized into EcoQS classes to investigate the relationship between biological functions and ecological quality. The results indicate that the variability of the data was governed by traits linked to resource utilization rather than to life cycle. Lagoons affected by chronic disturbance displayed a poor functional composition, which usually corresponded to poor EcoQS in some cases, correlations between ecological groups and traits modalities were ecologically relevant; however, classes of EcoQS were found to be relatively independent from the functional structure of the considered stations.
Roat, Thaisa Cristina; da Cruz Landim, Carminda
2010-06-01
Apis mellifera is an interesting model to neurobiological studies. It has a relatively small brain that commands the complex learning and memory tasks demanded by the social organization. An A. mellifera colony is made up of a queen, thousands of workers and a varying number of drones. The latter are males, whereas the former are the two female castes. These three phenotypes differ in morphology, physiology and behavior, correlated with their respective functions in the society. Such differences include the morphology and architecture of their brains. To understand the processes generating such polymorphic brains we characterized the cell division and cell death dynamics which underlie the morphogenesis of the mushroom bodies, through several methods suitable for evidence the time and place of occurrence. Cell death was detected in mushroom bodies of last larval instar and mainly in black-eyed pupae. Cell division was observed in mushroom bodies, primarily at the start of metamorphosis, exhibiting temporal differences among workers, queens and males. Copyright 2010 Elsevier Ltd. All rights reserved.
Macroscopic and microscopic components of exchange-correlation interactions
NASA Astrophysics Data System (ADS)
Sottile, F.; Karlsson, K.; Reining, L.; Aryasetiawan, F.
2003-11-01
We consider two commonly used approaches for the ab initio calculation of optical-absorption spectra, namely, many-body perturbation theory based on Green’s functions and time-dependent density-functional theory (TDDFT). The former leads to the two-particle Bethe-Salpeter equation that contains a screened electron-hole interaction. We approximate this interaction in various ways, and discuss in particular the results obtained for a local contact potential. This, in fact, allows us to straightforwardly make the link to the TDDFT approach, and to discuss the exchange-correlation kernel fxc that corresponds to the contact exciton. Our main results, illustrated in the examples of bulk silicon, GaAs, argon, and LiF, are the following. (i) The simple contact exciton model, used on top of an ab initio calculated band structure, yields reasonable absorption spectra. (ii) Qualitatively extremely different fxc can be derived approximatively from the same Bethe-Salpeter equation. These kernels can however yield very similar spectra. (iii) A static fxc, both with or without a long-range component, can create transitions in the quasiparticle gap. To the best of our knowledge, this is the first time that TDDFT has been shown to be able to reproduce bound excitons.
Johari, Hanapi M; Zainudin, Hakimi A; Knight, Victor F; Lumley, Steven A; Subramanium, Ananthan S; Caszo, Brinnell A; Gnanou, Justin V
2017-04-01
Anthropometric and lung function characteristics of triathletes are important for the implementation of individual specific training and recovery recommendations. However, limited data are available for these parameters in triathletes. Hence, the aim of this study was to characterize and examine the gender differences of lung function and anthropometry parameters in competitive triathletes from Malaysia. Body composition assessment and lung function tests were performed on sixteen competitive triathletes (nine male and seven female). The subject's body composition profile including muscle mass (kg), fat free mass (kg), and percent body fat was measured using a bio-impedance segmental body composition analyzer. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were measured by Quark PFT2 spirometer. The anthropometric measurements revealed that male triathletes were significantly taller than female triathletes and had significantly more protein and skeletal muscle mass. The female triathletes, however, had significantly higher percent body fat. Male triathletes had statistically significant higher FVC and FEV1 than female triathletes. Both the male and female triathletes showed a positive correlation between height, fat free mass and the lung function markers FVC and FEV1. This association was not seen with Body Mass Index (BMI) in female triathletes. The data from our study shows that anthropometric parameters are directly linked to lung function of a triathlete. We also found the relationship between BMI and lung function to be gender specific in triathletes and is dependent on the body protein and fat content. Hence, body composition characterization is essential and provides valuable information for developing individual specific training modules.
NASA Astrophysics Data System (ADS)
Menéndez, J.
2018-01-01
Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.
Functional Multiple-Set Canonical Correlation Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.
2012-01-01
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…
Byerly, Mardi S.; Petersen, Pia S.; Ramamurthy, Santosh; Seldin, Marcus M.; Lei, Xia; Provost, Elayne; Wei, Zhikui; Ronnett, Gabriele V.; Wong, G. William
2014-01-01
CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance. PMID:24366864
Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges
NASA Astrophysics Data System (ADS)
Ismail-Beigi, Sohrab
2010-05-01
In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.
Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Muneaki; Hirata, So; Valiev, Marat
2008-02-19
Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of themore » cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.« less
A long time ago, where were the galaxies far, far away?
NASA Astrophysics Data System (ADS)
Sirko, Edwin
How did the universe get from then to now ? I examine this broad cosmological problem from two perspectives: forward and backward. In the forward perspective, I implement a method of generating initial conditions for N -body simulations that accurately models real-space statistical properties, such as the mass variance in spheres and the correlation function. The method requires running ensembles of simulations because the power in the DC mode is no longer assumed to be zero. For moderately sized boxes, I demonstrate that the new method corrects the previously widely ignored underestimate in the mass variance in spheres and the shape of the correlation function. In the backward perspective, I use reconstruction techniques to transform a simulated or observed cosmological density field back in time to the early universe. A simple reconstruction technique is used to sharpen the baryon acoustic peak in the correlation function in simulations. At z = 0.3, one can reduce the sample variance error bar on the acoustic scale by at least a factor of 2 and in principle by nearly a factor of 4. This has significant implications for future observational surveys aiming to measure the cosmological distance scale. Another reconstruction technique, Monge-Ampere-Kantorovich reconstruction, is used on evolved N -body simulations to calibrate its effectiveness in recovering the linear power spectrum. A new "memory model" parametrizes the evolution of Fourier modes into two parameters that describe the amount of memory a given mode retains and how much the mode has been scrambled by nonlinear evolution. Reconstruction is spectacularly successful in restoring the memory of Fourier modes and reducing the scrambling; however, the success of reconstruction is not so obvious when considering the power spectrum alone. I apply reconstruction to a volume-limited sample of galaxies from the Sloan Digital Sky Survey and conclude that linear bias is not a good model in the range 0.01 h Mpc -1 [Special characters omitted.] k [Special characters omitted.] 0.5 h Mpc -1 . The most impressive success of reconstruction applied to real data is that the confidence interval on the normalization of the power spectrum is typically halved when using the reconstructed instead of the nonlinear power spectrum.
Interconversion of Functional Motions between Mesophilic and Thermophilic Adenylate Kinases
Daily, Michael D.; Phillips, George N.; Cui, Qiang
2011-01-01
Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK), for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō) simulation of mesophilic AK from E. coli (AKmeso) to simulations of thermophilic AK from Aquifex aeolicus (AKthermo). In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O) ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS) ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A “heated” simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the “corresponding states” hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways. PMID:21779157
The Association Between Sexual Satisfaction and Body Image in Women
Pujols, Yasisca; Meston, Cindy M.; Seal, Brooke N.
2010-01-01
Introduction Although sexual functioning has been linked to sexual satisfaction, it only partially explains the degree to which women report being sexually satisfied. Other factors include quality of life, relational variables, and individual factors such as body image. Of the few studies that have investigated the link between body image and sexual satisfaction, most have considered body image to be a single construct and have shown mixed results. Aim The present study assessed multiple body image variables in order to better understand which aspects of body image influence multiple domains of sexual satisfaction, including sexual communication, compatibility, contentment, personal concern, and relational concern in a community sample of women. Methods Women between the ages of 18 and 49 years in sexual relationships (N = 154) participated in an Internet survey that assessed sexual functioning, five domains of sexual satisfaction, and several body image variables. Main Outcome Measures Body image variables included the sexual attractiveness, weight concern, and physical condition subscales of the Body Esteem Scale, the appearance-based subscale of the Cognitive Distractions During Sexual Activity Scale, and body mass index. Total score of the Sexual Satisfaction Scale for Women was the main outcome measure. Sexual functioning was measured by a modified Female Sexual Function Index. Results Consistent with expectations, correlations indicated significant positive relationships between sexual functioning, sexual satisfaction, and all body image variables. A multiple regression analysis revealed that sexual satisfaction was predicted by high body esteem and low frequency of appearance-based distracting thoughts during sexual activity, even after controlling for sexual functioning status. Conclusion Several aspects of body image, including weight concern, physical condition, sexual attractiveness, and thoughts about the body during sexual activity predict sexual satisfaction in women. The findings suggest that women who experience low sexual satisfaction may benefit from treatments that target these specific aspects of body image. PMID:19968771
Brain responses to body image stimuli but not food are altered in women with bulimia nervosa
2013-01-01
Background Research into the neural correlates of bulimia nervosa (BN) psychopathology remains limited. Methods In this functional magnetic resonance imaging study, 21 BN patients and 23 healthy controls (HCs) completed two paradigms: 1) processing of visual food stimuli and 2) comparing their own appearance with that of slim women. Participants also rated food craving and anxiety levels. Results Brain activation patterns in response to food cues did not differ between women with and without BN. However, when evaluating themselves against images of slim women, BN patients engaged the insula more and the fusiform gyrus less, compared to HCs, suggesting increased self-focus among women with BN whilst comparing themselves to a ‘slim ideal’. In these BN patients, exposure to food and body image stimuli increased self-reported levels of anxiety, but not craving. Conclusions Our findings suggest that women with BN differ from HCs in the way they process body image, but not in the way they process food stimuli. PMID:24238299
Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter
2018-01-01
The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology. PMID:29888200
Intrinsic network connectivity and own body perception in gender dysphoria.
Feusner, Jamie D; Lidström, Andreas; Moody, Teena D; Dhejne, Cecilia; Bookheimer, Susan Y; Savic, Ivanka
2017-08-01
Gender dysphoria (GD) is characterized by incongruence between one's identity and gender assigned at birth. The biological mechanisms of GD are unclear. We investigated brain network connectivity patterns involved in own body perception in the context of self in GD. Twenty-seven female-to-male (FtM) individuals with GD, 27 male controls, and 27 female controls underwent resting state fMRI. We compared functional connections within intrinsic connectivity networks involved in self-referential processes and own body perception -default mode network (DMN) and salience network - and visual networks, using independent components analyses. Behavioral correlates of network connectivity were also tested using self-perception ratings while viewing own body images morphed to their sex assigned at birth, and to the sex of their gender identity. FtM exhibited decreased connectivity of anterior and posterior cingulate and precuneus within the DMN compared with controls. In FtM, higher "self" ratings for bodies morphed towards the sex of their gender identity were associated with greater connectivity of the anterior cingulate within the DMN, during long viewing times. In controls, higher ratings for bodies morphed towards their gender assigned at birth were associated with right insula connectivity within the salience network, during short viewing times. Within visual networks FtM showed weaker connectivity in occipital and temporal regions. Results suggest disconnectivity within networks involved in own body perception in the context of self in GD. Moreover, perception of bodies in relation to self may be reflective rather than reflexive, as a function of mesial prefrontal processes. These may represent neurobiological correlates to the subjective disconnection between perception of body and self-identification.
Action-minimizing solutions of the one-dimensional N-body problem
NASA Astrophysics Data System (ADS)
Yu, Xiang; Zhang, Shiqing
2018-05-01
We supplement the following result of C. Marchal on the Newtonian N-body problem: A path minimizing the Lagrangian action functional between two given configurations is always a true (collision-free) solution when the dimension d of the physical space R^d satisfies d≥2. The focus of this paper is on the fixed-ends problem for the one-dimensional Newtonian N-body problem. We prove that a path minimizing the action functional in the set of paths joining two given configurations and having all the time the same order is always a true (collision-free) solution. Considering the one-dimensional N-body problem with equal masses, we prove that (i) collision instants are isolated for a path minimizing the action functional between two given configurations, (ii) if the particles at two endpoints have the same order, then the path minimizing the action functional is always a true (collision-free) solution and (iii) when the particles at two endpoints have different order, although there must be collisions for any path, we can prove that there are at most N! - 1 collisions for any action-minimizing path.
Karelis, Antony D; Fontaine, Jonathan; Messier, Virginie; Messier, Lyne; Blanchard, Chris; Rabasa-Lhoret, Remi; Strychar, Irene
2008-07-01
The purpose of this study was to examine the psychosocial correlates of cardiorespiratory fitness (VO2peak) and muscle strength in overweight and obese sedentary post-menopausal women. The study population consisted of 137 non-diabetic, sedentary overweight and obese post-menopausal women (mean age 57.7 years, s = 4.8; body mass index 32.4 kg.m(-2), s = 4.6). At baseline we measured: (1) body composition using dual-energy X-ray absorptiometry; (2) visceral fat using computed tomography; (3) insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp; (4) cardiorespiratory fitness; (5) muscle strength using the leg press exercise; and (6) psychosocial profile (quality of life, perceived stress, self-esteem, body-esteem, and perceived risk for developing chronic diseases) using validated questionnaires. Both VO2peak and muscle strength were significantly correlated with quality of life (r = 0.29, P < 0.01 and r = 0.30, P < 0.01, respectively), and quality of life subscales for: physical functioning (r = 0.28, P < 0.01 and r = 0.22, P < 0.05, respectively), pain (r = 0.18, P < 0.05 and r = 0.23, P < 0.05, respectively), role functioning (r = 0.20, P < 0.05 and r = 0.24, P < 0.05, respectively), and perceived risks (r = -0.24, P < 0.01 and r = -0.30, P < 0.01, respectively). In addition, VO2peak was significantly associated with positive health perceptions, greater body esteem, and less time watching television/video. Stepwise regression analysis showed that quality of life for health perceptions and for role functioning were independent predictors of VO2peak and muscle strength, respectively. In conclusion, higher VO2peak and muscle strength are associated with a favourable psychosocial profile, and the psychosocial correlates of VO2peak were different from those of muscle strength. Furthermore, psychosocial factors could be predictors of VO2peak and muscle strength in our cohort of overweight and obese sedentary post-menopausal women.
Multi-scale coarse-graining of non-conservative interactions in molecular liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.
2014-03-14
A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-bodymore » DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger numerical errors in mapping out the dissipative forces. The framework presented herein can be used to develop computational models of real liquids which are capable of bridging the atomistic and mesoscopic scales.« less
Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi
2015-01-01
Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed 18F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIFNS) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF1S). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIFNS-, and EIF1S-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIFNS was highly correlated with those derived from AIF and EIF1S. Preliminary comparison between AIF and EIFNS in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIFNS method might serve as a noninvasive substitute for individual AIF measurement. PMID:25966947
Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi
2015-10-01
Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed (18)F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIF(NS)) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF(1S)). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIF(NS)-, and EIF(1S)-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIF(NS) was highly correlated with those derived from AIF and EIF(1S). Preliminary comparison between AIF and EIF(NS) in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIF(NS) method might serve as a noninvasive substitute for individual AIF measurement.
Takahashi, Yukio
2011-01-01
To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL) tone and a 50-Hz, 100-dB(SPL) tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL) and that of another one was either 90, 95, or 100 dB(SPL). Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL) of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen), the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.
Tsai, Henry P; Holliday, Casey M
2015-06-01
Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and provide the anatomical foundation for biomechanical investigations of joint tissues. © 2014 Wiley Periodicals, Inc.
Prediction of functional aerobic capacity without exercise testing
NASA Technical Reports Server (NTRS)
Jackson, A. S.; Blair, S. N.; Mahar, M. T.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.
1990-01-01
The purpose of this study was to develop functional aerobic capacity prediction models without using exercise tests (N-Ex) and to compare the accuracy with Astrand single-stage submaximal prediction methods. The data of 2,009 subjects (9.7% female) were randomly divided into validation (N = 1,543) and cross-validation (N = 466) samples. The validation sample was used to develop two N-Ex models to estimate VO2peak. Gender, age, body composition, and self-report activity were used to develop two N-Ex prediction models. One model estimated percent fat from skinfolds (N-Ex %fat) and the other used body mass index (N-Ex BMI) to represent body composition. The multiple correlations for the developed models were R = 0.81 (SE = 5.3 ml.kg-1.min-1) and R = 0.78 (SE = 5.6 ml.kg-1.min-1). This accuracy was confirmed when applied to the cross-validation sample. The N-Ex models were more accurate than what was obtained from VO2peak estimated from the Astrand prediction models. The SEs of the Astrand models ranged from 5.5-9.7 ml.kg-1.min-1. The N-Ex models were cross-validated on 59 men on hypertensive medication and 71 men who were found to have a positive exercise ECG. The SEs of the N-Ex models ranged from 4.6-5.4 ml.kg-1.min-1 with these subjects.(ABSTRACT TRUNCATED AT 250 WORDS).
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
Extraction of body waves from seismic ambient noise
NASA Astrophysics Data System (ADS)
Kim, Eun Mi; Kang, Tae Seob; Kim, Tae Sung
2014-05-01
Ambient noise cross-correlation is used in seismology to obtain the part of the surface waves and applied to the theoretical researches and various experiments. Obtaining the part of body waves from the ambient noise correlation is difficult to recognize because of the feature decreasing body waves along the travel path. However, the travel times of body waves detected from temporal and spacial events occurrence involve uncertainty of the epicenter and accompany temporal-spacial restriction. On the other hand, ambient noise is always occurred and is obtained at the all stations. So it can be applied to research of the internal earth when the case of extracting the body waves using the cross-correlation is possible. This study shows that body waves can be observed by analyzing the ambient noise recorded seismic data in South Korea. Using 42 broad-band three components stations located on the South Korea. The data removed the mean and trend are filtered high-frequency band(0.5-2Hz). The noise correlations were calculated for all combinations of radial, transverse and veltical components, which required rotation of the horizontal components for each station pair according to the azimuth at each station of the great-circle between the two stations. Removing the part of broad-band signals effected by occurring event, the part of standard deviations more than three times are removed. And it applied spectral whitening to reduce effects of the surface waves. After data processing, all ambient noise signals are cross-correlated and temporal stacked. We found the signals propagating from one station to another station, this signals can be interpreted as the body waves distinguished surface travel-time in high-frequency band.From this analysis, we can extract the body waves using ambient noise cross correlation of continuous data at the stations.
Two-neutron sequential decay of O 24
Jones, M. D.; Frank, N.; Baumann, T.; ...
2015-11-25
In this study, a two-neutron unbound excited state of 24O was populated through a (d,d') reaction at 83.4 MeV/nucleon. A state at E=715±110 (stat) ±45 (sys) keV with a width of Γ<2 MeV was observed above the two-neutron separation energy placing it at 7.65 ± 0.2 MeV with respect to the ground state. Three-body correlations for the decay of 24O → 22O + 2n show clear evidence for a sequential decay through an intermediate state in 23O. Neither a di-neutron nor phase-space model for the three-body breakup were able to describe these correlations.
Two-neutron sequential decay of O 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, M. D.; Frank, N.; Baumann, T.
In this study, a two-neutron unbound excited state of 24O was populated through a (d,d') reaction at 83.4 MeV/nucleon. A state at E=715±110 (stat) ±45 (sys) keV with a width of Γ<2 MeV was observed above the two-neutron separation energy placing it at 7.65 ± 0.2 MeV with respect to the ground state. Three-body correlations for the decay of 24O → 22O + 2n show clear evidence for a sequential decay through an intermediate state in 23O. Neither a di-neutron nor phase-space model for the three-body breakup were able to describe these correlations.
Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness.
Oliveira-Silva, Iransé; Leicht, Anthony S; Moraes, Milton R; Simões, Herbert G; Del Rosso, Sebastián; Córdova, Cláudio; Boullosa, Daniel A
2016-01-01
The aim of this study was to examine the influence of physical fitness on cardiac autonomic control in passengers prior to, during and following commercial flights. Twenty-two, physically active men (36.4 ± 6.4 years) undertook assessments of physical fitness followed by recordings of 24-h heart rate (HR), heart rate variability (HRV), and blood pressure (BP) on a Control (no flight) and Experimental (flight) day. Recordings were analyzed using a two-way analysis of variance for repeated measures with relationships between variables examined via Pearson product-moment correlation coefficients. Compared to the Control day, 24-h HR was significantly greater (>7%) and HRV measures (5-39%) significantly lower on the Experimental day. During the 1-h flight, HR (24%), and BP (6%) were increased while measures of HRV (26-45%) were reduced. Absolute values of HRV during the Experimental day and relative changes in HRV measures (Control-Experimental) were significantly correlated with measures of aerobic fitness ( r = 0.43 to 0.51; -0.53 to -0.52) and body composition ( r = -0.63 to -0.43; 0.48-0.61). The current results demonstrated that short-term commercial flying significantly altered cardiovascular function including the reduction of parasympathetic modulations. Further, greater physical fitness and lower body fat composition were associated with greater cardiac autonomic control for passengers during flights. Enhanced physical fitness and leaner body composition may enable passengers to cope better with the cardiovascular stress and high allostatic load associated with air travel for enhanced passenger well-being.
Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness
Oliveira-Silva, Iransé; Leicht, Anthony S.; Moraes, Milton R.; Simões, Herbert G.; Del Rosso, Sebastián; Córdova, Cláudio; Boullosa, Daniel A.
2016-01-01
The aim of this study was to examine the influence of physical fitness on cardiac autonomic control in passengers prior to, during and following commercial flights. Twenty-two, physically active men (36.4 ± 6.4 years) undertook assessments of physical fitness followed by recordings of 24-h heart rate (HR), heart rate variability (HRV), and blood pressure (BP) on a Control (no flight) and Experimental (flight) day. Recordings were analyzed using a two-way analysis of variance for repeated measures with relationships between variables examined via Pearson product-moment correlation coefficients. Compared to the Control day, 24-h HR was significantly greater (>7%) and HRV measures (5–39%) significantly lower on the Experimental day. During the 1-h flight, HR (24%), and BP (6%) were increased while measures of HRV (26–45%) were reduced. Absolute values of HRV during the Experimental day and relative changes in HRV measures (Control-Experimental) were significantly correlated with measures of aerobic fitness (r = 0.43 to 0.51; −0.53 to −0.52) and body composition (r = −0.63 to −0.43; 0.48–0.61). The current results demonstrated that short-term commercial flying significantly altered cardiovascular function including the reduction of parasympathetic modulations. Further, greater physical fitness and lower body fat composition were associated with greater cardiac autonomic control for passengers during flights. Enhanced physical fitness and leaner body composition may enable passengers to cope better with the cardiovascular stress and high allostatic load associated with air travel for enhanced passenger well-being. PMID:28082914
Double-time correlation functions of two quantum operations in open systems
NASA Astrophysics Data System (ADS)
Ban, Masashi
2017-10-01
A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.
2014-01-01
Background Although increased volume of pericardial fat has been associated with decreased cardiac function, it is unclear whether this association is mediated by systemic overall obesity or direct regional fat interactions. We hypothesized that if local effects dominate, left ventricular (LV) function would be most strongly associated with pericardial fat that surrounds the left rather than the right ventricle (RV). Methods Female obese subjects (n = 60) had cardiovascular magnetic resonance (CMR) scans to obtain measures of LV function and pericardial fat volumes. LV function was obtained using the cine steady state free precession imaging in short axis orientation. The amount of pericardial fat was determined volumetrically by the cardiac gated T1 black blood imaging and normalized to body surface area. Results In this study cohort, LV fat correlated with several LV hemodynamic measurements including cardiac output (r = -0.41, p = 0.001) and stroke volume (r = -0.26, p = 0.05), as well as diastolic functional parameters including peak-early-filling rate (r = -0.38, p = 0.01), early late filling ratio (r = -0.34, p = 0.03), and time to peak-early-filling (r = 0.34, p = 0.03). These correlations remained significant even after adjusting for the body mass index and the blood pressure. However, similar correlations became weakened or even disappeared between RV fat and LV function. LV function was not correlated with systemic plasma factors, such as C-reactive protein (CRP), B-type natriuretic peptide (BNP), Interleukin-6 (IL-6), resistin and adiponectin (all p > 0.05). Conclusions LV hemodynamic and diastolic function was associated more with LV fat as compared to RV or total pericardial fat, but not with systemic inflammatory markers or adipokines. The correlations between LV function and pericardial fat remained significant even after adjusting for systemic factors. These findings suggest a site-specific influence of pericardial fat on LV function, which could imply local secretion of molecules into the underlying tissue or an anatomic effect, both mechanisms meriting future evaluation. PMID:24884541
[Blood pressure in 6 Yanomami villages].
Mancilha-Carvalho, J J; Sousa e Silva, N A; Carvalho, J V; Lima, J A
1991-06-01
To investigate in Yanomami Indians that not add salt to food, the relationship between blood pressure (BP), biological variables (age, body weight, height and pulse) and urinary electrolytes (Na+, K+, Ca++ and Mg++). We studied 125 males and 129 females from six villages on Surucuru plateau and on Catrimani and Ajarani rivers region in the state of Roraima, north Brazil. Two BP measurements were made and the mean of them were used in data analysis. None hypertensive was found. Systolic BP decreased with age and correlated with body weight, pulse and urinary Na+. Diastolic BP only correlated with body weight. Height, urinary K+, Ca++ and Mg++ did not correlate with BP. There was no hypertension nor increase of BP with increasing age in these isolated Yanomami.
Type 2 diabetes affects sleep quality by disrupting the respiratory function.
Colbay, Gulcan; Cetin, Mustafa; Colbay, Mehmet; Berker, Dilek; Guler, Serdar
2015-09-01
The effects of diabetes on the respiratory system were investigated with arterial blood gas, sleep quality index and respiratory functions tests. Fifty-three patients with type II diabetes and 41 healthy cases were included. Their biochemical data, demographic characteristics, anthropometric measurements and echocardiographic findings were collected from polyclinic records. Respiratory function tests were performed for all subjects and Pittsburgh Sleep Quality Index questionnaire was conducted. Aforementioned data were compared between these two groups. The age, body weight and body mass index were similar but oxygen pressure, oxygen saturation, forced vital capacity (FVC; %), and sleep quality were decreased in patients with diabetes. Sleep quality was correlated with the presence of diabetes and hypertension, duration of diabetes, fasting and postprandial blood glucose levels, homeostasis model of assessment-insulin resistance, Glycosylated hemoglobin levels, and FVC. Half of the diabetic patients exhibited respiratory failure during sleep. Especially diabetic patients with autonomic neuropathy, experienced a more severe and prolonged decrease in oxygen saturation. Blood gas, respiratory functions and sleep quality, which need to be evaluated as a whole, were affected in patients with diabetes. Assessment of sleep and its quality requires special attention in patients with diabetes. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Quantum Phase Transitions in Conventional Matrix Product Systems
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min; Huang, Fei; Chang, Yan
2017-02-01
For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
McCrea, Simon M
2007-06-18
Naming and localization of individual body part words to a high-resolution line drawing of a full human figure was tested in a mixed-sex sample of nine right handed subjects. Activation within the superior medial left parietal cortex and bilateral dorsolateral cortex was consistent with involvement of the body schema which is a dynamic postural self-representation coding and combining sensory afference and motor efference inputs/outputs that is automatic and nonconscious. Additional activation of the left rostral occipitotemporal cortex was consistent with involvement of the neural correlates of the verbalizable body structural description that encodes semantic and categorical representations to animate objects such as full human figures. The results point to a highly distributed cortical representation for the encoding and manipulation of body part information and highlight the need for the incorporation of more ecologically valid measures of body schema coding in future functional neuroimaging studies.
Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction
Friedman, Matt
2009-01-01
Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates—fishes—remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims. PMID:19276106
Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction.
Friedman, Matt
2009-03-31
Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates-fishes-remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims.
Evaluation of body adiposity index (BAI) to estimate percent body fat in an indigenous population.
Kuhn, Patricia C; Vieira Filho, João Paulo B; Franco, Luciana; Dal Fabbro, Amaury; Franco, Laercio J; Moises, Regina S
2014-04-01
The aim of this study was to evaluate the usefulness of Body Adiposity Index (BAI) as a predictor of body fat in Xavante Indians and to investigate which anthropometric measures of adiposity best correlate with body fat in this population. We evaluated 974 individuals (476 male), aged 42.3 ± 19.5 years. Percentage of body fat (%BF) determined by bioimpedance analysis (BIA) was used as the reference measure of adiposity. Bland-Altman analysis was used to assess the agreement between the two methods: BAI and BIA. Associations between anthropometric measures of adiposity were investigated by Pearson correlation analysis. BAI overestimates %BF (mean difference: 4.10%), mainly at lower levels of adiposity. Significant correlations were found between %BF and all measurements, being the strongest correlation with BAI. However, stratified analyses according to gender showed that among men waist circumference has the strongest correlation (r = 0.73, p < 0.001) and among women BAI (r = 0.71, p < 0.001), BMI (r = 0.69, p < 0.001) and waist circumference (r = 0.70, p < 0.001) performed similarly. BAI can be a useful tool to predict %BF in Xavante Indians, although it has some limitations. However, it is not a better predictor of adiposity than waist circumference in men or BMI and waist circumference in women. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Kaliszan, Michał; Hauser, Roman
2007-01-01
A systematic two-stage study was conducted in pigs to verify the models of postmortem body temperature decrease currently employed in forensic medicine. During the investigations, temperature recordings were performed in four body sites (eyeballs, orbit soft tissues, muscles and rectums). The results of the study support the possible use of the eyeball and also the orbit soft tissues as temperature measuring sites at the early phase after death; they have narrowed the significance of rectum temperature measurements to the late stage of postmortem body temperature decrease, shown insignificant correlations between the body weight and the temperature decrease rate constant and illustrated the functional increase of the time of death estimation error as the body cools, expressed in the distinct tendency to overestimate the calculated time of death as compared to the actual one. In the second stage of the experiment, a lack of a plateau phase was demonstrated, at least from 30 min post mortem. It was also found that in the very early post mortem period, the kinetics of cooling of all the body sites studied was better described by the two-exponential model than the single exponential one. The study also showed that the weak airflow present in the experimental conditions did not practically affect the course of cooling of the investigated body sites. Eyeball temperature measurements with an infra-red laser thermometer performed during the experiment proved to be of no use for determination of the time of death. The experiments allowed for defining the so far unreported value of physiological temperature of pig eyeball as 38 degrees C.
The relationship between renal volume and histology in obese and nonobese kidney donors.
Tatar, Erhan; Sen, Sait; Harman, Mustafa; Kircelli, Fatih; Gungor, Ozkan; Sarsik, Banu; Asci, Gulay; Hoscoskun, Cuneyt; Basci, Ali; Toz, Huseyin
2015-06-01
Obesity and related kidney diseases have become a global epidemic problem. However, the underlying pathogenesis of obesity-related renal diseases has not been clearly understood. In this study, we explored the link between renal volume (RV) determined by computed tomography (CT) and renal histology together with functional parameters in an obese population. Eighty-two kidney donors who underwent CT for the measurement of kidney volume and zero-hour renal biopsy for renal histology were included in this cross-sectional study. Protein creatinine clearance and eGFR were evaluated in 24-h urine specimens as indicators of renal function. Mean body mass index (BMI) was 28 ± 4.2 kg/m(2); 32.9% (n = 27) were obese. Mean RV was 196 ± 36 cm(3). RV was positively correlated with BMI, body surface area and creatinine clearance and negatively with HDL-cholesterol in the whole population. Renal function parameters of obese subjects were better, and their renal volumes were higher compared with the nonobese subjects. In obese subjects, corrected RV was positively correlated with glomerular filtration rate (r = 0.46, P = 0.01) and negatively with sclerotic glomeruli (r = -0.38, P = 0.04) and chronicity index (r = -0.43, P = 0.02). In adjusted ordinal logistic regression analysis, corrected RV was significantly associated with chronicity index (OR: 0.96; P = 0.01). In obese cases, decreased RV determined by CT is associated with worse renal histology. In this population, kidney imaging techniques may provide important clues about renal survival. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.
[Validity and Reliability of Two Silhouette Scales to Asses the Body Image in Adolescent Students].
Rueda-Jaimes, Germán Eduardo; López, Paul Anthony Camacho; Flórez, Silvia Milena; Martínez-Villalba, Andrés Mauricio Rangel
2012-03-01
To determine the validity and reliability of the 13-figure images scale (13-CS) and Standard Figural Stimuli (SFS) for the evaluation of body images in adolescent students from Bucaramanga. A probabilistic sample with 189 students was evaluated with the two scales. Two weeks later, the valuation together with the size, weight, percentage of body fat, SCOFF questionnaire and Rosenberg self-esteem valuation was repeated. The average age was 14.1 years; 62.7% were women. The correlation of the 13-CS and SFS with body fat index, weight and body fat percentage was 0.61, 0.74, 0.40 and 0.72, 0.55, 0.45 respectively. The correlation of dissatisfaction with body image according to the SCOFF and the Rosenberg scales was 0.43 and 0.26 with the 13-CS; 0.50 and -0.23 with the SFS. The reproducibility shows that perceived and ideal figure was 0.93 and 0.90 with the 13-CS; and 0.85 and 0.78 with the SFS. the concurrent validity of both scales was good. The reproducibility of the 13-CS was excellent while the SFS was good. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Vaskinn, Anja; Lagerberg, Trine Vik; Bjella, Thomas D; Simonsen, Carmen; Andreassen, Ole A; Ueland, Torill; Sundet, Kjetil
2017-12-01
Individuals with bipolar disorder present with moderate impairments in social cognition during the euthymic state. The impairment extends to theory of mind and to the perception of emotion in faces and voices, but it is unclear if emotion perception from body movements is affected. The main aim of this study was to examine if participants with bipolar disorder perform worse than healthy control participants on a task using point-light displays of human full figures moving in a manner indicative of a basic emotion (angry, happy, sad, fearful, neutral/no emotion). A secondary research question was whether diagnostic subtypes (bipolar I, bipolar II) and history of psychosis impacted on this type of emotion perception. Finally, symptomatic, neurocognitive, and functional correlates of emotion perception from body movements were investigated. Fifty-three individuals with bipolar I (n = 29) or bipolar II (n = 24) disorder, and 84 healthy control participants were assessed for emotion perception from body movements. The bipolar group also underwent clinical, cognitive, and functional assessment. Research questions were analyzed using analyses of variance and bivariate correlations. The bipolar disorder group differed significantly from healthy control participants for emotion perception from body movements (Cohen's d = 0.40). Analyses of variance yielded no effects of sex, diagnostic subtype (bipolar I, bipolar II), or history of psychosis. There was an effect of emotion, indicating that some emotions are easier to recognize. The lack of a significant group × emotion interaction effect points, however, to this being so regardless of the presence of bipolar disorder. Performance was unrelated to manic and depressive symptom load but showed significant associations with neurocognition and functional capacity. Individuals with bipolar disorder had a small but significant impairment in the ability to perceive emotions from body movement. The impairment was global, i.e., affecting all emotions and equally present for males and females. The impairment was associated with neurocognition and functional capacity, but not symptom load. Our findings identify pathopsychological factors underlying the functional impairment in bipolar disorder and suggest the consideration of social cognition training as part of the treatment for bipolar disorder.
Deformation in metallic glasses studied by synchrotron x-ray diffraction
Dmowski, Wojciech; Egami, Takeshi; Tong, Yang
2016-01-11
In this study, high mechanical strength is one of the superior properties of metallic glasses which render them promising as a structural material. However, understanding the process of mechanical deformation in strongly disordered matter, such as metallic glass, is exceedingly difficult because even an effort to describe the structure qualitatively is hampered by the absence of crystalline periodicity. In spite of such challenges, we demonstrate that high-energy synchrotron X-ray diffraction measurement under stress, using a two-dimensional detector coupled with the anisotropic pair-density function (PDF) analysis, has greatly facilitated the effort of unraveling complex atomic rearrangements involved in the elastic, anelastic,more » and plastic deformation of metallic glasses. Even though PDF only provides information on the correlation between two atoms and not on many-body correlations, which are often necessary in elucidating various properties, by using stress as means of exciting the system we can garner rich information on the nature of the atomic structure and local atomic rearrangements during deformation in glasses.« less
Jean-Pierre, Pascal; Fundakowski, Christopher; Perez, Enrique; Jean-Pierre, Shadae E; Jean-Pierre, Ashley R; Melillo, Angelica B; Libby, Rachel; Sargi, Zoukaa
2013-02-01
Cancer and its treatments are associated with psychological distress that can negatively impact self-perception, psychosocial functioning, and quality of life. Patients with head and neck cancers (HNC) are particularly susceptible to psychological distress. This study involved a cross-validation of the Measure of Body Apperception (MBA) for HNC patients. One hundred and twenty-two English-fluent HNC patients between 20 and 88 years of age completed the MBA on a Likert scale ranging from "1 = disagree" to "4 = agree." We assessed the latent structure and internal consistency reliability of the MBA using Principal Components Analysis (PCA) and Cronbach's coefficient alpha (α), respectively. We determined convergent and divergent validities of the MBA using correlations with the Hospital Anxiety and Depression Scale (HADS), observer disfigurement rating, and patients' clinical and demographic variables. The PCA revealed a coherent set of items that explained 38 % of the variance. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.73 and the Bartlett's test of sphericity was statistically significant (χ (2) (28) = 253.64; p < 0.001), confirming the suitability of the data for dimension reduction analysis. The MBA had good internal consistency reliability (α = 0.77) and demonstrated adequate convergent and divergent validities based on statistically significant moderate correlations with the HADS (p < 0.01) and observer rating of disfigurement (p < 0.026) and nonstatistically significant correlations with patients' clinical and demographic variables: tumor location, age at diagnosis, and birth place (all p (s) > 0.05). The MBA is a valid and reliable screening measure of body apperception for HNC patients.
Relationship of obesity with osteoporosis
Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen
2007-01-01
Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077
Laterality versus jumping performance in men and women.
Trzaskoma, Zbigniew; Ilnicka, Lidia; Wiszomirska, Ida; Wit, Andrzej; Wychowański, Michał
2015-01-01
The aim of this study was to investigate relationships between functional asymmetry of lower limbs, taking into account morphological features of the feet, and jumping ability in men and women. The study population consisted of 56 subjects, 30 women (age: 20.29 ± 0.59 years; body mass: 58.13 ± 4.58 kg, body height: 165.60 ± 5.03 cm) and 26 men (age: 20.41 ± 0.78 years, body mass: 78.39 ± 8.42 kg, body height: 181.15 ± 6.52 cm). The measurements of longitudinal arches were performed with the plan- tographic method on the basis of Clarke's angle mapped on a computer foot print. The measurements of jumping performance during bilateral (two legs) and unilateral (single-leg) counter movement jump (CMJ) were done on force plate. All subjects jumped three times each type of jump (total 9 jumps): three right leg, three left leg and three two legs. We put the test results through a detailed statistical analysis with the Statistica 8.0. The t-test for dependent variables and the Wilcoxon signed-rank test for divergent variances of the fea- tures compared. The analysis of relationships between the chosen podometric and plantographic features and jumping performance was conducted on the basis of the Pearson product-moment correlation coefficient (for the features which presented normal distribution, according to the Shapiro-Wilk test). The correlations between values of height of single-leg jumps (right and left) and bilateral jumps, and foot indices were found in few cases only in men who had greater values of jump height with the non-dominant limb. We did not find a significant difference in jumping ability between the dominant limb and the non-dominant limb in women. We found bilateral deficits in jumping ability in the study groups, though we did not find significant differences (P ≤ 0.05) between the values for women (a mean of 6.5%) and for men (a mean of 8.4%). We found significant gender differences of the correlations between the values of height of jumps (single-leg and bilateral jumps) and foot indices.
Pyron, R Alexander; Burbrink, F T
2009-10-01
Evolutionary correlations between functionally related character suites are expected as a consequence of coadaptation due to physiological relationships between traits. However, significant correlations may also exist between putatively unrelated characters due to shared relationships between those traits and underlying variables, such as body size. Although such patterns are often dismissed as simple body size scaling, this presumption may overlook important evolutionary patterns of diversification. If body size is the primary determinant of potential diversity in multiple unrelated characters, the observed differentiation of species may be governed by variability in body size, and any biotic or abiotic constraints on the diversification thereof. Here, we demonstrate that traits related to both predatory specialization (gape and diet preference) and predatory avoidance (the development of Batesian mimicry) are phylogenetically correlated in the North American snake tribe Lampropeltini. This is apparently due to shared relationships between those traits and adult body size, suggesting that size is the primary determinant of ecomorphological differentiation in the lampropeltinines. Diversification in body size is apparently not linked to climatic or environmental factors, and may have been driven by interspecific interactions such as competition. Additionally, we find the presence of a 'key zone' for the development of both rattle- and coral snake mimicry; only small snakes feeding primarily on ectothermic prey develop mimetic colour patterns, in or near the range of venomous model species.
Construct validity of functional capacity tests in healthy workers
2013-01-01
Background Functional Capacity (FC) is a multidimensional construct within the activity domain of the International Classification of Functioning, Disability and Health framework (ICF). Functional capacity evaluations (FCEs) are assessments of work-related FC. The extent to which these work-related FC tests are associated to bio-, psycho-, or social factors is unknown. The aims of this study were to test relationships between FC tests and other ICF factors in a sample of healthy workers, and to determine the amount of statistical variance in FC tests that can be explained by these factors. Methods A cross sectional study. The sample was comprised of 403 healthy workers who completed material handling FC tests (lifting low, overhead lifting, and carrying) and static work FC tests (overhead working and standing forward bend). The explainable variables were; six muscle strength tests; aerobic capacity test; and questionnaires regarding personal factors (age, gender, body height, body weight, and education), psychological factors (mental health, vitality, and general health perceptions), and social factors (perception of work, physical workloads, sport-, leisure time-, and work-index). A priori construct validity hypotheses were formulated and analyzed by means of correlation coefficients and regression analyses. Results Moderate correlations were detected between material handling FC tests and muscle strength, gender, body weight, and body height. As for static work FC tests; overhead working correlated fair with aerobic capacity and handgrip strength, and low with the sport-index and perception of work. For standing forward bend FC test, all hypotheses were rejected. The regression model revealed that 61% to 62% of material handling FC tests were explained by physical factors. Five to 15% of static work FC tests were explained by physical and social factors. Conclusions The current study revealed that, in a sample of healthy workers, material handling FC tests were related to physical factors but not to the psychosocial factors measured in this study. The construct of static work FC tests remained largely unexplained. PMID:23758870
Thermalization dynamics of two correlated bosonic quantum wires after a split
NASA Astrophysics Data System (ADS)
Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian
2018-04-01
Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.
Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack; Blanc, Frédéric
2016-01-01
Exploring time-varying connectivity networks in neurodegenerative disorders is a recent field of research in functional MRI. Dementia with Lewy bodies (DLB) represents 20% of the neurodegenerative forms of dementia. Fluctuations of cognition and vigilance are the key symptoms of DLB. To date, no dynamic functional connectivity (DFC) investigations of this disorder have been performed. In this paper, we refer to the concept of connectivity state as a piecewise stationary configuration of functional connectivity between brain networks. From this concept, we propose a new method for group-level as well as for subject-level studies to compare and characterize connectivity state changes between a set of resting-state networks (RSNs). Dynamic Bayesian networks, statistical and graph theory-based models, enable one to learn dependencies between interacting state-based processes. Product hidden Markov models (PHMM), an instance of dynamic Bayesian networks, are introduced here to capture both statistical and temporal aspects of DFC of a set of RSNs. This analysis was based on sliding-window cross-correlations between seven RSNs extracted from a group independent component analysis performed on 20 healthy elderly subjects and 16 patients with DLB. Statistical models of DFC differed in patients compared to healthy subjects for the occipito-parieto-frontal network, the medial occipital network and the right fronto-parietal network. In addition, pairwise comparisons of DFC of RSNs revealed a decrease of dependency between these two visual networks (occipito-parieto-frontal and medial occipital networks) and the right fronto-parietal control network. The analysis of DFC state changes thus pointed out networks related to the cognitive functions that are known to be impaired in DLB: visual processing as well as attentional and executive functions. Besides this context, product HMM applied to RSNs cross-correlations offers a promising new approach to investigate structural and temporal aspects of brain DFC.
Impact of body composition on performance in fitness tests among personnel of the Croatian navy.
Sporis, Goran; Jukić, Igor; Bok, Daniel; Vuleta, Dinko; Harasin, Drazen
2011-06-01
The purpose of this study was to determine the impact of body weight on fitness tests among the personnel of the Croatian navy. Forty two naval personnel (age 27 +/- 4.1 years; body mass 86.2 +/- 4.9 kg; height 184.6 +/- 7.4 cm; body fat percentage 17.3 +/- 5.2) participated in this study. In order to evaluate the fitness of the naval servicemen, we applied a testing procedure that included measurements of 7 fitness tests and 15 body anthropometric tests. A negative correlation was found between the body fat percentage and all the analyzed sprint tests and three anaerobic power tests (r), SP5 (r = -0.42), SP10 (r = -0.51), SP20 (r = -0.53), SJ (r = -0.45), CM (r = -0.57), SLJ (r = -0.67). Also a negative correlation was found between the body fat percentage and VO2(max) (r = -0.44). A positive correlation was found between the sprint test and the power performance test and thigh and calf girth. Spiriting ability is influenced by the strength of a person. This is one of the reasons why we found a positive correlation between the sprint test (SP5, SP10 and SP20) and thigh and calf girth. In this study we found a negative correlation between body fat percentages and all the sprint tests and three anaerobic power tests and VO2(max). The ectomorph somatotypes have positive correlations with all variables. The mesomorph somatotypes have the greatest positive correlations with all variables. The endomorph somatotypes have negative correlations with all variables. According to the body composition of Croatian naval servicemen we can conclude that they need a sufficient level of strength and endurance for everyday tasks. The effectiveness of a weight-management program is determined by the success of the participants in losing the necessary amount of weight and being able to maintain that weight loss. This requires long-term tracking of these individuals in a naval environment.
[Testing and analyzing the lung functions in the normal population in Hebei province].
Chen, Li; Zhao, Ming; Han, Shao-mei; Li, Zhong-ming; Zhu, Guang-jin
2004-08-01
To investigate the lung function of the normal subjects living in Hebei province and its correlative factors such as living circumstance, age, height, and body weight. The lung volumes and breath capacities of 1,587 normal subjects were tested by portable spirometers (Scope Rotry) from August to October in 2002. The influences of living circumstance, age, gender, height, and body weight on lung functions were observed and analyzed. No significant difference was found between urban and rural areas in all indexes (P > 0.05); however, significant difference existed between male and female subjects (P = 0.000). The change trends of lung function in male and female subjects were similar. Growth spurt appeared at the age of 12-16 years in male subjects and 12-14 years in female subjects. Vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second (FEV1) reached their peaks at the age of 26-34 years and then decreased with age. Peak expiratory flow (PEF), 25% forced expiratory flow (FEF50%), and 75% forced expiratory flow (FEF75%) appeared at the age of 18 and then went down with age. Both height and weight had a correlation with all the indexes of lung functions, although the influence of height is stronger than weight. All the indexes of lung function have correlations with age, height, and weight. Lung function changes with aging, therefore different expected values shall be available for the adolescence, young adults, and middle-aged and old people. This study provides reference values of lung function for normal population.
Hearst, Scoty M; Gilder, Andrew S; Negi, Sandeep S; Davis, Misty D; George, Eric M; Whittom, Angela A; Toyota, Cory G; Husedzinovic, Alma; Gruss, Oliver J; Hebert, Michael D
2009-06-01
Cajal bodies (CBs) are nuclear structures that are thought to have diverse functions, including small nuclear ribonucleoprotein (snRNP) biogenesis. The phosphorylation status of coilin, the CB marker protein, might impact CB formation. We hypothesize that primary cells, which lack CBs, contain different phosphoisoforms of coilin compared with that found in transformed cells, which have CBs. Localization, self-association and fluorescence recovery after photobleaching (FRAP) studies on coilin phosphomutants all suggest this modification impacts the function of coilin and may thus contribute towards CB formation. Two-dimensional gel electrophoresis demonstrates that coilin is hyperphosphorylated in primary cells compared with transformed cells. mRNA levels of the nuclear phosphatase PPM1G are significantly reduced in primary cells and expression of PPM1G in primary cells induces CBs. Additionally, PPM1G can dephosphorylate coilin in vitro. Surprisingly, however, expression of green fluorescent protein alone is sufficient to form CBs in primary cells. Taken together, our data support a model whereby coilin is the target of an uncharacterized signal transduction cascade that responds to the increased transcription and snRNP demands found in transformed cells.
da Costa, Bernardo M; Del Peso, Gloria; Bajo, Maria Auxiliadora; Carreño, Gilda; Ferreira, Marta; Ferreira, Carina; Selgas, Rafael
2017-05-29
In peritoneal dialysis (PD) patients, body fluid homeostasis is dependent on peritoneal elimination of water and solutes. Patients with less favorable peritoneal transport parameters should be more overhydrated. Despite this, the association between faster transport and overhydration (OH) is weak, and the factors that influence hydration status are still poorly characterized. Modified peritoneal equilibration tests (PET) offer us new parameters that might correlate better with hydration status, like free water transport (FWT). The aim of this study was thus to establish the relationships between new peritoneal transport parameters and body composition parameters estimated by bioimpedance spectroscopy (BIS). Prospective observational study on incident PD patients with a baseline and 1-year follow-up evaluation. 61 patients were included in the baseline evaluation, 19 of whom had a 1-year follow-up evaluation; 67.2% were fluid overloaded. There was a negative correlation between D/P creatinine and FWT (r = -0.598, p = 0.000). The fraction of FWT was negatively correlated with OH (r = -0.302, p = 0.018). Peritoneal protein losses (PPL) were also correlated with OH (r = 0.287, p = 0.028). There were no significant differences in OH according to small-solute transport status or fluid output parameters. After 1 year, we observed a significant worsening of renal function and an improvement in 24-hour ultrafiltration (UF) and hydration status, but we detected no differences in peritoneal transport of water or solutes that could explain these changes. There is a poor relationship between kidney/peritoneal function parameters and body composition parameters. The fraction of FWT and PPL may be underestimated markers of peritoneal health and of its contribution to the hydration status.
Gender-Specific Correlates of Complementary and Alternative Medicine Use for Knee Osteoarthritis
Yang, Shibing; Eaton, Charles B.; McAlindon, Timothy; Lapane, Kate L.
2012-01-01
Abstract Background Knee osteoarthritis (OA) increases healthcare use and cost. Women have higher pain and lower quality of life measures compared to men even after accounting for differences in age, body mass index (BMI), and radiographic OA severity. Our objective was to describe gender-specific correlates of complementary and alternative medicine (CAM) use among persons with radiographically confirmed knee OA. Methods Using data from the Osteoarthritis Initiative, 2,679 women and men with radiographic tibiofemoral OA in at least one knee were identified. Treatment approaches were classified as current CAM therapy (alternative medical systems, mind-body interventions, manipulation and body-based methods, energy therapies, and three types of biologically based therapies) or conventional medication use (over-the-counter or prescription). Gender-specific multivariable logistic regression models identified sociodemographic and clinical/functional correlates of CAM use. Results CAM use, either alone (23.9% women, 21.9% men) or with conventional medications (27.3% women, 19.0% men), was common. Glucosamine use (27.2% women, 28.2% men) and chondroitin sulfate use (24.8% women; 25.7% men) did not differ by gender. Compared to men, women were more likely to report use of mind-body interventions (14.1% vs. 5.7%), topical agents (16.1% vs. 9.5%), and concurrent CAM strategies (18.0% vs. 9.9%). Higher quality of life measures and physical function indices in women were inversely associated with any therapy, and higher pain scores were positively associated with conventional medication use. History of hip replacement was a strong correlate of conventional medication use in women but not in men. Conclusions Women were more likely than men to use CAM alone or concomitantly with conventional medications. PMID:22946630
Depino, Amaicha Mara; Gross, Cornelius
2007-02-27
In humans, anxiety is accompanied by changes in autonomic nervous system function, including increased heart rate, body temperature, and blood pressure, and decreased heart rate variability. In rodents, anxiety is inferred by examining anxiety-related behavioral responses such as avoidance and freezing, and more infrequently by assessing autonomic responses to anxiogenic stimuli. However, few studies have simultaneously measured behavioral and autonomic responses to aversive stimuli in rodents and it remains unclear whether autonomic measures are reliable correlates of anxiety-related behavior in these animal models. Here we recorded for the first time heart rate and body temperature in freely moving BALB/c and C57BL/6 mice during exposure to an unfamiliar environment. Our data show that upon exposure to a novel open field, BALB/c mice showed increased anxiety-related behavior, reduced heart rate and higher heart rate variability (HRV) when compared with C57BL/6 mice. Regression analysis revealed a significant correlation between both heart rate and long-term HRV measures and locomotor activity and time spent in the center of the open field, but no correlation between body temperature and any behavioral variables. In the free exploration test, in which animals were allowed direct access to a novel environment from a familiar environment without experimenter handling, significant correlations were found only between heart rate and total locomotor activity, but not time spent in the unfamiliar chamber despite increased anxiety-related behavior in BALB/c mice. These findings demonstrate that increased anxiety-related behavior in BALB/c mice is not associated with specific changes in heart rate, HRV, or body temperature.
Gapped two-body Hamiltonian for continuous-variable quantum computation.
Aolita, Leandro; Roncaglia, Augusto J; Ferraro, Alessandro; Acín, Antonio
2011-03-04
We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.
Brusatte, S L; Sakamoto, M; Montanari, S; Harcourt Smith, W E H
2012-02-01
Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form and feeding habits over their 160+ million year evolutionary history. Here, we utilize geometric morphometrics to study broad patterns in theropod skull shape variation and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the "typical" and ancestral theropod morphologies. Noncarnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny but only weakly correlated with functional biting behaviour. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Do all pure entangled states violate Bell's inequalities for correlation functions?
Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin
2002-05-27
Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.
Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying
2012-03-01
The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.
Obesity-related differences in neural correlates of force control.
Mehta, Ranjana K; Shortz, Ashley E
2014-01-01
Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).
Aspects of Strongly Correlated Many-Body Fermi Systems
NASA Astrophysics Data System (ADS)
Porter, William J., III
A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method which we use to characterize the entanglement properties of the two-body sector across a broad range of attractive couplings. In the many-body case, we determine universal scaling properties of this system, and for the two-body case, we compute the entanglement spectrum exactly, successfully characterizing a vast range of entanglement behavior across the BCS-BEC crossover.
Variation of facial features among three African populations: Body height match analyses.
Taura, M G; Adamu, L H; Gudaji, A
2017-01-01
Body height is one of the variables that show a correlation with facial craniometry. Here we seek to discriminate the three populations (Nigerians, Ugandans and Kenyans) using facial craniometry based on different categories of body height of adult males. A total of 513 individuals comprising 234 Nigerians, 169 Ugandans and 110 Kenyans with mean age of 25.27, s=5.13 (18-40 years) participated. Paired and unpaired facial features were measured using direct craniometry. Multivariate and stepwise discriminate function analyses were used for differentiation of the three populations. The result showed significant overall facial differences among the three populations in all the body height categories. Skull height, total facial height, outer canthal distance, exophthalmometry, right ear width and nasal length were significantly different among the three different populations irrespective of body height categories. Other variables were sensitive to body height. Stepwise discriminant function analyses included maximum of six variables for better discrimination between the three populations. The single best discriminator of the groups was total facial height, however, for body height >1.70m the single best discriminator was nasal length. Most of the variables were better used with function 1, hence, better discrimination than function 2. In conclusion, adult body height in addition to other factors such as age, sex, and ethnicity should be considered in making decision on facial craniometry. However, not all the facial linear dimensions were sensitive to body height. Copyright © 2016 Elsevier GmbH. All rights reserved.
Donadio, Carlo
2017-05-28
The aim of this study was to predict urinary creatinine excretion (UCr), creatinine clearance (CCr) and the glomerular filtration rate (GFR) from body composition analysis. Body cell mass (BCM) is the compartment which contains muscle mass, which is where creatinine is generated. BCM was measured with body impedance analysis in 165 chronic kidney disease (CKD) adult patients (72 women) with serum creatinine (SCr) 0.6-14.4 mg/dL. The GFR was measured ( 99m Tc-DTPA) and was predicted using the Modification of Diet in Renal Disease (MDRD) formula. The other examined parameters were SCr, 24-h UCr and measured 24-h CCr (mCCr). A strict linear correlation was found between 24-h UCr and BCM ( r = 0.772). Multiple linear regression (MR) indicated that UCr was positively correlated with BCM, body weight and male gender, and negatively correlated with age and SCr. UCr predicted using the MR equation (MR-UCr) was quite similar to 24-h UCr. CCr predicted from MR-UCr and SCr (MR-BCM-CCr) was very similar to mCCr with a high correlation ( r = 0.950), concordance and a low prediction error (8.9 mL/min/1.73 m²). From the relationship between the GFR and the BCM/SCr ratio, we predicted the GFR (BCM GFR). The BCM GFR was very similar to the GFR with a high correlation ( r = 0.906), concordance and a low prediction error (12.4 mL/min/1.73 m²). In CKD patients, UCr, CCr and the GFR can be predicted from body composition analysis.
Donadio, Carlo
2017-01-01
The aim of this study was to predict urinary creatinine excretion (UCr), creatinine clearance (CCr) and the glomerular filtration rate (GFR) from body composition analysis. Body cell mass (BCM) is the compartment which contains muscle mass, which is where creatinine is generated. BCM was measured with body impedance analysis in 165 chronic kidney disease (CKD) adult patients (72 women) with serum creatinine (SCr) 0.6–14.4 mg/dL. The GFR was measured (99mTc-DTPA) and was predicted using the Modification of Diet in Renal Disease (MDRD) formula. The other examined parameters were SCr, 24-h UCr and measured 24-h CCr (mCCr). A strict linear correlation was found between 24-h UCr and BCM (r = 0.772). Multiple linear regression (MR) indicated that UCr was positively correlated with BCM, body weight and male gender, and negatively correlated with age and SCr. UCr predicted using the MR equation (MR-UCr) was quite similar to 24-h UCr. CCr predicted from MR-UCr and SCr (MR-BCM-CCr) was very similar to mCCr with a high correlation (r = 0.950), concordance and a low prediction error (8.9 mL/min/1.73 m2). From the relationship between the GFR and the BCM/SCr ratio, we predicted the GFR (BCM GFR). The BCM GFR was very similar to the GFR with a high correlation (r = 0.906), concordance and a low prediction error (12.4 mL/min/1.73 m2). In CKD patients, UCr, CCr and the GFR can be predicted from body composition analysis. PMID:28555040
Jakubowski, Joseph A; Angiolillo, Dominick J; Zhou, Chunmei; Small, David S; Moser, Brian A; Ten Berg, Jurrien M; Brown, Patricia B; James, Stefan; Winters, Kenneth J; Erlinge, David
2014-09-01
Patients treated with clopidogrel who have higher body size exhibit greater platelet reactivity than patients with lower body size. In a retrospective analysis of the FEATHER trial, we examined the relationship between platelet response to thienopyridines clopidogrel 75 mg (Clop-75), prasugrel 5mg (Pras-5), and prasugrel 10mg (Pras-10) using 3 body size indices: body weight (BW), body mass index (BMI), and body surface area (BSA). Relationships were assessed as continuous variables and as 4 incremental body size groups. Aspirin-treated patients with stable coronary artery disease (N=72) and a BW range of 45-134 kg received Clop-75, Pras-5, and Pras-10 in a 3-period, blinded, cross-over study. Platelet assays included maximum platelet aggregation (MPA) to 20μM ADP by light transmission aggregometry, VerifyNow-P2Y12 reaction units (PRU), and vasodilator-associated stimulated phosphoprotein (VASP) phosphorylation platelet reactivity index (PRI). Exposure to active metabolites (AMs) was also assessed. Body size was a determinant of AM exposure and residual platelet reactivity regardless of type and dose of thienopyridine. BW and BSA demonstrated marginally stronger correlations with platelet reactivity; VASP-PRI demonstrated a stronger correlation with the body size than the other tests. Correlation coefficients ranged from a high of 0.64 (BW vs. PRI on Pras-5) to a low of 0.34 (BMI vs. MPA on Pras-10), but all were statistically significant (p<0.01). Using a comprehensive selection of body size indices, AM exposures, platelet function tests, and thienopyridine doses, we demonstrated a consistent inverse relationship between body size and response to clopidogrel and prasugrel. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim
2017-12-01
We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.
Zhang, Shuxing; Kaplan, Andrew H.; Tropsha, Alexander
2009-01-01
The Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method was used to predict the effect of mutagenesis on the enzymatic activity of the HIV-1 protease (HIVP). SNAPP relies on a four-body statistical scoring function derived from the analysis of spatially nearest neighbor residue compositional preferences in a diverse and representative subset of protein structures from the Protein Data Bank. The method was applied to the analysis of HIVP mutants with residue substitutions in the hydrophobic core as well as at the interface between the two protease monomers. Both wild type and tethered structures were employed in the calculations. We obtained a strong correlation, with R2 as high as 0.96, between ΔSNAPP score (i.e., the difference in SNAPP scores between wild type and mutant proteins) and the protease catalytic activity for tethered structures. A weaker but significant correlation was also obtained for non-tethered structures as well. Our analysis identified residues both in the hydrophobic core and at the dimeric interface (DI) that are very important for the protease function. This study demonstrates a potential utility of the SNAPP method for rational design of mutagenesis studies and protein engineering. PMID:18498108
Zhang, Zhan-Feng; Wang, Dan; Min, Ji-Kang
2017-04-25
To study the correlation of postoperative femorotibial angle with medial compartmental joint line elevation after unicompartmental arthroplasty(UKA), as well as the correlation of joint line elevation with the clinical function by measuring radiological joint line. A retrospective study of 56 patients from July 2012 to August 2015 was performed. The mean body mass index (BMI) was 23.5 (ranged, 18.3 to 30.1). The standing anteroposterior radiographs of these patients were assessed both pre-and post-operatively, and the knee function was evaluated according to HSS grading. The correlation between postoperative femorotibial angle(FTA) and joint line elevation was analyzed as well as the correlation between joint line elevation and the clinical function. The mean medial joint line elevation was (2.2±2.0) mm(ranged, -3.3 to 7.0 mm), and the mean FTA correction was (2.3±3.0)°(ranged, -4.5° to 9.6°). The mean follow-up period was 12.2 months. There was a significant correlation between in joint line elevation and FTA correction( P <0.05), while there was no significant correlation between joint line elevation and the clinical function( P >0.05). There was a significant correlation between medial compartmental joint line elevation and FTA correction after UKA, and the proximal tibial osteotomy was critical during the procedure. There was no significant correlation between joint line elevation and the clinical function, which may be related to the design of UKA prosthesis.
Urinary triclosan is associated with elevated body mass index in NHANES.
Lankester, Joanna; Patel, Chirag; Cullen, Mark R; Ley, Catherine; Parsonnet, Julie
2013-01-01
Triclosan-a ubiquitous chemical in toothpastes, soaps, and household cleaning supplies-has the potential to alter both gut microbiota and endocrine function and thereby affect body weight. We investigated the relationship between triclosan and body mass index (BMI) using National Health and Nutrition Examination Surveys (NHANES) from 2003-2008. BMI and spot urinary triclosan levels were obtained from adults. Using two different exposure measures-either presence vs. absence or quartiles of triclosan-we assessed the association between triclosan and BMI. We also screened all NHANES serum and urine biomarkers to identify correlated factors that might confound observed associations. Compared with undetectable triclosan, a detectable level was associated with a 0.9-point increase in BMI (p<0.001). In analysis by quartile, compared to the lowest quartile, the 2nd, 3rd and 4th quartiles of urinary triclosan were associated with BMI increases of 1.5 (p<0.001), 1.0 (p = 0.002), and 0.3 (p = 0.33) respectively. The one strong correlate of triclosan identified in NHANES was its metabolite, 2,4-dichlorophenol (ρ = 0.4); its association with BMI, however, was weaker than that of triclosan. No other likely confounder was identified. Triclosan exposure is associated with increased BMI. Stronger effect at moderate than high levels suggests a complex mechanism of action.
Urinary Triclosan is Associated with Elevated Body Mass Index in NHANES
Lankester, Joanna; Patel, Chirag; Cullen, Mark R.; Ley, Catherine; Parsonnet, Julie
2013-01-01
Background Triclosan—a ubiquitous chemical in toothpastes, soaps, and household cleaning supplies—has the potential to alter both gut microbiota and endocrine function and thereby affect body weight. Methods We investigated the relationship between triclosan and body mass index (BMI) using National Health and Nutrition Examination Surveys (NHANES) from 2003–2008. BMI and spot urinary triclosan levels were obtained from adults. Using two different exposure measures—either presence vs. absence or quartiles of triclosan—we assessed the association between triclosan and BMI. We also screened all NHANES serum and urine biomarkers to identify correlated factors that might confound observed associations. Results Compared with undetectable triclosan, a detectable level was associated with a 0.9-point increase in BMI (p<0.001). In analysis by quartile, compared to the lowest quartile, the 2nd, 3rd and 4th quartiles of urinary triclosan were associated with BMI increases of 1.5 (p<0.001), 1.0 (p = 0.002), and 0.3 (p = 0.33) respectively. The one strong correlate of triclosan identified in NHANES was its metabolite, 2,4-dichlorophenol (ρ = 0.4); its association with BMI, however, was weaker than that of triclosan. No other likely confounder was identified. Conclusions Triclosan exposure is associated with increased BMI. Stronger effect at moderate than high levels suggests a complex mechanism of action. PMID:24278238
The relationships of irisin with bone mineral density and body composition in PCOS patients.
Gao, Shanshan; Cheng, Yan; Zhao, Lingling; Chen, Yuxin; Liu, Yu
2016-05-01
Our study aims to assay the irisin level and investigate the relationships of irisin level with body mass index (BMI), body composition and bone metabolism in the polycystic ovary syndrome (PCOS) and control women. Fifty two PCOS and 39 control women were recruited. Serum sex hormone, fasting insulin and C-peptide were tested. Fasting serum irisin and adiponectin were measured with enzyme-linked immunosorbent assay. Body composition and bone mineral density were assayed by dual energy X-ray absorptiometry. Polycystic ovary syndrome women showed different body compositions compared with controls. Serum irisin level of PCOS did not show significant difference compared with controls although it was decreased. The level of adiponectin in PCOS patients was significantly reduced. BMI had no correlation with irisin level. It indicated a positive correlation between serum irisin levels and bone mineral density in the control group and a negative correlation in the PCOS group after BMI and age adjusted. Furthermore, total lean mass has a significant effect on irisin concentration in the PCOS group. There are no correlations between adiponection and body compositions and bone mineral density in both groups. The abnormal body composition in PCOS may contribute to the circulation irisin. The crosstalk of irisin in different organs was found and may be related to disease development in PCOS. Copyright © 2015 John Wiley & Sons, Ltd.
Disability affects the 6-minute walking distance in obese subjects (BMI>40 kg/m(2)).
Donini, Lorenzo Maria; Poggiogalle, Eleonora; Mosca, Veronica; Pinto, Alessandro; Brunani, Amelia; Capodaglio, Paolo
2013-01-01
In obese subjects, the relative reduction of the skeletal muscle strength, the reduced cardio-pulmonary capacity and tolerance to effort, the higher metabolic costs and, therefore, the increased inefficiency of gait together with the increased prevalence of co-morbid conditions might interfere with walking. Performance tests, such as the six-minute walking test (6MWT), can unveil the limitations in cardio-respiratory and motor functions underlying the obesity-related disability. Therefore the aims of the present study were: to explore the determinants of the 6-minute walking distance (6MWD) and to investigate the predictors of interruption of the walk test in obese subjects. Obese patients [body mass index (BMI)>40 kg/m(2)] were recruited from January 2009 to December 2011. Anthropometry, body composition, specific questionnaire for Obesity-related Disabilities (TSD-OC test), fitness status and 6MWT data were evaluated. The correlation between the 6MWD and the potential independent variables (anthropometric parameters, body composition, muscle strength, flexibility and disability) were analysed. The variables which were singularly correlated with the response variable were included in a multivariated regression model. Finally, the correlation between nutritional and functional parameters and test interruption was investigated. 354 subjects (87 males, mean age 48.5 ± 14 years, 267 females, mean age 49.8 ± 15 years) were enrolled in the study. Age, weight, height, BMI, fat mass and fat free mass indexes, handgrip strength and disability were significantly correlated with the 6MWD and considered in the multivariate analysis. The determination coefficient of the regression analysis ranged from 0.21 to 0.47 for the different models. Body weight, BMI, waist circumference, TSD-OC test score and flexibility were found to be predictors of the 6MWT interruption. The present study demonstrated the impact of disability in obese subjects, together with age, anthropometric data, body composition and strength, on the 6-minute walking distance.
Disability Affects the 6-Minute Walking Distance in Obese Subjects (BMI>40 kg/m2)
Donini, Lorenzo Maria; Poggiogalle, Eleonora; Mosca, Veronica; Pinto, Alessandro; Brunani, Amelia; Capodaglio, Paolo
2013-01-01
Introduction In obese subjects, the relative reduction of the skeletal muscle strength, the reduced cardio-pulmonary capacity and tolerance to effort, the higher metabolic costs and, therefore, the increased inefficiency of gait together with the increased prevalence of co-morbid conditions might interfere with walking. Performance tests, such as the six-minute walking test (6MWT), can unveil the limitations in cardio-respiratory and motor functions underlying the obesity-related disability. Therefore the aims of the present study were: to explore the determinants of the 6-minute walking distance (6MWD) and to investigate the predictors of interruption of the walk test in obese subjects. Methods Obese patients [body mass index (BMI)>40 kg/m2] were recruited from January 2009 to December 2011. Anthropometry, body composition, specific questionnaire for Obesity-related Disabilities (TSD-OC test), fitness status and 6MWT data were evaluated. The correlation between the 6MWD and the potential independent variables (anthropometric parameters, body composition, muscle strength, flexibility and disability) were analysed. The variables which were singularly correlated with the response variable were included in a multivariated regression model. Finally, the correlation between nutritional and functional parameters and test interruption was investigated. Results 354 subjects (87 males, mean age 48.5±14 years, 267 females, mean age 49.8±15 years) were enrolled in the study. Age, weight, height, BMI, fat mass and fat free mass indexes, handgrip strength and disability were significantly correlated with the 6MWD and considered in the multivariate analysis. The determination coefficient of the regression analysis ranged from 0.21 to 0.47 for the different models. Body weight, BMI, waist circumference, TSD-OC test score and flexibility were found to be predictors of the 6MWT interruption. Discussion The present study demonstrated the impact of disability in obese subjects, together with age, anthropometric data, body composition and strength, on the 6-minute walking distance. PMID:24146756
Schilder, Rudolf J; Raynor, Megan
2017-10-01
Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T ( Dmel\\up ; Fbgn0004169, herein referred to by its synonym TnT ), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses. © 2017. Published by The Company of Biologists Ltd.
Many-body dispersion interactions from the exchange-hole dipole moment model
NASA Astrophysics Data System (ADS)
Otero-de-la-Roza, A.; Johnson, Erin R.
2013-02-01
In this article, we present the extension of the exchange-hole dipole moment model (XDM) of dispersion interactions to the calculation of two-body and three-body dispersion energy terms to any order, 2l-pole oscillator strengths, and polarizabilities. By using the newly-formulated coefficients, we study the relative importance of the higher-order two-body and the leading non-additive three-body (triple-dipole) interactions in gas-phase as well as in condensed systems. We show that the two-body terms up to R-10, but not the terms of higher-order, are essential in the correct description of the dispersion energy, while there are a number of difficulties related to the choice of the damping function, which precludes the use three-body triple-dipole contributions in XDM. We conclude that further study is required before the three-body term can be used in production XDM density-functional calculations and point out the salient problems regarding its use.
Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E
2002-01-01
Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Zito, Giancarlo; Luders, Eileen; Tomasevic, Leo; Lupoi, Domenico; Toga, Arthur W.; Thompson, Paul M.; Rossini, Paolo M.; Filippi, Maria M.; Tecchio, Franca
2014-01-01
Multiple sclerosis (MS) affects myelin sheaths within the central nervous system, concurring to cause brain atrophy and neurodegeneration as well as gradual functional disconnections. To explore early signs of altered connectivity in MS from a structural and functional perspective, the morphology of corpus callosum (CC) was correlated with a dynamic inter-hemispheric connectivity index. Twenty mildly disabled patients affected by a relapsing-remitting (RR) form of MS (EDSS ≤ 3.5) and 15 healthy subjects underwent structural MRI to measure CC thickness over 100 sections and electroencephalography to assess a spectral coherence index between primary regions devoted to hand control, at rest and during an isometric handgrip. In patients, an overall CC atrophy was associated with increased lesion load. A less efficacious inter-hemispheric coherence during movement was associated with CC atrophy in sections interconnecting homologous primary motor areas (anterior mid-body). In healthy controls, less efficacious inter-hemispheric coherence at rest was associated with a thinner CC splenium. Our data suggest that in mildly disabled RR-MS patients a covert impairment may be detected in the correlation between the structural (CC thickness) and functional (inter-hemispheric coherence) measures of homologous networks, whereas these two counterparts do not yet differ individually from controls. PMID:24486438
Tihanyi, B T; Köteles, F
2017-09-01
Body sensations play an essential role in the subjective evaluation of our physical health, illness, and healing. They are impacted by peripheral somatic and external processes, but they are also heavily modulated by mental processes, e.g., attention, motor control, and emotion. Body sensations, such as tingling, numbness, pulse, and warmth, can emerge due to simply focusing attention on a body part. It is however an open question, if these sensations are connected with actual peripheral changes or happen "only in the mind." Here, we first tested whether the intensity of such attention-related body sensations is related to autonomic and somatomotor physiological processes and to psychological traits. In this study, attention-related body sensations were not significantly connected to changes in physiology, except warmth sensation, which was linked to decrease in muscle tension. Overall intensity of tingling significantly correlated with body awareness and tendentiously with body-mind practice. This strengthened the hypothesis that attention-related body sensations are more the result of top-down functions, and the connection with peripheral processes is weak. Here, we suggested a novel protocol to examine the effect of manipulating attention on body sensations, which together with our results and discussion can inspire future researches.
[Occlusion and posture: is there evidence of correlation?].
Michelotti, A; Manzo, P; Farella, M; Martina, R
1999-11-01
The observation that the masticatory system and the postural body regulating system are anatomically and functionally related, has led to postulate several hypotheses of correlation between occlusal and postural disturbances. In the last decade, these arguments have gained a great social impact, also because they have been broadly spread by the mass-media. As a consequence, there has been a growing number of patients seeking concomitant occlusal and postural treatments. The aim of this study was to review critically the current evidence of correlation between the two systems; this in order to address clinical issues for the management of patients. Methodology of the studies reviewed has been evaluated according to the criteria suggested by Storey and Rugh 20 rif. Although there are some evidences of correlation between occlusion and posture, this appears limited to the cranio-cervical tract of the column and tends to disappear when descending in cranio-caudal direction. On the basis of this review of the literature, it's not advisable to treat postural imbalance by means of occlusal treatment or vice versa, particularly if the therapeutic modalities are irreversible.
Raber, Jacob; Allen, Antiño R; Rosi, Susanna; Sharma, Sourabh; Dayger, Catherine; Davis, Matthew J; Fike, John R
2013-06-01
The space radiation environment contains high-energy charged particles such as (56)Fe, which could pose a significant hazard to hippocampal function in astronauts during and after the mission(s). The mechanisms underlying impairments in cognition are not clear but might involve alterations in the percentage of neurons in the dentate gyrus expressing the plasticity-related immediate early gene Arc. Previously, we showed effects of cranial (56)Fe irradiation on hippocampus-dependent contextual freezing and on the percentage of Arc-positive cells in the enclosed, but not free, blade. Because it is unclear whether whole body (56)Fe irradiation causes similar effects on these markers of hippocampal function, in the present study we quantified the effects of whole body (56)Fe irradiation (600MeV, 0.5 or 1Gy) on hippocampus-dependent and hippocampus-independent cognitive performance and determined whether these effects were associated with changes in Arc expression in the enclosed and free blades of the dentate gyrus. Whole body (56)Fe irradiation impacted contextual but not cued fear freezing and the percentage of Arc-positive cells in the enclosed and free blades. In mice tested for contextual freezing, there was a correlation between Arc-positive cells in the enclosed and free blades. In addition, in mice irradiated with 0.5Gy, contextual freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive cells in the enclosed blade. In mice tested for cued freezing, there was no correlation between Arc-positive cells in the enclosed and free blades. In contrast, cued freezing in the presence or absence of aversive stimuli correlated with Arc-positive cells in the free blade. In addition, in mice irradiated with 1Gy cued freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive neurons in the free blade. These data indicate that while whole body (56)Fe radiation affects contextual freezing and Arc-positive cells in the dentate gyrus, the enclosed blade might be more important for contextual freezing while the free blade might be more important for cued freezing. Copyright © 2013 Elsevier B.V. All rights reserved.
Engagement of the left extrastriate body area during body-part metaphor comprehension.
Lacey, Simon; Stilla, Randall; Deshpande, Gopikrishna; Zhao, Sinan; Stephens, Careese; McCormick, Kelly; Kemmerer, David; Sathian, K
2017-03-01
Grounded cognition explanations of metaphor comprehension predict activation of sensorimotor cortices relevant to the metaphor's source domain. We tested this prediction for body-part metaphors using functional magnetic resonance imaging while participants heard sentences containing metaphorical or literal references to body parts, and comparable control sentences. Localizer scans identified body-part-specific motor, somatosensory and visual cortical regions. Both subject- and item-wise analyses showed that, relative to control sentences, metaphorical but not literal sentences evoked limb metaphor-specific activity in the left extrastriate body area (EBA), paralleling the EBA's known visual limb-selectivity. The EBA focus exhibited resting-state functional connectivity with ipsilateral semantic processing regions. In some of these regions, the strength of resting-state connectivity correlated with individual preference for verbal processing. Effective connectivity analyses showed that, during metaphor comprehension, activity in some semantic regions drove that in the EBA. These results provide converging evidence for grounding of metaphor processing in domain-specific sensorimotor cortical activity. Published by Elsevier Inc.
Radziwiłłowicz, Wioletta; Lewandowska, Magdalena
2017-04-30
The aim of the study was to analyze the relationships between clinical variables (the severity of depression symptoms, feelings towards the body, dissociation, number and type of traumatic events) and deliberate self-injury functions. Moreover, we investigated whether the of group self-mutilating adolescents is internally diverse in terms of how important individual functions of self-mutilation are, and whether the subgroups singled out by these functions differ between each other in terms of clinical variables. The Inventory of Statements about Self-Injury was used. Characterizations of examined individuals and other research tools are included in our previous article (year, issue, pages). Associated with negative feelings towards the body are the functions of self-injuries (anti-dissociation, self-punishment) that can be described as interpersonal. High levels of depression symptoms (self-depreciation included) are mainly associated with the self-injury functions: self-punishment, anti-dissociation, establishing interpersonal boundaries. Affect regulation becomes more important as a function of self-inflicted injuries in cases of biological dysregulation and intense dissociative symptoms. The adolescents psychiatric inpatients are internally diverse in terms of dominant functions of self-injuries, which can be categorized into intra- and interpersonal. Intrapersonal functions dominate when an individual experiences severe depression, dissociative symptoms, and negative feelings towards the body. In cases of moderate intensity of depression, dissociative symptoms and negative feelings towards the body, both intrapersonal and interpersonal functions of self-mutilation are similarly important. Further research is required to explain the lowest severity of depression symptoms, dissociative symptoms and negative feelings towards the body co-occurs with no awareness of self-injuries functions.
Regression relation for pure quantum states and its implications for efficient computing.
Elsayed, Tarek A; Fine, Boris V
2013-02-15
We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.
Modeling of two-particle femtoscopic correlations at top RHIC energy
NASA Astrophysics Data System (ADS)
Ermakov, N.; Nigmatkulov, G.
2017-01-01
The spatial and temporal characteristics of particle emitting source produced in particle and/or nuclear collisions can be measured by using two-particle femtoscopic correlations. These correlations arise due to quantum statistics, Coulomb and strong final state interactions. In this paper we report on the calculations of like-sign pion femtoscopic correlations produced in p+p, p+Au, d+Au, Au+Au at top RHIC energy using Ultra Relativistic Quantum Molecular Dynamics Model (UrQMD). Three-dimensional correlation functions are constructed using the Bertsch-Pratt parametrization of the two-particle relative momentum. The correlation functions are studied in several transverse mass ranges. The emitting source radii of charged pions, Rout, Rside, Rlong , are obtained from Gaussian fit to the correlation functions and compared to data from the STAR and PHENIX experiments.
HIF-2α is essential for carotid body development and function
Cowburn, Andrew S; Torres-Torrelo, Hortensia; Ortega-Sáenz, Patricia; López-Barneo, José
2018-01-01
Mammalian adaptation to oxygen flux occurs at many levels, from shifts in cellular metabolism to physiological adaptations facilitated by the sympathetic nervous system and carotid body (CB). Interactions between differing forms of adaptive response to hypoxia, including transcriptional responses orchestrated by the Hypoxia Inducible transcription Factors (HIFs), are complex and clearly synergistic. We show here that there is an absolute developmental requirement for HIF-2α, one of the HIF isoforms, for growth and survival of oxygen sensitive glomus cells of the carotid body. The loss of these cells renders mice incapable of ventilatory responses to hypoxia, and this has striking effects on processes as diverse as arterial pressure regulation, exercise performance, and glucose homeostasis. We show that the expansion of the glomus cells is correlated with mTORC1 activation, and is functionally inhibited by rapamycin treatment. These findings demonstrate the central role played by HIF-2α in carotid body development, growth and function. PMID:29671738
Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.
Keller, Lani C; Romijn, Edwin P; Zamora, Ivan; Yates, John R; Marshall, Wallace F
2005-06-21
The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.
Robertson, George N; Lindsey, Benjamin W; Dumbarton, Tristan C; Croll, Roger P; Smith, Frank M
2008-06-01
Many teleost fishes use a swimbladder, a gas-filled organ in the coelomic cavity, to reduce body density toward neutral buoyancy, thus minimizing the locomotory cost of maintaining a constant depth in the water column. However, for most swimbladder-bearing teleosts, the contribution of this organ to the attainment of neutral buoyancy has not been quantified. Here, we examined the quantitative contribution of the swimbladder to buoyancy and three-dimensional stability in a small cyprinid, the zebrafish (Danio rerio). In aquaria during daylight hours, adult animals were observed at mean depths from 10.1 +/- 6.0 to 14.2 +/- 5.6 cm below the surface. Fish mass and whole-body volume were linearly correlated (r(2) = 0.96) over a wide range of body size (0.16-0.73 g); mean whole-body density was 1.01 +/- 0.09 g cm(-3). Stereological estimations of swimbladder volume from linear dimensions of lateral X-ray images and direct measurements of gas volumes recovered by puncture from the same swimbladders showed that results from these two methods were highly correlated (r(2) = 0.85). The geometric regularity of the swimbladder thus permitted its volume to be accurately estimated from a single lateral image. Mean body density in the absence of the swimbladder was 1.05 +/- 0.04 g cm(-3). The swimbladder occupied 5.1 +/- 1.4% of total body volume, thus reducing whole-body density significantly. The location of the centers of mass and buoyancy along rostro-caudal and dorso-ventral axes overlapped near the ductus communicans, a constriction between the anterior and posterior swimbladder chambers. Our work demonstrates that the swimbladder of the adult zebrafish contributes significantly to buoyancy and attitude stability. Furthermore, we describe and verify a stereological method for estimating swimbladder volume that will aid future studies of the functions of this organ. 2008 Wiley-Liss, Inc
Gifford, A H; Nymon, A B; Ashare, A
2014-04-01
Cystic fibrosis (CF) is characterized by low circulating levels of insulin-like growth factor-1 (IGF-1), a hormone produced by the liver that governs anabolism and influences immune cell function. Because treatment of CF pulmonary exacerbation (CFPE) often improves body weight and lung function, we questioned whether serum IGF-1 trends were emblematic of these responses. Initially, we compared serum levels between healthy adults with CF and controls of similar age. We then measured serum IGF-1 throughout the CFPE cycle. We also investigated correlations among IGF-1 and other serum biomarkers during CFPE. Anthopometric, spirometric, and demographic data were collected. Serum IGF-1 concentrations were measured by ELISA. CF subjects in their usual state of health had lower serum IGF-1 levels than controls. Serum IGF-1 concentrations fell significantly from baseline at the beginning of CFPE. Treatment with intravenous antibiotics was associated with significant improvement in serum IGF-1 levels, body mass index (BMI), and percent-predicted forced expiratory volume in 1 sec (FEV1 %). At early and late CFPE, serum IGF-1 was directly correlated with FEV1 %, serum iron, hemoglobin concentration, and transferrin saturation (TSAT) and indirectly correlated with alpha-1-antitrypsin. This study not only supports the paradigm that CF is characterized by IGF-1 deficiency but also that trends in lung function, nutritional status, and serum IGF-1 are related. Improvements in all three parameters after antibiotics for CFPE likely highlight the connection between lung function and nutritional status in CF. Close correlations among IGF-1 and iron-related hematologic parameters suggest that IGF-1 may participate in CF iron homeostasis, another process that is known to be influenced by CFPE. © 2013 Wiley Periodicals, Inc.
Relationship between body mass index and fibromyalgia features.
Yunus, Muhammad B; Arslan, Sule; Aldag, Jean C
2002-01-01
to evaluate the relationship between body mass index (BMI) and features of the fibromyalgia syndrome (FMS). 211 female patients with FMS seen consecutively in our rheumatology clinic were analyzed. Spearman correlation was used. Further, FMS features were compared at different levels of BMI (kg/m2), e.g., < 25.00 vs > or = 25.00 (normal vs overweight). P value of < or = 0.01 was accepted as significant. A significant positive correlation was found between BMI and age (p<0.001) and a negative correlation between BMI and education (p<0.009). Health Assessment Questionnaire (HAQ) score was significantly correlated with BMI (p<0.001), whereas fatigue and number of tender points (TP) showed a trend (p=0.035 and 0.037, respectively). The HAQ score is significantly associated with BMI in FMS with a trend towards significance for fatigue and TP. Weight loss may improve physical functioning in this disorder.
Femtosecond dynamics of correlated many-body states in C60 fullerenes
NASA Astrophysics Data System (ADS)
Usenko, Sergey; Schüler, Michael; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L.; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal
2016-11-01
Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C60 by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of {τ }{el}={10}-3+5 fs. Energy dissipation towards nuclear degrees of freedom is studied with time-resolved techniques. The evaluation of the nonlinear autocorrelation trace gives a characteristic time constant of {τ }{vib}=400+/- 100 fs for the exponential decay. In line with the experiment, the observed transient dynamics is explained theoretically by nonadiabatic (vibronic) couplings involving the correlated electronic, the nuclear degrees of freedom (accounting for the Herzberg-Teller coupling), and their interplay.
Non-Fermi glasses: fractionalizing electrons at finite energy density
NASA Astrophysics Data System (ADS)
Parameswaran, Siddharth; Gopalakrishnan, Sarang
Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of ``non-Fermi glasses,'' which are phases of interacting disordered fermions that are fully many-body localized, yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlation functions, that sharply distinguishes between the two phases even at infinite temperature. We argue that our results and diagnostic should generically apply to the high-temperature behavior of the many-body localized descendants of fractionalized phases. S.A.P. is supported by NSF Grant DMR-1455366 and a UC President's Research Catalyst Award CA-15-327861, and S.G. by the Burke Institute at Caltech.
Giesbertz, Klaas J H; van Leeuwen, Robert
2014-05-14
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.
Characterization of topological phases of dimerized Kitaev chain via edge correlation functions
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu
2017-11-01
We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.
Collins, Sean M; Silberlicht, Max; Perzinski, Chris; Smith, Stephen P; Davidson, Patrick W
2014-09-01
Numerous studies have examined the effects that body composition has on performance in football, soccer, and ice hockey; yet, there are no similar studies examining this relationship in men's lacrosse. The purpose of the study was to examine the physiological profiles and the relationship between body composition and performance in aerobic and anaerobic tests. Fifty-four (19.63 ± 1.21 years; 178.53 ± 6.17 cm; 81.66 ± 14.96 kg) Division III intercollegiate athletes participated. Performance tests, including a 1 repetition maximum power clean (PC), body weight (lbs), bench press repetitions, parallel bar triceps dips to fatigue (DR), two 300-yard shuttles, and a 1-mile run (MT), were completed after the completion of fall preseason practices. Body composition was estimated using air-displacement plethysmography. Correlation coefficients determined relationships between percent body fat (%BF), fat-free mass (FFM), and testing variables. Increased %BF was negatively correlated to DR (r = -0.36, p = 0.01) whereas positively correlated to each 300-yard shuttle time (T1 and T2), total 300-yard shuttle time (TT), and MT (r = 0.64, p = 0.00; r = 0.68, p = 0.00; r = 0.69, p = 0.00; and r = 0.44, p = 0.00, respectively). Increased FFM was positively correlated with PC (r = 0.58, p = 0.00) yet not correlated (p ≥ 0.05) with other variables. Results indicated that increased %BF might be a detriment to the repetitive anaerobic performance and aerobic capacity vital to on-field lacrosse performance. Body composition also demonstrated a significant relationship to moving internal vs. external resistances.
Passive and active floating torque during swimming.
Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James
2004-10-01
The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.
Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu
2011-11-02
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.
Towards a formal definition of static and dynamic electronic correlations.
Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L
2017-05-24
Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.
Sex determination from scapular length measurements by CT scans images in a Caucasian population.
Giurazza, F; Schena, E; Del Vescovo, R; Cazzato, R L; Mortato, L; Saccomandi, P; Paternostro, F; Onofri, L; Zobel, B Beomonte
2013-01-01
Together with race, stature and age, sex is a main component of the biological identity. Thanks to its proportional correlation with parts of the human body, sex can be evaluated form the skeleton. The most accurate approach to determine sex by bone size is based on os coxae or skull. After natural disaster their presence can never be guaranteed, therefore the development of methods of sex determination using other skeletal elements can result crucial. Herein, sexual dimorphism in the human scapula is used to develop a two-variable discriminant function for sex estimation. We have enrolled 100 males and 100 females who underwent thoracic CT scan evaluation and we have estimated two scapular diameters. The estimation has been carried out by analyzing images of the scapulae of each patient after three dimensional post-processing reconstructions. The two-variable function allows to obtain an overall accuracy of 88% on the calibration sample. Furthermore, we have employed the mentioned function on a collection of 10 individual test sample from the collection of the "Museo di Anatomia Umana di Firenze" of the Università degli Studi di Firenze; sex has been correctly predicted on 9 skeletons.
Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0
NASA Astrophysics Data System (ADS)
Kauffmann, Guinevere; Colberg, Jorg M.; Diaferio, Antonaldo; White, Simon D. M.
1999-02-01
We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter haloes as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for gas cooling, star formation, supernova feedback and the merging of galaxies within the haloes. This scheme enables us to explore the clustering properties of galaxies, and to investigate how selection by luminosity, colour or type influences the results. In this paper we study the properties of the galaxy distribution at z=0. These include B- and K-band luminosity functions, two-point correlation functions, pairwise peculiar velocities, cluster mass-to-light ratios, B-V colours, and star formation rates. We focus on two variants of a cold dark matter (CDM) cosmology: a high-density (Omega =1) model with shape-parameter Gamma =0.21 (tau CDM), and a low-density model with Omega =0.3 and Lambda =0.7 (Lambda CDM). Both models are normalized to reproduce the I-band Tully-Fisher relation of Giovanelli et al. near a circular velocity of 220 km s^-1. Our results depend strongly both on this normalization and on the adopted prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For tau CDM, efficient feedback is required to suppress the growth of galaxies, particularly in low-mass field haloes. Without it, there are too many galaxies and the correlation function exhibits a strong turnover on scales below 1 Mpc. For Lambda CDM, feedback must be weaker, otherwise too few L_* galaxies are produced and the correlation function is too steep. Although neither model is perfect, both come close to reproducing most of the data. Given the uncertainties in modelling some of the critical physical processes, we conclude that it is not yet possible to draw firm conclusions about the values of cosmological parameters from studies of this kind. Further observational work on global star formation and feedback effects is required to narrow the range of possibilities.
Flores-Orozco, Elan Ignacio; Tiznado-Orozco, Gaby Esthela; Osuna-González, Olga Dionicia; Amaro-Navarrete, Claudia Lucero; Rovira-Lastra, Bernat; Martinez-Gomis, Jordi
2016-11-01
This study assessed the relation among several aspects of the masticatory function and the nutritional status in adults with natural dentition. One hundred adults with natural dentition participated in this cross-sectional study. They performed one free-style masticatory test consisting of five trials of 20 silicon-chewing cycles. The preferred chewing side was determined by calculating the asymmetry index. Masticatory performance was determined by sieving the silicon particles, and the cycle duration was also recorded. Weight, body water percentage, body fat mass, muscle mass and osseous mass were measured using a portable digital weighing machine. Body mass index (BMI), waist-hip ratio, skinfold thickness and the upper-arm composition were determined. The relation between masticatory function and a nutritional variable were tested using Pearson or Spearman rank correlation coefficients or using analysis of variance or the Kruskal-Wallis H-test and the Mann-Whitney U test, as appropriate. Whereas body fat percentages for women were significantly higher than for men, the body mass index was higher in men than in women. Participants who were underweight chewed more asymmetrically and more slowly than normal weight or obese participants. A negative correlation was observed between body fat percentage and masticatory laterality. No relation between masticatory performance and any nutritional status indicator was detected. Being underweight and having a low body fat percentage seem to be related to a masticatory lateral asymmetry and to a large cycle duration in young adults with natural dentition. Masticatory performance does not seem to be related to nutritional status. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling The Skeleton Weight of an Adult Caucasian Man.
Avtandilashvili, Maia; Tolmachev, Sergei Y
2018-05-17
The reference value for the skeleton weight of an adult male (10.5 kg) recommended by the International Commission on Radiological Protection in Publication 70 is based on weights of dissected skeletons from 44 individuals, including two U.S. Transuranium and Uranium Registries whole-body donors. The International Commission on Radiological Protection analysis of anatomical data from 31 individuals with known values of body height demonstrated significant correlation between skeleton weight and body height. The corresponding regression equation, Wskel (kg) = -10.7 + 0.119 × H (cm), published in International Commission on Radiological Protection Publication 70 is typically used to estimate the skeleton weight from body height. Currently, the U.S. Transuranium and Uranium Registries holds data on individual bone weights from a total of 40 male whole-body donors, which has provided a unique opportunity to update the International Commission on Radiological Protection skeleton weight vs. body height equation. The original International Commission on Radiological Protection Publication 70 and the new U.S. Transuranium and Uranium Registries data were combined in a set of 69 data points representing a group of 33- to 95-y-old individuals with body heights and skeleton weights ranging from 155 to 188 cm and 6.5 to 13.4 kg, respectively. Data were fitted with a linear least-squares regression. A significant correlation between the two parameters was observed (r = 0.28), and an updated skeleton weight vs. body height equation was derived: Wskel (kg) = -6.5 + 0.093 × H (cm). In addition, a correlation of skeleton weight with multiple variables including body height, body weight, and age was evaluated using multiple regression analysis, and a corresponding fit equation was derived: Wskel (kg) = -0.25 + 0.046 × H (cm) + 0.036 × Wbody (kg) - 0.012 × A (y). These equations will be used to estimate skeleton weights and, ultimately, total skeletal actinide activities for biokinetic modeling of U.S. Transuranium and Uranium Registries partial-body donation cases.
Neural Correlates to Food-Related Behavior in Normal-Weight and Overweight/Obese Participants
Ho, Alan; Kennedy, James; Dimitropoulos, Anastasia
2012-01-01
Two thirds of US adults are either obese or overweight and this rate is rising. Although the etiology of obesity is not yet fully understood, neuroimaging studies have demonstrated that the central nervous system has a principal role in regulating eating behavior. In this study, functional magnetic resonance imaging and survey data were evaluated for correlations between food-related problem behaviors and the neural regions underlying responses to visual food cues before and after eating in normal-weight individuals and overweight/obese individuals. In normal-weight individuals, activity in the left amygdala in response to high-calorie food vs. nonfood object cues was positively correlated with impaired satiety scores during fasting, suggesting that those with impaired satiety scores may have an abnormal anticipatory reward response. In overweight/obese individuals, activity in the dorsolateral prefrontal cortex (DLPFC) in response to low-calorie food cues was negatively correlated with impaired satiety during fasting, suggesting that individuals scoring lower in satiety impairment were more likely to activate the DLPFC inhibitory system. After eating, activity in both the putamen and the amygdala was positively correlated with impaired satiety scores among obese/overweight participants. While these individuals may volitionally suggest they are full, their functional response to food cues suggests food continues to be salient. These findings suggest brain regions involved in the evaluation of visual food cues may be mediated by satiety-related problems, dependent on calorie content, state of satiation, and body mass index. PMID:23028988
Assunção, Flávia Fernanda Oliveira; Dantas, Rosana Aparecida Spadoti; Ciol, Márcia Aparecida; Gonçalves, Natália; Farina, Jayme Adriano; Rossi, Lidia Aparecida
2013-06-01
The aims of this study were to adapt the Body Image Quality of Life Inventory (BIQLI) into Brazilian Portuguese (BP) and to assess the psychometric properties of the adapted version. Construct validity was assessed by correlating the BIQLI-BP scores with the Rosenberg's Self-Esteem Scale, with Burns Specific Health Scale-Revised (BSHS-R), and with gender, total body surface area burned, and visibility of the scars. Participants were 77 adult burn patients. Cronbach's alpha for the adapted version was .90 and moderate linear correlations were found between body image and self-esteem and between BIQLI-BP scores and two domains of the BSHS-R: affect and body image and interpersonal relationships. The BIQLI-BP showed acceptable levels of reliability and validity for Brazilian burn patients. Copyright © 2013 Wiley Periodicals, Inc.
Mazaheri, Reza; Halabchi, Farzin; Seif Barghi, Tohid; Mansournia, Mohammad Ali
2016-03-01
The elite-level referee is exposed to similar physical demands to those placed on a midfield soccer player. They have an important responsibility to implement the rules of the game. So, good health and performance of soccer referees have a great importance. The purpose of this study was to assess the cardiorespiratory fitness and body composition of all 78 soccer referees officiating at the Iranian Premier League and determine the correlation between these parameters and performance. In a cross-sectional study, all referees selected for the competitions were enrolled. Participants underwent exercise stress test, pulmonary function test and body composition assessment. Then the weekly scores of each referee, assessed by qualified supervisors of national federation were obtained using the FIFA standard form throughout the season (34 weeks) and registered. Among 78 participants (including 32 center and 46 side referees), mean and standard deviation of age, body mass index, percent of body fat, VO2max and performance scores were 37 ± 3.8, 23.6 ± 2.1, 20.7 ± 3.9, 59.9 ± 7.1 and 85.8 ± 0.25, respectively. No significant correlation between referees' mean score and selected parameters were found. It seems that the acquired scores of top-class referees may be influenced by multiple factors other than the laboratory findings of cardiopulmonary fitness and body composition.
Physique and Performance of Young Wheelchair Basketball Players in Relation with Classification
Zancanaro, Carlo
2015-01-01
The relationships among physical characteristics, performance, and functional ability classification of younger wheelchair basketball players have been barely investigated to date. The purpose of this work was to assess anthropometry, body composition, and performance in sport-specific field tests in a national sample of Italian younger wheelchair basketball players as well as to evaluate the association of these variables with the players’ functional ability classification and game-related statistics. Several anthropometric measurements were obtained for 52 out of 91 eligible players nationwide. Performance was assessed in seven sport-specific field tests (5m sprint, 20m sprint with ball, suicide, maximal pass, pass for accuracy, spot shot and lay-ups) and game-related statistics (free-throw points scored per match, two- and three-point field-goals scored per match, and their sum). Association between variables, and predictivity was assessed by correlation and regression analysis, respectively. Players were grouped into four Classes of increasing functional ability (A-D). One-way ANOVA with Bonferroni’s correction for multiple comparisons was used to assess differences between Classes. Sitting height and functional ability Class especially correlated with performance outcomes, but wheelchair basketball experience and skinfolds did not. Game-related statistics and sport-specific field-test scores all showed significant correlation with each other. Upper arm circumference and/or maximal pass and lay-ups test scores were able to explain 42 to 59% of variance in game-related statistics (P<0.001). A clear difference in performance was only found for functional ability Class A and D. Conclusion: In younger wheelchair basketball players, sitting height positively contributes to performance. The maximal pass and lay-ups test should be carefully considered in younger wheelchair basketball training plans. Functional ability Class reflects to a limited extent the actual differences in performance. PMID:26606681
Jensen, Mette H; Sukumaran, Madhav; Johnson, Christopher M; Greger, Ingo H; Neuweiler, Hannes
2011-11-18
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function. Copyright © 2011 Elsevier Ltd. All rights reserved.
Markov, A L; Zenchenko, T A; Solonin, Iu G; Boĭko, E R
2013-01-01
In April 2009 through to November 2011, a Mars-500 satellite study of Russian Northerners (Syktyvkar citizens) was performed using the standard ECOSAN-2007 procedure evaluating the atmospheric and geomagnetic susceptibility of the main body functional parameters. Seventeen essentially healthy men at the age of 25 to 46 years were investigated. Statistical data treatment included correlation and single-factor analysis of variance. Comparison of the number of statistical correlations of the sum of all functional parameters for participants showed that most often they were sensitive to atmospheric pressure, temperature, relative humidity and oxygen partial pressure (29-35 %), and geomagnetic activity (28 %). Dependence of the functional parameters on the rate of temperature and pressure change was weak and comparable with random coincidence (11 %). Among the hemodynamic parameters, systolic pressure was particularly sensitive to space and terrestrial weather variations (29 %); sensitivity of heart rate and diastolic pressure were determined in 25 % and 21 % of participants, respectively. Among the heart rate variability parameters (HRV) the largest number of statistically reliable correlations was determined for the centralization index (32 %) and high-frequency HRV spectrum (31 %); index of the regulatory systems activity was least dependable (19 %). Life index, maximal breath-holding and Ckibinskaya's cardiorespiratory index are also susceptible. Individual responses of the functional parameters to terrestrial and space weather changes varied with partidpants which points to the necessity of individual approach to evaluation of person's reactions to environmental changes.
Metri, Kashinath G; Bhargav, Hemant; Ramarao, Nagendra Hongasandra; Rizzo-Sierra; Basavakatti, Ramakrishna R
2012-01-01
Purpose: Ayurveda is one of the most ancient systems of medical health care. The basic principles, diagnosis of the diseases and their treatment are based on individual prakriti (constitutional type). Ayurveda further classifies the prakriti of an individual on the basis of a set of psychosomatic attributes of personality, depending on whether this individual belongs to Vata, Pitta, or Kapha prakriti, or any combination of them (Patwardhan et al., 2005). The appropriate prakriti assessment is done by several means including questionnaires (Rastogi, 2012; Shilpa and Venkatesha-Murthy, 2011). We aimed to obtain experimental evidence correlating Ayurveda based tridosha-prakriti with western constitutional psychology somatotypes (Rizzo-Sierra, 2011). Method: We employed our Tridosha-prakriti questionnaire (Ramakrishna and Nagendra, 2012), and compared its results with a set of body composition parameters: Height, body weight, body mass index (BMI), muscle mass, fat mass, and fat percentage in normal healthy volunteers (25 males and 25 females, mean age was 26 (± 4) and 25 (± 6) years respectively). Moreover, two-tailed Pearson's correlations were investigated to match the extreme prakriti types with the western constitutional psychology somatotypes, through the mentioned body composition measures. Result: Significant negative correlations were observed between the percentage of Vata attributes as per the questionnaire in the individuals and their BMI, body weight and fat mass respectively (p<0.05). Similarly, there was a significant positive correlation between the percentage of Pitta attributes with the height, body weight, and muscle mass respectively. Also, a significant positive correlation was observed between the percentage of Kapha attributes with fat mass and fat percentage, along with a negative correlation with height. Conclusion: We provide evidence-linking Ayurveda to modern constitutional psychology. In this way, a concept such as prakriti is suggested to lie behind the body mass composition of an individual, and deserves attention within the scientific community.
Discriminating topology in galaxy distributions using network analysis
NASA Astrophysics Data System (ADS)
Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl
2016-07-01
The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.
Insulin sensitivity and cardiac autonomic function in young male practitioners of yoga.
Chaya, M S; Ramakrishnan, G; Shastry, S; Kishore, R P; Nagendra, H; Nagarathna, R; Raj, T; Thomas, T; Vaz, M; Kurpad, A V
2008-01-01
While yoga is thought to reduce the risk of chronic non-communicable diseases such as diabetes, there are no studies on insulin sensitivity in long term practitioners of yoga. We assessed insulin sensitivity and cardiac autonomic function in long term practitioners of yoga. Fifteen healthy, young, male practitioners of yoga were compared with 15 young, healthy males who did not practice yoga matched for body-mass index. Fasting insulin sensitivity was measured in the fasting state by the hyperinsulinaemic-euglycaemic clamp. There were no significant differences between the groups in their anthropometry or body composition. However, the fasting plasma insulin was significantly lower in the yoga group. The yoga group was also more insulin sensitive (yoga 7.82 [2.29] v. control 4.86 [11.97] (mg/[kg.min])/(microU/ml), p < 0.001). While the body weight and waist circumference were negatively correlated with glucose disposal rate in the controls, there were no similar correlations in the yoga group. The yoga group had significantly higher low-frequency power and lower normalized high-frequency power. Long term yoga practice (for 1 year or more) is associated with increased insulin sensitivity and attenuates the negative relationship between body weight or waist circumference and insulin sensitivity.
Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian
2017-01-01
Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the “immune system” of mental health recently developed in relation to flexible hub theory. PMID:28736535
Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian
2017-01-01
Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.
Brief communication: Hair density and body mass in mammals and the evolution of human hairlessness.
Sandel, Aaron A
2013-09-01
Humans are unusual among mammals in appearing hairless. Several hypotheses propose explanations for this phenotype, but few data are available to test these hypotheses. To elucidate the evolutionary history of human "hairlessness," a comparative approach is needed. One previous study on primate hair density concluded that great apes have systematically less dense hair than smaller primates. While there is a negative correlation between body size and hair density, it remains unclear whether great apes have less dense hair than is expected for their body size. To revisit the scaling relationship between hair density and body size in mammals, I compiled data from the literature on 23 primates and 29 nonprimate mammals and conducted Phylogenetic Generalized Least Squares regressions. Among anthropoids, there is a significant negative correlation between hair density and body mass. Chimpanzees display the largest residuals, exhibiting less dense hair than is expected for their body size. There is a negative correlation between hair density and body mass among the broader mammalian sample, although the functional significance of this scaling relationship remains to be tested. Results indicate that all primates, and chimpanzees in particular, are relatively hairless compared to other mammals. This suggests that there may have been selective pressures acting on the ancestor of humans and chimpanzees that led to an initial reduction in hair density. To further understand the evolution of human hairlessness, a systematic study of hair density and physiology in a wide range of species is necessary. Copyright © 2013 Wiley Periodicals, Inc.
Algebraic diagrammatic construction formalism with three-body interactions
NASA Astrophysics Data System (ADS)
Raimondi, Francesco; Barbieri, Carlo
2018-05-01
Background: Self-consistent Green's function theory has recently been extended to the basic formalism needed to account for three-body interactions [Carbone, Cipollone, Barbieri, Rios, and Polls, Phys. Rev. C 88, 054326 (2013), 10.1103/PhysRevC.88.054326]. The contribution of three-nucleon forces has so far been included in ab initio calculations on nuclear matter and finite nuclei only as averaged two-nucleon forces. Purpose: We derive the working equations for all possible two- and three-nucleon terms that enter the expansion of the self-energy up to the third order, thus including the interaction-irreducible (i.e., not averaged) diagrams with three-nucleon forces that have been previously neglected. Methods: We employ the algebraic diagrammatic construction up to the third order as an organization scheme for generating a nonperturbative self-energy, in which ring (particle-hole) and ladder (particle-particle) diagrams are resummed to all orders. Results: We derive expressions of the static and dynamic self-energy up to the third order, by taking into account the set of diagrams required when either the skeleton or nonskeleton expansions of the single-particle propagator are assumed. A hierarchy of importance among different diagrams is revealed, and a particular emphasis is given to a third-order diagram [see Fig. 2(c)] that is expected to play a significant role among those featuring an interaction-irreducible three-nucleon force. Conclusion: A consistent formalism to resum at infinite order correlations induced by three-nucleon forces in the self-consistent Green's function theory is now available and ready to be implemented in the many-body solvers.
Calella, Patrizia; Valerio, Giuliana; Thomas, Matt; McCabe, Helen; Taylor, Jake; Brodlie, Malcolm; Siervo, Mario
2018-04-01
Body mass index (BMI) has significant limitations when assessing nutritional status in pediatric patients with cystic fibrosis (CF). We evaluated whether measurements of lean body mass (LBM) and fat mass (FM) are more sensitive nutritional parameters by testing their association with pulmonary function in adolescent patients with CF. Sixty-nine male and female adolescents with CF were studied (age: 14.5 ± 2.3, BMI: 19.5 ± 2.3 kg/m 2 ). Dual-energy x-ray absorptiometry (DXA) was used to measure total and segmental (appendicular, truncal) body composition (FM, LBM bone mineral density, and content) as routine care to monitor bone health. Correlation and multiple regression analyses were performed to assess the association among body composition variables and forced expiratory volume in 1 s (FEV 1 ). We also evaluated the influence of the F508del mutation on body composition. FEV 1 was significantly associated with total (r = 0.68, P <0.001), truncal (r = 0.71, P <0.001), and appendicular (r = 0.67, P <0.001) LBM, whereas it was not associated with total (r = 0.02, P = 0.89) and truncal (r = 0.04, P = 0.77) FM. BMI had a significant but weaker correlation with FEV 1 (r = 0.52, P <0.001) compared with LBM. LBM was the only significant predictor of FEV 1 in fully adjusted regression models. LBM is a significant predictor of pulmonary function in CF adolescent patients. DXA scanning performed as part of routine bone health monitoring in CF can provide important body composition data relevant to clinical interventions that optimize nutritional status. DXA reference data for LBM in non-adult populations are needed to enhance diagnostic assessment and monitor clinical progression of CF. Copyright © 2017 Elsevier Inc. All rights reserved.
Assessing the genetic overlap between BMI and cognitive function
Marioni, R E; Yang, J; Dykiert, D; Mõttus, R; Campbell, A; Ibrahim-Verbaas, Carla A; Bressler, Jan; Debette, Stephanie; Schuur, Maaike; Smith, Albert V; Davies, Gail; Bennett, David A; Deary, Ian J; Ikram, M Arfan; Launer, Lenore J; Fitzpatrick, Annette L; Seshadri, Sudha; van Duijn, Cornelia M; Mosely Jr, Thomas H; Davies, G; Hayward, C; Porteous, D J; Visscher, P M; Deary, I J
2016-01-01
Obesity and low cognitive function are associated with multiple adverse health outcomes across the life course. They have a small phenotypic correlation (r=−0.11; high body mass index (BMI)−low cognitive function), but whether they have a shared genetic aetiology is unknown. We investigated the phenotypic and genetic correlations between the traits using data from 6815 unrelated, genotyped members of Generation Scotland, an ethnically homogeneous cohort from five sites across Scotland. Genetic correlations were estimated using the following: same-sample bivariate genome-wide complex trait analysis (GCTA)–GREML; independent samples bivariate GCTA–GREML using Generation Scotland for cognitive data and four other samples (n=20 806) for BMI; and bivariate LDSC analysis using the largest genome-wide association study (GWAS) summary data on cognitive function (n=48 462) and BMI (n=339 224) to date. The GWAS summary data were also used to create polygenic scores for the two traits, with within- and cross-trait prediction taking place in the independent Generation Scotland cohort. A large genetic correlation of −0.51 (s.e. 0.15) was observed using the same-sample GCTA–GREML approach compared with −0.10 (s.e. 0.08) from the independent-samples GCTA–GREML approach and −0.22 (s.e. 0.03) from the bivariate LDSC analysis. A genetic profile score using cognition-specific genetic variants accounts for 0.08% (P=0.020) of the variance in BMI and a genetic profile score using BMI-specific variants accounts for 0.42% (P=1.9 × 10−7) of the variance in cognitive function. Seven common genetic variants are significantly associated with both traits at P<5 × 10−5, which is significantly more than expected by chance (P=0.007). All these results suggest there are shared genetic contributions to BMI and cognitive function. PMID:26857597
Ramadan, Ahmed; Cholewicki, Jacek; Radcliffe, Clark J; Popovich, John M; Reeves, N Peter; Choi, Jongeun
2017-11-07
This study evaluated the within- and between-visit reliability of a seated balance test for quantifying trunk motor control using input-output data. Thirty healthy subjects performed a seated balance test under three conditions: eyes open (EO), eyes closed (EC), and eyes closed with vibration to the lumbar muscles (VIB). Each subject performed three trials of each condition on three different visits. The seated balance test utilized a torque-controlled robotic seat, which together with a sitting subject resulted in a physical human-robot interaction (pHRI) (two degrees-of-freedom with upper and lower body rotations). Subjects balanced the pHRI by controlling trunk rotation in response to pseudorandom torque perturbations applied to the seat in the coronal plane. Performance error was expressed as the root mean square (RMSE) of deviations from the upright position in the time domain and as the mean bandpass signal energy (E mb ) in the frequency domain. Intra-class correlation coefficients (ICC) quantified the between-visit reliability of both RMSE and E mb . The empirical transfer function estimates (ETFE) from the perturbation input to each of the two rotational outputs were calculated. Coefficients of multiple correlation (CMC) quantified the within- and between-visit reliability of the averaged ETFE. ICCs of RMSE and E mb for all conditions were ≥0.84. The mean within- and between-visit CMCs were all ≥0.96 for the lower body rotation and ≥0.89 for the upper body rotation. Therefore, our seated balance test consisting of pHRI to assess coronal plane trunk motor control is reliable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thomas, Marianna S; Newman, David; Leinhard, Olof Dahlqvist; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N; Karlsson, Anette; Rosander, Johannes; Borga, Magnus; Toms, Andoni P
2014-09-01
To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19·32 L (SD9·1) and 19·28 L (SD9·12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1·0, 95% level of agreement -0·32-0·2 L). ICC for all automated test-retest muscle volumes were almost perfect (0·99-1·0) with 95% levels of agreement 1.8-6.6% of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1·68 L (2SD0·6) compared to automated 1·64 L (2SD 0·6), left lower leg: manual 1·69 L (2SD 0·64) compared to automated 1·63 L (SD0·61), correlation coefficients for automated and manual segmentation were 0·94-0·96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. Sarcopaenia is an important reversible complication of a number of diseases. Manual quantification of muscle volume is time-consuming and expensive. Muscles can be imaged using in and out of phase MRI. Automated atlas-based segmentation can identify muscle groups. Automated muscle volume segmentation is reproducible and can replace manual measurements.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
Eriksrud, Ola; Federolf, Peter; Anderson, Patrick; Cabri, Jan
2018-01-01
Tests of dynamic postural control eliciting full-body three-dimensional joint movements in a systematic manner are scarce. The well-established star excursion balance test (SEBT) elicits primarily three-dimensional lower extremity joint movements with minimal trunk and no upper extremity joint movements. In response to these shortcomings we created the hand reach star excursion balance test (HSEBT) based on the SEBT reach directions. The aims of the current study were to 1) compare HSEBT and SEBT measurements, 2) compare joint movements elicited by the HSEBT to both SEBT joint movements and normative range of motion values published in the literature. Ten SEBT and HSEBT reaches for each foot were obtained while capturing full-body kinematics in twenty recreationally active healthy male subjects. HSEBT and SEBT areas and composite scores (sum of reaches) for total, anterior and posterior subsections and individual reaches were correlated. Total reach score comparisons showed fair to moderate correlations (r = .393 to .606), while anterior and posterior subsections comparisons had fair to good correlations (r = .269 to .823). Individual reach comparisons had no to good correlations (r = -.182 to .822) where lateral and posterior reaches demonstrated the lowest correlations (r = -.182 to .510). The HSEBT elicited more and significantly greater joint movements than the SEBT, except for hip external rotation, knee extension and plantarflexion. Comparisons to normative range of motion values showed that 3 of 18 for the SEBT and 8 of 22 joint movements for the HSEBT were within normative values. The findings suggest that the HSEBT can be used for the assessment of dynamic postural control and is particularly suitable for examining full-body functional mobility.
Two-body loss rates for reactive collisions of cold atoms
NASA Astrophysics Data System (ADS)
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
Patra, Abhilash; Jana, Subrata; Samal, Prasanjit
2018-04-07
The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.
NASA Astrophysics Data System (ADS)
Patra, Abhilash; Jana, Subrata; Samal, Prasanjit
2018-04-01
The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.
NASA Astrophysics Data System (ADS)
Angulo, Raul E.; Hilbert, Stefan
2015-03-01
We explore the cosmological constraints from cosmic shear using a new way of modelling the non-linear matter correlation functions. The new formalism extends the method of Angulo & White, which manipulates outputs of N-body simulations to represent the 3D non-linear mass distribution in different cosmological scenarios. We show that predictions from our approach for shear two-point correlations at 1-300 arcmin separations are accurate at the ˜10 per cent level, even for extreme changes in cosmology. For moderate changes, with target cosmologies similar to that preferred by analyses of recent Planck data, the accuracy is close to ˜5 per cent. We combine this approach with a Monte Carlo Markov chain sampler to explore constraints on a Λ cold dark matter model from the shear correlation functions measured in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We obtain constraints on the parameter combination σ8(Ωm/0.27)0.6 = 0.801 ± 0.028. Combined with results from cosmic microwave background data, we obtain marginalized constraints on σ8 = 0.81 ± 0.01 and Ωm = 0.29 ± 0.01. These results are statistically compatible with previous analyses, which supports the validity of our approach. We discuss the advantages of our method and the potential it offers, including a path to model in detail (i) the effects of baryons, (ii) high-order shear correlation functions, and (iii) galaxy-galaxy lensing, among others, in future high-precision cosmological analyses.
He, J; Gao, H; Xu, P; Yang, R
2015-12-01
Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.