Sample records for two-component material part

  1. Interface conditions of two-shot molded parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less

  2. Using a two-lens afocal compensator for thermal defocus correction of catadioptric system

    NASA Astrophysics Data System (ADS)

    Ivanov, S. E.; Romanova, G. E.; Bakholdin, A. V.

    2017-08-01

    The work associates with the catadioptric systems with two-component afocal achromatic compensator. The most catadioptric systems with afocal compensator have the power mirror part and the correctional lens part. The correctional lens part can be in parallel, in convergent beam or in both. One of the problems of such systems design is the thermal defocus by reason of the thermal aberration and the housing thermal expansion. We introduce the technique of thermal defocus compensation by choosing the optical material of the afocal compensator components. The components should be made from the optical materials with thermo-optical characteristics so after temperature changing the compensator should become non-afocal with the optical power enough to compensate the image plane thermal shift. Abbe numbers of the components should also have certain values for correction chromatic aberrations that reduces essentially the applicable optical materials quantity. The catalogues of the most vendors of optical materials in visible spectral range are studied for the purpose of finding the suitable couples for the technique. As a result, the advantages and possibilities of the plastic materials application in combination with optical glasses are shown. The examples of the optical design are given.

  3. Profiles of Major Suppliers to the Automotive Industry : Vol. 6. Foreign Automotive Parts and Components Suppliers.

    DOT National Transportation Integrated Search

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  4. Profiles of Major Suppliers to the Automotive Industry : Vol. 5. Multinational Automotive Parts and Components Suppliers

    DOT National Transportation Integrated Search

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  5. Profiles of Major Suppliers to the Automotive Industry : Vol. 4. North American Automotive Parts and Components Suppliers

    DOT National Transportation Integrated Search

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  6. Effect of weld line positions on the tensile deformation of two-component metal injection moulding

    NASA Astrophysics Data System (ADS)

    Manonukul, Anchalee; Songkuea, Sukrit; Moonchaleanporn, Pongporn; Tange, Makiko

    2017-12-01

    Knowledge of the mechanical properties of two-component parts is critical for engineering functionally graded components. In this study, mono- and two-component tensile test specimens were metal injection moulded. Three different weld line positions were generated in the two-component specimens. Linear shrinkage of the two-component specimens was greater than that of the mono-component specimens because the incompatibility of sintering shrinkage of both materials causes biaxial stresses and enhances sintering. The mechanical properties of 316L stainless steel were affected by the addition of a coloured pigment used to identify the weld line position after injection moulding. For the two-component specimens, the yield stress and ultimate tensile stress were similar to those of 316L stainless steel. Because 316L and 630 (also known as 17-4PH) stainless steels were well-sintered at the interface, the mechanical properties of the weaker material (316L stainless steel) were dominant. However, the elongations of the two-component specimens were lower than those of the mono-component specimens. An interfacial zone with a microstructure that differed from those of the mono-material specimens was observed; its different microstructure was attributed to the gradual diffusion of nickel and copper.

  7. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  8. Numerical simulation of linear fiction welding (LFW) processes

    NASA Astrophysics Data System (ADS)

    Fratini, L.; La Spisa, D.

    2011-05-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  9. Proceedings of the Symposium on Long-Life Hardware for Space

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Two-volume edition of the papers of the symposium is described. It is divided into six sections - parts, materials, management, system testing, component design, and system test. Material presented focuses attention on problems created by the increased complexity of technology and long-term mission requirements.

  10. Two-component end mills with multilayer composite nano-structured coatings as a viable alternative to monolithic carbide end mills

    NASA Astrophysics Data System (ADS)

    Vereschaka, Alexey; Mokritskii, Boris; Mokritskaya, Elena; Sharipov, Oleg; Oganyan, Maksim

    2018-03-01

    The paper deals with the challenges of the application of two-component end mills, which represent a combination of a carbide cutting part and a shank made of cheaper structural material. The calculations of strains and deformations of composite mills were carried out in comparison with solid carbide mills, with the use of the finite element method. The study also involved the comparative analysis of accuracy parameters of machining with monolithic mills and two-component mills with various shank materials. As a result of the conducted cutting tests in milling aluminum alloy with monolithic and two-component end mills with specially developed multilayer composite nano-structured coatings, it has been found that the use of such coatings can reduce strains and, correspondingly, deformations, which can improve the accuracy of machining. Thus, the application of two-component end mills with multilayer composite nano-structured coatings can provide a reduction in the cost of machining while maintaining or even improving the tool life and machining accuracy parameters.

  11. Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi

    2012-01-01

    Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.

  12. Stress Free Temperature Testing and Calculations on Out-of-Autoclave Composites

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Tate, LeNetra C.; Danley, Susan E.; Sampson, Jeffrey W.; Taylor, Brian J.; Sutter, James K.; Miller, Sandi G.

    2013-01-01

    Future launch vehicles will require the incorporation of large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7/Bismaleimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the stress free temperature of the materials

  13. Improved FCG-1 cell technology

    NASA Astrophysics Data System (ADS)

    Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.

    1980-10-01

    Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.

  14. Assessment and selection of materials for ITER in-vessel components

    NASA Astrophysics Data System (ADS)

    Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R. T.; Tivey, R.; ITER Home Teams

    2000-12-01

    During the international thermonuclear experimental reactor (ITER) engineering design activities (EDA) significant progress has been made in the selection of materials for the in-vessel components of the reactor. This progress is a result of the worldwide collaboration of material scientists and industries which focused their effort on the optimisation of material and component manufacturing and on the investigation of the most critical material properties. Austenitic stainless steels 316L(N)-IG and 316L, nickel-based alloys Inconel 718 and Inconel 625, Ti-6Al-4V alloy and two copper alloys, CuCrZr-IG and CuAl25-IG, have been proposed as reference structural materials, and ferritic steel 430, and austenitic steel 304B7 with the addition of boron have been selected for some specific parts of the ITER in-vessel components. Beryllium, tungsten and carbon fibre composites are considered as plasma facing armour materials. The data base on the properties of all these materials is critically assessed and briefly reviewed in this paper together with the justification of the material selection (e.g., effect of neutron irradiation on the mechanical properties of materials, effect of manufacturing cycle, etc.).

  15. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  16. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  17. Profiles of Major Suppliers to the Automotive Industry : Vol. 1. Overview.

    DOT National Transportation Integrated Search

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  18. New laser machining processes for shape memory alloys

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Paschko, Stefan; Goede, Martin

    2001-04-01

    Due to special material properties, shape memory alloys (SMA) are finding increasing attention in micro system technology. However, only a few processes are available for the machining of miniaturized SMA-components. In this connection, laser material processing offers completely new possibilities. This paper describes the actual status of two projects that are being carried out to qualify new methods to machine SMA components by means of laser radiation. Within one project, the laser material ablation process of miniaturized SMA- components using ultra-short laser pulses (pulse duration: approx. 200 fs) in comparison to conventional laser material ablation is being investigated. Especially for SMA micro- sensors and actuators, it is important to minimize the heat affected zone (HAZ) to maintain the special mechanical properties. Light-microscopic investigations of the grain texture of SMA devices processed with ultra-short laser pulses show that the HAZ can be neglected. Presently, the main goal of the project is to qualify this new processing technique for the micro-structuring of complex SMA micro devices with high precision. Within a second project, investigations are being carried out to realize the induction of the two-way memory effect (TWME) into SMA components using laser radiation. By precisely heating SMA components with laser radiation, local tensions remain near the component surface. In connection with the shape memory effect, these tensions can be used to make the components execute complicated movements. Compared to conventional training methods to induce the TWME, this procedure is faster and easier. Furthermore, higher numbers of thermal cycling are expected because of the low dislocation density in the main part of the component.

  19. Computer Simulations as an Integral Part of Intermediate Macroeconomics.

    ERIC Educational Resources Information Center

    Millerd, Frank W.; Robertson, Alastair R.

    1987-01-01

    Describes the development of two interactive computer simulations which were fully integrated with other course materials. The simulations illustrate the effects of various real and monetary "demand shocks" on aggregate income, interest rates, and components of spending and economic output. Includes an evaluation of the simulations'…

  20. Profiles of Major Suppliers to the Automotive Industry : Vol. 7. Machine Tool Suppliers to the Automotive Industry.

    DOT National Transportation Integrated Search

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  1. Profiles of Major Suppliers to the Automotive Industry : Vol. 3. Plastics, Glass and Fiberglass Suppliers to the Automotive Industry

    DOT National Transportation Integrated Search

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study was to ...

  2. Profiles of Major Suppliers to the Automotive Industry : Vol. 2. Iron, Steel and Aluminum Suppliers to the Automotive Industry

    DOT National Transportation Integrated Search

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  3. Southern Regional Center for Lightweight Innovative Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Paul T.

    The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantifymore » microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.« less

  4. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  5. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  6. Quick-disconnect coupling/filter

    NASA Technical Reports Server (NTRS)

    Jankowski, F.

    1977-01-01

    Two-part coupling system for hose lines combines both connection and filter in one fitting. Flared fittings make coupling less prone to leakage, and reduced number of components speeds operation. These features may make coupler useful with liquid-bulk carriers, where materials (e.g., milk, cooking oil, and liquid sugar) must be transferred quickly from vehicle to storage facility.

  7. Hardwood pallet cant quality and pallet part yields

    Treesearch

    Hal L. Mitchell; Marshall White; Philip Araman; Peter Hamner

    2005-01-01

    Raw materials are the largest cost component in pallet manufacturing. The primary raw material used to produce pallet parts are pallet cants. Therefore, pallet cant quality directly impacts pallet part processing and material costs. By knowing the quality of the cants being processed, pallet manufacturers can predict these costs and improve manufacturing efficiency....

  8. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  9. Evaluation of Fatigue Crack Growth and Fracture Properties of Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Forth, Scott C.; Everett, Richard A., Jr.; Newman, James C., Jr.; Kimmel, William M.

    2002-01-01

    The criteria used to prevent failure of wind-tunnel models and support hardware were revised as part of a project to enhance the capabilities of cryogenic wind tunnel testing at NASA Langley Research Center. Specifically, damage-tolerance fatigue life prediction methods are now required for critical components, and material selection criteria are more general and based on laboratory test data. The suitability of two candidate model alloys (AerMet 100 and C-250 steel) was investigated by obtaining the fatigue crack growth and fracture data required for a damage-tolerance fatigue life analysis. Finally, an example is presented to illustrate the newly implemented damage tolerance analyses required of wind-tunnel model system components.

  10. Influence of clamp-up force on the strength of bolted composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1994-03-01

    Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.

  11. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  12. Roughness and compressive strength of FDM 3D printed specimens affected by acetone vapour treatment

    NASA Astrophysics Data System (ADS)

    Beniak, Juraj; Križan, Peter; Šooš, Ľubomír; Matúš, Miloš

    2018-01-01

    Rapid Prototyping technologies are the fastest growing technologies in the manufacturing of components and parts. There are many techniques which can be used with different materials and different purposes of produced part. Gradually, Rapid Prototyping systems have grown into Additive Manufacturing, because technology expansion brings faster production, improved manufactured components, and expanded palette of used materials. So now this techniques are also used for regular production of special parts, where is usual change of part design, where is necessary to produce variety of different designs and shapes. The following article deals with Fused Deposition Modelling (FDM) technology, the core of which is the manufacture models and components from thermoplastic polymers by deposition single fibres of semi-molten plastic material layer by layer. The article focuses on the results of research for testing of manufactured specimens by FDM technology. Components are modified by acetone vapour for surface smoothing. The purpose is to point out how the additional specimen treatment influence the strength properties. Presented paper shows realized experiments and measurements of compressive force on specimens and surface roughness which are influenced by acetone vapour treatment.

  13. The Design and Construction Process of a Test Stand for Casting the Power Steering’S Housing with the Use of the Pdcpd Material

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Grabowski, Ł.

    2018-01-01

    The use of new technologies and materials in various industries is a natural process that is directly related to the very high rate of development of these technologies. Certain industries decide to much faster introduce new technologies and materials. One of such branches is the automotive industry, whose representatives are very energetically looking for both financial savings and savings resulting from the vehicles mass reduction. An economically justified approach to construction materials is leading the search for new solutions and materials. The use of a modern material such as the two-component PDCPD composite shows hitherto unknown possibilities of producing subassemblies of many different constructions. The possibility of using a modern composite material with parameters comparable to that of metals and significantly lighter, can be an excellent alternative in the selection of materials for many parts of motor vehicles. The potentiality of precise casting of tolerated surfaces will allow to reduce the operations related to machining process, which is an indispensable part of the production process of elements that are cast of metal. This article describes the process of designing and building a test stand for precise positioning of power steering gear components at the stage of casting their housing. The article presents the principle of operation of the test stand and the process of preparation for the casting and the cast itself will be rudely described. Due to the implementation of research as part of a research project with an industrial partner, the article will only describe some operations. This is related to the confidentiality of the project.

  14. Biomaterials Out of Thin Air: in Situ, On-Demand Printing of Advanced Biocomposites

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley

    2015-01-01

    Upmass is the single most significant limitation of our current space mission capability. Although biomaterials and biocomposites have mass, strength, flexibility, and self-healing properties that could significantly reduce upmass, their use is limited by the following drawbacks: Expensive, specific production. Many biomaterials can only be produced as part of significant support ecosystem; Inaccessible functional customization. The grain of wood, the porosity of bone, and so on are an integral part of the materials' desired mechanical properties, but are not deterministic when the material is naturally grown; Limited compositions. Most biomaterials (unlike metal, plastic, etc.) cannot be easily combined or modified to produce new materials. This project builds on recent advances in: Synthetic biology. Libraries of standardized genetic parts which can be used for controlled cellular material production, delivery, and binding; 3D printing. Commercial off-the-shelf components which can be used to make of a pico- to nanoliter cell deposition system; Tissue engineering. Proven cell-compatible support hydrogels and scaffolds can be modified to bind the deposited biomaterials of interest. Objectives: Feasibility and benefit analysis. Two mission contexts span the concept's scope (see below); Proof-of-concept demonstration. A simple grid of two proteins, fluorescent for easy detection, to validate the core technology concept; Proposed implementations for follow-on work. Avenues for future work on each core component (host cell, production control, material delivery, material binding, etc.); Complementary studies exploration. A survey of other emerging areas (in situ resource utilization, protein engineering, etc.) with the potential to multiply our technology's impact. Potential Impacts: This application could dramatically expand manufacturing capabilities on Earth and in space: In situ resource utilization. A far greater range of materials and products will be available from the limited palette offered by in situ resource extraction techniques; Reduced equipment and material upmass for off-Earth habitats. Ready- to-use highly specialized construction materials (radiation hardened, compressive/tensile, light or dense) from an extremely low starting mass; Structured biomaterial production. New ready-to-use macro, micro, and molecular manufacturing techniques for traditional biomaterials such as wood, bone and shell; New and novel biocomposite creation. The ability to create completely novel material composites from any base material that cells can be engineered to produce. Suggested Mission Contexts: ISS part manufacturing. A 'minimal working example' making a finished biomaterial part aboard the International Space Station; A long-term Mars habitat. 'Cradle-to-grave' use at a hypothetical Mars habitat, covering everything from tools to construction materials. Alternate Abstract: Imagine being able to print anything from tools and composite building materials to food and human tissues. Imagine being on Mars with the ability to replace any broken part, whether it's a part of your spacesuit, your habitat, or your own body. We propose a technique that would allow just that. By printing 3D arrays of cells engineered to secrete the necessary materials, the abundant in situ resources of atmosphere and regolith become organic, inorganic, or organic-inorganic composite materials. Such materials include novel, biologically derived materials not previously possible to fabricate.

  15. Biomaterials Out of Thin Air: in Situ, On-demand Printing of Advanced Biocomposites

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley

    2015-01-01

    Upmass is the single most significant limitation of our current space mission capability. Although biomaterials and biocomposites have mass, strength, flexibility, and self-healing properties that could significantly reduce upmass, their use is limited by the following drawbacks: Expensive, specific production. Many biomaterials can only be produced as part of significant support ecosystem; Inaccessible functional customization. The grain of wood, the porosity of bone, and so on are an integral part of the materials' desired mechanical properties, but are not deterministic when the material is naturally grown; Limited compositions. Most biomaterials (unlike metal, plastic, etc.) cannot be easily combined or modified to produce new materials. This project builds on recent advances in: Synthetic biology. Libraries of standardized genetic parts which can be used for controlled cellular material production, delivery, and binding; 3D printing. Commercial off-the-shelf components which can be used to make of a pico- to nanoliter cell deposition system; Tissue engineering. Proven cell-compatible support hydrogels and scaffolds can be modified to bind the deposited biomaterials of interest. Objectives: Feasibility and benefit analysis. Two mission contexts span the concept's scope (see below); Proof-of-concept demonstration. A simple grid of two proteins, fluorescent for easy detection, to validate the core technology concept; Proposed implementations for follow-on work. Avenues for future work on each core component (host cell, production control, material delivery, material binding, etc.); Complementary studies exploration. A survey of other emerging areas (in situ resource utilization, protein engineering, etc.) with the potential to multiply our technology's impact. Potential Impacts: This application could dramatically expand manufacturing capabilities on Earth and in space: In situ resource utilization. A far greater range of materials and products will be available from the limited palette offered by in situ resource extraction techniques; Reduced equipment and material upmass for off-Earth habitats. Ready- to-use highly specialized construction materials (radiation hardened, compressive/tensile, light or dense) from an extremely low starting mass; Structured biomaterial production. New ready-to-use macro, micro, and molecular manufacturing techniques for traditional biomaterials such as wood, bone and shell; New and novel biocomposite creation. The ability to create completely novel material composites from any base material that cells can be engineered to produce. Suggested Mission Contexts: ISS part manufacturing. A 'minimal working example' making a finished biomaterial part aboard the International Space Station; A long-term Mars habitat. 'Cradle-to-grave' use at a hypothetical Mars habitat, covering everything from tools to construction materials. Alternate Abstract: Imagine being able to print anything from tools and composite building materials to food and human tissues. Imagine being on Mars with the ability to replace any broken part, whether it's a part of your spacesuit, your habitat, or your own body. We propose a technique that would allow just that. By printing 3D arrays of cells engineered to secrete the necessary materials, the abundant in situ resources of atmosphere and regolith become organic, inorganic, or organic-inorganic composite materials. Such materials include novel, biologically derived materials not previously possible to fabricate.

  16. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  17. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow productionmore » rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.« less

  18. KSC-07pd3320

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd3321

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, the second of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3319

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  1. Computer-Aided Process Model For Carbon/Phenolic Materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.

    1996-01-01

    Computer program implements thermochemical model of processing of carbon-fiber/phenolic-matrix composite materials into molded parts of various sizes and shapes. Directed toward improving fabrication of rocket-engine-nozzle parts, also used to optimize fabrication of other structural components, and material-property parameters changed to apply to other materials. Reduces costs by reducing amount of laboratory trial and error needed to optimize curing processes and to predict properties of cured parts.

  2. Automatic assembly of micro-optical components

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.

    1996-12-01

    Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.

  3. Prototyping of automotive components with variable width and depth

    NASA Astrophysics Data System (ADS)

    Abeyrathna, B.; Rolfe, B.; Harrasser, J.; Sedlmaier, A.; Ge, Rui; Pan, L.; Weiss, M.

    2017-09-01

    Roll forming enables the manufacturing of longitudinal components from materials that combine high strength with limited formability and is increasingly used in the automotive industry for the manufacture of structural and crash components. An extension of conventional roll forming is the Flexible Roll Forming (FRF) process where the rolls are no longer fixed in space but are free to move which enables the forming of components with variable cross section over the length of the part. Even though FRF components have high weight saving potential the technology has found only limited application in the automotive industry. A new flexible forming facility has recently been developed that enables proof of concept studies and the production of FRF prototypes before a full FRF line is built; this may lead to a wider uptake of the FRF technology in the automotive industry. In this process, the pre-cut blank is placed between two clamps and the whole set up moves back and forth; a forming roll that is mounted on a servo-controlled platform with six degrees of freedom forms the pre-cut blank to the desired shape. In this study an initial forming concept for the flexible roll forming of an automotive component with variable height is developed using COPRA® FEA RF. This is followed by performing experimental prototyping studies on the new concept forming facility. Using the optical strain measurement system Autogrid Compact, material deformation, part shape and wrinkling severity are analysed for some forming passes and compared with the numerical results. The results show that the numerical model gives a good representation of material behaviour and that with increasing forming severity wrinkling issues need to be overcome in the process.

  4. Suggestions for Curriculum Development [And] Handbook, Part C, 7-9. Environmental Education Interdependence: A Concept Approach. Revised.

    ERIC Educational Resources Information Center

    King, David C.; Stillman, Peter R.

    Two booklets, a guide and a handbook, comprise the grades 7-9 component of a series of guides for incorporating environmental education into the existing curriculum. The materials emphasize a multidisciplinary approach, use the concept of interdependence as an organizing theme, and offer suggestions for using the local community as a resource.…

  5. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturingmore » process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.« less

  6. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    NASA Astrophysics Data System (ADS)

    Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Hoye, Nicholas; Curiri, Dominic; Kapoor, Ajay

    2015-03-01

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  7. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    NASA Astrophysics Data System (ADS)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.

  8. Optically reconfigurable metasurfaces and photonic devices based on phase change materials

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.

    2016-01-01

    Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

  9. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  10. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components.

  11. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  12. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  13. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  14. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  15. Printed Spacecraft Separation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmans, Walter; Dehoff, Ryan

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly intomore » a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.« less

  16. Production Strategies for Production-Quality Parts for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.

  17. Feasibility and Testing of Additive Manufactured Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Hummelt, Ed; Solovyeva, Lyudmila

    2016-09-01

    This project focused on demonstrating the ability to fabricate two parts with different geometry: an arc flash interrupter and a hydraulic manifold. Eaton Corporation provided ORNL solid models, information related to tolerances and sensitive parameters of the parts and provided testing and evaluation. ORNL successfully manufactured both components, provided cost models of the manufacturing (materials, labor, time and post processing) and delivered test components for Eaton evaluation. The arc flash suppressor was fabricated using the Renishaw laser powder bed technology in CoCrMo while the manifold was produced from Ti-6Al-4V using the Arcam electron beam melting technology. These manufacturing techniques weremore » selected based on the design and geometrical tolerances required. A full-scale manifold was produced on the Arcam A2 system (nearly 12 inches tall). A portion of the manifold was also produced in the Arcam Q10 system. Although a full scale manifold could not be produced in the system, a full scale manifold is expected to have similar material properties, geometric accuracy, and surface finish as could be fabricated on an Arcam Q20 system that is capable of producing four full scale manifolds in a production environment. In addition to the manifold, mechanical test specimens, geometric tolerance artifacts, and microstructure samples were produced alongside the manifold. The development and demonstration of these two key components helped Eaton understand the impact additive manufacturing can have on many of their existing products. By working within the MDF and leveraging ORNL’s manufacturing and characterization capabilities, the work will ensure the rapid insertion and commercialization of this technology.« less

  18. KSC-07pd3315

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove one of two Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd3318

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is moved across facility toward space shuttle Endeavour. The MISSE is part of the payload onboard Endeavour for mission STS-123 and will be installed in the payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  20. Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia

    USGS Publications Warehouse

    Moore, T.A.; Hilbert, R.E.

    1992-01-01

    Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component parts, i.e. fragments of cell walls and fillings. The absence of differences in particle size between the peat and lignite also indicate little compaction of organic components; rather an extreme loss in water content and pore space has occurred from between the particles of organic material. ?? 1992.

  1. Evaluation of Composite Components on the Bell 206L and Sikorsky S-76 Helicopters

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1990-01-01

    Progress on two programs to evaluate structural composite parts in flight service on Bell 206L and Sikorsky S-76 commercial helicopters is described. Forty ship sets of composite parts that include the litter door, baggage door, forward fairing, and vertical fin were installed on Bell Model 206L helicopters that are operating in widely different climates. Part installation started in 1981 and selected parts are being removed and tested at prescribed intervals over a 10 yr evaluation. Four horizontal stabilizers and eleven tail rotor spars that are production parts on the S-76 helicopter are being tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, materials used to fabricate the parts are being exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 123,000 hrs of accumulated service on the Bell 206L parts and 53,000 hrs on the Sikorsky S-76 parts are reported. Seventy-eight Bell 206L parts were removed and tested statically. Results of 7 yrs of ground exposure of materials used to make the Bell 206L parts are presented.

  2. Presentation of an approach for the analysis of the mechanical response of propellant under a large spectrum of loadings: numerical and mechanical issues

    NASA Astrophysics Data System (ADS)

    Fanget, Alain

    2009-06-01

    Many authors claim that to understand the response of a propellant, specifically under quasi static and dynamic loading, the mesostructural morphology and the mechanical behaviour of each of its components have to be known. However the scale of the mechanical description of the behaviour of a propellant is relative to its heterogeneities and the wavelength of loading. The shorter it is, the more important the topological description of the material is. In our problems, involving the safety of energetic materials, the propellant can be subjected to a large spectrum of loadings. This presentation is divided into five parts. The first part describes the processes used to extract the information about the morphology of the meso-structure of the material and presents some results. The results, the difficulties and the perspectives for this part will be recalled. The second part determines the physical processes involved at this scale from experimental results. Taking into account the knowledge of the morphology, two ways have been chosen to describe the response of the material. One concerns the quasi static loading, the object of the third part, in which we show how we use the mesoscopic scale as a base of development to build constitutive models. The fourth part presents for low but dynamic loading the comparison between numerical analysis and experiments.

  3. Building of nested components by a double-nozzle droplet deposition process

    NASA Astrophysics Data System (ADS)

    Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng

    2016-07-01

    According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.

  4. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, J. A.

    2011-12-01

    This work was undertaken in an effort to develop a combined RTV 615/3Å molecular sieve/DEB molded component. A molded RTV 615/3Å molecular sieve component is currently in production, and an RTV 615/DEB component was produced in the past. However, all three materials have never before been combined in a single production part, and this is an opportunity to create a new component capable of being molded to shape, performing desiccation, and hydrogen gettering. This analysis looked at weapons system parameters and how they might influence part design. It also looked at material processing and how it related to mixing, activatingmore » a dessicant, and hydrogen uptake testing.« less

  5. Report of material and equipment section`s activities at New York Shipbuilding Corporation during fabrication of AXC 167 1/2 starting May 18, 1951. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.R.

    1954-05-26

    This report provides Part III through VI of the Material and Equipment Section`s activities at New York Shipbuilding Corporation. Fabrication, inspection, and testing of reactor components are detailed.

  6. Differentiation and volcanism in the lunar highlands: photogeologic evidence and Apollo 16 implications

    USGS Publications Warehouse

    Trask, N.J.; McCauley, J.F.

    1972-01-01

    Materials of possible volcanic origin in the lunar highlands include (1) highland plains materials, (2) materials forming closely spaced hills in which summit furrows and chains of craters are common and (3) materials forming closely spaced hills (some of which parallel the lunar grid) on which summit furrows and chain craters are rare. The highland plains materials probably are basaltic lavas with less Fe and Ti than the mare plains materials. The two hilly units appear to consist of materials that, if volcanic, were more viscous in the molten state than any of the lunar plains units; thus these materials may be significantly enriched in felsic components. Most of the highland materials of possible volcanic origin formed after the Imbrium multi-ring basin but before mare material completed flooding parts of the moon; they therefore postdate accretion of the moon and may represent several episodes of premare volcanism. ?? 1972.

  7. Report of material and equipment section`s activities at New York Shipbuilding Corporation during fabrication of AXC 167 1/2 starting May 18, 1951. Part 7, Section 1: Paragraphs 1--14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.R.

    1954-02-28

    This document provides Part VII, Section I, Paragraphs 1 through 16 and Part VII, Section II of the Material and Equipment Section`s activities during the fabrication of reactor components and vessels at the New York Shipbuilding Corporation.

  8. Shuttle orbiter TPS flight repair kit development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and application of a TPS repair kit is presented. The repair kit is designed for on orbit use by a crew member working in the manned maneuvering unit (MMU). The kit includes the necessary equipment and materials to accomplish the repair tasks which include the following: HRSI emittance coating repair, damaged tile repair, missing tile repair, and multiple tile repair. Two types of repair materials required to do the small area repair and the large area repair are described. The materials area cure in place, silicone base ablator for small damaged areas and precured ablator tile for repair of larger damaged areas is examined. The cure in place ablator is also used as an adhesive to bond the precured tiles in place. An applicator for the cure in place ablator, designed to contain a two-part silicon compound, mix the two components at correct ratio, and dispense the materials at rates compatible with mission timelines established for the EVA is described.

  9. Effect of surface treatment on stress distribution in immediately loaded dental implants--a 3D finite element analysis.

    PubMed

    Bahrami, Babak; Shahrbaf, Shirin; Mirzakouchaki, Behnam; Ghalichi, Farzan; Ashtiani, Mohammed; Martin, Nicolas

    2014-04-01

    To investigate, by means of FE analysis, the effect of surface roughness treatments on the distribution of stresses at the bone-implant interface in immediately loaded mandibular implants. An accurate, high resolution, digital replica model of bone structure (cortical and trabecular components) supporting an implant was created using CT scan data and image processing software (Mimics 13.1; Materialize, Leuven, Belgium). An anatomically accurate 3D model of a mandibular-implant complex was created using a professional 3D-CAD modeller (SolidWorks, DassaultSystèmes Solid Works Corp; 2011). Finite element models were created with one of the four roughness treatments on the implant fixture surface. Of these, three were surface treated to create a uniform coating determined by the coefficient of friction (μ); these were either (1) plasma sprayed or porous-beaded (μ=1.0), (2) sandblasted (μ=0.68) or (3) polished (μ=0.4). The fourth implant had a novel two-part surface roughness consisting of a coronal polished component (μ=0.4) interfacing with the cortical bone, and a body plasma treated surface component (μ=1) interfacing with the trabecular bone. Finite element stress analysis was carried out under vertical and lateral forces. This investigation showed that the type of surface treatment on the implant fixture affects the stress at the bone-implant interface of an immediately loaded implant complex. Von Mises stress data showed that the two-part surface treatment created the better stress distribution at the implant-bone interface. The results from this FE computational analysis suggest that the proposed two-part surface treatment for IL implants creates lower stresses than single uniform treatments at the bone-implant interface, which might decrease peri-implant bone loss. Future investigations should focus on mechanical and clinical validation of these FE results. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Classification of soft-shell materials for leisure outdoor jackets by clo defined from thermal properties testing

    NASA Astrophysics Data System (ADS)

    Tesinova, P.; Steklova, P.; Duchacova, T.

    2017-10-01

    Materials for outdoor activities are produced in various combinations and lamination helps to combine two or more components for gaining high comfort properties and lighten the structure. Producers can choose exact suitable material for construction of part or set of so called layered clothing for expected activity. Decreasing the weight of materials when preserving of high quality of water-vapour permeability, wind resistivity and hydrostatic resistivity and other comfort and usage properties is a big task nowadays. This paper is focused on thermal properties as an important parameter for being comfort during outdoor activities. Softshell materials were chosen for testing and computation of clo. Results compared with standardised clo table helps us to classify thermal insulation of the set of fabrics when defining proper clothing category.

  11. The phonological short-term store-rehearsal system: patterns of impairment and neural correlates.

    PubMed

    Vallar, G; Di Betta, A M; Silveri, M C

    1997-06-01

    Two left brain-damaged patients (L.A. and T.O.) with a selective impairment of auditory-verbal span are reported. Patient L.A. was unable to hold auditory-verbal material in the phonological store component of short-term memory. His performance was however normal on tasks requiring phonological judgements, which specifically involve the phonological output buffer component of the rehearsal process. He also showed some evidence that rehearsal contributed to the immediate retention of auditory-verbal material. Patient T.O. never made use of the rehearsal process in tasks assessing both immediate retention and the ability to make phonological judgements, but the memory capacity of the phonological short-term store was comparatively preserved. These contrasting patterns of impairment suggest that the phonological store component of verbal short-term memory was severely impaired in patient L.A., and spared, at least in part, in patient T.O. The rehearsal process was preserved in L.A., and primarily defective in T.O. The localisation of the lesions in the left hemisphere (L.A.: inferior parietal lobule, superior and middle temporal gyri; T.O.: sub-cortical premotor and rolandic regions, anterior insula) suggests that these two sub-components of phonological short-term memory have discrete anatomical correlates.

  12. Study of the costs and benefits of composite materials in advanced turbofan engines

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.

    1974-01-01

    Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.

  13. Reliability and Confidence Interval Analysis of a CMC Turbine Stator Vane

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Gyekenyesi, John P.; Mital, Subodh K.

    2008-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight, enable higher operating temperatures requiring less cooling and thus leading to increased engine efficiencies. However, these materials are brittle and show degradation with time at high operating temperatures due to creep as well as cyclic mechanical and thermal loads. In addition, these materials are heterogeneous in their make-up and various factors affect their properties in a specific design environment. Most of these advanced composites involve two- and three-dimensional fiber architectures and require a complex multi-step high temperature processing. Since there are uncertainties associated with each of these in addition to the variability in the constituent material properties, the observed behavior of composite materials exhibits scatter. Traditional material failure analyses employing a deterministic approach, where failure is assumed to occur when some allowable stress level or equivalent stress is exceeded, are not adequate for brittle material component design. Such phenomenological failure theories are reasonably successful when applied to ductile materials such as metals. Analysis of failure in structural components is governed by the observed scatter in strength, stiffness and loading conditions. In such situations, statistical design approaches must be used. Accounting for these phenomena requires a change in philosophy on the design engineer s part that leads to a reduced focus on the use of safety factors in favor of reliability analyses. The reliability approach demands that the design engineer must tolerate a finite risk of unacceptable performance. This risk of unacceptable performance is identified as a component's probability of failure (or alternatively, component reliability). The primary concern of the engineer is minimizing this risk in an economical manner. The methods to accurately determine the service life of an engine component with associated variability have become increasingly difficult. This results, in part, from the complex missions which are now routinely considered during the design process. These missions include large variations of multi-axial stresses and temperatures experienced by critical engine parts. There is a need for a convenient design tool that can accommodate various loading conditions induced by engine operating environments, and material data with their associated uncertainties to estimate the minimum predicted life of a structural component. A probabilistic composite micromechanics technique in combination with woven composite micromechanics, structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Furthermore, input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Since the measured data for the ceramic matrix composite properties is very limited, obtaining a probabilistic distribution with their corresponding parameters is difficult. In case of limited data, confidence bounds are essential to quantify the uncertainty associated with the distribution. Usually 90 and 95% confidence intervals are computed for material properties. Failure properties are then computed with the confidence bounds. Best estimates and the confidence bounds on the best estimate of the cumulative probability function for R-S (strength - stress) are plotted. The methodologies and the results from these analyses will be discussed in the presentation.

  14. Hygrothermal Material Properties for Soils in Building Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehrer, Manfred; Pallin, Simon B.

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferredmore » and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing« less

  15. Properties and Performance Attributes of Novel Co-extruded Polyolefin Battery Separator Materials. Part 2; Electrical Properties

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2013-01-01

    As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.

  16. Measuring Price Changes: A Study of the Price Indexes. Fourth Edition.

    ERIC Educational Resources Information Center

    Wallace, William H.; Cullison, William E.

    This three-part monograph examines the major price indexes used to measure the intensity of inflation. The first part discusses the recent behavior of prices as measured by the Consumer Price Index (commodities, goods, and services), the Producer Price Index (wholesale prices of crude materials, intermediate materials, supplies, components, and…

  17. Post-Flight Test Results of Acousto-Optic Modulator Devices Subjected to Space Exposure

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark

    2014-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.

  18. Post-flight test results of acousto-optic modulator devices subjected to space exposure

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark

    2014-09-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 modulewas brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.

  19. Optical Density Analysis of X-Rays Utilizing Calibration Tooling to Estimate Thickness of Parts

    NASA Technical Reports Server (NTRS)

    Grau, David

    2012-01-01

    This process is designed to estimate the thickness change of a material through data analysis of a digitized version of an x-ray (or a digital x-ray) containing the material (with the thickness in question) and various tooling. Using this process, it is possible to estimate a material's thickness change in a region of the material or part that is thinner than the rest of the reference thickness. However, that same principle process can be used to determine the thickness change of material using a thinner region to determine thickening, or it can be used to develop contour plots of an entire part. Proper tooling must be used. An x-ray film with an S-shaped characteristic curve or a digital x-ray device with a product resulting in like characteristics is necessary. If a film exists with linear characteristics, this type of film would be ideal; however, at the time of this reporting, no such film has been known. Machined components (with known fractional thicknesses) of a like material (similar density) to that of the material to be measured are necessary. The machined components should have machined through-holes. For ease of use and better accuracy, the throughholes should be a size larger than 0.125 in. (.3 mm). Standard components for this use are known as penetrameters or image quality indicators. Also needed is standard x-ray equipment, if film is used in place of digital equipment, or x-ray digitization equipment with proven conversion properties. Typical x-ray digitization equipment is commonly used in the medical industry, and creates digital images of x-rays in DICOM format. It is recommended to scan the image in a 16-bit format. However, 12-bit and 8-bit resolutions are acceptable. Finally, x-ray analysis software that allows accurate digital image density calculations, such as Image-J freeware, is needed. The actual procedure requires the test article to be placed on the raw x-ray, ensuring the region of interest is aligned for perpendicular x-ray exposure capture. One or multiple machined components of like material/ density with known thicknesses are placed atop the part (preferably in a region of nominal and non-varying thickness) such that exposure of the combined part and machined component lay-up is captured on the x-ray. Depending on the accuracy required, the machined component fs thickness must be carefully chosen. Similarly, depending on the accuracy required, the lay-up must be exposed such that the regions of the x-ray to be analyzed have a density range between 1 and 4.5. After the exposure, the image is digitized, and the digital image can then be analyzed using the image analysis software.

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…

  1. Method for Designing Electronic Assemblies without Potting for Gun Launched Applications Through the Use of Additive Manufacturing

    DTIC Science & Technology

    2016-12-01

    easily would be preferred. Many studies have been conducted to model the effects of potting materials on PCBs and their components: two such studies ...catch (SCAT) gun Guidance electronics On -board recorder (OBR) Precision guided munition (PGM) 16. SECURITY CLASSIFICATION OF: 17... On -board Recorder 2 Initial Method - Modeling Assumptions 2 Initial Method - Parts, Instances, and Simplifications in the Model 3 Initial Method

  2. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.

    PubMed

    Kolle, Mathias; Lee, Seungwoo

    2018-01-01

    Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2017-12-12

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.

  4. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  5. Evaluation of Additively Manufactured Metals for Use in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan; Cooper, Ken; Peralta, Stephen; Wilcutt, Terrence; Hughitt, Brian; Generazio, Edward

    2016-01-01

    Space Launch System, Commercial Resupply, and Commercial Crew programs have published intent to use additively manufactured (AM) components in propulsion systems and are likely to include various life support systems in the future. Parts produced by these types of additive manufacturing techniques have not been fully evaluated for use in oxygen systems and the inherent risks have not been fully identified. Some areas of primary concern in the SLS process with respect to oxygen compatibility may be the porosity of the printed parts, fundamental differences in microstructure of an AM part as compared to traditional materials, or increased risk of shed metal particulate into an oxygen system. If an ignition were to occur the printed material could be more flammable than components manufactured from a traditional billet of raw material and/or present a significant hazards if not identified and rigorously studied in advance of implementation into an oxygen system.

  6. Report of material and equipment section`s activities at New York Shipbuilding Corporation during fabrication of AXC 167 1/2 starting May 18, 1951. Part 7, Section 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.R.

    1954-04-28

    This document provides Part VII, Section III and Section IV of the report of the Material and Equipment Section`s activities at the New York Shipbuilding Corporation. The fabrication, inspection, and testing of reactor components is detailed.

  7. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  8. Structure of the bulge of the galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Matveyenko, L. I.; Demichev, V. A.

    2017-09-01

    The superfine structure of the bulge of the galaxy NGC 4258 has been investigated in H2O maser emission at the epochs on February 4, 2013, and November 29, 2013. The peak intensities of the spectral components reached F ≈ 5 Jy. The emission of the component at v = 476 km s-1 dominated at the beginning of this period; the second component at v = 487 km s-1 was observed at the end of the period. The structure is a chain of compact components up to 200 µas or 7mpc in extent. The velocity of the local standard of rest is v LSR = 482 km s-1. Two bright compact components with a separation between them Δ ρ ≈ 35 µas or 1.3 mpc and a pair of components spaced 13 µas apart, whose brightness reaches 30% of the peak value corresponding to a brightness temperature T b ≈ 1018 K, are located at the center. The sizes of the components are 2-3 µas. A splitting and a shift of the two pairs of components relative to each other by 8 µas or 0.3 mpc in the 45° direction are observed at the end of the period. The velocity gradient of the structure is dV/dρ = 224 km s-1 mas-1, suggesting a solid-body rotation with a period T ≈ 760 years. The compact components correspond to the tangential directions of the arm. Two parallel chains of components corresponding to the tangential directions of the walls of the bipolar outflow carrying away an excess angular momentum are ejected from the central part of the bulge, two sources. The outflow is oriented at an angle X ≈ 15° relative to the disk axis. The brightness of the outflow fragments does not exceed 1.5% of the peak value. The ejection of material from the central part in the northward direction at a level up to 0.2%, T b ≈ 1015 K, is observed at the epoch on February 4, 2013, at v = 478 km s-1. The core structure suggests a double system: parallel disks-vortices spaced 0.25 mpc apart.

  9. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The binder jet method has benefits over the conventional manufacturing of CMCs in that prototype and production parts can be fabricated quickly and economically with no tooling and extensive hand layup.

  10. Accounting for Uncertainties in Strengths of SiC MEMS Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel; Evans, Laura; Beheim, Glen; Trapp, Mark; Jadaan, Osama; Sharpe, William N., Jr.

    2007-01-01

    A methodology has been devised for accounting for uncertainties in the strengths of silicon carbide structural components of microelectromechanical systems (MEMS). The methodology enables prediction of the probabilistic strengths of complexly shaped MEMS parts using data from tests of simple specimens. This methodology is intended to serve as a part of a rational basis for designing SiC MEMS, supplementing methodologies that have been borrowed from the art of designing macroscopic brittle material structures. The need for this or a similar methodology arises as a consequence of the fundamental nature of MEMS and the brittle silicon-based materials of which they are typically fabricated. When tested to fracture, MEMS and structural components thereof show wide part-to-part scatter in strength. The methodology involves the use of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) software in conjunction with the ANSYS Probabilistic Design System (PDS) software to simulate or predict the strength responses of brittle material components while simultaneously accounting for the effects of variability of geometrical features on the strength responses. As such, the methodology involves the use of an extended version of the ANSYS/CARES/PDS software system described in Probabilistic Prediction of Lifetimes of Ceramic Parts (LEW-17682-1/4-1), Software Tech Briefs supplement to NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 10. The ANSYS PDS software enables the ANSYS finite-element-analysis program to account for uncertainty in the design-and analysis process. The ANSYS PDS software accounts for uncertainty in material properties, dimensions, and loading by assigning probabilistic distributions to user-specified model parameters and performing simulations using various sampling techniques.

  11. Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches

    PubMed Central

    Cherouat, Abel; Borouchaki, Houman

    2009-01-01

    Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.

  12. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  13. Cyclotron accelerated beams applied in wear and corrosion studies

    NASA Astrophysics Data System (ADS)

    Racolta, P. M.; Popa-Simil, L.; Ivanov, E. A.; Alexandreanu, B.

    1996-05-01

    Wear and corrosion processes are characterized by a loss of material that is, for machine parts and components, usually in a micrometer's range. That is why, in the last two decades, many direct applications in machine construction, petrochemical and metallurgical industries based on the Thin Layer Activation (TLA) technique have been developed. In this paper general working patterns together with a few examples of TLA applications carried out using our laboratory's U-120 Cyclotron are presented. The relation between the counting rate of the radiation originating from the component's irradiated zone and the loss of the worn material can be determined mainly by two methods: the oil circulation method and the remnant radioactivity measuring method. The first method is illustrated with some typical examples such as the optimization of the running-in program of a diesel engine and anti-wear features certifying of lubricant oils. There is also presented an example where the second method mentioned above has been applied to corrosion rate determinations for different kinds of unoxidable steels used in inert gas generator construction.

  14. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-04-01

    Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

  15. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Astrophysics Data System (ADS)

    Silverman, Edward M.

    1995-08-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  16. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M.

    1995-01-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  17. Additive Manufacturing of Fuel Injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadek Tadros, Dr. Alber Alphonse; Ritter, Dr. George W.; Drews, Charles Donald

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventionalmore » manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project were: • Powder metal input stock: Powder characterization, dimensional accuracy, metallurgical characterization, and mechanical properties evaluation. • Process parameters: Laser parameter effects, post-printing heat-treatment development, mechanical properties evaluation, and post-finishing technique. • Material design curves: Room and elevated temperature tensiles, low cycle fatigue, and creep rupture properties curves generated. • AM specifications: Key metal powder characteristics, laser parameters, and heat-treatment controls identified.« less

  18. Helping Aircraft Engines Lighten Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.

  19. Depth of manual dismantling analysis: a cost-benefit approach.

    PubMed

    Achillas, Ch; Aidonis, D; Vlachokostas, Ch; Karagiannidis, A; Moussiopoulos, N; Loulos, V

    2013-04-01

    This paper presents a decision support tool for manufacturers and recyclers towards end-of-life strategies for waste electrical and electronic equipment. A mathematical formulation based on the cost benefit analysis concept is herein analytically described in order to determine the parts and/or components of an obsolete product that should be either non-destructively recovered for reuse or be recycled. The framework optimally determines the depth of disassembly for a given product, taking into account economic considerations. On this basis, it embeds all relevant cost elements to be included in the decision-making process, such as recovered materials and (depreciated) parts/components, labor costs, energy consumption, equipment depreciation, quality control and warehousing. This tool can be part of the strategic decision-making process in order to maximize profitability or minimize end-of-life management costs. A case study to demonstrate the models' applicability is presented for a typical electronic product in terms of structure and material composition. Taking into account the market values of the pilot product's components, the manual disassembly is proven profitable with the marginal revenues from recovered reusable materials to be estimated at 2.93-23.06 €, depending on the level of disassembly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  1. Leveraging metal matrix composites to reduce costs in space mechanisms

    NASA Technical Reports Server (NTRS)

    Nye, Ted; Claridge, Rex; Walker, Jim

    1994-01-01

    Advanced metal matrix composites may be one of the most promising technologies for reducing cost in structural components without compromise to strength or stiffness. A microlight 12.50 N (2.81 lb), two-axis, solar array drive assembly (SADA) was made for the Advanced Materials Applications to Space Structures (AMASS) Program flight experiment. The SADA had both its inner and outer axis housings fabricated from silicon carbide particulate reinforced alumimun. Two versions of the housings were made. The first was machined from a solid billet of material. The second was plaster cast to a near net shape that required minimal finish machining. Both manufacturing methods were compared upon completion. Results showed a cost savings with the cast housing was possible for quantities greater than one and probable for quantities greater than two. For quantities approaching ten, casting resulted in a reduction factor of almost three in the cost per part.

  2. Analysis of International Space Station Vehicle Materials Exposed on Materials International Space Station Experiment from 2001 to 2011

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Golden, J. L.; Kravchenko, M.

    2013-01-01

    Since August 2001, the Materials on International Space Station Experiment (MISSE) has provided data on a variety of materials and spacecraft components, including samples chosen to provide sustaining engineering and life extension data for the International Space Station vehicle itself. This Technical Publication is by no means a complete set of MISSE data but does provide changes in solar absorptance, infrared emittance, and visual appearance due to atomic oxygen, ultraviolet radiation, and thermal cycling in vacuum. Conversion coatings, anodizes, thermal control coatings with organic and inorganic binders, multilayer insulation components, optical materials, and part markings are discussed.

  3. 75 FR 28335 - Testing and Labeling Pertaining to Product Certification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... material change in the product's design or manufacturing process, including the sourcing of component parts... ``material change'' in a product's design or manufacturing process? Are there criteria by which one might... production begins. Some comments stated that neither the same materials nor the same manufacturing processes...

  4. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor); Chen, Gang (Inventor)

    2008-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  5. Nanocomposites with High Thermoelectric Figures of Merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Ren, Zhifeng (Inventor); Dresselhaus, Mildred (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  6. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor)

    2012-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  7. Determination of Parachute Joint Factors using Seam and Joint Testing

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  8. Properties and Performance Attributes of Novel Co-Extruded Polyolefin Battery Separator Materials. Part 1; Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Guzik, Monica; Skierski, Michael

    2011-01-01

    As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.

  9. Development and analysis of new type microresonator with electro-optic feedback

    NASA Astrophysics Data System (ADS)

    Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas; Brunius, Alfredas; Bauce, Jokubas

    2016-04-01

    Micro-resonators are fundamental components integrated in a hosts of MEMS applications: safety and stability systems, biometric sensors, switches, mechanical filters, micro-mirror devices, material characterization, gyroscopes, etc. A constituent part of the micro-resonator is a diffractive optical element (DOE). Different methods and materials are used to produce diffraction gratings for DOEs. Two-dimensional or three-dimensional periodic structures of micrometer-scale period are widely used in microsystems or their components. They can be used as elements for micro-scale synthesis, processing, and analysis of chemical and biological samples. On the other hand micro-resonator was designed using composite piezoelectric material. In case when microscopes, vibrometers or other direct measurement methods are destructive and hardly can be employed for in-situ analysis, indirect measurement of electrical signal generated by composite piezoelectric layer allows to measure natural frequency changes. Also piezoelectric layer allows to create a novel micro-resonator with controllable parameters, which could assure much higher functionality of micro-electromechanical systems. The novel micro-resonator for pollution detection is proposed. Mathematical model of the micro-resonator and its dynamical, electrical and optical characteristics are presented.

  10. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  11. Advanced Standard Arabic through Authentic Texts and Audiovisual Materials. Part One: Textual Materials. Part Two: Audiovisual Materials.

    ERIC Educational Resources Information Center

    Rammuny, Raji M.

    Instructional materials for use in advanced Arabic second language instruction are presented in two separately-bound parts. The first contains 28 lessons on a wide variety of subjects using a series of authentic texts, all in Arabic. These texts include personal and formal correspondence, short stories, essays, plays, poems, proverbs, and excerpts…

  12. Powder Injection Molding of Ceramic Engine Components for Transportation

    NASA Astrophysics Data System (ADS)

    Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar

    2012-03-01

    Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.

  13. Introduction to the Apollo collections: Part 2: Lunar breccias

    NASA Technical Reports Server (NTRS)

    Mcgee, P. E.; Simonds, C. H.; Warner, J. L.; Phinney, W. C.

    1979-01-01

    Basic petrographic, chemical and age data for a representative suite of lunar breccias are presented for students and potential lunar sample investigators. Emphasis is on sample description and data presentation. Samples are listed, together with a classification scheme based on matrix texture and mineralogy and the nature and abundance of glass present both in the matrix and as clasts. A calculus of the classification scheme, describes the characteristic features of each of the breccia groups. The cratering process which describes the sequence of events immediately following an impact event is discussed, especially the thermal and material transport processes affecting the two major components of lunar breccias (clastic debris and fused material).

  14. Influences of Nozzle Material on Laser Droplet Brazing Joints with Cu89Sn11 Preforms

    NASA Astrophysics Data System (ADS)

    Stein, Stefan; Heberle, Johannes; Gürtler, Franz Josef; Cvecek, Kristian; Roth, Stephan; Schmidt, Michael

    This paper presents latest results on the influences of nozzle material and geometry on the electromechanical contacting of sensitive piezoceramic actuator modules. Two nozzle types have been investigated,a standard WC/Co nozzle which is used for soldering applications and a novelceramic nozzle. Applications for active piezoceramic components integrated in structural parts are e.g. active damping, energy harvesting, or monitoring of vibrations and material failure. Anup to now unsolved problem is the electrical contacting of such components without damaging the conductor or the metallization of the ceramic substrate. Since piezoelectric components are to be integrated into structures made of casted aluminum, requirements are high mechanical strength and temperature resistance. Within this paper a method forcontacting piezoceramic modules is presented. A spherical braze preform of tin bronze Cu89Sn11 with a diameter of 600 μm is located in a ceramic nozzle and is subsequently melted by a laser pulse. The liquid solder is ejected from the nozzlevia nitrogen overpressure and wets the surface of the metallization pad and the Cu-wire, resulting in a brazing joint after solidification. The process is called laser droplet brazing (LDB). To asses the thermal evolution during one cycle WC/Co and ZTA have been simulated numerically for two different geometries enabling a proposition weather the geometry or the material properties have a significant influence on the thermal load during one cycle. To evaluate the influence of the nozzle on the joint the positioning accuracy, joint height and detachment times have been evaluated. Results obtained with the ZTA nozzle show comparable positioning accuracies to a WC/Co nozzle with a lower standard deviation of solder detachment time.

  15. Software for integrated manufacturing systems, part 2

    NASA Technical Reports Server (NTRS)

    Volz, R. A.; Naylor, A. W.

    1987-01-01

    Part 1 presented an overview of the unified approach to manufacturing software. The specific characteristics of the approach that allow it to realize the goals of reduced cost, increased reliability and increased flexibility are considered. Why the blending of a components view, distributed languages, generics and formal models is important, why each individual part of this approach is essential, and why each component will typically have each of these parts are examined. An example of a specification for a real material handling system is presented using the approach and compared with the standard interface specification given by the manufacturer. Use of the component in a distributed manufacturing system is then compared with use of the traditional specification with a more traditional approach to designing the system. An overview is also provided of the underlying mechanisms used for implementing distributed manufacturing systems using the unified software/hardware component approach.

  16. Bipolar plates for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  17. Optical Property Measurements on the Stardust Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    2007-01-01

    The Advanced Materials for Exploration (AME) task Materials Analysis of Returned Hardware from Stardust received funding to perform non-destructive analyses of the non-primary science hardware components of the Stardust sample return capsule. These components were (a) the blunt body reentry heatshield, encased in Phenolic Impregnated Carbon Ablator (PICA); (b) the backshell of Super Lightweight Ablator 561 (SLA-561) material handpacked into phenolic Flexcore and coated with CV-1100 silicone; (c) the rope seal used in between the heatshield and backshell; (d) the internal multi-layer insulation (MLI) blankets; and (e) parts of the Kevlar straps left attached to the backshell. These components were analyzed to determine the materials' durability in the space environment. The goals of the task were (a) to determine how the various materials from which the components were built weathered the extreme temperatures and harsh space environment during the capsule's nearly 7-year voyage to and from its rendezvous with Comet Wild 2 and (b) to provide lessons-learned data for designers of future missions.

  18. Life prediction systems for critical rotating components

    NASA Technical Reports Server (NTRS)

    Cunningham, Susan E.

    1993-01-01

    With the advent of advanced materials in rotating gas turbine engine components, the methodologies for life prediction of these parts must also increase in sophistication and capability. Pratt & Whitney's view of generic requirements for composite component life prediction systems are presented, efforts underway to develop these systems are discussed, and industry participation in key areas requiring development is solicited.

  19. Authentication Sensing System Using Resonance Evaluation Spectroscopy (ASSURES)

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Dioumaev, Andrei K.; Lal, Amit K.; Dimas, Dave

    2017-08-01

    This paper describes an ongoing instrument development project to distinguish genuine manufactured components from counterfeit components; we call the instrument ASSURES (Authentication Sensing System Using Resonance Evaluation Spectroscopy). The system combines Laser Doppler Vibrometry with acoustical resonance spectroscopy, augmented with finite element analysis. Vibrational properties of components, such as resonant modes, damping, and spectral frequency response to various forcing functions depend strongly upon the mechanical properties of the material, including its size, shape, internal hardness, tensile strength, alloy/composite compositions, flaws, defects, and other internal material properties. Although acoustic resonant spectroscopy has seen limited application, the information rich signals in the vibrational spectra of objects provide a pathway to many new applications. Components with the same shape but made of different materials, different fatigue histories, damage, tampering, or heat treatment, will respond differently to high frequency stimulation. Laser Doppler Vibrometry offers high sensitivity and frequency bandwidth to measure the component's frequency spectrum, and overcomes many issues that limit conventional acoustical resonance spectroscopy, since the sensor laser beam can be aimed anywhere along the part as well as to multiple locations on a part in a non-contact way. ASSURES is especially promising for use in additive manufacturing technology by providing signatures as digital codes that are unique to specific objects and even to specific locations on objects. We believe that such signatures can be employed to address many important issues in the manufacturing industry. These include insuring the part meets the often very rigid specifications of the customer and being able to detect non-visible internal manufacturing defects or non-visible damage that has occurred after manufacturing.

  20. An experimental computational system for materials thermal properties determination and its application for spacecraft structures testing

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Budnik, S. A.; Mikhaylov, V. V.; Nenarokomov, A. V.; Titov, D. M.; Yudin, V. M.

    2007-06-01

    An experimental-computational system, which is developed at the Thermal Laboratory, Department Space Systems Engineering, Moscow Aviation Institute (MAI), is presented for investigating the thermal properties of composite materials by methods of inverse heat transfer problems. The system is aimed at investigating the materials in conditions of unsteady contact and/or radiation heating over a wide range of temperature changes and heating rates in a vacuum, air and inert gas medium. The paper considers the hardware components of the system, including the experiment facility and the automated system of control, measurement, data acquisition and processing, as well as the aspects of methodical support of thermal tests. In the next part the conception and realization of a computer code for experimental data processing to estimate the thermal properties of thermal-insulating materials is given. The most promising direction in further development of methods for non-destructive composite materials using the procedure of solving inverse problems is the simultaneous determination of a combination of their thermal and radiation properties. The general method of iterative regularization is concerned with application to the estimation of materials properties (e.g., example: thermal conductivity λ(T) and heat capacity C(T)). Such problems are of great practical importance in the study of material properties used as non-destructive surface shield in objects of space engineering, power engineering, etc. In the third part the results of practical implementation of hardware and software presented in the previous two parts are given for the estimating of thermal properties of thermal-insulating materials. The main purpose of this study is to confirm the feasibility and effectiveness of the methods developed and hardware equipment for determining thermal properties of particular modern high porous materials.

  1. Ti6Al4V Superplastic Forming for the Production of an Aircraft Part

    NASA Astrophysics Data System (ADS)

    Filice, L.; Gagliardi, F.; Lazzaro, S.; Rosa, R.

    2011-05-01

    Titanium and its alloys have grown their importance in the automotive and aerospace industries becoming strategic materials; this is due to their mechanical properties that, perfectly, meet the needs of the above said industrial field. For example, they are characterized by a high strength vs. weight ratio that is directly related to fuel saving impacting on both economic and environmental aspects. A weakness point of these materials is linked to their workability that entails significant manufacturing costs. Taking into account these issues, it is easy to understand the reasons for the development of net shape technologies, like hot forming (HF) or superplastic forming (SPF) in order to reduce the price of titanium components. In the work here introduced, a cockpit section, known as "Pocket Support", was produced through SPF. More in detail, the influence that the strain rate can have on the quality of the final part was highlighted; for this reason, two different pressure-time curves were tested monitoring the accuracy and wall thinning of the realized parts. The experimental campaign was carried out using an ACB superplastic forming press located in the Somma Vesuviana DEMA plant. The dimension of the obtained components were checked through the structural light technique (Gray Code-Phase Shifting); in particular, a cloud of points was obtained and, subsequently, used to rebuild the actual surface of the Pocket Support. In this way, a comparison between the CAD model and the real part was possible. Moreover, the thickness distribution along a critical section was analyzed by means of a coordinate measuring machine.

  2. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 1998, and January 31 to March 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-04-21

    Some highlights are: (1) Material development, process development, and part validation are occurring simultaneously on a fast track schedule. (2) Prior project activity has resulted in a program emphasis on three components--manifolds, mounting brackets, and motor mounts; and three casting techniques--squeeze casting, pressure die casting, and sand casting. (3) With the project focus, it appears possible to offer manifolds and mounting brackets for automotive qualification testing on a schedule in line with the PNGV Year 2004 goal. (4) Through an iterative process of fly ash treatment, MMC ingot preparation, foundry process refinement, and parts production, both foundries (Eck Industries andmore » Thompson Aluminum Casting Company) are addressing the pre-competitive issues of: (a) Optimum castability with fly ash shapes and sizes; (b) Best mechanical properties derived from fly ash shapes and sizes; (c) Effective fly ash classification processes; (d) Mechanical properties resulting from various casting processes and fly ash formulations. Eck and TAC continued experiments with batch ingot provided by both Eck and the University of Wisconsin at Milwaukee. Castings were run that contained varying amounts of fly ash and different size fractions. Components were cast using cenosphere material to ascertain the effects of squeeze casting and to determine whether the pressure would break the cenospheres. Test parts are currently being machined into substandard test bars for mechanical testing. Also, the affect of heat treatments on ashalloy are being studied through comparison to two lots, one heat treated and one in the ''as cast'' condition.« less

  3. Expansion of Biology Teachers' Pedagogical Content Knowledge (PCK) During a Long-Term Professional Development Program

    NASA Astrophysics Data System (ADS)

    Rozenszajn, Ronit; Yarden, Anat

    2014-02-01

    Experienced teachers possess a unique teaching knowledge comprised of an inter-related set of knowledge and beliefs that gives direction and justification to a teacher's actions. This study examined the expansion of two components of pedagogical content knowledge (PCK) of three in-service teachers in the course of a professional development program aimed at designing new teaching and learning materials suggested by the teachers themselves. The research presents an enlargement of previous PCK representations by focusing on a detailed representation of two main PCK domains: teaching and learning, including ten PCK components that emerged in the course of data analysis. This representation enabled revealing the unique PCK held by each teacher and to characterize the expansion of the two components of the participating teachers' PCK during the long-term professional development program. Retention of major parts of the expanded PCK a year after termination of the program implies that designing and implementing new teaching and learning materials based on the teachers' experiences, needs, and knowledge in a workshop format accompanied by biology and science education courses might provide a powerful means for PCK expansion. We recommend that designers of professional development programs be aware of the unique PCK held by each teacher in order to promote meaningful professional development of each teacher. Moreover, the PCK representations that were identified in the course of this study enabled clarifying the "orientation toward teaching science" category of PCK which appears to be unclear in current literature.

  4. Embedded Heaters for Joining or Separating Plastic Parts

    NASA Technical Reports Server (NTRS)

    Bryant, Melvin A., III

    2004-01-01

    A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.

  5. Damage Resistance of Titanium Aluminide Evaluated

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Draper, Susan L.; Baaklini, George Y.; Pereira, J. Michael; Austin, Curt

    2000-01-01

    As part of the aviation safety goal to reduce the aircraft accident rate, NASA has undertaken studies to develop durable engine component materials. One of these materials, g-TiAl, has superior high-temperature material properties. Its low density provides improved specific strength and creep resistance in comparison to currently used titanium alloys. However, this intermetallic is inherently brittle, and long life durability is a potential problem. Of particular concern is the material s sensitivity to defects, which may form during the manufacturing process or in service. To determine the sensitivity of TiAl to defects, a team consisting of GE Aircraft Engines, Precision Cast Parts, and NASA was formed. The work at the NASA Glenn Research Center at Lewis Field has concentrated on the fatigue response to specimens containing defects. The overall objective of this work is to determine the influence of defects on the high cycle fatigue life of TiAl-simulated low-pressure turbine blades. Two types of defects have been introduced into the specimens: cracking from impact damage and casting porosity. For both types of defects, the cast-to-size fatigue specimens were fatigue tested at 650 C and 100 Hz until failure.

  6. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  7. Perspective: Role of structure prediction in materials discovery and design

    NASA Astrophysics Data System (ADS)

    Needs, Richard J.; Pickard, Chris J.

    2016-05-01

    Materials informatics owes much to bioinformatics and the Materials Genome Initiative has been inspired by the Human Genome Project. But there is more to bioinformatics than genomes, and the same is true for materials informatics. Here we describe the rapidly expanding role of searching for structures of materials using first-principles electronic-structure methods. Structure searching has played an important part in unraveling structures of dense hydrogen and in identifying the record-high-temperature superconducting component in hydrogen sulfide at high pressures. We suggest that first-principles structure searching has already demonstrated its ability to determine structures of a wide range of materials and that it will play a central and increasing part in materials discovery and design.

  8. Design and Optimization of Composite Gyroscope Momentum Wheel Rings

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2007-01-01

    Stress analysis and preliminary design/optimization procedures are presented for gyroscope momentum wheel rings composed of metallic, metal matrix composite, and polymer matrix composite materials. The design of these components involves simultaneously minimizing both true part volume and mass, while maximizing angular momentum. The stress analysis results are combined with an anisotropic failure criterion to formulate a new sizing procedure that provides considerable insight into the design of gyroscope momentum wheel ring components. Results compare the performance of two optimized metallic designs, an optimized SiC/Ti composite design, and an optimized graphite/epoxy composite design. The graphite/epoxy design appears to be far superior to the competitors considered unless a much greater premium is placed on volume efficiency compared to mass efficiency.

  9. Modified cleaning method for biomineralized components

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hideto; Jordan, Richard W.

    2018-02-01

    The extraction and concentration of biomineralized components from sediment or living materials is time consuming and laborious and often involves steps that remove either the calcareous or siliceous part, in addition to organic matter. However, a relatively quick and easy method using a commercial cleaning fluid for kitchen drains, sometimes combined with a kerosene soaking step, can produce remarkable results. In this study, the method is applied to sediments and living materials bearing calcareous (e.g., coccoliths, foraminiferal tests, holothurian ossicles, ichthyoliths, and fish otoliths) and siliceous (e.g., diatom valves, silicoflagellate skeletons, and sponge spicules) components. The method preserves both components in the same sample, without etching or partial dissolution, but is not applicable to unmineralized components such as dinoflagellate thecae, tintinnid loricae, pollen, or plant fragments.

  10. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    PubMed

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  11. Tooling Foam for Structural Composite Applications

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Smith, Brett H.; Ely, Kevin; MacArthur, Doug

    1998-01-01

    Tooling technology applications for composite structures fabrication have been expanded at MSFC's Productivity Enhancement Complex (PEC). Engineers from NASA/MSFC and Lockheed Martin Corporation have developed a tooling foam for use in composite materials processing and manufacturing that exhibits superior thermal and mechanical properties in comparison with other tooling foam materials. This tooling foam is also compatible with most preimpregnated composite resins such as epoxy, bismaleimide, phenolic and their associated cure cycles. MARCORE tooling foam has excellent processability for applications requiring either integral or removable tooling. It can also be tailored to meet the requirements for composite processing of parts with unlimited cross sectional area. A shelf life of at least six months is easily maintained when components are stored between 50F - 70F. The MARCORE tooling foam system is a two component urethane-modified polyisocyanurate, high density rigid foam with zero ozone depletion potential. This readily machineable, lightweight tooling foam is ideal for composite structures fabrication and is dimensionally stable at temperatures up to 350F and pressures of 100 psi.

  12. Modeling the rubbing contact in honeycomb seals

    NASA Astrophysics Data System (ADS)

    Fischer, Tim; Welzenbach, Sarah; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    Metallic honeycomb labyrinth seals are commonly used as sealing systems in gas turbine engines. Because of their capability to withstand high thermo-mechanical loads and oxidation, polycrystalline nickel-based superalloys, such as Hastelloy X and Haynes 214, are used as sealing material. In addition, these materials must exhibit a tolerance against rubbing between the rotating part and the stationary seal component. The tolerance of the sealing material against rubbing preserves the integrity of the rotating part. In this article, the rubbing behavior at the rotor-stator interface is considered numerically. A simulation model is incorporated into the commercial finite element code ABAQUS/explicit and is utilized to simulate a simplified rubbing process. A user-defined interaction routine between the contact surfaces accounts for the thermal and mechanical interfacial behavior. Furthermore, an elasto-plastic constitutive material law captures the extreme temperature conditions and the damage behavior of the alloys. To validate the model, representative quantities of the rubbing process are determined and compared with experimental data from the literature. The simulation results correctly reproduce the observations made on a test rig with a reference stainless steel material (AISI 304). A parametric study using the nickel-based superalloys reveals a clear dependency of the rubbing behavior on the sliding and incursion velocity. Compared to each other, the two superalloys studied exhibit a different rubbing behavior.

  13. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  14. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  15. A Visual Decision Aid for Gear Materials Selection

    NASA Astrophysics Data System (ADS)

    Maity, S. R.; Chakraborty, S.

    2013-10-01

    Materials play an important role during the entire design process and the designers need to identify materials with specific functionalities in order to find out feasible design concepts. While selecting materials for engineering designs from an ever-increasing array of alternatives, with each having its own characteristics, applications, advantages and limitations, a clear understanding of the functional requirements for each individual component is required and various important criteria need to be considered. Although various approaches have already been adopted by the past researchers to solve the material selection problems, they all require profound knowledge in mathematics from the part of the designers for their implementation. This paper proposes the application of an integrated preference ranking organization method for enrichment evaluation and geometrical analysis for interactive aid method as a visual decision aid for material selection. Two real time gear material selection problems are solved which prove the potentiality and usefulness of this combined approach. It is observed that Nitralloy 135M and Nylon glass fiber reinforced 6/6 are respectively the choicest metallic and non-metallic gear materials.

  16. Shrinking the apparatus size for DNA analysis

    NASA Astrophysics Data System (ADS)

    Zimmer, Klaus-Peter; Braun, Alexander; Kostrzewa, M.

    2001-03-01

    Miniaturization of chemical and/or biological analytical systems requires an innovative design and new manufacturing methods. This includes the fabrication of components or structures, the assembly of these parts, and a testing strategy. The separation of an entire device into a disposable microfluidic system and a multi-use supply unit and housing allows an easy fabrication as well as low cost of operation. A simple, replicated, micro-sized, and disposable unit guarantees the same initial conditions for every analytic cycle, whereas, on the other hand all microfluidic actuators and other key elements can remain outside of the microsystem. In order to drive the implemented passive elements of the microfluidic system by external forces of the base unit, elasticity is a crucial material property. Thus silicone was used as material for the microsystem. A microfluidic system intended for use in DNA analysis employing the principles of the polymerase chain reaction (PCR) is presented. All functional units have been integrated into a complex module using a CAD-program. The 3D-drawing was converted into several machining layers for a direct laser writing CNC-code. A focussed excimer laser beam was used in order to micromachine the negative channel and reservoir system in a polycarbonate slab employing ablative photo-decomposition. Excimer laser micromachining proofed to be an ideal prototyping technique for this purpose with sufficient lateral and depth control. Its rather low throughput was bypassed with an additional hot embossed intermediate positive polyethylene master which, in turn, replicated produces the negative fluidic system in the target material PDMS (polydimethylsiloxane) as an elastomeric material. The components of the fluidic systems have been sealed with flat slabs or other microsystem parts of either PDMS or glass. In either case both parts were exposed to a plasma discharge for some seconds in order to clean, oxidize and activate the surface. This enabled an irreversible seal when two oxidized

  17. [The highest proportion of tobacco materials in the blend analysis using PPF projection method for the near-infrared spectrum and Monte Carlo method].

    PubMed

    Mi, Jin-Rui; Ma, Xiang; Zhang, Ya-Juan; Wang, Yi; Wen, Ya-Dong; Zhao, Long-Lian; Li, Jun-Hui; Zhang, Lu-Da

    2011-04-01

    The present paper builds a model based on Monte Carlo method in the projection of the blending tobacco. This model is made up of two parts: the projecting points of tobacco materials, whose coordinates are calculated by means of the PPF (projection based on principal component and Fisher criterion) projection method for the tobacco near-infrared spectrum; and the point of tobacco blend, which is produced by linear additive to the projecting point coordinates of tobacco materials. In order to analyze the projection points deviation from initial state levels, Monte Carlo method is introduced to simulate the differences and changes of raw material projection. The results indicate that there are two major factors affecting the relative deviation: the highest proportion of tobacco materials in the blend, which is too high to make the deviation under control; and the quantity of materials, which is so small to control the deviation. The conclusion is close to the principle of actual formulating designing, particularly, the more in the quantity while the lower in proportion of each. Finally the paper figures out the upper limit of the proportions in the different quantity of materials by theory. It also has important reference value for other agricultural products blend.

  18. Haitian Component Bibliography. Migrant Heritage Studies Kit.

    ERIC Educational Resources Information Center

    Roark-Calnek, Sue, Comp.

    This 587-item annotated bibliography, designed as a supplement to the Haitian Component of the Migrant Heritage Studies Kit, provides access to additional information, including audiovisual materials, on resources on Haiti and Haitian immigrants, published between 1877 and 1984. Part I is a "General Bibliography" which includes 313…

  19. 16 CFR 1616.4 - Sampling and acceptance procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a suitable thread and stitch. The specimen shall include each of the components over its entire... fabric in Tightened Sampling must be discontinued until that part of the process or component which is... otherwise attaching the trim shall be done with thread or fastening material of the same composition and...

  20. Composite shell spacecraft seat

    NASA Technical Reports Server (NTRS)

    Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)

    2008-01-01

    A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.

  1. Cemented all-polyethylene and metal-backed polyethylene tibial components used for primary total knee arthroplasty: a systematic review of the literature and meta-analysis of randomized controlled trials involving 1798 primary total knee implants.

    PubMed

    Voigt, Jeffrey; Mosier, Michael

    2011-10-05

    The cost of the implant as part of a total knee arthroplasty accounts for a substantial portion of the costs for the overall procedure: all-polyethylene tibial components cost considerably less than cemented metal-backed tibial components. We performed a systematic review of the literature to determine whether the clinical results of lower-cost all-polyethylene tibial components were comparable with the results of a more expensive metal-backed tibial component. We searched The Cochrane Library, MEDLINE, EMBASE, EBSCO CINAHL, the bibliographies of identified articles, orthopaedic meeting abstracts, health technology assessment web sites, and important orthopaedic journals. This search was performed for the years 1990 to the present. No language restriction was applied. We restricted our search to Level-I studies involving participants who received either an all-polyethylene or a metal-backed tibial implant. The primary outcome measures were durability, function, and adverse events. Two reviewers independently screened the papers for inclusion, assessed trial quality, and extracted data. Effects estimates were pooled with use of fixed and random-effects models of risk ratios, calculated with 95% confidence intervals. Heterogeneity was assessed with the I2 statistic. Forest plots were also generated. Data on 1798 primary total knee implants from twelve studies were analyzed. In all studies, the median or mean age of the participants was greater than sixty-seven years, with a majority of the patients being female. There was no difference between patients managed with an all-polyethylene tibial component and those managed with a metal-backed tibial component in terms of adverse events. There was no significant difference between the two groups in terms of the durability of the implants at two, ten, and fifteen years postoperatively, regardless of the year or how durability was defined (revision or radiographic failure). Finally, with use of a variety of validated measures, there was no difference between the two groups in terms of functional status at two, eight, and ten years, regardless of the measure used. A less expensive all-polyethylene component as part of a total knee arthroplasty has results equivalent to those obtained with a cemented metal-backed tibial component. Using a total knee implant with a cemented all-polyethylene tibial component could save the healthcare system substantial money while obtaining equivalent results to more expensive cemented designs and materials.

  2. 76 FR 69481 - Testing and Labeling Pertaining to Product Certification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... material change in the product's design or manufacturing process, including the sourcing of component parts... the product's design or manufacturing process and safeguarding against the exercise of undue influence..., such as proposed Sec. 1107.23(a) regarding ``material change'' in the product's design, manufacturing...

  3. Finite element analysis of 2-Station hip himulator

    NASA Astrophysics Data System (ADS)

    Fazli, M. I. M.; Yahya, A.; Shahrom, A.; Nawawi, S. W.; Zainudin, M. R.; Nazarudin, M. S.

    2017-10-01

    This paper presented the analysis of materials and design architecture of 2-station hip simulator. Hip simulator is a machine used to conduct the joint and wear test of hip prosthetic. In earlier work, the hip simulator was modified and some improvement were made by using SolidWorks software. The simulator consists of 3DOF which controlled by separate stepper motor and a static load that set up by manual method in each station. In this work, finite element analysis (FEA) of hip simulator was implemented to analyse the structure of the design and selected materials used for simulator component. The analysis is completed based on two categories which are safety factor and stress tests. Both design drawing and FEA was done using SolidWorks software. The study of the two categories is performed by applying the peak load up to 4000N on the main frame that is embedded with metal-on-metal hip prosthesis. From FEA, the value of safety factor and degree of stress formation are successfully obtained. All the components exceed the value of 2 for safety factor analysis while the degree of stress formation shows higher value compare to the yield strength of the material. With this results, it provides information regarding part of simulator which are susceptible to destruct. Besides, the results could be used for design improvement and certify the stability of the hip simulator in real application.

  4. UPb ages of zircon rims: A new analytical method using the air-abrasion technique

    USGS Publications Warehouse

    Aleinikoff, J.N.; Winegarden, D.L.; Walter, M.

    1990-01-01

    We present a new technique for directly dating, by conventional techniques, the rims of zircons. Several circumstances, such as a xenocrystic or inherited component in igneous zircon and metamorphic overgrowths on igneous cores, can result in grains with physically distinct age components. Pneumatic abrasion has been previously shown by Krogh to remove overgrowths and damaged areas of zircon, leaving more resistant and isotopically less disturbed parts available for analysis. A new abrader design, which is capable of very gently grinding only tips and interfacial edges of even needle-like grains, permits easy collection of abraded material for dating. Five examples demonstrate the utility of the "dust-collecting" technique, including two studies that compare conventional, ion microprobe and abrader data. Common Pb may be strongly concentrated in the outermost zones of many zircons and this Pb is not easily removed by leaching (even in weak HF). Thus, the benefit of removing only the outermost zones (and avoiding mixing of age components) is somewhat compromised by the much higher common Pb contents which result in less precise age determinations. A very brief abrasion to remove the high common Pb zones prior to collection of material for dating is selected. ?? 1990.

  5. Self-regulating galaxy formation. Part 1: HII disk and Lyman alpha pressure

    NASA Technical Reports Server (NTRS)

    Cox, D. P.

    1983-01-01

    Assuming a simple but physically based prototype for behavior of interstellar material during formation of a disk galaxy, coupled with the lowest order description of infall, a scenario is developed for self-regulated disk galaxy formation. Radiation pressure, particularly that of Lyman depha (from fluorescence conversion Lyman continuum), is an essential component, maintaining an inflated disk and stopping infall when only a small fraction of the overall perturbation has joined the disk. The resulting galaxies consist of a two dimensional family whose typical scales and surface density are expressable in terms of fundamental constants. The model leads naturally to galaxies with a rich circumgalactic environment and flat rotation curves (but is weak in its analysis of the subsequent evolution of halo material).

  6. SIC material and technology for space optics

    NASA Astrophysics Data System (ADS)

    Bougoin, Michel

    2017-11-01

    Taking benefit from its very high specific stiffness and its exclusive thermal stability, the SiCSPACE material is now used for the fabrication of scientific and commercial lightweight space telescopes. This paper gives a review of the characteristics of this sintered silicon carbide. The BOOSTEC facilities and the technology described here allow to manufacture large structural components or mirrors (up to several meters) at cost effective condition, from a single part to mass production. Several examples of SiC space optical components are presented.

  7. Distribution of oceanic and continental leads in the Arabian-Nubian Shield

    USGS Publications Warehouse

    Stacey, J.S.; Stoeser, D.B.

    1983-01-01

    New common lead data for feldspar, whole-rock, and galena samples from the Arabian-Nubian Shield, together with data from previous work, can be divided into two main groups. Group I leads have oceanic (mantle) characteristics, whereas group II leads have incorporated a continental-crustal component of at least early Proterozoic age. The group I leads are found in rocks from the Red Sea Hills of Egypt and the western and southern parts of the Arabian Shield. Group II leads are found in rocks from the northeastern and eastern parts of the Arabian Shield, as well as from the southeastern Shield near Najran. They are also found in rocks to the south in Yemen, to the east in Oman, and to the west at Aswan, Egypt. This distribution of data suggests that the Arabian-Nubian Shield has an oceanic core flanked by rocks that have developed, at least in part, from older continental material. Two mechanisms are suggested by which this older lead component could have been incorporated into the late Proterozoic rocks, and each may have operated in different parts of the Shield. The older lead component either was derived directly from an underlying early Proterozoic basement or was incorporated from subducted pelagic sediments or sediments derived from an adjacent continent. New U-Pb zircon data indicate the presence of an early Proterozoic basement southeast of Jabal Dahul in the eastern Arabian Shield. These data, together with 2,000-Ma-old zircons from the Al Amar fault zone, verify the implication of the common lead data that at least a part of the eastern Arabian Shield has an older continental basement. Because continental margins are particularly favorable locations for development of ore deposits, these findings may have important economic implications, particularly for tin, tungsten, and molybdenum exploration. ?? 1983 Springer-Verlag.

  8. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  9. Chemical Polymorphism of Essential Oils of Artemisia vulgaris Growing Wild in Lithuania.

    PubMed

    Judzentiene, Asta; Budiene, Jurga

    2018-02-01

    Compositional variability of mugwort (Artemisia vulgaris L.) essential oils has been investigated in the study. Plant material (over ground parts at full flowering stage) was collected from forty-four wild populations in Lithuania. The oils from aerial parts were obtained by hydrodistillation and analyzed by GC(FID) and GC/MS. In total, up to 111 components were determined in the oils. As the major constituents were found: sabinene, 1,8-cineole, artemisia ketone, both thujone isomers, camphor, cis-chrysanthenyl acetate, davanone and davanone B. The compositional data were subjected to statistical analysis. The application of PCA (Principal Component Analysis) and AHC (Agglomerative Hierarchical Clustering) allowed grouping the oils into six clusters. AHC permitted to distinguish an artemisia ketone chemotype, which, to the best of our knowledge, is very scarce. Additionally, two rare cis-chrysanthenyl acetate and sabinene oil types were determined for the plants growing in Lithuania. Besides, davanone was found for the first time as a principal component in mugwort oils. The performed study revealed significant chemical polymorphism of essential oils in mugwort plants native to Lithuania; it has expanded our chemotaxonomic knowledge both of A. vulgaris species and Artemisia genus. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  10. Tribology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Tribology-the study of friction, lubrication, and wear of surfaces in relative motion-is the subject of many tests and evaluation being conducted at Marshall Space Flight Center. Marshall's need to develop state-of-the-art tribological materials and components for NASA's on-going space program is spurring these technological advances. High speed, high performance machinery is plagued by periodic mainteneance and replacement of worn parts. Tribology investigations are important to manufacturers who provide aerospace components, air conditioning, and refrigeration parts, and devices used in power plants with high-speed turbines.

  11. Eddy-Current Detection Of Cracks In Reinforced Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Christensen, Scott V.; Koshti, Ajay M.

    1995-01-01

    Investigations of failures of components made of reinforced carbon/carbon show eddy-current flaw-detection techniques applicable to these components. Investigation focused on space shuttle parts, but applicable to other parts made of carbon/carbon materials. Techniques reveal cracks, too small to be detected visually, in carbon/carbon matrix substrates and in silicon carbide coates on substrates. Also reveals delaminations in carbon/carbon matrices. Used to characterize extents and locations of discontinuities in substrates in situations in which ultrasonic techniques and destructive techniques not practical.

  12. Sand moulds milling for one-of-a-kind pieces

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Calleja, A.; Olvera, D.; Peñafiel, F. J.; López de Lacalle, L. N.

    2012-04-01

    Time to market is a critical measurement for today's foundry market. Combining 3D digitizing and sand blocks milling is possible to reduce this time. Avoiding the use of a wood pattern, this technique is useful for art pieces or unique parts, when only one component is necessary. The key of the proposed methodology is to achieve enough tool life with conventional tool qualities, avoiding the risk of sand destruction or damage. A special study of tool wear is presented in this work, studying different tool materials and different sand types. Two examples of unique parts are also presented in this work following the proposed methodology in order to reduce time and cost for the rapid reproduction of very short batches.

  13. Structure Property Studies for Additively Manufactured Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractivemore » methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.« less

  14. The degradation of wheat straw lignin

    NASA Astrophysics Data System (ADS)

    Liang, Jiaqi

    2017-03-01

    Lignin is a kind of formed by polymerization of aromatic alcohol, prices are lower and sources of renewable resources. Using lignin as raw material, through the push to resolve together preparation phenolic high value-added fine chemicals alkanes and aromatic hydrocarbons, such as the high grade biofuels, can partly replace fossil fuels as raw material to the production process, biomass resources is an important part of the comprehensive utilization of effective components. In lignin push solve clustering method, catalytic hydrogenolysis can directly to the lignin into liquid fuels, low oxygen content in the use of biofuels shows great potential. In this paper, through the optimization of the reaction time, reaction temperature, catalyst type and solvent type, dosage of catalyst, etc factors, determines the alcoholysis - hydrogen solution two-step degradation of lignin, the optimal process conditions: lignin alcoholysis under 50% methanol and NaOH catalyst in the solution, the lignin in methanol solution and 50% hydrogen solution under the Pd/C catalyst. In this process, the degradation of lignin yield can reach 42%.

  15. Development of advanced high heat flux and plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.

  16. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and instrumentation surfaces (that come in contact with the gas) must be made of materials that remain... into contact with the process gas are wholly made of, or lined with, UF6-resistant materials. For the... REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. C...

  17. Dedifferentiated liposarcoma of the deep (paralaryngeal) soft tissue: lessons learnt from a case with a partly deceptively benign appearing dedifferentiated component.

    PubMed

    Petersson, Fredrik; Murugasu, Euan

    2014-06-01

    We present a case (female, 61 years of age) of dedifferentiated liposarcoma of the deep, cervical (paralaryngeal) soft tissue with a significant myxoid component and characteristic immunohistochemical (strong and diffuse expression of p16, mdm2 and cdk4 in both the well differentiated liposarcomatous and dedifferentiated components) and molecular genetic findings (MDM2-gene amplification on fluorescence in situ hybridization). The myxoid component which was present in the well differentiated liposarcomatous component gave the tumor atypical radiological features. The case presented initial diagnostic difficulties, mainly because of the bland histomorphological appearance of the limited biopsy material from the sampled non-lipogenic, dedifferentiated component. The dedifferentiated part of the tumor turned out to harbor significant heterogeneity with regards to cellularity, cytomorphology and proliferative activity.

  18. 75 FR 52309 - Notice of Petitions by Firms for Determination of Eligibility To Apply for Trade Adjustment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... manufactures parts and assemblies. Bracalente Manufacturing Company, Inc. 20 W. Creamery Road, 8/2/2010 The.... electrical wiring harnesses and lighting fixture components whose primary manufacturing material is copper... and Mill, SC 29715. coatings whose manufacturing materials include pigments, resins, solvents...

  19. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  20. Managerial Accounting. Course Administrative Manual.

    ERIC Educational Resources Information Center

    Central Michigan Univ., Mount Pleasant. Inst. for Personal and Career Development.

    This manual is part of the materials for a college-level programmed course in managerial accounting and intended to aid instructors in helping students to work their way through the self-instructional study guide around which the course is organized. The manual describes the various materials and components used in the self-instructional sequence…

  1. Costing the OMNIUM-G system 7500

    NASA Technical Reports Server (NTRS)

    Fortgang, H. R.

    1980-01-01

    A complete OMNIUM-G System 7500 was cost analyzed for annual production quantities ranging from 25 to 10,000 units per year. Parts and components were subjected to in-depth scrutiny to determine optimum manufacturing processes, coupled with make or buy decisions on materials and small parts. When production quantities increase both labor and material costs reduce substantially. A redesign of the system that was analyzed could result in lower costs when annual production runs approach 100,000 units/year. Material and labor costs for producing 25, 100, 25,000 and 100,00 units are given for 17 subassembly units.

  2. 28 CFR Appendix I to Part 16 - Components of the Department of Justice

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Development * Office of Professional Responsibility Office of Public Affairs * C Antitrust Division, U.S... Appendix I to Part 16 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR DISCLOSURE OF MATERIAL OR... Office of the Intelligence Policy and Review Office of Intergovernmental Affairs * Office of...

  3. Novel Amalgams for In-Space Parts Fabrication

    NASA Technical Reports Server (NTRS)

    Cochran, Calvin; VanHoose, James R.; Grugel, Richard N.

    2012-01-01

    Sound amalgams can be fabricated by substituting Ga-In liquid for mercury; Cu-coated steel fibers bond well with the amalgam components. Inclusion of steel fibers significantly improved mechanical properties. An application scenario utilizing amalgams for in-space parts fabrication and repair was suggested. Procedure and materials need to be optimized

  4. Cost effective aluminum beryllium mirrors for critical optics applications

    NASA Astrophysics Data System (ADS)

    Say, Carissa; Duich, Jack; Huskamp, Chris; White, Ray

    2013-09-01

    The unique performance of aluminum-beryllium frequently makes it an ideal material for manufacturing precision optical-grade metal mirrors. Traditional methods of manufacture utilize hot-pressed powder block in billet form which is subsequently machined to final dimensions. Complex component geometries such as lightweighted, non-plano mirrors require extensive tool path programming, fixturing, and CNC machining time and result in a high buy-to-fly ratio (the ratio of the mass of raw material purchased to the mass of the finished part). This increases the cost of the mirror structure as a significant percentage of the procurement cost is consumed in the form of machining, tooling, and scrap material that do not add value to the final part. Inrad Optics, Inc. and IBC Advanced Alloys Corp. undertook a joint study to evaluate the suitability of investment-cast Beralcast® 191 and 363 aluminum-beryllium as a precision mirror substrate material. Net shape investment castings of the desired geometry minimizes machining to just cleanup stock, thereby reducing the recurring procurement cost while still maintaining performance. The thermal stability of two mirrors, (one each of Beralcast® 191 and Beralcast® 363), was characterized from -40°F to +150°F. A representative pocketed mirror was developed, including the creation of a relevant geometry and production of a cast component to validate the approach. Information from the demonstration unit was used as a basis for a comparative cost study of the representative mirror produced in Beralcast® and one machined from a billet of AlBeMet® 162 (AlBeMet® is a registered trademark of Materion Corporation). The technical and financial results of these studies will be discussed in detail.

  5. The Application of Metal Matrix Composite Materials in Propulsion System Valves

    NASA Technical Reports Server (NTRS)

    Laszar, John; Shah, Sandeep; Kashalikar, Uday; Rozenoyer, Boris

    2003-01-01

    Metal Matrix Composite (MMC) materials have been developed and used in many applications to reduce the weight of components where weight and deflection are the driving design requirement. MMC materials are being developed for use in some propulsion system components, such as turbo-pumps and thrust chambers. However, to date, no propulsion system valves have been developed that take advantage of the materials unique properties. The stiffness of MMC's could help keep valves light or improve life where deflection is the design constraint (such as seal and bearing locations). The low CTE of the materials might allow the designer to reduce tolerances and clearances producing better performance and lighter weight valves. Using unique manufacturing processes allow parts to be plated/coated for longer life and allow joining either by welding or threading/bolting. Additionally, casting of multi part pre-forms to form a single part can lead to designs that would be hard or impossible to manufacture with other methods. Therefore, NASA's Marshall Space Flight Center (MSFC) has developed and tested a prototype propulsion system valve that utilizes these materials to demonstrate these advantages. Through design and testing, this effort will determine the best use of these materials in valves designed to achieve the goal of a highly reliable and lightweight propulsion system. This paper is a continuation of the paper, The Application of Metal Matrix Composite Materials In Propulsion System Valves, presented at the JANNAF Conference held in April, 2002. Fabrication techniques employed, valve development, and valve test results will be discussed in this paper.

  6. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... related to the design, fabrication, construction, and testing of the structures, systems, and components... components. The pertinent requirements of this appendix apply to all activities affecting the safety-related..., which comprises those quality assurance actions related to the physical characteristics of a material...

  7. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  8. Volatile components of grape pomaces from different cultivars of Sicilian Vitis vinifera L.

    PubMed

    Ruberto, Giuseppe; Renda, Agatino; Amico, Vincenzo; Tringali, Corrado

    2008-01-01

    The volatile components of grape pomace coming from the processing of some of the most important varieties of grape (Vitis vinifera L.) cultivated in Sicily, namely Nero d'Avola, Nerello Mascalese, Frappato and Cabernet Sauvignon, have been determined by gas-chromatography (GC) and gas-chromatography-mass spectrometry (GC-MS). According to the winemaking procedure that entails the removal of stalks before fermentation, two kinds of grape pomace are obtained. The first consists of skins, pulp residues and seeds, the proper grape pomace, which is partially used for grappa, a typical Italian spirit, and alcohol production, the second consists almost exclusively of stalks. On the whole, 38 components have been characterized in the samples of grape pomaces, with Frappato cv. showing the richest composition; instead, 88 components have been detected in the stalks of Frappato, Nero d'Avola, Nerello Mascalese and Cabernet Sauvignon varieties. In order to make a comparison between the grape varieties easier, the volatile components detected in the two sets of samples (grape pomaces and stalks) have been grouped in different classes. Significant differences among varieties have been detected and statistical treatment of data is also reported. This study is part of a wider project aimed at the possible exploitation of the main agro-industrial by-products. At the same time it is one of the first reports on the volatile components of this waste material.

  9. Shared social responsibility: a field experiment in pay-what-you-want pricing and charitable giving.

    PubMed

    Gneezy, Ayelet; Gneezy, Uri; Nelson, Leif D; Brown, Amber

    2010-07-16

    A field experiment (N = 113,047 participants) manipulated two factors in the sale of souvenir photos. First, some customers saw a traditional fixed price, whereas others could pay what they wanted (including $0). Second, approximately half of the customers saw a variation in which half of the revenue went to charity. At a standard fixed price, the charitable component only slightly increased demand, as similar studies have also found. However, when participants could pay what they wanted, the same charitable component created a treatment that was substantially more profitable. Switching from corporate social responsibility to what we term shared social responsibility works in part because customized contributions allow customers to directly express social welfare concerns through the purchasing of material goods.

  10. The Reliability Mandate: Optimizing the Use of Highly Reliable Parts, Materials, and Processes (PM&P) to Maximize System Component Reliability in the Life Cycle

    DTIC Science & Technology

    2002-06-01

    projects are converted into bricks and mortar , as Figure 5 illustrates. Making major changes in LCC after projects are turned over to production is...matter experts ( SMEs ) in the parts, materials, and processes functional area. Data gathering and analysis were conducted through structured interviews...The analysis synthesized feedback and searched for collective issues from the various SMEs on managing PM&P Program requirements, the

  11. Strain characterization of embedded aerospace smart materials using shearography

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.

    2015-04-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.

  12. Investigation of Springback Associated with Composite Material Component Fabrication (MSFC Center Director's Discretionary Fund Final Report, Project 94-09)

    NASA Technical Reports Server (NTRS)

    Benzie, M. A.

    1998-01-01

    The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

  13. Flexible connector

    DOEpatents

    Savage, Mark E.; Simpson, Walter W.

    1999-01-01

    An electrical connector accommodates high current, is not labor intensive to assemble and disassemble, and allows a wide range of motion to accommodate mechanical variations and movement of connected components. The connector comprises several parts with joints therebetween, wherein each joint provides electrical connection between and allows relative motion of the joined parts. The combination of parts and joints maintains electrical connection between two electrical components even if the components are misaligned or move after connection.

  14. Geant4 calculations for space radiation shielding material Al2O3

    NASA Astrophysics Data System (ADS)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  15. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    NASA Astrophysics Data System (ADS)

    Goutianos, Stergios

    2017-07-01

    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts.

  16. In orbit degradation of EUV optical components in the wavelength range 10-40 nm AO 138-3

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Carabetian, C.; Hochedez, J. F.

    1993-01-01

    A complement of EUV optical components, including mirrors and thin film filters, was flown as part of the Long Duration Exposure Facility (LDEF) AO 138-3. The most original amongst these components were multilayered interference reflectors for the 10-40 nm wavelength range. Very moderate degradation was observed for those components which were exposed to the sun. The degradation is compatible with the deposition of a few nanometers of absorbing material on the surface of the samples.

  17. Engineering aspects of the application of structural materials in the 5 MW-ESS-mercury-target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttek, B.

    1996-06-01

    A main problem of the ESS-Hg-target development and the design of the components of its primary Hg-circuit is the choice of structural materials. As designing, calculations and experiments with elected materials take time and are very costy, a preview on their successful application has to be done before as detailed as possible. One aspect on this is to have the knowledge of characteristics values of the structural material candidates under the occuring mechanical and thermal loads, irradiation, corrosion and erosion. Another point is the technology of engineering concerning the manufacturing, welding, surface treatment, and quality control of such parts andmore » components under the demand to reach maximum lifetime.« less

  18. Raman Spectroscopy of 3-D Printed Polymers

    NASA Astrophysics Data System (ADS)

    Espinoza, Vanessa; Wood, Erin; Hight Walker, Angela; Seppala, Jonathan; Kotula, Anthony

    Additive manufacturing (AM) techniques, such as 3-D printing are becoming an innovative and efficient way to produce highly customized parts for applications ranging from automotive to biomedical. Polymer-based AM parts can be produced from a myriad of materials and processing conditions to enable application-specific products. However, bringing 3-D printing from prototype to production relies on understanding the effect of processing conditions on the final product. Raman spectroscopy is a powerful and non-destructive characterization technique that can assist in determining the chemical homogeneity and physical alignment of polymer chains in 3-D printed materials. Two polymers commonly used in 3-D printing, acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), were investigated using 1- and 2-D hyperspectral Raman imaging. In the case of ABS, a complex thermoplastic, the homogeneity of the material through the weld zone was investigated by comparing Raman peaks from each of the three components. In order to investigate the effect of processing conditions on polymer chain alignment, polarized Raman spectroscopy was used. In particular, the print speed or shear rate and effect of strain on PC filaments was investigated with perpendicular and parallel polarizations. National Institute of Standards and Technology Gaithersburg, MD ; Society of Physics Students.

  19. Locating Asian Materials in the Meramec Library. Asian Studies Module.

    ERIC Educational Resources Information Center

    Finkelston, Candy

    This curriculum guide introduces the different components of a library science course which provides students with the basic skills to search Asian sources and materials. The first part of the curriculum guide discusses the student objectives of the course, which is designed to provide students with expanded knowledge of searching CD-ROM programs…

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  1. A LABORATORY STUDY TO INVESTIGATE GASEOUS EMISSIONS AND SOLIDS DECOMPOSITION DURING COMPOSTING OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...

  2. "You Reap What You Sow" Idioms in Materials Designed by EFL Teacher-Trainees

    ERIC Educational Resources Information Center

    Khan, Özlem; Can Daskin, Nilüfer

    2014-01-01

    Idioms, because of their cultural and figurative aspects, cannot be readily comprehended and used appropriately; hence, they need to be taught explicitly by means of instructional materials in language classrooms. Knowledge of idioms constitutes an important component of learners' communicative competence (Bachman, 1990) since idioms as part of…

  3. Project SEEL: Part II. Using Technology to Enhance Early Literacy Instruction in Spanish

    ERIC Educational Resources Information Center

    Culatta, Richard; Culatta, Barbara; Frost, Meghan; Buzzell, Krista

    2004-01-01

    Custom-made digital media are rich, varied, and motivational early literacy materials. An important component of Project SEEL (Systematic and Engaging Early Literacy Instruction) was the use of tailormade digital books and activities in the reading curriculum. Project SEEL team members created computerized materials in Spanish to relate to…

  4. Corrosion inhibiting composition for treating asbestos containing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.R.

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  5. Corrosion inhibiting composition for treating asbestos containing materials

    DOEpatents

    Hartman, Judithann Ruth

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C.sub.8 -C.sub.15 alkylpyridinium halide or mixtures thereof. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  6. Corrosion inhibiting composition for treating asbestos containing materials

    DOEpatents

    Hartman, J.R.

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  7. Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kniffin, Scott

    2016-01-01

    X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the level of exposure to ionizing radiation is total ionizing dose (TID). The unit of TID is the rad, which is defined as 100 ergs absorbed per gram of material. Dose can be expressed in other units, for example grays (gy), where 1 gy = 100 rads. The actual fluence of radiation needed to deliver a rad depends on the absorbing material, so units of dose are usually stated in reference to the material of interest. That is, for microelectronic devices, the unit of dose is generally rad (Si) or rad (SiO2). However, the definition of absorbed dose in this fashion has the advantage that the type of radiation causing the ionization can be normalized so that a realistic and adequate comparison can be made. The sensitivity of microelectronic parts to TID varies over many orders of magnitude. (Note: Doses to humans are typically expressed in rems-or roentgen-equivalent-man-which measures tissue damage, and depends on the type of radiation, as well as the dose in rads.) Thus far, the "softest" parts tested at NASA showed damage at 500 rads (Si), while parts that are radiation-hardened by design can remain functional to doses on the order of 107 rads (Si). This broad range of sensitivity highlights one of the most important considerations when considering the effects of radiation on electronic parts: In order to determine whether a radiation exposure is a concern for a particular part, one must understand the technologies used in the part and their vulnerabilities to TID damage. A NASA radiation expert should be consulted to obtain such information.

  8. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  9. Carbohydrate modified phenol-formaldehyde resins

    Treesearch

    Anthony H. Conner; Linda F. Lorenz

    1986-01-01

    For adhesive self-sufficiency, the wood industry needs new adhesive systems in which all or part of the petroleum-derived phenolic component is replaced by a renewable material without sacrificing high durability or ease of bonding. We tested the bonding of wood veneers, using phenolic resins in which part of the phenol-formaldehyde was replaced with carbohydrates. Our...

  10. Parts Counter. Pre-Apprenticeship Phase 2 Training. Instructor's Guide.

    ERIC Educational Resources Information Center

    Snyder, James A.

    This instructor's guide accompanies the self-paced student training modules on parts counter, available separately as CE 031 572. Introductory materials include a description of the components of the pre-apprenticeship project, discussion of teacher's role in students' completion of the modules, and scope and contents of Phase 2 training. Each of…

  11. Test and Evaluation of the Surveyor 3 Television Camera Returned from the Moon by Apollo 12. Volume 1

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Results are presented of engineering tests of the Surveyor III television camera, which resided on the moon for 2 and 1/2 years before being brought back to earth by the Apollo XII astronauts. Electric circuits, electrical, mechanical, and optical components and subsystems, the vidicon tube, and a variety of internal materials and surface coatings were examined to determine the effects of lunar exposure. Anomalies and failures uncovered were analyzed. For the most part, the camera parts withstood the extreme environment exceedingly well except where degradation of obsolete parts or suspect components had been anticipated. No significant evidence of cold welding was observed, and the anomalies were largely attributable to causes other than lunar exposure. Very little evidence of micrometeoroid impact was noted. Discoloration of material surfaces -- one of the major effects noted--was found to be due to lunar dust contamination and radiation damage. The extensive test data contained in this report are supplemented by results of tests of other Surveyor parts retrieved by the Apollo XII astronauts, which are contained in a companion report.

  12. Investigating the Evolution of Progressive Die Wear on Uncoated Dp1180 Steel in Production Environment

    NASA Astrophysics Data System (ADS)

    Wu, W.; Zhou, D. J.; Adamski, D. J.; Young, D.; Wang, Y. W.

    2017-09-01

    A study of die wear was performed using an uncoated dual phase, 1,180 MPa ultimate tensile strength steel (DP1180) in a progressive die. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for forming operations on uncoated DP1180 steel and update OEM’s die standards based on the experimental results in the real production environment. In total, 100,800 hits were performed in manufacturing production conditions, where 33 die inserts with the combination of 10 die materials and 9 coatings were investigated. The die inserts were evaluated for surface wear using scanning electron microscopy and characterized in terms of die material and/or coating defects, failure mode, failure initiation and propagation. Surface roughness of the formed parts was characterized using a WYKO NT110 machine. The analytical analysis of the die inserts and formed parts, combined with the failure mode and service life, provide a basis for die material and coating selection for forming AHSS components. The conclusions of this study will guide the selection of die material and coatings for high-volume production of AHSS components.

  13. Space environmental effects on spacecraft: LEO materials selection guide, part 1

    NASA Astrophysics Data System (ADS)

    Silverman, Edward M.

    1995-08-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.

  14. Space environmental effects on spacecraft: LEO materials selection guide, part 1

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M.

    1995-01-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.

  15. Diffusion barriers in modified air brazes

    DOEpatents

    Weil, Kenneth Scott; Hardy, John S; Kim, Jin Yong; Choi, Jung-Pyung

    2013-04-23

    A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.

  16. Diffusion barriers in modified air brazes

    DOEpatents

    Weil, Kenneth Scott [Richland, WA; Hardy, John S [Richland, WA; Kim, Jin Yong [Richland, WA; Choi, Jung-Pyung [Richland, WA

    2010-04-06

    A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.

  17. Flexible connector

    DOEpatents

    Savage, M.E.; Simpson, W.W.

    1999-07-27

    An electrical connector accommodates high current, is not labor intensive to assemble and disassemble, and allows a wide range of motion to accommodate mechanical variations and movement of connected components. The connector comprises several parts with joints therebetween, wherein each joint provides electrical connection between and allows relative motion of the joined parts. The combination of parts and joints maintains electrical connection between two electrical components even if the components are misaligned or move after connection. 6 figs.

  18. Simulation of exposure and alignment for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Neureuther, Andrew R.

    2002-07-01

    Rigorous electromagnetic simulation with TEMPEST is used to examine the exposure and alignment processes for nano-imprint lithography with attenuating thin-film molds. Parameters in the design of topographical features of the nano-imprint system and material choices of the components are analyzed. The small feature size limits light transmission through the feature. While little can be done with auxiliary structures to attract light into small holes, the use of an absorbing material with a low real part of the refractive index such as silver helps mitigates the problem. Results on complementary alignment marks shows that the small transmission through the metal layer and the vertical separation of two alignment marks create the leakage equivalent to 1 nm misalignment but satisfactory alignment can be obtained by measuring alignment signals over a +/- 30 nm range.

  19. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  20. Preliminary Empirical Models for Predicting Shrinkage, Part Geometry and Metallurgical Aspects of Ti-6Al-4V Shaped Metal Deposition Builds

    NASA Astrophysics Data System (ADS)

    Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith

    2011-12-01

    Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.

  1. Viscous sealing glass compositions for solid oxide fuel cells

    DOEpatents

    Kim, Cheol Woon; Brow, Richard K.

    2016-12-27

    A sealant for forming a seal between at least two solid oxide fuel cell components wherein the sealant comprises a glass material comprising B.sub.2O.sub.3 as a principal glass former, BaO, and other components and wherein the glass material is substantially alkali-free and contains less than 30% crystalline material.

  2. Mechanical Testing of PMCs under Simulated Rapid Heat-Up Propulsion Environments. II; In-Plane Compressive Behavior

    NASA Technical Reports Server (NTRS)

    Stokes, Eric H.; Shin, E. Eugene; Sutter, James K.

    2003-01-01

    Carbon fiber thermoset polymer matrix composites (PMC) with high temperature polyimide based in-situ polymerized monomer reactant (PMR) resin has been used for some time in applications which can see temperatures up to 550 F. Currently, graphite fiber PMR based composites are used in several aircraft engine components including the outer bypass duct for the GE F-404, exit flaps for the P&W F-100-229, and the core cowl for the GE/Snecma CF6-80A3. Newer formulations, including PMR-II-50 are being investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines that can see temperatures which exceed 550 F. Extensive FEM thermal modeling indicates that these components are exposed to rapid heat-up rates (up to -200 F/sec) and to a maximum temperature of around 600 F. Even though the predicted maximum part temperatures were within the capability of PW-II-50, the rapid heat-up causes significant through-thickness thermal gradients in the composite part and even more unstable states when combined with moisture. Designing composite parts for such extreme service environments will require accurate measurement of intrinsic and transient mechanical properties and the hygrothermal performance of these materials under more realistic use conditions. The mechanical properties of polymers degrade when exposed to elevated temperatures even in the absence of gaseous oxygen. Accurate mechanical characterization of the material is necessary in order to reduce system weight while providing sufficient factors of safety. Historically, the testing of PMCs at elevated temperatures has been plagued by the antagonism between two factors. First, moisture has been shown to profoundly affect the mechanical response of these materials at temperatures above their glass transition temperature while concurrently lowering the material's Tg. Moisture phenomena is due to one or a combination of three effects, i.e., plastization of polymeric material by water, the internal pressure generated by the volatilization of water at elevated temperatures, and hydrolytic chemical decomposition. However, moisture is lost from the material at increasing rates as temperature increases. Second, because PMCs are good thermal insulators, when they are externally heated at even mild rates large thermal gradients can develop within the material. At temperatures where a material property changes rapidly with temperature the presence of a large thermal gradient is unacceptable for intrinsic property characterization purposes. Therefore, long hold times are required to establish isothermal conditions. However, in the service environments high-heating-rates, high temperatures, high-loading rates are simultaneous present along with residual moisture. In order to capture the effects of moisture on the material, holding at- temperature until isothermal conditions are reached is unacceptable particularly in materials with small physical dimensions. Thus, the effects due to moisture on the composite's mechanical characteristics, ie., their so-called analog response, may be instructive. One approach employed in this program was rapid heat-up (approx. 200 F/sec.) and loading of both dry and wet in-plane compressive specimens to examine the effects of moisture on this resin dominated mechanical property of the material.

  3. Aspects regarding manufacturing technologies of composite materials for brake pad application

    NASA Astrophysics Data System (ADS)

    Craciun, A. L.; Hepuţ, T.; Pinca-Bretotean, C.

    2018-01-01

    Current needs in road safety, requires the development of new technical solutions for automotive braking system. Their safe operation is subject to following factors: concept design, materials used and electronic control. Among the factors previously listed, choice of materials and manufacturing processes are difficult stage but very important for achieving technical performance and getting a relatively small cost of constituting parts of brake system. The choice is based on the promotion of organic composite material, popular in areas where the weight of materials plays an important role. The brake system is composed of many different parts including brake pads, a master cylinder, wheel cylinders and a hydraulic control system. The brake pads are an important component in the braking system of automotive. These are of different types, suitable for different types of automotive and engines. Brake pads are designed for friction stability, durability, minimization of noise and vibration. The typology of the brake pads depends on the material which they are made. The aim of this paper is to presents the manufacturing technologies for ten recipes of composite material used in brake pads applications. In this work will be done: choosing the constituents of the recipes, investigation of their basic characteristics, setting the proportions of components, obtaining the composite materials in laboratory, establishing the parameters of manufacturing technology and technological analysis.

  4. DC-magnetic field vector measurement

    NASA Technical Reports Server (NTRS)

    Schmidt, R.

    1981-01-01

    A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.

  5. Analysis of surface damage in retrieved carbon fiber-reinforced and plain polyethylene tibial components from posterior stabilized total knee replacements.

    PubMed

    Wright, T M; Rimnac, C M; Faris, P M; Bansal, M

    1988-10-01

    The performance of carbon fiber-reinforced ultra-high molecular weight polyethylene was compared with that of plain (non-reinforced) polyethylene on the basis of the damage that was observed on the articulating surfaces of retrieved tibial components of total knee prostheses. Established microscopy techniques for subjectively grading the presence and extent of surface damage and the histological structure of the surrounding tissues were used to evaluate twenty-six carbon fiber-reinforced and twenty plain polyethylene components that had been retrieved after an average of twenty-one months of implantation. All of the tibial components were from the same design of total knee replacement. The two groups of patients from whom the components were retrieved did not differ with regard to weight, the length of time that the component had been implanted, the radiographic position and angular alignment of the component, the original diagnosis, or the reason for removal of the component. The amounts and types of damage that were observed did not differ for the two materials. For both materials, the amount of damage was directly related to the length of time that the component had been implanted. The histological appearance of tissues from the area around the component did not differ for the two materials, except for the presence of fragments of carbon fiber in many of the samples from the areas around carbon fiber-reinforced components.

  6. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    NASA Astrophysics Data System (ADS)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  7. Component technology for stirling power converters

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    1991-01-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  8. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  9. Retention Forces between Titanium and Zirconia Components of Two-Part Implant Abutments with Different Techniques of Surface Modification.

    PubMed

    von Maltzahn, Nadine Freifrau; Holstermann, Jan; Kohorst, Philipp

    2016-08-01

    The adhesive connection between titanium base and zirconia coping of two-part abutments may be responsible for the failure rate. A high mechanical stability between both components is essential for the long-term success. The aim of the present in-vitro study was to evaluate the influence of different surface modification techniques and resin-based luting agents on the retention forces between titanium and zirconia components in two-part implant abutments. A total of 120 abutments with a titanium base bonded to a zirconia coping were investigated. Two different resin-based luting agents (Panavia F 2.0 and RelyX Unicem) and six different surface modifications were used to fix these components, resulting in 12 test groups (n = 10). The surface of the test specimens was mechanically pretreated with aluminium oxide blasting in combination with application of two surface activating primers (Alloy Primer, Clearfil Ceramic Primer) or a tribological conditioning (Rocatec), respectively. All specimens underwent 10,000 thermal cycles between 5°C and 55°C in a moist environment. A pull-off test was then conducted to determine retention forces between the titanium and zirconia components, and statistical analysis was performed (two-way anova). Finally, fracture surfaces were analyzed by light and scanning electron microscopy. No significant differences were found between Panavia F 2.0 and RelyX Unicem. However, the retention forces were significantly influenced by the surface modification technique used (p < 0.001). For both luting agents, the highest retention forces were found when adhesion surfaces of both the titanium bases and the zirconia copings were pretreated with aluminium oxide blasting, and with the application of Clearfil Ceramic Primer. Surface modification techniques crucially influence the retention forces between titanium and zirconia components in two-part implant abutments. All adhesion surfaces should be pretreated by sandblasting. Moreover, a phosphate-based primer serves to enhance long-term retention of the components. © 2015 Wiley Periodicals, Inc.

  10. High temperature thermocouple development program, part A and part B

    NASA Technical Reports Server (NTRS)

    Toenshoff, D. A.; Zysk, E. D.; Fleischner, P. L.

    1972-01-01

    The problem of extending the useful life of thermocouples intended for in-core and out-of-core thermionic applications in a vacuum environment at temperatures up to 2273 K for periods of time up to 10,000 hours was investigated. Many factors that may influence this useful life were examined, and a basic probe design was developed. With a few modifications, twenty-three thermocouple assemblies were fabricated. Generally the finished thermocouple consisted of solid doped W-3% Re and W-25% Re wires and high purity and high density BeO insulators, and was sheathed in a high purity tantalum tube. In a few probes, stranded thermocouple wires were substituted; commercial grade BeO was used; and in two cases, CVD W-22% Re tubing was used. Each of the components was made of the highest purity materials available; was subjected to special cleaning steps, and was assembled in a class 10,000 clean room. Pertinent physical and chemical properties were determined on each of the components. Special processing techniques were used in the fabrication of the high purity (99.95%), high density (over 95% of theoretical) BeO.

  11. Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals

    NASA Astrophysics Data System (ADS)

    Gail, Hans-Peter; Trieloff, Mario

    2017-09-01

    Context. A high fraction of carbon bound in solid carbonaceous material is observed to exist in bodies formed in the cold outskirts of the solar nebula, while bodies in the region of terrestrial planets contain only very small mass fractions of carbon. Most of the solid carbon component is lost and converted into CO during the spiral-in of matter as the Sun accretes matter from the solar nebula. Aims: We study the fate of the carbonaceous material that entered the proto-solar disc by comparing the initial carbon abundance in primitive solar system material and the abundance of residual carbon in planetesimals and planets in the asteroid belt and the terrestrial planet region. Methods: We constructed a model for the composition of the pristine carbonaceous material from observational data on the composition of the dust component in comets and of interplanetary dust particles and from published data on pyrolysis experiments. This material entered the inner parts of the solar nebula during the course of the build-up of the proto-sun by accreting matter from the proto-stellar disc. Based on a one-zone evolution model of the solar nebula, we studied the pyrolysis of the refractory and volatile organic component and the concomitant release of hydrocarbons of high molecular weight under quiescent conditions of disc evolution, while matter migrates into the central parts of the solar nebula. We also studied the decomposition and oxidation of the carbonaceous material during violent flash heating events, which are thought to be responsible for the formation of chondrules. To do this, we calculated pyrolysis and oxidation of the carbonaceous material in temperature spikes that were modeled according to cosmochemical models for the temperature history of chondrules. Results: We find that the complex hydrocarbon components of the carbonaceous material are removed from the disc matter in the temperature range between 250 and 400 K, but the amorphous carbon component survives to temperatures of 1200 K. Without efficient carbon destruction during flash-heating associated with chondrule formation, the carbon abundance of terrestrial planets, except for Mercury, would be of several percent and not as low as it is found in cosmochemical studies. Chondrule formation seems to be a crucial process for the carbon-poor composition of the material of terrestrial planets.

  12. Model of bidirectional reflectance distribution function for metallic materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  13. Computed Tomography and Thermography Increases CMC Material and Process Development Efficiency and Testing Effectiveness

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David

    2002-01-01

    Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.

  14. 30 CFR 7.504 - Refuge alternatives and components; general requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emergency Response Plan. (2) Lighting sufficient for persons to perform tasks. (3) A means to contain human waste effectively and minimize objectionable odors. (4) First aid supplies. (5) Materials, parts, and...

  15. 30 CFR 7.504 - Refuge alternatives and components; general requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emergency Response Plan. (2) Lighting sufficient for persons to perform tasks. (3) A means to contain human waste effectively and minimize objectionable odors. (4) First aid supplies. (5) Materials, parts, and...

  16. 30 CFR 7.504 - Refuge alternatives and components; general requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emergency Response Plan. (2) Lighting sufficient for persons to perform tasks. (3) A means to contain human waste effectively and minimize objectionable odors. (4) First aid supplies. (5) Materials, parts, and...

  17. Modelling of stamping of DP steel automotive part accounting for the effect of hard components in the microstructure

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Mateusz; Bzowski, Krzysztof; Mirek, Michal; Rauch, Lukasz; Pietrzyk, Maciej

    2013-05-01

    The paper presents simulations of the manufacturing of the automotive part, which has high influence on improvement of passengers safety. Two approaches to the Finite Element (FE) modelling of stamping of a part that provides extra stiffening of construction subassemblies in the back of a car were considered. The first is conventional simulation, which assumes that the material is a continuum with flow stress model and anisotropy coefficients determined from the tensile tests. In the second approach two-phase microstructure of the DP steel is accounted for in simulations. The FE2 method, which belongs to upscaling techniques, is used. Representative Volume Element (RVE), which is the basis of the upscaling approach and reflects the real microstructure, was obtained by the image analysis of the micrograph of the DP steel. However, since FE2 simulations with the real picture of the microstructure in the micro scale, are extremely time consuming, the idea of the Statistically Similar Representative Volume Element (SSRVE) was applied. SSRVE obtained for the DP steel, used for production of automotive part, is presented in the paper in the form of 3D inclusion. The macro scale model of the simulated part is described in details, as well as the results obtained for macro and micro-macro simulations.

  18. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  19. Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Ünsal, Ismail; Hama-Saleh, R.; Sviridov, Alexander; Bambach, Markus; Weisheit, A.; Schleifenbaum, J. H.

    2018-05-01

    New technological challenges like electro-mobility pose an increasing demand for cost-efficient processes for the production of product variants. This demand opens the possibility to combine established die-based manufacturing methods and innovative, dieless technologies like additive manufacturing [1, 2]. In this context, additive manufacturing technologies allow for the weight-efficient local reinforcement of parts before and after forming, enabling manufacturers to produce product variants from series parts [3]. Previous work by the authors shows that the optimal shape of the reinforcing structure can be determined using sizing optimization. Sheet metal parts can then be reinforced using laser metal deposition. The material used is a pearlite-reduced, micro-alloyed steel (ZE 630). The aim of this paper is to determine the effect of the additive manufacturing process on the material behavior and the mechanical properties of the base material and the resulting composite material. The parameters of the AM process are optimized to reach similar material properties in the base material and the build-up volume. A metallographic analysis of the parts is presented, where the additive layers, the base material and also the bonding between the additive layers and the base material are analyzed. The paper shows the feasibility of the approach and details the resulting mechanical properties and performance.

  20. Polymeric blends for sensor and actuation dual functionality

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)

    2004-01-01

    The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.

  1. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  2. Overview of the Ground and Its Movement in Part of Northwestern California

    Treesearch

    Stephen D. Ellen; Juan de la Fuente; James N. Falls; Robert J. McLaughlin

    2007-01-01

    The Eureka area of northwestern California is characterized by a variety of terrain forms that reflect a variety of geologic materials, most of which are components of the highly disrupted and heterogeneous Franciscan Complex. Recent regional geologic mapping by McLaughlin and others (2000) has delineated the distribution of contrasting materials within the principal...

  3. Estimates of Down Woody Materials in Eastern US Forests

    Treesearch

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath; Christopher W. Woodall

    2004-01-01

    Down woody materials (WVMs) are an important part of forest ecosystems for wildlife habitat, carbon storage, structural diversity, wildfire hazard, and other large-scale ecosystem processes. To better manage forests for DWMs, available and easily accessible data on DWM components are needed. We examined data on DWMs, collected in 2001 by the US Department of...

  4. Low-Cost Magnetic Stirrer from Recycled Computer Parts with Optional Hot Plate

    ERIC Educational Resources Information Center

    Guidote, Armando M., Jr.; Pacot, Giselle Mae M.; Cabacungan, Paul M.

    2015-01-01

    Magnetic stirrers and hot plates are key components of science laboratories. However, these are not readily available in many developing countries due to their high cost. This article describes the design of a low-cost magnetic stirrer with hot plate from recycled materials. Some of the materials used are neodymium magnets and CPU fans from…

  5. 10 CFR Appendix I to Part 110 - Illustrative List of Reprocessing Plant Components Under NRC Export Licensing Authority

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assurance and quality control techniques) out of low carbon stainless steels, titanium, zirconium or other... materials such as low carbon stainless steels, titanium or zirconium, or other high quality materials... features for control of nuclear criticality: (i) Walls or internal structures with a boron equivalent of at...

  6. CARES/Life Software for Designing More Reliable Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Baker, Eric H.

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion, and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CAPES/Life software eases this task by providing a tool to optimize the design and manufacture of brittle material components using probabilistic reliability analysis techniques. Probabilistic component design involves predicting the probability of failure for a thermomechanically loaded component from specimen rupture data. Typically, these experiments are performed using many simple geometry flexural or tensile test specimens. A static, dynamic, or cyclic load is applied to each specimen until fracture. Statistical strength and SCG (fatigue) parameters are then determined from these data. Using these parameters and the results obtained from a finite element analysis, the time-dependent reliability for a complex component geometry and loading is then predicted. Appropriate design changes are made until an acceptable probability of failure has been reached.

  7. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  8. 40 CFR 63.11511 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device is designed with multiple pads in series that are woven with layers of material with varying fiber... of time, during which none of the parts are removed from the tank and no other parts are added to the..., but is not limited to, the following components as applicable to a given capture system design: duct...

  9. Convergence of strain energy release rate components for edge-delaminated composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.; Aminpour, M. A.

    1987-01-01

    Strain energy release rates for edge delaminated composite laminates were obtained using quasi 3 dimensional finite element analysis. The problem of edge delamination at the -35/90 interfaces of an 8-ply composite laminate subjected to uniform axial strain was studied. The individual components of the strain energy release rates did not show convergence as the delamination tip elements were made smaller. In contrast, the total strain energy release rate converged and remained unchanged as the delamination tip elements were made smaller and agreed with that calculated using a classical laminated plate theory. The studies of the near field solutions for a delamination at an interface between two dissimilar isotropic or orthotropic plates showed that the imaginary part of the singularity is the cause of the nonconvergent behavior of the individual components. To evaluate the accuracy of the results, an 8-ply laminate with the delamination modeled in a thin resin layer, that exists between the -35 and 90 plies, was analyzed. Because the delamination exists in a homogeneous isotropic material, the oscillatory component of the singularity vanishes.

  10. Association of the Bacillus subtilis Chromosome with the Cell Membrane: Resolution of Free and Bound Deoxyribonucleic Acid on Renografin Gradients

    PubMed Central

    Ivarie, Robert D.; Pène, Jacques J.

    1970-01-01

    Linear density gradients of Renografin have resolved two components of bacterial deoxyribonucleic acid (DNA) in sheared lysates. Component 1, at equilibrium density after 5 hr of centrifugation, is enriched for newly synthesized DNA and markers near the origin and terminus of replication. It contains 5% of total cellular protein, 25% of the phospholipids, 30 to 50% of the DNA, 4 to 11% of unstable ribonucleic acid (RNA), RNA polymerase, and low amounts of DNA polymerase. The material is sensitive to Pronase and Sarkosyl. In unsheared lysates, all of the DNA forms a band at this position. Shearing the lysate generates a slow-sedimenting fraction of DNA (component 2) which contains more uniformly labeled than newly synthesized DNA. These observations suggest that replicating DNA and DNA at the origin and possibly the terminus of replication are associated with membrane. The amount of uniformly labeled DNA in component 1 and an estimate of the number of chromosomal fragments suggest that other parts of the chromosome are possibly associated with the membrane. PMID:4992373

  11. Identification of Crystalline Material in Two Interstellar Dust Candidates from the Stardust Mission

    NASA Technical Reports Server (NTRS)

    Gainsforth, Zack; Simionovici, Alexandra; Brenker, Frank E.; Schmitz, Sylvia; Burghammer, Manfred; Cloetens, Peter; Lemelle, Laurence; San Tresseras, Juan-Angel; Schoonjans, Tom; Silversmit, Geert; hide

    2012-01-01

    NASA's interstellar collector from the Stardust mission captured several particles that are now thought to be of interstellar origin. We analyzed two of these via nanodiffraction at the European Synchrotron Radiation Facility (ESRF) and found them to contain crystalline components. The unit cell of the crystalline material is determined from the diffraction patterns and the most likely mineral components are identified as olivine and spinel.

  12. Active alignment/contact verification system

    DOEpatents

    Greenbaum, William M.

    2000-01-01

    A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.

  13. Depth of manual dismantling analysis: A cost–benefit approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achillas, Ch., E-mail: c.achillas@ihu.edu.gr; Aidonis, D.; Vlachokostas, Ch.

    Highlights: ► A mathematical modeling tool for OEMs. ► The tool can be used by OEMs, recyclers of electr(on)ic equipment or WEEE management systems’ regulators. ► The tool makes use of cost–benefit analysis in order to determine the optimal depth of product disassembly. ► The reusable materials and the quantity of metals and plastics recycled can be quantified in an easy-to-comprehend manner. - Abstract: This paper presents a decision support tool for manufacturers and recyclers towards end-of-life strategies for waste electrical and electronic equipment. A mathematical formulation based on the cost benefit analysis concept is herein analytically described in ordermore » to determine the parts and/or components of an obsolete product that should be either non-destructively recovered for reuse or be recycled. The framework optimally determines the depth of disassembly for a given product, taking into account economic considerations. On this basis, it embeds all relevant cost elements to be included in the decision-making process, such as recovered materials and (depreciated) parts/components, labor costs, energy consumption, equipment depreciation, quality control and warehousing. This tool can be part of the strategic decision-making process in order to maximize profitability or minimize end-of-life management costs. A case study to demonstrate the models’ applicability is presented for a typical electronic product in terms of structure and material composition. Taking into account the market values of the pilot product’s components, the manual disassembly is proven profitable with the marginal revenues from recovered reusable materials to be estimated at 2.93–23.06 €, depending on the level of disassembly.« less

  14. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Gas Centrifuge Enrichment Plant... 110—Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...×109 N/m2 (67,000 lb/in.2 ) or more. (c) Filamentary materials suitable for use in composite structures...

  15. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... materials of construction for the rotating rotor assembly, and hence its individual components, have to be... gas centrifuge for uranium enrichment is characterized by having within the rotor chamber a rotating... featuring at least 3 separate channels of which 2 are connected to scoops extending from the rotor axis...

  16. Feasibility of tailoring of press formed thermoplastic composite parts

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2018-05-01

    The Tailor Made Blank concept is widely accepted in the production of sheet metal parts. By joining, adding and subtracting materials, and sometimes even applying different alloys, parts can be produced more efficiently by cost and/or weight, and new design options have been discovered. This paper is about the manufacture of press formed parts of Fibre Reinforced Thermoplastics and the evaluation whether the Tailoring concept, though adapted to the material behavior of FRTP, can be applied to these composites as well. From research, the first results and ideas are presented. One of the ideas is the multistep forming process, creating parts with thickness variations and combinations of fibre orientations that are usually not feasible using common press forming strategies. Another idea is the blending of different prepreg materials in one component. This might be useful in case of specific details, like for areas of mechanical fastening or to avoid carbon/metal contact, otherwise resulting in severe corrosion. In a brief overview, future perspectives of the potential of the Tailoring concept are presented.

  17. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  18. An intelligent inspection and survey robot. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-15

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified.

  19. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  20. Engineering report. Part 2: NASA wheel and brake material tradeoff study for space shuttle type environmental requirements

    NASA Technical Reports Server (NTRS)

    Bok, L. D.

    1973-01-01

    The study included material selection and trade-off for the structural components of the wheel and brake optimizing weight vs cost and feasibility for the space shuttle type application. Analytical methods were used to determine section thickness for various materials, and a table was constructed showing weight vs. cost trade-off. The wheel and brake were further optimized by considering design philosophies that deviate from standard aircraft specifications, and designs that best utilize the materials being considered.

  1. Dynamic stresses in a Francis model turbine at deep part load

    NASA Astrophysics Data System (ADS)

    Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri

    2017-04-01

    A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.

  2. Innovative Materials for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  3. Critical Propulsion Components. Volume 2; Combustor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Team. Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  4. Critical Propulsion Components. Volume 3; Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  5. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.

  6. Heat conduction in periodic laminates with probabilistic distribution of material properties

    NASA Astrophysics Data System (ADS)

    Ostrowski, Piotr; Jędrysiak, Jarosław

    2017-04-01

    This contribution deals with a problem of heat conduction in a two-phase laminate made of periodically distributed micro-laminas along one direction. In general, the Fourier's Law describing the heat conduction in a considered composite has highly oscillating and discontinuous coefficients. Therefore, the tolerance averaging technique (cf. Woźniak et al. in Thermomechanics of microheterogeneous solids and structures. Monografie - Politechnika Łódzka, Wydawnictwo Politechniki Łódzkiej, Łódź, 2008) is applied. Based on this technique, the averaged differential equations for a tolerance-asymptotic model are derived and solved analytically for given initial-boundary conditions. The second part of this contribution is an investigation of the effect of material properties ratio ω of two components on the total temperature field θ, by the assumption that conductivities of micro-laminas are not necessary uniquely described. Numerical experiments (Monte Carlo simulation) are executed under assumption that ω is a random variable with a fixed probability distribution. At the end, based on the obtained results, a crucial hypothesis is formulated.

  7. Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images

    PubMed Central

    Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali

    2015-01-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077

  8. Stockpile Dismantlement Database Training Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    This document, the Stockpile Dismantlement Database (SDDB) training materials is designed to familiarize the user with the SDDB windowing system and the data entry steps for Component Characterization for Disposition. The foundation of information required for every part is depicted by using numbered graphic and text steps. The individual entering data is lead step by step through generic and specific examples. These training materials are intended to be supplements to individual on-the-job training.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouton, S.; Ledoux, Y.; Teissandier, D.

    A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision supportmore » system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.« less

  10. Algae and their biodegradation effects on building materials in the Ostrava industrial agglomeration

    NASA Astrophysics Data System (ADS)

    Vojtková, H.

    2017-10-01

    Microorganisms cause changes in the building stone, which reduce its usable life and reliability. Microalgae make important parts of the biodegradation consortia of microorganisms on the surface of building materials. Via their metabolites, microalgae affect the stability of mineral components and thus lead to the material destruction. The aim of the paper was to identify aerophytic microalgae on the surface of engineering structures in the Ostrava agglomeration, and to describe the basic interactions between such microorganisms and the building materials, which may lead to the destruction of the materials.

  11. Fabrication methods for mesoscopic flying vehicle

    NASA Astrophysics Data System (ADS)

    Cheng, Yih-Lin

    2001-10-01

    Small-scale flying vehicles are attractive tools for atmospheric science research. A centimeter-size mesoscopic electric helicopter, the mesicopter, has been developed at Stanford University for these applications. The mesoscopic scale implies a design with critical features between tens of microns and several millimeters. Three major parts in the mesicopter are challenging to manufacture. Rotors require smooth 3D surfaces and a blade thickness of less than 100 mum. Components in the DC micro-motor must be made of engineering materials, which is difficult on the mesoscopic scale. Airframe fabrication has to integrate complex 3D geometry into one single structure at this scale. In this research, material selection and manufacturing approaches have been investigated and implemented. In rotor fabrication, high-strength polymers manufactured by the Shape Deposition Manufacturing (SDM) technique were the top choice. Aluminum alloys were only considered as the second choice because the fabrication process is more involved. Lift tests showed that the 4-blade polymer and aluminum rotors could deliver about 90% of the expected lift (4g). To explain the rotor performance, structural analyses of spinning rotors were performed and the fabricated geometry was investigated. The bending deflections and the torsional twists were found to be too small to degrade aerodynamic performance. The rotor geometry was verified by laser scanning and by cross-section observations. Commercially available motors are used in the prototypes but a smaller DC micro-motor was designed for future use. Components of the DC micro-motors were fabricated by the Mesoscopic Additive/Subtractive Material Processing technique, which is capable of shaping engineering materials on the mesoscopic scale. The approaches are described in this thesis. The airframe was manufactured using the SDM process, which is capable of building complex parts without assembly. Castable polymers were chosen and mixed with glass microspheres to reduce their density. The finished airframe (65.5 mm x 65.5 mm) weighed only 1.5g. Two mesicopter prototypes, weighing 3g and 17g, have illustrated that powered flight at this scale is feasible. This research provides solutions to manufacture the challenging parts for the mesicopter. The manufacturing approaches discussed here are applicable to other small flying vehicles in similar and even smaller size regimes.

  12. Evaluation of Inorganic/Organic Separators

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1976-01-01

    Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.

  13. Processing study of injection molding of silicon nitride for engine applications

    NASA Technical Reports Server (NTRS)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  14. Improved Slip Casting Of Ceramic Models

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Vasquez, Peter; Hicks, Lana P.

    1994-01-01

    Improved technique of investment slip casting developed for making precise ceramic wind-tunnel models. Needed in wind-tunnel experiments to verify predictions of aerothermodynamical computer codes. Ceramic materials used because of their low heat conductivities and ability to survive high temperatures. Present improved slip-casting technique enables casting of highly detailed models from aqueous or nonaqueous solutions. Wet shell molds peeled off models to ensure precise and undamaged details. Used at NASA Langley Research Center to form superconducting ceramic components from nonaqueous slip solutions. Technique has many more applications when ceramic materials developed further for such high-strength/ temperature components as engine parts.

  15. Elastic energy distribution in bi-material lithosphere: implications for shear zone formation

    NASA Astrophysics Data System (ADS)

    So, B.; Yuen, D. A.

    2013-12-01

    Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.

  16. Fabrication of micromechanical and microoptical systems by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.

    2007-01-01

    The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.

  17. Phased Array Imaging of Complex-Geometry Composite Components.

    PubMed

    Brath, Alex J; Simonetti, Francesco

    2017-10-01

    Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke configuration. Experimental results are provided for specimens of increasing complexity relevant to aerospace applications such as fan blades. It is shown that PA technology can provide a robust solution to detect a variety of defects including porosity and waviness in composite parts.

  18. Machinability evaluation of titanium alloys (Part 2)--Analyses of cutting force and spindle motor current.

    PubMed

    Kikuchi, Masafumi; Okuno, Osamu

    2004-12-01

    To establish a method of determining the machinability of dental materials for CAD/CAM systems, the machinability of titanium, two titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb), and free-cutting brass was evaluated through cutting force and spindle motor current. The metals were slotted using a milling machine and square end mills at four cutting conditions. Both the static and dynamic components of the cutting force represented well the machinability of the metals tested: the machinability of Ti-6Al-4V and Ti-6Al-7Nb was worse than that of titanium, while that of free-cutting brass was better. On the other hand, the results indicated that the spindle motor current was not sensitive enough to detect the material difference among the titanium and its alloys.

  19. Electrodeposited Nanostructured Films and Coatings: Synthesis, Structure, Properties and Applications

    DTIC Science & Technology

    2000-01-01

    function of the Electrodeposited Layer Thickness", B.Sc Thesis , Queen’s University, Kingston, Ontario, Canada 34) Merchant, H. K., (1995) in "Defect...The following component part numbers comprise the compilation report: ADPO11800 thru ADP011832 UNCLASSIFIED ELECTRODEPOSITED NANOSTRUCTURED FILMS AND...thermomechanical processing, ball milling, rapid solidification, electrodeposition ), unique material performance characteristics in bulk materials as well as

  20. Engineering report. Part 3: NASA lightweight wheel and brake sub-system. Lightweight brake development. [for application to space shuttle

    NASA Technical Reports Server (NTRS)

    Bok, L. D.

    1973-01-01

    The development of light weight wheel and brake systems designed to meet the space shuttle type requirements was investigated. The study includes the use of carbon graphite composite and beryllium as heat sink materials and the compatibility of these heat sink materials with the other structural components of the wheel and brake.

  1. Review of electronic transport models for thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Bulusu, A.; Walker, D. G.

    2008-07-01

    Thermoelectric devices have gained importance in recent years as viable solutions for applications such as spot cooling of electronic components, remote power generation in space stations and satellites etc. These solid-state devices have long been known for their reliability rather than their efficiency; they contain no moving parts, and their performance relies primarily on material selection, which has not generated many excellent candidates. Research in recent years has been focused on developing both thermoelectric structures and materials that have high efficiency. In general, thermoelectric research is two-pronged with (1) experiments focused on finding new materials and structures with enhanced thermoelectric performance and (2) analytical models that predict thermoelectric behavior to enable better design and optimization of materials and structures. While numerous reviews have discussed the importance of and dependence on materials for thermoelectric performance, an overview of how to predict the performance of various materials and structures based on fundamental quantities is lacking. In this paper we present a review of the theoretical models that were developed since thermoelectricity was first observed in 1821 by Seebeck and how these models have guided experimental material search for improved thermoelectric devices. A new quantum model is also presented, which provides opportunities for the optimization of nanoscale materials to enhance thermoelectric performance.

  2. Overview of Materials Qualification Needs for Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Salem, Ayman; Beuth, Jack; Harrysson, Ola; Lewandowski, John J.

    2016-03-01

    This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.

  3. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.

  4. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2

    PubMed Central

    Flatten, Lucas C.; Coles, David M.; He, Zhengyu; Lidzey, David G.; Taylor, Robert A.; Warner, Jamie H.; Smith, Jason M.

    2017-01-01

    Exciton-polaritons are quasiparticles consisting of a linear superposition of photonic and excitonic states, offering potential for nonlinear optical devices. The excitonic component of the polariton provides a finite Coulomb scattering cross section, such that the different types of exciton found in organic materials (Frenkel) and inorganic materials (Wannier-Mott) produce polaritons with different interparticle interaction strength. A hybrid polariton state with distinct excitons provides a potential technological route towards in situ control of nonlinear behaviour. Here we demonstrate a device in which hybrid polaritons are displayed at ambient temperatures, the excitonic component of which is part Frenkel and part Wannier-Mott, and in which the dominant exciton type can be switched with an applied voltage. The device consists of an open microcavity containing both organic dye and a monolayer of the transition metal dichalcogenide WS2. Our findings offer a perspective for electrically controlled nonlinear polariton devices at room temperature. PMID:28094281

  5. Cleaning of printed circuit assemblies with surface-mounted components

    NASA Astrophysics Data System (ADS)

    Arzigian, J. S.

    The need for ever-increasing miniaturization of airborne instrumentation through the use of surface mounted components closely placed on printed circuit boards highlights problems with traditional board cleaning methods. The reliability of assemblies which have been cleaned with vapor degreasing and spray cleaning can be seriously compromised by residual contaminants leading to solder joint failure, board corrosion, and even electrical failure of the mounted parts. In addition, recent government actions to eliminate fully halogenated chlorofluorocarbons (CFC) and chlorinated hydrocarbons from the industrial environment require the development of new cleaning materials and techniques. This paper discusses alternative cleaning materials and techniques and results that can be expected with them. Particular emphasis is placed on problems related to surface-mounted parts. These new techniques may lead to improved circuit reliability and, at the same time, be less expensive and less environmentally hazardous than the traditional systems.

  6. Mechanical Properties of Polymers Used for Anatomical Components in the Warrior Injury Assessment Manikin (WIAMan) Technology Demonstrator

    DTIC Science & Technology

    2016-07-01

    14. ABSTRACT The Warrior Injury Assessment Manikin was developed to provide an instrumented anthropomorphic test device (ATD) specifically...underbody blasts . To achieve that goal, the ATD used numerous polymeric materials for component parts that simulate human tissue and enable compliance in...strain rate, underbody blast , mechanical testing, tension, compression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  7. Approaches for springback reduction when forming ultra high-strength sheet metals

    NASA Astrophysics Data System (ADS)

    Radonjic, R.; Liewald, M.

    2016-11-01

    Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.

  8. Indigenous Manufacturing realization of TWIN Source

    NASA Astrophysics Data System (ADS)

    Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.

    2017-04-01

    TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.

  9. Numerical simulation of the induction heating of hybrid semi-finished materials into the semi-solid state

    NASA Astrophysics Data System (ADS)

    Seyboldt, Christoph; Liewald, Mathias

    2017-10-01

    Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.

  10. Finite Element Modeling of the World Federation's Second MFL Benchmark Problem

    NASA Astrophysics Data System (ADS)

    Zeng, Zhiwei; Tian, Yong; Udpa, Satish; Udpa, Lalita

    2004-02-01

    This paper presents results obtained by simulating the second magnetic flux leakage benchmark problem proposed by the World Federation of NDE Centers. The geometry consists of notches machined on the internal and external surfaces of a rotating steel pipe that is placed between two yokes that are part of a magnetic circuit energized by an electromagnet. The model calculates the radial component of the leaked field at specific positions. The nonlinear material property of the ferromagnetic pipe is taken into account in simulating the problem. The velocity effect caused by the rotation of the pipe is, however, ignored for reasons of simplicity.

  11. 46 CFR 164.019-7 - Non-standard components; acceptance criteria and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Inner Envelope Fabric; (iv) Closure (including zippers) or Adjustment Hardware; (v) Body Strap; (vi... in detail and including the unique style, part, or model number, the identification data required by the applicable subpart of this part, and any other manufacturer's identifying data. No two components...

  12. 46 CFR 164.019-7 - Non-standard components; acceptance criteria and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Inner Envelope Fabric; (iv) Closure (including zippers) or Adjustment Hardware; (v) Body Strap; (vi... in detail and including the unique style, part, or model number, the identification data required by the applicable subpart of this part, and any other manufacturer's identifying data. No two components...

  13. 46 CFR 164.019-7 - Non-standard components; acceptance criteria and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Inner Envelope Fabric; (iv) Closure (including zippers) or Adjustment Hardware; (v) Body Strap; (vi... in detail and including the unique style, part, or model number, the identification data required by the applicable subpart of this part, and any other manufacturer's identifying data. No two components...

  14. Stiffness management of sheet metal parts using laser metal deposition

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  15. Systems and methods for the combinatorial synthesis of novel materials

    DOEpatents

    Wu, Xin Di; Wang, Youqi; Goldwasser, Isy

    2000-01-01

    Methods and apparatus for the preparation of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by depositing components of target materials to predefined regions on the substrate, and, in some embodiments, simultaneously reacting the components to form at least two resulting materials. In particular, the present invention provides novel masking systems and methods for applying components of target materials onto a substrate in a combinatorial fashion, thus creating arrays of resulting materials that differ slightly in composition, stoichiometry, and/or thickness. Using the novel masking systems of the present invention, components can be delivered to each site in a uniform distribution, or in a gradient of stoichiometries, thicknesses, compositions, etc. Resulting materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. Once prepared, these resulting materials can be screened sequentially, or in parallel, for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical and other properties.

  16. Analytical simulation of weld effects in creep range

    NASA Technical Reports Server (NTRS)

    Dhalla, A. K.

    1985-01-01

    The inelastic analysis procedure used to investigate the effect of welding on the creep rupture strength of a typical Liquid Metal Fast Breeder Reactor (LMFBR) nozzle is discussed. The current study is part of an overall experimental and analytical investigation to verify the inelastic analysis procedure now being used to design LMFBR structural components operating at elevated temperatures. Two important weld effects included in the numerical analysis are: (1) the residual stress introduced in the fabrication process; and (2) the time-independent and the time-dependent material property variations. Finite element inelastic analysis was performed on a CRAY-1S computer using the ABAQUS program with the constitutive equations developed for the design of LMFBR structural components. The predicted peak weld residual stresses relax by as much as 40% during elevated temperature operation, and their effect on creep-rupture cracking of the nozzle is considered of secondary importance.

  17. Probabilistic material degradation model for aerospace materials subjected to high temperature, mechanical and thermal fatigue, and creep

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1992-01-01

    A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.

  18. Resistance to reinforcement change in multiple and concurrent schedules assessed in transition and at steady state.

    PubMed

    McLean, A P; Blampied, N M

    1995-01-01

    Behavioral momentum theory relates resistance to change of responding in a multiple-schedule component to the total reinforcement obtained in that component, regardless of how the reinforcers are produced. Four pigeons responded in a series of multiple-schedule conditions in which a variable-interval 40-s schedule arranged reinforcers for pecking in one component and a variable-interval 360-s schedule arranged them in the other. In addition, responses on a second key were reinforced according to variable-interval schedules that were equal in the two components. In different parts of the experiment, responding was disrupted by changing the rate of reinforcement on the second key or by delivering response-independent food during a blackout separating the two components. Consistent with momentum theory, responding on the first key in Part 1 changed more in the component with the lower reinforcement total when it was disrupted by changes in the rate of reinforcement on the second key. However, responding on the second key changed more in the component with the higher reinforcement total. In Parts 2 and 3, responding was disrupted with free food presented during intercomponent blackouts, with extinction (Part 2) or variable-interval 80-s reinforcement (Part 3) arranged on the second key. Here, resistance to change was greater for the component with greater overall reinforcement. Failures of momentum theory to predict short-term differences in resistance to change occurred with disruptors that caused greater change between steady states for the richer component. Consistency of effects across disruptors may yet be found if short-term effects of disruptors are assessed relative to the extent of change observed after prolonged exposure.

  19. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  20. Models for Individualized Instruction.

    ERIC Educational Resources Information Center

    Georgiades, William, Ed.; Clark, Donald C., Ed.

    This book, consisting of five parts, provides a collection of source materials that will assist in implementing individualized instruction; provides examples of interrelated systems for individualizing instruction; and describes the components of individualized instructional systems, including flexible use of time, differentiated staffing, new…

  1. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  2. A contribution to the modeling of metal plasticity and fracture: From continuum to discrete descriptions

    NASA Astrophysics Data System (ADS)

    Keralavarma, Shyam Mohan

    The objective of this dissertation is to further the understanding of inelastic behavior in metallic materials. Despite the increasing use of polymeric composites in aircraft structures, high specific strength metals continue to be used in key components such as airframe, fuselage, wings, landing gear and hot engine parts. Design of metallic structures subjected to thermomechanical extremes in aerospace, automotive and nuclear applications requires consideration of the plasticity, creep and fracture behavior of these materials. Consideration of inelasticity and damage processes is also important in the design of metallic components used in functional applications such as thin films, flexible electronics and micro electro mechanical systems. Fracture mechanics has been largely successful in modeling damage and failure phenomena in a host of engineering materials. In the context of ductile metals, the Gurson void growth model remains one of the most successful and widely used models. However, some well documented limitations of the model in quantitative prediction of the fracture strains and failure modes at low triaxialities may be traceable to the limited representation of the damage microstructure in the model. In the first part of this dissertation, we develop an extended continuum model of void growth that takes into account details of the material microstructure such as the texture of the plastically deforming matrix and the evolution of the void shape. The need for such an extension is motivated by a detailed investigation of the effects of the two types of anisotropy on the materials' effective response using finite element analysis. The model is derived using the Hill--Mandel homogenization theory and an approximate limit analysis of a porous representative volume element. Comparisons with several numerical studies are presented towards a partial validation of the analytical model. Inelastic phenomena such as plasticity and creep result from the collective behavior of a large number of nano and micro scale defects such as dislocations, vacancies and grain boundaries. Continuum models relate macroscopically observable quantities such as stress and strain by coarse graining the discrete defect microstructure. While continuum models provide a good approximation for the effective behavior of bulk materials, several deviations have been observed in experiments at small scales such as an intrinsic size dependence of the material strength. Discrete dislocation dynamics (DD) is a mesoscale method for obtaining the mechanical response of a material by direct simulation of the motion and interactions of dislocations. The model incorporates an intrinsic length scale in the dislocation Burgers vector and potentially allows for size dependent mechanical behavior to emerge naturally from the dynamics of the dislocation ensemble. In the second part of this dissertation, a simplified twodimensional DD model is employed to study several phenomena of practical interest such as strain hardening under homogeneous deformation, growth of microvoids in a crystalline matrix and creep of single crystals at elevated temperatures. These studies have been enabled by several recent enhancements to the existing two-dimensional DD framework described in Chapter V. The main contributions from this research are: (i) development of a fully anisotropic continuum model of void growth for use in ductile fracture simulations and (ii) enhancing the capabilities of an existing two-dimensional DD framework for large scale simulations in complex domains and at elevated temperatures.

  3. Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells

    NASA Astrophysics Data System (ADS)

    Farre, B.; Dauphin, Y.

    2009-04-01

    Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence, abundance and composition of these components in Mollusc shells. Goulletquer and Wolowicz (1989) have estimated that proteins represent 90% of the organic matrix of the shell, carbohydrates vary from 0.15 to 0.29%, while lipids vary from 0.8 to 2.9%. Fatty acids, cholesterol, phytadienes and ketones have been described in modern and fossil shells (Cobabe and Pratt, 1995). Using a procedure to extract intra- and intercrystalline organic matrices, Collins et al. (1995) have detected n-alkanes, n-alcohols, fatty acids and sterols in modern shells. It is suggested that the contents and ratios of these components are dependant on the environment and phylogeny. Lipids of the nacreous layer of Pinctada are diverse, with cholesterol, fatty acids, triglycerides and other unknown components (Rousseau et al., 2006). It has been established that the main part of the soluble organic matrices of the nacreous layer is composed of acidic proteins (Samata, 1988, 1990), whereas the prismatic layer of Pinna is mainly composed of acidic and sulphated polysaccharides (Dauphin, 2002; Dauphin et al., 2003). The amino acid compositions of the two layers are also different (Samata, 1990). Because the organic matrices extracted from the aragonite nacre and calcite prisms are the best known materials, the lipids extracted from the calcite prisms of Pinna nobilis and Pinctada margaritifera and the aragonite nacre of P. margaritifera have been chosen as test material for characterisation of the lipid fraction of molusk shells. The nacreous layer of Pinctada is thick,whereas its prismatic layer is thin, and the prisms display complex structures. On the opposite, the calcitic prismatic layer of Pinna is thick, with no intraprismatic membranes, and its nacreous layer is thin and present only in the oldest part of the shell. Moreover, these layers have a simple geometry so that some organic components (membranes, wall…) said to be insoluble, are clearly visible. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells thanks organic solvents. Two methods were used for the characterisation of the lipid obtaiened Fourier Tranform Infrared Spectrometry and thin layed chromatography. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant, but also structure-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.

  4. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    PubMed

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant parts decreased in two improved groups, while the proportion of strong activity chemical forms increased; two improved groups led strong activity Zn chemical form of root increased, while strong activity Zn chemical form of aboveground decreased.

  5. Toward an efficient inverse characterization of the viscoelastic properties of anisotropic media based on the ultrasonic polar scan

    NASA Astrophysics Data System (ADS)

    Martens, A.; Kersemans, M.; Daemen, J.; Verboven, E.; Van Paepegem, W.; Degrieck, J.; Delrue, S.; Van Den Abeele, K.

    2018-04-01

    Composite materials (e.g., carbon fiber reinforced plastics (CFRP)) are increasingly used for critical components in several industrial sectors (e.g. aerospace, automotive). Their anisotropic nature makes it difficult to accurately determine material properties or to assess internal damages. To resolve these challenges, the Ultrasonic Polar Scan (UPS) technique has been introduced. In a UPS experiment, a fixed material spot is insonified at a multitude of incidence angles Ψ(θ,φ) for which the transmission amplitude as well as the associated arrival time (time-of-flight) are measured. Mapping these quantities on a polar diagram represents a fingerprint of the local viscoelasticity of the investigated material. In the present study, we propose a novel two-stage inversion scheme that is able to infer both the elastic and the viscous properties. In the first step, we solve the inverse problem of determining the elastic constants from time-of-flight UPS recordings. The second stage handles a similar inverse problem, but now operates on the amplitude landscape of a UPS experiment for determining the viscous part of the viscoelastic tensor. This two-stage procedure thus yields the viscoelastic tensor of the insonified material spot. The developed characterization scheme has been employed on both virtual (numerical) UPS recordings, to test the effectiveness of the method, and experimental UPS recordings of unidirectional C/E plates.

  6. Directly reconstructing principal components of heterogeneous particles from cryo-EM images.

    PubMed

    Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali

    2015-08-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Joining and Integration of Silicon Carbide for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv

    2010-01-01

    The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.

  8. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  9. Materials Examination of the Vertical Stabilizer from American Airlines Flight 587

    NASA Technical Reports Server (NTRS)

    Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.; Jensen, Brian J.

    2005-01-01

    The first in-flight failure of a primary structural component made from composite material on a commercial airplane led to the crash of American Airlines Flight 587. As part of the National Transportation Safety Board investigation of the accident, the composite materials of the vertical stabilizer were tested, microstructure was analyzed, and fractured composite lugs that attached the vertical stabilizer to the aircraft tail were examined. In this paper the materials testing and analysis is presented, composite fractures are described, and the resulting clues to the failure events are discussed.

  10. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGES

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  11. Characterization of the fretting corrosion behavior, surface and debris from head-taper interface of two different modular hip prostheses.

    PubMed

    Dos Santos, Claudio T; Barbosa, Cassio; Monteiro, Maurício J; Abud, Ibrahim C; Caminha, Ieda M V; Roesler, Carlos R M

    2016-09-01

    Modular hip prostheses are flexible to match anatomical variations and to optimize mechanical and tribological properties of each part by using different materials. However, micromotions associated with the modular components can lead to fretting corrosion and, consequently, to release of debris which can cause adverse local tissue reactions in human body. In the present study, the surface damage and residues released during in vitro fretting corrosion tests were characterized by stereomicroscope, SEM and EDS. Two models of modular hip prosthesis were studied: Model SS/Ti Cementless whose stem was made of ASTM F136 Ti-6Al-4V alloy and whose metallic head was made of ASTM F138 austenitic stainless steel, and Model SS/SS Cemented with both components made of ASTM F138 stainless steel. The fretting corrosion tests were evaluated according to the criteria of ASTM F1875 standard. Micromotions during the test caused mechanical wear and material loss in the head-taper interface, resulting in fretting-corrosion. Model SS/SS showed higher grade of corrosion. Different morphologies of debris predominated in each model studied. Small and agglomerated particles were observed in the Model SS/Ti and irregular particles in the Model SS/SS. After 10 million cycles, the Model SS/Ti was more resistant to fretting corrosion than the Model SS/SS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Net shape fabrication of Alpha Silicon Carbide turbine components

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1982-01-01

    Development of Alpha Silicon Carbide components by net shape fabrication techniques has continued in conjunction with several turbine engine programs. Progress in injection molding of simple parts has been extended to much larger components. Turbine rotors fabricated by a one piece molding have been successfully spin tested above design speeds. Static components weighing up to 4.5 kg and 33 cc in diameter have also been produced using this technique. Use of sintering fixtures significantly improves dimensional control. A new Si-SiC composite material has also been developed with average strengths up to 1000 MPa (150 ksi) at 1200 C.

  13. Evaluation of beryllium for space shuttle components

    NASA Technical Reports Server (NTRS)

    Trapp, A. E.

    1972-01-01

    Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

  14. 10 CFR Appendix D to Part 110 - Illustrative List of Aerodynamic Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment, pipeline and instrumentation surfaces (that come in contact with the gas) must be made of materials that remain stable in contact with UF6. All surfaces which come into contact with the process gas... compressors or gas blowers made of or protected by materials resistant to UF6 corrosion and with a suction...

  15. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  16. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... two separate components. The first data collection component demonstrates that the open biological... each zone of the open biological treatment unit. After the first two components of data collection are... determined using actual sampling data from the open biological treatment unit. This is done during the...

  17. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... two separate components. The first data collection component demonstrates that the open biological... each zone of the open biological treatment unit. After the first two components of data collection are... determined using actual sampling data from the open biological treatment unit. This is done during the...

  18. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  19. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review

    DOE PAGES

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-06-21

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the differentmore » types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. Finally, these studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.« less

  20. Two-component Structure in the Entanglement Spectrum of Highly Excited States

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Cheng; Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo

    We study the entanglement spectrum of highly excited eigenstates of two known models which exhibit a many-body localization transition, namely the one-dimensional random-field Heisenberg model and the quantum random energy model. Our results indicate that the entanglement spectrum shows a ``two-component'' structure: a universal part that is associated to Random Matrix Theory, and a non-universal part that is model dependent. The non-universal part manifests the deviation of the highly excited eigenstate from a true random state even in the thermalized phase where the Eigenstate Thermalization Hypothesis holds. The fraction of the spectrum containing the universal part decreases continuously as one approaches the critical point and vanishes in the localized phase in the thermodynamic limit. We use the universal part fraction to construct a new order parameter for the many-body delocalized-to-localized transition. Two toy models based on Rokhsar-Kivelson type wavefunctions are constructed and their entanglement spectra are shown to exhibit the same structure.

  1. Transmission problems for Mindlin–Timoshenko plates: frictional versus viscous damping mechanisms

    NASA Astrophysics Data System (ADS)

    Ferreira, Marcio V.; Muñoz Rivera, Jaime E.; Suárez, Fredy M. S.

    2018-06-01

    In this article, we make a comparative analysis of the stabilizing effect of the frictional dissipation with the dissipation produced by viscous materials of Kelvin-Voigt type both located in a part of a Mindlin-Timoshenko plate. We model these dissipative mechanisms through transmission problems and show that localized frictional damping, when effective over a strategic component of the plate, produces exponential stability of the corresponding semigroup. On the other hand, although the dissipation of Kelvin-Voigt is considered a strong dissipation, we prove that it loses its uniform stabilizing properties when localized over a component of the material and provides only a slower polynomial decay.

  2. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, Raul B.; Lou, Xiaoyuan

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less

  3. Organic Chemistry in Two Dimensions: Surface-Functionalized Polymers and Self-Assembled Monolayer Films

    DTIC Science & Technology

    1988-09-01

    surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular

  4. The Mantle Isotopic Array: A Tale of Two FOZOs

    NASA Astrophysics Data System (ADS)

    Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.

    2017-12-01

    Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with primitive He in OIBs along with differences in mixing timescales and mantle processing rates for MORBs and OIBs. The two distinct FOZO compositions must also indicate limited direct mixing between the two over Earth's 4.5 Gyr history. References: [1] Hart et al., Science 1992; [2] Farley et al., EPSL 1992; [3] Hanan and Graham, Science 1996.

  5. Calibrating IR Cameras for In-Situ Temperature Measurement During the Electron Beam Melting Process using Inconel 718 and Ti-Al6-V4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Lloyd, Peter D; Dehoff, Ryan R

    2016-01-01

    The Department of Energy s (DOE) Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides world-leading capabilities in advanced manufacturing (AM) facilities which leverage previous, on-going government investments in materials science research and characterization. MDF contains systems for fabricating components with complex geometries using AM techniques (i.e. 3D-Printing). Various metal alloy printers, for example, use electron beam melting (EBM) systems for creating these components which are otherwise extremely difficult- if not impossible- to machine. ORNL has partnered with manufacturers on improving the final part quality of components and developing new materials for further advancing these devices. One methodmore » being used to study (AM) processes in more depth relies on the advanced imaging capabilities at ORNL. High performance mid-wave infrared (IR) cameras are used for in-situ process monitoring and temperature measurements. However, standard factory calibrations are insufficient due to very low transmissions of the leaded glass window required for X-ray absorption. Two techniques for temperature calibrations will be presented and compared. In-situ measurement of emittance will also be discussed. Ample information can be learned from in-situ IR process monitoring of the EBM process. Ultimately, these imaging systems have the potential for routine use for online quality assurance and feedback control.« less

  6. Analysis of volcanic tephra as a material of environment

    NASA Astrophysics Data System (ADS)

    Sitek, J.; Dekan, J.; Fang, X.; Xiaoli, P.; Chmielewská, E.

    2012-10-01

    Tephra is a fragmental material produced by volcanic eruption. Here, volcanic tephra deposit from the northeast of China was used for our study. Samples of unaltered tephra are usually composed of feldspar, glass, pyroxene, and olivine. Moreover, these volcanic alteration products also contain Fe oxides, phylosilicates, sulfates, and amorphous Al-Si-bearing material. Six different samples of tephra obtained were analyzed by Mössbauer spectroscopy. A typical Mössbauer spectrum of tephra consists of magnetic and non-magnetic components (magnetic component represents about 11% and non-magnetic component about 89% of spectral area). According to the structural composition, it may be supposed that the magnetic component can be assigned to titanomagnetite. Non-magnetic components contain two quadrupole doublets (Fe2+ species) and one doublet containing Fe3+. According to the measured values of Mössbauer spectra, the first two doublets are very similar with pyroxene, olivine and the third to phylosilicate, aluminosilicate or iron oxide of FeO type. Recently, volcanic tephra was applied as an ecological substance. Special solution was proposed for tephra utilization, especially for phosphate removal from contaminated water.

  7. Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2012-01-01

    .The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  8. Mastery Learning: Partly Boon, Partly Boondoggle. Teacher Education Forum; Volume 3, Number 11.

    ERIC Educational Resources Information Center

    Mueller, Daniel J.

    Educational institutions have at least two major functions: education and certification of competency. This paper examines the educational strengths and limitations of the mastery learning instruction model with respect to fulfilling these functions. The components of the mastery model are contrasted with components of other instructional models,…

  9. Critical Propulsion Components. Volume 4; Inlet and Fan/Inlet Accoustics Team

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  10. Critical Propulsion Components. Volume 1; Summary, Introduction, and Propulsion Systems Studies

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/ Inlet Acoustic Team.

  11. Some things we can infer about the Moon from the Composition of the Apollo 16 Regolith

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    1997-01-01

    Characteristics of the regolith of Cayley plains as sampled at the Apollo 16 lunar landing site are reviewed and new compositional data are presented for samples of less than 1 mm fines ('soils') and 1-2 mm regolith particles. As a means of determining which of the many primary (igneous) and secondary (crystalline breccias) lithologic components that have been identified in the soil are volumetrically important and providing an estimate of their relative abundances, more than 3 x 10(exp 6) combinations of components representing nearly every lithology that has been observed in the Apollo 16 regolith were systematically tested to determine which combinations best account for the composition of the soils. Conclusions drawn from the modeling include the following. At the site, mature soil from the Cayley plains consists of 64.5% +/- 2.7% components representing 'prebasin' materials: anorthosites, feldspathic breccias, and a small amount (2.6% +/- 1.5% of total soil) of nonmare, mafic plutonic rocks, mostly gabbronorites. On average, these components are highly feldspathic, with average concentrations of 3l-32% Al2O3 and 2-3% FeO and a molar Mg/(Mg+Fe) ratio of O.68. The remaining 36% of the regolith is syn- and postbasin material: 28.8% +/- 2.4% mafic impact-melt breccias (MIMBS, i.e., 'LKFM' and 'VHA basalts') created at the time of basin formation, 6.0% +/- 1.4% mare-derived material (impact and volcanic glass, crystalline basalt) with an average TiO2 concentration of 2.4%, and 1% postbasin meteoritic material. The MIMBs are the principal (80-90%) carrier of incompatible trace elements (rare earths, Th, etc.) and the carrier of about one-half of the siderophile elements and elements associated with mafic mineral phases (Fe, Mg, Mn, Cr, Sc). Most (71 %) of the Fe in the present regolith derives from syn- and postbasin sources (MIMBS, mare-derived material, and meteorites). Thus, although the bulk composition of the Apollo 16 regolith is nominally that of noritic anorthosite, the noritic part (the MIMBs) and anorthositic parts (the prebasin components) are largely unrelated.

  12. Syllabi and Instructional Materials for Courses in Juvenile Delinquency. Resource Materials for Teaching.

    ERIC Educational Resources Information Center

    Broderick, John, Ed.

    One of a series of resources for teaching sociology at the postsecondary level, this volume contains syllabi and instructional materials for courses in juvenile delinquency. Material is divided into two parts. Part One consists of 16 syllabi ranging from those stressing theory to those which are more directly concerned with the practical problems…

  13. Teaching about Asia: Professional Materials and Reference Books.

    ERIC Educational Resources Information Center

    Hantula, James N.

    This two-part document serves as a guide to basic materials on Asia. The first part provides the teacher of Asian studies with nonserial examples of pertinent professional materials and reference books in print since 1979. Criteria used in selecting the items are given and a brief comparison between materials available in 1969 and 1985 is made.…

  14. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    PubMed

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  15. Modifications of Hinge Mechanisms for the Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Ganzak, Jacob D.

    2018-01-01

    The further development and modifications made towards the integration of the upper and lower hinge assemblies for the Exploration Upper Stage umbilical are presented. Investigative work is included to show the process of applying updated NASA Standards within component and assembly drawings for selected manufacturers. Component modifications with the addition of drawings are created to precisely display part geometries and geometric tolerances, along with proper methods of fabrication. Comparison of newly updated components with original Apollo era components is essential to correctly model the part characteristics and parameters, i.e. mass properties, material selection, weldments, and tolerances. 3-Dimensional modeling software is used to demonstrate the necessary improvements. In order to share and corroborate these changes, a document management system is used to store the various components and associated drawings. These efforts will contribute towards the Mobile Launcher for Exploration Mission 2 to provide proper rotation of the Exploration Upper Stage umbilical, necessary for providing cryogenic fill and drain capabilities.

  16. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  17. Stress Distribution Around a Circular Hole in Square Plates, Loaded Uniformly in the Plane, on Two Opposite Sides of the Square. Optimum Shapes of Central Holes in Square Plates Subjected to Uniaxial Uniform Load. Optimization of Hole Shapes in Circular Cylindrical Shells Under Axial Tension,

    DTIC Science & Technology

    1981-09-01

    brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t

  18. Preparation and Characterization of Graphene Oxide Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikin,D.; Stankovich, S.; Zimney, E.

    2007-01-01

    Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range,more » and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.« less

  19. Preparation and characterization of graphene oxide paper.

    PubMed

    Dikin, Dmitriy A; Stankovich, Sasha; Zimney, Eric J; Piner, Richard D; Dommett, Geoffrey H B; Evmenenko, Guennadi; Nguyen, SonBinh T; Ruoff, Rodney S

    2007-07-26

    Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

  20. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    NASA Technical Reports Server (NTRS)

    O’Neal, T. Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. This paper discusses the impacts of the DMLS fabrication technique on the design of the turbopump and lessons learned during DMLS hardware fabrication and material testing.

  1. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited onto the cathodic mandrel by electrochemical reduction. Rotation of the mandrel ensures uniform distribution of refractory material. The EL-Form process allows for manufacturing in an inert atmosphere with deposition rates from 0.0004 to 0.002 in./h (10.2 to 50.8 m/h). Thicknesses typically range from microns to greater than 0.5 in. (13 mm). The refractory component produced is fabricated, dependably, to within one micron of the desired tolerances with no shrinkage or distortion as in other refractory metal manufacture techniques. The electroforming process has been used to produce solid, nonporous deposits of rhenium, iridium, niobium, tungsten, and their alloys.

  2. Evolving the machine

    NASA Astrophysics Data System (ADS)

    Bailey, Brent Andrew

    Structural designs by humans and nature are wholly distinct in their approaches. Engineers model components to verify that all mechanical requirements are satisfied before assembling a product. Nature, on the other hand; creates holistically: each part evolves in conjunction with the others. The present work is a synthesis of these two design approaches; namely, spatial models that evolve. Topology optimization determines the amount and distribution of material within a model; which corresponds to the optimal connectedness and shape of a structure. Smooth designs are obtained by using higher-order B-splines in the definition of the material distribution. Higher-fidelity is achieved using adaptive meshing techniques at the interface between solid and void. Nature is an exemplary basis for mass minimization, as processing material requires both resources and energy. Topological optimization techniques were originally formulated as the maximization of the structural stiffness subject to a volume constraint. This research inverts the optimization problem: the mass is minimized subject to deflection constraints. Active materials allow a structure to interact with its environment in a manner similar to muscles and sensory organs in animals. By specifying the material properties and design requirements, adaptive structures with integrated sensors and actuators can evolve.

  3. Implanted neural network potentials: Application to Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Onat, Berk; Cubuk, Ekin D.; Malone, Brad D.; Kaxiras, Efthimios

    2018-03-01

    Modeling the behavior of materials composed of elements with different bonding and electronic structure character for large spatial and temporal scales and over a large compositional range is a challenging problem. Cases in point are amorphous alloys of Si, a prototypical covalent material, and Li, a prototypical metal, which are being considered as anodes for high-energy-density batteries. To address this challenge, we develop a methodology based on neural networks that extends the conventional training approach to incorporate pre-trained parts that capture the character of different components, into the overall network; we refer to this model as the "implanted neural network" method. We show that this approach works well for the Si-Li amorphous alloys for a wide range of compositions, giving good results for key quantities like the diffusion coefficients. The method is readily generalizable to more complicated situations that involve two or more different elements.

  4. Bright dunes on mars

    USGS Publications Warehouse

    Thomas, P.C.; Malin, M.C.; Carr, M.H.; Danielson, G.E.; Davies, M.E.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; McEwen, A.S.; Soderblom, L.A.; Veverka, J.

    1999-01-01

    Seasonal changes observed on the surface of Mars can in part be attributed to the transport of geological materials by wind. Images obtained by orbiting spacecraft in the 1970s showed large wind-formed features such as dunes, and revealed regional time-varying albedos that could be attributed to the effects of dust erosion and deposition. But the resolution of these images was insufficient to identify different types and sources of aeolian materials, nor could they reveal aeolian deposits other than large dunes or extensive surface coverings that were redistributed by dust storms. Here we present images of Mars with up to 50 times better resolution. These images show that martian dunes include at least two distinct components, the brighter of which we interpret to be composed of relatively soft minerals, possibly sulphates. We also find large areas of the martian surface that have several metres or more of aeolian mantle lacking obvious bedforms.

  5. Evaluating Effectiveness of Two Types of Chinese Remedial Materials for Low-Achieving and Disadvantaged Second Graders

    ERIC Educational Resources Information Center

    Chen, Shu-Li; Shih-Jay, Tzeng; Chu, Szu-Yin

    2015-01-01

    Having access to research-based materials is an essential component for designing effective interventions for low-achieving and disadvantaged students. The purpose of this study was to compare the effectiveness of two types of reading material intervention for low-achieving and disadvantaged students. The students were divided into experimental…

  6. An alternative method for sampling and petrographically characterizing an Eocene coal bed, southeast Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, T.A.

    1990-01-01

    A study undertaken on an Eocene age coal bed in southeast Kalimantan, Indonesia determined that there was a relationship between megascopically determined coal types and kinds and sizes of organic components. The study also concluded that the most efficient way to characterize the seam was from collection of two 3 cm blocks from each layer or bench defined by megascopic character and that a maximum of 125 point counts was needed on each block. Microscopic examination of uncrushed block samples showed the coal to be composed of plant parts and tissues set in a matrix of both fine-grained and amorphousmore » material. The particulate matrix is composed of cell wall and liptinite fragments, resins, spores, algae, and fungal material. The amorphous matrix consists of unstructured (at 400x) huminite and liptinite. Size measurements showed that each particulate component possessed its own size distribution which approached normality when transformed to a log{sub 2} or phi scale. Degradation of the plant material during peat accumulation probably controlled grain size in the coal types. This notion is further supported by the increased concentration of decay resistant resin and cell fillings in the nonbanded and dull coal types. In the sampling design experiment, two blocks from each layer and two layers from each coal type were collected. On each block, 2 to 4 traverses totaling 500 point counts per block were performed to test the minimum number of points needed to characterize a block. A hierarchical analysis of variance showed that most of the petrographic variation occurred between coal types. The results from these analyses also indicated that, within a coal type, sampling should concentrate on the layer level and that only 250 point counts, split between two blocks, were needed to characterize a layer.« less

  7. Extensive Reading Materials Produced by Learning Communities

    ERIC Educational Resources Information Center

    Jacobs, G. M.

    2013-01-01

    This article advocates that students and teachers create some of their own extensive reading materials. Learning communities act as a means of motivating and sustaining student and teacher production of extensive reading materials. The article begins by explaining learning communities. The bulk of the article has two parts. The first part focuses…

  8. Infrared Preheating to Enhance Interlayer Strength of Components Printed on the Big Area Additive Manufacturing (BAAM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore, Vidya; Ajinjeru, Christine; Duty, Chad E

    The Big Area Additive Manufacturing (BAAM) system has the capacity to print structures on the order of several meters at a rate exceeding 50 kg/h, thereby having the potential to significantly impact the production of components in automotive, aerospace and energy sectors. However, a primary issue that limits the functional use of such parts is mechanical anisotropy. The strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This is largely due to poor bonding between the printed layers as the lower layers cool below the glass transitionmore » temperature (Tg) before the next layer is deposited. This work explores the use of infrared heating to increase the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. The material used in this study was acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber by weight. Significant improvements in z-strength were observed for the parts whose surface temperature was increased from below Tg to close to or above Tg using infrared heating. Parameters such as print speed, nozzle diameter and extrusion temperature were also found to impact the heat input required to enhance interlayer adhesion without significantly degrading the polymer and compromising on surface finish.« less

  9. Cardiac Muscle-cell Based Actuator and Self-stabilizing Biorobot - PART 1.

    PubMed

    Holley, Merrel T; Nagarajan, Neerajha; Danielson, Christian; Zorlutuna, Pinar; Park, Kidong

    2017-07-11

    Biological machines often referred to as biorobots, are living cell- or tissue-based devices that are powered solely by the contractile activity of living components. Due to their inherent advantages, biorobots are gaining interest as alternatives to traditional fully artificial robots. Various studies have focused on harnessing the power of biological actuators, but only recently studies have quantitatively characterized the performance of biorobots and studied their geometry to enhance functionality and efficiency. Here, we demonstrate the development of a self-stabilizing swimming biorobot that can maintain its pitch, depth, and roll without external intervention. The design and fabrication of the PDMS scaffold for the biological actuator and biorobot followed by the functionalization with fibronectin is described in this first part. In the second part of this two-part article, we detail the incorporation of cardiomyocytes and characterize the biological actuator and biorobot function. Both incorporate a base and tail (cantilever) which produce fin-based propulsion. The tail is constructed with soft lithography techniques using PDMS and laser engraving. After incorporating the tail with the device base, it is functionalized with a cell adhesive protein and seeded confluently with cardiomyocytes. The base of the biological actuator consists of a solid PDMS block with a central glass bead (acts as a weight). The base of the biorobot consists of two composite PDMS materials, Ni-PDMS and microballoon-PDMS (MB-PDMS). The nickel powder (in Ni-PDMS) allows magnetic control of the biorobot during cells seeding and stability during locomotion. Microballoons (in MB-PDMS) decrease the density of MB-PDMS, and enable the biorobot to float and swim steadily. The use of these two materials with different mass densities, enabled precise control over the weight distribution to ensure a positive restoration force at any angle of the biorobot. This technique produces a magnetically controlled self-stabilizing swimming biorobot.

  10. Benard convection in binary mixtures with Soret effects and solidification

    NASA Technical Reports Server (NTRS)

    Zimmermann, G.; Mueller, U.; Davis, S. H.

    1992-01-01

    Benard convection was studied in a two-component liquid which displayed Soret effects (Soret, 1879; DeGroot and Mazur, 1969) and in which the temperatures of the horizontal boundaries spanned the solidification temperature of the mixture. A steady basic state was observed, in which the layer is partly liquid (near the lower, heated plate) and partly solid (near the upper, cooled plate) with the interface being planar, and in which all transport is by conduction and diffusion. Linear stability of the basic state was examined to determine how the presence of solid and the ability of the material to solidify or melt under disturbance affects the critical conditions from the onset of instability. The theoretical results obtained for cases when the phase change is absent and when the Soret effects are absent (but the phase change is present) are compared with an experiment using alcohol-water mixtures.

  11. Process for removing mercury from aqueous solutions

    DOEpatents

    Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

    1985-03-04

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  12. Process for removing mercury from aqueous solutions

    DOEpatents

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  13. The study on surface characteristics of high transmission components by 3D printing technique

    NASA Astrophysics Data System (ADS)

    Kuo, Hui-Jean; Huang, Chien-Yao; Wang, Wan-Hsuan; Lin, Ping-Hung; Tsay, Ho-Lin; Hsu, Wei-Yao

    2017-06-01

    3D printing is a high freedom fabrication technique. Any components, which designed by 3D design software or scanned from real parts, can be printed. The printing materials include metals, plastics and biocompatible materials etc. Especially for those high transmission components used in optical system or biomedical field can be printed, too. High transmission lens increases the performances of optical system. And high transmission cover or shell using in biomedical field helps observers to see the structures inside, such as brain, bone, and vessels. But the surface of printed components is not transparent, even the inside layer is transparent. If we increase the transmittance of surface, the components which fabricated by 3D printing process could have high transmission. In this paper, we using illuminating and polishing methods to improve the transmittance of printing surface. The illuminating time is the experiment parameters in illuminating method. The roughness and transmission of printing components are the evaluating targets. A 3D printing machine, Stratasys Connex 500, has been used to print high transmittance components in this paper. The surface transmittance of printing components is increasing above 80 % by polishing method.

  14. Quick mixing of epoxy components

    NASA Technical Reports Server (NTRS)

    Dunlap, D. E., Jr.

    1981-01-01

    Two materials are mixed quickly, thoroughly, and in precise proportion by disposable cartridge. Cartridge mixes components of fast-curing epoxy resins, with no mess, just before they are used. It could also be used in industry and home for caulking, sealing, and patching. Materials to be mixed are initially isolated by cylinder wall within cartridge. Cylinder has vanes, with holes in them, at one end and handle at opposite end. When handle is pulled, grooves on shaft rotate cylinder so that vanes rotate to extrude material A uniformly into material B.

  15. The use of organic markers in the differentiation of organic inputs to aquatic systems

    NASA Astrophysics Data System (ADS)

    Reeves, A. D.

    1995-04-01

    In previous projects the estuarine distributions of a variety of molecular organic markers have been described and discussed in relation to sources, transport mechanisms and fates of anthropogenic and biogenic inputs to estuaries. Molecular markers have been used successfully to establish terrestrial inputs to marine water and to trace pollutants in water-ways. One of the components selected for study was lignin. Lignin compounds are phenolic polymers that occur as major constituents of the cell walls of vascular plants. Their source, natural abundance, wide distribution and resistance to microbial degradation render them good terrestrial markers and, via their phenolic aldehyde oxidation products, afford characterisation of their source material. In previous work, ratios of various lignin components suggest that permanently suspended material contains a significant proportion of degraded angiosperm tissues whereas, in resuspended material, a component of gymnosperm material is indicated. Comparison of the lignin concentrations in the suspended material with those in underlying sediment reveals that the permanently suspended material is preferentially enriched in lignin. This is due, at least in part, to the relative buoyancy of lignin-containing prticles which causes them to float in near-surface water. This paper considers whether such methodology can be usefully applied to the determination of terrestrial inputs to lentic environments.

  16. A content analysis of preconception health education materials: characteristics, strategies, and clinical-behavioral components.

    PubMed

    Levis, Denise M; Westbrook, Kyresa

    2013-01-01

    Many health organizations and practitioners in the United States promote preconception health (PCH) to consumers. However, summaries and evaluations of PCH promotional activities are limited. We conducted a content analysis of PCH health education materials collected from local-, state-, national-, and federal-level partners by using an existing database of partners, outreach to maternal and child health organizations, and a snowball sampling technique. Not applicable. Not applicable. Thirty-two materials were included for analysis, based on inclusion/exclusion criteria. A codebook guided coding of materials' characteristics (type, authorship, language, cost), use of marketing and behavioral strategies to reach the target population (target audience, message framing, call to action), and inclusion of PCH subject matter (clinical-behavioral components). The self-assessment of PCH behaviors was the most common material (28%) to appear in the sample. Most materials broadly targeted women, and there was a near-equal distribution in targeting by pregnancy planning status segments (planners and nonplanners). "Practicing PCH benefits the baby's health" was the most common message frame used. Materials contained a wide range of clinical-behavioral components. Strategic targeting of subgroups of consumers is an important but overlooked strategy. More research is needed around PCH components, in terms of packaging and increasing motivation, which could guide use and placement of clinical-behavioral components within promotional materials.

  17. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests

  18. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.

  19. Environmental and High-Strain Rate effects on composites for engine applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1982-01-01

    The Lewis Research Center is conducting a series of programs intended to investigate and develop the application of composite materials to structural components for turbojet engines. A significant part of that effort is directed to establishing resistance, defect growth, and strain rate characteristics of composite materials over the wide range of environmental and load conditions found in commercial turbojet engine operations. Both analytical and experimental efforts are involved.

  20. Gen IV Materials Handbook Beta Release for Structural and Functional Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Luttrell, Claire

    2006-09-12

    Development of the Gen IV Materials Handbook is briefly summarized up to date. Current status of the Handbook website construction is described. The developed Handbook components and access control of the beta version are discussed for the present evaluation release. Detailed instructions and examples are given to provide guidance for evaluators to browse the constructed parts and use all the currently developed functionalities of the Handbook in evaluation.

  1. 14 CFR 33.70 - Engine life-limited parts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., hubs, shafts, high-pressure casings, and non-redundant mount components. For the purposes of this... life before hazardous engine effects can occur. These steps include validated analysis, test, or... assessments to address the potential for failure from material, manufacturing, and service induced anomalies...

  2. 14 CFR 33.70 - Engine life-limited parts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., hubs, shafts, high-pressure casings, and non-redundant mount components. For the purposes of this... life before hazardous engine effects can occur. These steps include validated analysis, test, or... assessments to address the potential for failure from material, manufacturing, and service induced anomalies...

  3. 21 CFR 820.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... specified DMR requirements before it is released for distribution. (y) Specification means any requirement... for distribution. (c) Component means any raw material, substance, piece, part, software, firmware... physical and performance requirements of a device that are used as a basis for device design. (g) Design...

  4. Observation and Analysis of In Situ Carbonaceous Matter in Naklha. Part 2

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Clemett, S. J.; Thomas-Kerpta, K. L.; McKay, D. S.; Wentworth, S. J.; Robert, F.; Verchovsky, A. B.; Wright, I. P.; Pillinger, C. T.; Rice, T.; hide

    2006-01-01

    The search for indigenous carbon components on Mars has been a challenge. The first attempt was the Viking GC-MS in situ experiment which gave inconclusive results at two sites on Mars [1]. After the discovery that the SNC meteorites were from Mars [2], [3-5] reported C isotopic compositional information which suggested a reduced C component present in the martian meteorites. [6 & 7] reported the presence of reduced C components (i.e., polycyclic aromatic hydrocarbons) associated with the carbonate globules in ALH84001. Jull et al. [8] noted in Nakhla there was an acid insoluble C component present with more than 75% of its C lacking any C-14, which is modern-day carbon. This C fraction was believed to be either indigenous martian or ancient meteoritic carbon. Fisk et al. [9, 10] have shown textural evidence along with C-enriched areas within fractures in Nakhla and ALH84001. To further understand the nature of possible indigenous reduced C components, we have carried out a variety of measurements on martian meteorites. For this presentation we will discuss only the Nakhla results. Interior samples from the Nakhla SNC meteorite, recently made available by the British Museum of Natural History, were analyzed. Petrographic examination [11, McKay et al., this volume] of Nakhla showed evidence of fractures (approx.0.5 micron wide) filled with dark brown to black dendritic material [Fig. 1] with characteristics similar to those observed by [10]. Iddingsite is also present along fractures in olivine. Fracture filling and dendritic material was examined by SEM-EDX, TEM-EDX, Focused Electron Beam microscopy, Laser Raman Spectroscopy, Nano-SIMS Ion Micro-probe, and Stepped-Combustion Static Mass Spectrometry.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret A. Marshall

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.« less

  6. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 1: Design layouts

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    The design layouts and detailed design drawings of coannular exhaust nozzle models for a supersonic propulsion system are presented. The layout drawings show the assembly of the component parts for each configuration. A listing of the component parts is also given.

  7. ESEA Title I Evaluation Report, 1973-74, Volume 2.

    ERIC Educational Resources Information Center

    Saint Louis Public Schools, MO.

    Volume II of the St. Louis Public Schools evaluation report on programs, projects, services, and activities funded in whole or in part under Elementary Secondary Education Act Title I is organized into two parts, each focusing on one component. Component Five, 'Non-public Schools, services and projects' serviced 18 Catholic and 5 Lutheran schools.…

  8. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less

  9. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  10. Probabilistic Prediction of Lifetimes of Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Gyekenyesi, John P.; Jadaan, Osama M.; Palfi, Tamas; Powers, Lynn; Reh, Stefan; Baker, Eric H.

    2006-01-01

    ANSYS/CARES/PDS is a software system that combines the ANSYS Probabilistic Design System (PDS) software with a modified version of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) Version 6.0 software. [A prior version of CARES/Life was reported in Program for Evaluation of Reliability of Ceramic Parts (LEW-16018), NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 28.] CARES/Life models effects of stochastic strength, slow crack growth, and stress distribution on the overall reliability of a ceramic component. The essence of the enhancement in CARES/Life 6.0 is the capability to predict the probability of failure using results from transient finite-element analysis. ANSYS PDS models the effects of uncertainty in material properties, dimensions, and loading on the stress distribution and deformation. ANSYS/CARES/PDS accounts for the effects of probabilistic strength, probabilistic loads, probabilistic material properties, and probabilistic tolerances on the lifetime and reliability of the component. Even failure probability becomes a stochastic quantity that can be tracked as a response variable. ANSYS/CARES/PDS enables tracking of all stochastic quantities in the design space, thereby enabling more precise probabilistic prediction of lifetimes of ceramic components.

  11. Torsional wave band gap properties in a circular plate of a two-dimensional generalized phononic crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie

    2018-05-01

    The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.

  12. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    NASA Astrophysics Data System (ADS)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  13. EVALUATION OF THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL VERSION 4.5: UNCERTAINTIES AND SENSITIVITIES IMPACTING MODEL PERFORMANCE: PART II - PARTICULATE MATTER

    EPA Science Inventory

    This paper presents an analysis of the CMAQ v4.5 model performance for particulate matter and its chemical components for the simulated year 2001. This is part two is two part series of papers that examines the model performance of CMAQ v4.5.

  14. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts.

    PubMed

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-10-17

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.

  15. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    PubMed Central

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-01-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices. PMID:27748460

  16. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-10-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.

  17. Moving Technologies from the Test Tube to Commercial Products

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.

    2013-01-01

    Successful technologies include objects, processes, and procedures that share a common theme; they are being used to generate new products that create economic growth. The foundation is the invention, but the invention is a small part of the overall effort. The pathway to success is understanding the competition, proper planning, record keeping, integrating a supply chain, understanding actual costs, intellectual property (IP), benchmarking, and timing. Additionally, there are obstacles that include financing, what to make, buy, and sell, and the division of labor i.e. recognizing who is best at what task. Over the past two decades, NASA Langley Research Center (LaRC) has developed several commercially available technologies. The approach to commercialization of three of these inventions; Langley Research Center-Soluble Imide (LaRC-SI, Imitec Inc.), the Thin Layer Unimorph Driver (THUNDER, FACE International), and the Macrofiber Composite (MFC, Smart Material Corp.) will be described, as well as some of the lessons learned from the process. What makes these three inventions interesting is that one was created in the laboratory; another was built using the previous invention as part of its process, and the last one was created by packaging commercial-off-the-shelf (COTS) materials thereby creating a new component.

  18. Scanning of the internal structure part with laser ultrasonic in aviation industry.

    PubMed

    Swornowski, Pawel J

    2011-01-01

    The detection of internal defects is a major production and safety issue for the newest generations of aircraft. New materials and manufacturing processes in the aircraft industry demand efficient quality assurance in manufacturing and inspection in maintenance. Advanced metallic material processes (titanium) are used or developed for the production of heavily loaded flying components (in fan blade construction). The inspection of these parts mainly made out of titanium (or CFRP) requires the determination of the percentage of bonded grain sizes around 10-30 µm. This is primarily due to the advantages of a high signal-to-noise ratio and good detection sensitivity. In this article, a diagnosing method of the blade interior by means of the laser ultrasonic is presented. Identification of small fatigue cracks presents a challenging problem during nondestructive testing of fatigue-damaged structures. Laser ultrasonic is a technique that uses two laser beams; one with a short pulse for the generation of ultrasound and another with a long pulse or continuous coupled to an optical interferometer for detection. The results of research of the internal blade structure are presented. Copyright © 2011 Wiley Periodicals, Inc.

  19. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    NASA Astrophysics Data System (ADS)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  20. Shuttle filter study. Volume 2: Contaminant generation and sensitivity studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Contaminant generation studies were conducted at the component level using two different methods, radioactive tracer technique and gravimetric analysis test procedure. Both of these were reduced to practice during this program. In the first of these methods, radioactively tagged components typical of those used in spacecraft were studied to determine their contaminant generation characteristics under simulated operating conditions. Because the purpose of the work was: (1) to determine the types and quantities of contaminants generated; and (2) to evaluate improved monitoring and detection schemes, no attempt was made to evaluate or qualify specific components. The components used in this test program were therefore not flight hardware items. Some of them had been used in previous tests; some were obsolete; one was an experimental device. In addition to the component tests, various materials of interest to contaminant and filtration studies were irradiated and evaluated for use as autotracer materials. These included test dusts, plastics, valve seat materials, and bearing cage materials.

  1. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    NASA Astrophysics Data System (ADS)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  2. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    PubMed Central

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-01-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953

  3. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.

    PubMed

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-27

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  4. Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Coulbert, C. D.; Liang, R. H.; Gupta, A.; Willis, P.; Baum, B.

    1983-01-01

    Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described.

  5. Surgical Tooth Implants, Combat and Field.

    DTIC Science & Technology

    1982-07-15

    design. The serrated root portion is alumina ceramic. The upper two parts of the implant (post and core and crown) are conventional dental materials...ceramic. The upper two parts of the implant (post and core and crown) are conventional dental materials, usually gold. Roots are produced by grinding...I1 Clinical Examples of Baboon Dental Implants . . . .. . . . .. 12 Clinical Chemistry and Hematology Results in Baboons. . . . . . . 20

  6. STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  7. Printing Electronic Components from Copper-Infused Ink and Thermoplastic Mediums

    NASA Astrophysics Data System (ADS)

    Flowers, Patrick F.

    The demand for printable electronics has sharply increased in recent years and is projected to continue to rise. Unfortunately, electronic materials which are suitable for desired applications while being compatible with available printing techniques are still often lacking. This thesis addresses two such challenging areas. In the realm of two-dimensional ink-based printing of electronics, a major barrier to the realization of printable computers that can run programs is the lack of a solution-coatable non-volatile memory with performance metrics comparable to silicon-based devices. To address this deficiency, I developed a nonvolatile memory based on Cu-SiO2 core-shell nanowires that can be printed from solution and exhibits on-off ratios of 106, switching speeds of 50 ns, a low operating voltage of 2 V, and operates for at least 104 cycles without failure. Each of these metrics is similar to or better than Flash memory (the write speed is 20 times faster than Flash). Memory architectures based on the individual memory cells demonstrated here could enable the printing of the more complex, embedded computing devices that are expected to make up an internet of things. Recently, the exploration of three-dimensional printing techniques to fabricate electronic materials began. A suitable general-purpose conductive thermoplastic filament was not available, however. In this work I examine the current state of conductive thermoplastic filaments, including a newly-released highly conductive filament that my lab has produced which we call Electrifi. I focus on the use of dual-material fused filament fabrication (FFF) to 3D print electronic components (conductive traces, resistors, capacitors, inductors) and circuits (a fully-printed high-pass filter). The resistivity of traces printed from conductive thermoplastic filaments made with carbon-black, graphene, and copper as conductive fillers was found to be 12, 0.78, and 0.014 ohm cm, respectively, enabling the creation of resistors with resistances spanning 3 orders of magnitude. The carbon black and graphene filaments were brittle and fractured easily, but the copper-based filament could be bent at least 500 times with little change in its resistance. Impedance measurements made on the thermoplastic filaments demonstrate that the copper-based filament had an impedance similar to a conductive PCB trace at 1 MHz. Dual material 3D printing was used to fabricate a variety of inductors and capacitors with properties that could be predictably tuned by modifying either the geometry of the components, or the materials used to fabricate the components. These resistors, capacitors, and inductors were combined to create a fully 3D printed high-pass filter with properties comparable to its conventional counterparts. The relatively low impedance of the copper-based filament enable its use to 3D print a receiver coil for wireless power transfer. We also demonstrate the ability to embed and connect surface mounted components in 3D printed objects with a low-cost ($1,000 in parts), open source dual-material 3D printer. This work thus demonstrates the potential for FFF 3D printing to create complex, three-dimensional circuits composed of either embedded or fully-printed electronic components.

  8. Research-study of a self-organizing computer

    NASA Technical Reports Server (NTRS)

    Schaffner, M. R.

    1974-01-01

    It is shown that a self organizing system has two main components: an organizable physical part, and a programing part. This report presents the organizable part in the form of a programable hardware and its programing language.

  9. Flight service evaluation of composite components on Bell 206L and Sikorsky S-76 helicopters

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1983-01-01

    Progress on two programs to evaluate composite structural components in flight service on commercial helicopters is described. Thirty-six ship sets of composite components that include the litter door, baggage door, forward fairing, and vertical fin were installed on Bell Model 206L helicopters that are operating in widely different climatic areas. Four horizontal stabilizers and ten tail rotor spars that are production components on the S-76 helicopter were tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, specimens from materials used to fabricate the components were exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 14,000 hours of accumulated service on the 206L components, tests on a S-76 horizontal stabilizer after 1600 hours of service, tests on a S-76 tail rotor spar after 2300 hours service, and two years of ground based exposure of material coupons are reported.

  10. Control of the Contents of Working Memory--A Comparison of Two Paradigms and Two Age Groups

    ERIC Educational Resources Information Center

    Oberauer, Klaus

    2005-01-01

    Two experiments investigated whether young and old adults can temporarily remove information from a capacity-limited central component of working memory (WM) into another component, the activated part of long-term memory (LTM). Experiment 1 used a modified Sternberg recognition task (S. Sternberg, 1969); Experiment 2 used an arithmetic…

  11. Tutorial on Quantification of Differences between Single- and Two-Component Two-Phase Flow and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2003-01-01

    Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.

  12. Direct Resin Composite Restoration of Maxillary Central Incisors with Fractured Tooth Fragment Reattachment: Case Report.

    PubMed

    Szmidt, Monika; Górski, Maciej; Barczak, Katarzyna; Buczkowska-Radlińska, Jadwiga

    This article presents a clinical protocol to reconstruct two accidentally damaged maxillary central incisors using composite resin material and a fractured tooth component. A patient was referred to the clinic with fracture of the two maxillary central incisors. Clinical examination revealed that both teeth were fractured in the middle third of the crown and that the fractures involved enamel and dentin with no pulp exposure. The patient had also suffered a lower lip laceration. When the lip was evaluated, a fractured fragment of the maxillary right central incisor was found inside the wound. The missing part of the tooth was replaced via adhesive attachment. Due to the damage of the fractured part of the maxillary left central incisor, direct composite restoration of this tooth was performed. With the advent of adhesive dentistry, the process of fragment reattachment has become simplified and more reliable. This procedure provides improved function, is faster to perform, and provides long-lasting effects, indicating that reattachment of a coronal fragment is a realistic alternative to placement of conventional resin composite restorations.

  13. 10 CFR 50.55a - Codes and standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., standard design approval, and standard design certification application under part 52 of this chapter is... section. (a)(1) Structures, systems, and components must be designed, fabricated, erected, constructed... Guide 1.84, Revision 34, “Design, Fabrication, and Materials Code Case Acceptability, ASME Section III...

  14. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidalgo, Stephen P.; Keyser, Richard J.

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  15. Feasibility study on measuring axial and transverse stress/strain components in composite materials using Bragg sensors

    NASA Astrophysics Data System (ADS)

    Luyckx, G.; Degrieck, J.; De Waele, W.; Van Paepegem, W.; Van Roosbroeck, J.; Chah, K.; Vlekken, J.; McKenzie, I.; Obst, A.

    2017-11-01

    A fibre optic sensor design is proposed for simultaneously measuring the 3D stress (or strain) components and temperature inside thermo hardened composite materials. The sensor is based on two fibre Bragg gratings written in polarisation maintaining fibre. Based on calculations of the condition number, it will be shown that reasonable accuracies are to be expected. First tests on the bare sensors and on the sensors embedded in composite material, which confirm the expected behaviour, will be presented.

  16. Thixoforming of Stellite Powder Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, S. C.; Atkinson, H. V.; Kapranos, P.

    2007-04-07

    Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperaturemore » to be in the range 1340 deg. C-1350 deg. C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.« less

  17. BAAM Additive Manufacturing of Magnetically Levitated Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Bradley S.; Noakes, Mark W.; Roschli, Alex C.

    ORNL worked with Hover Energy LLC (Hover) on the design of Big Area Additive Manufacturing (BAAM) extrusion components. The objective of this technical collaboration was to identify and evaluate fabrication of components using alternative additive manufacturing techniques. Multiple candidate parts were identified. A design modification to fabricate diverters using additive manufacturing (AM) was performed and the part was analyzed based on anticipated wind loading. Scaled versions of two parts were printed using the BAAM for wind tunnel testing.

  18. Atmospheric nanoparticles in photocatalytic and thermal production of atmospheric pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chianelli, R.R.; Yacaman, M.J.

    1997-12-31

    Atmospheric aerosols which occur above heavily polluted areas such as Mexico City are characterized and found to be complex materials which have the potential to accelerate important ozone-forming reactions photocatalytically and thermocatalytically. In addition, because the particles are respirable, they represent a considerable health hazard. The aerosols consist of two intermixed components. The first component consists of amorphous carbonaceous materials of variable composition with fullerene like materials dispersed throughout. The second component is an inorganic material consisting of nanoparticles of oxides and sulfides supported on clay minerals. This inorganic component has all of the characteristics of an airborne photocatalyst. Nanoparticlesmore » of Fe{sub 2}O{sub 3}, MnO{sub 2} and FeS{sub 2} have demonstrated catalytic properties, particularly when occurring in the nanoparticle range as they do in the subject aerosol materials. These materials have band-gaps which occur in the broad solar spectrum enhancing the photocatalytic adsorption of solar radiation beyond that of the wider band-gap aluminosilicate and titanate materials which also occur in the aerosols. In addition, the materials are acidic and probably are coated with moisture when suspended in air, further enhancing the catalytic ability to crack hydrocarbons and create free radicals.« less

  19. Optical pH detector based on LTCC and sol-gel technologies

    NASA Astrophysics Data System (ADS)

    Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.

    2013-01-01

    This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.

  20. Optical Spectroscopy of New Materials

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Arnold, James O. (Technical Monitor)

    1993-01-01

    Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.

  1. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-12-31

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face themore » plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI.« less

  2. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy’s Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316SS) material which is widely used in the US reactors. Contrary to the conventional S~N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening)more » under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. In this paper (part-I) the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. In a second paper (part-II) the related evolutionary cyclic plasticity material modeling techniques and results are discussed.« less

  3. Two-Component Structure in the Entanglement Spectrum of Highly Excited States

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Cheng; Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.

    2015-12-01

    We study the entanglement spectrum of highly excited eigenstates of two known models that exhibit a many-body localization transition, namely the one-dimensional random-field Heisenberg model and the quantum random energy model. Our results indicate that the entanglement spectrum shows a "two-component" structure: a universal part that is associated with random matrix theory, and a nonuniversal part that is model dependent. The nonuniversal part manifests the deviation of the highly excited eigenstate from a true random state even in the thermalized phase where the eigenstate thermalization hypothesis holds. The fraction of the spectrum containing the universal part decreases as one approaches the critical point and vanishes in the localized phase in the thermodynamic limit. We use the universal part fraction to construct an order parameter for measuring the degree of randomness of a generic highly excited state, which is also a promising candidate for studying the many-body localization transition. Two toy models based on Rokhsar-Kivelson type wave functions are constructed and their entanglement spectra are shown to exhibit the same structure.

  4. Modeling of additive manufacturing processes for metals: Challenges and opportunities

    DOE PAGES

    Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...

    2017-01-09

    Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.

  5. A novel multifunctional NiTi/Ag hierarchical composite

    PubMed Central

    Hao, Shijie; Cui, Lishan; Jiang, Jiang; Guo, Fangmin; Xiao, Xianghui; Jiang, Daqiang; Yu, Cun; Chen, Zonghai; Zhou, Hua; Wang, Yandong; Liu, YuZi; Brown, Dennis E.; Ren, Yang

    2014-01-01

    Creating multifunctional materials is an eternal goal of mankind. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is neatly illustrated by the formation of nature materials where contrasting components are combined in sophisticated hierarchical designs. In this study, inspired by the hierarchical structure of the tendon, we fabricated a novel composite by subtly combining two contrasting components: NiTi shape-memory alloy and Ag. The composite exhibits simultaneously exceptional mechanical properties of high strength, good superelasticity and high mechanical damping, and remarkable functional properties of high electric conductivity, high visibility under fluoroscopy and excellent thermal-driven ability. All of these result from the effective-synergy between the NiTi and Ag components, and place the composite in a unique position in the properties chart of all known structural-functional materials providing new opportunities for innovative electrical, mechanical and biomedical applications. Furthermore, this work may open new avenues for designing and fabricating advanced multifunctional materials by subtly combining contrasting multi-components. PMID:24919945

  6. A comparison of two methods for determining copper partitioning in oxidized sediments

    USGS Publications Warehouse

    Luoma, S.N.

    1986-01-01

    Model estimations of the proportion of Cu in oxidized sediments associated with extractable organic materials show some agreement with the proportion of Cu extracted from those sediments with ammonium hydroxide. Data were from 17 estuaries of widely differing sediment chemistry. The modelling and extraction methods agreed best where concentrations of organic materials were either in very high concentrations, relative to other sediment components, or in very low concentrations. In the range of component concentrations where the model predicted Cu should be distributed among a variety of components, agreement between the methods was poor. Both approaches indicated that Cu was predominantly partitioned to organic materials in some sediments, and predominantly partitioned to other components (most probably iron oxides and manganese oxides) in other sediments, and that these differences were related to the relative abundances of the specific components in the sediment. Although the results of the two methods of estimating Cu partitioning to organics correlated significantly among 24 stations from the 17 estuaries, the variability in the relationship suggested refinement of parameter values and verification of some important assumptions were essential to the further development of a reasonable model. ?? 1986.

  7. Single-Cycle Versus Multicycle Proof Testing

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.

    1992-01-01

    Report compares single-cycle with multiple-cycle mechanical-stress tests of parts under mechanical stresses. Objective of proof testing: to screen out gross manufacturing or material deficiencies and provide additional assurance of quality. Report concludes that changes in distribution of crack sizes during multicycle proof testing depend on initial distribution, number of cycles, relationship between resistance of material and elastic/plastic fracture-mechanics parameter, relationship between load control and displacement control, and magnitude of applied load or displacement. Whether single-cycle or multicycle testing used depends on shape, material, and technique of fabrication of components tested.

  8. Structural biological composites: An overview

    NASA Astrophysics Data System (ADS)

    Meyers, Marc A.; Lin, Albert Y. M.; Seki, Yasuaki; Chen, Po-Yu; Kad, Bimal K.; Bodde, Sara

    2006-07-01

    Biological materials are complex composites that are hierarchically structured and multifunctional. Their mechanical properties are often outstanding, considering the weak constituents from which they are assembled. They are for the most part composed of brittle (often, mineral) and ductile (organic) components. These complex structures, which have risen from millions of years of evolution, are inspiring materials scientists in the design of novel materials. This paper discusses the overall design principles in biological structural composites and illustrates them for five examples; sea spicules, the abalone shell, the conch shell, the toucan and hornbill beaks, and the sheep crab exoskeleton.

  9. KSC-07pd3322

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians install the second Materials International Space Station Experiments, or MISSE, in space shuttle Endeavour's payload bay. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  10. Natural Tissue Microenvironmental Conditions Modulate Adhesive Material Performance

    PubMed Central

    Oliva, Nuria; Shitreet, Sagi; Abraham, Eytan; Stanley, Butch; Edelman, Elazer R.; Artzi, Natalie

    2015-01-01

    We designed and optimized tissue-responsive adhesive materials by matching material and tissue properties. A two-component material based on dextran aldehyde and dendrimer amine provides a cohesive gel through aldehyde–amine cross-linking and an adhesive interface created by a dextran aldehyde-selective reaction with tissue amines. By altering aldehyde–amine chemistry, we examined how variations in tissue surfaces (serosal amine density in the duodenum, jejunum, and ileum) affect interactions with adhesive materials of varied compositions (aldehyde content). Interestingly, the same adhesive formulation reacts differentially with the three regions of the small intestine as a result of variation in the tissue amine density along the intestinal tract, affecting the tissue–material interfacial morphology, adhesion strength, and adhesive mechanical properties. Whereas tissues provide chemical anchors for interaction with materials, we were able to tune the adhesion strength for each section of the small intestine tissue by altering the adhesive formulation using a two-component material with flexible variables aimed at controlling the aldehyde/amine ratio. This tissue-specific approach should be applied to the broad spectrum of biomaterials, taking into account specific microenvironmental conditions in material design. PMID:23046479

  11. A Digital Methodology for the Design Process of Aerospace Assemblies with Sustainable Composite Processes & Manufacture

    NASA Astrophysics Data System (ADS)

    McEwan, W.; Butterfield, J.

    2011-05-01

    The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.

  12. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1999-01-01

    This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.

  13. Applications of laser ultrasound NDT methods on composite structures in aerospace industry

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Focke, Oliver; v. Kopylow, Christoph

    2008-09-01

    Composite materials are used more and more in aircraft production. Main composite types are Carbon Fiber Reinforced Plastics (CFRP), Glass Fiber Reinforced Plastics (GFRP) and metal-aluminium laminates (e. g. Glass Fiber Aluminium Reinforced GLARE©). Typical parts made of CFRP material are flaps, vertical and horizontal tail planes, center wing boxes, rear pressure bulkheads, ribs and stringers. These composite parts require adequate nondestructive testing (NDT) methods. Flaws to be detected are delaminations and debondings, porosity and foreign body inclusion. Manual ultrasonic testing with single element transducers is still the most applied method for composite parts with small and medium size. The extension of the conventional ultrasound technique for nondestructive testing with the laser ultrasound method brings new possibilities into the production processes for example the inspection of complex CFRP-components and the possibilities of online observation under remote control. In this paper we describe the principle of laser ultrasound with respect to the demands of nondestructive testing especially of small complex CFRP and C/PPS parts. We report applications of laser-based ultrasound options with generated types of guided and bulk waves on modern aircraft materials.

  14. Sulphate release from construction and demolition material in soils

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Wessolek, Gerd

    2013-04-01

    In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.

  15. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  16. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts.

    PubMed

    Wang, Yiru; Liu, Wanshuang; Qiu, Yiping; Wei, Yi

    2018-04-27

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high T g parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  17. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    PubMed Central

    Wang, Yiru; Qiu, Yiping; Wei, Yi

    2018-01-01

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles. PMID:29702575

  18. Metal Injection Moulding: A Near Net Shape Fabrication Method for the Manufacture of Turbine Engine Component

    DTIC Science & Technology

    2006-05-01

    on the processing and characterization of Inconel 625 LPIM material are presented. In depth microstructural characterization was performed on the...annealing. 1 INTRODUCTION Nickel superalloys such as Inconel 625 were developed to withstand the intense conditions present in gas turbine engines...aeronautic parts. A low- pressure injection moulding process, LPIM, has been developed for the fabrication of parts made of Inconel 625 , which maximizes

  19. A case study of packaging waste collection systems in Portugal - Part I: Performance and operation analysis.

    PubMed

    Martinho, Graça; Gomes, Ana; Santos, Pedro; Ramos, Mário; Cardoso, João; Silveira, Ana; Pires, Ana

    2017-03-01

    The need to increase packaging recycling rates has led to the study and analysis of recycling schemes from various perspectives, including technical, economic, social, and environmental. This paper is part one of a three-part study devoted to comparing two recyclable packaging waste collection systems operating in western Portugal: a mixed collection system, where curbside and drop-off collections are operated simultaneously (but where the curbside system was introduced after the drop-off system), and an exclusive drop-off system. This part of the study focuses on analyzing the operation and performance of the two waste collection systems. The mixed collection system is shown to yield higher material separation rates, higher recycling rates, and lower contamination rates compared with the exclusive drop-off system, a result of the curbside component in the former system. However, the operational efficiency of the curbside collection in the mixed system is lower than the drop-off collection in the mixed system and the exclusive drop-off system, mainly because of inefficiency of collection. A key recommendation is to ensure that the systems should be optimized in an attempt to improve performance. Optimization should be applied not only to logistical aspects but also to citizens' participation, which could be improved by conducting curbside collection awareness campaigns in the neighborhoods that have a mixed system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microstructure and Texture of Al-2.5wt.%Mg Processed by Combining Accumulative Roll Bonding and Conventional Rolling

    NASA Astrophysics Data System (ADS)

    Gatti, J. R.; Bhattacharjee, P. P.

    2014-12-01

    Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.

  1. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  2. 49 CFR Appendix D to Part 230 - Civil Penalty Schedule

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...

  3. 49 CFR Appendix D to Part 230 - Civil Penalty Schedule

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...

  4. 49 CFR Appendix D to Part 230 - Civil Penalty Schedule

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...

  5. 49 CFR Appendix D to Part 230 - Civil Penalty Schedule

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...

  6. NASALife-Component Fatigue and Creep Life Prediction Program and Illustrative Examples

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.

    2005-01-01

    NASALife is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although, the primary focus was for CMC components the underlying methodologies are equally applicable to other material systems as well. The program references data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method. Lastly, damage due to cyclic loading (Miner s rule) and creep are combined to determine the total damage per mission and the number of missions the component can survive before failure are calculated. Illustration of code usage is provided through example problem of a CMC turbine stator vane made of melt-infiltrated, silicon carbide fiber-reinforced, silicon carbide matrix composite (MI SiC/SiC)

  7. Toxicity of electronic waste leachates to Daphnia magna: screening and toxicity identification evaluation of different products, components, and materials.

    PubMed

    Lithner, Delilah; Halling, Maja; Dave, Göran

    2012-05-01

    Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.

  8. Comprehensive Review of Nutritional Components for Occupational Health Nurses-Part 1.

    PubMed

    Toothaker, Rebecca; Chikotas, Noreen

    2018-05-01

    This article, the first in a two-part series, reviews and examines the components of clinical nutrition. In Part 1, the authors introduce the concept of nutrition and the role it plays in supporting healthy employees, current guidelines, and recommendations for determining healthy eating and the nutritional component of carbohydrates. In Part 2, the components of fats, proteins, vitamins, minerals, and water, and a resource guide are provided for the occupational health nurse to assist in the implementation of employee education in the area of healthy nutrition. The intent of the articles is to acquaint and inform occupational health nurses on the current guidelines for healthy eating so they can better appraise their employee population, thus creating a healthier workforce. The information provided is not all-inclusive on the topics discussed, but provides a foundation to understand the requirements for a healthier workforce.

  9. The Effect of Laser Scan Strategy on Distortion and Residual Stresses of Arches Made With Selective Laser Melting

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey D.; Sochalski-Kolbus, Lindsay M.; Bunn, Jeffrey R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) is developing Additive Manufacturing (AM) - both in-space AM for on-demand parts, tools, or structures, and on-earth AM for rapid, reduced-cost, small volume production of complex space-flight hardware. Selective Laser Melting (SLM) is an on-earth AM technology that MSFC is using to build Alloy 718 rocket engine components. An understanding of the SLM-718 material properties is required to design, build, and qualify these components for space flight. Residual stresses and are of particular interest for this AM process, since SLM is a series of approximately 100 micron-wide welds, where highly non-linear heating and cooling, severe thermal gradients and repeated thermal cycling can result in high residual stresses within the component. These stresses may cause degraded material properties, and warp or distort the geometry of the SLM component. The distortions can render the component out-of-tolerance when inspected, and even interrupt or halt the build process if the warped material prevents the SLM machine from operating properly. The component must be scrapped and re-designed, which is time consuming and costly. If residual stresses are better understood, and can be predicted, these effects can be mitigated early in the component's design. the compressive residual stresses in the z-direction were highest in the chess sample, followed by island then continuous. This may be due to the binding nature of the segments

  10. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives

    PubMed Central

    Cano, Santiago

    2018-01-01

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705

  11. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives.

    PubMed

    Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens

    2018-05-18

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

  12. Connectivity of streams and wetlands to downstream waters: An integrated systems framework

    USGS Publications Warehouse

    Leibowitz, Scott G.; Wigington, Parker J.; Schoefield, Kate A.; Alexander, Laurie C.; Vanderhoof, Melanie; Golden, Heather E.

    2018-01-01

    Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) briefly review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field‐based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity.

  13. Major structural components in freshwater dissolved organic matter.

    PubMed

    Lam, Buuan; Baer, Andrew; Alaee, Mehran; Lefebvre, Brent; Moser, Arvin; Williams, Antony; Simpson, André J

    2007-12-15

    Dissolved organic matter (DOM) contains a complex array of chemical components that are intimately linked to many environmental processes, including the global carbon cycle, and the fate and transport of chemical pollutants. Despite its importance, fundamental aspects, such as the structural components in DOM remain elusive, due in part to the molecular complexity of the material. Here, we utilize multidimensional nuclear magnetic resonance spectroscopy to demonstrate the major structural components in Lake Ontario DOM. These include carboxyl-rich alicyclic molecules (CRAM), heteropolysaccharides, and aromatic compounds, which are consistent with components recently identified in marine dissolved organic matter. In addition, long-range proton-carbon correlations are obtained for DOM, which support the existence of material derived from linear terpenoids (MDLT). It is tentatively suggested that the bulk of freshwater dissolved organic matter is aliphatic in nature, with CRAM derived from cyclic terpenoids, and MDLT derived from linear terpenoids. This is in agreement with previous reports which indicate terpenoids as major precursors of DOM. At this time it is not clear in Lake Ontario whether these precursors are of terrestrial or aquatic origin or whether transformations proceed via biological and/ or photochemical processes.

  14. Geometry with Coordinates, Teacher's Commentary, Part II, Unit 50. Revised Edition.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    This is part two of a two-part manual for teachers using SMSG high school text materials. The commentary is organized into four parts. The first part contains an introduction and a short section on estimates of class time needed to cover each chapter. The second or main part consists of a chapter-by-chapter commentary on the text. The third part…

  15. New Trends in Forging Technologies

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Hagen, T.; Knigge, J.; Elgaly, I.; Hadifi, T.; Bouguecha, A.

    2011-05-01

    Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means of the finite element analysis (FEA). For example, the integrity of forging dies with respect to crack initiation due to thermo-mechanical fatigue as well as the ductile damage of forgings was investigated with the help of cumulative damage models. In this paper some of the mentioned approaches are described.

  16. Degradability of Polymers for Implantable Biomedical Devices

    PubMed Central

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  17. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, T.; Tilson, W.; Jones, Z.

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future flight programs, NASA and its commercial partners will procure parts from vendors who will use a diverse range of machines to produce parts and, as such, it is essential that the AM community develop a sound understanding of the degree to which machine variability impacts material properties.

  18. A rare allergy to a polyether dental impression material.

    PubMed

    Mittermüller, Pauline; Szeimies, Rolf-Markus; Landthaler, Michael; Schmalz, Gottfried

    2012-08-01

    Polyether impression materials have been used in dentistry for more than 40 years. Allergic reactions to these materials such as reported in the 1970s ceased after replacement of a catalyst. Very recently, however, patients have started to report symptoms that suggest a new allergic reaction from polyether impression materials. Here, we report on the results of allergy testing with polyether impression materials as well as with its components. Eight patients with clinical symptoms of a contact allergy (swelling, redness or blisters) after exposure to a polyether impression material were subjected to patch tests, two of them additionally to a prick test. A further patient with atypical symptoms of an allergy (nausea and vomiting after contact with a polyether impression material in the oral cavity) but with a history of other allergic reaction was also patch tested. The prick tests showed no immediate reactions in the two patients tested. In the patch tests, all eight patients with typical clinical symptoms showed positive reactions to the mixed polyether impression materials, to the base paste or to a base paste component. The patient with the atypical clinical symptoms did not show any positive patch test reactions. Polyether impression materials may evoke type IV allergic reactions. The causative agent was a component of the base paste. In consideration of the widespread use of this impression material (millions of applications per year) and in comparison to the number of adverse reactions from other dental materials, the number of such allergic reactions is very low. In very scarce cases, positive allergic reactions to polyether impression materials are possible.

  19. Shape optimization of three-dimensional stamped and solid automotive components

    NASA Technical Reports Server (NTRS)

    Botkin, M. E.; Yang, R.-J.; Bennett, J. A.

    1987-01-01

    The shape optimization of realistic, 3-D automotive components is discussed. The integration of the major parts of the total process: modeling, mesh generation, finite element and sensitivity analysis, and optimization are stressed. Stamped components and solid components are treated separately. For stamped parts a highly automated capability was developed. The problem description is based upon a parameterized boundary design element concept for the definition of the geometry. Automatic triangulation and adaptive mesh refinement are used to provide an automated analysis capability which requires only boundary data and takes into account sensitivity of the solution accuracy to boundary shape. For solid components a general extension of the 2-D boundary design element concept has not been achieved. In this case, the parameterized surface shape is provided using a generic modeling concept based upon isoparametric mapping patches which also serves as the mesh generator. Emphasis is placed upon the coupling of optimization with a commercially available finite element program. To do this it is necessary to modularize the program architecture and obtain shape design sensitivities using the material derivative approach so that only boundary solution data is needed.

  20. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  1. Computing Reliabilities Of Ceramic Components Subject To Fracture

    NASA Technical Reports Server (NTRS)

    Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.

    1992-01-01

    CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.

  2. DEVELOPMENT OF AN IDENTIFICATION KIT FOR SPILLED HAZARDOUS MATERIALS

    EPA Science Inventory

    The Chemical Systems Laboratory (CSL) has developed a field kit to identify spilled hazardous materials in inland waters and on the ground. The Hazardous Materials Spills Identification Kit is a two-component kit consisting of an inverter/shortwave UV lamp unit for photochemical ...

  3. Leveraging Digital Tools to Build Educative Curricula for Teachers: Two Promising Approaches

    ERIC Educational Resources Information Center

    Bates, Meg S.

    2017-01-01

    Well-designed curriculum materials include educative components that help teachers effectively plan, implement, and adapt activities for diverse learners. Digital materials offer several affordances over print materials in the format, fit, and flexibility of the educative information provided to teachers, as well as the ability of the materials to…

  4. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Collins, TImothy J.

    2006-01-01

    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.

  5. Feasibility Assessment for Pressure Casting of Ceramic-Aluminum Composites for NASA's Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    Feasibility assessment of pressure casting of ceramic-aluminum composites for NASA% propulsion applications is summarized. A combination of several demonstration projects to produce three unique components for liquid hydrogen-oxygen rocket engine% flanges, valves and turbo-pump housing are conducted. These components are made from boron carbide, silicon carbide and alumina powders fabricated into complex net shaped parts using dry green powder compaction, slip casting or a novel 3D ink-jet printing process, followed by sintering to produce performs that can be pressure cast by infiltration with molten aluminum. I n addition, joining techniques are also explored to insure that these components can be assembled into a structure without degrading their highly tailored properties. The feasibility assessment was made to determine if these new materials could provide a significant weight savings, thereby reducing vehicle launch costs, while being durable materials to increase safety and performance for propulsion system.

  6. Issues associated with the use of Yoshida nonlinear isotropic/kinematic hardening material model in Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Shi, Ming F.; Zhang, Li; Zhu, Xinhai

    2016-08-01

    The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.

  7. Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  8. Providing reviews of evidence to COPD patients: controlled prospective 12-month trial.

    PubMed

    Harris, M; Smith, B J; Veale, A J; Esterman, A; Frith, P A; Selim, P

    2009-01-01

    The aim of this study was to evaluate a novel patient-held manual designed to reduce the evidence-practice gap in chronic obstructive pulmonary disease (COPD). The intervention manual contained summaries of research evidence. It was developed using current best practice for patient information materials and designed to cause discussion of evidence between patient and doctor. A controlled before-and-after study was employed in two similar but geographically separate regions of metropolitan Adelaide, South Australia. Participants had moderate to severe COPD, with 249 included at baseline and 201 completing the study. Evidence-based COPD management was measured using an indicator with three components: rates of influenza vaccination, bone density testing, and pulmonary rehabilitation. A survey of behavioral steps leading to practice change was conducted with the trial. Analysis, by median split of socioeconomic disadvantage, showed significant difference between study arms for only one component of the indicator of evidence-based practice, enrollment in pulmonary rehabilitation and only for the most socioeconomically disadvantaged stratum. For both socioeconomic strata, more intervention participants than control participants reported remembering being given the information material, reading part or all, and finding it very or quite helpful. Other significant differences were restricted to the stratum of greatest socioeconomic disadvantage: reading all of the material, learning from it, referring back, and talking to a doctor about a topic from the material. Above 90% of all participants who received the manual reported reading from it, 42% reported discussing topics with a doctor, but only 10% reported treatment change attributable to the manual. We have found that people with COPD will read an evidence manual developed using current best practice. However, the study demonstrated improvement for only one of the three components of an indicator of evidence-based disease management for only the most socioeconomically disadvantaged stratum of participants. Future interventions should be designed to better translate reading uptake into evidence-based disease management.

  9. Guidelines for the processing and quality assurance of benthic invertebrate samples collected as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Cuffney, T.F.; Gurtz, M.E.; Meador, M.R.

    1993-01-01

    Benthic invertebrate samples are collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This is a perennial, multidisciplinary program that integrates biological, physical, and chemical indicators of water quality to evaluate status and trends and to develop an understanding of the factors controlling observed water quality. The Program examines water quality in 60 study units (coupled ground- and surface-water systems) that encompass most of the conterminous United States and parts of Alaska and Hawaii. Study-unit teams collect and process qualitative and semi-quantitative invertebrate samples according to standardized procedures. These samples are processed (elutriated and subsampled) in the field to produce as many as four sample components: large-rare, main-body, elutriate, and split. Each sample component is preserved in 10-percent formalin, and two components, large-rare and main-body, are sent to contract laboratories for further processing. The large-rare component is composed of large invertebrates that are removed from the sample matrix during field processing and placed in one or more containers. The main-body sample component consists of the remaining sample materials (sediment, detritus, and invertebrates) and is subsampled in the field to achieve a volume of 750 milliliters or less. The remaining two sample components, elutriate and split, are used for quality-assurance and quality-control purposes. Contract laboratories are used to identify and quantify invertebrates from the large-rare and main-body sample components according to the procedures and guidelines specified within this document. These guidelines allow the use of subsampling techniques to reduce the volume of sample material processed and to facilitate identifications. These processing procedures and techniques may be modified if the modifications provide equal or greater levels of accuracy and precision. The intent of sample processing is to determine the quantity of each taxon present in the semi-quantitative samples or to list the taxa present in qualitative samples. The processing guidelines provide standardized laboratory forms, sample labels, detailed sample processing flow charts, standardized format for electronic data, quality-assurance procedures and checks, sample tracking standards, and target levels for taxonomic determinations. The contract laboratory (1) is responsible for identifications and quantifications, (2) constructs reference collections, (3) provides data in hard copy and electronic forms, (4) follows specified quality-assurance and quality-control procedures, and (5) returns all processed and unprocessed portions of the samples. The U.S. Geological Survey's Quality Management Group maintains a Biological Quality-Assurance Unit, located at the National Water-Quality Laboratory, Arvada, Colorado, to oversee the use of contract laboratories and ensure the quality of data obtained from these laboratories according to the guidelines established in this document. This unit establishes contract specifications, reviews contractor performance (timeliness, accuracy, and consistency), enters data into the National Water Information System-II data base, maintains in-house reference collections, deposits voucher specimens in outside museums, and interacts with taxonomic experts within and outside the U.S. Geological Survey. This unit also modifies the existing sample processing and quality-assurance guidelines, establishes criteria and testing procedures for qualifying potential contract laboratories, identifies qualified taxonomic experts, and establishes voucher collections.

  10. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  11. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, Jim J.; Dragon, Ernest P.; Warner, Bruce E.

    1998-01-01

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  12. Cost estimating Brayton and Stirling engines

    NASA Technical Reports Server (NTRS)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  13. Quantitative Chemical Imaging and Unsupervised Analysis Using Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    2013-01-01

    In this work, we report a method to acquire and analyze hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy images of organic materials and biological samples resulting in an unbiased quantitative chemical analysis. The method employs singular value decomposition on the square root of the CARS intensity, providing an automatic determination of the components above noise, which are retained. Complex CARS susceptibility spectra, which are linear in the chemical composition, are retrieved from the CARS intensity spectra using the causality of the susceptibility by two methods, and their performance is evaluated by comparison with Raman spectra. We use non-negative matrix factorization applied to the imaginary part and the nonresonant real part of the susceptibility with an additional concentration constraint to obtain absolute susceptibility spectra of independently varying chemical components and their absolute concentration. We demonstrate the ability of the method to provide quantitative chemical analysis on known lipid mixtures. We then show the relevance of the method by imaging lipid-rich stem-cell-derived mouse adipocytes as well as differentiated embryonic stem cells with a low density of lipids. We retrieve and visualize the most significant chemical components with spectra given by water, lipid, and proteins segmenting the image into the cell surrounding, lipid droplets, cytosol, and the nucleus, and we reveal the chemical structure of the cells, with details visualized by the projection of the chemical contrast into a few relevant channels. PMID:24099603

  14. 40 CFR Appendix A to Part 63 - Test Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... components by a different analyst). 3.3Surrogate Reference Materials. The analyst may use surrogate compounds... the variance of the proposed method is significantly different from that of the validated method by... variables can be determined in eight experiments rather than 128 (W.J. Youden, Statistical Manual of the...

  15. Millwright Apprenticeship. Related Training Modules. 8.1-8.5 Turbines.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains five modules covering turbines. The modules provide information on the following topics: types, components, and auxiliaries of steam turbines; operation and maintenance of steam turbines; and gas turbines. Each module consists…

  16. Health Education as a Component of an Epidemiologic Survey.

    ERIC Educational Resources Information Center

    Calkins, Beverly; Williams, Phyllis M.

    1983-01-01

    Health education was an important part of the screening phase of a large epidemiological survey of school children's blood pressure. After children's height, weight, and blood pressure were measured, they were directed to displays of educational materials which explained the cardiovascular system and stressed the importance of blood pressure…

  17. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    NASA Astrophysics Data System (ADS)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  18. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    PubMed Central

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063

  19. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations - the structures are relatively stiff and can carry load in each - without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.

  20. Low Cost, Net Shape Fabrication of Rhenium and High Temperature Materials for Rocket Engine Components

    DTIC Science & Technology

    2001-03-01

    tungsten thin wall nozzle liner removed from reusable mandrel. b) W and Re rocket, nozzle inserts (2 inserts per mandrel) for Air Force. Rhenium PPI...compares the fabrication time for the VPS nozzles with equivalent carbon / carbon composite (C/C) and forged tungsten materials. Table 5: Comparison of...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1181 TITLE: Low Cost, Net Shape Fabrication of Rhenium and High

  1. Prueba de Aptitud para el Aprendizaje de Lenguas Extranjeras (PAPALE) Language Aptitude Test (LAT) (First and Second Versions). English for Special Purposes. Emergency Care Attendant.

    ERIC Educational Resources Information Center

    Muro, Gertrude

    This book contains two versions of the Language Aptitude Test. It is part of a package of materials developed for use in an English for Special Purposes project, which offers classes in reading, grammar, and emergency care attendant training for limited English proficient students. Introductory material describes the parts of two versions and…

  2. The formation of bulges, discs and two-component galaxies in the CANDELS Survey at z < 3

    NASA Astrophysics Data System (ADS)

    Margalef-Bentabol, Berta; Conselice, Christopher J.; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C.; Dekel, Avishai; Primack, Joel R.

    2016-09-01

    We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two-component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single Sérsic fit, as well as with a combination of exponential and Sérsic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the residual flux fraction) to separate our sample into one-component galaxies (disc/spheroids-like galaxies) and two-component galaxies (galaxies formed by an `inner part' or bulge and an `outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as two-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a factor of 4 from z = 1 to 3. We find that single Sérsic `disc-like' galaxies have the highest relative number densities at all redshifts, and that two-component galaxies have the greatest increase and become at par with Sérsic discs by z = 1. We also find that the systems we classify as two-component galaxies have an increase in the sizes of their outer components, or `discs', by about a factor of 3 from z = 3 to 1.5, while the inner components or `bulges' stay roughly the same size. This suggests that these systems are growing from the inside out, whilst the bulges or protobulges are in place early in the history of these galaxies. This is also seen to a lesser degree in the growth of single `disc-like' galaxies versus `spheroid-like' galaxies over the same epoch.

  3. Models of classical and recurrent novae

    NASA Technical Reports Server (NTRS)

    Friedjung, Michael; Duerbeck, Hilmar W.

    1993-01-01

    The behavior of novae may be divided roughly into two separate stages: quiescence and outburst. However, at closer inspection, both stages cannot be separated. It should be attempted to explain features in both stages with a similar model. Various simple models to explain the observed light and spectral observations during post optical maximum activity are conceivable. In instantaneous ejection models, all or nearly all material is ejected in a time that is short compared with the duration of post optical maximum activity. Instantaneous ejection type 1 models are those where the ejected material is in a fairly thin shell, the thickness of which remains small. In the instantaneous ejection type 2 model ('Hubble Flow'), a thick envelope is ejected instantaneously. This envelope remains thick as different parts have different velocities. Continued ejection models emphasize the importance of winds from the nova after optical maximum. Ejection is supposed to occur from one of the components of the central binary, and one can imagine a general swelling of one of the components, so that something resembling a normal, almost stationary, stellar photosphere is observed after optical maximum. The observed characteristics of recurrent novae in general are rather different from those of classical novae, thus, models for these stars need not be the same.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael K.; Brown, Jason R.; Thornberg, Steven Michael

    HFE-7100 and FC-72 fluorinert are two fluids used during weapon component manufacturing. HFE-7100 is a solvent used in the cleaning of parts, and FC-72 is the blowing agent of a polymeric removable foam. The presence of either FC-72 or HFE-7100 gas in weapon components can provide valuable information as to the stability of the materials. Therefore, gas standards are needed so HFE-7100 and FC-72 gas concentrations can be accurately measured. There is no current established procedure for generating gas standards of either HFE-7100 or FC-72. This report outlines the development of a method to generate gas standards ranging in concentrationmore » from 0.1 ppm to 10% by volume. These standards were then run on a Jeol GC-Mate II mass spectrometer and analyzed to produce calibration curves. We present a manifold design that accurately generates gas standards of HFE-7100 and FC-72 and a procedure that allows the amount of each to be determined.« less

  5. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 1; Dynamic Crushing of Components and Multi-Terrain Impacts

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.

  6. A MoTe2 based light emitting diode and photodetector for silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Bie, Ya-Qing; Heuck, M.; Grosso, G.; Furchi, M.; Cao, Y.; Zheng, J.; Navarro-Moratalla, E.; Zhou, L.; Taniguchi, T.; Watanabe, K.; Kong, J.; Englund, D.; Jarillo-Herrero, P.

    A key challenge in photonics today is to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, partly because many components such as waveguides, interferometers and modulators, could be integrated on silicon-based processors. However, light sources and photodetectors present continued challenges. Common approaches for light source include off-chip or wafer-bonded lasers based on III-V materials, but studies show advantages for directly modulated light sources. The most advanced photodetectors in silicon photonics are based on germanium growth which increases system cost. The emerging two dimensional transition metal dichalcogenides (TMDs) offer a path for optical interconnects components that can be integrated with the CMOS processing by back-end-of-the-line processing steps. Here we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with infrared band gap. The state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  7. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    NASA Technical Reports Server (NTRS)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  8. Refurbishment of SRB aluminum components by walnut hull blast removal of protective coatings

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1982-01-01

    A test program was conducted to develop, optimize, and scale up an abrasive blasting procedure was developed for refurbishment of specific SRB components: aft skirt, forward skirt, frustrum, and painted piece parts. Test specimens utilizing 2219 T87 aluminum substrate of varying thicknesses were prepared and blasted at progressively increasing pressures with selected abrasives. Specimens were analyzed for material response. The optimum blasting parameters were determined on panel specimens and verified on a large cylindrical integrated test bed.

  9. Current and Future Uses of Aluminum in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-12-01

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher-strength aluminum materials needed for strength-driven safety-critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225°C. A demonstration part has been developed that is representative of the forming challenges within a current hot-stamped door ring component. This part tooling has been built and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.

  10. Current and Future Uses of Aluminum in the Automotive Industry

    DOE PAGES

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-08-29

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  11. Current and Future Uses of Aluminum in the Automotive Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, R. S.; Boettcher, E.; Crawford, D.

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  12. CAPRI: A Geometric Foundation for Computational Analysis and Design

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    2006-01-01

    CAPRI is a software building tool-kit that refers to two ideas; (1) A simplified, object-oriented, hierarchical view of a solid part integrating both geometry and topology definitions, and (2) programming access to this part or assembly and any attached data. A complete definition of the geometry and application programming interface can be found in the document CAPRI: Computational Analysis PRogramming Interface appended to this report. In summary the interface is subdivided into the following functional components: 1. Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and querying the operational status as well as closing the system down. 2. Geometry data-base queries -- This group of functions allow all top level applications to figure out and get detailed information on any geometric component in the Volume definition. 3. Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap points directly onto geometric entities. 4. Calculated or geometrically derived queries -- These entry points calculate data from the geometry to aid in grid generation. 5. Boundary data routines -- This part of CAPRI allows general data to be attached to Boundaries so that the boundary conditions can be specified and stored within CAPRI s data-base. 6. Tag based routines -- This part of the API allows the specification of properties associated with either the Volume (material properties) or Boundary (surface properties) entities. 7. Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary coupling and allows zooming through Boundary Attachments. 8. Geometric creation and manipulation -- These calls facilitate constructing simple solid entities and perform the Boolean solid operations. Geometry constructed in this manner has the advantage that if the data is kept consistent with the CAD package, therefore a new design can be incorporated directly and is manufacturable. 9. Master Model access This addition to the API allows for the querying of the parameters and dimensions of the model. The feature tree is also exposed so it is easy to see where the parameters are applied. Calls exist to allow for the modification of the parameters and the suppression/unsuppression of nodes in the tree. Part regeneration is performed by a single API call and a new part becomes available within CAPRI (if the regeneration was successful). This is described in a separate document. Components 1-7 are considered the CAPRI base level reader.

  13. Material for "Substrate temperature controls molecular orientation in two-component vapor- deposited glasses." Soft Matter, 2016, 12, 3265.

    DOE Data Explorer

    Jiang, Jing [Nanjing University; Walters, Diane M [University of Wisconsin-Madison; Zhou, Dongshan [Nanjing University; Ediger, Mark D [University of Wisconsin-Madison

    2016-08-18

    Data set for work presented in Jiang, J.; Walters, D. M.; Zhou, D.; Ediger, M. D. “Substrate Temperature Controls Molecular Orientation in Two -Component Vapor-deposited Glasses.” Soft Matt. 2016, 12, 3265. Includes all data presented in the manuscript as well as example raw data and analysis.

  14. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  15. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.

    2016-10-01

    As a part of the newly established Collaborative Research Center 1153 (SFB 1153) "Process chain for the manufacturing of hybrid high-performance components by tailored forming" at the Leibniz Universität Hannover, the Institute of Forming Technology and Machines (IFUM) examines the influence of thermo-mechanical stresses on the reduced Young's modulus as well as the hardness of hybrid (steel-steel compound) joined semi-finished products. Currently the expertise in the production of bulk metal formed parts is limited to mono-materials. For manufacturing parts of hybrid materials and also for the methods of the new process routes, practical experience has to be gained. The subproject C1 within the collaborative research center 1153 with the short title "Failure Prediction" deals with the question, if the hybrid semi-finished products fulfill the thermo-mechanical demands or if they fail at the joining zone (JZ) during forging. For this purpose, stresses similar to those in the process were imposed on hybrid semi-finished products by torsion tests by using the thermo-mechanical test system Gleeble 3800. Afterwards, the specimens were examined metallographically and by nanoindentations with the help of a TriboIndenter TI950. Thus, first knowledge on the behaviour of thermo-mechanical stresses on the reduced Young's modulus and the hardness of hybrid joined semi-finished parts was gained.

  16. Synthesis and characterization of a new photoluminescent material, tris-[1-10 phenanthroline] aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rahul, E-mail: id-kumarrahul003@gmail.com; Bhargava, Parag; Dvivedi, Avanish

    A new photoluminescent material namely tris-[1-10 Phenanthroline] Aluminium Al(Phen){sub 3} has been synthesized and characterized. This material was characterized by fourier transform infrared spectroscopy (FTIR),nuclear magnetic resonance (NMR),mass spectroscopy, thermal gravimetric analysis (TGA),ultraviolet-visible spectroscopy(UV) and photoluminescence (PL). This material shows thermal stability up to 300°C. This material showed absorption maxima at 352nm which may be attributed to the moderate energy (π–π{sup *}) transition. Photoluminescence spectra for this material showed the most intense peak at 423 nm and the time resolved photoluminescence spectra showed two life time components. The decay times of the first and second component were 1.4ns and 4.8 ns respectively.

  17. Fabrication in Space - What Materials are Needed?

    NASA Technical Reports Server (NTRS)

    Good, J

    2007-01-01

    In order to sustain life on the moon, and especially on Mars, the inhabitants must be self-sufficient. As on Earth, electronic and mechanical systems will break down and must be repaired. It is not realistic to "send" parts to the moon or Mars in an effort to replace failed ones or have spares for all components. It will be important to have spares on hand and even better would be to have the capability to fabricate parts in situ. The In Situ Fabrication and Repair (ISFR) team is working to develop the Arcam Electron Beam Melting (EBM) machine as the manufacturing process that will have the capability to produce repair parts, as well as new designs, and tooling on the lunar surface and eventually on Mars. What materials will be available for the inhabitants to use? What materials would be most useful? The EBM process is versatile and can handle a multitude of materials. These include titanium, stainless steels, aluminums, inconels, and copper alloys. Research has shown what parts have failed during past space missions and this data has been compiled and assessed. The EBM machine is fully capable of processing these materials of choice. Additionally, the long-term goal is to use the lunar regolith as a viable feedstock. Preliminary work has been performed to assess the feasibility of using raw lunar regolith as a material source or use a binder combined with the regolith to achieve a good melt.

  18. TOPICAL REVIEW: Self-assembly from milli- to nanoscales: methods and applications

    NASA Astrophysics Data System (ADS)

    Mastrangeli, M.; Abbasi, S.; Varel, C.; Van Hoof, C.; Celis, J.-P.; Böhringer, K. F.

    2009-08-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.

  19. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  20. 49 CFR 172.322 - Marine pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING REQUIREMENTS, AND... of at least two of the components most predominantly contributing to the marine pollutant designation...

  1. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    PubMed

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  2. Human imprint on archaeological anthroposols: first assessment of combined micromophological, pedological and lipid biomarkers analyses of organic matter

    NASA Astrophysics Data System (ADS)

    Cammas, Cécilia; Thuy Nguyen Tu, Thanh; Plessis, Marion; Clotuche, Raphaël; Derenne, Sylvie

    2013-04-01

    Archaeological anthroposol matrix contains significant amounts of fine organic matter (OM), which can give archaeological information. Geoarchaeological studies of OM aim to reveal its origin in order to reconstruct past human activities. Such studies are complex because the nature and the abundance of OM is the result of human activities together with natural processes. Also, MO evolves over time, a process that is not well understood. Combination of complementary approaches may give further insights into human imprint on archaeological anthroposols. For example, micromorphology gives data on in situ activities and pedological processes with the result that components of animal and vegetal origin can be identified but not some amorphous / fibrous material and very fine residues (< ~10 µm). On the other hand, pedological and geochemical analyses of bulk samples are often disconnected from contextual studies. Our work aims to (i) identify morphological and geochemical markers of human activity at different scales, (ii) compare results of different analytical methods to better understand the relation between matrix components and features, chemical properties, and geochemical markers, and (iii) infer relations between pedo-sedimentary history and OM preservation. Two tanning pits in urban craft areas were selected for sampling, as they are likely to contain large amounts of organic matter of vegetal and animal origin. The pit of Saint-Denis (SDN, 10 km at the north of Paris, calcareous alluvium, 13th cAD) was a reference tanning pit. The pit of Famars (FAM, near the Belgian border, luvisols, Roman period) was hypothesized to be a part of the tanning process. To assess preservation of organic components and molecules in relation with pedo-sedimentary context and their potential as biomarkers of human activities, methodology combined micromorphology, pedological analysis (C, N, LOI, P total, organic and inorganic phosphorus) and lipid analysis by GC/MS, lipids having a high preservation potential and containing biomarkers indicative of OM origin. Micromorphological study showed a high amount and diversity of organic components in the two pits. At the SDN pit, the interpretation of tanning (liming) was supported by the presence of scarce fragments of lime with calcitic hairs pseudomorphoses. Plant remains and bone fragments were identified, but red fibrous and yellow amorphous material were not. At the FAM pit, bones and coprolithic material were scarce, but there were abundant vegetal remains such as decaying and burnt fragments, as well as siliceous skeletons. Initial results of organic chemistry show that lipids were preserved (0,13 % for SDN, 0,09 % for FAM), and that lipids of vegetal origin were dominant in the two samples. At SDN, both plant and faecal material biomarkers were identified in the form of various sterols and coprostanol, respectively. Lipids extracted from FAM included ubiquitous compounds as well as plant biomarkers, but no faecal markers. The structure of several compounds is still to be elucidated. However, initial results may suggest that vegetal imprint in thin section and in lipid analysis can be correlated. For animal remains, the two methods seem to lead to different but complementary conclusions; the difference noted for inferred source material will be investigated in term of cultural and contextual origin.

  3. Advances in crash dynamics for aircraft safety

    NASA Astrophysics Data System (ADS)

    Guida, M.; Marulo, F.; Abrate, S.

    2018-04-01

    This paper studies the ability of the fuselage's lower lobe to absorb the energy during a crash landing, where the introduction of the composite materials can improve the crash survivability thanks to the crushing capability of structural parts to limit the effects of deceleration on the occupants. Providing a protective shell around the occupants and minimizing the risks of injuries during and immediately after the crash in the post-crash regime is a safety requirement. This study consists of: (1) numerical and experimental investigations on small components to verify design concepts using high performance composite materials; (2) analyses of full scale crashes of fuselage lower lobes. This paper outlines an approach for demonstrating the crashworthiness characteristics of the airframe performing a drop test at low velocity impact to validate a numerical model obtained by assembling structural components and materials' properties previously obtained by testing coupons and sub-elements.

  4. Sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.

    1995-01-01

    This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.

  5. Measurements of the frame acoustic properties of porous and granular materials

    NASA Astrophysics Data System (ADS)

    Park, Junhong

    2005-12-01

    For porous and granular materials, the dynamic characteristics of the solid component (frame) are important design factors that significantly affect the material's acoustic properties. The primary goal of this study was to present an experimental method for measuring the vibration characteristics of this frame. The experimental setup was designed to induce controlled vibration of the solid component while minimizing the influence from coupling between vibrations of the fluid and the solid component. The Biot theory was used to verify this assumption, taking the two dilatational wave propagations and interactions into account. The experimental method was applied to measure the dynamic properties of glass spheres, lightweight microspheres, acoustic foams, and fiberglass. A continuous variation of the frame vibration characteristics with frequency similar to that of typical viscoelastic materials was measured. The vibration amplitude had minimal effects on the dynamic characteristics of the porous material compared to those of the granular material. For the granular material, materials comprised of larger particles and those under larger vibration amplitudes exhibited lower frame wave speeds and larger decay rates.

  6. Additive Manufacture of Plasma Diagnostic Components Final Report Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Simon; Romero-Talamas, Carlos; You, Setthivoine

    There is now a well-established set of plasma diagnostics (see e.g. [3]), but these remain some of the mostexpensive assemblies in fusion systems since for every system they have to be custom built, and time fordiagnostic development can pace the project. Additive manufacturing (AM) has the potential to decreaseproduction cost and significantly lower design time of fusion diagnostic subsystems, which would realizesignificant cost reduction for standard diagnostics. In some cases, these basic components can be additivelymanufactured for less than 1/100th costs of conventional manufacturing.In our DOE Phase II SBIR, we examined the impact that AM can have on plasma diagnosticmore » cost bytaking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) tech-niques, then optimizing the design to exploit the benefits of AM. The impact of AM techniques on cost isfound to be in several areas. First, the cost of materials falls because AM parts can be manufactured withlittle to no waste, and engineered to use less material than CM. Next, the cost of fabrication falls for AMparts relative to CM since the fabrication time can be computed exactly, and often no post-processing isrequired for the part to be functional. We find that AM techniques are well suited for plasma diagnosticssince typical diagnostic complexity comes at no additional cost. Cooling channels, for example, can be builtin to plasma-facing components at no extra cost. Fabrication costs associated with assembly are lower forAM parts because many components can be combined and printed as monoliths, thereby mitigating the needfor alignment or calibration. Finally, the cost of engineering is impacted by exploiting AM design tools thatallow standard components to be customized through web-interfaces. Furthermore, we find that conceptdesign costs can be impacted by scripting interfaces for online engineering design tools.« less

  7. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    NASA Technical Reports Server (NTRS)

    O'Neal, Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. The near-net shape DMLS parts have been delivered and final machining is underway. Fabrication of the traditionally manufactured hardware is also proceeding. Testing in liquid oxygen is planned for Q2 of FY2017. This topic explores the design of the turbopump along with fabrication and material testing of the DMLS hardware.

  8. Analysis of Place Value Instruction and Development in Pre-Kindergarten Mathematics

    ERIC Educational Resources Information Center

    McGuire, Patrick; Kinzie, Mable B.

    2013-01-01

    Development of two-digit place value understanding in the elementary grades has been the subject of some study; however, research at the pre-kindergarten (Pre-K) level is limited. This two-part paper begins by providing an overview of two-digit place value instruction in Pre-K and describes the component parts of a research-based math curriculum,…

  9. Mixing efficiency inside micro-droplets coalesced by two components in cross-structure

    NASA Astrophysics Data System (ADS)

    Ren, Yanlin; Liu, Zhaomiao; Pang, Yan

    2017-11-01

    The mixing of micro-droplets is used in analytical chemistry, medicine production and material synthesis owing to its advantages including the encapsulation and narrow time residence distribution. In this work, droplets are coalesced by two dispersed phase with different flow rates, generated in cross-structure and mixed in planar serpentine structure. The mixing efficiency of micro-droplets under control characters including the width of entrance and the flow rate of dispersed phases have been investigated by experiments and numerical simulations. The UDS (user-defined scalar) as dimensionless concentration of the solution is adopted in simulation, and is used to calculate the concentration and the mixing effect. By changing the flow rates and the entrances` width, the changing rules of the mixing characters have been obtained. The asymmetry distributions of components make rapid mixing process in half part of each droplet when travel through a straight channel. Increasing of the ratio of entrance width result into larger droplet and weaken the chaotic mixing effect. Meanwhile, the coalesced mechanism can be performed by ranging the ratio of flow rates, the ranges are also determined by the widths of entrances. The authors gratefully acknowledge the support of National Natural Science Foundation of China (Grant No. 11572013).

  10. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  11. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  12. Structural CNT Composites. Part I; Developing a Carbon Nanotube Filament Winder

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey; Kim, Jae-Woo; Wincheski, Russell A.; Antczak, Andrew; Campero, Jamie C.; Luong, Hoa H.; Shanahan, Michelle H.; Stelter, Christopher J.; Siochi, Emilie J.

    2015-01-01

    Carbon nanotube (CNT) based materials promise advances in the production of high strength and multifunctional components for aerospace and other applications. Specifically, in tension dominated applications, the latest CNT based filaments are yielding composite properties comparable to or exceeding composites from more established fibers such as Kevlar and carbon fiber. However, for the properties of these materials to be fully realized at the component level, suitable manufacturing processes have to be developed. These materials handle differently from conventional fibers, with different wetting characteristics and behavior under load. The limited availability of bulk forms also requires that the equipment be scaled down accordingly to tailor the process development approach to material availability. Here, the development of hardware and software for filament winding of carbon nanotube based tapes and yarns is described. This hardware features precision guidance of the CNT material and control of the winding tension over a wide range in an open architecture that allows for effective process control and troubleshooting during winding. Use of the filament winder to develop CNT based Composite Overwrapped Pressure Vessels (COPVs) shall also be discussed.

  13. Multicomponent analysis of a digital Trail Making Test.

    PubMed

    Fellows, Robert P; Dahmen, Jessamyn; Cook, Diane; Schmitter-Edgecombe, Maureen

    2017-01-01

    The purpose of the current study was to use a newly developed digital tablet-based variant of the TMT to isolate component cognitive processes underlying TMT performance. Similar to the paper-based trail making test, this digital variant consists of two conditions, Part A and Part B. However, this digital version automatically collects additional data to create component subtest scores to isolate cognitive abilities. Specifically, in addition to the total time to completion and number of errors, the digital Trail Making Test (dTMT) records several unique components including the number of pauses, pause duration, lifts, lift duration, time inside each circle, and time between circles. Participants were community-dwelling older adults who completed a neuropsychological evaluation including measures of processing speed, inhibitory control, visual working memory/sequencing, and set-switching. The abilities underlying TMT performance were assessed through regression analyses of component scores from the dTMT with traditional neuropsychological measures. Results revealed significant correlations between paper and digital variants of Part A (r s  = .541, p < .001) and paper and digital versions of Part B (r s  = .799, p < .001). Regression analyses with traditional neuropsychological measures revealed that Part A components were best predicted by speeded processing, while inhibitory control and visual/spatial sequencing were predictors of specific components of Part B. Exploratory analyses revealed that specific dTMT-B components were associated with a performance-based medication management task. Taken together, these results elucidate specific cognitive abilities underlying TMT performance, as well as the utility of isolating digital components.

  14. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present

    PubMed Central

    Schweitzer, Mary Higby; Wittmeyer, Jennifer L; Horner, John R

    2006-01-01

    Soft tissues and cell-like microstructures derived from skeletal elements of a well-preserved Tyrannosaurus rex (MOR 1125) were represented by four components in fragments of demineralized cortical and/or medullary bone: flexible and fibrous bone matrix; transparent, hollow and pliable blood vessels; intravascular material, including in some cases, structures morphologically reminiscent of vertebrate red blood cells; and osteocytes with intracellular contents and flexible filipodia. The present study attempts to trace the occurrence of these four components in bone from specimens spanning multiple geological time periods and varied depositional environments. At least three of the four components persist in some skeletal elements of specimens dating to the Campanian. Fibrous bone matrix is more altered over time in morphology and less likely to persist than vessels and/or osteocytes. Vessels vary greatly in preservation, even within the same specimen, with some regions retaining pliability and other regions almost crystalline. Osteocytes also vary, with some retaining long filipodia and transparency, while others present with short and stubby filipodia and deeply pigmented nuclei, or are pigmented throughout with no nucleus visible. Alternative hypotheses are considered to explain the origin/source of observed materials. Finally, a two-part mechanism, involving first cross-linking of molecular components and subsequent mineralization, is proposed to explain the surprising presence of still-soft elements in fossil bone. These results suggest that present models of fossilization processes may be incomplete and that soft tissue elements may be more commonly preserved, even in older specimens, than previously thought. Additionally, in many cases, osteocytes with defined nuclei are preserved, and may represent an important source for informative molecular data. PMID:17148248

  15. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present.

    PubMed

    Schweitzer, Mary Higby; Wittmeyer, Jennifer L; Horner, John R

    2007-01-22

    Soft tissues and cell-like microstructures derived from skeletal elements of a well-preserved Tyrannosaurus rex (MOR 1125) were represented by four components in fragments of demineralized cortical and/or medullary bone: flexible and fibrous bone matrix; transparent, hollow and pliable blood vessels; intravascular material, including in some cases, structures morphologically reminiscent of vertebrate red blood cells; and osteocytes with intracellular contents and flexible filipodia. The present study attempts to trace the occurrence of these four components in bone from specimens spanning multiple geological time periods and varied depositional environments. At least three of the four components persist in some skeletal elements of specimens dating to the Campanian. Fibrous bone matrix is more altered over time in morphology and less likely to persist than vessels and/or osteocytes. Vessels vary greatly in preservation, even within the same specimen, with some regions retaining pliability and other regions almost crystalline. Osteocytes also vary, with some retaining long filipodia and transparency, while others present with short and stubby filipodia and deeply pigmented nuclei, or are pigmented throughout with no nucleus visible. Alternative hypotheses are considered to explain the origin/source of observed materials. Finally, a two-part mechanism, involving first cross-linking of molecular components and subsequent mineralization, is proposed to explain the surprising presence of still-soft elements in fossil bone. These results suggest that present models of fossilization processes may be incomplete and that soft tissue elements may be more commonly preserved, even in older specimens, than previously thought. Additionally, in many cases, osteocytes with defined nuclei are preserved, and may represent an important source for informative molecular data.

  16. Transition to high rate aerospace NDI processes

    NASA Astrophysics Data System (ADS)

    Vanderheiden, Bert; Thomson, Clint; Ivakhnenko, Igor; Garner, Chuck

    2018-04-01

    With the rapidly expanding use of carbon fiber composite materials in military and commercial aircraft, processes to manufacture and inspect the structural components must evolve to ensure economic viability. Inspection techniques which were developed to inspect products produced at a rate of one or two structures a month are not fast or flexible enough to inspect more than 8500 parts per month. This presentation describes the evolution of phased array ultrasonic inspection systems to provide the increased rate capacity, the flexibility to accommodate multiple unique designs, and the ability to rapidly adjust to product design changes. The paper will describe how system developments were made in response to new programs resulting in a much less expensive, higher degree of accuracy, increased flexibility, and lower cycle time inspections.

  17. The Detroit River, Michigan: an ecological profile

    USGS Publications Warehouse

    Manny, Bruce A.; Edsall, Thomas A.; Jaworski, Eugene

    1988-01-01

    A part of the connecting channel system between Lake Huron and Lake Erie, the Detroit River forms an integral link between the two lakes for both humans and biological resources such as fish, nutrients, and plant detritus. This profile summarizes existing scientific information on the ecological structure and functioning of this ecosystem. Topics include the geological history of the region, climatic influences, river hydrology, lower trophic-level biotic components, native and introduced fishes, waterfowl use, ecological interrelationships, commercial and recreational uses of the river, and current management issues. Despite urbanization, the river still supports diverse fish, waterfowl, and benthic populations. Management issues include sewer overflows; maintenance dredging for navigation and port activities; industrial discharges of potentially hazardous materials; and wetland, fishery, and waterfowl protection and enhancement.

  18. Supportability Technologies for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watson, Kevin; Thompson, Karen

    2007-01-01

    Future long-duration human exploration missions will be challenged by resupply limitations and mass and volume constraints. Consequently, it will be essential that the logistics footprint required to support these missions be minimized and that capabilities be provided to make them highly autonomous from a logistics perspective. Strategies to achieve these objectives include broad implementation of commonality and standardization at all hardware levels and across all systems, repair of failed hardware at the lowest possible hardware level, and manufacture of structural and mechanical replacement components as needed. Repair at the lowest hardware levels will require the availability of compact, portable systems for diagnosis of failures in electronic systems and verification of system functionality following repair. Rework systems will be required that enable the removal and replacement of microelectronic components with minimal human intervention to minimize skill requirements and training demand for crews. Materials used in the assembly of electronic systems (e.g. solders, fluxes, conformal coatings) must be compatible with the available repair methods and the spacecraft environment. Manufacturing of replacement parts for structural and mechanical applications will require additive manufacturing systems that can generate near-net-shape parts from the range of engineering alloys employed in the spacecraft structure and in the parts utilized in other surface systems. These additive manufacturing processes will need to be supported by real-time non-destructive evaluation during layer-additive processing for on-the-fly quality control. This will provide capabilities for quality control and may serve as an input for closed-loop process control. Additionally, non-destructive methods should be available for material property determination. These nondestructive evaluation processes should be incorporated with the additive manufacturing process - providing an in-process capability to ensure that material deposited during layer-additive processing meets required material property criteria.

  19. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  20. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  1. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners

    PubMed Central

    Rollins, Nancy K.; Liang, Hui; Park, Yong Jong

    2015-01-01

    Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261

  2. Design of Diaphragm and Coil for Stable Performance of an Eddy Current Type Pressure Sensor.

    PubMed

    Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan

    2016-07-01

    The aim of this work was to develop an eddy current type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for eddy current detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.

  3. Implementation of equivalent domain integral method in the two-dimensional analysis of mixed mode problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Shivakumar, K. N.

    1989-01-01

    An equivalent domain integral (EDI) method for calculating J-intergrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The total and product integrals consist of the sum of an area of domain integral and line integrals on the crack faces. The line integrals vanish only when the crack faces are traction free and the loading is either pure mode 1 or pure mode 2 or a combination of both with only the square-root singular term in the stress field. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented. The procedure that uses the symmetric and antisymmetric components of the stress and displacement fields to calculate the individual modes gave accurate values of the integrals for all problems analyzed. The EDI method when applied to a problem of an interface crack in two different materials showed that the mode 1 and mode 2 components are domain dependent while the total integral is not. This behavior is caused by the presence of the oscillatory part of the singularity in bimaterial crack problems. The EDI method, thus, shows behavior similar to the virtual crack closure method for bimaterial problems.

  4. Learning from nature: binary cooperative complementary nanomaterials.

    PubMed

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Third Conference on Fibrous Composites in Flight Vehicle Design, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of fibrous composite materials in the design of aircraft and space vehicle structures and their impact on future vehicle systems are discussed. The topics covered include: flight test work on composite components, design concepts and hardware, specialized applications, operational experience, certification and design criteria. Contributions to the design technology base include data concerning material properties, design procedures, environmental exposure effects, manufacturing procedures, and flight service reliability. By including composites as baseline design materials, significant payoffs are expected in terms of reduced structural weight fractions, longer structural life, reduced fuel consumption, reduced structural complexity, and reduced manufacturing cost.

  6. Computer Simulation of Material Flow in Warm-forming Bimetallic Components

    NASA Astrophysics Data System (ADS)

    Kong, T. F.; Chan, L. C.; Lee, T. C.

    2007-05-01

    Bimetallic components take advantage of two different metals or alloys so that their applicable performance, weight and cost can be optimized. However, since each material has its own flow properties and mechanical behaviour, heterogeneous material flows will occur during the bimetal forming process. Those controls of process parameters are relatively more complicated than forming single metals. Most previous studies in bimetal forming have focused mainly on cold forming, and less relevant information about the warm forming has been provided. Indeed, changes of temperature and heat transfer between two materials are the significant factors which can highly influence the success of the process. Therefore, this paper presents a study of the material flow in warm-forming bimetallic components using finite-element (FE) simulation in order to determine the suitable process parameters for attaining the complete die filling. A watch-case-like component made of stainless steel (AISI-316L) and aluminium alloy (AL-6063) was used as the example. The warm-forming processes were simulated with the punch speeds V of 40, 80, and 120 mm/s and the initial temperatures of the stainless steel TiSS of 625, 675, 725, 775, 825, 875, 925, 975, and 1025 °C. The results showed that the AL-6063 flowed faster than the AISI-316L and so the incomplete die filling was only found in the AISI-316L region. A higher TiSS was recommended to avoid incomplete die filling. The reduction of V is also suggested because this can save the forming energy and prevent the damage of tooling. Eventually, with the experimental verification, the results from the simulation were in agreement with those of the experiments. On the basis of the results of this study, engineers can gain a better understanding of the material flow in warm-forming bimetallic components, and be able to determine more efficiently the punch speed and initial material temperature for the process.

  7. Arruntia Crater: A Rare Window into Vesta’s Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica; Cheek, Leah

    2015-11-01

    One of the intriguing results of the Dawn mission to Vesta was the discovery that the only deposits containing significant olivine, a key mineralogic indicator of primitive materials, occur in two shallow craters in the northern hemisphere. Numerous investigations into these exposures using either the Framing Camera (FC) or the VIR spectrometer typically find similarities between the olivine outcropping in Bellicia’s wall and in the Arruntia ejecta. Our own investigations - using a hybrid VIR-FC approach -suggest an important distinction between the exposures at the two craters. Specifically, we find that the proximal Arruntia ejecta are dominated not by an olivine-rich component (although isolated examples occur), but instead by a more evolved, eucritic component. These interspersed eucritic materials are similar to olivine-rich materials in FC data because both components pull the 1 um band to longer wavelengths. Ultimately, however, they are distinguished by the position and strength of the 2 um band, which is not covered by FC wavelengths. The Arruntia ejecta also appear olivine-like in some parameterizations of VIR spectra for the area, but closer examination of the full spectra at a fine spatial scale clearly suggests the presence of two different materials. Interestingly, the approach used here also reveals a separate diogenitic component in the distal Arruntia ejecta as well as in isolated locations within Arruntia’s wall. Initial evaluation of stratigraphic relationships in the Arruntia ejecta suggest a pre-impact sequence of eucrite -> olivine-rich -> diogenite grading from depth to the shallowest subsurface (although the small size of Arruntia means that this entire assemblage was excavated from no more than a few of kilometers below the surface). These results illustrate two main points: first, that pyroxene-bearing materials rich in olivine are difficult to distinguish from evolved pyroxenes in the absence of full resolution spectroscopy at a fine spatial scale. Second, we find that Arruntia crater is likely a unique location on Vesta where pervasive mechanical gardening has not yet masked the stratigraphic relationships between endmember diogenitic and eucritic components nor olivine-enhancements.

  8. Effect of Fe(II)/Ce(III) dosage ratio on the structure and anion adsorptive removal of hydrothermally precipitated composites: Insights from EXAFS/XANES, XRD and FTIR.

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan; Yablokova, Ganna

    2017-02-01

    In this work, we present material chemistry in the hydrothermal synthesis of new complex structure materials based on various dosage ratios of Fe and Ce (1:0, 2:1, 1:1, 1:2, 0:1), characterize them by the relevant methods that allow characterization of both crystalline and amorphous phases and correlate their structure/surface properties with the adsorptive performance of the five toxic anions. The applied synthesis conditions resulted in the formation of different compounds of Fe and Ce components. The Fe-component was dominated by various phases of Fe hydrous oxides, whereas the Ce-component was composed of various phases of Ce carbonates. The presence of two metal salts in raw materials resulted in the formation of a mesoporous structure and averaged the surface area compared to one metal-based material. The surface of all Fe-Ce composites was abundant in Fe component phases. Two-metal systems showed stronger anion removal performance than one-metal materials. The best adsorption was demonstrated by Fe-Ce based materials that had low crystallinity, that were rich in phases and that exhibited surfaces were abundant in greater number of surface functional groups. Notably, Fe extended fine structures simulated by EXAFS in these better adsorbents were rich from oscillations from both heavy and light atoms. This work provides new insights on the structure of composite inorganic materials useful to develop their applications in adsorption and catalysis. It also presents new inorganic anion exchangers with very high removal potential to fluoride and arsenate. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. Combinatorial sythesis of organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  12. Polymer arrays from the combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong

    2004-09-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  13. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  14. Preparation and screening of crystalline inorganic materials

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  15. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  16. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  17. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2005-03-08

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. A New Method for Low Cost Production of Titanium Alloys for Reducing Energy Consumption of Mechanical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Z. Zak; Chandran, Ravi; Koopman, Mark

    This project investigated an innovative manufacturing process intended to minimize the cost of production of titanium materials and components, and increase the adoption of Ti components for energy consuming applications, such as automobiles. A key innovation of the proposed manufacturing approach is a novel Ti powder sintering technology for making titanium materials with ultrafine grain microstructure in the as-sintered state with minimum, or an absence, of post-sintering processes. The new sintering technology is termed Hydrogen Sintering and Phase Transformations (HSPT), and constitutes a promising manufacturing technology that can be used to produce titanium (Ti) materials and components in a near-net-shapemore » form, thus also minimizing machining costs. Our objective was to meet, or possibly surpass, the mechanical property levels for ASTM B348 Grade 5 for wrought Ti-6Al-4V. Although specific applications call for varying mechanical property requirements, ASTM B348 was created for the demanding applications of the aerospace industry, and is the established standard for Ti-6Al-4V. While the primary goal was to meet, or exceed this standard, the team also had the goal of demonstrating this could be done at a significantly lower cost of production. Interim goals of the project were to fully develop this novel sintering process, and provide sufficient baseline testing to make the method practical and attractive to industry. By optimizing the process parameters for the sintering of titanium hydride (TiH 2) powders in a hydrogen atmosphere and controlling the phase transformations during and after sintering, the HSPT process was expected to reduce the energy consumption, and thus cost, of making Ti alloys and fabricating Ti components. The process was designed such that no high temperature melting is required for producing Ti alloys; little or no post-sintering processing is needed for producing desired microstructures (and therefore enhanced mechanical properties), and finally, minimum machining is needed to fabricate finished Ti components. An energy analysis within this report provides more detail, but calculated values indicate that the HSPT process is less than half as energy intensive as conventional wrought processing, while producing mechanical properties that are comparable. In addition to the energy savings anticipated from the industrial production of Ti components, a second prong of energy savings resides in the use phase of components produced, primarily from use in the transportation sector. Titanium has a number of material qualities appropriate for the auto industry, particularly low mass and corrosion resistance. By reducing the weight of automobiles and other vehicles, energy costs and CO 2 production will be reduced over the lifetime of the vehicles, and components in corrosive environments on vehicles, such as exhaust systems and other under carriage parts, may not have to be replaced during a vehicle’s lifetime. Our analysis indicates that by replacing only 5.6 kg of steel parts in an auto with Ti components across the entire US fleet would save approximately 486 million gallons of gasoline per year. This correlates to a reduction of 3.6 million metric tons of CO 2 per year. The potential for replacing many more of the steel parts in automobiles with lighter weight titanium components is clear. The project was very successful overall, meeting all milestones and surpassing project goals in terms of mechanical properties and microstructures produced. In addition to tensile properties, fatigue properties were emphasized in the project work. Powder metallurgy processes often have porosity to some degree in their final microstructure, and porosity is a well-known cause of crack initiation and low fatigue performance. Although many automobile applications do not undergo fatigue stress regimes, many others do encounter cyclic stress, and design criteria in the latter case require good fatigue properties. Production and testing of HSPT parts showed excellent tensile properties and fracture toughness, and fatigue properties that exceeded all previously reported powder metallurgy Ti methods, overlapping with wrought processed values. Fatigue limits exceeded 500 MPa and tensile strength exceeded 1,000 MPa while maintaining good ductility. Microstructures produced during the project period easily surpassed pre-project expectations. In addition to producing very fine grains in the as-sintered state (without post sintered thermo-mechanical work), porosity was reduced and industrially relevant microstructures previously undemonstrated in any other powder metallurgy titanium method were produced using HSPT materials. These microstructures, both bi-modal and globularized, were produced with simple post-sinter heat treatments, but without the need for energy intensive mechanical work. The employed heat treatments expanded the available mechanical property range (tensile strength vs. ductility) of the HSPT system in Ti-6Al-4V. The project has resulted in the publication, thus far, of five refereed journal articles and five conference proceedings papers, as well as a patent application, two dissertations and a master’s thesis. Two additional journal articles are currently under review, and at least three others are currently in preparation, with several additional students anticipated to graduate within the coming year. Presentations and papers were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the Ti research teams within Prof. Fang’s and Prof. Chandran’s research groups had a strong presence at the 13th World Conference on Ti, August 16-20, 2015, in San Diego. Several research groups in the US and in Europe are now performing experiments using the HSPT process. Accompanying efforts to bring HSPT to the Ti community at large, and industry in particular, work has continued with our partners and with other interested industrial Ti users and producers, including Boeing and GKN (a major powder metallurgy parts manufacturer). Commercialization has been a central focus of the final phase of the project, and Reading Alloys signed a provisional licensing agreement in summer of 2015. They are currently seeking an appropriate customer with which to pursue initial parts manufacturing efforts. Other licensing options and partners are continuing to be pursued. The promise of lightweight, strong and corrosion resistant Ti alloys with long fatigue lifetimes for automobile or transportation applications has been the vision of the metal industry since titanium came to the attention of scientists and engineers. The sole limitation of realizing these goals has been cost, which is primarily a function of energy used in production. The HSPT process was shown through this work to be capable of realizing this goal, and facilitating the practical use of titanium in US automotive and other industries.« less

  20. Development and demonstration of manufacturing processes for fabricating graphite/LARC-160 polyimide structural elements, part 4, paragraph B

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A quality assurance program was developed which included specifications for celion/LARC-160 polyimide materials and quality control of materials and processes. The effects of monomers and/or polymer variables and prepeg variables on the processibility of celion/LARC prepeg were included. Processes for fabricating laminates, honeycomb core panels, and chopped fiber moldings were developed. Specimens and conduct tests were fabricated to qualify the processes for fabrication of demonstration components.

Top